District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 1 of 160

| Incident ID    |  |
|----------------|--|
| District RP    |  |
| Facility ID    |  |
| Application ID |  |

# **Release Notification**

## **Responsible Party**

| Responsible Party       | OGRID                        |
|-------------------------|------------------------------|
| Contact Name            | Contact Telephone            |
| Contact email           | Incident # (assigned by OCD) |
| Contact mailing address |                              |

## **Location of Release Source**

Longitude

| Latitude |  |  |
|----------|--|--|
|          |  |  |

| Site Name               | Site Type            |
|-------------------------|----------------------|
| Date Release Discovered | API# (if applicable) |

(NAD 83 in decimal degrees to 5 decimal places)

| Unit Letter | Section | Township | Range | County |
|-------------|---------|----------|-------|--------|
|             |         |          |       |        |

Surface Owner: State Federal Tribal Private (Name: \_

## Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

| Crude Oil        | Volume Released (bbls)                                                         | Volume Recovered (bbls)                 |
|------------------|--------------------------------------------------------------------------------|-----------------------------------------|
| Produced Water   | Volume Released (bbls)                                                         | Volume Recovered (bbls)                 |
|                  | Is the concentration of dissolved chloride in the produced water >10,000 mg/l? | Yes No                                  |
| Condensate       | Volume Released (bbls)                                                         | Volume Recovered (bbls)                 |
| Natural Gas      | Volume Released (Mcf)                                                          | Volume Recovered (Mcf)                  |
| Other (describe) | Volume/Weight Released (provide units)                                         | Volume/Weight Recovered (provide units) |
| Cause of Release |                                                                                |                                         |
|                  |                                                                                |                                         |
|                  |                                                                                |                                         |
|                  |                                                                                |                                         |

| Page | 2 |
|------|---|
| rage | 4 |

## Oil Conservation Division

| Incident ID    |  |
|----------------|--|
| District RP    |  |
| Facility ID    |  |
| Application ID |  |

| etc)? |
|-------|
| etc)? |

# **Initial Response**

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.
The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

| Printed Name | Title:     |
|--------------|------------|
| Signature:   | Date:      |
| email:       | Telephone: |
|              |            |
| OCD Only     |            |
| Received by: | Date:      |

| Convert integritar shape<br>into a series of<br>rectangles                                               | 2025 12:<br>Length<br>(ft.) | 44:14 PM<br>Width<br>(ft.) | Average<br>Depth<br>(in.) | On/Off<br>Pad<br>(dropdown) | Soil Spilled-Fluid<br>Saturation<br>(%.) | Estimated volume of each<br>area<br>(bbl.) | Total Estimated<br>Volume of Spill<br>(bbl.) |
|----------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|---------------------------|-----------------------------|------------------------------------------|--------------------------------------------|----------------------------------------------|
| Rectangle A                                                                                              | 60.0                        | 30.0                       | 0.4                       | Off-Pad ∽                   | 15.02%                                   | 10.01                                      | 1.50                                         |
| Rectangle B                                                                                              | 60.0                        | 30.0                       | 0.2                       | Off-Pad ∽                   | 15.02%                                   | 5.34                                       | 0.80                                         |
| Rectangle C                                                                                              |                             |                            |                           | ~                           |                                          | 0.00                                       |                                              |
| Rectangle D                                                                                              |                             |                            |                           | ~                           | [                                        | 0.00                                       | 1                                            |
| Rectangle E                                                                                              |                             |                            |                           | ~                           |                                          | 0.00                                       | 31                                           |
| Rectangle F                                                                                              |                             |                            |                           | ~                           | 5                                        | 0.00                                       | 53                                           |
| Rectangle G                                                                                              |                             |                            |                           | ~                           |                                          | 0.00                                       |                                              |
| Rectangle H                                                                                              | 2                           |                            | -                         | ~                           | 2                                        | 0.00                                       | 20                                           |
| Rectangle I                                                                                              |                             |                            |                           | ~                           |                                          | 0.00                                       | 32                                           |
| Rectangle J                                                                                              | 2/21/2026                   | 0.22.10                    | 434                       | ~                           |                                          | 0.00                                       | an estador capación de las                   |
| Rectangle J V 0.00<br>Released to Imaging: 3/31/2025 9:23:19 AM Total Subsurface Volume Released: 2.3059 |                             |                            |                           |                             |                                          |                                            |                                              |

| Total Estimated<br>Contaminated<br>Soil,<br>uncompacted,<br>25% (yd <sup>3</sup> .) | Current Rufe 63 19 19 -<br>RMR Handover Volume,<br>(yd <sup>3</sup> .) |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 2.60                                                                                |                                                                        |
| 1.39                                                                                |                                                                        |
| 0.00                                                                                |                                                                        |
| 0.00                                                                                |                                                                        |
| 0.00                                                                                | 750                                                                    |
| 0.00                                                                                | 750                                                                    |
| 0.00                                                                                |                                                                        |
| 0.00                                                                                |                                                                        |
| 0.00                                                                                |                                                                        |
| 0.00                                                                                | 10000                                                                  |
| 3.99                                                                                | BU                                                                     |

# E N S O L U M

November 27, 2024

**New Mexico Oil Conservation Division** New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

## Re: Reclamation Report Brinninstool Unit 003H Incident Number NAPP2315635182 Lea County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of COG Operating, LLC (COG), has prepared the following *Reclamation Report* for the Brinninstool Unit 003H (Site). The *Reclamation Report* documents the Site history and reclamation activities completed to date.

## BACKGROUND

The Site is located in Unit A, Section 20, Township 23 South, Range 33 East, in Lea County, New Mexico (32.2973°, -103.5859°) and is associated with oil and gas exploration and production operations on private land owned by Hughes Properties, LLC.

On May 29, 2023, damage to a transfer line resulted in the release of approximately 2.3059 barrels (bbls) of produced water onto the lease road and into the surrounding pasture. No released fluids were recovered. COG reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification Form C-141 (Form C-141) on June 5, 2023. The release was assigned Incident Number NAPP2315635182.

Delineation and excavation of impacted soil was completed at the Site in July 2023. Based on the delineation and excavation soil sample analytical results, a *Closure Request* was submitted to the NMOCD on September 18, 2024. The NMOCD approved the *Closure Request* on January 12, 2024. Additional details regarding the release, Site Characterization, delineation and excavation activities, and soil sample analytical results can be referenced in the approved *Closure Request* attached as Appendix A. Remediation of the release was completed in accordance with Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC).

## **RECLAMATION ACTIVITIES**

The excavation area measured approximately 1,405 square feet. A total of approximately 120 cubic yards of impacted soil were removed during the excavation activities. Upon completion of excavation activities and receipt of final laboratory analytical results, the excavation was backfilled, and the area was graded and contoured to match the surrounding topography. The excavation area on the lease road was backfilled with caliche and the excavation in the pasture was backfilled with locally procured topsoil,

COG Operating, LLC Reclamation Report Brinninstool Unit 003H

consistent with the surrounding native soil type. The excavation extent and reclamation area are depicted on the attached Figure 1. Photographic documentation is included in Appendix B.

One representative 5-point composite sample (CS-1) was collected from the caliche backfill material. One representative 5-point composite sample (CS-2) was collected from the topsoil backfill material. The backfill soil samples were transported under strict chain-of-custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of the following constituents of concern (COCs): benzene, toluene, ethylbenzene, and total xylenes (BTEX) following United States Environmental Protection Agency (EPA) Method 8021B; total petroleum hydrocarbons (TPH)-gasoline range organics (GRO), TPH-diesel range organics (DRO), and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for the backfill soil samples confirmed compliance with NMOCD requirements for the reclaimed area to contain non-waste containing, uncontaminated, earthen material with chloride concentrations less than 600 milligrams per kilogram (mg/kg) and TPH concentrations less than 100 mg/kg. The laboratory analytical results are summarized in the attached Table 1 and the complete laboratory analytical report is included as Appendix C.

The disturbed pasture area was seeded on October 23, 2024, with the Bureau of Land Management (BLM) sandy sites seed mix at double the rate specified in pounds of pure live seed (PLS) per acre to account for the application method.

| Species/Cultivar                           | PLS/Acre |
|--------------------------------------------|----------|
| Sand dropseed (Sporobolus cryptandrus)     | 1.0      |
| Sand love grass (Eragrostis trichodes)     | 1.0      |
| Plains bristlegrass (Setaria macrostachya) | 2.0      |

The seed mix was doubled and distributed with a broadcast seed spreader and harrowed in. Photographs of the backfilled excavation and seeding of the reclaimed area are provided in Appendix B.

## **VEGETATION MONITORING**

The Site will be monitored for vegetation growth to verify reclamation activities were successful. Focus for this phase will be to prevent erosion and Site degradation, and to monitor for and treat invasive and noxious weed species.

- Annual inspections will take place at the location to assess revegetation progress until vegetation is consistent with local natural vegetation density.
- If necessary, an additional application of the BLM seed mix will be applied.
- Noxious and invasive weeds will be identified and treated by licensed contracted herbicide applicators or mechanically/physically removed.

A *Re-vegetation Report* will be submitted to the NMOCD once vegetation growth in the reclaimed pasture area has a uniform vegetative cover that reflects a life-form ratio of plus or minus 50 percent (%) of pre-disturbance levels and a total percent plant cover of at least 70% of pre-disturbance levels, excluding noxious weeds, per NMAC 19.15.29.13 D.(3).



COG Operating, LLC Reclamation Report Brinninstool Unit 003H

## **RECLAMATION APPROVAL REQUEST**

Based on the reclamation activities completed to date and proposed vegetation monitoring plan described above, COG respectfully requests approval of this *Reclamation Report* and a status update to *Reclamation Report Approved, Pending submission of Re-Vegetation Report* for Incident Number NAPP2315635182.

If you have any questions or comments, please contact Ms. Hadlie Green at (432) 557-8895 or hgreen@ensolum.com.

Sincerely, Ensolum, LLC

Tol X

Tabitha Guadian Staff Geologist

Daniel R. Moir, PG (licensed in WY & TX) Senior Managing Geologist

cc: Jacob Laird, ConocoPhillips Company

Appendices:

- Figure 1 Excavation Extent / Reclamation Area
- Table 1Backfill Soil Sample Analytical Results
- Appendix A Closure Request Report: Dated September 18, 2024
- Appendix B Photographic Log
- Appendix C Laboratory Analytical Report & Chain of Custody Documentation





FIGURES

### Received by OCD: 1/7/2025 12:44:14 PM





# TABLES

.

# **ENSOLUM**

| TABLE 1     SOIL SAMPLE ANALYTICAL RESULTS     Brinninstool Unit 003H     COG Operating, LLC     Lea County, New Mexico |            |                     |                    |                       |                    |                    |                    |                      |                     |  |
|-------------------------------------------------------------------------------------------------------------------------|------------|---------------------|--------------------|-----------------------|--------------------|--------------------|--------------------|----------------------|---------------------|--|
| Sample<br>Designation                                                                                                   | Date       | Depth<br>(feet bgs) | Benzene<br>(mg/kg) | Total BTEX<br>(mg/kg) | TPH GRO<br>(mg/kg) | TPH DRO<br>(mg/kg) | TPH ORO<br>(mg/kg) | Total TPH<br>(mg/kg) | Chloride<br>(mg/kg) |  |
| NMOCD Requirements for Reclamed Area                                                                                    |            | 10                  | 50                 | NE                    | NE                 | NE                 | 100                | 600                  |                     |  |
| Backfill Soil Samples                                                                                                   |            |                     |                    |                       |                    |                    |                    |                      |                     |  |
| CS-1 (Caliche)                                                                                                          | 11/18/2024 | 0.25                | <0.00201           | 0.0683                | <49.8              | <49.8              | <49.8              | <49.8                | 117                 |  |
| CS-2 (Topsoil)                                                                                                          | 11/18/2024 | 0.25                | <0.00202           | <0.00404              | <49.9              | <49.9              | <49.9              | <49.9                | 64.1                |  |

### Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NE - Not Established

NMOCD: New Mexico Oil Conservation Division

NMAC: New Mexico Administrative Code

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics

DRO: Diesel Range Organics

ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon



# APPENDIX A

*Closure Request* Report: Dated September 18, 2024

# E N S O L U M

September 14, 2023

**New Mexico Oil Conservation Division** New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

## Re: Closure Request Brinninstool Unit 003H Incident Number NAPP2315635182 Lea County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of COG Operating, LLC (COG), has prepared this *Closure Request* to document assessment, excavation, and soil sampling activities performed at Brinninstool Unit 003H (Site). The purpose of the Site assessment, excavation, and soil sampling activities was to address impacted soil resulting from a release produced water at the Site. Based on field observations, excavation activities, and laboratory analytical results from the soil sampling events, COG is submitting this *Closure Request*, describing remediation that has occurred and requesting no further action for Incident Number NAPP2315635182.

## SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit A, Section 20, Township 23 South, Range 33 East, in Lea County, New Mexico (32.2973°, -103.5859°) and is associated with oil and gas exploration and production operations on private land owned by Hughes Properties, LLC.

On May 29, 2023, damage to a transfer line resulted in a release of approximately 2.3059 barrels (bbls) of produced water onto the lease road and into the surrounding pasture. No released fluids were recovered. COG reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification Form C-141 (Form C-141) on June 5, 2023. The release was assigned Incident Number NAPP2315635182.

## SITE CHARACTERIZATION AND CLOSURE CRITERIA

The Site was characterized for applicability of Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC). Results from the characterization desktop review are presented on page 3 of the Form C-141, Site Assessment/Characterization. Potential Site receptors are identified on Figure 1.

Depth to groundwater at the Site is estimated to be greater than 100 feet below ground surface (bgs) based on the nearest groundwater well data. The closest permitted groundwater well with depth to groundwater data is United States Geological Survey (USGS) well 321746103352301, located approximately 0.26 miles southwest of the Site. The groundwater well has a reported depth to groundwater of 470 feet bgs and a total depth of 550 feet bgs. Ground surface elevation at the

COG Operating, LLC Closure Request Brinninstool Unit 003H

groundwater well location is 3,699 feet above mean sea level (amsl), which is approximately 12 feet lower in elevation than the Site. All wells used for depth to groundwater determination are presented on Figure 1. The referenced well records are included in Appendix A.

The closest continuously flowing or significant watercourse to the Site is a riverine, located approximately 2,700 feet north of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, or church. The site is greater than 300 feet from a wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). Site receptors are identified on Figure 1.

Based on the results of the Site Characterization, the following NMOCD Table I Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 20,000 mg/kg

A reclamation requirement of 600 mg/kg chloride and 100 mg/kg TPH was applied to the top 4 feet of the pasture area and lease road that were impacted by the release, per 19.15.29.13 D (1) NMAC for the top 4 feet of areas that will be immediately reclaimed following remediation.

## SITE ASSESSMENT ACTIVITIES AND LABORATORY ANALYTICAL RESULTS

On June 21, 2023, Ensolum personnel were at the Site to evaluate the release extent based on information provided on the Form C-141 and visual observations. Four assessment soil samples (SS01 through SS04) were collected around the release extent at an approximate depth of 0.5 feet bgs to confirm the lateral extent of the release. Eight assessment soil samples (SS05 through SS12) were collected within the release extent at an approximate depth of 0.5 feet bgs to assess for the presence or absence of impacted soil. The soil samples were field screened for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride using Hach<sup>®</sup> chloride QuanTab<sup>®</sup> test strips. The soil sample locations were mapped utilizing a handheld Global Positioning System (GPS) unit and are depicted on Figure 2. Photographic documentation was completed during the Site visit and a photographic log is included as Appendix B.

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of the following chemicals of concern (COCs): BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-GRO, TPH-DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for assessment soil samples SS01 through SS04, collected around the release extent, indicated all COC concentrations were compliant with the most stringent Table I Closure Criteria and successfully defined the lateral extent of the release. Laboratory analytical results for assessment samples SS05 through SS09, collected within the pasture release extent, indicated all COC concentrations were compliant with the most stringent Table I Closure assessment samples SS05 through SS09, collected within the pasture release extent, indicated all COC concentrations were compliant with the most stringent Table I Closure Criteria. Laboratory analytical



COG Operating, LLC Closure Request Brinninstool Unit 003H

ENSOLUM

results for assessment samples SS10 through SS12, collected within the pasture and lease road release extent, indicated TPH and/or chloride concentrations exceeded the reclamation requirements. Laboratory analytical results are summarized in Table 1 and the complete analytical reports are included as Appendix C.

## DELINEATION ACTIVITIES AND LABORATORY ANALYTICAL RESULTS

On July 7, 2023, Ensolum personnel returned to the Site to complete vertical assessment activities within the release extent. Boreholes were advanced via hand-auger at the locations of assessment soil samples SS05 through SS09, to further confirm the absence of impacted soil. One discrete delineation soil sample was collected at each location (SS05A through SS09A) from a depth of 1-foot bgs. The delineation soil samples were collected, handled, and analyzed following the same procedures as described above. The boreholes were backfilled with soil removed. The delineation soil sample locations were mapped utilizing a handheld GPS unit and are depicted on Figure 2.

Laboratory analytical results for delineation soil samples SS05A through SS09A collected at 1-foot bgs, indicated all COC concentrations were compliant with the most stringent Table I Closure Criteria and confirmed the absence of impacted soil is these areas. Based on the laboratory analytical results for assessment soil samples SS10 through SS12, excavation activities were warranted in the lease road and pasture area near the release point. Laboratory analytical results are summarized in Table 1 and the complete analytical reports are included as Appendix C.

## **EXCAVATION ACTIVITIES AND LABORATORY ANALYTICAL RESULTS**

On July 7, 2023, Ensolum personnel were at the Site to oversee excavation of impacted soil in the area around assessment samples SS10 through SS12. Excavation activities were performed using a backhoe and transport vehicles. To direct excavation activities, soil was screened for VOCs and chloride. The excavation was completed to depths ranging from 1-foot to 2.5 feet bgs. Photographic documentation of the excavation activities is included in Appendix B.

Following removal of impacted soil, 5-point composite soil samples were collected every 200 square feet from the floor of the excavation. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite soil samples FS01 through FS10 were collected from the floor of the excavation at depths ranging from 1-foot to 2.5 feet bgs. Composite soil samples SW01 and SW02 were collected from the sidewalls of the excavation at depths ranging from the ground surface to 2.5 feet bgs. The soil samples were handled and analyzed following the same procedures as described above. The excavation extent and excavation soil sample locations were mapped utilizing a handheld GPS and are presented on Figure 3.

Laboratory analytical results for excavation floor samples FS01 through FS10 and sidewall samples SW01 and SW02 indicated all COC concentrations were compliant with the most stringent Table I Closure Criteria. Laboratory analytical results are summarized in Table 1 and the complete laboratory analytical reports are included as Appendix C.

The final excavation area measured approximately 1,405 square feet. A total of approximately 120 cubic yards of impacted soil was removed, transported, and properly disposed of at Northern Delaware Basin Landfill in Jal, New Mexico.

COG Operating, LLC Closure Request Brinninstool Unit 003H

## **CLOSURE REQUEST**

Site assessment and excavation activities were conducted at the Site to address the May 29, 2023, release of produced water. Laboratory analytical results for the excavation soil samples indicated all COC concentrations were compliant with the most stringent Table I Closure Criteria. Additionally, the release was laterally and vertically delineated to the most stringent Table I Closure Criteria. Based on the laboratory analytical results, no further remediation is required.

COG believes the remedial actions completed are protective of human health, the environment, and groundwater. As such, COG respectfully requests closure for Incident Number NAPP2315635182. NMOCD notifications are included in Appendix D and the Final C-141 is included in Appendix E.

If you have any questions or comments, please contact Ms. Hadlie Green at (432) 557-8895 or hgreen@ensolum.com.

Jinée Cole

Senior Managing Scientist

Aimee Cole

Sincerely, **Ensolum, LLC** 

Cadie & reen

Hadlie Green Project Geologist

cc: Jacob Laird, COG Operating, LLC Hughes Properties, LLC

Appendices:

- Figure 1 Site Receptor Map
- Figure 2 Assessment Soil Sample Locations
- Figure 3 Excavation Soil Sample Locations
- Table 1Soil Sample Analytical Results
- Appendix A Referenced Well Records
- Appendix B Photographic Log
- Appendix C Laboratory Analytical Reports & Chain-of-Custody Documentation
- Appendix D NMOCD Notifications
- Appendix E Final C-141





**FIGURES** 

.

Received by OCD: 1/7/2025 12:44:14 PM

Page 17 of 160



Released to Imaging: 3/31/2025 9:23:19 AMf

Received by OCD: 1/7/2025 12:44:14 PM



Received by OCD: 1/7/2025 12:44:14 PM



Lea County, New Mexico



# TABLES

•



|                       | TABLE I     SOIL SAMPLE ANALYTICAL RESULTS     Brinninstool Unit 003H     COG Operating, LLC     Lea County, New Mexico |                     |                    |                       |                    |                    |                    |                    |                      |                     |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|-----------------------|--------------------|--------------------|--------------------|--------------------|----------------------|---------------------|--|
| Sample<br>Designation | Date                                                                                                                    | Depth<br>(feet bgs) | Benzene<br>(mg/kg) | Total BTEX<br>(mg/kg) | TPH GRO<br>(mg/kg) | TPH DRO<br>(mg/kg) | TPH ORO<br>(mg/kg) | GRO+DRO<br>(mg/kg) | Total TPH<br>(mg/kg) | Chloride<br>(mg/kg) |  |
| NMOCD Table I         | Closure Criteria (                                                                                                      | (NMAC 19.15.29)     | 10                 | 50                    | NE                 | NE                 | NE                 | 1,000              | 2,500                | 20,000              |  |
|                       |                                                                                                                         |                     |                    | Asse                  | ssment Soil Sam    | nples              |                    |                    |                      |                     |  |
| SS01*                 | 06/21/2023                                                                                                              | 0.5                 | <0.00198           | <0.00396              | <49.9              | <49.9              | <49.9              | <49.9              | <49.9                | 34.1                |  |
| SS02*                 | 06/21/2023                                                                                                              | 0.5                 | <0.00201           | <0.00402              | <49.9              | <49.9              | <49.9              | <49.9              | <49.9                | 36.3                |  |
| SS03*                 | 06/21/2023                                                                                                              | 0.5                 | <0.00200           | <0.00401              | <49.9              | <49.9              | <49.9              | <49.9              | <49.9                | 33.2                |  |
| SS04*                 | 06/21/2023                                                                                                              | 0.5                 | <0.00198           | <0.00396              | <49.9              | <49.9              | <49.9              | <49.9              | <49.9                | 39.9                |  |
| SS05*                 | 06/21/2023                                                                                                              | 0.5                 | <0.00199           | <0.00398              | <49.8              | <49.8              | <49.8              | <49.8              | <49.8                | 40.0                |  |
| SS05A*                | 07/07/2023                                                                                                              | 1                   | <0.00202           | <0.00403              | <50.1              | <50.1              | <50.1              | <50.1              | <50.1                | 67.2                |  |
| SS06*                 | 06/21/2023                                                                                                              | 0.5                 | <0.00199           | <0.00398              | <49.9              | <49.9              | <49.9              | <49.9              | <49.9                | 39.3                |  |
| SS06A*                | 07/07/2023                                                                                                              | 1                   | <0.00199           | <0.00398              | <49.8              | <49.8              | <49.8              | <49.8              | <49.8                | 77.9                |  |
| SS07*                 | 06/21/2023                                                                                                              | 0.5                 | <0.00200           | <0.00400              | <49.9              | <49.9              | <49.9              | <49.9              | <49.9                | 43.8                |  |
| SS07A*                | 07/07/2023                                                                                                              | 1                   | <0.00200           | <0.00399              | <49.9              | <49.9              | <49.9              | <49.9              | <49.9                | 96.5                |  |
| SS08*                 | 06/21/2023                                                                                                              | 0.5                 | <0.00198           | <0.00397              | <49.8              | <49.8              | <49.8              | <49.8              | <49.8                | 44.9                |  |
| SS08A*                | 07/07/2023                                                                                                              | 1                   | <0.00199           | <0.00398              | <49.8              | <49.8              | <49.8              | <49.8              | <49.8                | 81.7                |  |
| SS09*                 | 06/21/2023                                                                                                              | 0.5                 | <0.00202           | <0.00404              | <50.0              | <50.0              | <50.0              | <50.0              | <50.0                | 33.0                |  |
| SS09A*                | 07/07/2023                                                                                                              | 1                   | <0.00200           | <0.00399              | <49.7              | <49.7              | <49.7              | <49.7              | <49.7                | 102                 |  |
| SS10*                 | 06/21/2023                                                                                                              | 0.5                 | <0.00200           | < 0.00401             | <49.9              | 155                | 107                | 155                | 262                  | 54.9                |  |
| SS11*                 | 06/21/2023                                                                                                              | 0.5                 | <0.00201           | < 0.00402             | <50.0              | <50.0              | <50.0              | <50.0              | <50.0                | 1,750               |  |
| SS12*                 | 06/21/2023                                                                                                              | 0.5                 | <0.00202           | < 0.00403             | <50.0              | <50.0              | <50.0              | <50.0              | <50.0                | 3,890               |  |
|                       |                                                                                                                         |                     |                    | Excava                | tion Floor Soil S  | amples             |                    |                    |                      |                     |  |
| FS01*                 | 07/07/2023                                                                                                              | 2.5                 | <0.00198           | <0.00396              | <49.8              | <49.8              | <49.8              | <49.8              | <49.8                | 76.9                |  |
| FS02*                 | 07/07/2023                                                                                                              | 2.5                 | <0.00199           | <0.00398              | <50.5              | <50.5              | <50.5              | <50.5              | <50.5                | 137                 |  |
| FS03*                 | 07/07/2023                                                                                                              | 2.5                 | <0.00201           | <0.00402              | <50.1              | <50.1              | <50.1              | <50.1              | <50.1                | 67.8                |  |
| FS04*                 | 07/07/2023                                                                                                              | 2.5                 | <0.00199           | <0.00398              | <50.4              | <50.4              | <50.4              | <50.4              | <50.4                | 104                 |  |
| FS05*                 | 07/07/2023                                                                                                              | 2.5                 | <0.00201           | <0.00402              | <50.0              | <50.0              | <50.0              | <50.0              | <50.0                | 67.5                |  |
| FS06*                 | 07/07/2023                                                                                                              | 2.5                 | <0.00200           | <0.00401              | <50.1              | <50.1              | <50.1              | <50.1              | <50.1                | 116                 |  |

## Released to Imaging: 3/31/2025 9:128:5193AMI

# **ENSOLUM**

|                       |                                                |                     |                    | Bri                   | TABLE I       LE ANALYTICA       inninstool Unit 0       OG Operating, LI       County, New Me | 03H<br>₋C          |                    |                    |                      |                     |
|-----------------------|------------------------------------------------|---------------------|--------------------|-----------------------|------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|----------------------|---------------------|
| Sample<br>Designation | Date                                           | Depth<br>(feet bgs) | Benzene<br>(mg/kg) | Total BTEX<br>(mg/kg) | TPH GRO<br>(mg/kg)                                                                             | TPH DRO<br>(mg/kg) | TPH ORO<br>(mg/kg) | GRO+DRO<br>(mg/kg) | Total TPH<br>(mg/kg) | Chloride<br>(mg/kg) |
| NMOCD Table I         | NMOCD Table I Closure Criteria (NMAC 19.15.29) |                     |                    | 50                    | NE                                                                                             | NE                 | NE                 | 1,000              | 2,500                | 20,000              |
| FS07*                 | 07/07/2023                                     | 1                   | <0.00200           | <0.00399              | <50.0                                                                                          | <50.0              | <50.0              | <50.0              | <50.0                | 84.8                |
| FS08*                 | 07/07/2023                                     | 1                   | <0.00199           | <0.00398              | <50.2                                                                                          | <50.2              | <50.2              | <50.2              | <50.2                | 80.4                |
| FS09*                 | 07/07/2023                                     | 1                   | <0.00198           | <0.00396              | <50.2                                                                                          | <50.2              | <50.2              | <50.2              | <50.2                | 60.8                |
| FS10*                 | 07/07/2023                                     | 1                   | <0.00200           | <0.00400              | <49.6                                                                                          | <49.6              | <49.6              | <49.6              | <49.6                | 67.2                |
|                       | Excavation Sidewall Soil Samples               |                     |                    |                       |                                                                                                |                    |                    |                    |                      |                     |
| SW01*                 | 07/07/2023                                     | 0 - 2.5             | <0.00199           | <0.00398              | <50.0                                                                                          | <50.0              | <50.0              | <50.0              | <50.0                | 67.9                |
| SW02*                 | 07/07/2023                                     | 0 - 2.5             | <0.00199           | <0.00398              | <50.1                                                                                          | <50.1              | <50.1              | <50.1              | <50.1                | 55.8                |

#### Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

NMAC: New Mexico Administrative Code

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics

DRO: Diesel Range Organics

ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon

Concentrations in **bold** exceed the NMOCD Table I Closure Criteria or reclamation standard where applicable.

Grey text represents samples that have been excavated

\* indicates sample was collected in area to be reclaimed after remediation is complete; reclamation standard in the top 4 feet is 600 mg/kg for chloride and 100 mg/kg for TPH.



# APPENDIX A

Referenced Well Records



USGS Home Contact USGS Search USGS

# **National Water Information System: Web Interface**

**USGS Water Resources** 

| Data Category: |   | Geographic Area: |   |    |
|----------------|---|------------------|---|----|
| Groundwater    | ✓ | New Mexico       | ✔ | GO |

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

# Search Results -- 1 sites found

Agency code = usgs site\_no list = • 321746103352301

# **Minimum number of levels =** 1

Save file of selected sites to local disk for future upload

# USGS 321746103352301 23S.33E.17.42331

Lea County, New Mexico Latitude 32°17'46", Longitude 103°35'23" NAD27 Land-surface elevation 3,699 feet above NAVD88 The depth of the well is 550 feet below land surface.

This well is completed in the Other aquifers (N9999OTHER) national aquifer.

This well is completed in the Santa Rosa Sandstone (231SNRS) local aquifer.

# **Output formats**

| Table of data        |  |
|----------------------|--|
| Tab-separated data   |  |
| <u>Graph of data</u> |  |
| Reselect period      |  |

| Date       | Time | ?<br>Water-<br>level<br>date-<br>time<br>accuracy | ?<br>Parameter<br>code | Water<br>level,<br>feet<br>below<br>land<br>surface | Water<br>level,<br>feet<br>above<br>specific<br>vertical<br>datum |
|------------|------|---------------------------------------------------|------------------------|-----------------------------------------------------|-------------------------------------------------------------------|
|            |      |                                                   |                        |                                                     |                                                                   |
| 1972-09-21 |      | D                                                 | 62610                  |                                                     | 3192.86                                                           |
| 1972-09-21 |      | D                                                 | 62611                  |                                                     | 3194.60                                                           |
| 1972-09-21 |      | D                                                 | 72019                  | 504.40                                              |                                                                   |
| 1976-12-08 |      | D                                                 | 62610                  |                                                     | 3226.76                                                           |
| 1976-12-08 |      | D                                                 | 62611                  |                                                     | 3228.50                                                           |
| 1976-12-08 |      | D                                                 | 72019                  | 470.50                                              |                                                                   |

| Explanation                       |       |                                         |  |  |  |  |  |
|-----------------------------------|-------|-----------------------------------------|--|--|--|--|--|
| Section                           | Code  | Description                             |  |  |  |  |  |
| Water-level date-time<br>accuracy | D     | Date is accurate to the Day             |  |  |  |  |  |
| Parameter code                    | 62610 | Groundwater level above NGVD 1929, feet |  |  |  |  |  |

Received by OCD: 1/7/2025312:44:14 PM

| Section                        | Code   | Description                                               |
|--------------------------------|--------|-----------------------------------------------------------|
| Parameter code                 | 62611  | Groundwater level above NAVD 1988, feet                   |
| Parameter code                 | 72019  | Depth to water level, feet below land surface             |
| Referenced vertical datum      | NAVD88 | North American Vertical Datum of 1988                     |
| Referenced vertical<br>datum   | NGVD29 | National Geodetic Vertical Datum of 1929                  |
| Status                         | 1      | Static                                                    |
| Method of measurement          | Z      | Other.                                                    |
| Measuring agency               |        | Not determined                                            |
| Source of measurement          |        | Not determined                                            |
| Water-level approval<br>status | А      | Approved for publication Processing and review completed. |

Questions or Comments Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility

FOIA Privacy

y Policies and Notices

USA.gov

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2023-08-02 18:13:22 EDT 0.32 0.28 nadww01



# APPENDIX B

Photographic Log





APPENDIX C

Laboratory Analytical Reports & Chain of Custody Documentation

Received by OCD: 1/7/2025312:44:14 PM



**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Hadlie Green Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 6/26/2023 10:54:46 AM

# JOB DESCRIPTION

Brinninstoll Unit 003H SDG NUMBER 03C2012037

# **JOB NUMBER**

890-4846-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220





# **Eurofins Carlsbad**

# Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

# Authorization

AMER

Generated 6/26/2023 10:54:46 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-4846-1 SDG: 03C2012037

Page 32 of 160

# **Table of Contents**

| Cover Page            | 1  |
|-----------------------|----|
| Table of Contents     | 3  |
| Definitions/Glossary  | 4  |
| Case Narrative        | 5  |
| Client Sample Results | 6  |
| Surrogate Summary     | 16 |
| QC Sample Results     | 18 |
|                       | 24 |
| Lab Chronicle         | 28 |
| Certification Summary | 32 |
| Method Summary        | 33 |
| Sample Summary        | 34 |
| Chain of Custody      | 35 |
| Receipt Checklists    | 37 |
|                       |    |

|                 | Definitions/Glossary                                                                                        |     |
|-----------------|-------------------------------------------------------------------------------------------------------------|-----|
| Client: Ensolum |                                                                                                             | 2   |
|                 | inninstoll Unit 003H SDG: 03C2012037                                                                        | Z   |
| Qualifiers      |                                                                                                             | 3   |
| GC VOA          |                                                                                                             |     |
| Qualifier       | Qualifier Description                                                                                       |     |
| S1-             | Surrogate recovery exceeds control limits, low biased.                                                      |     |
| U               | Indicates the analyte was analyzed for but not detected.                                                    | 5   |
| GC Semi VOA     |                                                                                                             |     |
| Qualifier       | Qualifier Description                                                                                       |     |
| F1              | MS and/or MSD recovery exceeds control limits.                                                              |     |
| S1+             | Surrogate recovery exceeds control limits, high biased.                                                     |     |
| U               | Indicates the analyte was analyzed for but not detected.                                                    |     |
| HPLC/IC         |                                                                                                             | 8   |
| Qualifier       | Qualifier Description                                                                                       |     |
| U               | Indicates the analyte was analyzed for but not detected.                                                    | 9   |
| Glossary        |                                                                                                             | 4 6 |
| Abbreviation    | These commonly used abbreviations may or may not be present in this report.                                 |     |
| ¤               | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |     |
| %R              | Percent Recovery                                                                                            |     |
| CFL             | Contains Free Liquid                                                                                        |     |
| CFU             | Colony Forming Unit                                                                                         |     |
| CNF             | Contains No Free Liquid                                                                                     |     |
| DER             | Duplicate Error Ratio (normalized absolute difference)                                                      |     |
| Dil Fac         | Dilution Factor                                                                                             |     |
| DL              | Detection Limit (DoD/DOE)                                                                                   |     |
| DL, RA, RE, IN  | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |     |
| DLC             | Decision Level Concentration (Radiochemistry)                                                               |     |
| EDL             | Estimated Detection Limit (Dioxin)                                                                          |     |
| LOD             | Limit of Detection (DoD/DOE)                                                                                |     |
| LOQ             | Limit of Quantitation (DoD/DOE)                                                                             |     |
| MCL             | EPA recommended "Maximum Contaminant Level"                                                                 |     |
| MDA             | Minimum Detectable Activity (Radiochemistry)                                                                |     |
| MDC             | Minimum Detectable Concentration (Radiochemistry)                                                           |     |
| MDL             | Method Detection Limit                                                                                      |     |
| ML              | Minimum Level (Dioxin)                                                                                      |     |
| MPN             | Most Probable Number                                                                                        |     |
| MQL             | Method Quantitation Limit                                                                                   |     |
|                 |                                                                                                             |     |

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

NC

ND

NEG

POS

PQL

QC

RER

RPD TEF

TEQ

TNTC

RL

PRES

6/26/2023

Job ID: 890-4846-1

### Job ID: 890-4846-1

### Laboratory: Eurofins Carlsbad

#### Narrative

Job Narrative 890-4846-1

### Receipt

The samples were received on 6/21/2023 3:26 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.0°C

#### **Receipt Exceptions**

The following samples were received and analyzed from an unpreserved bulk soil jar: SS01 (890-4846-1), SS02 (890-4846-2), SS03 (890-4846-3), SS04 (890-4846-4), SS05 (890-4846-5), SS06 (890-4846-6), SS07 (890-4846-7), SS08 (890-4846-8), SS09 (890-4846-9), SS10 (890-4846-10), SS11 (890-4846-11) and SS12 (890-4846-12).

#### GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-56200 and analytical batch 880-56227 was outside the control limits.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-56227 recovered above the upper control limit for Benzene, Toluene, Ethylbenzene, m-Xylene & p-Xylene and o-Xylene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-56227/2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: The surrogate recovery for the blank associated with preparation batch 880-56098 and analytical batch 880-56145 was outside the upper control limits.

Method 8015MOD\_NM: The continuing calibration verification (CCV) associated with batch 880-56145 recovered below the lower control limit for Gasoline Range Organics (GRO)-C6-C10. An acceptable CCV was ran within the 12 hour window, therefore the data has been qualified and reported. The associated sample is impacted: (CCV 880-56145/31).

Method 8015MOD\_NM: The surrogate recovery for the blank associated with preparation batch 880-56210 and analytical batch 880-56147 was outside the upper control limits.

Method 8015MOD\_NM: Surrogate recovery for the following sample was outside control limits: SS01 (890-4846-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD\_NM: The matrix spike (MS) recoveries for preparation batch 880-56210 and analytical batch 880-56147 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

### HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-4846-1 SDG: 03C2012037

## Client Sample ID: SS01

Project/Site: Brinninstoll Unit 003H

Date Collected: 06/21/23 11:30 Date Received: 06/21/23 15:26

Sample Depth: 0.5

Client: Ensolum

SDG: 03C2012

## Lab Sample ID: 890-4846-1 Matrix: Solid

trix: Solid

5

| Analyte                                 | Result         | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
|-----------------------------------------|----------------|-------------|----------|-------|---|----------------|----------------|----------|
| Benzene                                 | <0.00198       | U           | 0.00198  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 20:07 |          |
| Toluene                                 | <0.00198       | U           | 0.00198  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 20:07 |          |
| Ethylbenzene                            | <0.00198       | U           | 0.00198  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 20:07 |          |
| n-Xylene & p-Xylene                     | <0.00396       | U           | 0.00396  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 20:07 |          |
| p-Xylene                                | <0.00198       | U           | 0.00198  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 20:07 |          |
| (ylenes, Total                          | <0.00396       | U           | 0.00396  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 20:07 |          |
| Surrogate                               | %Recovery      | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fa   |
| 1-Bromofluorobenzene (Surr)             | 100            |             | 70 - 130 |       |   | 06/23/23 11:43 | 06/23/23 20:07 |          |
| 1,4-Difluorobenzene (Surr)              | 92             |             | 70 - 130 |       |   | 06/23/23 11:43 | 06/23/23 20:07 |          |
| Method: TAL SOP Total BTEX - T          | otal BTEX Calo | culation    |          |       |   |                |                |          |
| Analyte                                 |                | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Total BTEX                              | <0.00396       | U           | 0.00396  | mg/Kg |   |                | 06/26/23 09:47 |          |
| Method: SW846 8015 NM - Diese           | I Range Organ  | ics (DRO) ( | GC)      |       |   |                |                |          |
| Analyte                                 | Result         | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Total TPH                               | <49.9          | U           | 49.9     | mg/Kg |   |                | 06/26/23 11:27 |          |
| Method: SW846 8015B NM - Dies           | el Range Orga  | nics (DRO)  | (GC)     |       |   |                |                |          |
| Analyte                                 |                | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Gasoline Range Organics<br>GRO)-C6-C10  | <49.9          | U           | 49.9     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 00:09 |          |
| Diesel Range Organics (Over<br>C10-C28) | <49.9          | U           | 49.9     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 00:09 |          |
| Oll Range Organics (Over C28-C36)       | <49.9          | U           | 49.9     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 00:09 |          |
| Total TPH                               | <49.9          |             | 49.9     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 00:09 |          |
| Surrogate                               | %Recovery      | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fa   |
| I-Chlorooctane                          | 127            |             | 70 - 130 |       |   | 06/23/23 13:55 | 06/24/23 00:09 |          |
| p-Terphenyl                             | 137            | S1+         | 70 - 130 |       |   | 06/23/23 13:55 | 06/24/23 00:09 |          |
| Method: EPA 300.0 - Anions, Ion         | Chromatograp   | hy - Solubl | e        |       |   |                |                |          |
| Analyte                                 | Result         | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Chloride                                | 34.1           |             | 5.04     | mg/Kg |   |                | 06/23/23 20:56 |          |
| lient Sample ID: SS02                   |                |             |          |       |   | Lab San        | nple ID: 890-  | 4846-2   |
| ate Collected: 06/21/23 11:35           |                |             |          |       |   |                | Matri          | x: Solic |
| ate Received: 06/21/23 15:26            |                |             |          |       |   |                |                |          |

| Method: SW846 8021B - Volat | ile Organic Comp | ounds (GC) |         |       |   |                |                |         |
|-----------------------------|------------------|------------|---------|-------|---|----------------|----------------|---------|
| Analyte                     | Result           | Qualifier  | RL      | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                     | <0.00201         | U          | 0.00201 | mg/Kg |   | 06/23/23 11:43 | 06/23/23 20:33 | 1       |
| Toluene                     | <0.00201         | U          | 0.00201 | mg/Kg |   | 06/23/23 11:43 | 06/23/23 20:33 | 1       |
| Ethylbenzene                | <0.00201         | U          | 0.00201 | mg/Kg |   | 06/23/23 11:43 | 06/23/23 20:33 | 1       |
| m-Xylene & p-Xylene         | <0.00402         | U          | 0.00402 | mg/Kg |   | 06/23/23 11:43 | 06/23/23 20:33 | 1       |
| o-Xylene                    | <0.00201         | U          | 0.00201 | mg/Kg |   | 06/23/23 11:43 | 06/23/23 20:33 | 1       |
| Xylenes, Total              | <0.00402         | U          | 0.00402 | mg/Kg |   | 06/23/23 11:43 | 06/23/23 20:33 | 1       |

Eurofins Carlsbad

Released to Imaging: 3/31/2025 9:286193AMM

## **Client Sample Results**

Job ID: 890-4846-1 SDG: 03C2012037

Matrix: Solid

Lab Sample ID: 890-4846-2

## Client Sample ID: SS02

Project/Site: Brinninstoll Unit 003H

Date Collected: 06/21/23 11:35 Date Received: 06/21/23 15:26

Sample Depth: 0.5

Client: Ensolum

| Surrogate                                                                                                                                                  | %Recovery                                  | Qualifier                               | Limits                                         |                                  |          | Prepared                                                             | Analyzed                                                             | Dil Fa  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------|------------------------------------------------|----------------------------------|----------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------|
| 4-Bromofluorobenzene (Surr)                                                                                                                                | 104                                        |                                         | 70 - 130                                       |                                  |          | 06/23/23 11:43                                                       | 06/23/23 20:33                                                       |         |
| 1,4-Difluorobenzene (Surr)                                                                                                                                 | 99                                         |                                         | 70 - 130                                       |                                  |          | 06/23/23 11:43                                                       | 06/23/23 20:33                                                       |         |
| Method: TAL SOP Total BTEX - 1                                                                                                                             | Total BTEX Cal                             | culation                                |                                                |                                  |          |                                                                      |                                                                      |         |
| Analyte                                                                                                                                                    | Result                                     | Qualifier                               | RL                                             | Unit                             | D        | Prepared                                                             | Analyzed                                                             | Dil Fa  |
| Total BTEX                                                                                                                                                 | <0.00402                                   | U                                       | 0.00402                                        | mg/Kg                            |          |                                                                      | 06/26/23 09:47                                                       |         |
| Method: SW846 8015 NM - Diese                                                                                                                              | el Range Organ                             | ics (DRO) (                             | GC)                                            |                                  |          |                                                                      |                                                                      |         |
| Analyte                                                                                                                                                    | Result                                     | Qualifier                               | RL                                             | Unit                             | D        | Prepared                                                             | Analyzed                                                             | Dil Fa  |
| Total TPH                                                                                                                                                  | <49.9                                      | U                                       | 49.9                                           | mg/Kg                            |          |                                                                      | 06/26/23 11:27                                                       |         |
| Method: SW846 8015B NM - Dies                                                                                                                              | sel Range Orga                             | nics (DRO)                              | (GC)                                           |                                  |          |                                                                      |                                                                      |         |
| Analyte                                                                                                                                                    |                                            | Qualifier                               | RL                                             | Unit                             | D        | Prepared                                                             | Analyzed                                                             | Dil Fa  |
| Gasoline Range Organics                                                                                                                                    | <49.9                                      | U                                       | 49.9                                           | mg/Kg                            |          | 06/23/23 13:55                                                       | 06/24/23 00:31                                                       |         |
| (GRO)-C6-C10                                                                                                                                               |                                            |                                         |                                                |                                  |          |                                                                      |                                                                      |         |
| Diesel Range Organics (Over                                                                                                                                | <49.9                                      | U                                       | 49.9                                           | mg/Kg                            |          | 06/23/23 13:55                                                       | 06/24/23 00:31                                                       |         |
| C10-C28)                                                                                                                                                   | . 40.0                                     |                                         | 10.0                                           | 114                              |          | 00/00/00 40 55                                                       | 00/04/00 00 04                                                       |         |
| Oll Range Organics (Over C28-C36)                                                                                                                          | <49.9                                      |                                         | 49.9                                           | mg/Kg                            |          | 06/23/23 13:55                                                       | 06/24/23 00:31                                                       |         |
| Total TPH                                                                                                                                                  | <49.9                                      | U                                       | 49.9                                           | mg/Kg                            |          | 06/23/23 13:55                                                       | 06/24/23 00:31                                                       |         |
| Surrogate                                                                                                                                                  | %Recovery                                  | Qualifier                               | Limits                                         |                                  |          | Prepared                                                             | Analyzed                                                             | Dil Fa  |
| 1-Chlorooctane                                                                                                                                             | 110                                        |                                         | 70 - 130                                       |                                  |          | 06/23/23 13:55                                                       | 06/24/23 00:31                                                       |         |
| p-Terphenyl                                                                                                                                                | 122                                        |                                         | 70 - 130                                       |                                  |          | 06/23/23 13:55                                                       | 06/24/23 00:31                                                       |         |
| Method: EPA 300.0 - Anions, Ion                                                                                                                            | Chromatogra                                | ohy - Solubl                            | e                                              |                                  |          |                                                                      |                                                                      |         |
| Analyte                                                                                                                                                    | Result                                     | Qualifier                               | RL                                             | Unit                             | D        | Prepared                                                             | Analyzed                                                             | Dil Fa  |
| Chloride                                                                                                                                                   | 36.3                                       |                                         | 4.99                                           | mg/Kg                            |          |                                                                      | 06/23/23 21:13                                                       |         |
| lient Sample ID: SS03                                                                                                                                      |                                            |                                         |                                                |                                  |          | Lab Sar                                                              | nple ID: 890-                                                        | 4846-   |
| ate Collected: 06/21/23 11:40                                                                                                                              |                                            |                                         |                                                |                                  |          |                                                                      | Matri                                                                | x: Soli |
| ale conceleu. 00/21/20 11.40                                                                                                                               |                                            |                                         |                                                |                                  |          |                                                                      |                                                                      |         |
| ate Received: 06/21/23 15:26                                                                                                                               |                                            |                                         |                                                |                                  |          |                                                                      |                                                                      |         |
|                                                                                                                                                            |                                            |                                         |                                                |                                  |          |                                                                      |                                                                      |         |
| ate Received: 06/21/23 15:26<br>ample Depth: 0.5                                                                                                           | Ormania Comm                               |                                         |                                                |                                  |          |                                                                      |                                                                      |         |
| ate Received: 06/21/23 15:26<br>ample Depth: 0.5<br>Method: SW846 8021B - Volatile                                                                         | · ·                                        |                                         |                                                | Unit                             |          | Prenared                                                             | Analyzed                                                             | Dil Fa  |
| ate Received: 06/21/23 15:26<br>ample Depth: 0.5<br>Method: SW846 8021B - Volatile<br>Analyte                                                              | Result                                     | Qualifier                               | RL                                             | Unit ma/Ka                       | <u>D</u> | Prepared                                                             | Analyzed                                                             | Dil Fa  |
| ate Received: 06/21/23 15:26<br>ample Depth: 0.5<br>Method: SW846 8021B - Volatile<br>Analyte<br>Benzene                                                   | <b>Result</b> <0.00200                     | Qualifier                               | RL<br>0.00200                                  | mg/Kg                            | <u>D</u> | 06/23/23 11:43                                                       | 06/23/23 21:00                                                       | Dil Fa  |
| ate Received: 06/21/23 15:26<br>ample Depth: 0.5<br>Method: SW846 8021B - Volatile<br>Analyte<br>Benzene<br>Toluene                                        | Result<br><0.00200<br><0.00200             | Qualifier<br>U<br>U                     | RL       0.00200       0.00200                 | mg/Kg<br>mg/Kg                   | <u>D</u> | 06/23/23 11:43<br>06/23/23 11:43                                     | 06/23/23 21:00<br>06/23/23 21:00                                     | Dil Fa  |
| ate Received: 06/21/23 15:26<br>ample Depth: 0.5<br>Method: SW846 8021B - Volatile<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene                        | Result<br><0.00200<br><0.00200<br><0.00200 | Qualifier<br>U<br>U<br>U                | RL<br>0.00200<br>0.00200<br>0.00200            | mg/Kg<br>mg/Kg<br>mg/Kg          | <u>D</u> | 06/23/23 11:43<br>06/23/23 11:43<br>06/23/23 11:43                   | 06/23/23 21:00<br>06/23/23 21:00<br>06/23/23 21:00                   | Dil Fa  |
| ate Received: 06/21/23 15:26<br>ample Depth: 0.5<br>Method: SW846 8021B - Volatile<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene |                                            | Qualifier<br>U<br>U<br>U<br>U           | RL<br>0.00200<br>0.00200<br>0.00200<br>0.00401 | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg | <u> </u> | 06/23/23 11:43<br>06/23/23 11:43<br>06/23/23 11:43<br>06/23/23 11:43 | 06/23/23 21:00<br>06/23/23 21:00<br>06/23/23 21:00<br>06/23/23 21:00 | Dil Fa  |
| ate Received: 06/21/23 15:26                                                                                                                               | Result<br><0.00200<br><0.00200<br><0.00200 | Qualifier<br>U<br>U<br>U<br>U<br>U<br>U | RL<br>0.00200<br>0.00200<br>0.00200            | mg/Kg<br>mg/Kg<br>mg/Kg          | <u>D</u> | 06/23/23 11:43<br>06/23/23 11:43<br>06/23/23 11:43                   | 06/23/23 21:00<br>06/23/23 21:00<br>06/23/23 21:00                   | Dil Fa  |

| 4-Bromofluorobenzene (Surr)                | 99             |                       | 70 - 130 |      |   | 06/23/23 11:43 | 06/23/23 21:00 | 1       |
|--------------------------------------------|----------------|-----------------------|----------|------|---|----------------|----------------|---------|
| 1,4-Difluorobenzene (Surr)                 | 85             |                       | 70 - 130 |      |   | 06/23/23 11:43 | 06/23/23 21:00 | 1       |
|                                            |                |                       |          |      |   |                |                |         |
| Method: TAL SOP Total BTEX - To            | otal BTEX Cald | culation              |          |      |   |                |                |         |
| Method: TAL SOP Total BTEX - To<br>Analyte |                | culation<br>Qualifier | RL       | Unit | D | Prepared       | Analyzed       | Dil Fac |

Limits

%Recovery Qualifier

Eurofins Carlsbad

Analyzed

Prepared

13

5

Surrogate

Dil Fac
Job ID: 890-4846-1 SDG: 03C2012037

Matrix: Solid

5

# **Client Sample ID: SS03**

Project/Site: Brinninstoll Unit 003H

Date Collected: 06/21/23 11:40 Date Received: 06/21/23 15:26

Sample Depth: 0.5

Client: Ensolum

| Analyte                                 | Result        | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|---------------|--------------|----------|-------|---|----------------|----------------|---------|
| Total TPH                               | <49.9         | U            | 49.9     | mg/Kg |   |                | 06/26/23 11:27 | 1       |
| Method: SW846 8015B NM - Dies           | el Range Orga | nics (DRO)   | (GC)     |       |   |                |                |         |
| Analyte                                 | Result        | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <49.9         | U            | 49.9     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 00:54 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | <49.9         | U            | 49.9     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 00:54 | 1       |
| Oll Range Organics (Over C28-C36)       | <49.9         | U            | 49.9     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 00:54 | 1       |
| Total TPH                               | <49.9         | U            | 49.9     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 00:54 | 1       |
| Surrogate                               | %Recovery     | Qualifier    | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 114           |              | 70 - 130 |       |   | 06/23/23 13:55 | 06/24/23 00:54 | 1       |
| o-Terphenyl                             | 126           |              | 70 - 130 |       |   | 06/23/23 13:55 | 06/24/23 00:54 | 1       |
| Method: EPA 300.0 - Anions, Ion         | Chromatograp  | ohy - Solubl | e        |       |   |                |                |         |
| Analyte                                 | Result        | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                                | 33.2          |              | 4.99     | mg/Kg |   |                | 06/23/23 21:19 | 1       |
| lient Sample ID: SS04                   |               |              |          |       |   | Lab Sar        | nple ID: 890-  | 1016    |

Date Received: 06/21/23 15:26

Sample Depth: 0.5

| Analyte                            | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed                              | Dil Fac |
|------------------------------------|-------------------|-------------|----------|-------|---|----------------|---------------------------------------|---------|
| Benzene                            | <0.00198          | U           | 0.00198  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 21:26                        | 1       |
| Toluene                            | <0.00198          | U           | 0.00198  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 21:26                        | 1       |
| Ethylbenzene                       | <0.00198          | U           | 0.00198  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 21:26                        | 1       |
| m-Xylene & p-Xylene                | <0.00396          | U           | 0.00396  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 21:26                        | 1       |
| o-Xylene                           | <0.00198          | U           | 0.00198  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 21:26                        | 1       |
| Xylenes, Total                     | <0.00396          | U           | 0.00396  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 21:26                        | 1       |
| Surrogate                          | %Recovery         | Qualifier   | Limits   |       |   | Prepared       | Analyzed                              | Dil Fac |
| 4-Bromofluorobenzene (Surr)        | 101               |             | 70 - 130 |       |   | 06/23/23 11:43 | 06/23/23 21:26                        | 1       |
| 1,4-Difluorobenzene (Surr)         | 97                |             | 70 - 130 |       |   | 06/23/23 11:43 | 06/23/23 21:26                        | 1       |
| -<br>Method: TAL SOP Total BTEX    | - Total BTEX Cald | culation    |          |       |   |                |                                       |         |
| Analyte                            | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed                              | Dil Fac |
| Total BTEX                         | <0.00396          | U           | 0.00396  | mg/Kg |   |                | 06/26/23 09:47                        | 1       |
| -<br>Method: SW846 8015 NM - Die   | esel Range Organ  | ics (DRO) ( | GC)      |       |   |                |                                       |         |
| Analyte                            | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed                              | Dil Fac |
| Total TPH                          | <49.9             | U           | 49.9     | mg/Kg |   |                | 06/26/23 11:27                        | 1       |
| -<br>Method: SW846 8015B NM - D    | iesel Range Orga  | nics (DRO)  | (GC)     |       |   |                |                                       |         |
|                                    | Booult            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed                              | Dil Fac |
| Analyte                            | Result            | Quannoi     | =        |       |   |                | · · · · · · · · · · · · · · · · · · · |         |
| Analyte<br>Gasoline Range Organics | 49.9              | U           | 49.9     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 01:17                        | 1       |

| Analyto                           | Rooun | Quannoi | 1.2  | onne  | rioparoa           | Analyzou       | Dirrao |
|-----------------------------------|-------|---------|------|-------|--------------------|----------------|--------|
| Gasoline Range Organics           | <49.9 | U       | 49.9 | mg/Kg | <br>06/23/23 13:55 | 06/24/23 01:17 | 1      |
| (GRO)-C6-C10                      |       |         |      |       |                    |                |        |
| Diesel Range Organics (Over       | <49.9 | U       | 49.9 | mg/Kg | 06/23/23 13:55     | 06/24/23 01:17 | 1      |
| C10-C28)                          |       |         |      |       |                    |                |        |
| Oll Range Organics (Over C28-C36) | <49.9 | U       | 49.9 | mg/Kg | 06/23/23 13:55     | 06/24/23 01:17 | 1      |
|                                   |       |         |      |       |                    |                |        |

Eurofins Carlsbad

Lab Sample ID: 890-4846-3

Job ID: 890-4846-1 SDG: 03C2012037

# **Client Sample ID: SS04**

Project/Site: Brinninstoll Unit 003H

Date Collected: 06/21/23 11:45 Date Received: 06/21/23 15:26

# Sample Depth: 0.5

Client: Ensolum

| Analyte        | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|----------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Total TPH      | <49.9     | U         | 49.9     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 01:17 | 1       |
| Surrogate      | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane | 113       |           | 70 - 130 |       |   | 06/23/23 13:55 | 06/24/23 01:17 | 1       |
| o-Terphenyl    | 126       |           | 70 - 130 |       |   | 06/23/23 13:55 | 06/24/23 01:17 | 1       |

# Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

| Analyte                | Result | Qualifier | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
|------------------------|--------|-----------|------|-------|---|----------|----------------|---------|
| Chloride               | 39.9   |           | 5.02 | mg/Kg |   |          | 06/23/23 21:25 | 1       |
| Client Sample ID: SS05 |        |           |      |       |   | Lab San  | nple ID: 890-4 | 4846-5  |

#### Client Sample ID: SS05

Date Collected: 06/21/23 12:00 Date Received: 06/21/23 15:26

#### Sample Depth: 0.5

| Method: SW846 8021B - Volati | le Organic Comp | ounds (GC) |          |       |   |                |                |         |
|------------------------------|-----------------|------------|----------|-------|---|----------------|----------------|---------|
| Analyte                      | Result          | Qualifier  | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                      | < 0.00199       | U          | 0.00199  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 21:52 | 1       |
| Toluene                      | <0.00199        | U          | 0.00199  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 21:52 | 1       |
| Ethylbenzene                 | <0.00199        | U          | 0.00199  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 21:52 | 1       |
| m-Xylene & p-Xylene          | <0.00398        | U          | 0.00398  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 21:52 | 1       |
| o-Xylene                     | <0.00199        | U          | 0.00199  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 21:52 | 1       |
| Xylenes, Total               | <0.00398        | U          | 0.00398  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 21:52 | 1       |
| Surrogate                    | %Recovery       | Qualifier  | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)  | 112             |            | 70 - 130 |       |   | 06/23/23 11:43 | 06/23/23 21:52 | 1       |
| 1,4-Difluorobenzene (Surr)   | 94              |            | 70 - 130 |       |   | 06/23/23 11:43 | 06/23/23 21:52 | 1       |

| Method: TAL SOP Total BTEX - Tot | tal BTEX Cal | culation  |         |       |   |          |                |         |
|----------------------------------|--------------|-----------|---------|-------|---|----------|----------------|---------|
| Analyte                          | Result       | Qualifier | RL      | Unit  | D | Prepared | Analyzed       | Dil Fac |
| Total BTEX                       | <0.00398     | U         | 0.00398 | mg/Kg |   |          | 06/26/23 09:47 | 1       |
|                                  |              |           |         |       |   |          |                |         |

| Method: SW846 8015 NM - Diesel R | Range Organics (D | RO) (GC) |       |   |          |                |         |
|----------------------------------|-------------------|----------|-------|---|----------|----------------|---------|
| Analyte                          | Result Qualif     | ier RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
| Total TPH                        | <49.8 U           | 49.8     | mg/Kg |   |          | 06/26/23 11:27 | 1       |

# Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                           | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <49.8     | U         | 49.8     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 01:39 | 1       |
| (GRO)-C6-C10                      |           |           |          |       |   |                |                |         |
| Diesel Range Organics (Over       | <49.8     | U         | 49.8     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 01:39 | 1       |
| C10-C28)                          |           |           |          |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <49.8     | U         | 49.8     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 01:39 | 1       |
| Total TPH                         | <49.8     | U         | 49.8     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 01:39 | 1       |
| Surrogate                         | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 109       |           | 70 - 130 |       |   | 06/23/23 13:55 | 06/24/23 01:39 | 1       |
| o-Terphenyl                       | 122       |           | 70 - 130 |       |   | 06/23/23 13:55 | 06/24/23 01:39 | 1       |

Matrix: Solid

Lab Sample ID: 890-4846-4

5

Matrix: Solid

|                                                    |                | Clien                    | t Sample Re | sults |   |                |                |          |
|----------------------------------------------------|----------------|--------------------------|-------------|-------|---|----------------|----------------|----------|
| Client: Ensolum                                    |                |                          | •           |       |   |                | Job ID: 890    | -4846-   |
| Project/Site: Brinninstoll Unit 003H               |                |                          |             |       |   |                | SDG: 03C2      | 201203   |
| Client Sample ID: SS05                             |                |                          |             |       |   | Lab Sar        | nple ID: 890-  | 4846-    |
| ate Collected: 06/21/23 12:00                      |                |                          |             |       |   |                | Matri          | ix: Soli |
| Date Received: 06/21/23 15:26                      |                |                          |             |       |   |                |                |          |
| Sample Depth: 0.5                                  |                |                          |             |       |   |                |                |          |
| Method: EPA 300.0 - Anions, Ion (<br>Analyte       |                | hy - Solubl<br>Qualifier | e<br>RL     | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Chloride                                           | 40.0           |                          | 5.04        | mg/Kg |   |                | 06/23/23 21:31 |          |
|                                                    |                |                          |             |       |   |                |                | 40.40    |
| Client Sample ID: SS06                             |                |                          |             |       |   | Lab Sar        | nple ID: 890-  |          |
| Date Collected: 06/21/23 12:05                     |                |                          |             |       |   |                | Matri          | ix: Soli |
| Date Received: 06/21/23 15:26<br>Sample Depth: 0.5 |                |                          |             |       |   |                |                |          |
| Method: SW846 8021B - Volatile C                   | Organic Comp   | ounds (GC)               |             |       |   |                |                |          |
| Analyte                                            |                | Qualifier                | RL          | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Benzene                                            | <0.00199       | U                        | 0.00199     | mg/Kg |   | 06/23/23 11:43 | 06/23/23 22:18 |          |
| Toluene                                            | <0.00199       | U                        | 0.00199     | mg/Kg |   | 06/23/23 11:43 | 06/23/23 22:18 |          |
| Ethylbenzene                                       | <0.00199       | U                        | 0.00199     | mg/Kg |   | 06/23/23 11:43 | 06/23/23 22:18 |          |
| m-Xylene & p-Xylene                                | <0.00398       | U                        | 0.00398     | mg/Kg |   | 06/23/23 11:43 | 06/23/23 22:18 |          |
| o-Xylene                                           | <0.00199       | U                        | 0.00199     | mg/Kg |   | 06/23/23 11:43 | 06/23/23 22:18 |          |
| Xylenes, Total                                     | <0.00398       | U                        | 0.00398     | mg/Kg |   | 06/23/23 11:43 | 06/23/23 22:18 |          |
| Surrogate                                          | %Recovery      | Qualifier                | Limits      |       |   | Prepared       | Analyzed       | Dil F    |
| 4-Bromofluorobenzene (Surr)                        | 106            |                          | 70 - 130    |       |   | 06/23/23 11:43 | 06/23/23 22:18 |          |
| 1,4-Difluorobenzene (Surr)<br>_                    | 106            |                          | 70 - 130    |       |   | 06/23/23 11:43 | 06/23/23 22:18 |          |
| -<br>Method: TAL SOP Total BTEX - To               | otal BTEX Calo | culation                 |             |       |   |                |                |          |
| Analyte                                            | Result         | Qualifier                | RL          | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Total BTEX                                         | <0.00398       | U                        | 0.00398     | mg/Kg |   |                | 06/26/23 09:47 |          |
| _<br>Method: SW846 8015 NM - Diesel                | Range Organ    | ics (DRO) (              | 3C)         |       |   |                |                |          |
| Analyte                                            |                | Qualifier                | RL          | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Total TPH                                          | <49.9          | U                        | 49.9        | mg/Kg |   |                | 06/26/23 11:27 |          |
| _<br>Method: SW846 8015B NM - Diese                | el Range Orga  | nics (DRO)               | (GC)        |       |   |                |                |          |
| Analyte                                            |                | Qualifier                | RL          | Unit  | D | Prepared       | Analyzed       | Dil F    |
| Gasoline Range Organics                            | <49.9          | U                        | 49.9        | mg/Kg |   | 06/23/23 13:55 | 06/24/23 02:01 |          |
| (GRO)-C6-C10                                       |                |                          |             |       |   |                |                |          |
| Diesel Range Organics (Over<br>C10-C28)            | <49.9          | U                        | 49.9        | mg/Kg |   | 06/23/23 13:55 | 06/24/23 02:01 |          |
| Oll Range Organics (Over C28-C36)                  | <49.9          | U                        | 49.9        | mg/Kg |   | 06/23/23 13:55 | 06/24/23 02:01 |          |
| Total TPH                                          | <49.9          | U                        | 49.9        | mg/Kg |   | 06/23/23 13:55 | 06/24/23 02:01 |          |
| Surrogate                                          | %Recovery      | Qualifier                | Limits      |       |   | Prepared       | Analyzed       | Dil F    |
| 1-Chlorooctane                                     | 110            |                          | 70 - 130    |       |   | 06/23/23 13:55 | 06/24/23 02:01 |          |
| o-Terphenyl                                        | 124            |                          | 70 - 130    |       |   | 06/23/23 13:55 | 06/24/23 02:01 |          |
| _<br>Method: EPA 300.0 - Anions, Ion (             | Chromatogram   | hy - Solubl              | e           |       |   |                |                |          |
| Analyte                                            |                | Qualifier                | RL          | Unit  | D | Prepared       | Analyzed       | Dil F    |

AnalyteResultQualifierRLUnitDPreparedAnalyzedDil FacChloride39.35.05mg/Kg06/23/23 21:481

Eurofins Carlsbad

Job ID: 890-4846-1 SDG: 03C2012037

# **Client Sample ID: SS07**

Project/Site: Brinninstoll Unit 003H

Date Collected: 06/21/23 12:10 Date Received: 06/21/23 15:26

Sample Depth: 0.5

Client: Ensolum

Lab Sample ID: 890-4846-7

Matrix: Solid

| Analyte                                                                                                                                                                                                                                                                        | Organic Comp<br>Result                                                                           | Qualifier                                           | RL                                                                                         | Unit                            | D        | Prepared                                                                                                                    | Analyzed                                                                                                       | Dil Fac                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Benzene                                                                                                                                                                                                                                                                        | <0.00200                                                                                         |                                                     | 0.00200                                                                                    | mg/Kg                           |          | 06/23/23 11:43                                                                                                              | 06/23/23 22:44                                                                                                 | 1                                                |
| Toluene                                                                                                                                                                                                                                                                        | <0.00200                                                                                         | U                                                   | 0.00200                                                                                    | mg/Kg                           |          | 06/23/23 11:43                                                                                                              | 06/23/23 22:44                                                                                                 | 1                                                |
| Ethylbenzene                                                                                                                                                                                                                                                                   | <0.00200                                                                                         |                                                     | 0.00200                                                                                    | mg/Kg                           |          | 06/23/23 11:43                                                                                                              | 06/23/23 22:44                                                                                                 | 1                                                |
| m-Xylene & p-Xylene                                                                                                                                                                                                                                                            | <0.00400                                                                                         |                                                     | 0.00400                                                                                    | mg/Kg                           |          | 06/23/23 11:43                                                                                                              | 06/23/23 22:44                                                                                                 | 1                                                |
| o-Xylene                                                                                                                                                                                                                                                                       | <0.00200                                                                                         | U                                                   | 0.00200                                                                                    | mg/Kg                           |          | 06/23/23 11:43                                                                                                              | 06/23/23 22:44                                                                                                 | 1                                                |
| Xylenes, Total                                                                                                                                                                                                                                                                 | <0.00400                                                                                         | U                                                   | 0.00400                                                                                    | mg/Kg                           |          | 06/23/23 11:43                                                                                                              | 06/23/23 22:44                                                                                                 | 1                                                |
| Surrogate                                                                                                                                                                                                                                                                      | %Recovery                                                                                        | Qualifier                                           | Limits                                                                                     |                                 |          | Prepared                                                                                                                    | Analyzed                                                                                                       | Dil Fac                                          |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                                                                    |                                                                                                  |                                                     | 70 - 130                                                                                   |                                 |          | 06/23/23 11:43                                                                                                              | 06/23/23 22:44                                                                                                 | 1                                                |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                                                     | 94                                                                                               |                                                     | 70 - 130                                                                                   |                                 |          | 06/23/23 11:43                                                                                                              | 06/23/23 22:44                                                                                                 | 1                                                |
| Method: TAL SOP Total BTEX - T                                                                                                                                                                                                                                                 | Total BTEX Cald                                                                                  | ulation                                             |                                                                                            |                                 |          |                                                                                                                             |                                                                                                                |                                                  |
| Analyte                                                                                                                                                                                                                                                                        | Result                                                                                           | Qualifier                                           | RL                                                                                         | Unit                            | D        | Prepared                                                                                                                    | Analyzed                                                                                                       | Dil Fac                                          |
| Total BTEX                                                                                                                                                                                                                                                                     | <0.00400                                                                                         | U                                                   | 0.00400                                                                                    | mg/Kg                           |          |                                                                                                                             | 06/26/23 09:47                                                                                                 | 1                                                |
| Method: SW846 8015 NM - Diese<br>Analyte                                                                                                                                                                                                                                       | •••                                                                                              | Qualifier                                           | RL                                                                                         | Unit                            | D        | Prepared                                                                                                                    | Analyzed                                                                                                       | Dil Fac                                          |
|                                                                                                                                                                                                                                                                                |                                                                                                  |                                                     |                                                                                            |                                 |          |                                                                                                                             |                                                                                                                |                                                  |
| Total TPH                                                                                                                                                                                                                                                                      | <49.9                                                                                            | U                                                   | 49.9                                                                                       | mg/Kg                           |          |                                                                                                                             | 06/26/23 11:27                                                                                                 | 1                                                |
|                                                                                                                                                                                                                                                                                |                                                                                                  |                                                     |                                                                                            | mg/Kg                           |          |                                                                                                                             | 06/26/23 11:27                                                                                                 | 1                                                |
| Method: SW846 8015B NM - Dies                                                                                                                                                                                                                                                  | sel Range Orga                                                                                   | nics (DRO)                                          | (GC)                                                                                       |                                 | — —      | Prenared                                                                                                                    |                                                                                                                | 1                                                |
| Method: SW846 8015B NM - Dies<br>Analyte                                                                                                                                                                                                                                       | sel Range Orga<br>Result                                                                         | nics (DRO)<br>Qualifier                             | (GC)<br>RL                                                                                 | Unit                            | D        | Prepared                                                                                                                    | Analyzed                                                                                                       | 1<br>Dil Fac                                     |
| Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics                                                                                                                                                                                                            | sel Range Orga                                                                                   | nics (DRO)<br>Qualifier                             | (GC)                                                                                       |                                 | D        | Prepared<br>06/23/23 13:55                                                                                                  |                                                                                                                | 1                                                |
| Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                             | sel Range Orga<br>Result                                                                         | nics (DRO)<br>Qualifier<br>U                        | (GC)<br>RL                                                                                 | Unit                            | D        |                                                                                                                             | Analyzed                                                                                                       | 1<br>Dil Fac                                     |
| Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                 | sel Range Orga<br>Result<br><49.9                                                                | nics (DRO)<br>Qualifier<br>U                        | (GC)<br><u>RL</u><br>49.9                                                                  | Unit<br>mg/Kg                   | D        | 06/23/23 13:55                                                                                                              | Analyzed<br>06/24/23 02:23                                                                                     | 1<br>Dil Fac<br>1                                |
| Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)                                                                                                            | sel Range Orga<br>Result<br><49.9<br><49.9                                                       | nics (DRO)<br>Qualifier<br>U<br>U                   | (GC)<br><u>RL</u><br>49.9<br>49.9                                                          | Unit<br>mg/Kg<br>mg/Kg          | D        | 06/23/23 13:55<br>06/23/23 13:55                                                                                            | Analyzed<br>06/24/23 02:23<br>06/24/23 02:23                                                                   | 1<br>Dil Fac<br>1                                |
| Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Total TPH                                                                                               | sel Range Orga<br><u>Result</u><br><49.9<br><49.9<br><49.9                                       | nics (DRO)<br>Qualifier<br>U<br>U                   | (GC)<br><u>RL</u><br>49.9<br>49.9<br>49.9                                                  | Unit<br>mg/Kg<br>mg/Kg<br>mg/Kg | D        | 06/23/23 13:55<br>06/23/23 13:55<br>06/23/23 13:55                                                                          | Analyzed<br>06/24/23 02:23<br>06/24/23 02:23<br>06/24/23 02:23                                                 | 1<br>1<br>1<br>1                                 |
| Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Total TPH<br>Surrogate                                                                                  | sel Range Orga<br>Result<br><49.9<br><49.9<br><49.9<br><49.9                                     | nics (DRO)<br>Qualifier<br>U<br>U<br>U<br>U         | (GC)<br><u>RL</u><br>49.9<br>49.9<br>49.9<br>49.9<br>49.9                                  | Unit<br>mg/Kg<br>mg/Kg<br>mg/Kg | D        | 06/23/23 13:55<br>06/23/23 13:55<br>06/23/23 13:55<br>06/23/23 13:55                                                        | Analyzed<br>06/24/23 02:23<br>06/24/23 02:23<br>06/24/23 02:23<br>06/24/23 02:23                               | 1<br>Dil Fac<br>1<br>1<br>1<br>1<br>1            |
| Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Total TPH<br>Surrogate<br>1-Chlorooctane                                                                | sel Range Orga<br>Result<br><49.9<br><49.9<br><49.9<br><49.9<br><49.9<br>%Recovery               | nics (DRO)<br>Qualifier<br>U<br>U<br>U<br>U         | (GC)<br><u>RL</u><br>49.9<br>49.9<br>49.9<br>49.9<br><u>Limits</u>                         | Unit<br>mg/Kg<br>mg/Kg<br>mg/Kg | <u>D</u> | 06/23/23 13:55<br>06/23/23 13:55<br>06/23/23 13:55<br>06/23/23 13:55<br>06/23/23 13:55<br>Prepared                          | Analyzed<br>06/24/23 02:23<br>06/24/23 02:23<br>06/24/23 02:23<br>06/24/23 02:23<br>Analyzed                   | 1<br>Dil Fac<br>1<br>1<br>1<br>1<br>1<br>Dil Fac |
| Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Total TPH<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, Ion | sel Range Orga<br>Result<br><49.9<br><49.9<br><49.9<br><49.9<br><49.9<br>%Recovery<br>103<br>114 | nics (DRO)<br>Qualifier<br>U<br>U<br>U<br>Qualifier | (GC)<br><u>RL</u><br>49.9<br>49.9<br>49.9<br>49.9<br><u>Limits</u><br>70 - 130<br>70 - 130 | Unit<br>mg/Kg<br>mg/Kg<br>mg/Kg | D        | 06/23/23 13:55<br>06/23/23 13:55<br>06/23/23 13:55<br>06/23/23 13:55<br>06/23/23 13:55<br><b>Prepared</b><br>06/23/23 13:55 | Analyzed<br>06/24/23 02:23<br>06/24/23 02:23<br>06/24/23 02:23<br>06/24/23 02:23<br>Analyzed<br>06/24/23 02:23 | 1<br>Dil Fac<br>1<br>1<br>1<br>1<br>Dil Fac<br>1 |
| Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Total TPH<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl                                                 | Sel Range Orga   Result   <49.9                                                                  | nics (DRO)<br>Qualifier<br>U<br>U<br>U<br>Qualifier | (GC)<br><u>RL</u><br>49.9<br>49.9<br>49.9<br>49.9<br><u>Limits</u><br>70 - 130<br>70 - 130 | Unit<br>mg/Kg<br>mg/Kg<br>mg/Kg | D        | 06/23/23 13:55<br>06/23/23 13:55<br>06/23/23 13:55<br>06/23/23 13:55<br>06/23/23 13:55<br><b>Prepared</b><br>06/23/23 13:55 | Analyzed<br>06/24/23 02:23<br>06/24/23 02:23<br>06/24/23 02:23<br>06/24/23 02:23<br>Analyzed<br>06/24/23 02:23 | 1<br>Dil Fac<br>1<br>1<br>1<br>1<br>Dil Fac<br>1 |

#### **Client Sample ID: SS08**

# Date Collected: 06/21/23 12:15 Date Received: 06/21/23 15:26

| Samp | le Depth: | 0.5 |
|------|-----------|-----|
|      |           |     |

| Method: SW846 8021B - Volati | le Organic Comp | ounds (GC) |         |       |   |                |                |         |
|------------------------------|-----------------|------------|---------|-------|---|----------------|----------------|---------|
| Analyte                      | Result          | Qualifier  | RL      | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                      | <0.00198        | U          | 0.00198 | mg/Kg |   | 06/23/23 11:43 | 06/23/23 23:10 | 1       |
| Toluene                      | <0.00198        | U          | 0.00198 | mg/Kg |   | 06/23/23 11:43 | 06/23/23 23:10 | 1       |
| Ethylbenzene                 | <0.00198        | U          | 0.00198 | mg/Kg |   | 06/23/23 11:43 | 06/23/23 23:10 | 1       |
| m-Xylene & p-Xylene          | <0.00397        | U          | 0.00397 | mg/Kg |   | 06/23/23 11:43 | 06/23/23 23:10 | 1       |
| o-Xylene                     | <0.00198        | U          | 0.00198 | mg/Kg |   | 06/23/23 11:43 | 06/23/23 23:10 | 1       |
| Xylenes, Total               | <0.00397        | U          | 0.00397 | mg/Kg |   | 06/23/23 11:43 | 06/23/23 23:10 | 1       |

**Eurofins Carlsbad** 

Lab Sample ID: 890-4846-8

Matrix: Solid

# Released to Imaging: 3/31/2025 9:28:5193AM

Job ID: 890-4846-1 SDG: 03C2012037

# **Client Sample ID: SS08**

Project/Site: Brinninstoll Unit 003H

Date Collected: 06/21/23 12:15 Date Received: 06/21/23 15:26

Sample Depth: 0.5

Client: Ensolum

| Surrogate                                        | %Recovery       | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac  |
|--------------------------------------------------|-----------------|-------------|----------|-------|---|----------------|----------------|----------|
| 4-Bromofluorobenzene (Surr)                      | 100             |             | 70 - 130 |       |   | 06/23/23 11:43 | 06/23/23 23:10 |          |
| 1,4-Difluorobenzene (Surr)                       | 103             |             | 70 - 130 |       |   | 06/23/23 11:43 | 06/23/23 23:10 | 1        |
| Method: TAL SOP Total BTEX -                     | Total BTEX Calo | culation    |          |       |   |                |                |          |
| Analyte                                          | Result          | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Total BTEX                                       | <0.00397        | U           | 0.00397  | mg/Kg |   |                | 06/26/23 09:47 |          |
| Method: SW846 8015 NM - Dies                     | el Range Organ  | ics (DRO) ( | GC)      |       |   |                |                |          |
| Analyte                                          | Result          | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Total TPH                                        | <49.8           | U           | 49.8     | mg/Kg |   |                | 06/26/23 11:27 |          |
| Method: SW846 8015B NM - Die                     | sel Range Orga  | nics (DRO)  | (GC)     |       |   |                |                |          |
| Analyte                                          | Result          | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Gasoline Range Organics<br>(GRO)-C6-C10          | <49.8           | U           | 49.8     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 02:45 | 1        |
| Diesel Range Organics (Over<br>C10-C28)          | <49.8           | U           | 49.8     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 02:45 |          |
| Oll Range Organics (Over C28-C36)                | <49.8           | U           | 49.8     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 02:45 |          |
| Total TPH                                        | <49.8           |             | 49.8     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 02:45 | 1        |
| Surrogate                                        | %Recovery       | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac  |
| 1-Chlorooctane                                   | 116             |             | 70 - 130 |       |   | 06/23/23 13:55 | 06/24/23 02:45 | -        |
| o-Terphenyl                                      | 129             |             | 70 - 130 |       |   | 06/23/23 13:55 | 06/24/23 02:45 | 1        |
| Method: EPA 300.0 - Anions, Ior                  | n Chromatograp  | hy - Solubl | e        |       |   |                |                |          |
| Analyte                                          | Result          | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Chloride                                         | 44.9            |             | 4.98     | mg/Kg |   |                | 06/23/23 22:00 | 1        |
| lient Sample ID: SS09                            |                 |             |          |       |   | Lab San        | nple ID: 890-  | 4846-9   |
| ate Collected: 06/21/23 12:25                    |                 |             |          |       |   |                | Matri          | x: Solic |
| ate Received: 06/21/23 15:26<br>ample Depth: 0.5 |                 |             |          |       |   |                |                |          |
| Method: SW846 8021B - Volatile                   | Organic Comp    | ounds (GC)  |          |       |   |                |                |          |
| Analyte                                          |                 | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Benzene                                          | <0.00202        |             | 0.00202  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 23:36 | 1        |
| Toluene                                          | <0.00202        | U           | 0.00202  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 23:36 |          |
| Ethylbenzene                                     | <0.00202        |             | 0.00202  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 23:36 |          |
| m-Xylene & p-Xylene                              | <0.00404        | U           | 0.00404  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 23:36 |          |
| o-Xylene                                         | <0.00202        | U           | 0.00202  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 23:36 |          |
| Xylenes, Total                                   | <0.00404        | U           | 0.00404  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 23:36 | 1        |
| Surrogato                                        | % Passavaru     | Qualifier   | Limito   |       |   | Branarad       | Applymod       |          |

| 1,4-Difluorobenzene (Surr)             | 89          |           | 70 - 130 |       |   | 06/23/23 11:43 | 06/23/23 23:36 | 1       |
|----------------------------------------|-------------|-----------|----------|-------|---|----------------|----------------|---------|
| -<br>Method: TAL SOP Total BTEX - Tota | I BTEX Calc | ulation   |          |       |   |                |                |         |
| Analyte                                | Result      | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                             | <0.00404    | U         | 0.00404  | mg/Kg |   |                | 06/26/23 09:47 | 1       |

Limits

70 - 130

%Recovery Qualifier

109

Eurofins Carlsbad

Analyzed

06/23/23 23:36

Prepared

06/23/23 11:43

Lab Sample ID: 890-4846-8 Matrix: Solid 5

Surrogate

4-Bromofluorobenzene (Surr)

Dil Fac

Job ID: 890-4846-1 SDG: 03C2012037

# **Client Sample ID: SS09**

Project/Site: Brinninstoll Unit 003H

Date Collected: 06/21/23 12:25 Date Received: 06/21/23 15:26

Sample Depth: 0.5

Client: Ensolum

| Analyte                                 | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac   |
|-----------------------------------------|---------------|-------------|----------|-------|---|----------------|----------------|-----------|
| Total TPH                               | <50.0         | U           | 50.0     | mg/Kg |   |                | 06/26/23 11:27 | 1         |
| Method: SW846 8015B NM - Dies           | el Range Orga | nics (DRO)  | (GC)     |       |   |                |                |           |
| Analyte                                 |               | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac   |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.0         | U           | 50.0     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 03:08 | 1         |
| Diesel Range Organics (Over<br>C10-C28) | <50.0         | U           | 50.0     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 03:08 | 1         |
| Oll Range Organics (Over C28-C36)       | <50.0         | U           | 50.0     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 03:08 | 1         |
| Total TPH                               | <50.0         | U           | 50.0     | mg/Kg |   | 06/23/23 13:55 | 06/24/23 03:08 | 1         |
| Surrogate                               | %Recovery     | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac   |
| 1-Chlorooctane                          | 112           |             | 70 - 130 |       |   | 06/23/23 13:55 | 06/24/23 03:08 | 1         |
| o-Terphenyl                             | 123           |             | 70 - 130 |       |   | 06/23/23 13:55 | 06/24/23 03:08 | 1         |
| Method: EPA 300.0 - Anions, Ion         | Chromatograp  | hy - Solubl | e        |       |   |                |                |           |
| Analyte                                 | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac   |
| Chloride                                | 33.0          |             | 4.99     | mg/Kg |   |                | 06/23/23 22:06 | 1         |
| Client Sample ID: SS10                  |               |             |          |       |   | Lab Sam        | ple ID: 890-4  | 846-10    |
| ate Collected: 06/21/23 12:30           |               |             |          |       |   |                | Matri          | ix: Solid |
| ate Received: 06/21/23 15:26            |               |             |          |       |   |                |                |           |
| ample Depth: 0.5                        |               |             |          |       |   |                |                |           |

#### Method: SW846 8021B - Volatile Organic Compounds (GC) Result Qualifier RL Unit D Dil Fac Analyte Prepared Analyzed Benzene <0.00200 U 0.00200 mg/Kg 06/23/23 11:43 06/24/23 00:02 1 Toluene <0.00200 U 0.00200 06/23/23 11:43 06/24/23 00:02 mg/Kg 1 0.00200 06/24/23 00:02 Ethylbenzene <0.00200 U mg/Kg 06/23/23 11:43 1 m-Xylene & p-Xylene <0.00401 U 0.00401 06/23/23 11:43 06/24/23 00:02 mg/Kg 1 o-Xylene <0.00200 U 0.00200 mg/Kg 06/23/23 11:43 06/24/23 00:02 1 Xylenes, Total <0.00401 U 0.00401 mg/Kg 06/23/23 11:43 06/24/23 00:02 1 Qualifier Limits Surrogate %Recovery Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 107 70 - 130 06/23/23 11:43 06/24/23 00:02 1 1,4-Difluorobenzene (Surr) 103 70 - 130 06/23/23 11:43 06/24/23 00:02 1 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte **Result Qualifier** RL Unit D Prepared Analyzed Dil Fac Total BTEX <0.00401 U 06/26/23 09:47 0.00401 mg/Kg 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac mg/Kg Total TPH 262 49.9 06/26/23 11:27 Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit D Dil Fac Prepared Analyzed Gasoline Range Organics <49.9 U 49.9 mg/Kg 06/23/23 13:55 06/23/23 23:01 1 (GRO)-C6-C10 **Diesel Range Organics (Over** 155 F1 49.9 mg/Kg 06/23/23 13:55 06/23/23 23:01 1

**Eurofins Carlsbad** 

C10-C28)

# Lab Sample ID: 890-4846-9 Matrix: Solid

Job ID: 890-4846-1 SDG: 03C2012037

Lab Sample ID: 890-4846-10

Lab Sample ID: 890-4846-11

# **Client Sample ID: SS10**

Project/Site: Brinninstoll Unit 003H

Client: Ensolum

Comula Douthy 0.5

Date Collected: 06/21/23 12:30 Date Received: 06/21/23 15:26

| Analyte                              | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
|--------------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Oll Range Organics (Over<br>C28-C36) | 107       |           | 49.9     | mg/Kg |   | 06/23/23 13:55 | 06/23/23 23:01 |         |
| Total TPH                            | 262       | F1        | 49.9     | mg/Kg |   | 06/23/23 13:55 | 06/23/23 23:01 |         |
| Surrogate                            | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                       | 108       |           | 70 - 130 |       |   | 06/23/23 13:55 | 06/23/23 23:01 | 1       |
| o-Terphenyl                          | 117       |           | 70 - 130 |       |   | 06/23/23 13:55 | 06/23/23 23:01 | 1       |

| Method: EPA 300.0 - Anions, Ion C | hromatograp | hy - Soluble |      |       |   |          |                |
|-----------------------------------|-------------|--------------|------|-------|---|----------|----------------|
| Analyte                           | Result      | Qualifier    | RL   | Unit  | D | Prepared | Analyzed       |
| Chloride                          | 54.9        |              | 5.01 | mg/Kg |   |          | 06/23/23 22:12 |

#### **Client Sample ID: SS11**

Date Collected: 06/21/23 12:35 Date Received: 06/21/23 15:26

Sample Depth: 0.5

| Analyte                     | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00201  | U         | 0.00201  | mg/Kg |   | 06/23/23 11:43 | 06/24/23 01:47 | 1       |
| Toluene                     | <0.00201  | U         | 0.00201  | mg/Kg |   | 06/23/23 11:43 | 06/24/23 01:47 | 1       |
| Ethylbenzene                | <0.00201  | U         | 0.00201  | mg/Kg |   | 06/23/23 11:43 | 06/24/23 01:47 | 1       |
| m-Xylene & p-Xylene         | <0.00402  | U         | 0.00402  | mg/Kg |   | 06/23/23 11:43 | 06/24/23 01:47 | 1       |
| o-Xylene                    | <0.00201  | U         | 0.00201  | mg/Kg |   | 06/23/23 11:43 | 06/24/23 01:47 | 1       |
| Xylenes, Total              | <0.00402  | U         | 0.00402  | mg/Kg |   | 06/23/23 11:43 | 06/24/23 01:47 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 103       |           | 70 - 130 |       |   | 06/23/23 11:43 | 06/24/23 01:47 | 1       |
| 1,4-Difluorobenzene (Surr)  | 90        |           | 70 - 130 |       |   | 06/23/23 11:43 | 06/24/23 01:47 | 1       |

| Method: TAL SOP Total BTEX - T | otal BTEX Calc | ulation   |         |       |   |          |                |         |
|--------------------------------|----------------|-----------|---------|-------|---|----------|----------------|---------|
| Analyte                        | Result         | Qualifier | RL      | Unit  | D | Prepared | Analyzed       | Dil Fac |
| Total BTEX                     | <0.00402       | U         | 0.00402 | mg/Kg |   |          | 06/26/23 09:47 | 1       |

# Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

| Analyte   | Result Q | Qualifier RL | Unit  | D | Prepared | Analyzed       | Dil Fac |
|-----------|----------|--------------|-------|---|----------|----------------|---------|
| Total TPH | <50.0 U  | U 50.0       | mg/Kg |   |          | 06/26/23 11:08 | 1       |

#### Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                           | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <50.0     | U         | 50.0     | mg/Kg |   | 06/22/23 13:37 | 06/23/23 19:56 | 1       |
| (GRO)-C6-C10                      |           |           |          |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.0     | U         | 50.0     | mg/Kg |   | 06/22/23 13:37 | 06/23/23 19:56 | 1       |
| C10-C28)                          |           |           |          |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <50.0     | U         | 50.0     | mg/Kg |   | 06/22/23 13:37 | 06/23/23 19:56 | 1       |
| Total TPH                         | <50.0     | U         | 50.0     | mg/Kg |   | 06/22/23 13:37 | 06/23/23 19:56 | 1       |
| Surrogate                         | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 111       |           | 70 - 130 |       |   | 06/22/23 13:37 | 06/23/23 19:56 | 1       |
| o-Terphenyl                       | 101       |           | 70 - 130 |       |   | 06/22/23 13:37 | 06/23/23 19:56 | 1       |

Matrix: Solid

Dil Fac

Matrix: Solid

1

|                                         |              | Client        | Sample Re     | sults         |   |                            |                            |                      |
|-----------------------------------------|--------------|---------------|---------------|---------------|---|----------------------------|----------------------------|----------------------|
| Client: Ensolum                         |              |               |               |               |   |                            | Job ID: 890                |                      |
| Project/Site: Brinninstoll Unit 003H    |              |               |               |               |   |                            | SDG: 03C2                  | 201203               |
| Client Sample ID: SS11                  |              |               |               |               |   | Lab Sam                    | ple ID: 890-4              | 846-1                |
| ate Collected: 06/21/23 12:35           |              |               |               |               |   |                            | Matri                      | ix: Soli             |
| oate Received: 06/21/23 15:26           |              |               |               |               |   |                            |                            |                      |
| Sample Depth: 0.5                       |              |               |               |               |   |                            |                            |                      |
| -<br>Method: EPA 300.0 - Anions, Ion C  | Chromatogram | ohv - Soluble |               |               |   |                            |                            |                      |
| Analyte                                 |              | Qualifier     | RL            | Unit          | D | Prepared                   | Analyzed                   | Dil Fa               |
| Chloride                                | 1750         |               | 24.9          | mg/Kg         |   |                            | 06/23/23 22:17             |                      |
| Client Sample ID: SS12                  |              |               |               |               |   | l ah Sam                   | ple ID: 890-4              | 846-1                |
| Date Collected: 06/21/23 12:40          |              |               |               |               |   | Lab Gam                    | -                          | ix: Soli             |
| Date Received: 06/21/23 15:26           |              |               |               |               |   |                            | Wath                       | x. 501               |
| Sample Depth: 0.5                       |              |               |               |               |   |                            |                            |                      |
| -                                       |              |               |               |               |   |                            |                            |                      |
| Method: SW846 8021B - Volatile O        |              |               | ы             | 11-14         |   | Dramanad                   | Analyzad                   |                      |
| Analyte<br>Benzene                      | <0.00202     | Qualifier     | RL<br>0.00202 | Unit<br>mg/Kg | D | Prepared<br>06/23/23 11:43 | Analyzed<br>06/24/23 02:12 | Dil Fa               |
| Toluene                                 | <0.00202     |               | 0.00202       | mg/Kg         |   | 06/23/23 11:43             | 06/24/23 02:12             |                      |
| Ethylbenzene                            | <0.00202     |               | 0.00202       | mg/Kg         |   | 06/23/23 11:43             | 06/24/23 02:12             |                      |
| m-Xylene & p-Xylene                     | < 0.00202    |               | 0.00202       | mg/Kg         |   | 06/23/23 11:43             | 06/24/23 02:12             |                      |
| o-Xylene                                | < 0.00403    |               | 0.00202       | mg/Kg         |   | 06/23/23 11:43             | 06/24/23 02:12             |                      |
| Xylenes, Total                          | < 0.00202    |               | 0.00403       | mg/Kg         |   | 06/23/23 11:43             | 06/24/23 02:12             |                      |
|                                         |              |               |               | 0 0           |   |                            |                            |                      |
| Surrogate                               | %Recovery    | Qualifier     | Limits        |               |   | Prepared                   | Analyzed                   | Dil Fa               |
| 4-Bromofluorobenzene (Surr)             | 115          |               | 70 - 130      |               |   | 06/23/23 11:43             | 06/24/23 02:12             |                      |
| 1,4-Difluorobenzene (Surr)              | 107          |               | 70 - 130      |               |   | 06/23/23 11:43             | 06/24/23 02:12             |                      |
| Method: TAL SOP Total BTEX - Tot        | tal BTEX Cal | culation      |               |               |   |                            |                            |                      |
| Analyte                                 | Result       | Qualifier     | RL            | Unit          | D | Prepared                   | Analyzed                   | Dil Fa               |
| Total BTEX                              | < 0.00403    | U             | 0.00403       | mg/Kg         |   |                            | 06/26/23 09:47             |                      |
| _<br>Method: SW846 8015 NM - Diesel I   | Pango Organ  |               | <b>C</b> )    |               |   |                            |                            |                      |
| Analyte                                 |              | Qualifier     | RL            | Unit          | D | Prepared                   | Analyzed                   | Dil Fa               |
| Total TPH                               | <50.0        |               | 50.0          | mg/Kg         |   |                            | 06/26/23 11:08             |                      |
| -                                       |              |               |               |               |   |                            |                            |                      |
| Method: SW846 8015B NM - Diese          |              |               |               | 11-14         | _ | Description                | A see borne al             | <b>D</b> 11 <b>F</b> |
| Analyte                                 |              | Qualifier     | RL            | Unit          | D | Prepared                   | Analyzed                   | Dil Fa               |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.0        | U             | 50.0          | mg/Kg         |   | 06/22/23 13:37             | 06/23/23 20:19             |                      |
| Diesel Range Organics (Over             | <50.0        | U             | 50.0          | mg/Kg         |   | 06/22/23 13:37             | 06/23/23 20:19             |                      |
| C10-C28)                                |              |               |               | 5.5           |   |                            |                            |                      |
| Oll Range Organics (Over C28-C36)       | <50.0        | U             | 50.0          | mg/Kg         |   | 06/22/23 13:37             | 06/23/23 20:19             |                      |
| Total TPH                               | <50.0        | U             | 50.0          | mg/Kg         |   | 06/22/23 13:37             | 06/23/23 20:19             |                      |
| Surrogate                               | %Recovery    | Qualifier     | Limits        |               |   | Prepared                   | Analyzed                   | Dil Fa               |
| 1-Chlorooctane                          | 114          |               | 70 - 130      |               |   | 06/22/23 13:37             | 06/23/23 20:19             |                      |
| o-Terphenyl                             | 104          |               | 70 - 130      |               |   | 06/22/23 13:37             | 06/23/23 20:19             |                      |
| -                                       |              |               |               |               |   |                            |                            |                      |
| Method: EPA 300.0 - Anions, Ion C       |              |               | <b>_</b> .    |               | _ | Dava 1                     | A                          | <b>B -</b>           |
| Analyte                                 | Result       | Qualifier     | RL            | Unit          | D | Prepared                   | Analvzed                   | Dil Fa               |

AnalyteResultQualifierRLUnitDPreparedAnalyzedDil FacChloride389025.1mg/Kg06/23/23 22:355

Eurofins Carlsbad

#### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

| -                  |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |   |
|--------------------|------------------------|----------|----------|------------------------------------------------|---|
|                    |                        | BFB1     | DFBZ1    |                                                |   |
| Lab Sample ID      | Client Sample ID       | (70-130) | (70-130) |                                                | 5 |
| 890-4846-1         | SS01                   | 100      | 92       | ·                                              |   |
| 890-4846-1 MS      | SS01                   | 95       | 97       |                                                | 6 |
| 890-4846-1 MSD     | SS01                   | 103      | 104      |                                                |   |
| 890-4846-2         | SS02                   | 104      | 99       |                                                |   |
| 890-4846-3         | SS03                   | 99       | 85       |                                                |   |
| 890-4846-4         | SS04                   | 101      | 97       |                                                | 8 |
| 890-4846-5         | SS05                   | 112      | 94       |                                                |   |
| 890-4846-6         | SS06                   | 106      | 106      |                                                | 0 |
| 890-4846-7         | SS07                   | 107      | 94       |                                                | 3 |
| 890-4846-8         | SS08                   | 100      | 103      |                                                |   |
| 890-4846-9         | SS09                   | 109      | 89       |                                                |   |
| 890-4846-10        | SS10                   | 107      | 103      |                                                |   |
| 890-4846-11        | SS11                   | 103      | 90       |                                                |   |
| 890-4846-12        | SS12                   | 115      | 107      |                                                |   |
| LCS 880-56200/1-A  | Lab Control Sample     | 99       | 107      |                                                |   |
| LCSD 880-56200/2-A | Lab Control Sample Dup | 92       | 99       |                                                |   |
| MB 880-56200/5-A   | Method Blank           | 59 S1-   | 88       |                                                |   |
| Surrogate Legend   |                        |          |          |                                                |   |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

# Method: 8015B NM - Diesel Range Organics (DRO) (GC)

### Matrix: Solid

|                      |                        |          |          | Percent Surroga |
|----------------------|------------------------|----------|----------|-----------------|
|                      |                        | 1CO1     | OTPH1    |                 |
| Lab Sample ID        | Client Sample ID       | (70-130) | (70-130) |                 |
| 880-29850-A-21-E MS  | Matrix Spike           | 120      | 99       | ·               |
| 880-29850-A-21-F MSD | Matrix Spike Duplicate | 120      | 99       |                 |
| 890-4846-1           | SS01                   | 127      | 137 S1+  |                 |
| 890-4846-2           | SS02                   | 110      | 122      |                 |
| 890-4846-3           | SS03                   | 114      | 126      |                 |
| 890-4846-4           | SS04                   | 113      | 126      |                 |
| 890-4846-5           | SS05                   | 109      | 122      |                 |
| 890-4846-6           | SS06                   | 110      | 124      |                 |
| 890-4846-7           | SS07                   | 103      | 114      |                 |
| 890-4846-8           | SS08                   | 116      | 129      |                 |
| 890-4846-9           | SS09                   | 112      | 123      |                 |
| 890-4846-10          | SS10                   | 108      | 117      |                 |
| 890-4846-10 MS       | SS10                   | 101      | 102      |                 |
| 890-4846-10 MSD      | SS10                   | 112      | 112      |                 |
| 890-4846-11          | SS11                   | 111      | 101      |                 |
| 890-4846-12          | SS12                   | 114      | 104      |                 |
| LCS 880-56098/2-A    | Lab Control Sample     | 113      | 101      |                 |
| LCS 880-56210/2-A    | Lab Control Sample     | 84       | 96       |                 |
| LCSD 880-56098/3-A   | Lab Control Sample Dup | 106      | 95       |                 |
| LCSD 880-56210/3-A   | Lab Control Sample Dup | 99       | 112      |                 |
| MB 880-56098/1-A     | Method Blank           | 143 S1+  | 133 S1+  |                 |
| MB 880-56210/1-A     | Method Blank           | 165 S1+  | 184 S1+  |                 |

Eurofins Carlsbad

6/26/2023

Prep Type: Total/NA

### Prep Type: Total/NA

Received by OCD: 1/7/2025312:44:14 RM

# **Surrogate Summary**

Client: Ensolum Project/Site: Brinninstoll Unit 003H

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl

5 6 7

Job ID: 890-4846-1 SDG: 03C2012037

Project/Site: Brinninstoll Unit 003H

### Method: 8021B - Volatile Organic Compounds (GC)

| Lab Sample ID: MB 880-56200/5-A<br>Matrix: Solid<br>Analysis Batch: 56227 |           |           |          |       |   | Client Sa      | mple ID: Metho<br>Prep Type: 1<br>Prep Batch | Total/NA |
|---------------------------------------------------------------------------|-----------|-----------|----------|-------|---|----------------|----------------------------------------------|----------|
|                                                                           | MB        |           |          |       |   |                |                                              |          |
| Analyte                                                                   | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed                                     | Dil Fac  |
| Benzene                                                                   | <0.00199  | U         | 0.00199  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 19:41                               | 1        |
| Toluene                                                                   | <0.00199  | U         | 0.00199  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 19:41                               | 1        |
| Ethylbenzene                                                              | <0.00199  | U         | 0.00199  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 19:41                               | 1        |
| m-Xylene & p-Xylene                                                       | <0.00398  | U         | 0.00398  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 19:41                               | 1        |
| o-Xylene                                                                  | <0.00199  | U         | 0.00199  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 19:41                               | 1        |
| Xylenes, Total                                                            | <0.00398  | U         | 0.00398  | mg/Kg |   | 06/23/23 11:43 | 06/23/23 19:41                               | 1        |
|                                                                           | МВ        | МВ        |          |       |   |                |                                              |          |
| Surrogate                                                                 | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed                                     | Dil Fac  |
| 4-Bromofluorobenzene (Surr)                                               | 59        | S1-       | 70 - 130 |       |   | 06/23/23 11:43 | 06/23/23 19:41                               | 1        |
| 1,4-Difluorobenzene (Surr)                                                | 88        |           | 70 - 130 |       |   | 06/23/23 11:43 | 06/23/23 19:41                               | 1        |
| Lab Sample ID: LCS 880-56200/1-A<br>Matrix: Solid                         |           |           |          |       | C | lient Sample I | D: Lab Control<br>Prep Type: 1               |          |

# Analysis Batch: 56227

| Spike                     | LCS    | LCS            |   |      | %Rec     |
|---------------------------|--------|----------------|---|------|----------|
| Analyte Addec             | Result | Qualifier Unit | D | %Rec | Limits   |
| Benzene 0.100             | 0.1193 | mg/Kg          |   | 119  | 70 - 130 |
| Toluene 0.100             | 0.1129 | mg/Kg          |   | 113  | 70 - 130 |
| Ethylbenzene 0.100        | 0.1162 | mg/Kg          |   | 116  | 70 - 130 |
| m-Xylene & p-Xylene 0.200 | 0.2352 | mg/Kg          |   | 118  | 70 - 130 |
| o-Xylene 0.100            | 0.1132 | mg/Kg          |   | 113  | 70 - 130 |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 99        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 107       |           | 70 - 130 |

#### Lab Sample ID: LCSD 880-56200/2-A

#### Matrix: Solid Laste Date

| Analysis Batch: 56227 |       |          |           |       |   |      | Prep     | Batch: | 56200 |
|-----------------------|-------|----------|-----------|-------|---|------|----------|--------|-------|
|                       | Spike | LCSD L   | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte               | Added | Result C | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               | 0.100 | 0.1125   |           | mg/Kg |   | 112  | 70 - 130 | 6      | 35    |
| Toluene               | 0.100 | 0.1097   |           | mg/Kg |   | 110  | 70 - 130 | 3      | 35    |
| Ethylbenzene          | 0.100 | 0.1053   |           | mg/Kg |   | 105  | 70 - 130 | 10     | 35    |
| m-Xylene & p-Xylene   | 0.200 | 0.2124   |           | mg/Kg |   | 106  | 70 - 130 | 10     | 35    |
| o-Xylene              | 0.100 | 0.1103   |           | mg/Kg |   | 110  | 70 - 130 | 3      | 35    |
|                       |       |          |           |       |   |      |          |        |       |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 92        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 99        |           | 70 - 130 |

#### Lab Sample ID: 890-4846-1 MS Matrix: Solid

#### Analysis Batch: 56227

| Analysis Batch: 56227 |          |           |       |        |           |       |   |      | Prep     | Batch: 56200 |
|-----------------------|----------|-----------|-------|--------|-----------|-------|---|------|----------|--------------|
|                       | Sample   | Sample    | Spike | MS     | MS        |       |   |      | %Rec     |              |
| Analyte               | Result   | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |              |
| Benzene               | <0.00198 | U         | 0.101 | 0.1141 |           | mg/Kg |   | 113  | 70 - 130 |              |
| Toluene               | <0.00198 | U         | 0.101 | 0.1134 |           | mg/Kg |   | 112  | 70 - 130 |              |

Eurofins Carlsbad

Client Sample ID: SS01

Prep Type: Total/NA

13

Job ID: 890-4846-1 SDG: 03C2012037

Prep Batch: 56200

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

MS MS

0.1074

0.2156

0.1073

**Result Qualifier** 

Unit

mg/Kg

mg/Kg

mg/Kg

Spike

Added

0.101

0.202

0.101

Limits

70 - 130

70 - 130

Client: Ensolum Project/Site: Brinninstoll Unit 003H

Lab Sample ID: 890-4846-1 MS

Analysis Batch: 56227

4-Bromofluorobenzene (Surr)

Lab Sample ID: 890-4846-1 MSD

1,4-Difluorobenzene (Surr)

Matrix: Solid

Analyte

o-Xylene

Surrogate

Ethylbenzene

m-Xylene & p-Xylene

Sample Sample

<0.00198

<0.00396 U

<0.00198 U

%Recovery

Result Qualifier

U

MS MS

95

97

Qualifier

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

107

107

106

D

# **Client Sample ID: SS01** Prep Type: Total/NA Prep Batch: 56200 7

**Client Sample ID: SS01** Δ 00

|  | 9 |   |
|--|---|---|
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   |   |
|  |   | 6 |
|  |   |   |

| Lub Gumpie ib. 000 4040 i   |           |           |          |        |           |       |   |      |          | inpic ib. |        |
|-----------------------------|-----------|-----------|----------|--------|-----------|-------|---|------|----------|-----------|--------|
| Matrix: Solid               |           |           |          |        |           |       |   |      | Prep 1   | ype: To   | tal/NA |
| Analysis Batch: 56227       |           |           |          |        |           |       |   |      | Prep     | Batch:    | 56200  |
|                             | Sample    | Sample    | Spike    | MSD    | MSD       |       |   |      | %Rec     |           | RPD    |
| Analyte                     | Result    | Qualifier | Added    | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD       | Limit  |
| Benzene                     | <0.00198  | U         | 0.100    | 0.1299 |           | mg/Kg |   | 130  | 70 - 130 | 13        | 35     |
| Toluene                     | <0.00198  | U         | 0.100    | 0.1242 |           | mg/Kg |   | 124  | 70 - 130 | 9         | 35     |
| Ethylbenzene                | <0.00198  | U         | 0.100    | 0.1199 |           | mg/Kg |   | 120  | 70 - 130 | 11        | 35     |
| m-Xylene & p-Xylene         | <0.00396  | U         | 0.200    | 0.2418 |           | mg/Kg |   | 121  | 70 - 130 | 11        | 35     |
| o-Xylene                    | <0.00198  | U         | 0.100    | 0.1199 |           | mg/Kg |   | 120  | 70 - 130 | 11        | 35     |
|                             | MSD       | MSD       |          |        |           |       |   |      |          |           |        |
| Surrogate                   | %Recovery | Qualifier | Limits   |        |           |       |   |      |          |           |        |
| 4-Bromofluorobenzene (Surr) | 103       |           | 70 - 130 |        |           |       |   |      |          |           |        |
| 1,4-Difluorobenzene (Surr)  | 104       |           | 70 - 130 |        |           |       |   |      |          |           |        |

### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

| Matrix: Solid<br>Analysis Batch: 56145  |           |           |          |       |   |                | Prep Type: 1   | otal/NA          |
|-----------------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|------------------|
| Analysis Batch: 56145                   |           |           |          |       |   |                |                |                  |
| -                                       |           |           |          |       |   |                | Prep Batch     | 1: <b>5609</b> 8 |
|                                         | МВ        | МВ        |          |       |   |                |                |                  |
| Analyte                                 | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac          |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.0     | U         | 50.0     | mg/Kg |   | 06/22/23 13:37 | 06/23/23 09:08 | 1                |
| Diesel Range Organics (Over             | <50.0     | U         | 50.0     | mg/Kg |   | 06/22/23 13:37 | 06/23/23 09:08 | 1                |
| C10-C28)                                |           |           |          |       |   |                |                |                  |
| Oll Range Organics (Over C28-C36)       | <50.0     | U         | 50.0     | mg/Kg |   | 06/22/23 13:37 | 06/23/23 09:08 | 1                |
| Total TPH                               | <50.0     | U         | 50.0     | mg/Kg |   | 06/22/23 13:37 | 06/23/23 09:08 | 1                |
|                                         | МВ        | МВ        |          |       |   |                |                |                  |
| Surrogate                               | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac          |
| 1-Chlorooctane                          | 143       | S1+       | 70 - 130 |       |   | 06/22/23 13:37 | 06/23/23 09:08 | 1                |
| o-Terphenyl                             | 133       | S1+       | 70 - 130 |       |   | 06/22/23 13:37 | 06/23/23 09:08 | 1                |

#### Matrix: Solid Prep Type: Total/NA Analysis Batch: 56145 Prep Batch: 56098 LCS LCS %Rec Spike Analyte Added **Result Qualifier** Limits Unit D %Rec Gasoline Range Organics 1000 909.5 mg/Kg 91 70 - 130

(GRO)-C6-C10

Eurofins Carlsbad

Released to Imaging: 3/31/2025 9:28:5193AM

Client: Ensolum Project/Site: Brinninstoll Unit 003H

#### Job ID: 890-4846-1 SDG: 03C2012037

# Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: LCS 880-56<br>Matrix: Solid | 098/2-A       |                     |                      |        |           |       | Client  | t Sample   |                      | ype: To             | tal/N/     |
|--------------------------------------------|---------------|---------------------|----------------------|--------|-----------|-------|---------|------------|----------------------|---------------------|------------|
| Analysis Batch: 56145                      |               |                     |                      |        |           |       |         |            |                      | Batch:              | 5609       |
|                                            |               |                     | Spike                | LCS    | LCS       |       |         |            | %Rec                 |                     |            |
| Analyte                                    |               |                     | Added                | Result | Qualifier | Unit  | D       | %Rec       | Limits               |                     |            |
| Diesel Range Organics (Over<br>C10-C28)    |               |                     | 1000                 | 943.2  |           | mg/Kg |         | 94         | 70 - 130             |                     |            |
| Surrogato                                  |               | LCS<br>Qualifier    | Limits               |        |           |       |         |            |                      |                     |            |
| Surrogate<br>1-Chlorooctane                | %Recovery<br> | Quaimer             | 70 - 130             |        |           |       |         |            |                      |                     |            |
| o-Terphenyl                                | 113           |                     | 70 - 130<br>70 - 130 |        |           |       |         |            |                      |                     |            |
| o-reipinenyi                               | 101           |                     | 70 - 730             |        |           |       |         |            |                      |                     |            |
| Lab Sample ID: LCSD 880-5<br>Matrix: Solid | 6098/3-A      |                     |                      |        |           | Clie  | nt San  | nple ID: I | Lab Contro<br>Prep 1 | l Sampl<br>Type: To |            |
| Analysis Batch: 56145                      |               |                     |                      |        |           |       |         |            |                      | Batch:              |            |
| •                                          |               |                     | Spike                | LCSD   | LCSD      |       |         |            | %Rec                 |                     | RP         |
| Analyte                                    |               |                     | Added                | Result | Qualifier | Unit  | D       | %Rec       | Limits               | RPD                 | Lim        |
| Gasoline Range Organics<br>(GRO)-C6-C10    |               |                     | 1000                 | 989.2  |           | mg/Kg |         | 99         | 70 - 130             | 8                   | 2          |
| Diesel Range Organics (Over<br>C10-C28)    |               |                     | 1000                 | 968.7  |           | mg/Kg |         | 97         | 70 - 130             | 3                   | 2          |
|                                            | LCSD          | LCSD                |                      |        |           |       |         |            |                      |                     |            |
| Surrogate                                  | %Recovery     | Qualifier           | Limits               |        |           |       |         |            |                      |                     |            |
| 1-Chlorooctane                             | 106           |                     | 70 - 130             |        |           |       |         |            |                      |                     |            |
| o-Terphenyl                                | 95            |                     | 70 - 130             |        |           |       |         |            |                      |                     |            |
| Matrix: Solid<br>Analysis Batch: 56145     | Sample        | Sample              | Spike                | MS     | MS        |       |         |            |                      | Spe: To<br>Batch:   |            |
| Analyte                                    |               | Qualifier           | Added                |        | Qualifier | Unit  | D       | %Rec       | Limits               |                     |            |
| Gasoline Range Organics<br>(GRO)-C6-C10    | <49.9         |                     | 1000                 | 1044   |           | mg/Kg |         | 102        | 70 - 130             |                     |            |
| Diesel Range Organics (Over<br>C10-C28)    | <49.9         | U                   | 1000                 | 1017   |           | mg/Kg |         | 97         | 70 - 130             |                     |            |
|                                            | MS            | MS                  |                      |        |           |       |         |            |                      |                     |            |
| Surrogate                                  | %Recovery     | Qualifier           | Limits               |        |           |       |         |            |                      |                     |            |
| 1-Chlorooctane                             | 120           |                     | 70 - 130             |        |           |       |         |            |                      |                     |            |
| o-Terphenyl                                | 99            |                     | 70 - 130             |        |           |       |         |            |                      |                     |            |
| Lab Sample ID: 880-29850-4                 | A-21-F MSD    |                     |                      |        |           | CI    | lient S | ample ID   | ): Matrix Sp         |                     |            |
| Matrix: Solid                              |               |                     |                      |        |           |       |         |            |                      | Type: To<br>Ratch:  |            |
| Analysis Batch: 56145                      | Sampla        | Sample              | Spike                | Men    | MSD       |       |         |            | %Rec                 | Batch:              | 5609<br>RP |
| Analyte                                    | -             | Sample<br>Qualifier | Added                |        | Qualifier | Unit  | D       | %Rec       | Limits               | RPD                 | Lim        |
| Gasoline Range Organics<br>GRO)-C6-C10     |               |                     | 998                  | 1018   |           | mg/Kg |         | 100        | 70 - 130             | 2                   | 2          |
| Diesel Range Organics (Over<br>C10-C28)    | <49.9         | U                   | 998                  | 1034   |           | mg/Kg |         | 99         | 70 - 130             | 2                   | 2          |
|                                            | MSD           | MSD                 |                      |        |           |       |         |            |                      |                     |            |
| Surrogate                                  | %Recovery     |                     | Limits               |        |           |       |         |            |                      |                     |            |
| -                                          |               |                     |                      |        |           |       |         |            |                      |                     |            |
| 1-Chlorooctane                             | 120           |                     | 70 - 130             |        |           |       |         |            |                      |                     |            |

99

o-Terphenyl

70 - 130

Client: Ensolum Project/Site: Brinninstoll Unit 003H

# Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: MB 880-56210/<br>Matrix: Solid<br>Analysis Batch: 56147 | 1-A                                                                                                                                                                                             |      |           |          |      |        |          |       |       |     |          | Client Sa  | Prep      | : Methoo<br>Type: To<br>p Batch  | otal/NA       |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|----------|------|--------|----------|-------|-------|-----|----------|------------|-----------|----------------------------------|---------------|
| Analysis Batch. 00147                                                  |                                                                                                                                                                                                 | мв   | МВ        |          |      |        |          |       |       |     |          |            | 110       | p Daten                          |               |
| Analyte                                                                | Re                                                                                                                                                                                              |      | Qualifier |          | RL   |        | U        | Init  |       | D   | Pi       | repared    | Analy     | vzed                             | Dil Fac       |
| Gasoline Range Organics                                                |                                                                                                                                                                                                 | 50.0 |           |          | 50.0 |        |          | ng/Kg |       | _   |          | 3/23 13:55 | 06/23/23  |                                  | 1             |
| Diesel Range Organics (Over                                            | <{                                                                                                                                                                                              | 50.0 | U         | 5        | 50.0 |        | m        | ng/Kg |       |     | 06/23    | 3/23 13:55 | 06/23/23  | 3 21:52                          | 1             |
| C10-C28)<br>Oll Range Organics (Over C28-C36)                          | </td <td>50.0</td> <td>U</td> <td>5</td> <td>50.0</td> <td></td> <td>m</td> <td>ng/Kg</td> <td></td> <td></td> <td>06/23</td> <td>3/23 13:55</td> <td>06/23/23</td> <td>3 21:52</td> <td>1</td> | 50.0 | U         | 5        | 50.0 |        | m        | ng/Kg |       |     | 06/23    | 3/23 13:55 | 06/23/23  | 3 21:52                          | 1             |
| Total TPH                                                              |                                                                                                                                                                                                 | 50.0 |           |          | 50.0 |        |          | ng/Kg |       |     |          | 3/23 13:55 | 06/23/23  |                                  | · · · · · · 1 |
|                                                                        |                                                                                                                                                                                                 | ΜВ   | МВ        |          |      |        |          |       |       |     |          |            |           |                                  |               |
| Surrogate                                                              | %Recov                                                                                                                                                                                          |      | Qualifier | Limits   | ;    |        |          |       |       |     | PI       | repared    | Anal      | vzed                             | Dil Fac       |
| 1-Chlorooctane                                                         |                                                                                                                                                                                                 |      | S1+       | 70 - 13  |      |        |          |       |       |     |          | 3/23 13:55 | 06/23/2   |                                  | 1             |
| o-Terphenyl                                                            |                                                                                                                                                                                                 | 184  | S1+       | 70 - 13  | 30   |        |          |       |       |     | 06/2     | 3/23 13:55 | 06/23/2   | 3 21:52                          | 1             |
| Lab Sample ID: LCS 880-56210<br>Matrix: Solid<br>Analysis Batch: 56147 | /2-A                                                                                                                                                                                            |      |           |          |      |        |          |       |       | С   | lient    | Sample I   | Prep      | Control S<br>Type: To<br>p Batch | otal/NA       |
|                                                                        |                                                                                                                                                                                                 |      |           | Spike    |      | LCS    | LCS      |       |       |     |          |            | %Rec      |                                  |               |
| Analyte                                                                |                                                                                                                                                                                                 |      |           | Added    |      | Result | Qualifie | er    | Unit  |     | D        | %Rec       | Limits    |                                  |               |
| Gasoline Range Organics<br>(GRO)-C6-C10                                |                                                                                                                                                                                                 |      |           | 1000     |      | 997.7  |          |       | mg/Kg |     | _        | 100        | 70 - 130  |                                  |               |
| Diesel Range Organics (Over<br>C10-C28)                                |                                                                                                                                                                                                 |      |           | 1000     |      | 943.5  |          |       | mg/Kg |     |          | 94         | 70 - 130  |                                  |               |
|                                                                        | LCS                                                                                                                                                                                             | LCS  |           |          |      |        |          |       |       |     |          |            |           |                                  |               |
| Surrogate                                                              | %Recovery                                                                                                                                                                                       | Qual | ifier     | Limits   |      |        |          |       |       |     |          |            |           |                                  |               |
| 1-Chlorooctane                                                         | 84                                                                                                                                                                                              |      |           | 70 - 130 |      |        |          |       |       |     |          |            |           |                                  |               |
| o-Terphenyl                                                            | 96                                                                                                                                                                                              |      |           | 70 - 130 |      |        |          |       |       |     |          |            |           |                                  |               |
|                                                                        |                                                                                                                                                                                                 |      |           |          |      |        |          |       |       |     |          |            |           |                                  |               |
| Lab Sample ID: LCSD 880-5621                                           | 0/3-A                                                                                                                                                                                           |      |           |          |      |        |          |       | Cli   | ent | Sam      | ple ID: La | ab Contr  | ol Samp                          | ole Dup       |
| Matrix: Solid                                                          |                                                                                                                                                                                                 |      |           |          |      |        |          |       |       |     |          |            | Prep      | Type: To                         | otal/NA       |
| Analysis Batch: 56147                                                  |                                                                                                                                                                                                 |      |           |          |      |        |          |       |       |     |          |            | Pre       | p Batch                          | : 56210       |
|                                                                        |                                                                                                                                                                                                 |      |           | Spike    |      | LCSD   | LCSD     |       |       |     |          |            | %Rec      |                                  | RPD           |
| Analyte                                                                |                                                                                                                                                                                                 |      |           | Added    |      |        | Qualifie | er    | Unit  |     | <u>D</u> | %Rec       | Limits    | RPD                              | Limit         |
| Gasoline Range Organics<br>(GRO)-C6-C10                                |                                                                                                                                                                                                 |      |           | 1000     |      | 1010   |          |       | mg/Kg |     |          | 101        | 70 - 130  | 1                                | 20            |
| Diesel Range Organics (Over<br>C10-C28)                                |                                                                                                                                                                                                 |      |           | 1000     |      | 975.5  |          |       | mg/Kg |     |          | 98         | 70 - 130  | 3                                | 20            |
|                                                                        | LCSD                                                                                                                                                                                            | LCSI | 0         |          |      |        |          |       |       |     |          |            |           |                                  |               |
| Surrogate                                                              | %Recovery                                                                                                                                                                                       | Qual | ifier     | Limits   |      |        |          |       |       |     |          |            |           |                                  |               |
| 1-Chlorooctane                                                         | 99                                                                                                                                                                                              |      |           | 70 - 130 |      |        |          |       |       |     |          |            |           |                                  |               |
| o-Terphenyl                                                            | 112                                                                                                                                                                                             |      |           | 70 - 130 |      |        |          |       |       |     |          |            |           |                                  |               |
| Lab Sample ID: 890-4846-10 M                                           | 5                                                                                                                                                                                               |      |           |          |      |        |          |       |       |     |          | (          | Client Sa | ample ID                         | ): SS10       |
| Matrix: Solid                                                          |                                                                                                                                                                                                 |      |           |          |      |        |          |       |       |     |          |            | Prep      | Type: To                         | otal/NA       |
| Analysis Batch: 56147                                                  |                                                                                                                                                                                                 |      |           |          |      |        |          |       |       |     |          |            |           | p Batch                          |               |
|                                                                        | Sample                                                                                                                                                                                          | Sam  | ole       | Spike    |      | MS     | MS       |       |       |     |          |            | %Rec      |                                  |               |
| Analyte                                                                | Result                                                                                                                                                                                          | Qual | ifier     | Added    | I    | Result | Qualifie | er    | Unit  |     | D        | %Rec       | Limits    |                                  |               |
| Gasoline Range Organics<br>(GRO)-C6-C10                                | <49.9                                                                                                                                                                                           | U    |           | 999      |      | 867.4  |          |       | mg/Kg |     | _        | 87         | 70 - 130  |                                  |               |
| Diesel Range Organics (Over                                            | 155                                                                                                                                                                                             | F1   |           | 999      |      | 782.1  | F1       |       | mg/Kg |     |          | 63         | 70 - 130  |                                  |               |

Job ID: 890-4846-1

SDG: 03C2012037

Released to Imaging: 3/31/2025 91286193AMM

C10-C28)

Client: Ensolum Project/Site: Brinninstoll Unit 003H

### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: 890-4846-10 MS |  |
|-------------------------------|--|
| Matrix: Solid                 |  |
| Analysis Batch: 56147         |  |

|                | MS        | MS        |          |
|----------------|-----------|-----------|----------|
| Surrogate      | %Recovery | Qualifier | Limits   |
| 1-Chlorooctane | 101       |           | 70 - 130 |
| o-Terphenyl    | 102       |           | 70 _ 130 |

# Lab Sample ID: 890-4846-10 MSD Matrix: Solid

| Matrix: Solid<br>Analysis Batch: 56147  |           |           |          |        |           |       |   |      |          | Type: Tot<br>Batch: |       |
|-----------------------------------------|-----------|-----------|----------|--------|-----------|-------|---|------|----------|---------------------|-------|
|                                         | Sample    | Sample    | Spike    | MSD    | MSD       |       |   |      | %Rec     |                     | RPD   |
| Analyte                                 | Result    | Qualifier | Added    | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD                 | Limit |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <49.9     | U         | 999      | 970.1  |           | mg/Kg |   | 97   | 70 - 130 | 11                  | 20    |
| Diesel Range Organics (Over C10-C28)    | 155       | F1        | 999      | 880.9  |           | mg/Kg |   | 73   | 70 - 130 | 12                  | 20    |
|                                         | MSD       | MSD       |          |        |           |       |   |      |          |                     |       |
| Surrogate                               | %Recovery | Qualifier | Limits   |        |           |       |   |      |          |                     |       |
| 1-Chlorooctane                          | 112       |           | 70 - 130 |        |           |       |   |      |          |                     |       |
| o-Terphenyl                             | 112       |           | 70 _ 130 |        |           |       |   |      |          |                     |       |

| Lab Sample ID: MB 880-56174/1-A |           |              |       |      |        |           |       |         | Client    | Sample ID:  |          |         |
|---------------------------------|-----------|--------------|-------|------|--------|-----------|-------|---------|-----------|-------------|----------|---------|
| Matrix: Solid                   |           |              |       |      |        |           |       |         |           | Prep        | Type: S  | oluble  |
| Analysis Batch: 56235           |           |              |       |      |        |           |       |         |           |             |          |         |
|                                 | M         |              |       |      |        |           |       |         |           |             |          |         |
| Analyte                         | Resu      | It Qualifier |       | RL   |        | Unit      |       | D       | Prepared  | Analyz      | ed       | Dil Fac |
| Chloride                        | <5.0      | 0 U          |       | 5.00 |        | mg/K      | ģ     |         |           | 06/23/23    | 20:38    | 1       |
| Lab Sample ID: LCS 880-56174/2- | A         |              |       |      |        |           |       | Clie    | nt Sample | e ID: Lab C | ontrol S | ample   |
| Matrix: Solid                   |           |              |       |      |        |           |       |         |           | Prep        | Type: S  | oluble  |
| Analysis Batch: 56235           |           |              |       |      |        |           |       |         |           |             |          |         |
|                                 |           |              | Spike |      | LCS    | LCS       |       |         |           | %Rec        |          |         |
| Analyte                         |           |              | Added |      | Result | Qualifier | Unit  | D       | %Rec      | Limits      |          |         |
| Chloride                        |           |              | 250   |      | 250.5  |           | mg/Kg |         | 100       | 90 - 110    |          |         |
| Lab Sample ID: LCSD 880-56174/3 | 8-A       |              |       |      |        |           | CI    | ient Sa | mple ID:  | Lab Contro  | I Samp   | le Dup  |
| Matrix: Solid                   |           |              |       |      |        |           |       |         | - C       |             | Type: S  |         |
| Analysis Batch: 56235           |           |              |       |      |        |           |       |         |           |             |          |         |
|                                 |           |              | Spike |      | LCSD   | LCSD      |       |         |           | %Rec        |          | RPD     |
| Analyte                         |           |              | Added |      | Result | Qualifier | Unit  | D       | %Rec      | Limits      | RPD      | Limit   |
| Chloride                        |           |              | 250   |      | 250.4  |           | mg/Kg |         | 100       | 90 - 110    | 0        | 20      |
| Lab Sample ID: 890-4846-1 MS    |           |              |       |      |        |           |       |         |           | Client Sa   | mple ID  | : SS01  |
| Matrix: Solid                   |           |              |       |      |        |           |       |         |           | Prep        | Type: S  | oluble  |
| Analysis Batch: 56235           |           |              |       |      |        |           |       |         |           |             | ~ •      |         |
| -                               | Sample Sa | mple         | Spike |      | MS     | MS        |       |         |           | %Rec        |          |         |
| Analyte                         | Result Qu | alifier      | Added |      | Result | Qualifier | Unit  | D       | %Rec      | Limits      |          |         |
| Chloride                        | 34.1      |              | 252   |      | 279.6  |           | mg/Kg |         | 97        | 90 - 110    |          |         |

| Page | 51 | of . | 160 |
|------|----|------|-----|
|      |    |      |     |

#### Job ID: 890-4846-1 SDG: 03C2012037

**Client Sample ID: SS10** Prep Type: Total/NA Prep Batch: 56210

Client Sample ID: SS10

Method: 300.0 - Anions, Ion Chromatography

Project/Site: Brinninstoll Unit 003H

Client: Ensolum

#### Job ID: 890-4846-1 SDG: 03C2012037

Method: 300.0 - Anions, Ion Chromatography (Continued)

| Lab Sample ID: 890-4846-1 MSD<br>Matrix: Solid |        |           |       |        |           |          |      | Client Sa<br>Prep | nple ID:<br>Type: So |               |        |  |
|------------------------------------------------|--------|-----------|-------|--------|-----------|----------|------|-------------------|----------------------|---------------|--------|--|
| Analysis Batch: 56235                          | Sampla | Sample    | Spike | Men    | MSD       |          |      |                   | %Rec                 |               | RPD    |  |
| Analyte                                        |        | Qualifier | Added |        | Qualifier | Unit     | D    | %Rec              | Limits               | RPD           | Limit  |  |
| Chloride                                       | 34.1   | Quaimer   |       |        | Quaimer   |          |      | 98                | 90 - 110             | 0             | 20     |  |
| Chionde                                        | 34.1   |           | 252   | 280.3  |           | mg/Kg    |      | 90                | 90 - 110             | 0             | 20     |  |
| Lab Sample ID: 890-4846-11 MS Client S         |        |           |       |        | Client Sa | mple ID: | SS11 |                   |                      |               |        |  |
| Matrix: Solid                                  |        |           |       |        |           |          |      |                   | Prep Type: Soluble   |               |        |  |
| Analysis Batch: 56235                          |        |           |       |        |           |          |      |                   |                      |               |        |  |
|                                                | Sample | Sample    | Spike | MS     | MS        |          |      |                   | %Rec                 |               |        |  |
| Analyte                                        | Result | Qualifier | Added | Result | Qualifier | Unit     | D    | %Rec              | Limits               |               |        |  |
| Chloride                                       | 1750   |           | 1250  | 3105   |           | mg/Kg    |      | 109               | 90 _ 110             |               |        |  |
| Lab Sample ID: 890-4846-11 MSD                 |        |           |       |        |           |          |      |                   | Client Sa            | mple ID:      | SS11   |  |
| Matrix: Solid                                  |        |           |       |        |           |          |      |                   | Prep                 | ·<br>Type: So | oluble |  |
| Analysis Batch: 56235                          |        |           |       |        |           |          |      |                   |                      |               |        |  |
|                                                | Sample | Sample    | Spike | MSD    | MSD       |          |      |                   | %Rec                 |               | RPD    |  |
| Analyte                                        | Result | Qualifier | Added | Result | Qualifier | Unit     | D    | %Rec              | Limits               | RPD           | Limit  |  |
|                                                |        |           |       |        |           |          |      |                   |                      |               |        |  |

Released to Imaging: 3/31/2025 91286193AMM

# **QC** Association Summary

Client: Ensolum Project/Site: Brinninstoll Unit 003H Job ID: 890-4846-1 SDG: 03C2012037

# GC VOA

### Prep Batch: 56200

| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 890-4846-1         | SS01                   | Total/NA  | Solid  | 5035   |            |
| 890-4846-2         | SS02                   | Total/NA  | Solid  | 5035   |            |
| 890-4846-3         | SS03                   | Total/NA  | Solid  | 5035   |            |
| 890-4846-4         | SS04                   | Total/NA  | Solid  | 5035   |            |
| 890-4846-5         | SS05                   | Total/NA  | Solid  | 5035   |            |
| 890-4846-6         | SS06                   | Total/NA  | Solid  | 5035   |            |
| 890-4846-7         | SS07                   | Total/NA  | Solid  | 5035   |            |
| 890-4846-8         | SS08                   | Total/NA  | Solid  | 5035   |            |
| 890-4846-9         | SS09                   | Total/NA  | Solid  | 5035   |            |
| 890-4846-10        | SS10                   | Total/NA  | Solid  | 5035   |            |
| 890-4846-11        | SS11                   | Total/NA  | Solid  | 5035   |            |
| 890-4846-12        | SS12                   | Total/NA  | Solid  | 5035   |            |
| MB 880-56200/5-A   | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-56200/1-A  | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-56200/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 890-4846-1 MS      | SS01                   | Total/NA  | Solid  | 5035   |            |
| 890-4846-1 MSD     | SS01                   | Total/NA  | Solid  | 5035   |            |

#### Analysis Batch: 56227

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 890-4846-1         | SS01                   | Total/NA  | Solid  | 8021B  | 56200      |
| 890-4846-2         | SS02                   | Total/NA  | Solid  | 8021B  | 56200      |
| 890-4846-3         | SS03                   | Total/NA  | Solid  | 8021B  | 56200      |
| 890-4846-4         | SS04                   | Total/NA  | Solid  | 8021B  | 56200      |
| 890-4846-5         | SS05                   | Total/NA  | Solid  | 8021B  | 56200      |
| 890-4846-6         | SS06                   | Total/NA  | Solid  | 8021B  | 56200      |
| 890-4846-7         | SS07                   | Total/NA  | Solid  | 8021B  | 56200      |
| 890-4846-8         | SS08                   | Total/NA  | Solid  | 8021B  | 56200      |
| 890-4846-9         | SS09                   | Total/NA  | Solid  | 8021B  | 56200      |
| 890-4846-10        | SS10                   | Total/NA  | Solid  | 8021B  | 56200      |
| 890-4846-11        | SS11                   | Total/NA  | Solid  | 8021B  | 56200      |
| 890-4846-12        | SS12                   | Total/NA  | Solid  | 8021B  | 56200      |
| MB 880-56200/5-A   | Method Blank           | Total/NA  | Solid  | 8021B  | 56200      |
| LCS 880-56200/1-A  | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 56200      |
| LCSD 880-56200/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 56200      |
| 890-4846-1 MS      | SS01                   | Total/NA  | Solid  | 8021B  | 56200      |
| 890-4846-1 MSD     | SS01                   | Total/NA  | Solid  | 8021B  | 56200      |

#### Analysis Batch: 56311

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 890-4846-1    | SS01             | Total/NA  | Solid  | Total BTEX |            |
| 890-4846-2    | SS02             | Total/NA  | Solid  | Total BTEX |            |
| 890-4846-3    | SS03             | Total/NA  | Solid  | Total BTEX |            |
| 890-4846-4    | SS04             | Total/NA  | Solid  | Total BTEX |            |
| 890-4846-5    | SS05             | Total/NA  | Solid  | Total BTEX |            |
| 890-4846-6    | SS06             | Total/NA  | Solid  | Total BTEX |            |
| 890-4846-7    | SS07             | Total/NA  | Solid  | Total BTEX |            |
| 890-4846-8    | SS08             | Total/NA  | Solid  | Total BTEX |            |
| 890-4846-9    | SS09             | Total/NA  | Solid  | Total BTEX |            |
| 890-4846-10   | SS10             | Total/NA  | Solid  | Total BTEX |            |
| 890-4846-11   | SS11             | Total/NA  | Solid  | Total BTEX |            |

Eurofins Carlsbad

5

5

Job ID: 890-4846-1 SDG: 03C2012037

# GC VOA (Continued)

### Analysis Batch: 56311 (Continued)

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 890-4846-12   | SS12             | Total/NA  | Solid  | Total BTEX |            |
| CC Sami VOA   |                  |           |        |            |            |

# GC Semi VOA

#### Prep Batch: 56098

| Lab Sample ID        | Client Sample ID       | Ргер Туре | Matrix | Method      | Prep Batch |
|----------------------|------------------------|-----------|--------|-------------|------------|
| 890-4846-11          | SS11                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4846-12          | SS12                   | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-56098/1-A     | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-56098/2-A    | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-56098/3-A   | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-29850-A-21-E MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-29850-A-21-F MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

#### Analysis Batch: 56145

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |    |
|----------------------|------------------------|-----------|--------|----------|------------|----|
| 890-4846-11          | SS11                   | Total/NA  | Solid  | 8015B NM | 56098      |    |
| 890-4846-12          | SS12                   | Total/NA  | Solid  | 8015B NM | 56098      | ī  |
| MB 880-56098/1-A     | Method Blank           | Total/NA  | Solid  | 8015B NM | 56098      |    |
| LCS 880-56098/2-A    | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 56098      | ī. |
| LCSD 880-56098/3-A   | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 56098      |    |
| 880-29850-A-21-E MS  | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 56098      |    |
| 880-29850-A-21-F MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 56098      |    |

#### Analysis Batch: 56147

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| 890-4846-1         | SS01                   | Total/NA  | Solid  | 8015B NM | 56210      |
| 890-4846-2         | SS02                   | Total/NA  | Solid  | 8015B NM | 56210      |
| 890-4846-3         | SS03                   | Total/NA  | Solid  | 8015B NM | 56210      |
| 890-4846-4         | SS04                   | Total/NA  | Solid  | 8015B NM | 56210      |
| 890-4846-5         | SS05                   | Total/NA  | Solid  | 8015B NM | 56210      |
| 890-4846-6         | SS06                   | Total/NA  | Solid  | 8015B NM | 56210      |
| 890-4846-7         | SS07                   | Total/NA  | Solid  | 8015B NM | 56210      |
| 890-4846-8         | SS08                   | Total/NA  | Solid  | 8015B NM | 56210      |
| 890-4846-9         | SS09                   | Total/NA  | Solid  | 8015B NM | 56210      |
| 890-4846-10        | SS10                   | Total/NA  | Solid  | 8015B NM | 56210      |
| MB 880-56210/1-A   | Method Blank           | Total/NA  | Solid  | 8015B NM | 56210      |
| LCS 880-56210/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 56210      |
| LCSD 880-56210/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 56210      |
| 890-4846-10 MS     | SS10                   | Total/NA  | Solid  | 8015B NM | 56210      |
| 890-4846-10 MSD    | SS10                   | Total/NA  | Solid  | 8015B NM | 56210      |

#### Prep Batch: 56210

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method      | Prep Batch |
|---------------|------------------|-----------|--------|-------------|------------|
| 890-4846-1    | SS01             | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4846-2    | SS02             | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4846-3    | SS03             | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4846-4    | SS04             | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4846-5    | SS05             | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4846-6    | SS06             | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4846-7    | SS07             | Total/NA  | Solid  | 8015NM Prep |            |

Eurofins Carlsbad

# **QC Association Summary**

Client: Ensolum Project/Site: Brinninstoll Unit 003H

# GC Semi VOA (Continued)

### Prep Batch: 56210 (Continued)

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|--------------------|------------------------|-----------|--------|-------------|------------|
| 890-4846-8         | SS08                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4846-9         | SS09                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4846-10        | SS10                   | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-56210/1-A   | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-56210/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-56210/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4846-10 MS     | SS10                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4846-10 MSD    | SS10                   | Total/NA  | Solid  | 8015NM Prep |            |

#### Analysis Batch: 56344

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method  | Prep Batcl |
|---------------|------------------|-----------|--------|---------|------------|
| 890-4846-1    | SS01             | Total/NA  | Solid  | 8015 NM |            |
| 390-4846-2    | SS02             | Total/NA  | Solid  | 8015 NM |            |
| 390-4846-3    | SS03             | Total/NA  | Solid  | 8015 NM |            |
| 390-4846-4    | SS04             | Total/NA  | Solid  | 8015 NM |            |
| 390-4846-5    | SS05             | Total/NA  | Solid  | 8015 NM |            |
| 90-4846-6     | SS06             | Total/NA  | Solid  | 8015 NM |            |
| 390-4846-7    | SS07             | Total/NA  | Solid  | 8015 NM |            |
| 90-4846-8     | SS08             | Total/NA  | Solid  | 8015 NM |            |
| 390-4846-9    | SS09             | Total/NA  | Solid  | 8015 NM |            |
| 390-4846-10   | SS10             | Total/NA  | Solid  | 8015 NM |            |
| 390-4846-11   | SS11             | Total/NA  | Solid  | 8015 NM |            |
| 390-4846-12   | SS12             | Total/NA  | Solid  | 8015 NM |            |

### HPLC/IC

#### Leach Batch: 56174

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batcl |
|--------------------|------------------------|-----------|--------|----------|------------|
| 890-4846-1         | SS01                   | Soluble   | Solid  | DI Leach |            |
| 890-4846-2         | SS02                   | Soluble   | Solid  | DI Leach |            |
| 890-4846-3         | SS03                   | Soluble   | Solid  | DI Leach |            |
| 890-4846-4         | SS04                   | Soluble   | Solid  | DI Leach |            |
| 890-4846-5         | SS05                   | Soluble   | Solid  | DI Leach |            |
| 890-4846-6         | SS06                   | Soluble   | Solid  | DI Leach |            |
| 890-4846-7         | SS07                   | Soluble   | Solid  | DI Leach |            |
| 890-4846-8         | SS08                   | Soluble   | Solid  | DI Leach |            |
| 890-4846-9         | SS09                   | Soluble   | Solid  | DI Leach |            |
| 890-4846-10        | SS10                   | Soluble   | Solid  | DI Leach |            |
| 890-4846-11        | SS11                   | Soluble   | Solid  | DI Leach |            |
| 890-4846-12        | SS12                   | Soluble   | Solid  | DI Leach |            |
| MB 880-56174/1-A   | Method Blank           | Soluble   | Solid  | DI Leach |            |
| LCS 880-56174/2-A  | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |
| LCSD 880-56174/3-A | Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |
| 890-4846-1 MS      | SS01                   | Soluble   | Solid  | DI Leach |            |
| 890-4846-1 MSD     | SS01                   | Soluble   | Solid  | DI Leach |            |
| 890-4846-11 MS     | SS11                   | Soluble   | Solid  | DI Leach |            |
| 890-4846-11 MSD    | SS11                   | Soluble   | Solid  | DI Leach |            |

#### Analysis Batch: 56235

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|---------------|------------------|-----------|--------|--------|------------|
| 890-4846-1    | SS01             | Soluble   | Solid  | 300.0  | 56174      |

Eurofins Carlsbad

### Job ID: 890-4846-1 SDG: 03C2012037

# **QC Association Summary**

Client: Ensolum Project/Site: Brinninstoll Unit 003H

# HPLC/IC (Continued)

### Analysis Batch: 56235 (Continued)

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 890-4846-2         | SS02                   | Soluble   | Solid  | 300.0  | 56174      |
| 890-4846-3         | SS03                   | Soluble   | Solid  | 300.0  | 56174 0    |
| 890-4846-4         | SS04                   | Soluble   | Solid  | 300.0  | 56174      |
| 890-4846-5         | SS05                   | Soluble   | Solid  | 300.0  | 56174 6    |
| 890-4846-6         | SS06                   | Soluble   | Solid  | 300.0  | 56174      |
| 890-4846-7         | SS07                   | Soluble   | Solid  | 300.0  | 56174      |
| 890-4846-8         | SS08                   | Soluble   | Solid  | 300.0  | 56174      |
| 890-4846-9         | SS09                   | Soluble   | Solid  | 300.0  | 56174 8    |
| 890-4846-10        | SS10                   | Soluble   | Solid  | 300.0  | 56174      |
| 890-4846-11        | SS11                   | Soluble   | Solid  | 300.0  | 56174 9    |
| 890-4846-12        | SS12                   | Soluble   | Solid  | 300.0  | 56174      |
| MB 880-56174/1-A   | Method Blank           | Soluble   | Solid  | 300.0  | 56174 1 (  |
| LCS 880-56174/2-A  | Lab Control Sample     | Soluble   | Solid  | 300.0  | 56174      |
| LCSD 880-56174/3-A | Lab Control Sample Dup | Soluble   | Solid  | 300.0  | 56174      |
| 890-4846-1 MS      | SS01                   | Soluble   | Solid  | 300.0  | 56174      |
| 890-4846-1 MSD     | SS01                   | Soluble   | Solid  | 300.0  | 56174      |
| 890-4846-11 MS     | SS11                   | Soluble   | Solid  | 300.0  | 56174      |
| 890-4846-11 MSD    | SS11                   | Soluble   | Solid  | 300.0  | 56174 13   |

Page 56 of 160

Job ID: 890-4846-1 SDG: 03C2012037

5 6

9

Job ID: 890-4846-1 SDG: 03C2012037

# Lab Sample ID: 890-4846-1 Matrix: Solid

Lab Sample ID: 890-4846-2

Matrix: Solid

Date Collected: 06/21/23 11:30 Date Received: 06/21/23 15:26

**Client Sample ID: SS01** 

Project/Site: Brinninstoll Unit 003H

Client: Ensolum

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.05 g  | 5 mL   | 56200  | 06/23/23 11:43 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 56227  | 06/23/23 20:07 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 56311  | 06/26/23 09:47 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 56344  | 06/26/23 11:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 56210  | 06/23/23 13:55 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 56147  | 06/24/23 00:09 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.96 g  | 50 mL  | 56174  | 06/23/23 10:39 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 56235  | 06/23/23 20:56 | SMC     | EET MID |

# **Client Sample ID: SS02**

# Date Collected: 06/21/23 11:35

Date Received: 06/21/23 15:26

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.97 g  | 5 mL   | 56200  | 06/23/23 11:43 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 56227  | 06/23/23 20:33 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 56311  | 06/26/23 09:47 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 56344  | 06/26/23 11:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 56210  | 06/23/23 13:55 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 56147  | 06/24/23 00:31 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.01 g  | 50 mL  | 56174  | 06/23/23 10:39 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 56235  | 06/23/23 21:13 | SMC     | EET MID |

# **Client Sample ID: SS03**

# Date Collected: 06/21/23 11:40

| Date | Received: | 06/21/23 | 15:26 |
|------|-----------|----------|-------|
|      |           |          |       |

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.99 g  | 5 mL   | 56200  | 06/23/23 11:43 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 56227  | 06/23/23 21:00 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 56311  | 06/26/23 09:47 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 56344  | 06/26/23 11:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.02 g | 10 mL  | 56210  | 06/23/23 13:55 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 56147  | 06/24/23 00:54 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.01 g  | 50 mL  | 56174  | 06/23/23 10:39 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 56235  | 06/23/23 21:19 | SMC     | EET MID |

#### **Client Sample ID: SS04** Date Collected: 06/21/23 11:45 Date Received: 06/21/23 15:26

|           | Batch    | Batch      |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method     | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035       |     |        | 5.05 g  | 5 mL   | 56200  | 06/23/23 11:43 | EL      | EET MID |
| Total/NA  | Analysis | 8021B      |     | 1      | 5 mL    | 5 mL   | 56227  | 06/23/23 21:26 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX |     | 1      |         |        | 56311  | 06/26/23 09:47 | SM      | EET MID |

**Eurofins Carlsbad** 

Matrix: Solid

Page 57 of 160

# Lab Sample ID: 890-4846-3 Matrix: Solid

Lab Sample ID: 890-4846-4

Job ID: 890-4846-1 SDG: 03C2012037

# Lab Sample ID: 890-4846-4 Matrix: Solid

Lab Sample ID: 890-4846-5

Matrix: Solid

Date Collected: 06/21/23 11:45 Date Received: 06/21/23 15:26

**Client Sample ID: SS04** 

Project/Site: Brinninstoll Unit 003H

Client: Ensolum

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 56344  | 06/26/23 11:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 56210  | 06/23/23 13:55 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 56147  | 06/24/23 01:17 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.98 g  | 50 mL  | 56174  | 06/23/23 10:39 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 56235  | 06/23/23 21:25 | SMC     | EET MID |

#### **Client Sample ID: SS05** Date Collected: 06/21/23 12:00

# Date Received: 06/21/23 15:26

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 56200  | 06/23/23 11:43 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 56227  | 06/23/23 21:52 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 56311  | 06/26/23 09:47 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 56344  | 06/26/23 11:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.04 g | 10 mL  | 56210  | 06/23/23 13:55 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 56147  | 06/24/23 01:39 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.96 g  | 50 mL  | 56174  | 06/23/23 10:39 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 56235  | 06/23/23 21:31 | SMC     | EET MID |

#### **Client Sample ID: SS06**

Date Collected: 06/21/23 12:05 Date Received: 06/21/23 15:26

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 56200  | 06/23/23 11:43 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 56227  | 06/23/23 22:18 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 56311  | 06/26/23 09:47 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 56344  | 06/26/23 11:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 56210  | 06/23/23 13:55 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 56147  | 06/24/23 02:01 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.95 g  | 50 mL  | 56174  | 06/23/23 10:39 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 56235  | 06/23/23 21:48 | SMC     | EET MID |

#### **Client Sample ID: SS07** Date Collected: 06/21/23 12:10

# Date Received: 06/21/23 15:26

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.00 g  | 5 mL   | 56200  | 06/23/23 11:43 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 56227  | 06/23/23 22:44 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 56311  | 06/26/23 09:47 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 56344  | 06/26/23 11:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.02 g | 10 mL  | 56210  | 06/23/23 13:55 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 56147  | 06/24/23 02:23 | SM      | EET MID |

**Eurofins Carlsbad** 

Lab Sample ID: 890-4846-6 Matrix: Solid

Lab Sample ID: 890-4846-7

Matrix: Solid

Project/Site: Brinninstoll Unit 003H

# Lab Chronicle

Job ID: 890-4846-1 SDG: 03C2012037

# Lab Sample ID: 890-4846-7

Lab Sample ID: 890-4846-8

Lab Sample ID: 890-4846-9

Matrix: Solid

Matrix: Solid

Matrix: Solid

9

Date Collected: 06/21/23 12:10 Date Received: 06/21/23 15:26

**Client Sample ID: SS07** 

Client: Ensolum

|           | Batch    | Batch    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|----------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Soluble   | Leach    | DI Leach |     |        | 4.95 g  | 50 mL  | 56174  | 06/23/23 10:39 | KS      | EET MID |
| Soluble   | Analysis | 300.0    |     | 1      |         |        | 56235  | 06/23/23 21:54 | SMC     | EET MID |

# **Client Sample ID: SS08**

#### Date Collected: 06/21/23 12:15 Date Received: 06/21/23 15:26

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.04 g  | 5 mL   | 56200  | 06/23/23 11:43 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 56227  | 06/23/23 23:10 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 56311  | 06/26/23 09:47 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 56344  | 06/26/23 11:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.04 g | 10 mL  | 56210  | 06/23/23 13:55 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 56147  | 06/24/23 02:45 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.02 g  | 50 mL  | 56174  | 06/23/23 10:39 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 56235  | 06/23/23 22:00 | SMC     | EET MID |

### **Client Sample ID: SS09** Date Collected: 06/21/23 12:25

#### Date Received: 06/21/23 15:26

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.95 g  | 5 mL   | 56200  | 06/23/23 11:43 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 56227  | 06/23/23 23:36 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 56311  | 06/26/23 09:47 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 56344  | 06/26/23 11:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.00 g | 10 mL  | 56210  | 06/23/23 13:55 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 56147  | 06/24/23 03:08 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.01 g  | 50 mL  | 56174  | 06/23/23 10:39 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 56235  | 06/23/23 22:06 | SMC     | EET MID |

#### **Client Sample ID: SS10** Date Collected: 06/21/23 12:30 Date Received: 06/21/23 15:26

# Lab Sample ID: 890-4846-10

Matrix: Solid

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.99 g  | 5 mL   | 56200  | 06/23/23 11:43 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 56227  | 06/24/23 00:02 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 56311  | 06/26/23 09:47 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 56344  | 06/26/23 11:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.02 g | 10 mL  | 56210  | 06/23/23 13:55 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 56147  | 06/23/23 23:01 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.99 g  | 50 mL  | 56174  | 06/23/23 10:39 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 56235  | 06/23/23 22:12 | SMC     | EET MID |

**Eurofins Carlsbad** 

# Released to Imaging: 3/31/2025 9:28:5193AM

Project/Site: Brinninstoll Unit 003H

**Client Sample ID: SS11** 

Date Collected: 06/21/23 12:35

Date Received: 06/21/23 15:26

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client: Ensolum

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Initial

Amount

4.97 g

5 mL

10.00 g

1 uL

5.02 g

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

Batch

56200

56227

56311

56344

56098

56145

56174

56235

Number

Dil

1

1

1

1

5

Factor

Run

Job ID: 890-4846-1 SDG: 03C2012037

# Lab Sample ID: 890-4846-11

Analyst

EL

SM

SM

SM

AJ

SM

ĸs

SMC

Prepared

or Analyzed

06/23/23 11:43

06/24/23 01:47

06/26/23 09:47

06/26/23 11:08

06/22/23 13:37

06/23/23 19:56

06/23/23 10:39

06/23/23 22:17

Matrix: Solid

Lab

EET MID

# 4 5 6 7 8 9

Lab Sample ID: 890-4846-12 Matrix: Solid

#### Client Sample ID: SS12 Date Collected: 06/21/23 12:40

Date Received: 06/21/23 15:26

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.96 g  | 5 mL   | 56200  | 06/23/23 11:43 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 56227  | 06/24/23 02:12 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 56311  | 06/26/23 09:47 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 56344  | 06/26/23 11:08 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 56098  | 06/22/23 13:37 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 56145  | 06/23/23 20:19 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.98 g  | 50 mL  | 56174  | 06/23/23 10:39 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 5      |         |        | 56235  | 06/23/23 22:35 | SMC     | EET MID |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 3/31/2025 9:286193AM

Accreditation/Certification Summary

Client: Ensolum Project/Site: Brinninstoll Unit 003H

#### Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| uthority                                      | F           | Program                          | Identification Number                         | Expiration Date         |  |
|-----------------------------------------------|-------------|----------------------------------|-----------------------------------------------|-------------------------|--|
| exas                                          | Ν           | NELAP                            | T104704400-22-25                              | 06-30-23                |  |
| The following analytes the agency does not of |             | out the laboratory is not certif | fied by the governing authority. This list ma | ay include analytes for |  |
| 8 ,                                           |             | Matrix                           | Δnalvte                                       |                         |  |
| Analysis Method                               | Prep Method | Matrix                           | Analyte<br>Total TPH                          |                         |  |
| 0,                                            |             | Matrix<br>Solid<br>Solid         | Analyte<br>Total TPH<br>Total TPH             |                         |  |

Eurofins Carlsbad

Page 61 of 160

10

Job ID: 890-4846-1

SDG: 03C2012037

Page 32 of 38

# **Method Summary**

Client: Ensolum Project/Site: Brinninstoll Unit 003H Job ID: 890-4846-1 SDG: 03C2012037

| Method        | Method Description                                                             | Protocol                              | Laboratory |
|---------------|--------------------------------------------------------------------------------|---------------------------------------|------------|
| 8021B         | Volatile Organic Compounds (GC)                                                | SW846                                 | EET MID    |
| Total BTEX    | Total BTEX Calculation                                                         | TAL SOP                               | EET MID    |
| 8015 NM       | Diesel Range Organics (DRO) (GC)                                               | SW846                                 | EET MID    |
| 8015B NM      | Diesel Range Organics (DRO) (GC)                                               | SW846                                 | EET MID    |
| 300.0         | Anions, Ion Chromatography                                                     | EPA                                   | EET MID    |
| 5035          | Closed System Purge and Trap                                                   | SW846                                 | EET MID    |
| 8015NM Prep   | Microextraction                                                                | SW846                                 | EET MID    |
| DI Leach      | Deionized Water Leaching Procedure                                             | ASTM                                  | EET MID    |
| Protocol Refe | rences:                                                                        |                                       |            |
| ASTM = A      | STM International                                                              |                                       |            |
| EPA = US      | Environmental Protection Agency                                                |                                       |            |
| SW846 =       | "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Ed | ition, November 1986 And Its Updates. |            |
| TAL SOP       | = TestAmerica Laboratories, Standard Operating Procedure                       |                                       |            |
| Laboratory R  | eferences:                                                                     |                                       |            |
| EET MID :     | = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440  |                                       |            |
|               |                                                                                |                                       |            |
|               |                                                                                |                                       |            |
|               |                                                                                |                                       |            |
|               |                                                                                |                                       |            |

#### Laboratory References:

Eurofins Carlsbad

Released to Imaging: 3/31/2025 91286193AMM

# Sample Summary

Client: Ensolum Project/Site: Brinninstoll Unit 003H

| Job ID: 890-4846-1 |
|--------------------|
| SDG: 03C2012037    |
| SDG: 03C2012037    |

| .ab Sample ID | Client Sample ID | Matrix | Collected      | Received       | Depth |   |
|---------------|------------------|--------|----------------|----------------|-------|---|
| 390-4846-1    | SS01             | Solid  | 06/21/23 11:30 | 06/21/23 15:26 | 0.5   |   |
| 390-4846-2    | SS02             | Solid  | 06/21/23 11:35 | 06/21/23 15:26 | 0.5   |   |
| 390-4846-3    | SS03             | Solid  | 06/21/23 11:40 | 06/21/23 15:26 | 0.5   | Ę |
| 390-4846-4    | SS04             | Solid  | 06/21/23 11:45 | 06/21/23 15:26 | 0.5   |   |
| 390-4846-5    | SS05             | Solid  | 06/21/23 12:00 | 06/21/23 15:26 | 0.5   |   |
| 390-4846-6    | SS06             | Solid  | 06/21/23 12:05 | 06/21/23 15:26 | 0.5   |   |
| 390-4846-7    | SS07             | Solid  | 06/21/23 12:10 | 06/21/23 15:26 | 0.5   |   |
| 390-4846-8    | SS08             | Solid  | 06/21/23 12:15 | 06/21/23 15:26 | 0.5   |   |
| 390-4846-9    | SS09             | Solid  | 06/21/23 12:25 | 06/21/23 15:26 | 0.5   |   |
| 90-4846-10    | SS10             | Solid  | 06/21/23 12:30 | 06/21/23 15:26 | 0.5   |   |
| 390-4846-11   | SS11             | Solid  | 06/21/23 12:35 | 06/21/23 15:26 | 0.5   |   |
| 90-4846-12    | SS12             | Solid  | 06/21/23 12:40 | 06/21/23 15:26 | 0.5   |   |
|               |                  |        |                |                |       |   |
|               |                  |        |                |                |       |   |
|               |                  |        |                |                |       | 1 |
|               |                  |        |                |                |       | 1 |
|               |                  |        |                |                |       |   |

PM

Received by OCD: 1/7/202532:44:14

# 

#### **eurofins** Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Environment Testing Work Order No: Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 Xenco EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 Page www.xenco.com Work Order Comments Project Manager: Hadlie Green Bill to: (if different) Kalei Jennings Program: UST/PST PRP Brownfields RRC Superfund Ensolum, LLC Ensolum, LLC Company Name: Company Name: State of Project: Address: 601 N Marienfeld St Suite 400 Address: 601 N Marienfeld St Suite 400 Reporting: Level II CLevel III PST/UST TRRP Level IV Midland, TX 79701 Midland, TX 79701 City, State ZIP: City, State ZIP: Deliverables: EDD ADaPT Other: 432-557-8895 Email: hgreen@ensolum.com, kjennings@ensolum.com Phone: **Preservative Codes** ANALYSIS REQUEST Brinninstool Unit 003H **Turn Around** Project Name: Pres. DI Water: H<sub>2</sub>O Rush None: NO Routine Project Number: 03C2012037 Code MeOH: Me Cool: Cool Project Location: 32.29733,-103.58598 Due Date: HNO3: HN HCL: HC Sampler's Name: Peter Van Patten TAT starts the day received by H2S04: H2 NaOH: Na the lab, if received by 4:30pm PO #: Parameters H₃PO₄: HP SAMPLE RECEIPT Temp Blank: Yes No Wet Ice: Yès No CHLORIDES (EPA: 300.0) NaHSO4: NABIS Samples Received Intact: (Yes) No Thermometer ID: Th 00 Na2S2O3: NaSO3 Cooler Custody Seals: No N/A Correction Factor: Yes 3 Zn Acetate+NaOH: Zn Temperature Reading: Yes No N/A Sample Custody Seals: H 0 890-4846 Chain of Custody BTEX (8021) NaOH+Ascorbic Acid: SAPC Ó Total Containers: Corrected Temperature: 2 TPH (8015) Grab/ # of Date Time Sample Comments Sample Identification Matrix Depth Cont Sampled Sampled Comp 6/21/2023 х x x Soil 0.5 Comp 1 SS01 1130 6/21/2023 0.5 Comp х x х SS02 1135 1 Soil 6/21/2023 0.5 Comp х х x SS03 Soil 1140 1 SS04 Soil 6/21/2023 1145 0.5 Comp 1 X x х 0.5 Comp SS05 Soil 6/21/2023 1200 1 х х х 0.5 Comp x SS06 Soil 6/21/2023 1205 1 х х Soil 0.5 Comp 1 х х x SS07 6/21/2023 1210 Soil SS08 6/21/2023 1215 0.5 Comp X х X 0.5 Comp SS09 Soil 6/21/2023 1225 1 х х х 0.5 Comp SS10 Soil 6/21/2023 1230 1 х х 8RCRA 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr TI Sn U V Zn Total 200.7 / 6010 200.8 / 6020: Hg: 1631 / 245.1 / 7470 / 7471 TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U Circle Method(s) and Metal(s) to be analyzed Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from cilent company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$55.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated. Date/Time Date/Time Relinquished by: (Signature) Received by: (Signature) Relinguished by: (Signature) Received by: (Signature) 0.21.29 los rattz Revised Date: 08/25/2020 Rev. 2020.2

Chain of Custody

Received by OCD: 1/7/202532:44:14 PM

# 

**Environment Testing** 

Хелсо

# 6/26/2023

🛟 eurofins

# **Chain of Custody**

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199

Work Order No: \_

| Droject Monana                                                                | Lindi                                | Bill to: (if different) Kalei Jennings |              |                   |                       |                                        |                 |                 |          |               | www.xenco.com Page _ 2 of _ 2<br>Work Order Comments |           |              |                                                |                           |                                                                                                  |           |         |         |                    |                                                 |                           |          |    |          |        |
|-------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|--------------|-------------------|-----------------------|----------------------------------------|-----------------|-----------------|----------|---------------|------------------------------------------------------|-----------|--------------|------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------|-----------|---------|---------|--------------------|-------------------------------------------------|---------------------------|----------|----|----------|--------|
| Project Manager:                                                              | Hadlie Green                         |                                        |              |                   |                       | Bill to: (if different) Kalei Jennings |                 |                 |          |               |                                                      |           |              |                                                |                           |                                                                                                  |           |         |         |                    |                                                 |                           |          |    |          |        |
| Company Name:                                                                 | Ensolum, LLC                         |                                        |              |                   |                       | Company Name: Ensolum, LLC             |                 |                 |          |               |                                                      |           |              | Program: UST/PST PRP Brownfields RRC Superfund |                           |                                                                                                  |           |         |         |                    |                                                 |                           |          |    |          |        |
| Address:                                                                      | 601 N Marienfeld St Suite 400        |                                        |              |                   |                       | Address: 601 N Marienfeld St Suite 400 |                 |                 |          |               |                                                      |           |              |                                                |                           |                                                                                                  |           |         |         |                    |                                                 |                           |          |    |          |        |
| City, State ZIP:                                                              | Midland, TX 79701                    |                                        |              |                   |                       | City, State ZIP: Midland, TX 79701     |                 |                 |          |               |                                                      |           |              |                                                | _                         | Reporting: Level II _ Level III _ PST/UST _ TRRP _ Level IV _ Deliverables: EDD _ ADaPT _ Other: |           |         |         |                    |                                                 |                           |          |    |          |        |
| Phone:                                                                        | 432-5                                | 557-8895                               |              |                   | Email:                | hgreen                                 | @enso           | um.co           | om, kj   | ennin         | <u>qs@e</u>                                          | nsolum    | .com         |                                                |                           | Delive                                                                                           | erables:  | EDD     |         | ADa                |                                                 | Other:                    |          |    |          |        |
| Project Name:                                                                 | Brinninstool Unit 003H Turr          |                                        |              |                   | rn Around ANALYSIS RE |                                        |                 |                 |          |               |                                                      |           |              |                                                | EQUEST Preservative Codes |                                                                                                  |           |         |         |                    | Codes                                           |                           |          |    |          |        |
| Project Number:                                                               |                                      |                                        |              | Routine           | Rush Cod              |                                        |                 |                 |          |               |                                                      |           |              |                                                |                           |                                                                                                  |           |         |         | None: NO           | D D                                             | I Water: H <sub>2</sub> C |          |    |          |        |
| Project Location:                                                             |                                      | 32.2973                                | 3,-103.      | 58598             | Due Date:             | e:                                     |                 |                 |          |               |                                                      |           |              |                                                |                           |                                                                                                  |           |         |         |                    | Cool: Co                                        |                           | eOH: Me  |    |          |        |
| ampler's Name:                                                                |                                      | Peter                                  | Van Pa       | tten              | TAT starts th         | he day received by                     |                 |                 |          |               |                                                      |           |              |                                                |                           |                                                                                                  |           |         |         |                    | HCL: HC                                         |                           | NO3: HN  |    |          |        |
| °O #:                                                                         |                                      |                                        |              |                   | the lab, if rea       | ceived by                              | eived by 4:30pm |                 |          |               |                                                      |           |              |                                                |                           |                                                                                                  |           |         |         |                    | H <sub>2</sub> S0 <sub>4</sub> : H              | 2 N                       | aOH: Na  |    |          |        |
| SAMPLE RECE                                                                   | PT                                   | Temp                                   | Blank:       | Yes No            | Wet loo:              | Yes No                                 |                 | hete            | ē.       |               |                                                      |           |              |                                                |                           |                                                                                                  |           |         |         |                    | H <sub>3</sub> PO <sub>4</sub> : H              |                           |          |    |          |        |
| Samples Received I                                                            | ntact:                               | Yes                                    | No           | Thermonrete       | r ID:                 |                                        |                 | Lan             | 300.0)   |               |                                                      |           |              |                                                |                           |                                                                                                  |           |         |         |                    | NaHSO <sub>4</sub> :                            |                           |          |    |          |        |
| Cooler Custody Sea                                                            | Is:                                  | Yes No                                 | N/A          | Correction Fa     | ctor: 1               |                                        | Pai             |                 | (EPA:    |               |                                                      |           |              |                                                |                           |                                                                                                  |           |         |         |                    | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> : |                           |          |    |          |        |
| Sample Custody Sea                                                            |                                      |                                        | N/A          | Température       |                       |                                        |                 |                 | S (E     |               | =                                                    |           |              |                                                |                           |                                                                                                  |           |         |         |                    |                                                 | te+NaOH:                  |          |    |          |        |
| Total Containers:                                                             |                                      | Corrected Te                           |              |                   | mperature:            |                                        |                 |                 | NO CO    | 015)          | 802                                                  |           |              |                                                |                           |                                                                                                  |           |         |         |                    | NaOH+A                                          | scorbic Ac                | Id: SAPC |    |          |        |
| Sample Ide                                                                    | entification                         |                                        | Matrix       | Matrix            | Matrix                | Matrix                                 | Date<br>Sampled | Time<br>Sampled | Depth    | Grab/<br>Comp | # of<br>Cont                                         | CHLORIDES | TPH (8015)   | BTEX (8021)                                    |                           |                                                                                                  |           |         |         | 1                  |                                                 |                           |          | Sa | nple Con | nments |
| SS1                                                                           | 1                                    |                                        | Soil         | 6/21/2023         | 1235                  | 0.5                                    | Comp            | 1               | x        | x             | x                                                    |           |              |                                                |                           |                                                                                                  |           |         |         | _                  | _                                               |                           |          |    |          |        |
| SS1                                                                           | 2                                    |                                        | Soil         | 6/21/2023         | 1240                  | 0.5                                    | Comp            | 1               | x        | x             | ×                                                    |           |              | _                                              |                           |                                                                                                  |           | _       |         | _                  |                                                 |                           |          |    |          |        |
|                                                                               |                                      |                                        |              |                   |                       |                                        |                 |                 |          |               |                                                      | -         | -            |                                                |                           |                                                                                                  |           |         |         |                    |                                                 |                           |          |    |          |        |
|                                                                               |                                      |                                        |              |                   |                       |                                        |                 |                 | -        | -             |                                                      |           |              |                                                |                           |                                                                                                  |           |         |         |                    |                                                 |                           |          |    |          |        |
|                                                                               |                                      |                                        |              |                   |                       |                                        | T               |                 |          |               |                                                      |           |              |                                                |                           |                                                                                                  |           | _       |         |                    | _                                               |                           |          |    |          |        |
|                                                                               |                                      |                                        |              |                   | Ta                    | 40                                     | 11-             |                 |          |               |                                                      |           |              |                                                |                           |                                                                                                  |           |         |         |                    |                                                 |                           |          |    |          |        |
|                                                                               |                                      |                                        |              | 10                | -00                   |                                        |                 |                 |          |               |                                                      |           |              |                                                |                           |                                                                                                  |           |         | _       | _                  |                                                 |                           |          |    |          |        |
|                                                                               | -                                    | _                                      |              | 1                 |                       |                                        |                 |                 |          |               |                                                      |           |              | _                                              |                           |                                                                                                  |           |         |         |                    |                                                 |                           |          |    |          |        |
| /                                                                             |                                      |                                        |              |                   |                       |                                        |                 |                 |          |               |                                                      |           |              | _                                              |                           |                                                                                                  |           |         | _       |                    |                                                 |                           |          |    |          |        |
|                                                                               |                                      |                                        |              |                   |                       |                                        |                 |                 |          |               |                                                      |           |              |                                                |                           |                                                                                                  |           |         |         |                    |                                                 |                           |          |    |          |        |
| Total 200.7 / 6                                                               | 010                                  | 200.8/6                                | 020.         | 8                 | RCRA 13F              | PM Te                                  | yas 11          | ALS             | Sh As    | Ba            | Be B                                                 | Cd C      | a Cr C       | Cu                                             | Fe Pb                     | Ma M                                                                                             | n Mo N    | li K S  | e Aq    | SiO <sub>2</sub> 1 | Na Sr TI S                                      | Sn U V 2                  | Zn       |    |          |        |
| Circle Method(s) a                                                            |                                      |                                        |              |                   | TCLP / S              |                                        |                 |                 |          |               |                                                      |           |              |                                                |                           |                                                                                                  |           |         |         |                    | 1/245.1/7                                       |                           |          |    |          |        |
|                                                                               |                                      |                                        |              |                   |                       |                                        |                 |                 |          |               | _                                                    |           |              |                                                |                           |                                                                                                  |           |         | and con | titions            |                                                 |                           |          |    |          |        |
| otice: Signature of this<br>f service. Eurofins Xen<br>f Eurofins Xenco. A mi | an will b                            | a liable only                          | for the en   | et of earning and | d ehall not seeu      | mo any ree                             | nonsibilit      | v for an        | v losses | s or exp      | enses i                                              | ncurred I | ov the clier | t if such                                      | losses are                | e due to c                                                                                       | ircumstan | ces bey | ond the | control            |                                                 |                           |          |    |          |        |
|                                                                               | _                                    |                                        | .00 will be  |                   |                       |                                        | for each s      | ampie           |          |               |                                                      |           | linguish     |                                                |                           |                                                                                                  | r         |         |         | (Signa             |                                                 | Dat                       | e/Time   |    |          |        |
|                                                                               | inquished by: (Signature) Received b |                                        | a by: (Signa | ture)             | _                     | T                                      |                 | /Time           |          |               | quist                                                | eu by.    | Gignat       |                                                |                           | 1808IV                                                                                           | cu by     |         | Dai     |                    |                                                 |                           |          |    |          |        |
| Peter ion                                                                     | Card                                 | -                                      | 10           | solution          | UP                    |                                        | -               | Ce-             | d1.      | 23            | 162                                                  | K.        |              |                                                |                           |                                                                                                  |           |         |         |                    | _                                               |                           |          |    |          |        |
|                                                                               |                                      |                                        |              |                   |                       |                                        |                 |                 |          |               |                                                      |           |              |                                                |                           |                                                                                                  |           |         |         |                    |                                                 |                           |          |    |          |        |

# Login Sample Receipt Checklist

Client: Ensolum

Login Number: 4846 List Number: 1 Creator: Clifton, Cloe

| Question                                                                         | Answer | Comment                             |
|----------------------------------------------------------------------------------|--------|-------------------------------------|
| The cooler's custody seal, if present, is intact.                                | True   |                                     |
| Sample custody seals, if present, are intact.                                    | True   |                                     |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |                                     |
| Samples were received on ice.                                                    | True   |                                     |
| Cooler Temperature is acceptable.                                                | True   |                                     |
| Cooler Temperature is recorded.                                                  | True   |                                     |
| COC is present.                                                                  | True   |                                     |
| COC is filled out in ink and legible.                                            | True   |                                     |
| COC is filled out with all pertinent information.                                | True   |                                     |
| Is the Field Sampler's name present on COC?                                      | True   |                                     |
| There are no discrepancies between the containers received and the COC.          | True   |                                     |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |                                     |
| Sample containers have legible labels.                                           | True   |                                     |
| Containers are not broken or leaking.                                            | True   |                                     |
| Sample collection date/times are provided.                                       | True   |                                     |
| Appropriate sample containers are used.                                          | N/A    | Refer to Job Narrative for details. |
| Sample bottles are completely filled.                                            | True   |                                     |
| Sample Preservation Verified.                                                    | N/A    |                                     |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |                                     |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").  | N/A    |                                     |

#### Job Number: 890-4846-1 SDG Number: 03C2012037

List Source: Eurofins Carlsbad

14

Job Number: 890-4846-1 SDG Number: 03C2012037

List Source: Eurofins Midland

List Creation: 06/23/23 10:53 AM

# Login Sample Receipt Checklist

Client: Ensolum

<6mm (1/4").

Login Number: 4846 List Number: 2 Creator: Rodriguez, Leticia

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present                                                                   | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information                                 | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is               | N/A    |         |

Eurofins Carlsbad Released to Imaging: 3/31/2025 9:28619:3AM Received by OCD: 1/7/2025312:44:14 PM



**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Hadlie Green Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 7/24/2023 2:59:38 PM

# JOB DESCRIPTION

Brinninstool Unit 003H SDG NUMBER 03D2024197

# **JOB NUMBER**

890-4914-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220





# **Eurofins Carlsbad**

# Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

# Authorization

AMER

Generated 7/24/2023 2:59:38 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 70 of 160

# **Table of Contents**

| Cover Page            | 1  |
|-----------------------|----|
| Table of Contents     | 3  |
| Definitions/Glossary  | 4  |
| Case Narrative        | 5  |
| Client Sample Results | 7  |
| Surrogate Summary     | 22 |
|                       | 24 |
|                       | 34 |
| Lab Chronicle         | 39 |
| Certification Summary | 45 |
| Method Summary        | 46 |
| Sample Summary        | 47 |
| Chain of Custody      | 48 |
|                       | 50 |
|                       |    |

Released to Imaging: 3/31/2025 91286193AM

# **Definitions/Glossary**

Client: Ensolum Project/Site: Brinninstool Unit 003H Job ID: 890-4914-1

SDG: 03D2024197

Page 71 of 160

Qualifiers

| Qualifiers   |                                                                                            | <b>— 3</b> |
|--------------|--------------------------------------------------------------------------------------------|------------|
| GC VOA       |                                                                                            |            |
| Qualifier    | Qualifier Description                                                                      |            |
| *_           | LCS and/or LCSD is outside acceptance limits, low biased.                                  | _          |
| *1           | LCS/LCSD RPD exceeds control limits.                                                       | 5          |
| F1           | MS and/or MSD recovery exceeds control limits.                                             |            |
| S1-          | Surrogate recovery exceeds control limits, low biased.                                     |            |
| S1+          | Surrogate recovery exceeds control limits, high biased.                                    |            |
| U            | Indicates the analyte was analyzed for but not detected.                                   |            |
| GC Semi VO   | Α                                                                                          |            |
| Qualifier    | Qualifier Description                                                                      | 8          |
| S1+          | Surrogate recovery exceeds control limits, high biased.                                    |            |
| U            | Indicates the analyte was analyzed for but not detected.                                   | 9          |
| HPLC/IC      |                                                                                            |            |
| Qualifier    | Qualifier Description                                                                      |            |
| F1           | MS and/or MSD recovery exceeds control limits.                                             |            |
| U            | Indicates the analyte was analyzed for but not detected.                                   |            |
| Glossary     |                                                                                            | _ 10       |
| Abbreviation | These commonly used abbreviations may or may not be present in this report.                | 12         |
| ¤            | Listed under the "D" column to designate that the result is reported on a dry weight basis | 12         |
| %R           | Percent Recovery                                                                           | 13         |
| CFL          | Contains Free Liquid                                                                       |            |
|              |                                                                                            |            |

| CFL            | Contains Free Liquid                                                                                        |
|----------------|-------------------------------------------------------------------------------------------------------------|
| CFU            | Colony Forming Unit                                                                                         |
| CNF            | Contains No Free Liquid                                                                                     |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL             | Detection Limit (DoD/DOE)                                                                                   |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                 |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| MPN            | Most Probable Number                                                                                        |
| MQL            | Method Quantitation Limit                                                                                   |
| NC             | Not Calculated                                                                                              |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |
| NEG            | Negative / Absent                                                                                           |
| POS            | Positive / Present                                                                                          |
| PQL            | Practical Quantitation Limit                                                                                |
| PRES           | Presumptive                                                                                                 |
| QC             | Quality Control                                                                                             |
| RER            | Relative Error Ratio (Radiochemistry)                                                                       |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |
| TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                       |
| TNTC           | Too Numerous To Count                                                                                       |
|                |                                                                                                             |

#### Job ID: 890-4914-1

#### Laboratory: Eurofins Carlsbad

#### Narrative

Job Narrative 890-4914-1

#### Receipt

The samples were received on 7/7/2023 2:57 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C

#### **Receipt Exceptions**

The following samples were received and analyzed from an unpreserved bulk soil jar: FS01 (890-4914-1), FS02 (890-4914-2), FS03 (890-4914-3), FS04 (890-4914-4), FS05 (890-4914-5), FS06 (890-4914-6), FS07 (890-4914-7), FS08 (890-4914-8), FS09 (890-4914-9), FS10 (890-4914-10), SS05A (890-4914-11), SS06A (890-4914-12), SS07A (890-4914-13), SS08A (890-4914-14), SS09A (890-4914-15), SW01 (890-4914-16) and SW02 (890-4914-17).

#### GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: (LCSD 880-57410/2-A) and (MB 880-57410/5-A). Evidence of matrix interferences is not obvious.

Method 8021B: Surrogate recovery for the following samples were outside control limits: FS02 (890-4914-2), FS03 (890-4914-3), FS05 (890-4914-5) and SS07A (890-4914-13). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-57410 and analytical batch 880-57379 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8021B: LCSD biased low. Since only an acceptable LCS is required per the method, the data has been qualified and reported. (LCSD 880-57410/2-A)

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-57379 recovered below the lower control limit for Benzene. An acceptable CCV was ran within the 12 hour window, therefore the data has been qualified and reported. The associated samples are impacted: (CCV 880-57379/20) and (CCV 880-57379/51).

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-57381 recovered below the lower control limit for o-Xylene. An acceptable CCV was ran within the 12 hour window, therefore the data has been qualified and reported. The associated sample is impacted: (CCV 880-57381/20).

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-57416 and analytical batch 880-57381 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: (CCV 880-57560/20), (CCV 880-57560/33), (LCS 880-57410/1-A) and (LCSD 880-57410/2-A). Evidence of matrix interferences is not obvious.

Method 8021B: Surrogate recovery for the following samples were outside control limits: FS01 (890-4914-1), FS02 (890-4914-2), FS03 (890-4914-3), FS04 (890-4914-4), FS07 (890-4914-7), FS08 (890-4914-8), FS09 (890-4914-9), FS10 (890-4914-10), SS05A (890-4914-11), SS06A (890-4914-12), SS07A (890-4914-13), SS08A (890-4914-14) and (890-4913-A-1-C MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-57560 recovered above the upper control limit for Benzene and Ethylbenzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-57560/33).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-4914-1 SDG: 03D2024197
#### Job ID: 890-4914-1 SDG: 03D2024197

#### Job ID: 890-4914-1 (Continued)

Project/Site: Brinninstool Unit 003H

#### Laboratory: Eurofins Carlsbad (Continued)

#### GC Semi VOA

Client: Ensolum

Method 8015MOD\_NM: The surrogate recovery for the blank associated with preparation batch 880-57501 and analytical batch 880-57664 was outside the upper control limits.

Method 8015MOD\_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-57664/20), (CCV 880-57664/31) and (CCV 880-57664/5). Evidence of matrix interferences is not obvious.

Method 8015MOD\_NM: Surrogate recovery for the following samples were outside control limits: SS06A (890-4914-12), SS07A (890-4914-13), (890-4915-A-1-E) and (890-4915-A-1-F MS). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD\_NM: The surrogate recovery for the blank associated with preparation batch 880-57801 and analytical batch 880-58259 was outside the upper control limits.

Method 8015MOD\_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-58259/20), (CCV 880-58259/31) and (CCV 880-58259/5). Evidence of matrix interferences is not obvious.

Method 8015MOD\_NM: Surrogate recovery for the following samples were outside control limits: FS03 (890-4914-3) and FS04 (890-4914-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD\_NM: Surrogate recovery for the following samples were outside control limits: FS06 (890-4914-6), FS08 (890-4914-8) and FS09 (890-4914-9). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### HPLC/IC

Method 300\_ORGFM\_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-57365 and analytical batch 880-57420 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-4914-1 SDG: 03D2024197

#### Client Sample ID: FS01

Project/Site: Brinninstool Unit 003H

Date Collected: 07/07/23 10:25 Date Received: 07/07/23 14:57

Sample Depth: 2.5

Client: Ensolum

Lab Sample ID: 890-4914-1

# Matrix: Solid

| Analyte                                 | Result         | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
|-----------------------------------------|----------------|--------------|----------|-------|---|----------------|----------------|---------|
| Benzene                                 | <0.00198       | U            | 0.00198  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 02:01 |         |
| Toluene                                 | <0.00198       | U            | 0.00198  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 02:01 |         |
| Ethylbenzene                            | <0.00198       | U *- *1      | 0.00198  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 02:01 |         |
| m-Xylene & p-Xylene                     | <0.00396       |              | 0.00396  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 02:01 |         |
| o-Xylene                                | <0.00198       | U *- *1      | 0.00198  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 02:01 |         |
| Xylenes, Total                          | <0.00396       | U *- *1      | 0.00396  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 02:01 |         |
| Surrogate                               | %Recovery      | Qualifier    | Limits   |       |   | Prepared       | Analyzed       | Dil Fa  |
| 4-Bromofluorobenzene (Surr)             | 88             |              | 70 - 130 |       |   | 07/11/23 12:32 | 07/12/23 02:01 |         |
| 1,4-Difluorobenzene (Surr)              | 86             |              | 70 - 130 |       |   | 07/11/23 12:32 | 07/12/23 02:01 |         |
| Method: TAL SOP Total BTEX - To         | otal BTEX Calo | ulation      |          |       |   |                |                |         |
| Analyte                                 | Result         | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| Total BTEX                              | <0.00396       | U            | 0.00396  | mg/Kg |   |                | 07/12/23 11:12 |         |
| Method: SW846 8015 NM - Diese           | Range Organi   | ics (DRO) (0 | GC)      |       |   |                |                |         |
| Analyte                                 |                | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| Total TPH                               | <49.8          | U            | 49.8     | mg/Kg |   |                | 07/24/23 14:27 |         |
| Method: SW846 8015B NM - Dies           | el Range Orga  | nics (DRO)   | (GC)     |       |   |                |                |         |
| Analyte                                 |                | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <49.8          | U            | 49.8     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 17:10 |         |
| Diesel Range Organics (Over<br>C10-C28) | <49.8          | U            | 49.8     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 17:10 |         |
| Oll Range Organics (Over C28-C36)       | <49.8          | U            | 49.8     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 17:10 |         |
| Total TPH                               | <49.8          | U            | 49.8     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 17:10 |         |
| Surrogate                               | %Recovery      | Qualifier    | Limits   |       |   | Prepared       | Analyzed       | Dil Fa  |
| 1-Chlorooctane                          | 111            |              | 70 - 130 |       |   | 07/17/23 09:21 | 07/22/23 17:10 |         |
| p-Terphenyl                             | 95             |              | 70 - 130 |       |   | 07/17/23 09:21 | 07/22/23 17:10 |         |
| Method: EPA 300.0 - Anions, Ion         | Chromatograp   | hy - Solubl  | e        |       |   |                |                |         |
| Analyte                                 |                | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| Chloride                                | 76.9           |              | 4.99     | mg/Kg |   |                | 07/11/23 18:29 |         |
| lient Sample ID: FS02                   |                |              |          |       |   | Lab San        | nple ID: 890-4 | 4914-   |
| ate Collected: 07/07/23 10:30           |                |              |          |       |   |                |                | x: Soli |
| ate Received: 07/07/23 14:57            |                |              |          |       |   |                |                |         |
| ample Depth: 2.5                        |                |              |          |       |   |                |                |         |

| Method: SW846 8021B - Volatile Orga | anic Comp | ounds (GC) |         |       |   |                |                |         |
|-------------------------------------|-----------|------------|---------|-------|---|----------------|----------------|---------|
| Analyte                             | Result    | Qualifier  | RL      | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                             | <0.00199  | U          | 0.00199 | mg/Kg |   | 07/11/23 12:32 | 07/12/23 02:21 | 1       |
| Toluene                             | <0.00199  | U          | 0.00199 | mg/Kg |   | 07/11/23 12:32 | 07/12/23 02:21 | 1       |
| Ethylbenzene                        | <0.00199  | U *- *1    | 0.00199 | mg/Kg |   | 07/11/23 12:32 | 07/12/23 02:21 | 1       |
| m-Xylene & p-Xylene                 | <0.00398  | U *- *1    | 0.00398 | mg/Kg |   | 07/11/23 12:32 | 07/12/23 02:21 | 1       |
| o-Xylene                            | <0.00199  | U *- *1    | 0.00199 | mg/Kg |   | 07/11/23 12:32 | 07/12/23 02:21 | 1       |
| Xylenes, Total                      | <0.00398  | U *- *1    | 0.00398 | mg/Kg |   | 07/11/23 12:32 | 07/12/23 02:21 | 1       |
|                                     |           |            |         |       |   |                |                |         |

Eurofins Carlsbad

Released to Imaging: 3/31/2025 9:286193AMM

Job ID: 890-4914-1 SDG: 03D2024197

Matrix: Solid

5

Lab Sample ID: 890-4914-2

#### **Client Sample ID: FS02**

Project/Site: Brinninstool Unit 003H

Date Collected: 07/07/23 10:30 Date Received: 07/07/23 14:57

Sample Depth: 2.5

Client: Ensolum

| Surrogate                                 | %Recovery       | Qualifier    | Limits   |       |   | Prepared       | Analyzed       | Dil Fa    |
|-------------------------------------------|-----------------|--------------|----------|-------|---|----------------|----------------|-----------|
| 4-Bromofluorobenzene (Surr)               | 95              |              | 70 - 130 |       |   | 07/11/23 12:32 | 07/12/23 02:21 | 1         |
| 1,4-Difluorobenzene (Surr)                | 65              | S1-          | 70 - 130 |       |   | 07/11/23 12:32 | 07/12/23 02:21 |           |
| Method: TAL SOP Total BTEX -              | Total BTEX Cal  | culation     |          |       |   |                |                |           |
| Analyte                                   | Result          | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa    |
| Total BTEX                                | <0.00398        | U            | 0.00398  | mg/Kg |   |                | 07/12/23 11:12 |           |
| Method: SW846 8015 NM - Dies              | el Range Organ  | ics (DRO) (  | GC)      |       |   |                |                |           |
| Analyte                                   |                 | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa    |
| Total TPH                                 | <50.5           | U            | 50.5     | mg/Kg |   |                | 07/24/23 14:27 | 1         |
| Method: SW846 8015B NM - Die              | esel Range Orga | nics (DRO)   | (GC)     |       |   |                |                |           |
| Analyte                                   |                 | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac   |
| Gasoline Range Organics<br>(GRO)-C6-C10   | <50.5           | U            | 50.5     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 17:32 |           |
| Diesel Range Organics (Over<br>C10-C28)   | <50.5           | U            | 50.5     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 17:32 |           |
| Oll Range Organics (Over C28-C36)         | <50.5           | U            | 50.5     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 17:32 |           |
| Total TPH                                 | <50.5           | U            | 50.5     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 17:32 |           |
| Surrogate                                 | %Recovery       | Qualifier    | Limits   |       |   | Prepared       | Analyzed       | Dil Fa    |
| 1-Chlorooctane                            | 128             |              | 70 - 130 |       |   | 07/17/23 09:21 | 07/22/23 17:32 |           |
| o-Terphenyl                               | 109             |              | 70 - 130 |       |   | 07/17/23 09:21 | 07/22/23 17:32 | -         |
| Method: EPA 300.0 - Anions, Io            | n Chromatograp  | ohy - Solubl | e        |       |   |                |                |           |
| Analyte                                   | Result          | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac   |
| Chloride                                  | 137             |              | 4.98     | mg/Kg |   |                | 07/11/23 18:35 | 1         |
| lient Sample ID: FS03                     |                 |              |          |       |   | Lab Sar        | nple ID: 890-  | 4914-3    |
| ate Collected: 07/07/23 10:35             |                 |              |          |       |   |                | Matri          | ix: Solid |
| ate Received: 07/07/23 14:57              |                 |              |          |       |   |                |                |           |
| ample Depth: 2.5                          |                 |              |          |       |   |                |                |           |
|                                           | <b>a</b>        |              |          |       |   |                |                |           |
| Method: SW846 8021B - Volatile<br>Analyte |                 | Qualifier    | )<br>RL  | Unit  | D | Prepared       | Analyzed       | Dil Fac   |
| Benzene                                   | <0.00201        | U            | 0.00201  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 02:41 | 1         |
| Toluene                                   | < 0.00201       | U            | 0.00201  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 02:41 | 1         |
| Ethylbenzene                              | < 0.00201       |              | 0.00201  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 02:41 |           |
| m-Xylene & p-Xylene                       | < 0.00402       |              | 0.00402  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 02:41 |           |
| o-Xylene                                  | < 0.00201       |              | 0.00201  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 02:41 |           |
| · · · ·                                   |                 |              |          |       |   |                |                |           |

| Xylenes, Total                  | <0.00402 U*-*1       | 0.00402  | mg/Kg | 07/11/23 12:32 | 07/12/23 02:41 | 1       |
|---------------------------------|----------------------|----------|-------|----------------|----------------|---------|
| Surrogate                       | %Recovery Qualifier  | Limits   |       | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)     | 93                   | 70 - 130 |       | 07/11/23 12:32 | 07/12/23 02:41 | 1       |
| 1,4-Difluorobenzene (Surr)      | 69 S1-               | 70 - 130 |       | 07/11/23 12:32 | 07/12/23 02:41 | 1       |
| Method: TAL SOP Total BTEX - To | tal BTEX Calculation |          |       |                |                |         |
| Analyta                         | Desult Qualifier     | ы        | Unit  | D Bronorod     | Analyzad       | Dil Eco |

| Analyte    | Result   | Qualifier | RL      | Unit  | D | Prepared | Analyzed       | Dil Fac |
|------------|----------|-----------|---------|-------|---|----------|----------------|---------|
| Total BTEX | <0.00402 | U         | 0.00402 | mg/Kg |   |          | 07/12/23 11:12 | 1       |

Eurofins Carlsbad

Released to Imaging: 3/31/2025 91286193AM

Job ID: 890-4914-1 SDG: 03D2024197

Matrix: Solid

Lab Sample ID: 890-4914-3

#### **Client Sample ID: FS03**

Project/Site: Brinninstool Unit 003H

Date Collected: 07/07/23 10:35 Date Received: 07/07/23 14:57

Sample Depth: 2.5

Client: Ensolum

| Analyte                                 | Result          | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|-----------------|-------------|----------|-------|---|----------------|----------------|---------|
| Fotal TPH                               | <50.1           | U           | 50.1     | mg/Kg |   |                | 07/24/23 14:27 | 1       |
| Method: SW846 8015B NM - Die            | esel Range Orga | nics (DRO)  | (GC)     |       |   |                |                |         |
| Analyte                                 | Result          | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>GRO)-C6-C10  | <50.1           | U           | 50.1     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 17:54 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | <50.1           | U           | 50.1     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 17:54 | 1       |
| Oll Range Organics (Over C28-C36)       | <50.1           | U           | 50.1     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 17:54 | 1       |
| Fotal TPH                               | <50.1           | U           | 50.1     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 17:54 | 1       |
| Surrogate                               | %Recovery       | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 161             | S1+         | 70 - 130 |       |   | 07/17/23 09:21 | 07/22/23 17:54 | 1       |
| p-Terphenyl                             | 139             | S1+         | 70 - 130 |       |   | 07/17/23 09:21 | 07/22/23 17:54 | 1       |
| Method: EPA 300.0 - Anions, Ior         | n Chromatograp  | hy - Solubl | e        |       |   |                |                |         |
| Analyte                                 | Result          | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                                | 67.8            |             | 4.96     | mg/Kg |   |                | 07/11/23 18:40 | 1       |

Date Received: 07/07/23 14:57

Sample Depth: 2.5

#### Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL Unit D Dil Fac Prepared Analyzed Benzene <0.00199 U 0.00199 mg/Kg 07/11/23 12:32 07/12/23 03:02 1 Toluene 0.00199 07/11/23 12:32 07/12/23 03:02 0.00232 mg/Kg 1 07/11/23 12:32 07/12/23 03:02 Ethylbenzene <0.00199 U\*-\*1 0.00199 mg/Kg 1 m-Xylene & p-Xylene <0.00398 U\*-\*1 0.00398 07/11/23 12:32 07/12/23 03:02 mg/Kg 1 <0.00199 U \*- \*1 07/11/23 12:32 07/12/23 03:02 o-Xylene 0.00199 mg/Kg 1 Xylenes, Total <0.00398 U\*-\*1 0.00398 mg/Kg 07/11/23 12:32 07/12/23 03:02 1 Qualifier Limits Surrogate %Recovery Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 101 70 - 130 07/11/23 12:32 07/12/23 03:02 1 1,4-Difluorobenzene (Surr) 71 70 - 130 07/11/23 12:32 07/12/23 03:02 1 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte **Result Qualifier** RL Unit D Prepared Analyzed Dil Fac Total BTEX <0.00398 U 07/12/23 11:12 0.00398 mg/Kg 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Total TPH <50.4 U 50.4 mg/Kg 07/24/23 14:27 Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Result Qualifier Analyte RL Unit D Dil Fac Prepared Analyzed <50.4 U Gasoline Range Organics 50.4 mg/Kg 07/17/23 09:21 07/22/23 18:16 (GRO)-C6-C10 **Diesel Range Organics (Over** <50.4 U 50.4 mg/Kg 07/17/23 09:21 07/22/23 18:16 1 C10-C28)

| - f: |  |
|------|--|

1

**Eurofins Carlsbad** 

07/22/23 18:16

Released to Imaging: 3/31/2025 91286193AM

Oll Range Organics (Over C28-C36)

50.4

mg/Kg

07/17/23 09:21

<50.4 U

Job ID: 890-4914-1 SDG: 03D2024197

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-4914-4

#### **Client Sample ID: FS04**

Project/Site: Brinninstool Unit 003H

Date Collected: 07/07/23 10:40 Date Received: 07/07/23 14:57

#### Sample Depth: 2.5

Client: Ensolum

| Analyte        | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|----------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Total TPH      | <50.4     | U         | 50.4     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 18:16 | 1       |
| Surrogate      | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane | 145       | S1+       | 70 - 130 |       |   | 07/17/23 09:21 | 07/22/23 18:16 | 1       |
| o-Terphenyl    | 123       |           | 70 - 130 |       |   | 07/17/23 09:21 | 07/22/23 18:16 | 1       |

### Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

| Analyte                | Result | Qualifier | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |  |
|------------------------|--------|-----------|------|-------|---|----------|----------------|---------|--|
| Chloride               | 104    |           | 5.02 | mg/Kg |   |          | 07/11/23 18:45 | 1       |  |
| Client Sample ID: FS05 |        |           |      |       |   | Lab Sa   | mple ID: 890-  | 4914-5  |  |

#### Client Sample ID: FS05

Date Collected: 07/07/23 10:45 Date Received: 07/07/23 14:57

#### Sample Depth: 2.5

| Method: SW846 8021B - Volati | le Organic Comp | ounds (GC) | )        |       |   |                |                |         |
|------------------------------|-----------------|------------|----------|-------|---|----------------|----------------|---------|
| Analyte                      | Result          | Qualifier  | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                      | < 0.00201       | U          | 0.00201  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 05:05 | 1       |
| Toluene                      | <0.00201        | U          | 0.00201  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 05:05 | 1       |
| Ethylbenzene                 | <0.00201        | U *- *1    | 0.00201  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 05:05 | 1       |
| m-Xylene & p-Xylene          | <0.00402        | U *- *1    | 0.00402  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 05:05 | 1       |
| o-Xylene                     | <0.00201        | U *- *1    | 0.00201  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 05:05 | 1       |
| Xylenes, Total               | <0.00402        | U *- *1    | 0.00402  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 05:05 | 1       |
| Surrogate                    | %Recovery       | Qualifier  | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)  | 89              |            | 70 - 130 |       |   | 07/11/23 12:32 | 07/12/23 05:05 | 1       |
| 1,4-Difluorobenzene (Surr)   | 67              | S1-        | 70 - 130 |       |   | 07/11/23 12:32 | 07/12/23 05:05 | 1       |

| Method: TAL SOP Total BTEX - Total BTEX Calculation |          |           |         |       |   |          |                |         |
|-----------------------------------------------------|----------|-----------|---------|-------|---|----------|----------------|---------|
| Analyte                                             | Result   | Qualifier | RL      | Unit  | D | Prepared | Analyzed       | Dil Fac |
| Total BTEX                                          | <0.00402 | U         | 0.00402 | mg/Kg |   |          | 07/12/23 11:12 | 1       |

| Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) |        |           |      |       |   |          |                |         |  |
|----------------------------------------------------------|--------|-----------|------|-------|---|----------|----------------|---------|--|
| Analyte                                                  | Result | Qualifier | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |  |
| Total TPH                                                | <50.0  | U         | 50.0 | mg/Kg |   |          | 07/24/23 14:27 | 1       |  |

#### Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                           | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <50.0     | U         | 50.0     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 18:49 | 1       |
| (GRO)-C6-C10                      |           |           |          |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.0     | U         | 50.0     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 18:49 | 1       |
| C10-C28)                          |           |           |          |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <50.0     | U         | 50.0     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 18:49 | 1       |
| Total TPH                         | <50.0     | U         | 50.0     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 18:49 | 1       |
| Surrogate                         | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    |           |           | 70 - 130 |       |   | 07/17/23 09:21 | 07/22/23 18:49 | 1       |
| I-Chioroociane                    | 110       |           | 70 - 730 |       |   | 01/11/23 09.21 | 01/22/23 10.49 | 1       |
| o-Terphenyl                       | 103       |           | 70 - 130 |       |   | 07/17/23 09:21 | 07/22/23 18:49 | 1       |

|                                               |                | Clien        | t Sample Re | sults |   |                |                |         |
|-----------------------------------------------|----------------|--------------|-------------|-------|---|----------------|----------------|---------|
| Client: Ensolum                               |                | -            |             |       |   |                | Job ID: 890    | )-4914  |
| Project/Site: Brinninstool Unit 003H          |                |              |             |       |   |                | SDG: 03D2      | 202419  |
| Client Sample ID: FS05                        |                |              |             |       |   | Lab Sar        | nple ID: 890-  | 4914    |
| ate Collected: 07/07/23 10:45                 |                |              |             |       |   |                |                | ix: Sol |
| Date Received: 07/07/23 14:57                 |                |              |             |       |   |                |                |         |
| Sample Depth: 2.5                             |                |              |             |       |   |                |                |         |
| Method: EPA 300.0 - Anions, Ion               | Chromotogra    | aby Colubl   |             |       |   |                |                |         |
| Analyte                                       | · · ·          | Qualifier    | RL          | Unit  | D | Prepared       | Analyzed       | Dil F   |
| Chloride                                      | 67.5           |              | 4.97        | mg/Kg |   |                | 07/11/23 18:50 |         |
| Client Sample ID: FS06                        |                |              |             |       |   | l ah Sar       | nple ID: 890-  | 1011    |
| ate Collected: 07/07/23 10:50                 |                |              |             |       |   | Lab Gai        | -              | ix: Sol |
| Date Received: 07/07/23 14:57                 |                |              |             |       |   |                | Ividu          | X. 301  |
| Sample Depth: 2.5                             |                |              |             |       |   |                |                |         |
| -                                             |                |              |             |       |   |                |                |         |
| Method: SW846 8021B - Volatile                |                |              |             |       |   |                |                |         |
| Analyte                                       |                | Qualifier    | RL          | Unit  | D | Prepared       | Analyzed       | Dil F   |
| Benzene                                       | <0.00200       |              | 0.00200     | mg/Kg |   | 07/11/23 12:32 | 07/12/23 05:25 |         |
| Toluene                                       | <0.00200       |              | 0.00200     | mg/Kg |   | 07/11/23 12:32 | 07/12/23 05:25 |         |
| Ethylbenzene                                  | <0.00200       |              | 0.00200     | mg/Kg |   | 07/11/23 12:32 | 07/12/23 05:25 |         |
| m-Xylene & p-Xylene                           | <0.00401       |              | 0.00401     | mg/Kg |   | 07/11/23 12:32 | 07/12/23 05:25 |         |
| p-Xylene                                      | <0.00200       |              | 0.00200     | mg/Kg |   | 07/11/23 12:32 | 07/12/23 05:25 |         |
| Xylenes, Total                                | <0.00401       | U *- *1      | 0.00401     | mg/Kg |   | 07/11/23 12:32 | 07/12/23 05:25 |         |
| Surrogate                                     | %Recovery      | Qualifier    | Limits      |       |   | Prepared       | Analyzed       | Dil     |
| 4-Bromofluorobenzene (Surr)                   | 93             |              | 70 - 130    |       |   | 07/11/23 12:32 | 07/12/23 05:25 |         |
| 1,4-Difluorobenzene (Surr)                    | 72             |              | 70 - 130    |       |   | 07/11/23 12:32 | 07/12/23 05:25 |         |
| Method: TAL SOP Total BTEX - T                | otal BTEX Cal  | culation     |             |       |   |                |                |         |
| Analyte                                       |                | Qualifier    | RL          | Unit  | D | Prepared       | Analyzed       | Dil I   |
| Total BTEX                                    | <0.00401       | U            | 0.00401     | mg/Kg |   |                | 07/12/23 11:12 |         |
|                                               |                |              | <b>0</b> 0) |       |   |                |                |         |
| Method: SW846 8015 NM - Diese<br>Analyte      |                | Qualifier    | GC)<br>RL   | Unit  | D | Prepared       | Analyzed       | Dil I   |
| Total TPH                                     |                |              | 50.1        |       |   |                | 07/24/23 14:27 |         |
| -                                             |                |              |             |       |   |                |                |         |
| Method: SW846 8015B NM - Dies                 |                |              |             |       |   |                |                |         |
| Analyte                                       |                | Qualifier    | RL          | Unit  | D | Prepared       | Analyzed       | Dil I   |
| Gasoline Range Organics<br>(GRO)-C6-C10       | <50.1          | U            | 50.1        | mg/Kg |   | 07/17/23 09:21 | 07/22/23 19:11 |         |
| Diesel Range Organics (Over                   | <50.1          | U            | 50.1        | mg/Kg |   | 07/17/23 09:21 | 07/22/23 19:11 |         |
| C10-C28)<br>Oll Range Organics (Over C28-C36) | <50.1          | U.           | 50.1        | mg/Kg |   | 07/17/23 09:21 | 07/22/23 19:11 |         |
| Total TPH                                     | <50.1<br><50.1 |              | 50.1        | mg/Kg |   | 07/17/23 09:21 | 07/22/23 19:11 |         |
| 0                                             | 0/ <b>F</b>    | 0            | 1           |       |   | <b>D</b>       | A              |         |
| Surrogate                                     | %Recovery      |              | Limits      |       |   | Prepared       | Analyzed       | Dil     |
| 1-Chlorooctane                                | 134            | S1+          | 70 - 130    |       |   | 07/17/23 09:21 | 07/22/23 19:11 |         |
| o-Terphenyl                                   | 114            |              | 70 - 130    |       |   | 07/17/23 09:21 | 07/22/23 19:11 |         |
| Method: EPA 300.0 - Anions, Ion               | Chromatogra    | ohy - Solubl | e           |       |   |                |                |         |
| Analyte                                       | Result         | Qualifier    | RL          | Unit  | D | Prepared       | Analyzed       | Dil F   |
| Chloride                                      | 116            |              | 5.00        | mg/Kg |   |                | 07/11/23 19:05 |         |
|                                               |                |              |             |       |   |                |                |         |

Eurofins Carlsbad

Job ID: 890-4914-1 SDG: 03D2024197

#### **Client Sample ID: FS07**

Project/Site: Brinninstool Unit 003H

Date Collected: 07/07/23 10:55 Date Received: 07/07/23 14:57

Sample Depth: 1

Client: Ensolum

# Lab Sample ID: 890-4914-7

Matrix: Solid

5

| Analyte                                  | Result          | Qualifier   | RL       | Unit          | D        | Prepared                | Analyzed       | Dil Fa  |
|------------------------------------------|-----------------|-------------|----------|---------------|----------|-------------------------|----------------|---------|
| Benzene                                  | <0.00200        | U           | 0.00200  | mg/Kg         |          | 07/11/23 12:32          | 07/12/23 05:46 |         |
| Toluene                                  | <0.00200        | U           | 0.00200  | mg/Kg         |          | 07/11/23 12:32          | 07/12/23 05:46 |         |
| Ethylbenzene                             | <0.00200        | U *- *1     | 0.00200  | mg/Kg         |          | 07/11/23 12:32          | 07/12/23 05:46 |         |
| m-Xylene & p-Xylene                      | <0.00399        | U *- *1     | 0.00399  | mg/Kg         |          | 07/11/23 12:32          | 07/12/23 05:46 |         |
| o-Xylene                                 | <0.00200        | U *- *1     | 0.00200  | mg/Kg         |          | 07/11/23 12:32          | 07/12/23 05:46 |         |
| Xylenes, Total                           | <0.00399        | U *- *1     | 0.00399  | mg/Kg         |          | 07/11/23 12:32          | 07/12/23 05:46 |         |
| Surrogate                                | %Recovery       | Qualifier   | Limits   |               |          | Prepared                | Analyzed       | Dil Fa  |
| 4-Bromofluorobenzene (Surr)              | 97              |             | 70 - 130 |               |          | 07/11/23 12:32          | 07/12/23 05:46 |         |
| 1,4-Difluorobenzene (Surr)               | 73              |             | 70 - 130 |               |          | 07/11/23 12:32          | 07/12/23 05:46 |         |
| Method: TAL SOP Total BTEX - To          | otal BTEX Calo  | culation    |          |               |          |                         |                |         |
| Analyte                                  | Result          | Qualifier   | RL       | Unit          | D        | Prepared                | Analyzed       | Dil Fa  |
| Total BTEX                               | <0.00399        | U           | 0.00399  | mg/Kg         |          |                         | 07/12/23 11:12 |         |
| Method: SW846 8015 NM - Diese            | Range Organ     | ics (DRO) ( | GC)      |               |          |                         |                |         |
| Analyte                                  |                 | Qualifier   | RL       | Unit          | D        | Prepared                | Analyzed       | Dil Fa  |
| Total TPH                                | <50.0           | U           | 50.0     | mg/Kg         |          |                         | 07/24/23 14:27 |         |
| Analyte<br>Gasoline Range Organics       | Result<br><50.0 | Qualifier   | RL       | Unit<br>mg/Kg | <u>D</u> | Prepared 07/17/23 09:21 | Analyzed       | Dil Fa  |
| Method: SW846 8015B NM - Dies<br>Analyte |                 |             |          | Unit          | D        | Prepared                | Analyzed       | Dil Fa  |
| (GRO)-C6-C10                             |                 |             |          |               |          |                         |                |         |
| Diesel Range Organics (Over<br>C10-C28)  | <50.0           | U           | 50.0     | mg/Kg         |          | 07/17/23 09:21          | 07/22/23 19:33 |         |
| Oll Range Organics (Over C28-C36)        | <50.0           | U           | 50.0     | mg/Kg         |          | 07/17/23 09:21          | 07/22/23 19:33 |         |
| Total TPH                                | <50.0           | U           | 50.0     | mg/Kg         |          | 07/17/23 09:21          | 07/22/23 19:33 |         |
| Surrogate                                | %Recovery       | Qualifier   | Limits   |               |          | Prepared                | Analyzed       | Dil Fa  |
| 1-Chlorooctane                           | 117             |             | 70 - 130 |               |          | 07/17/23 09:21          | 07/22/23 19:33 |         |
| o-Terphenyl                              | 101             |             | 70 - 130 |               |          | 07/17/23 09:21          | 07/22/23 19:33 |         |
| Method: EPA 300.0 - Anions, Ion          | Chromatograp    | hy - Solubl | e        |               |          |                         |                |         |
| Analyte                                  | Result          | Qualifier   | RL       | Unit          | D        | Prepared                | Analyzed       | Dil Fa  |
| Chloride                                 | 67.3            |             | 4.99     | mg/Kg         |          |                         | 07/11/23 19:10 |         |
| lient Sample ID: FS08                    |                 |             |          |               |          | Lab Sar                 | nple ID: 890-  | 4914-   |
| ate Collected: 07/07/23 11:00            |                 |             |          |               |          |                         | Matri          | x: Soli |
| ate Received: 07/07/23 14:57             |                 |             |          |               |          |                         |                |         |
|                                          |                 |             |          |               |          |                         |                |         |

| Method: SW846 8021B - Volatile Orga | nic Comp | ounds (GC) |         |       |   |                |                |         |
|-------------------------------------|----------|------------|---------|-------|---|----------------|----------------|---------|
| Analyte                             | Result   | Qualifier  | RL      | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                             | <0.00199 | U          | 0.00199 | mg/Kg |   | 07/11/23 12:32 | 07/12/23 06:06 | 1       |
| Toluene                             | <0.00199 | U          | 0.00199 | mg/Kg |   | 07/11/23 12:32 | 07/12/23 06:06 | 1       |
| Ethylbenzene                        | <0.00199 | U *- *1    | 0.00199 | mg/Kg |   | 07/11/23 12:32 | 07/12/23 06:06 | 1       |
| m-Xylene & p-Xylene                 | <0.00398 | U *- *1    | 0.00398 | mg/Kg |   | 07/11/23 12:32 | 07/12/23 06:06 | 1       |
| o-Xylene                            | <0.00199 | U *- *1    | 0.00199 | mg/Kg |   | 07/11/23 12:32 | 07/12/23 06:06 | 1       |
| Xylenes, Total                      | <0.00398 | U *- *1    | 0.00398 | mg/Kg |   | 07/11/23 12:32 | 07/12/23 06:06 | 1       |
|                                     |          |            |         |       |   |                |                |         |

Eurofins Carlsbad

Client: Ensolum

#### **Client Sample Results**

Job ID: 890-4914-1 SDG: 03D2024197

|                                                                                                                                                                                                                                                                                                                                              | : Ensolum<br>t/Site: Brinninstool Unit 003H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                      |                                                                                                                                                                                                        |                                                            |          | Job ID: 890-4914-1<br>SDG: 03D2024197                                                                                                                               |                                                                                                                                                                                                                      |                                                                                       |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                              | 511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                      |                                                                                                                                                                                                        |                                                            |          |                                                                                                                                                                     | 300.0302                                                                                                                                                                                                             | 2024197                                                                               |  |  |
| Client Sample ID: FS08                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                        |                                                            |          | Lab San                                                                                                                                                             | nple ID: 890-                                                                                                                                                                                                        | 4914-8                                                                                |  |  |
| Date Collected: 07/07/23 11:00                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                        |                                                            |          |                                                                                                                                                                     | Matri                                                                                                                                                                                                                | x: Solid                                                                              |  |  |
| Date Received: 07/07/23 14:57                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                        |                                                            |          |                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                       |  |  |
| Sample Depth: 1                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                        |                                                            |          |                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                        |                                                            |          |                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                       |  |  |
| Surrogate                                                                                                                                                                                                                                                                                                                                    | %Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Qualifier                                                                                                                            | Limits                                                                                                                                                                                                 |                                                            |          | Prepared                                                                                                                                                            | Analyzed                                                                                                                                                                                                             | Dil Fac                                                                               |  |  |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                                                                                                                                  | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                      | 70 - 130                                                                                                                                                                                               |                                                            |          | 07/11/23 12:32                                                                                                                                                      | 07/12/23 06:06                                                                                                                                                                                                       | 1                                                                                     |  |  |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                                                                                                                   | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                      | 70 - 130                                                                                                                                                                                               |                                                            |          | 07/11/23 12:32                                                                                                                                                      | 07/12/23 06:06                                                                                                                                                                                                       | 1                                                                                     |  |  |
| Method: TAL SOP Total BTEX                                                                                                                                                                                                                                                                                                                   | - Total BTEX Calo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | culation                                                                                                                             |                                                                                                                                                                                                        |                                                            |          |                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                       |  |  |
| Analyte                                                                                                                                                                                                                                                                                                                                      | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Qualifier                                                                                                                            | RL                                                                                                                                                                                                     | Unit                                                       | D        | Prepared                                                                                                                                                            | Analyzed                                                                                                                                                                                                             | Dil Fac                                                                               |  |  |
| Total BTEX                                                                                                                                                                                                                                                                                                                                   | <0.00398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U                                                                                                                                    | 0.00398                                                                                                                                                                                                | mg/Kg                                                      |          |                                                                                                                                                                     | 07/12/23 11:12                                                                                                                                                                                                       | 1                                                                                     |  |  |
| -                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                        |                                                            |          |                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                       |  |  |
| Method: SW846 8015 NM - Die                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CS (DRO) (<br>Qualifier                                                                                                              |                                                                                                                                                                                                        | 11-14                                                      |          | Dremered                                                                                                                                                            | Analyzad                                                                                                                                                                                                             |                                                                                       |  |  |
| Analyte<br>Total TPH                                                                                                                                                                                                                                                                                                                         | Kesuit<br><50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                        | Unit                                                       | D        | Prepared                                                                                                                                                            | Analyzed<br>07/24/23 14:27                                                                                                                                                                                           | Dil Fac                                                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                              | <50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                    | 50.2                                                                                                                                                                                                   | mg/Kg                                                      |          |                                                                                                                                                                     | 07/24/23 14:27                                                                                                                                                                                                       | 1                                                                                     |  |  |
| Method: SW846 8015B NM - D                                                                                                                                                                                                                                                                                                                   | iesel Range Orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nics (DRO)                                                                                                                           | (GC)                                                                                                                                                                                                   |                                                            |          |                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                       |  |  |
| Analyte                                                                                                                                                                                                                                                                                                                                      | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Qualifier                                                                                                                            | RL                                                                                                                                                                                                     | Unit                                                       | D        | Prepared                                                                                                                                                            | Analyzed                                                                                                                                                                                                             | Dil Fac                                                                               |  |  |
| Gasoline Range Organics                                                                                                                                                                                                                                                                                                                      | <50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U                                                                                                                                    | 50.2                                                                                                                                                                                                   | mg/Kg                                                      |          | 07/17/23 09:21                                                                                                                                                      | 07/22/23 19:56                                                                                                                                                                                                       | 1                                                                                     |  |  |
| (GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                        |                                                            |          |                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                       |  |  |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                  | <50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U                                                                                                                                    | 50.2                                                                                                                                                                                                   | mg/Kg                                                      |          | 07/17/23 09:21                                                                                                                                                      | 07/22/23 19:56                                                                                                                                                                                                       | 1                                                                                     |  |  |
| C10-C28)<br>Oll Range Organics (Over C28-C36)                                                                                                                                                                                                                                                                                                | <50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                      | 50.2                                                                                                                                                                                                   | mg/Kg                                                      |          | 07/17/23 09:21                                                                                                                                                      | 07/22/23 19:56                                                                                                                                                                                                       | 1                                                                                     |  |  |
| Total TPH                                                                                                                                                                                                                                                                                                                                    | <50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                      | 50.2                                                                                                                                                                                                   | mg/Kg                                                      |          | 07/17/23 09:21                                                                                                                                                      | 07/22/23 19:56                                                                                                                                                                                                       |                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                              | 00.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                    | 00.2                                                                                                                                                                                                   |                                                            |          | 0171120 00121                                                                                                                                                       | 01,22,20 10.00                                                                                                                                                                                                       |                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                        |                                                            |          |                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                       |  |  |
| Surrogate                                                                                                                                                                                                                                                                                                                                    | %Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Qualifier                                                                                                                            | Limits                                                                                                                                                                                                 |                                                            |          | Prepared                                                                                                                                                            | Analyzed                                                                                                                                                                                                             | Dil Fac                                                                               |  |  |
| Surrogate<br>1-Chlorooctane                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Qualifier<br>S1+                                                                                                                     | Limits                                                                                                                                                                                                 |                                                            |          | Prepared 07/17/23 09:21                                                                                                                                             | Analyzed 07/22/23 19:56                                                                                                                                                                                              | Dil Fac                                                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                        |                                                            |          |                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                       |  |  |
| 1-Chlorooctane<br>o-Terphenyl                                                                                                                                                                                                                                                                                                                | 141<br>119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S1+                                                                                                                                  | 70 - 130<br>70 - 130                                                                                                                                                                                   |                                                            |          | 07/17/23 09:21                                                                                                                                                      | 07/22/23 19:56                                                                                                                                                                                                       | 1                                                                                     |  |  |
| 1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, Io                                                                                                                                                                                                                                                                              | 141<br>119<br>on Chromatograp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S1+<br>Dhy - Solubl                                                                                                                  | 70 - 130<br>70 - 130<br><b>e</b>                                                                                                                                                                       | Unit                                                       | П        | 07/17/23 09:21<br>07/17/23 09:21                                                                                                                                    | 07/22/23 19:56<br>07/22/23 19:56                                                                                                                                                                                     | 1                                                                                     |  |  |
| 1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, Io<br>Analyte                                                                                                                                                                                                                                                                   | 141<br>119<br>on Chromatograp<br>Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S1+                                                                                                                                  | 70 - 130<br>70 - 130                                                                                                                                                                                   | <u>Unit</u>                                                | <u>D</u> | 07/17/23 09:21                                                                                                                                                      | 07/22/23 19:56                                                                                                                                                                                                       | 1                                                                                     |  |  |
| 1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, lo<br>Analyte<br>Chloride                                                                                                                                                                                                                                                       | 141<br>119<br>on Chromatograp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S1+<br>Dhy - Solubl                                                                                                                  | 70 - 130<br>70 - 130<br><b>e</b><br><u>RL</u>                                                                                                                                                          | Unit<br>mg/Kg                                              | <u>D</u> | 07/17/23 09:21<br>07/17/23 09:21<br>Prepared                                                                                                                        | 07/22/23 19:56<br>07/22/23 19:56<br><b>Analyzed</b><br>07/11/23 19:26                                                                                                                                                | 1<br>1<br>                                                                            |  |  |
| 1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, lo<br>Analyte<br>Chloride<br>Client Sample ID: FS09                                                                                                                                                                                                                             | 141<br>119<br>on Chromatograp<br>Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S1+<br>Dhy - Solubl                                                                                                                  | 70 - 130<br>70 - 130<br><b>e</b><br><u>RL</u>                                                                                                                                                          |                                                            | <u> </u> | 07/17/23 09:21<br>07/17/23 09:21<br>Prepared                                                                                                                        | 07/22/23 19:56<br>07/22/23 19:56<br>Analyzed                                                                                                                                                                         | 1<br>1<br>                                                                            |  |  |
| 1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, lo<br>Analyte<br>Chloride<br>Client Sample ID: FS09                                                                                                                                                                                                                             | 141<br>119<br>on Chromatograp<br>Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S1+<br>Dhy - Solubl                                                                                                                  | 70 - 130<br>70 - 130<br><b>e</b><br><u>RL</u>                                                                                                                                                          |                                                            | D        | 07/17/23 09:21<br>07/17/23 09:21<br>Prepared                                                                                                                        | 07/22/23 19:56<br>07/22/23 19:56<br><u>Analyzed</u><br>07/11/23 19:26<br>nple ID: 890-                                                                                                                               | 1<br>1<br>                                                                            |  |  |
| 1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, Io<br>Analyte<br>Chloride<br>Client Sample ID: FS09<br>Date Collected: 07/07/23 12:05<br>Date Received: 07/07/23 14:57                                                                                                                                                          | 141<br>119<br>on Chromatograp<br>Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S1+<br>Dhy - Solubl                                                                                                                  | 70 - 130<br>70 - 130<br><b>e</b><br><u>RL</u>                                                                                                                                                          |                                                            | <u> </u> | 07/17/23 09:21<br>07/17/23 09:21<br>Prepared                                                                                                                        | 07/22/23 19:56<br>07/22/23 19:56<br><u>Analyzed</u><br>07/11/23 19:26<br>nple ID: 890-                                                                                                                               | 1<br>1<br>Dil Fac<br>1<br>4914-9                                                      |  |  |
| 1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, Io<br>Analyte<br>Chloride<br>Client Sample ID: FS09<br>Date Collected: 07/07/23 12:05<br>Date Received: 07/07/23 14:57                                                                                                                                                          | 141<br>119<br>on Chromatograp<br>Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S1+<br>Dhy - Solubl                                                                                                                  | 70 - 130<br>70 - 130<br><b>e</b><br><u>RL</u>                                                                                                                                                          |                                                            | <u>D</u> | 07/17/23 09:21<br>07/17/23 09:21<br>Prepared                                                                                                                        | 07/22/23 19:56<br>07/22/23 19:56<br><u>Analyzed</u><br>07/11/23 19:26<br>nple ID: 890-                                                                                                                               | 1<br>1<br>Dil Fac<br>1<br>4914-9                                                      |  |  |
| 1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, lo<br>Analyte<br>Chloride<br>Client Sample ID: FS09<br>Date Collected: 07/07/23 12:05<br>Date Received: 07/07/23 14:57<br>Sample Depth: 1                                                                                                                                       | on Chromatograp<br>Result<br>84.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S1+<br>Dhy - Solubl<br>Qualifier                                                                                                     | 70 - 130<br>70 - 130<br><b>e</b><br><u><b>RL</b></u><br>5.01                                                                                                                                           |                                                            | <u>D</u> | 07/17/23 09:21<br>07/17/23 09:21<br>Prepared                                                                                                                        | 07/22/23 19:56<br>07/22/23 19:56<br><u>Analyzed</u><br>07/11/23 19:26<br>nple ID: 890-                                                                                                                               | 1<br>1<br>Dil Fac<br>1<br>4914-9                                                      |  |  |
| 1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, lo<br>Analyte<br>Chloride<br>Client Sample ID: FS09<br>Date Collected: 07/07/23 12:05<br>Date Received: 07/07/23 14:57<br>Sample Depth: 1<br>Method: SW846 8021B - Volati                                                                                                       | It is in the second sec | S1+<br>Dhy - Solubl<br>Qualifier                                                                                                     | 70 - 130<br>70 - 130<br><b>e</b><br>                                                                                                                                                                   |                                                            | D        | 07/17/23 09:21<br>07/17/23 09:21<br>Prepared                                                                                                                        | 07/22/23 19:56<br>07/22/23 19:56<br>Analyzed<br>07/11/23 19:26<br>nple ID: 890-<br>Matri                                                                                                                             | 1<br>1<br>Dil Fac<br>1<br>4914-9                                                      |  |  |
| 1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, lo<br>Analyte<br>Chloride<br>Client Sample ID: FS09<br>Date Collected: 07/07/23 12:05<br>Date Received: 07/07/23 14:57<br>Sample Depth: 1                                                                                                                                       | It is in the second sec | S1+<br>Qualifier<br>Ounds (GC)<br>Qualifier                                                                                          | 70 - 130<br>70 - 130<br><b>e</b><br><u><b>RL</b></u><br>5.01                                                                                                                                           | mg/Kg                                                      |          | 07/17/23 09:21<br>07/17/23 09:21<br>Prepared                                                                                                                        | 07/22/23 19:56<br>07/22/23 19:56<br><u>Analyzed</u><br>07/11/23 19:26<br>nple ID: 890-                                                                                                                               | 1<br>1<br>1<br>1<br>4914-9<br>x: Solid                                                |  |  |
| 1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, lo<br>Analyte<br>Chloride<br>Client Sample ID: FS09<br>Date Collected: 07/07/23 12:05<br>Date Received: 07/07/23 14:57<br>Sample Depth: 1<br>Method: SW846 8021B - Volati<br>Analyte                                                                                            | le Organic Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S1+<br>Qualifier<br>ounds (GC)<br>Qualifier<br>U                                                                                     | 70 - 130<br>70 - 130<br><b>e</b><br>                                                                                                                                                                   | mg/Kg                                                      |          | 07/17/23 09:21<br>07/17/23 09:21<br>Prepared<br>Lab San                                                                                                             | 07/22/23 19:56<br>07/22/23 19:56<br>Analyzed<br>07/11/23 19:26<br>nple ID: 890-<br>Matri<br>Analyzed                                                                                                                 | 1<br>1<br>1<br>1<br>4914-9<br>x: Solid                                                |  |  |
| 1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, lo<br>Analyte<br>Chloride<br>Client Sample ID: FS09<br>Date Collected: 07/07/23 12:05<br>Date Received: 07/07/23 14:57<br>Sample Depth: 1<br>Method: SW846 8021B - Volati<br>Analyte<br>Benzene                                                                                 | le Organic Comp<br>Result<br>84.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S1+<br>Dhy - Solubl<br>Qualifier<br>Ounds (GC)<br>Qualifier<br>U<br>U                                                                | 70 - 130<br>70 - 130<br><b>e</b><br><u>RL</u><br>5.01                                                                                                                                                  | Unit<br>mg/Kg                                              |          | 07/17/23 09:21<br>07/17/23 09:21<br>Prepared<br>Lab San                                                                                                             | 07/22/23 19:56<br>07/22/23 19:56<br>Analyzed<br>07/11/23 19:26<br>nple ID: 890-<br>Matri<br>Analyzed<br>07/12/23 06:27                                                                                               | 1<br>1<br>1<br>1<br>4914-9<br>x: Solid                                                |  |  |
| 1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, lo<br>Analyte<br>Chloride<br>Client Sample ID: FS09<br>Date Collected: 07/07/23 12:05<br>Date Received: 07/07/23 14:57<br>Sample Depth: 1<br>Method: SW846 8021B - Volati<br>Analyte<br>Benzene<br>Toluene                                                                      | 141           119           on Chromatograp           Result           84.8           le Organic Comp           Result           <0.00198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S1+<br>Dhy - Solubl<br>Qualifier<br>Ounds (GC)<br>Qualifier<br>U<br>U<br>U *- *1                                                     | 70 - 130         70 - 130         8         RL         5.01                                                                                                                                            | Unit<br>mg/Kg<br>mg/Kg<br>mg/Kg                            |          | 07/17/23 09:21<br>07/17/23 09:21<br>Prepared<br>Lab San<br>Prepared<br>07/11/23 12:32<br>07/11/23 12:32                                                             | 07/22/23 19:56<br>07/22/23 19:56<br>Analyzed<br>07/11/23 19:26<br>nple ID: 890-<br>Matri<br>Analyzed<br>07/12/23 06:27<br>07/12/23 06:27                                                                             | 1<br>1<br>1<br>1<br>4914-9<br>x: Solid                                                |  |  |
| 1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, lo<br>Analyte<br>Chloride<br>Client Sample ID: FS09<br>Date Collected: 07/07/23 12:05<br>Date Received: 07/07/23 14:57<br>Sample Depth: 1<br>Method: SW846 8021B - Volati<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene                                                      | 141           119           on Chromatograp           Result           84.8           le Organic Comp           Result           <0.00198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S1+<br>Dhy - Solubl<br>Qualifier<br>Ounds (GC)<br>Qualifier<br>U<br>U<br>U *- *1<br>U *- *1                                          | 70 - 130<br>70 - 130<br><b>e</b><br><b>RL</b><br>5.01<br>0.00198<br>0.00198<br>0.00198                                                                                                                 | Unit<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg                   |          | 07/17/23 09:21<br>07/17/23 09:21<br>Prepared<br>Lab San<br>07/11/23 12:32<br>07/11/23 12:32<br>07/11/23 12:32                                                       | 07/22/23 19:56<br>07/22/23 19:56<br>07/22/23 19:56<br>07/11/23 19:26<br>07/11/23 19:26<br>nple ID: 890-<br>Matri<br>07/12/23 06:27<br>07/12/23 06:27<br>07/12/23 06:27                                               | 1<br>1<br>1<br>1<br>4914-9<br>x: Solid                                                |  |  |
| 1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, lo<br>Analyte<br>Chloride<br>Client Sample ID: FS09<br>Date Collected: 07/07/23 12:05<br>Date Received: 07/07/23 14:57<br>Sample Depth: 1<br>Method: SW846 8021B - Volati<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene                               | 141           119           on Chromatograp           Result           84.8           le Organic Comp           Result           <0.00198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S1+           Ohy - Solubl           Qualifier           U           U *- *1           U *- *1           U *- *1                     | 70 - 130         70 - 130         70 - 130         8         RL         5.01         8         0.00198         0.00198         0.00198         0.00198         0.00396                                 | Unit<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg          |          | 07/17/23 09:21<br>07/17/23 09:21<br>Prepared<br>Lab San<br>07/11/23 12:32<br>07/11/23 12:32<br>07/11/23 12:32<br>07/11/23 12:32                                     | 07/22/23 19:56<br>07/22/23 19:56<br>07/22/23 19:56<br>07/11/23 19:26<br>07/11/23 19:26<br>07/12/23 09:27<br>07/12/23 06:27<br>07/12/23 06:27<br>07/12/23 06:27<br>07/12/23 06:27                                     | 1<br>1<br>2011 Fac<br>1<br>4914-9<br>x: Solid<br>Dil Fac<br>1<br>1<br>1<br>1          |  |  |
| 1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, lo<br>Analyte<br>Chloride<br>Client Sample ID: FS09<br>Date Collected: 07/07/23 12:05<br>Date Received: 07/07/23 14:57<br>Sample Depth: 1<br>Method: SW846 8021B - Volati<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>o-Xylene<br>Xylenes, Total | 141           119           on Chromatograp           Result           84.8           le Organic Comp           Result           <0.00198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S1+         Ohy - Solubl         Qualifier         U         U *- *1         U *- *1         U *- *1         U *- *1         U *- *1 | 70 - 130         70 - 130         70 - 130         8         RL         5.01         8         0.00198         0.00198         0.00198         0.00198         0.00396         0.00396         0.00396 | Unit<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg |          | 07/17/23 09:21<br>07/17/23 09:21<br>Prepared<br>Lab San<br>07/11/23 12:32<br>07/11/23 12:32<br>07/11/23 12:32<br>07/11/23 12:32<br>07/11/23 12:32<br>07/11/23 12:32 | 07/22/23 19:56<br>07/22/23 19:56<br>07/22/23 19:56<br>07/22/23 19:56<br>07/12/23 19:26<br>07/11/23 19:26<br>07/12/23 06:27<br>07/12/23 06:27<br>07/12/23 06:27<br>07/12/23 06:27<br>07/12/23 06:27<br>07/12/23 06:27 | 1<br>1<br>2011 Fac<br>1<br>4914-9<br>x: Solid<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |  |  |
| I-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, lo<br>Analyte<br>Chloride<br>Client Sample ID: FS09<br>Date Collected: 07/07/23 12:05<br>Date Received: 07/07/23 14:57<br>Sample Depth: 1<br>Method: SW846 8021B - Volati<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>o-Xylene                   | 141           119           on Chromatograp           Result           84.8           le Organic Comp           Result           <0.00198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S1+         Ohy - Solubl         Qualifier         U         U *- *1         U *- *1         U *- *1         U *- *1         U *- *1 | 70 - 130         70 - 130         70 - 130         8         RL         5.01         8         0.00198         0.00198         0.00396         0.00198                                                 | Unit<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg |          | 07/17/23 09:21<br>07/17/23 09:21<br>Prepared<br>Lab San<br>07/11/23 12:32<br>07/11/23 12:32<br>07/11/23 12:32<br>07/11/23 12:32<br>07/11/23 12:32                   | 07/22/23 19:56<br>07/22/23 19:56<br>07/22/23 19:56<br>07/22/23 19:56<br>07/11/23 19:26<br>07/11/23 19:26<br>07/12/23 06:27<br>07/12/23 06:27<br>07/12/23 06:27<br>07/12/23 06:27<br>07/12/23 06:27                   | 1<br>1<br>2011 Fac<br>1<br>4914-9<br>1x: Solid<br>0x: Solid<br>1<br>1<br>1<br>1<br>1  |  |  |

| Method: TAL SOP Total BTEX - Total BTEX Calculation |           |           |         |       |   |          |                |  |  |  |
|-----------------------------------------------------|-----------|-----------|---------|-------|---|----------|----------------|--|--|--|
| Analyte                                             | Result    | Qualifier | RL      | Unit  | D | Prepared | Analyzed       |  |  |  |
| Total BTEX                                          | < 0.00396 | U         | 0.00396 | mg/Kg |   |          | 07/12/23 11:12 |  |  |  |

Eurofins Carlsbad

5

Dil Fac 1

Job ID: 890-4914-1 SDG: 03D2024197

Lab Sample ID: 890-4914-9

#### Client Sample ID: FS09

Project/Site: Brinninstool Unit 003H

Date Collected: 07/07/23 12:05 Date Received: 07/07/23 14:57

Sample Depth: 1

Client: Ensolum

| Analyte                                 | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|---------------|-------------|----------|-------|---|----------------|----------------|---------|
| Total TPH                               | <50.2         | U           | 50.2     | mg/Kg |   |                | 07/24/23 14:27 | 1       |
| Method: SW846 8015B NM - Dies           | el Range Orga | nics (DRO)  | (GC)     |       |   |                |                |         |
| Analyte                                 | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.2         | U           | 50.2     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 20:18 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | <50.2         | U           | 50.2     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 20:18 | 1       |
| Oll Range Organics (Over C28-C36)       | <50.2         | U           | 50.2     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 20:18 | 1       |
| Total TPH                               | <50.2         | U           | 50.2     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 20:18 | 1       |
| Surrogate                               | %Recovery     | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 142           | S1+         | 70 - 130 |       |   | 07/17/23 09:21 | 07/22/23 20:18 | 1       |
| o-Terphenyl                             | 124           |             | 70 - 130 |       |   | 07/17/23 09:21 | 07/22/23 20:18 | 1       |
| Method: EPA 300.0 - Anions, Ion         | Chromatograp  | hy - Solubl | e        |       |   |                |                |         |
| Analyte                                 | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                                | 80.4          |             | 5.03     | mg/Kg |   |                | 07/11/23 19:31 | 1       |
| lient Sample ID: FS10                   |               |             |          |       |   | l ah Sam       | ple ID: 890-4  | 911_1   |

Date Received: 07/07/23 14:57

Sample Depth: 1

#### Method: SW846 8021B - Volatile Organic Compounds (GC) Result Qualifier RL Unit D Dil Fac Analyte Prepared Analyzed Benzene <0.00200 U 0.00200 mg/Kg 07/11/23 12:32 07/12/23 06:47 1 Toluene <0.00200 U 0.00200 07/11/23 12:32 07/12/23 06:47 mg/Kg 1 0.00200 07/11/23 12:32 07/12/23 06:47 Ethylbenzene <0.00200 U\*-\*1 mg/Kg 1 m-Xylene & p-Xylene <0.00400 U\*-\*1 0.00400 07/11/23 12:32 07/12/23 06:47 mg/Kg 1 07/11/23 12:32 07/12/23 06:47 o-Xylene <0.00200 U\*-\*1 0.00200 mg/Kg 1 Xylenes, Total <0.00400 U\*-\*1 0.00400 mg/Kg 07/11/23 12:32 07/12/23 06:47 1 Qualifier Limits Surrogate %Recovery Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 92 70 - 130 07/11/23 12:32 07/12/23 06:47 1 1,4-Difluorobenzene (Surr) 74 70 - 130 07/11/23 12:32 07/12/23 06:47 1 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte **Result Qualifier** RL Unit D Prepared Analyzed Dil Fac Total BTEX <0.00400 U 07/12/23 11:12 0.00400 mg/Kg 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Total TPH <49.6 U 49.6 mg/Kg 07/24/23 14:27 Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Result Qualifier Analyte RL Unit D Dil Fac Prepared Analyzed Gasoline Range Organics <49.6 U 49.6 mg/Kg 07/17/23 09:21 07/22/23 20:41 (GRO)-C6-C10 **Diesel Range Organics (Over** <49.6 U 49.6 mg/Kg 07/17/23 09:21 07/22/23 20:41

**Eurofins Carlsbad** 

07/22/23 20:41

Matrix: Solid

5

Oll Range Organics (Over C28-C36)

C10-C28)

49.6

mg/Kg

07/17/23 09:21

<49.6 U

Job ID: 890-4914-1 SDG: 03D2024197

Matrix: Solid

Matrix: Solid

5

Lab Sample ID: 890-4914-10

#### **Client Sample ID: FS10**

Project/Site: Brinninstool Unit 003H

Date Collected: 07/07/23 12:10 Date Received: 07/07/23 14:57

#### Sample Depth: 1

Client: Ensolum

| Analyte        | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|----------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Total TPH      | <49.6     | U         | 49.6     | mg/Kg |   | 07/17/23 09:21 | 07/22/23 20:41 | 1       |
| Surrogate      | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane | 124       |           | 70 - 130 |       |   | 07/17/23 09:21 | 07/22/23 20:41 | 1       |
| o-Terphenyl    | 104       |           | 70 - 130 |       |   | 07/17/23 09:21 | 07/22/23 20:41 | 1       |

#### Method: EPA 300.0 - Anions, Ion Chromatography - Soluble o lute . . . . . . .

| Analyte                 | Result Qualifier | RL   | Unit  | D | Prepared | Analyzed       | DIFac  |
|-------------------------|------------------|------|-------|---|----------|----------------|--------|
| Chloride                | 60.8             | 5.00 | mg/Kg |   |          | 07/11/23 19:36 | 1      |
| Client Sample ID: SS05A |                  |      |       |   | Lab San  | nple ID: 890-4 | 914-11 |

#### Client Sample ID: SS05A

Date Collected: 07/07/23 12:15 Date Received: 07/07/23 14:57

#### Sample Depth: 1

| Method: SW846 8021B - Volati |           |           |          |       |   |                |                |         |
|------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Analyte                      | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                      | < 0.00202 | U         | 0.00202  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 07:07 | 1       |
| Toluene                      | <0.00202  | U         | 0.00202  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 07:07 | 1       |
| Ethylbenzene                 | <0.00202  | U *- *1   | 0.00202  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 07:07 | 1       |
| m-Xylene & p-Xylene          | <0.00403  | U *- *1   | 0.00403  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 07:07 | 1       |
| o-Xylene                     | <0.00202  | U *- *1   | 0.00202  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 07:07 | 1       |
| Xylenes, Total               | <0.00403  | U *- *1   | 0.00403  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 07:07 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)  | 91        |           | 70 - 130 |       |   | 07/11/23 12:32 | 07/12/23 07:07 | 1       |
| 1,4-Difluorobenzene (Surr)   | 77        |           | 70 - 130 |       |   | 07/11/23 12:32 | 07/12/23 07:07 | 1       |

| Method: TAL SOP Total BTEX - Total BTEX Calculation |            |          |           |         |       |   |          |                |         |
|-----------------------------------------------------|------------|----------|-----------|---------|-------|---|----------|----------------|---------|
|                                                     | Analyte    | Result   | Qualifier | RL      | Unit  | D | Prepared | Analyzed       | Dil Fac |
|                                                     | Total BTEX | <0.00403 | U         | 0.00403 | mg/Kg |   |          | 07/12/23 11:12 | 1       |
|                                                     |            |          |           |         |       |   |          |                |         |

| Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) |           |        |           |      |       |   |          |                |         |
|----------------------------------------------------------|-----------|--------|-----------|------|-------|---|----------|----------------|---------|
|                                                          | Analyte   | Result | Qualifier | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
|                                                          | Total TPH | <50.1  | U         | 50.1 | mg/Kg |   |          | 07/17/23 13:24 | 1       |
| ſ                                                        | <b>—</b>  |        |           |      |       |   |          |                |         |

#### Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                           | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <50.1     | U         | 50.1     | mg/Kg |   | 07/12/23 12:11 | 07/14/23 17:19 | 1       |
| (GRO)-C6-C10                      |           |           |          |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.1     | U         | 50.1     | mg/Kg |   | 07/12/23 12:11 | 07/14/23 17:19 | 1       |
| C10-C28)                          |           |           |          |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <50.1     | U         | 50.1     | mg/Kg |   | 07/12/23 12:11 | 07/14/23 17:19 | 1       |
| Total TPH                         | <50.1     | U         | 50.1     | mg/Kg |   | 07/12/23 12:11 | 07/14/23 17:19 | 1       |
| Surrogate                         | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    |           |           | 70 - 130 |       |   | 07/12/23 12:11 | 07/14/23 17:19 | 1       |
| o-Terphenyl                       | 99        |           | 70 - 130 |       |   | 07/12/23 12:11 | 07/14/23 17:19 | 1       |

|                                                                                            |                 | Clien        | it Sample Re         | sults |   |                            |                            |                         |
|--------------------------------------------------------------------------------------------|-----------------|--------------|----------------------|-------|---|----------------------------|----------------------------|-------------------------|
| Client: Ensolum<br>Project/Site: Brinninstool Unit 003H                                    |                 |              | -                    |       |   |                            | Job ID: 890<br>SDG: 03D2   |                         |
| Client Sample ID: SS05A<br>Date Collected: 07/07/23 12:15<br>Date Received: 07/07/23 14:57 |                 |              |                      |       |   | Lab Sam                    | ple ID: 890-4<br>Matri     | <b>914-1</b><br>x: Soli |
| Sample Depth: 1                                                                            |                 |              |                      |       |   |                            |                            |                         |
| Method: EPA 300.0 - Anions, Ion C                                                          | hromatograp     | ohy - Solubl | e                    |       |   |                            |                            |                         |
| Analyte                                                                                    | Result          | Qualifier    | RL                   | Unit  | D | Prepared                   | Analyzed                   | Dil Fa                  |
| Chloride                                                                                   | 67.2            |              | 5.01                 | mg/Kg |   |                            | 07/11/23 19:41             |                         |
| Client Sample ID: SS06A                                                                    |                 |              |                      |       |   | Lab Sam                    | ple ID: 890-4              | 914-1                   |
| Date Collected: 07/07/23 12:20                                                             |                 |              |                      |       |   |                            | -                          | x: Soli                 |
| Date Received: 07/07/23 14:57                                                              |                 |              |                      |       |   |                            | inati                      |                         |
| Sample Depth: 1                                                                            |                 |              |                      |       |   |                            |                            |                         |
| Mathadi SW946 9024 B. Valatila O                                                           | reania Comu     | eurode (CC)  |                      |       |   |                            |                            |                         |
| Method: SW846 8021B - Volatile O<br>Analyte                                                | • •             | Qualifier    | )<br>RL              | Unit  | D | Prepared                   | Analyzed                   | Dil Fa                  |
| Benzene                                                                                    | <0.00199        |              | 0.00199              | mg/Kg |   | 07/11/23 12:32             | 07/12/23 07:28             |                         |
| Toluene                                                                                    | < 0.00199       |              | 0.00199              | mg/Kg |   | 07/11/23 12:32             | 07/12/23 07:28             |                         |
| Ethylbenzene                                                                               | < 0.00199       |              | 0.00199              | mg/Kg |   | 07/11/23 12:32             | 07/12/23 07:28             |                         |
| m-Xylene & p-Xylene                                                                        | < 0.00398       |              | 0.00398              | mg/Kg |   | 07/11/23 12:32             | 07/12/23 07:28             |                         |
| o-Xylene                                                                                   | < 0.00199       |              | 0.00199              | mg/Kg |   | 07/11/23 12:32             | 07/12/23 07:28             |                         |
| Xylenes, Total                                                                             | <0.00398        |              | 0.00398              | mg/Kg |   | 07/11/23 12:32             | 07/12/23 07:28             |                         |
| Summersete                                                                                 | % Decessory     | Ovelifier    | Limits               |       |   | Duonouod                   | Analyzad                   |                         |
| Surrogate<br>4-Bromofluorobenzene (Surr)                                                   | %Recovery<br>79 | Qualifier    | 70 - 130             |       |   | Prepared<br>07/11/23 12:32 | Analyzed<br>07/12/23 07:28 | Dil Fa                  |
| 1,4-Difluorobenzene (Surr)                                                                 | 87              |              | 70 - 130<br>70 - 130 |       |   | 07/11/23 12:32             | 07/12/23 07:28             |                         |
|                                                                                            | 0,              |              | 102100               |       |   | 077772072.02               | 0111220 01.20              |                         |
| Method: TAL SOP Total BTEX - Tot                                                           |                 |              |                      |       |   |                            |                            |                         |
| Analyte                                                                                    |                 | Qualifier    | RL                   | Unit  | D | Prepared                   | Analyzed                   | Dil Fa                  |
| Total BTEX                                                                                 | <0.00398        | U            | 0.00398              | mg/Kg |   |                            | 07/12/23 11:12             |                         |
| Method: SW846 8015 NM - Diesel F                                                           | Range Organ     | ics (DRO) (  | GC)                  |       |   |                            |                            |                         |
| Analyte                                                                                    | Result          | Qualifier    | RL                   | Unit  | D | Prepared                   | Analyzed                   | Dil Fa                  |
| Total TPH                                                                                  | <49.8           | U            | 49.8                 | mg/Kg |   |                            | 07/17/23 13:24             |                         |
| -<br>Method: SW846 8015B NM - Diese                                                        | l Range Orga    | nics (DRO)   | (GC)                 |       |   |                            |                            |                         |
| Analyte                                                                                    |                 | Qualifier    | RL                   | Unit  | D | Prepared                   | Analyzed                   | Dil Fa                  |
| Gasoline Range Organics<br>(GRO)-C6-C10                                                    | <49.8           | U            | 49.8                 | mg/Kg |   | 07/12/23 12:11             | 07/14/23 17:41             |                         |
| Diesel Range Organics (Over                                                                | <49.8           | U            | 49.8                 | mg/Kg |   | 07/12/23 12:11             | 07/14/23 17:41             |                         |
| C10-C28)<br>Oll Range Organics (Over C28-C36)                                              | <49.8           |              | 49.8                 | mg/Kg |   | 07/12/23 12:11             | 07/14/23 17:41             |                         |
| Total TPH                                                                                  | <49.8<br><49.8  |              | 49.8                 | mg/Kg |   | 07/12/23 12:11             | 07/14/23 17:41             |                         |
| Q                                                                                          | % <b>D</b>      | 0            | 1 : : 4              |       |   | <b>D</b>                   | A                          | <b>5</b>                |
| Surrogate                                                                                  | %Recovery       |              | Limits               |       |   | Prepared                   | Analyzed                   | Dil Fa                  |
| 1-Chlorooctane                                                                             |                 | S1+          | 70 - 130             |       |   | 07/12/23 12:11             | 07/14/23 17:41             |                         |
| o-Terphenyl<br>                                                                            | 107             |              | 70 - 130             |       |   | 07/12/23 12:11             | 07/14/23 17:41             |                         |
| Method: EPA 300.0 - Anions, Ion C                                                          |                 | -            |                      |       |   |                            |                            |                         |
| Analyte                                                                                    |                 | Qualifier    | RL                   | Unit  | D | Prepared                   | Analyzed                   | Dil Fa                  |
| Chlorido                                                                                   | 77 9            |              | 4 99                 | ma/Ka |   |                            | 07/11/23 19:46             |                         |

Eurofins Carlsbad

07/11/23 19:46

Chloride

4.99

mg/Kg

77.9

RL

0.00200

0.00200

0.00200

0.00399

0.00200

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

07/11/23 12:32

07/11/23 12:32

07/11/23 12:32

07/11/23 12:32

07/11/23 12:32

Job ID: 890-4914-1 SDG: 03D2024197

#### **Client Sample ID: SS07A**

Project/Site: Brinninstool Unit 003H

Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00200 U

<0.00200 U

<0.00200 U\*-\*1

<0.00399 U\*-\*1

<0.00200 U\*-\*1

Date Collected: 07/07/23 12:25 Date Received: 07/07/23 14:57

Sample Depth: 1

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

m-Xylene & p-Xylene

Client: Ensolum

Analyzed

07/12/23 07:49

07/12/23 07:49

07/12/23 07:49

07/12/23 07:49

07/12/23 07:49

Matrix: Solid

1

1

1

1

1

5 Dil Fac

| Xylenes, Total                          | <0.00399      | U *- *1      | 0.00399  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 07:49 | 1        |
|-----------------------------------------|---------------|--------------|----------|-------|---|----------------|----------------|----------|
| Surrogate                               | %Recovery     | Qualifier    | Limits   |       |   | Prepared       | Analyzed       | Dil Fac  |
| 4-Bromofluorobenzene (Surr)             | 92            |              | 70 - 130 |       |   | 07/11/23 12:32 | 07/12/23 07:49 | 1        |
| 1,4-Difluorobenzene (Surr)              | 68            | S1-          | 70 - 130 |       |   | 07/11/23 12:32 | 07/12/23 07:49 | 1        |
| Method: TAL SOP Total BTEX - T          | otal BTEX Cal | culation     |          |       |   |                |                |          |
| Analyte                                 | Result        | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Total BTEX                              | <0.00399      | U            | 0.00399  | mg/Kg |   |                | 07/12/23 11:12 | 1        |
| Method: SW846 8015 NM - Diese           | l Range Organ | ics (DRO) (  | GC)      |       |   |                |                |          |
| Analyte                                 |               | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Total TPH                               | <49.9         | U            | 49.9     | mg/Kg |   |                | 07/17/23 13:24 | 1        |
|                                         |               |              |          |       |   |                |                |          |
| Method: SW846 8015B NM - Dies           |               |              | · · ·    |       | _ | - ·            |                |          |
| Analyte                                 |               | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <49.9         | U            | 49.9     | mg/Kg |   | 07/12/23 12:11 | 07/14/23 18:03 | 1        |
| Diesel Range Organics (Over             | <49.9         | U            | 49.9     | mg/Kg |   | 07/12/23 12:11 | 07/14/23 18:03 | 1        |
| C10-C28)                                |               |              |          | 0.0   |   |                |                |          |
| Oll Range Organics (Over C28-C36)       | <49.9         | U            | 49.9     | mg/Kg |   | 07/12/23 12:11 | 07/14/23 18:03 | 1        |
| Total TPH                               | <49.9         | U            | 49.9     | mg/Kg |   | 07/12/23 12:11 | 07/14/23 18:03 | 1        |
| Surrogate                               | %Recovery     | Qualifier    | Limits   |       |   | Prepared       | Analyzed       | Dil Fac  |
| 1-Chlorooctane                          | 133           | S1+          | 70 - 130 |       |   | 07/12/23 12:11 | 07/14/23 18:03 | 1        |
| o-Terphenyl                             | 110           |              | 70 - 130 |       |   | 07/12/23 12:11 | 07/14/23 18:03 | 1        |
| Method: EPA 300.0 - Anions, Ion         | Chromatogram  | ohv - Solubi | e        |       |   |                |                |          |
| Analyte                                 |               | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Chloride                                | 96.5          |              | 4.99     | mg/Kg |   |                | 07/11/23 19:52 | 1        |
| Client Sample ID: SS08A                 |               |              |          |       |   | Lab Sam        | ple ID: 890-4  | 914-14   |
| Date Collected: 07/07/23 12:30          |               |              |          |       |   |                | •              | x: Solid |
| Date Received: 07/07/23 14:57           |               |              |          |       |   |                |                |          |
| Sample Depth: 1                         |               |              |          |       |   |                |                |          |
|                                         |               |              |          |       |   |                |                |          |

#### Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac <0.00199 Benzene U 0.00199 mg/Kg 07/11/23 12:32 07/12/23 08:09 1 Toluene <0.00199 U 0.00199 mg/Kg 07/11/23 12:32 07/12/23 08:09 1 07/11/23 12:32 Ethylbenzene <0.00199 U\*-\*1 0.00199 mg/Kg 07/12/23 08:09 1 <0.00398 U\*-\*1 0.00398 07/11/23 12:32 07/12/23 08:09 m-Xylene & p-Xylene mg/Kg 1 <0.00199 U\*-\*1 0.00199 07/11/23 12:32 07/12/23 08:09 o-Xylene mg/Kg 1 <0.00398 U\*-\*1 0.00398 Xylenes, Total 07/11/23 12:32 07/12/23 08:09 mg/Kg 1

**Eurofins Carlsbad** 

Released to Imaging: 3/31/2025 91286193AM

7/24/2023

Job ID: 890-4914-1 SDG: 03D2024197

#### **Client Sample ID: SS08A**

Project/Site: Brinninstool Unit 003H

Date Collected: 07/07/23 12:30

Date Received: 07/07/23 14:57 Sample Depth: 1

Client: Ensolum

| Surrogate                               | %Recovery      | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac  |
|-----------------------------------------|----------------|-------------|----------|-------|---|----------------|----------------|----------|
| 4-Bromofluorobenzene (Surr)             | 92             |             | 70 - 130 |       |   | 07/11/23 12:32 | 07/12/23 08:09 | 1        |
| 1,4-Difluorobenzene (Surr)              | 71             |             | 70 - 130 |       |   | 07/11/23 12:32 | 07/12/23 08:09 | 1        |
| Method: TAL SOP Total BTEX - T          | otal BTEX Calo | culation    |          |       |   |                |                |          |
| Analyte                                 | Result         | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Total BTEX                              | <0.00398       | U           | 0.00398  | mg/Kg |   |                | 07/12/23 11:12 | 1        |
| Method: SW846 8015 NM - Diese           | I Range Organ  | ics (DRO) ( | GC)      |       |   |                |                |          |
| Analyte                                 | Result         | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Total TPH                               | <49.8          | U           | 49.8     | mg/Kg |   |                | 07/17/23 13:24 | 1        |
| Method: SW846 8015B NM - Dies           | el Range Orga  | nics (DRO)  | (GC)     |       |   |                |                |          |
| Analyte                                 | Result         | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <49.8          | U           | 49.8     | mg/Kg |   | 07/12/23 12:11 | 07/15/23 07:36 | 1        |
| Diesel Range Organics (Over<br>C10-C28) | <49.8          | U           | 49.8     | mg/Kg |   | 07/12/23 12:11 | 07/15/23 07:36 | 1        |
| Oll Range Organics (Over C28-C36)       | <49.8          | U           | 49.8     | mg/Kg |   | 07/12/23 12:11 | 07/15/23 07:36 | 1        |
| Total TPH                               | <49.8          | U           | 49.8     | mg/Kg |   | 07/12/23 12:11 | 07/15/23 07:36 | 1        |
| Surrogate                               | %Recovery      | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac  |
| 1-Chlorooctane                          | 110            |             | 70 - 130 |       |   | 07/12/23 12:11 | 07/15/23 07:36 | 1        |
| o-Terphenyl                             | 93             |             | 70 - 130 |       |   | 07/12/23 12:11 | 07/15/23 07:36 | 1        |
| Method: EPA 300.0 - Anions, Ion         | Chromatograp   | hy - Solubl | e        |       |   |                |                |          |
| Analyte                                 | Result         | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Chloride                                | 81.7           |             | 4.98     | mg/Kg |   |                | 07/11/23 19:57 | 1        |
| lient Sample ID: SS09A                  |                |             |          |       |   | Lab Sam        | ple ID: 890-4  | 914-15   |
| ate Collected: 07/07/23 12:35           |                |             |          |       |   |                | Matri          | x: Solid |
| ate Received: 07/07/23 14:57            |                |             |          |       |   |                |                |          |
| ample Depth: 1                          |                |             |          |       |   |                |                |          |
| Method: SW846 8021B - Volatile          | Organic Comp   | ounds (GC)  | )        |       |   |                |                |          |
| Analyte                                 | Result         | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
|                                         |                |             |          |       |   |                |                |          |
| Benzene                                 | <0.00200       | U           | 0.00200  | mg/Kg |   | 07/11/23 13:40 | 07/12/23 05:44 | 1        |

#### Ethylbenzene 0.00200 07/11/23 13:40 07/12/23 05:44 <0.00200 U mg/Kg m-Xylene & p-Xylene <0.00399 U 0.00399 mg/Kg 07/11/23 13:40 07/12/23 05:44 o-Xylene <0.00200 U 0.00200 mg/Kg 07/11/23 13:40 07/12/23 05:44 Xylenes, Total <0.00399 U 0.00399 07/11/23 13:40 07/12/23 05:44 mg/Kg Surrogate %Recovery Qualifier Limits Prepared Analyzed 4-Bromofluorobenzene (Surr) 82 70 - 130 07/11/23 13:40 07/12/23 05:44 97 70 - 130 1,4-Difluorobenzene (Surr) 07/11/23 13:40 07/12/23 05:44

#### Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Total BTEX <0.00399 U 0.00399 07/12/23 14:48 mg/Kg 1

**Eurofins Carlsbad** 

Lab Sample ID: 890-4914-14 Matrix: Solid

5

1

1

1

1

1

1

Dil Fac

Job ID: 890-4914-1 SDG: 03D2024197

Lab Sample ID: 890-4914-15

#### **Client Sample ID: SS09A**

Project/Site: Brinninstool Unit 003H

Date Collected: 07/07/23 12:35 Date Received: 07/07/23 14:57

Sample Depth: 1

Client: Ensolum

| Analyte                                 | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|---------------|-------------|----------|-------|---|----------------|----------------|---------|
| Total TPH                               | <49.7         | U           | 49.7     | mg/Kg |   |                | 07/17/23 13:24 | 1       |
| Method: SW846 8015B NM - Dies           | el Range Orga | nics (DRO)  | (GC)     |       |   |                |                |         |
| Analyte                                 | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <49.7         | U           | 49.7     | mg/Kg |   | 07/12/23 12:11 | 07/15/23 08:28 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | <49.7         | U           | 49.7     | mg/Kg |   | 07/12/23 12:11 | 07/15/23 08:28 | 1       |
| Oll Range Organics (Over C28-C36)       | <49.7         | U           | 49.7     | mg/Kg |   | 07/12/23 12:11 | 07/15/23 08:28 | 1       |
| Total TPH                               | <49.7         | U           | 49.7     | mg/Kg |   | 07/12/23 12:11 | 07/15/23 08:28 | 1       |
| Surrogate                               | %Recovery     | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 118           |             | 70 - 130 |       |   | 07/12/23 12:11 | 07/15/23 08:28 | 1       |
| o-Terphenyl                             | 100           |             | 70 - 130 |       |   | 07/12/23 12:11 | 07/15/23 08:28 | 1       |
| Method: EPA 300.0 - Anions, Ion         | Chromatograp  | hy - Solubl | e        |       |   |                |                |         |
| Analyte                                 | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                                | 102           | F1          | 5.00     | mg/Kg |   |                | 07/11/23 13:46 | 1       |

Date Collected: 07/07/23 12:40

Date Received: 07/07/23 14:57

Sample Depth: 1

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Method: SW846 8021B - Volatile Organic Compounds (GC) Result Qualifier RL Unit D Dil Fac Prepared Analyzed <0.00199 U 0.00199 mg/Kg 07/11/23 13:40 07/12/23 06:04 <0.00199 U 0.00199 07/11/23 13:40 07/12/23 06:04 mg/Kg 07/11/23 13:40 07/12/23 06:04 Ethylbenzene <0.00199 U 0.00199 mg/Kg m-Xylene & p-Xylene <0.00398 U 0.00398 07/11/23 13:40 07/12/23 06:04 mg/Kg <0.00199 U 0.00199 mg/Kg 07/11/23 13:40 07/12/23 06:04 Xylenes, Total <0.00398 U 0.00398 mg/Kg 07/11/23 13:40 07/12/23 06:04 %Recovery Qualifier Limits Prepared Dil Fac Analyzed 07/11/23 13:40 4-Bromofluorobenzene (Surr) 92 70 - 130 07/12/23 06:04 1,4-Difluorobenzene (Surr) 103 70 - 130 07/11/23 13:40 07/12/23 06:04 Method: TAL SOP Total BTEX - Total BTEX Calculation

|   | Analyte                               | Result      |              | RL      | Unit  | D | Prepared | Analyzed       | Dil Fac |
|---|---------------------------------------|-------------|--------------|---------|-------|---|----------|----------------|---------|
| l | Total BTEX                            | <0.00398    | U            | 0.00398 | mg/Kg |   |          | 07/12/23 14:48 | 1       |
| ſ | _<br>Method: SW846 8015 NM - Diesel I | Range Organ | ics (DRO) (( | GC)     |       |   |          |                |         |

| Analyte   | Result | Qualifier | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
|-----------|--------|-----------|------|-------|---|----------|----------------|---------|
| Total TPH | <50.0  | U         | 50.0 | mg/Kg |   |          | 07/17/23 13:24 | 1       |

#### Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                           | Result | Qualifier | RL   | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|--------|-----------|------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <50.0  | U         | 50.0 | mg/Kg |   | 07/12/23 12:11 | 07/15/23 08:50 | 1       |
| (GRO)-C6-C10                      |        |           |      |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.0  | U         | 50.0 | mg/Kg |   | 07/12/23 12:11 | 07/15/23 08:50 | 1       |
| C10-C28)                          |        |           |      |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <50.0  | U         | 50.0 | mg/Kg |   | 07/12/23 12:11 | 07/15/23 08:50 | 1       |

**Eurofins Carlsbad** 

Matrix: Solid

Matrix: Solid

1

1

1

1

1

1

1

1

Job ID: 890-4914-1 SDG: 03D2024197

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-4914-16

#### **Client Sample ID: SW01**

Project/Site: Brinninstool Unit 003H

Date Collected: 07/07/23 12:40 Date Received: 07/07/23 14:57

#### Sample Depth: 1

Client: Ensolum

| Analyte        | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|----------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Total TPH      | <50.0     | U         | 50.0     | mg/Kg |   | 07/12/23 12:11 | 07/15/23 08:50 | 1       |
| Surrogate      | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane | 118       |           | 70 - 130 |       |   | 07/12/23 12:11 | 07/15/23 08:50 | 1       |
| o-Terphenyl    | 101       |           | 70 - 130 |       |   | 07/12/23 12:11 | 07/15/23 08:50 | 1       |

#### Method: EPA 300.0 - Anions, Ion Chromatography - Soluble . . . . .....

| Analyte                | Result | Qualifier RL | Unit  | D | Prepared | Analyzed       | Dil Fac |  |
|------------------------|--------|--------------|-------|---|----------|----------------|---------|--|
| Chloride               | 67.9   | 5.03         | mg/Kg |   |          | 07/11/23 14:04 | 1       |  |
| Client Sample ID: SW02 |        |              |       |   | Lab Sam  | ple ID: 890-4  | 914-17  |  |

#### Client Sample ID: SW02

Date Collected: 07/07/23 12:45 Date Received: 07/07/23 14:57

#### Sample Depth: 1

| Method: SW846 8021B - Volatile Organic Compounds (GC) |           |           |          |       |   |                |                |         |
|-------------------------------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Analyte                                               | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                                               | < 0.00199 | U         | 0.00199  | mg/Kg |   | 07/11/23 13:40 | 07/12/23 06:25 | 1       |
| Toluene                                               | <0.00199  | U         | 0.00199  | mg/Kg |   | 07/11/23 13:40 | 07/12/23 06:25 | 1       |
| Ethylbenzene                                          | <0.00199  | U         | 0.00199  | mg/Kg |   | 07/11/23 13:40 | 07/12/23 06:25 | 1       |
| m-Xylene & p-Xylene                                   | <0.00398  | U         | 0.00398  | mg/Kg |   | 07/11/23 13:40 | 07/12/23 06:25 | 1       |
| o-Xylene                                              | <0.00199  | U         | 0.00199  | mg/Kg |   | 07/11/23 13:40 | 07/12/23 06:25 | 1       |
| Xylenes, Total                                        | <0.00398  | U         | 0.00398  | mg/Kg |   | 07/11/23 13:40 | 07/12/23 06:25 | 1       |
| Surrogate                                             | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)                           | 93        |           | 70 - 130 |       |   | 07/11/23 13:40 | 07/12/23 06:25 | 1       |
| 1,4-Difluorobenzene (Surr)                            | 100       |           | 70 - 130 |       |   | 07/11/23 13:40 | 07/12/23 06:25 | 1       |

| Method: TAL SOP Total BTEX - Total BTEX Calculation |            |          |           |         |       |   |          |                |         |
|-----------------------------------------------------|------------|----------|-----------|---------|-------|---|----------|----------------|---------|
|                                                     | Analyte    | Result   | Qualifier | RL      | Unit  | D | Prepared | Analyzed       | Dil Fac |
|                                                     | Total BTEX | <0.00398 | U         | 0.00398 | mg/Kg |   |          | 07/12/23 14:48 | 1       |
| Ĵ                                                   |            |          |           |         |       |   |          |                |         |

| Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) |           |        |           |      |       |   |          |                |         |  |  |
|----------------------------------------------------------|-----------|--------|-----------|------|-------|---|----------|----------------|---------|--|--|
|                                                          | Analyte   | Result | Qualifier | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |  |  |
|                                                          | Total TPH | <50.1  | U         | 50.1 | mg/Kg |   |          | 07/17/23 13:24 | 1       |  |  |

#### Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                           | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <50.1     | U         | 50.1     | mg/Kg |   | 07/12/23 12:11 | 07/15/23 09:11 | 1       |
| (GRO)-C6-C10                      |           |           |          |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.1     | U         | 50.1     | mg/Kg |   | 07/12/23 12:11 | 07/15/23 09:11 | 1       |
| C10-C28)                          |           |           |          |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <50.1     | U         | 50.1     | mg/Kg |   | 07/12/23 12:11 | 07/15/23 09:11 | 1       |
| Total TPH                         | <50.1     | U         | 50.1     | mg/Kg |   | 07/12/23 12:11 | 07/15/23 09:11 | 1       |
|                                   |           |           |          |       |   | _              |                |         |
| Surrogate                         | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 119       |           | 70 - 130 |       |   | 07/12/23 12:11 | 07/15/23 09:11 | 1       |
| o-Terphenyl                       | 101       |           | 70 - 130 |       |   | 07/12/23 12:11 | 07/15/23 09:11 | 1       |

Eurofins Carlsbad

|                                                          |      | Client                    | Sample Res | sults |   |          |                                       |                     | 1  |
|----------------------------------------------------------|------|---------------------------|------------|-------|---|----------|---------------------------------------|---------------------|----|
| Client: Ensolum<br>Project/Site: Brinninstool Unit 003H  |      |                           |            |       |   |          | Job ID: 890<br>SDG: 03D2              |                     | 2  |
| Client Sample ID: SW02<br>Date Collected: 07/07/23 12:45 |      |                           |            |       |   | Lab San  | n <mark>ple ID: 890-4</mark><br>Matri | 914-17<br>ix: Solid |    |
| Date Received: 07/07/23 14:57<br>Sample Depth: 1         |      |                           |            |       |   |          |                                       |                     | 4  |
| Method: EPA 300.0 - Anions, Ion C<br>Analyte             |      | hy - Soluble<br>Qualifier | RL         | Unit  | D | Prepared | Analyzed                              | Dil Fac             | 5  |
| Chloride                                                 | 55.8 |                           | 5.02       | mg/Kg |   | Fieparea | 07/11/23 14:10                        | 1                   |    |
|                                                          |      |                           |            |       |   |          |                                       |                     |    |
|                                                          |      |                           |            |       |   |          |                                       |                     | 8  |
|                                                          |      |                           |            |       |   |          |                                       |                     | 9  |
|                                                          |      |                           |            |       |   |          |                                       |                     |    |
|                                                          |      |                           |            |       |   |          |                                       |                     |    |
|                                                          |      |                           |            |       |   |          |                                       |                     |    |
|                                                          |      |                           |            |       |   |          |                                       |                     | 13 |
|                                                          |      |                           |            |       |   |          |                                       |                     |    |

#### **Surrogate Summary**

Client: Ensolum Project/Site: Brinninstool Unit 003H

#### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

|                    |                        | BFB1     | DFBZ1    |
|--------------------|------------------------|----------|----------|
| Lab Sample ID      | Client Sample ID       | (70-130) | (70-130) |
| 890-4913-A-1-B MS  | Matrix Spike           | 106      | 104      |
| 890-4913-A-1-B MS  | Matrix Spike           | 120      | 83       |
| 890-4913-A-1-C MSD | Matrix Spike Duplicate | 119      | 95       |
| 890-4913-A-1-C MSD | Matrix Spike Duplicate | 137 S1+  | 63 S1-   |
| 890-4914-1         | FS01                   | 88       | 86       |
| 890-4914-2         | FS02                   | 95       | 65 S1-   |
| 890-4914-3         | FS03                   | 93       | 69 S1-   |
| 890-4914-4         | FS04                   | 101      | 71       |
| 890-4914-5         | FS05                   | 89       | 67 S1-   |
| 890-4914-6         | FS06                   | 93       | 72       |
| 890-4914-7         | FS07                   | 97       | 73       |
| 890-4914-8         | FS08                   | 82       | 72       |
| 890-4914-9         | FS09                   | 81       | 80       |
| 890-4914-10        | FS10                   | 92       | 74       |
| 890-4914-11        | SS05A                  | 91       | 77       |
| 890-4914-12        | SS06A                  | 79       | 87       |
| 890-4914-13        | SS07A                  | 92       | 68 S1-   |
| 890-4914-14        | SS08A                  | 92       | 71       |
| 890-4914-15        | SS09A                  | 82       | 97       |
| 890-4914-16        | SW01                   | 92       | 103      |
| 890-4914-17        | SW02                   | 93       | 100      |
| 890-4915-A-1-C MS  | Matrix Spike           | 88       | 110      |
| 890-4915-A-1-D MSD | Matrix Spike Duplicate | 90       | 106      |
| LCS 880-57410/1-A  | Lab Control Sample     | 102      | 107      |
| LCS 880-57410/1-A  | Lab Control Sample     | 130      | 64 S1-   |
| LCS 880-57416/1-A  | Lab Control Sample     | 91       | 100      |
| LCSD 880-57410/2-A | Lab Control Sample Dup | 48 S1-   | 94       |
| LCSD 880-57410/2-A | Lab Control Sample Dup | 138 S1+  | 80       |
| LCSD 880-57416/2-A | Lab Control Sample Dup | 89       | 105      |
| MB 880-57308/5-A   | Method Blank           | 76       | 89       |
| MB 880-57324/5-A   | Method Blank           | 97       | 120      |
| MB 880-57410/5-A   | Method Blank           | 78       | 68 S1-   |
| MB 880-57410/5-A   | Method Blank           | 78       | 88       |
| MB 880-57416/5-A   | Method Blank           | 98       | 119      |
|                    |                        |          |          |
| Surrogate Legend   |                        |          |          |

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

| Matrix: Solid        |                        |      |       | Prep Type: Total/NA                            |
|----------------------|------------------------|------|-------|------------------------------------------------|
|                      |                        | 1001 | OTDUA | Percent Surrogate Recovery (Acceptance Limits) |
|                      |                        | 1CO1 | OTPH1 |                                                |
| Lab Sample ID        | Client Sample ID       |      |       |                                                |
| 890-4913-A-1-F MS    | Matrix Spike           |      |       |                                                |
| 890-4913-A-1-G MSD   | Matrix Spike Duplicate |      |       |                                                |
| Surrogate Legend     |                        |      |       |                                                |
| 1CO = 1-Chlorooctane |                        |      |       |                                                |
| OTPH = o-Terphenyl   |                        |      |       |                                                |

5

6

Prep Type: Total/NA

Percent Surrogate Recovery (Acceptance Limits)

Client: Ensolum Project/Site: Brinninstool Unit 003H

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 Client Sample ID (70-130) (70-130) Lab Sample ID 890-4914-1 FS01 111 95 890-4914-2 FS02 128 109 890-4914-3 FS03 161 S1+ 139 S1+ FS04 890-4914-4 145 S1+ 123 890-4914-5 FS05 103 118 890-4914-6 FS06 134 S1+ 114 890-4914-7 FS07 117 101 FS08 141 S1+ 890-4914-8 119 890-4914-9 FS09 142 S1+ 124 890-4914-10 FS10 124 104 890-4914-11 SS05A 117 99 890-4914-12 SS06A 131 S1+ 107 890-4914-13 SS07A 133 S1+ 110 890-4914-14 SS08A 110 93 890-4914-15 SS09A 100 118 890-4914-16 SW01 118 101 890-4914-17 SW02 119 101 890-4915-A-1-F MS Matrix Spike 140 S1+ 103 890-4915-A-1-G MSD Matrix Spike Duplicate 124 89 LCS 880-57501/2-A Lab Control Sample 106 92 Lab Control Sample 93 LCS 880-57801/2-A 95 LCSD 880-57501/3-A Lab Control Sample Dup 103 91 LCSD 880-57801/3-A Lab Control Sample Dup 98 111 MB 880-57501/1-A Method Blank 146 S1+ 122 MB 880-57801/1-A Method Blank 161 S1+ 139 S1+

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 890-4914-1 SDG: 03D2024197

Prep Type: Total/NA

Page 90 of 160

Method: 8021B - Volatile Organic Compounds (GC)

| Lab Sample ID: MB 880-57308/5-A |           |           |          |       |   | Client Sa      | mple ID: Metho |                  |
|---------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|------------------|
| Matrix: Solid                   |           |           |          |       |   |                | Prep Type:     | Total/NA         |
| Analysis Batch: 57379           |           |           |          |       |   |                | Prep Batcl     | h: <b>5730</b> 8 |
|                                 | MB        | MB        |          |       |   |                |                |                  |
| Analyte                         | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac          |
| Benzene                         | <0.00200  | U         | 0.00200  | mg/Kg |   | 07/10/23 12:59 | 07/11/23 13:22 | 1                |
| Toluene                         | <0.00200  | U         | 0.00200  | mg/Kg |   | 07/10/23 12:59 | 07/11/23 13:22 | 1                |
| Ethylbenzene                    | <0.00200  | U         | 0.00200  | mg/Kg |   | 07/10/23 12:59 | 07/11/23 13:22 | 1                |
| m-Xylene & p-Xylene             | <0.00400  | U         | 0.00400  | mg/Kg |   | 07/10/23 12:59 | 07/11/23 13:22 | 1                |
| o-Xylene                        | <0.00200  | U         | 0.00200  | mg/Kg |   | 07/10/23 12:59 | 07/11/23 13:22 | 1                |
| Xylenes, Total                  | <0.00400  | U         | 0.00400  | mg/Kg |   | 07/10/23 12:59 | 07/11/23 13:22 |                  |
|                                 |           |           |          |       |   |                |                |                  |
|                                 | MB        | MB        |          |       |   |                |                |                  |
| Surrogate                       | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac          |
| 4-Bromofluorobenzene (Surr)     | 76        |           | 70 - 130 |       |   | 07/10/23 12:59 | 07/11/23 13:22 | 1                |
| 1,4-Difluorobenzene (Surr)      | 89        |           | 70 - 130 |       |   | 07/10/23 12:59 | 07/11/23 13:22 | 1                |
| Lab Sample ID: MB 880-57324/5-A |           |           |          |       |   | Client Sa      | mple ID: Metho | d Blank          |
| Matrix: Solid                   |           |           |          |       |   |                | Prep Type: 1   | Total/NA         |
| Analysis Batch: 57381           |           |           |          |       |   |                | Prep Batcl     | h: 57324         |
| -                               | MB        | MB        |          |       |   |                |                |                  |
| Analyte                         | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac          |
| Benzene                         | <0.00200  | U         | 0.00200  | mg/Kg |   | 07/10/23 14:17 | 07/11/23 12:23 | 1                |
| Toluene                         | <0.00200  | U         | 0.00200  | mg/Kg |   | 07/10/23 14:17 | 07/11/23 12:23 | 1                |
| Ethylbenzene                    | <0.00200  | U         | 0.00200  | mg/Kg |   | 07/10/23 14:17 | 07/11/23 12:23 | 1                |
| m-Xylene & p-Xylene             | <0.00400  | U         | 0.00400  | mg/Kg |   | 07/10/23 14:17 | 07/11/23 12:23 |                  |
| o-Xylene                        | <0.00200  | U         | 0.00200  | mg/Kg |   | 07/10/23 14:17 | 07/11/23 12:23 | 1                |
| Xylenes, Total                  | <0.00400  | U         | 0.00400  | mg/Kg |   | 07/10/23 14:17 | 07/11/23 12:23 | 1                |
|                                 | МВ        | МВ        |          |       |   |                |                |                  |
| Surrogate                       | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac          |
| 4-Bromofluorobenzene (Surr)     | 97        |           | 70 - 130 |       |   | 07/10/23 14:17 | 07/11/23 12:23 | 1                |
| 1,4-Difluorobenzene (Surr)      | 120       |           | 70 _ 130 |       |   | 07/10/23 14:17 | 07/11/23 12:23 | 1                |
| Lab Sample ID: MB 880-57410/5-A |           |           |          |       |   | Client Se      | mple ID: Metho | d Blank          |
| Matrix: Solid                   |           |           |          |       |   | Chefft Sa      | Prep Type: 1   |                  |
|                                 |           |           |          |       |   |                | Prep Batcl     |                  |
| Analysis Batch: 57379           | MB        | мв        |          |       |   |                | Fiep Balci     | 1. 57410         |
| Analyte                         |           | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac          |
| Benzene                         | <0.00200  |           | 0.00200  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 00:17 | 1                |
| Toluene                         | < 0.00200 |           | 0.00200  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 00:17 | 1                |
|                                 | <0.00200  |           |          |       |   |                |                | ו<br>ג           |
| Ethylbenzene                    |           |           | 0.00200  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 00:17 | ا<br>م           |
| m-Xylene & p-Xylene             | < 0.00400 |           | 0.00400  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 00:17 | 1                |
| o-Xylene                        | < 0.00200 |           | 0.00200  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 00:17 | 1                |
| Xylenes, Total                  | <0.00400  | U         | 0.00400  | mg/Kg |   | 07/11/23 12:32 | 07/12/23 00:17 | 1                |
|                                 |           | МВ        |          |       |   | _              |                | _                |
| Surrogate                       | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac          |
| 4-Bromofluorobenzene (Surr)     | 78        |           | 70 - 130 |       |   | 07/11/23 12:32 | 07/12/23 00:17 | 1                |

1,4-Difluorobenzene (Surr)

SDG: 03D2024197

Job ID: 890-4914-1

07/11/23 12:32 07/12/23 00:17

70 - 130

68 S1-

Client: Ensolum Project/Site: Brinninstool Unit 003H

#### Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: MB 880-57410/5-A<br>Matrix: Solid<br>Analysis Batch: 57560 | МВ        | МВ        |          |       |   | Client Sa      | Client Sample ID: Method Blank<br>Prep Type: Total/NA<br>Prep Batch: 57410 |         |    |  |  |  |
|---------------------------------------------------------------------------|-----------|-----------|----------|-------|---|----------------|----------------------------------------------------------------------------|---------|----|--|--|--|
| Analyte                                                                   | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed                                                                   | Dil Fac |    |  |  |  |
| Benzene                                                                   | <0.00200  | U         | 0.00200  | mg/Kg |   | 07/11/23 12:32 | 07/13/23 12:16                                                             | 1       | 6  |  |  |  |
| Toluene                                                                   | <0.00200  | U         | 0.00200  | mg/Kg |   | 07/11/23 12:32 | 07/13/23 12:16                                                             | 1       |    |  |  |  |
| Ethylbenzene                                                              | <0.00200  | U         | 0.00200  | mg/Kg |   | 07/11/23 12:32 | 07/13/23 12:16                                                             | 1       | 7  |  |  |  |
| m-Xylene & p-Xylene                                                       | <0.00400  | U         | 0.00400  | mg/Kg |   | 07/11/23 12:32 | 07/13/23 12:16                                                             | 1       |    |  |  |  |
| o-Xylene                                                                  | <0.00200  | U         | 0.00200  | mg/Kg |   | 07/11/23 12:32 | 07/13/23 12:16                                                             | 1       | 8  |  |  |  |
| Xylenes, Total                                                            | <0.00400  | U         | 0.00400  | mg/Kg |   | 07/11/23 12:32 | 07/13/23 12:16                                                             | 1       |    |  |  |  |
|                                                                           | МВ        | МВ        |          |       |   |                |                                                                            |         | 9  |  |  |  |
| Surrogate                                                                 | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed                                                                   | Dil Fac |    |  |  |  |
| 4-Bromofluorobenzene (Surr)                                               | 78        |           | 70 - 130 |       |   | 07/11/23 12:32 | 07/13/23 12:16                                                             | 1       | 10 |  |  |  |
| 1,4-Difluorobenzene (Surr)                                                | 88        |           | 70 - 130 |       |   | 07/11/23 12:32 | 07/13/23 12:16                                                             | 1       |    |  |  |  |
| Lab Sample ID: LCS 880-57410/1-A<br>Matrix: Solid                         |           |           |          |       | c | lient Sample I | D: Lab Control<br>Prep Type: 1                                             |         | 11 |  |  |  |

#### Analysis Batch: 57379

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.08469 |           | mg/Kg |   | 85   | 70 - 130 |  |
| Toluene             | 0.100 | 0.09997 |           | mg/Kg |   | 100  | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.08975 |           | mg/Kg |   | 90   | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.1781  |           | mg/Kg |   | 89   | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.09104 |           | mg/Kg |   | 91   | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 102       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 107       |           | 70 - 130 |

#### Lab Sample ID: LCS 880-57410/1-A

#### Matrix: Solid

| Analysis Batch: 57560 |       |         |           |       |   |      | Prep B   | atch: 57410 |
|-----------------------|-------|---------|-----------|-------|---|------|----------|-------------|
|                       | Spike | LCS     | LCS       |       |   |      | %Rec     |             |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |             |
| Benzene               | 0.100 | 0.08216 |           | mg/Kg |   | 82   | 70 - 130 |             |
| Toluene               | 0.100 | 0.07970 |           | mg/Kg |   | 80   | 70 - 130 |             |
| Ethylbenzene          | 0.100 | 0.08950 |           | mg/Kg |   | 89   | 70 - 130 |             |
| m-Xylene & p-Xylene   | 0.200 | 0.1673  |           | mg/Kg |   | 84   | 70 - 130 |             |
| o-Xylene              | 0.100 | 0.08622 |           | mg/Kg |   | 86   | 70 - 130 |             |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 130       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 64        | S1-       | 70 - 130 |

#### Lab Sample ID: LCSD 880-57410/2-A

#### Matrix: Solid

| Analysis Batch: 57379 |       |         |           | Prep Batch: |   | 57410 |          |     |       |
|-----------------------|-------|---------|-----------|-------------|---|-------|----------|-----|-------|
|                       | Spike | LCSD    | LCSD      |             |   |       | %Rec     |     | RPD   |
| Analyte               | Added | Result  | Qualifier | Unit        | D | %Rec  | Limits   | RPD | Limit |
| Benzene               | 0.100 | 0.07869 |           | mg/Kg       |   | 79    | 70 - 130 | 7   | 35    |
| Toluene               | 0.100 | 0.07145 |           | mg/Kg       |   | 71    | 70 - 130 | 33  | 35    |

**Eurofins Carlsbad** 

Prep Type: Total/NA

Page 92 of 160

#### Job ID: 890-4914-1 SDG: 03D2024197

Prep Batch: 57410

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

Client Sample ID: Lab Control Sample Dup

Client: Ensolum Project/Site: Brinninstool Unit 003H Job ID: 890-4914-1 SDG: 03D2024197

#### Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Analysis Batch: 57379          Analyte         Ethylbenzene         m-Xylene & p-Xylene         o-Xylene         Surrogate       %Re         4-Bromofluorobenzene (Surr)         1,4-Difluorobenzene (Surr)         Lab Sample ID: LCSD 880-57410/2-A         Matrix: Solid         Analyte         Benzene         Toluene |              |                         | Spike           Added           0.100           0.200           0.100           Limits           70 - 130           70 - 130 |                                    | *- *1                       | Unit<br>mg/Kg<br>mg/Kg<br>mg/Kg | <u> </u> | %Rec<br>61<br>54<br>51 |                                | RPD         38           49         56 |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------|---------------------------------|----------|------------------------|--------------------------------|----------------------------------------|-------------------|
| Ethylbenzene m-Xylene & p-Xylene o-Xylene <i>Surrogate %Re</i> 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-57410/2-A Matrix: Solid Analysis Batch: 57560  Analyte Benzene                                                                                                                | covery<br>48 | <b>Qualifier</b><br>S1- | Added<br>0.100<br>0.200<br>0.100<br>Limits<br>70 - 130                                                                       | <b>Result</b><br>0.06092<br>0.1078 | Qualifier<br>*- *1<br>*- *1 | mg/Kg<br>mg/Kg<br>mg/Kg         | <u>D</u> | 61<br>54               | Limits<br>70 - 130<br>70 - 130 | 38<br>49                               | Limit<br>35<br>35 |
| Ethylbenzene m-Xylene & p-Xylene o-Xylene <i>Surrogate %Re</i> 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-57410/2-A Matrix: Solid Analysis Batch: 57560  Analyte Benzene                                                                                                                | covery<br>48 | <b>Qualifier</b><br>S1- | 0.100<br>0.200<br>0.100<br><u>Limits</u><br>70 - 130                                                                         | 0.06092                            | *- *1<br>*- *1              | mg/Kg<br>mg/Kg<br>mg/Kg         | <u> </u> | 61<br>54               | 70 - 130<br>70 - 130           | 38<br>49                               | 35                |
| m-Xylene & p-Xylene<br>o-Xylene<br><i>Surrogate %Re</i><br><i>4-Bromofluorobenzene (Surr)</i><br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: LCSD 880-57410/2-A<br>Matrix: Solid<br>Analysis Batch: 57560<br>Analyte<br>Benzene                                                                                            | covery<br>48 | <b>Qualifier</b><br>S1- | 0.200<br>0.100<br>Limits<br>70 - 130                                                                                         | 0.1078                             | *- *1                       | mg/Kg<br>mg/Kg                  |          | 54                     | 70 - 130                       | 49                                     | 35                |
| o-Xylene  Surrogate %Re  4-Bromofluorobenzene (Surr)  1,4-Difluorobenzene (Surr)  Lab Sample ID: LCSD 880-57410/2-A Matrix: Solid Analysis Batch: 57560  Analyte Benzene                                                                                                                                                    | covery<br>48 | <b>Qualifier</b><br>S1- | 0.100<br>Limits<br>70 - 130                                                                                                  |                                    |                             | mg/Kg                           |          |                        |                                |                                        |                   |
| Surrogate       %Re         4-Bromofluorobenzene (Surr)       1,4-Difluorobenzene (Surr)         1,4-Difluorobenzene (Surr)       Xabset (Surr)         Lab Sample ID: LCSD 880-57410/2-A       Matrix: Solid         Analysis Batch: 57560       Analyte         Benzene       Xabset (Surr)                               | covery<br>48 | <b>Qualifier</b><br>S1- | Limits<br>70 - 130                                                                                                           | 0.05119                            | *- *1                       |                                 |          | 51                     | 70 - 130                       | 56                                     | 35                |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: LCSD 880-57410/2-A<br>Matrix: Solid<br>Analysis Batch: 57560<br>Analyte<br>Benzene                                                                                                                                                              | covery<br>48 | <b>Qualifier</b><br>S1- | 70 - 130                                                                                                                     |                                    |                             |                                 |          |                        |                                |                                        |                   |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: LCSD 880-57410/2-A<br>Matrix: Solid<br>Analysis Batch: 57560<br>Analyte<br>Benzene                                                                                                                                                              | 48           | S1-                     | 70 - 130                                                                                                                     |                                    |                             |                                 |          |                        |                                |                                        |                   |
| 1,4-Difluorobenzene (Surr)<br>Lab Sample ID: LCSD 880-57410/2-A<br>Matrix: Solid<br>Analysis Batch: 57560<br>Analyte<br>Benzene                                                                                                                                                                                             |              |                         |                                                                                                                              |                                    |                             |                                 |          |                        |                                |                                        |                   |
| Lab Sample ID: LCSD 880-57410/2-A<br>Matrix: Solid<br>Analysis Batch: 57560<br>Analyte<br>Benzene                                                                                                                                                                                                                           | 94           |                         | 70 - 130                                                                                                                     |                                    |                             |                                 |          |                        |                                |                                        |                   |
| Matrix: Solid<br>Analysis Batch: 57560<br>Analyte<br>Benzene                                                                                                                                                                                                                                                                |              |                         |                                                                                                                              |                                    |                             |                                 |          |                        |                                |                                        |                   |
| Matrix: Solid<br>Analysis Batch: 57560<br>Analyte<br>Benzene                                                                                                                                                                                                                                                                |              |                         |                                                                                                                              |                                    |                             | Clier                           | nt San   | nple ID:               | Lab Contro                     | I Sample                               | e Dup             |
| Analyte                                                                                                                                                                                                                                                                                                                     |              |                         |                                                                                                                              |                                    |                             |                                 |          |                        |                                | ·<br>Type: Tot                         |                   |
| Analyte                                                                                                                                                                                                                                                                                                                     |              |                         |                                                                                                                              |                                    |                             |                                 |          |                        |                                | Batch:                                 |                   |
| Benzene                                                                                                                                                                                                                                                                                                                     |              |                         | Spike                                                                                                                        | LCSD                               | LCSD                        |                                 |          |                        | %Rec                           |                                        | RPD               |
|                                                                                                                                                                                                                                                                                                                             |              |                         | Added                                                                                                                        | Result                             | Qualifier                   | Unit                            | D        | %Rec                   | Limits                         | RPD                                    | Limi              |
| Toluene                                                                                                                                                                                                                                                                                                                     |              |                         | 0.100                                                                                                                        | 0.09483                            |                             | mg/Kg                           |          | 95                     | 70 - 130                       | 14                                     | 35                |
|                                                                                                                                                                                                                                                                                                                             |              |                         | 0.100                                                                                                                        | 0.1011                             |                             | mg/Kg                           |          | 101                    | 70 - 130                       | 24                                     | 35                |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                |              |                         | 0.100                                                                                                                        | 0.1066                             |                             | mg/Kg                           |          | 107                    | 70 - 130                       | 17                                     | 35                |
| m-Xylene & p-Xylene                                                                                                                                                                                                                                                                                                         |              |                         | 0.200                                                                                                                        | 0.1963                             |                             | mg/Kg                           |          | 98                     | 70 - 130                       | 16                                     | 35                |
| o-Xylene                                                                                                                                                                                                                                                                                                                    |              |                         | 0.100                                                                                                                        | 0.09878                            |                             | mg/Kg                           |          | 99                     | 70 - 130                       | 14                                     | 35                |
|                                                                                                                                                                                                                                                                                                                             | LCSD         | LCSD                    |                                                                                                                              |                                    |                             |                                 |          |                        |                                |                                        |                   |
| Surrogate %Re                                                                                                                                                                                                                                                                                                               |              | Qualifier               | Limits                                                                                                                       |                                    |                             |                                 |          |                        |                                |                                        |                   |

| 1,4-Difluorobenzene (Surr)       | 80 |  |
|----------------------------------|----|--|
| Lab Sample ID: 890-4913-A-1-B MS |    |  |

#### Matrix: Solid Analysis Batch: 57379

|                     | Sample   | Sample     | Spike  | MS      | MS        |       |   |      | %Rec     |
|---------------------|----------|------------|--------|---------|-----------|-------|---|------|----------|
| Analyte             | Result   | Qualifier  | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |
| Benzene             | <0.00198 | U F1       | 0.0994 | 0.06309 | F1        | mg/Kg |   | 63   | 70 - 130 |
| Toluene             | <0.00198 | U F1       | 0.0994 | 0.06656 | F1        | mg/Kg |   | 67   | 70 - 130 |
| Ethylbenzene        | <0.00198 | U *- *1 F1 | 0.0994 | 0.05609 | F1        | mg/Kg |   | 56   | 70 - 130 |
| m-Xylene & p-Xylene | <0.00396 | U *- *1 F1 | 0.199  | 0.1073  | F1        | mg/Kg |   | 54   | 70 - 130 |
| o-Xylene            | <0.00198 | U *- *1 F1 | 0.0994 | 0.05310 | F1        | mg/Kg |   | 53   | 70 - 130 |
| o-xylene            | <0.00196 | U - 1FI    | 0.0994 | 0.05310 | FI        | mg/Kg |   | 55   | 70 - 130 |

70 - 130

|                             | MS        | MS        |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 106       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 104       |           | 70 - 130 |

#### Lab Sample ID: 890-4913-A-1-B MS Matrix: Solid

| Analysis Batch: 57560 |          |           |        |         |           |       |   |      | Prep     | Batch: 57410 |
|-----------------------|----------|-----------|--------|---------|-----------|-------|---|------|----------|--------------|
|                       | Sample   | Sample    | Spike  | MS      | MS        |       |   |      | %Rec     |              |
| Analyte               | Result   | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |              |
| Benzene               | <0.00198 | U         | 0.0994 | 0.1015  |           | mg/Kg |   | 102  | 70 - 130 |              |
| Toluene               | <0.00198 | U         | 0.0994 | 0.09426 |           | mg/Kg |   | 95   | 70 - 130 |              |
| Ethylbenzene          | <0.00198 | U         | 0.0994 | 0.09460 |           | mg/Kg |   | 95   | 70 - 130 |              |
| m-Xylene & p-Xylene   | <0.00396 | U         | 0.199  | 0.1706  |           | mg/Kg |   | 86   | 70 - 130 |              |
| o-Xylene              | <0.00198 | U         | 0.0994 | 0.08990 |           | mg/Kg |   | 90   | 70 - 130 |              |

Eurofins Carlsbad

**Client Sample ID: Matrix Spike** 

**Client Sample ID: Matrix Spike** 

Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 57410

# Page 26 of 51

Client: Ensolum Project/Site: Brinninstool Unit 003H

#### Method: 8021B - Volatile Organic Compounds (GC) (Continued)

|                             | MS        | MS        |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 120       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 83        |           | 70 - 130 |

#### Lab Sample ID: 890-4913-A-1-C MSD

#### Matrix: Solid

| Analysis Batch: 57379 |          |            |        |         |           |       |   |      | Prep     | Batch: | 57410 |
|-----------------------|----------|------------|--------|---------|-----------|-------|---|------|----------|--------|-------|
|                       | Sample   | Sample     | Spike  | MSD     | MSD       |       |   |      | %Rec     |        | RPD   |
| Analyte               | Result   | Qualifier  | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               | <0.00198 | U F1       | 0.0998 | 0.05752 | F1        | mg/Kg |   | 58   | 70 - 130 | 9      | 35    |
| Toluene               | <0.00198 | U F1       | 0.0998 | 0.06071 | F1        | mg/Kg |   | 61   | 70 - 130 | 9      | 35    |
| Ethylbenzene          | <0.00198 | U *- *1 F1 | 0.0998 | 0.05512 | F1        | mg/Kg |   | 55   | 70 - 130 | 2      | 35    |
| m-Xylene & p-Xylene   | <0.00396 | U *- *1 F1 | 0.200  | 0.1031  | F1        | mg/Kg |   | 52   | 70 - 130 | 4      | 35    |
| o-Xylene              | <0.00198 | U *- *1 F1 | 0.0998 | 0.05233 | F1        | mg/Kg |   | 52   | 70 - 130 | 1      | 35    |
|                       | MSD      | MSD        |        |         |           |       |   |      |          |        |       |

|                             | NIGD      | MICD.     |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 119       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 95        |           | 70 - 130 |

#### Lab Sample ID: 890-4913-A-1-C MSD Matrix: Solid Analysis Batch: 57560

|                     | Sample   | Sample    | Spike  | MSD     | MSD       |       |   |      | %Rec     |     | RPD   |
|---------------------|----------|-----------|--------|---------|-----------|-------|---|------|----------|-----|-------|
| Analyte             | Result   | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Benzene             | <0.00198 | U         | 0.0998 | 0.1105  |           | mg/Kg |   | 111  | 70 - 130 | 8   | 35    |
| Toluene             | <0.00198 | U         | 0.0998 | 0.1116  |           | mg/Kg |   | 112  | 70 - 130 | 17  | 35    |
| Ethylbenzene        | <0.00198 | U         | 0.0998 | 0.09749 |           | mg/Kg |   | 98   | 70 - 130 | 3   | 35    |
| m-Xylene & p-Xylene | <0.00396 | U         | 0.200  | 0.1770  |           | mg/Kg |   | 89   | 70 - 130 | 4   | 35    |
| o-Xylene            | <0.00198 | U         | 0.0998 | 0.09498 |           | mg/Kg |   | 95   | 70 - 130 | 6   | 35    |
|                     |          |           |        |         |           |       |   |      |          |     |       |

|                             | MSD       | MSD       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 137       | S1+       | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 63        | S1-       | 70 - 130 |

#### Lab Sample ID: MB 880-57416/5-A Matrix: Solid

#### Analysis Batch: 57381

|           |                           |                                             |                                                        |                                                                     |                                                                               | · · · · ·                                                                                      |                                                                                                                 |
|-----------|---------------------------|---------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| MB        | MB                        |                                             |                                                        |                                                                     |                                                                               |                                                                                                |                                                                                                                 |
| Result    | Qualifier                 | RL                                          | Unit                                                   | D                                                                   | Prepared                                                                      | Analyzed                                                                                       | Dil Fac                                                                                                         |
| <0.00200  | U                         | 0.00200                                     | mg/Kg                                                  |                                                                     | 07/11/23 13:40                                                                | 07/12/23 00:21                                                                                 | 1                                                                                                               |
| <0.00200  | U                         | 0.00200                                     | mg/Kg                                                  |                                                                     | 07/11/23 13:40                                                                | 07/12/23 00:21                                                                                 | 1                                                                                                               |
| <0.00200  | U                         | 0.00200                                     | mg/Kg                                                  |                                                                     | 07/11/23 13:40                                                                | 07/12/23 00:21                                                                                 | 1                                                                                                               |
| <0.00400  | U                         | 0.00400                                     | mg/Kg                                                  |                                                                     | 07/11/23 13:40                                                                | 07/12/23 00:21                                                                                 | 1                                                                                                               |
| <0.00200  | U                         | 0.00200                                     | mg/Kg                                                  |                                                                     | 07/11/23 13:40                                                                | 07/12/23 00:21                                                                                 | 1                                                                                                               |
| <0.00400  | U                         | 0.00400                                     | mg/Kg                                                  |                                                                     | 07/11/23 13:40                                                                | 07/12/23 00:21                                                                                 | 1                                                                                                               |
| MB        | МВ                        |                                             |                                                        |                                                                     |                                                                               |                                                                                                |                                                                                                                 |
| %Recovery | Qualifier                 | Limits                                      |                                                        |                                                                     | Prepared                                                                      | Analyzed                                                                                       | Dil Fac                                                                                                         |
| 98        |                           | 70 - 130                                    |                                                        |                                                                     | 07/11/23 13:40                                                                | 07/12/23 00:21                                                                                 | 1                                                                                                               |
| 119       |                           | 70 - 130                                    |                                                        |                                                                     | 07/11/23 13:40                                                                | 07/12/23 00:21                                                                                 | 1                                                                                                               |
|           | Result           <0.00200 | Result         Qualifier           <0.00200 | Result         Qualifier         RL           <0.00200 | Result         Qualifier         RL         Unit           <0.00200 | Result         Qualifier         RL         Unit         D           <0.00200 | Result         Qualifier         RL         Unit         D         Prepared           <0.00200 | Result         Qualifier         RL         Unit         D         Prepared         Analyzed           <0.00200 |

Page 94 of 160

#### Job ID: 890-4914-1 SDG: 03D2024197

Prep Type: Total/NA

# Client Sample ID: Matrix Spike Duplicate

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

Prep Batch: 57416

**Client Sample ID: Matrix Spike Duplicate** 

Prep Type: Total/NA Prep Batch: 57410

7/24/2023

Client: Ensolum Project/Site: Brinninstool Unit 003H Job ID: 890-4914-1 SDG: 03D2024197

#### Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: LCS 880-574<br>Matrix: Solid | 416/1-A   |           |          |         |           |       | Client | Sample | ID: Lab Control Sample<br>Prep Type: Total/NA |
|---------------------------------------------|-----------|-----------|----------|---------|-----------|-------|--------|--------|-----------------------------------------------|
| Analysis Batch: 57381                       |           |           |          |         |           |       |        |        | Prep Batch: 5741                              |
|                                             |           |           | Spike    | LCS     | LCS       |       |        |        | %Rec                                          |
| Analyte                                     |           |           | Added    | Result  | Qualifier | Unit  | D      | %Rec   | Limits                                        |
| Benzene                                     |           |           | 0.100    | 0.09913 |           | mg/Kg |        | 99     | 70 - 130                                      |
| Toluene                                     |           |           | 0.100    | 0.1184  |           | mg/Kg |        | 118    | 70 - 130                                      |
| Ethylbenzene                                |           |           | 0.100    | 0.09377 |           | mg/Kg |        | 94     | 70 - 130                                      |
| m-Xylene & p-Xylene                         |           |           | 0.200    | 0.1784  |           | mg/Kg |        | 89     | 70 - 130                                      |
| o-Xylene                                    |           |           | 0.100    | 0.08677 |           | mg/Kg |        | 87     | 70 - 130                                      |
|                                             | LCS       | LCS       |          |         |           |       |        |        |                                               |
| Surrogate                                   | %Recovery | Qualifier | Limits   |         |           |       |        |        |                                               |
| 4-Bromofluorobenzene (Surr)                 | 91        |           | 70 - 130 |         |           |       |        |        |                                               |
| 1,4-Difluorobenzene (Surr)                  | 100       |           | 70 - 130 |         |           |       |        |        |                                               |

#### Lab Sample ID: LCSD 880-57416/2-A Matrix: Solid Analysis Batch: 57381

| Analysis Batch: 57381 |       |         |           |       |   |      | Prep     | Batch: | 57416 |
|-----------------------|-------|---------|-----------|-------|---|------|----------|--------|-------|
|                       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               | 0.100 | 0.1034  |           | mg/Kg |   | 103  | 70 - 130 | 4      | 35    |
| Toluene               | 0.100 | 0.1128  |           | mg/Kg |   | 113  | 70 - 130 | 5      | 35    |
| Ethylbenzene          | 0.100 | 0.08936 |           | mg/Kg |   | 89   | 70 - 130 | 5      | 35    |
| m-Xylene & p-Xylene   | 0.200 | 0.1669  |           | mg/Kg |   | 83   | 70 - 130 | 7      | 35    |
| o-Xylene              | 0.100 | 0.08307 |           | mg/Kg |   | 83   | 70 - 130 | 4      | 35    |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 89        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 105       |           | 70 - 130 |

#### Lab Sample ID: 890-4915-A-1-C MS Matrix: Solid Analysis Batch: 57381

| Analysis Datch. 57501 |          |           |        |         |           |       |   |      | ттер Ба  | 1011. 37410 |
|-----------------------|----------|-----------|--------|---------|-----------|-------|---|------|----------|-------------|
|                       | Sample   | Sample    | Spike  | MS      | MS        |       |   |      | %Rec     |             |
| Analyte               | Result   | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |             |
| Benzene               | <0.00198 | U         | 0.0994 | 0.09105 |           | mg/Kg |   | 92   | 70 - 130 |             |
| Toluene               | <0.00198 | U         | 0.0994 | 0.08376 |           | mg/Kg |   | 84   | 70 - 130 |             |
| Ethylbenzene          | <0.00198 | U F1      | 0.0994 | 0.05554 | F1        | mg/Kg |   | 56   | 70 - 130 |             |
| m-Xylene & p-Xylene   | <0.00396 | U F1      | 0.199  | 0.1070  | F1        | mg/Kg |   | 54   | 70 - 130 |             |
| o-Xylene              | <0.00198 | U F1      | 0.0994 | 0.05366 | F1        | mg/Kg |   | 54   | 70 - 130 |             |
|                       | MS       | MS        |        |         |           |       |   |      |          |             |

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| 4-Bromofluorobenzene (Surr) | 88        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 110       |           | 70 - 130 |

#### Lab Sample ID: 890-4915-A-1-D MSD Matrix: Solid

#### Analysis Batch: 57381 Prep Batch: 57416 MSD MSD RPD Sample Sample Spike %Rec Result Qualifier Added Result Qualifier Limits Limit Analyte Unit D %Rec RPD Benzene <0.00198 U 0.0998 0.09469 95 70 - 130 4 35 mg/Kg Toluene <0.00198 U 0.0998 0.08974 mg/Kg 90 70 - 130 7 35 Ethylbenzene <0.00198 UF1 0.0998 0.06132 F1 mg/Kg 61 70 - 130 10 35

**Eurofins Carlsbad** 

Prep Type: Total/NA

5

7

#### **Client Sample ID: Matrix Spike** Prep Type: Total/NA Prep Batch: 57416

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

**Client Sample ID: Matrix Spike Duplicate** 

Client: Ensolum Project/Site: Brinninstool Unit 003H

| Lab Sample ID: 890-4915-A-<br>Matrix: Solid | -1-D MSD  |           |          |         |           | CI    | ient S | ample IC |              | ype: To | tal/NA       |
|---------------------------------------------|-----------|-----------|----------|---------|-----------|-------|--------|----------|--------------|---------|--------------|
| Analysis Batch: 57381                       | Sample    | Sample    | Spike    | Men     | MSD       |       |        |          | Prep<br>%Rec | Batch:  | 57416<br>RPD |
| Analyte                                     | •         | Qualifier | Added    |         | Qualifier | Unit  | D      | %Rec     | Limits       | RPD     | Limit        |
| m-Xylene & p-Xylene                         | <0.00396  | U F1      | 0.200    | 0.1226  | F1        | mg/Kg |        | 61       | 70 - 130     | 14      | 35           |
| o-Xylene                                    | <0.00198  | U F1      | 0.0998   | 0.06110 | F1        | mg/Kg |        | 61       | 70 - 130     | 13      | 35           |
|                                             | MSD       | MSD       |          |         |           |       |        |          |              |         |              |
| Surrogate                                   | %Recovery | Qualifier | Limits   |         |           |       |        |          |              |         |              |
| 4-Bromofluorobenzene (Surr)                 | 90        |           | 70 - 130 |         |           |       |        |          |              |         |              |
| 1,4-Difluorobenzene (Surr)                  | 106       |           | 70 - 130 |         |           |       |        |          |              |         |              |

5 6

7

# Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

| Lab Sample ID: MB 880-57501/1-/<br>Matrix: Solid<br>Analysis Batch: 57664 | А         | МВ        |          |       |   | Client Sa      | mple ID: Metho<br>Prep Type: ٦<br>Prep Batch | Total/NA |
|---------------------------------------------------------------------------|-----------|-----------|----------|-------|---|----------------|----------------------------------------------|----------|
| Analyte                                                                   |           | Qualifier | RL       | Unit  | D | Prepared       | Analyzed                                     | Dil Fac  |
| Gasoline Range Organics<br>(GRO)-C6-C10                                   | <50.0     | U         | 50.0     | mg/Kg |   | 07/12/23 12:11 | 07/14/23 07:48                               | 1        |
| Diesel Range Organics (Over<br>C10-C28)                                   | <50.0     | U         | 50.0     | mg/Kg |   | 07/12/23 12:11 | 07/14/23 07:48                               | 1        |
| Oll Range Organics (Over C28-C36)                                         | <50.0     | U         | 50.0     | mg/Kg |   | 07/12/23 12:11 | 07/14/23 07:48                               | 1        |
| Total TPH                                                                 | <50.0     | U         | 50.0     | mg/Kg |   | 07/12/23 12:11 | 07/14/23 07:48                               | 1        |
|                                                                           | MB        | МВ        |          |       |   |                |                                              |          |
| Surrogate                                                                 | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed                                     | Dil Fac  |
| 1-Chlorooctane                                                            | 146       | S1+       | 70 - 130 |       |   | 07/12/23 12:11 | 07/14/23 07:48                               | 1        |
| o-Terphenyl                                                               | 122       |           | 70 - 130 |       |   | 07/12/23 12:11 | 07/14/23 07:48                               | 1        |

#### Lab Sample ID: LCS 880-57501/2-A Matrix: Solid aluaia Datahi 57004

| Analysis Batch: 57664       |       |        |           |       |   |      | Prep     | Batch: 57501 |
|-----------------------------|-------|--------|-----------|-------|---|------|----------|--------------|
|                             | Spike | LCS    | LCS       |       |   |      | %Rec     |              |
| Analyte                     | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |              |
| Gasoline Range Organics     | 1000  | 1156   |           | mg/Kg |   | 116  | 70 - 130 |              |
| (GRO)-C6-C10                |       |        |           |       |   |      |          |              |
| Diesel Range Organics (Over | 1000  | 990.1  |           | mg/Kg |   | 99   | 70 - 130 |              |
| C10-C28)                    |       |        |           |       |   |      |          |              |

|                | LCS       | LCS       |          |
|----------------|-----------|-----------|----------|
| Surrogate      | %Recovery | Qualifier | Limits   |
| 1-Chlorooctane | 106       |           | 70 - 130 |
| o-Terphenyl    | 92        |           | 70 - 130 |

#### Lab Sample ID: LCSD 880-57501/3-A Matrix: Solid nalysis Batch: 57664

| Analysis Batch: 57664       |       |        |           |       |   |      | Prep     | Batch: | 57501 |
|-----------------------------|-------|--------|-----------|-------|---|------|----------|--------|-------|
|                             | Spike | LCSD   | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte                     | Added | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Gasoline Range Organics     | 1000  | 1034   |           | mg/Kg |   | 103  | 70 - 130 | 11     | 20    |
| (GRO)-C6-C10                |       |        |           |       |   |      |          |        |       |
| Diesel Range Organics (Over | 1000  | 873.4  |           | mg/Kg |   | 87   | 70 - 130 | 13     | 20    |
| C10-C28)                    |       |        |           |       |   |      |          |        |       |

Eurofins Carlsbad

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample Dup** 

Client: Ensolum Project/Site: Brinninstool Unit 003H

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: LCSD 880-575             |                  | -      |           |                      |        |         |                | Clie | nt S | ample    | ID: La | ab Control Sa  |        | -       |
|-----------------------------------------|------------------|--------|-----------|----------------------|--------|---------|----------------|------|------|----------|--------|----------------|--------|---------|
| Matrix: Solid                           |                  |        |           |                      |        |         |                |      |      |          |        | Prep Type      |        |         |
| Analysis Batch: 57664                   |                  |        |           |                      |        |         |                |      |      |          |        | Prep Ba        | tch:   | 57501   |
|                                         | LCSD             | LCS    | D         |                      |        |         |                |      |      |          |        |                |        |         |
| Surrogate                               | %Recovery        | Qua    | lifier    | Limits               |        |         |                |      |      |          |        |                |        |         |
| 1-Chlorooctane                          | 103              |        |           | 70 - 130             |        |         |                |      |      |          |        |                |        |         |
| o-Terphenyl                             | 91               |        |           | 70 - 130             |        |         |                |      |      |          |        |                |        |         |
|                                         |                  |        |           |                      |        |         |                |      |      |          |        |                |        |         |
| Lab Sample ID: 890-4915-A-1-            | FMS              |        |           |                      |        |         |                |      |      | CI       | ient S | ample ID: Ma   |        | -       |
| Matrix: Solid                           |                  |        |           |                      |        |         |                |      |      |          |        | Prep Type      |        |         |
| Analysis Batch: 57664                   | 0                | 0      |           | 0                    |        |         |                |      |      |          |        | Prep Ba        | icn:   | 5/501   |
| Analyta                                 | Sample           |        | •         | Spike                |        | MS      | or Unit        |      |      |          |        | %Rec<br>Limits |        |         |
| Analyte<br>Gasoline Range Organics      | Result<br><50.1  |        |           | Added                | 1142   | Qualifi | er Unit<br>mg/ |      |      | D %R     | 110    | 70 - 130       |        |         |
| (GRO)-C6-C10                            | <50.1            | 0      |           | 1000                 | 1142   |         | mg/            | Ng   |      | I        | 110    | 70 - 130       |        |         |
| Diesel Range Organics (Over             | 164              |        |           | 1000                 | 1252   |         | mg/            | ۲g   |      | 1        | 108    | 70 - 130       |        |         |
| C10-C28)                                |                  |        |           |                      |        |         | 5              | 5    |      |          |        |                |        |         |
|                                         | MS               | мs     |           |                      |        |         |                |      |      |          |        |                |        |         |
| Surrogata                               |                  | Qual   | lifior    | Limits               |        |         |                |      |      |          |        |                |        |         |
| Surrogate<br>1-Chlorooctane             | %Recovery<br>140 | S1+    |           | 70 - 130             |        |         |                |      |      |          |        |                |        |         |
| o-Terphenyl                             | 140              | 571    |           | 70 - 130<br>70 - 130 |        |         |                |      |      |          |        |                |        |         |
|                                         | 105              |        |           | 70 - 750             |        |         |                |      |      |          |        |                |        |         |
| Lab Sample ID: 890-4915-A-1-            | G MSD            |        |           |                      |        |         |                | CI   | ient | Samp     | le ID: | Matrix Spike   | Dup    | licate  |
| Matrix: Solid                           |                  |        |           |                      |        |         |                |      |      |          |        | Prep Type      |        |         |
| Analysis Batch: 57664                   |                  |        |           |                      |        |         |                |      |      |          |        | Prep Ba        |        |         |
| -                                       | Sample           | Sam    | ple       | Spike                | MSD    | MSD     |                |      |      |          |        | %Rec           |        | RPD     |
| Analyte                                 | Result           | Qual   | ifier     | Added                | Result | Qualifi | er Unit        |      |      | D %R     | Rec    | Limits F       | PD     | Limit   |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.1            | U      |           | 999                  | 1002   |         | mg/            | ≺g   |      |          | 97     | 70 - 130       | 13     | 20      |
| Diesel Range Organics (Over             | 164              |        |           | 999                  | 1081   |         | mg/            | ۲g   |      |          | 92     | 70 - 130       | 15     | 20      |
| C10-C28)                                |                  |        |           |                      |        |         |                |      |      |          |        |                |        |         |
|                                         | MSD              | MSD    | 1         |                      |        |         |                |      |      |          |        |                |        |         |
| Surrogate                               | %Recovery        |        |           | Limits               |        |         |                |      |      |          |        |                |        |         |
| 1-Chlorooctane                          | 124              |        |           | 70 - 130             |        |         |                |      |      |          |        |                |        |         |
| o-Terphenyl                             | 89               |        |           | 70 - 130             |        |         |                |      |      |          |        |                |        |         |
|                                         |                  |        |           |                      |        |         |                |      |      |          |        |                |        |         |
| Lab Sample ID: MB 880-57801             | / <b>1-A</b>     |        |           |                      |        |         |                |      |      | Clie     | ent Sa | mple ID: Met   | hod    | Blank   |
| Matrix: Solid                           |                  |        |           |                      |        |         |                |      |      |          |        | Prep Type      | : To   | al/NA   |
| Analysis Batch: 58259                   |                  |        |           |                      |        |         |                |      |      |          |        | Prep Ba        | tch:   | 57801   |
|                                         |                  | MB     | МВ        |                      |        |         |                |      |      |          |        |                |        |         |
| Analyte                                 |                  |        | Qualifier |                      | RL     | U       | nit            |      | 2    | Prepar   | red    | Analyzed       |        | Dil Fac |
| Gasoline Range Organics                 | <                | \$50.0 | U         | 50                   | 0.0    | n       | ng/Kg          |      | C    | 07/17/23 | 09:18  | 07/22/23 09:08 | 3      | 1       |
| (GRO)-C6-C10                            |                  |        |           |                      |        |         | all a          |      |      | 7/47/00  | 00.40  | 07/00/00 00 00 | ,<br>, | ,       |
| Diesel Range Organics (Over<br>C10-C28) | <                | \$50.0 | U         | 50                   | .0     | n       | ng/Kg          |      | C    | )7/17/23 | 09:18  | 07/22/23 09:08 | )      | 1       |
| OII Range Organics (Over C28-C36)       | <                | 50.0   | U         | 50                   | 0.0    | m       | ng/Kg          |      | ſ    | )7/17/23 | 09:18  | 07/22/23 09:08 | 3      | 1       |
| Total TPH                               |                  | 50.0   |           | 50                   |        |         | ng/Kg          |      |      | )7/17/23 |        | 07/22/23 09:08 |        |         |
|                                         |                  |        | -         |                      | -      |         | 55             |      |      |          |        |                |        | ·       |
|                                         |                  |        | МВ        |                      |        |         |                |      |      |          |        |                |        |         |
| Surrogate                               | %Reco            |        | Qualifier | Limits               |        |         |                |      |      | Prepar   |        | Analyzed       |        | Dil Fac |
| 1-Chlorooctane                          |                  | 161    | S1+       | 70 - 130             | )      |         |                |      | C    | 07/17/23 | 09:18  | 07/22/23 09:0  | 3      | 1       |

Job ID: 890-4914-1 SDG: 03D2024197

Eurofins Carlsbad

07/17/23 09:18 07/22/23 09:08

o-Terphenyl

70 - 130

139 S1+

1

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| -                                                                                                                                                                                                                                                                                                                                                     | 801/2-A                                                        |                                          |          |        |           |       | Client  | Sample    | ID: Lab C                                   |                                                                                     |                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------|----------|--------|-----------|-------|---------|-----------|---------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------|
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                         |                                                                |                                          |          |        |           |       |         |           |                                             | Гуре: То                                                                            |                                                    |
| Analysis Batch: 58259                                                                                                                                                                                                                                                                                                                                 |                                                                |                                          |          |        |           |       |         |           | -                                           | Batch:                                                                              | <b>5780</b> 1                                      |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                |                                          | Spike    |        | LCS       |       |         |           | %Rec                                        |                                                                                     |                                                    |
| Analyte                                                                                                                                                                                                                                                                                                                                               |                                                                |                                          | Added    |        | Qualifier | Unit  | D       | %Rec      | Limits                                      |                                                                                     |                                                    |
| Gasoline Range Organics                                                                                                                                                                                                                                                                                                                               |                                                                |                                          | 1000     | 927.0  |           | mg/Kg |         | 93        | 70 - 130                                    |                                                                                     |                                                    |
| (GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                          |                                                                |                                          | 4000     | 040 7  |           |       |         | 00        | 70 400                                      |                                                                                     |                                                    |
| Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                               |                                                                |                                          | 1000     | 919.7  |           | mg/Kg |         | 92        | 70 - 130                                    |                                                                                     |                                                    |
|                                                                                                                                                                                                                                                                                                                                                       | LCS                                                            | LCS                                      |          |        |           |       |         |           |                                             |                                                                                     |                                                    |
| Surrogate                                                                                                                                                                                                                                                                                                                                             | %Recovery                                                      | Qualifier                                | Limits   |        |           |       |         |           |                                             |                                                                                     |                                                    |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                        | 95                                                             |                                          | 70 - 130 |        |           |       |         |           |                                             |                                                                                     |                                                    |
| o-Terphenyl                                                                                                                                                                                                                                                                                                                                           | 93                                                             |                                          | 70 - 130 |        |           |       |         |           |                                             |                                                                                     |                                                    |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                |                                          |          |        |           |       |         |           |                                             |                                                                                     |                                                    |
| Lab Sample ID: LCSD 880-5                                                                                                                                                                                                                                                                                                                             | 57801/3-A                                                      |                                          |          |        |           | Clier | nt Sam  | ple ID: I | Lab Contro                                  |                                                                                     |                                                    |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                         |                                                                |                                          |          |        |           |       |         |           |                                             | Гуре: То                                                                            |                                                    |
| Analysis Batch: 58259                                                                                                                                                                                                                                                                                                                                 |                                                                |                                          |          |        |           |       |         |           |                                             | Batch:                                                                              |                                                    |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                |                                          | Spike    | LCSD   | LCSD      |       |         |           | %Rec                                        |                                                                                     | RP                                                 |
| Analyte                                                                                                                                                                                                                                                                                                                                               |                                                                |                                          | Added    | Result | Qualifier | Unit  | D       | %Rec      | Limits                                      | RPD                                                                                 | Lim                                                |
| Gasoline Range Organics                                                                                                                                                                                                                                                                                                                               |                                                                |                                          | 1000     | 1097   |           | mg/Kg |         | 110       | 70 - 130                                    | 17                                                                                  | 2                                                  |
| GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                           |                                                                |                                          | 1000     | 10.15  |           |       |         |           | 70 /00                                      | 10                                                                                  |                                                    |
| Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                               |                                                                |                                          | 1000     | 1045   |           | mg/Kg |         | 105       | 70 - 130                                    | 13                                                                                  | 2                                                  |
|                                                                                                                                                                                                                                                                                                                                                       | LCSD                                                           | LCSD                                     |          |        |           |       |         |           |                                             |                                                                                     |                                                    |
| Surrogate                                                                                                                                                                                                                                                                                                                                             | %Recovery                                                      | Qualifier                                | Limits   |        |           |       |         |           |                                             |                                                                                     |                                                    |
| -Chlorooctane                                                                                                                                                                                                                                                                                                                                         |                                                                |                                          | 70 - 130 |        |           |       |         |           |                                             |                                                                                     |                                                    |
| o-Terphenyl                                                                                                                                                                                                                                                                                                                                           | 98                                                             |                                          | 70 - 130 |        |           |       |         |           |                                             |                                                                                     |                                                    |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                |                                          |          |        |           |       |         |           |                                             |                                                                                     |                                                    |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                |                                          |          |        |           |       |         |           |                                             |                                                                                     |                                                    |
| Lab Sample ID: 890-4913-A-                                                                                                                                                                                                                                                                                                                            | -1-F MS                                                        |                                          |          |        |           |       |         | Client    | Sample ID                                   | : Matrix                                                                            | Spik                                               |
|                                                                                                                                                                                                                                                                                                                                                       | -1-F MS                                                        |                                          |          |        |           |       |         | Client    |                                             | : Matrix<br>Гуре: To                                                                |                                                    |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                         | -1-F MS                                                        |                                          |          |        |           |       |         | Client    | Prep                                        |                                                                                     | tal/N                                              |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                         |                                                                | MG                                       |          |        |           |       |         | Client    | Prep                                        | Гуре: То                                                                            | tal/N                                              |
| Matrix: Solid<br>Analysis Batch: 58259                                                                                                                                                                                                                                                                                                                | MS                                                             |                                          | Limite   |        |           |       |         | Client    | Prep                                        | Гуре: То                                                                            | tal/N                                              |
| Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate                                                                                                                                                                                                                                                                                                   |                                                                |                                          | Limits   |        |           |       |         | Client    | Prep                                        | Гуре: То                                                                            | tal/N                                              |
| Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>-Chlorooctane                                                                                                                                                                                                                                                                                  | MS                                                             |                                          | Limits   |        |           |       |         | Client    | Prep                                        | Гуре: То                                                                            | tal/N                                              |
| Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>-Chlorooctane                                                                                                                                                                                                                                                                                  | MS                                                             |                                          | Limits   |        |           |       |         | Client    | Prep                                        | Гуре: То                                                                            | tal/N                                              |
| Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>-Chlorooctane<br>-Terphenyl                                                                                                                                                                                                                                                                    | MS<br>%Recovery                                                |                                          | Limits   |        |           | CI    | ient Sá |           | Prep<br>Prep                                | Гуре: То<br>) Batch:                                                                | tal/N<br>5780                                      |
| Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>I-Chlorooctane<br>D-Terphenyl<br>Lab Sample ID: 890-4913-A-                                                                                                                                                                                                                                    | MS<br>%Recovery                                                |                                          | Limits   |        |           | CI    | ient Sa |           | Prep<br>Prep<br>Prep                        | Type: To<br>Batch:<br>Dike Dup                                                      | tal/N<br>5780<br>blicat                            |
| Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 890-4913-A-<br>Matrix: Solid                                                                                                                                                                                                                   | MS<br>%Recovery                                                |                                          | Limits   |        |           | CI    | ient Sa |           | Prep<br>Prep<br>Prep<br>9: Matrix S<br>Prep | Type: To<br>Batch:<br>Dike Dup<br>Type: To                                          | tal/N<br>5780<br>blicat<br>tal/N                   |
| Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 890-4913-A-<br>Matrix: Solid                                                                                                                                                                                                                   | MS<br>%Recovery                                                |                                          | Limits   |        |           | CI    | ient Sa |           | Prep<br>Prep<br>Prep<br>9: Matrix S<br>Prep | Type: To<br>Batch:<br>Dike Dup                                                      | tal/N<br>5780<br>blicat<br>tal/N                   |
| Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 890-4913-A-<br>Matrix: Solid                                                                                                                                                                                                                   | MS<br>%Recovery                                                | Qualifier                                | Limits   |        |           | CI    | ient Sa |           | Prep<br>Prep<br>Prep<br>9: Matrix S<br>Prep | Type: To<br>Batch:<br>Dike Dup<br>Type: To                                          | tal/N<br>5780<br>blicat<br>tal/N                   |
| Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 890-4913-A-<br>Matrix: Solid<br>Analysis Batch: 58259                                                                                                                                                                                          | MS<br><u>%Recovery</u><br>-1-G MSD                             | Qualifier .                              | Limits   |        |           | CI    | ient Sa |           | Prep<br>Prep<br>Prep<br>9: Matrix S<br>Prep | Type: To<br>Batch:<br>Dike Dup<br>Type: To                                          | tal/N<br>5780<br>blicat<br>tal/N                   |
| Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>1-Chlorooctane<br>0-Terphenyl<br>Lab Sample ID: 890-4913-A-<br>Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate                                                                                                                                                                             | MS<br><u>%Recovery</u><br>-1-G MSD<br>MSD                      | Qualifier .                              |          |        |           | CI    | ient Sa |           | Prep<br>Prep<br>Prep<br>9: Matrix S<br>Prep | Type: To<br>Batch:<br>Dike Dup<br>Type: To                                          | tal/N<br>5780<br>blicat<br>tal/N                   |
| Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>(-Chlorooctane<br>- Terphenyl<br>Lab Sample ID: 890-4913-A-<br>Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>(-Chlorooctane                                                                                                                                                           | MS<br><u>%Recovery</u><br>-1-G MSD<br>MSD                      | Qualifier .                              |          |        |           | CI    | ient Sa |           | Prep<br>Prep<br>Prep<br>9: Matrix S<br>Prep | Type: To<br>Batch:<br>Dike Dup<br>Type: To                                          | tal/N<br>5780<br>blicat<br>tal/N                   |
| Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>I-Chlorooctane<br>D-Terphenyl<br>Lab Sample ID: 890-4913-A-<br>Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>I-Chlorooctane<br>D-Terphenyl                                                                                                                                            | MS<br>%Recovery<br>-1-G MSD<br>MSD<br>%Recovery                | Qualifier                                |          |        |           | CI    | ient Sa |           | Prep<br>Prep<br>Prep<br>9: Matrix S<br>Prep | Type: To<br>Batch:<br>Dike Dup<br>Type: To                                          | tal/N<br>5780<br>blicat<br>tal/N                   |
| Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>1-Chlorooctane<br>5-Terphenyl<br>Lab Sample ID: 890-4913-A-<br>Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>1-Chlorooctane<br>5-Terphenyl<br>ethod: 300.0 - Anions,                                                                                                                  | MS<br>%Recovery<br>-1-G MSD<br>MSD<br>%Recovery                | Qualifier                                |          |        |           | CI    |         | ample ID  | Prep<br>Prep<br>9: Matrix S<br>Prep<br>Prep | Type: To<br>Batch:<br>Dike Dup<br>Type: To<br>Batch:                                | tal/N<br>5780<br>blicat<br>tal/N<br>5780           |
| Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 890-4913-A-<br>Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>lethod: 300.0 - Anions,<br>Lab Sample ID: MB 880-573                                                                                    | MS<br>%Recovery<br>-1-G MSD<br>MSD<br>%Recovery                | Qualifier                                |          |        |           | CI    |         | ample ID  | Prep<br>Prep<br>9: Matrix S<br>Prep<br>Prep | Type: To<br>Batch:<br>Dike Dup<br>Type: To<br>Batch:<br>Batch:                      | tal/N.<br>5780<br>blicat<br>tal/N.<br>5780<br>Blan |
| Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 890-4913-A-<br>Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>lethod: 300.0 - Anions,<br>Lab Sample ID: MB 880-573<br>Matrix: Solid                                                                   | MS<br>%Recovery<br>-1-G MSD<br>MSD<br>%Recovery                | Qualifier                                |          |        |           | CI    |         | ample ID  | Prep<br>Prep<br>9: Matrix S<br>Prep<br>Prep | Type: To<br>Batch:<br>Dike Dup<br>Type: To<br>Batch:                                | tal/N.<br>5780<br>blicat<br>tal/N.<br>5780<br>Blan |
| Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 890-4913-A-<br>Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>lethod: 300.0 - Anions,<br>Lab Sample ID: MB 880-573<br>Matrix: Solid                                                                   | MS<br>%Recovery<br>-1-G MSD<br>MSD<br>%Recovery                | Qualifier<br>MSD<br>Qualifier<br>ography |          |        |           | CI    |         | ample ID  | Prep<br>Prep<br>9: Matrix S<br>Prep<br>Prep | Type: To<br>Batch:<br>Dike Dup<br>Type: To<br>Batch:<br>Batch:                      | tal/N.<br>5780<br>blicat<br>tal/N.<br>5780<br>Blan |
| Lab Sample ID: 890-4913-A-<br>Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 890-4913-A-<br>Matrix: Solid<br>Analysis Batch: 58259<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>lethod: 300.0 - Anions,<br>Lab Sample ID: MB 880-573<br>Matrix: Solid<br>Analysis Batch: 57418<br>Analyte | MS<br>%Recovery<br>-1-G MSD<br>MSD<br>%Recovery<br>Ion Chromat | Qualifier                                | Limits   | RL     | Unit      | CI    |         | ample ID  | Prep<br>Prep<br>9: Matrix S<br>Prep<br>Prep | Type: To<br>Batch:<br>Dike Dup<br>Type: To<br>Batch:<br>Batch:<br>Method<br>Type: S | tal/NJ<br>5780<br>blicat<br>tal/NJ<br>5780<br>Blan |

Project/Site: Brinninstool Unit 003H

Client: Ensolum

#### Job ID: 890-4914-1 SDG: 03D2024197

Method: 300.0 - Anions, Ion Chromatography (Continued)

| -            | -                                                                                                                                                                                   | Spike                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0            |                                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                                                                                                                     | 250                                                                                                                                                    | 246.5                                                                                                                                                                                                                                                                                                                                                                                             | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90 - 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %Pac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | חסס                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RPC<br>Limi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 65/3-A       |                                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ent Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mple ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab Control S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sampl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | le Dur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                                                                                                                                                                                     | 250                                                                                                                                                    | 246.6                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90 - 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                                                                                                                     | Added                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                   | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                                                                                                                     | Spike                                                                                                                                                  | LCS                                                                                                                                                                                                                                                                                                                                                                                               | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Prep Ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pe: S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | olubl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5/2-A        |                                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Clie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e ID: Lab Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | trol S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ampl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <            | 5.00 U                                                                                                                                                                              |                                                                                                                                                        | 5.00                                                                                                                                                                                                                                                                                                                                                                                              | mg/k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ٢g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 07/11/23 13:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Re           |                                                                                                                                                                                     | er                                                                                                                                                     | RL                                                                                                                                                                                                                                                                                                                                                                                                | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dil Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | MB MB                                                                                                                                                                               |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Prep Ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pe: S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | olubl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| /1 <b>-A</b> |                                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Client S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 67.5         |                                                                                                                                                                                     | 249                                                                                                                                                    | 325.1                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90 - 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Qualifier                                                                                                                                                                           | Added                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                   | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sample       | Sample                                                                                                                                                                              | Spike                                                                                                                                                  | MSD                                                                                                                                                                                                                                                                                                                                                                                               | MSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i top i y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SD           |                                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 01.0         |                                                                                                                                                                                     | 2-13                                                                                                                                                   | 024.1                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mgrivy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | Qualifier                                                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | •                                                                                                                                                                                   | Spike<br>Addod                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0/ D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>.</b> .   | <b>.</b> .                                                                                                                                                                          | <b>-</b>                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a/ <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -            |                                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Client Samr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : FS0/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                                                                                                                                                                                     | 250                                                                                                                                                    | 252.9                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90 - 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                     | Spike<br>Added                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %Rec<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RPI<br>Limi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                                                                                                                     | <b>•</b> "                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                   | 1.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | % <b>D</b> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 17/3-A       |                                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ent Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mple ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab Control S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sampl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | le Du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                                                                                                                                                     | 250                                                                                                                                                    | 252.5                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90 - 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                                                                                                                     | Added                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                                                                                                                     | Spike                                                                                                                                                  | 201                                                                                                                                                                                                                                                                                                                                                                                               | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %Pec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | Result           67.5           SD           Sample           Result           67.5           S/1-A           5/2-A           5/2-A           S65/3-A           IS           Sample | Sample Sample<br>Result Qualifier<br>67.5<br>SD<br>Sample Sample<br>Result Qualifier<br>67.5<br>MB MB<br>MB MB<br>Result Qualifier<br>5/2-A<br>965/3-A | Sample Sample Spike<br>Added<br>250<br>Sample Sample Spike<br>Result Qualifier Added<br>67.5 249<br>SD<br>Sample Sample Spike<br>Result Qualifier Added<br>67.5 249<br>SD<br>Sample Sample Spike<br>Added 250<br>Solution<br>5/2-A<br>Spike Added<br>250<br>Spike Added<br>250<br>Spike Added<br>250<br>Spike Added<br>250<br>Spike Added<br>250<br>Spike Spike Spike Spike<br>Spike Added<br>250 | Added       Result         250       252.5         117/3-A       Spike       LCSD         Added       Result       250         250       252.9         S       Added       Result         250       252.9         S       Sample       Spike       MS         Result       Qualifier       Added       Result         67.5       249       324.7         SD       Sample       Spike       MSD         Result       Qualifier       Added       Result         67.5       249       325.1         SD       MB       MB       Result         67.5       249       325.1         Site       Added       Result         67.5       249       325.1         Site       Added       Result         250       5.00       U       5.00         5/2-A | Added Result Qualifier<br>250 252.5 Qualifier<br>250 252.5 LCSD LCSD<br>Added Result Qualifier<br>250 252.9 S<br>Sample Sample Sample Spike MS MS<br>Result Qualifier Added Result Qualifier<br>67.5 249 324.7 Qualifier<br>67.5 249 324.7 Qualifier<br>67.5 249 325.1 Qualifier<br>7.5 240 Qualifier<br>7.5 2 | Added     Result     Qualifier     Unit       250     252.5     mg/Kg       117/3-A     Cil       Added     Result     Qualifier       Added     Result     Qualifier       Added     Result     Qualifier       Added     Result     Qualifier       MB     Sample     Spike     MS       Result     Qualifier     Added     Result       67.5     249     324.7     Unit       mg/Kg     MSD     MSD     MSD       SD     Sample     Spike     MSD     MSD       Result     Qualifier     Added     Result     Qualifier       67.5     249     325.1     Qualifier     Unit       mg/Kg     325.1     Qualifier     Unit     mg/Kg       67.5     Qualifier     Result     Qualifier     Unit       67.5     Qualifier     NB     MS     MSD       MB     MB     Result     Qualifier     Unit       67.5     Qualifier     Unit     Mg/Kg       67.5     Qualifier     Qualifier     Unit       67.5     Qualifier     Qualifier     Unit       7     Qualifier     Qualifier     Qualifier | Added     Result     Qualifier     Unit     D       117/3-A     Client Sa       Spike     LCSD     LCSD       Added     Result     Qualifier     Unit     D       Added     Result     Qualifier     Unit     D       Sample     Sample     Spike     MS     MS       Result     Qualifier     Added     Result     Qualifier     D       67.5     249     324.7     Unit     D       SD     Sample     Sample     Spike     MSD     MSD       Result     Qualifier     Added     Result     Qualifier     D       67.5     249     325.1     Unit     D       97.4     Client Sa     Sample     Sample     Sample       97.4     Client     Sample     Client     Sample       97.5     249     325.1     Unit     D       97.4     Sample     Sample     Sample     Sample       97.4 | Added     Result     Qualifier     Unit     D     %Rec       101     250     252.5     unit     mg/Kg     D     %Rec       101     101     101     Client Sample ID:     Client Sample ID:       Sample     Sample     Spike     LCSD     LCSD     Unit     D     %Rec       Result     Qualifier     Added     Result     Qualifier     Unit     D     %Rec       07.5     249     324.7     Qualifier     Unit     D     %Rec       07.5     249     324.7     Qualifier     Unit     D     %Rec       07.5     249     325.1     Qualifier     Unit     D     %Rec       07.5     249     325.1     Qualifier     Unit     D     %Rec       07.5     249     325.1     Qualifier     Unit     D     %Rec       011-A     Client Sample     Spike     Result     Qualifier     Unit     D     %Rec       11-A     Client Sample     5.00     U     5.00     Unit     D     %Rec       11-A     Client Sample     Spike     LCS     LCS     LCS     Spike     Gualifier     Unit     D     %Rec       12-2-A     250 | Added     Result     Qualifier     Unit     D     %Rec     Limits       117/3-A     Client Sample ID: Lab Control S       Spike     Added     Result     Qualifier     Unit     D     %Rec     Limits       250     250     252.9     Unit     D     %Rec     Limits       250     250     252.9     Unit     D     %Rec     Limits       3     Client Sample ID: Lab Control S     250     252.9     Miftiger     D     %Rec       Result     Qualifier     Unit     D     %Rec     Limits     90.110       3     Client Sample     Spike     MS     MS     MS     MS       67.5     249     324.7     Unit     D     %Rec     Limits       90     103     90.110     -     104     90.110     -       SD     Client Sample     Spike     MSD     MSD     MSD     MSD       7.5     249     325.1     Unit     D     %Rec     Limits       90     104     90.110     -     104     90.110     -       7.1-A     Client Sample ID: Lab Control S     MB     MB     MB     MB       8     Result     Qualifier     Unit< | Added     Result     Qualifier     Unit     D     %Rec     Limits       117/3-A     Client Sample ID: Lab Control Samp<br>Prep Type: S       Added     Result     Qualifier     Unit     D     %Rec       Added     Result     Qualifier     Unit     D     %Rec       250     252.9     Usaifier     Unit     D     %Rec       250     252.9     252.9     Usaifier     Unit     D     %Rec       350     Client Sample     Spike     MS     MS     MS       67.5     Qualifier     Added     Result     Qualifier     Unit     D     %Rec       11.4     Client Sample ID: Method     Prep Type: S     S     S     S     S       249     325.1     MI     Unit     D     Prepared     Analyzed <t< td=""></t<> |

| Client: Ensolum                      |
|--------------------------------------|
| Project/Site: Brinninstool Unit 003H |

Job ID: 890-4914-1 SDG: 03D2024197

#### Method: 300.0 - Anions, Ion Chromatography

| ab Sample ID: 890-4914-15<br>atrix: Solid | MSD    |           |       |       |           |       |          | (    | Client Sam<br>Prep | ple ID: S<br>Type: So |       |   |
|-------------------------------------------|--------|-----------|-------|-------|-----------|-------|----------|------|--------------------|-----------------------|-------|---|
| nalysis Batch: 57420                      | Sample | Sample    | Spike | MSD   | MSD       |       |          |      | %Rec               |                       | RPD   |   |
| nalyte                                    |        | Qualifier | Added |       | Qualifier | Unit  | <u> </u> | %Rec | Limits             | RPD                   | Limit |   |
| ıloride                                   | 102    | F1        | 250   | 322.5 | F1        | mg/Kg |          | 88   | 90 - 110           | 0                     | 20    |   |
|                                           |        |           |       |       |           |       |          |      |                    |                       |       |   |
|                                           |        |           |       |       |           |       |          |      |                    |                       |       | Ī |
|                                           |        |           |       |       |           |       |          |      |                    |                       |       |   |
|                                           |        |           |       |       |           |       |          |      |                    |                       |       | Ī |
|                                           |        |           |       |       |           |       |          |      |                    |                       |       |   |
|                                           |        |           |       |       |           |       |          |      |                    |                       |       |   |
|                                           |        |           |       |       |           |       |          |      |                    |                       |       | i |

Client: Ensolum Project/Site: Brinninstool Unit 003H

#### Page 101 of 160

Job ID: 890-4914-1 SDG: 03D2024197

#### **GC VOA**

#### Detel **F7**000

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method | Prep Batc |
|----------------------|------------------------|-----------|--------|--------|-----------|
| MB 880-57308/5-A     | Method Blank           | Total/NA  | Solid  | 5035   |           |
| rep Batch: 57324     |                        |           |        |        |           |
| Lab Sample ID        | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batc |
| MB 880-57324/5-A     | Method Blank           | Total/NA  | Solid  | 5035   |           |
| nalysis Batch: 57379 |                        |           |        |        |           |
| Lab Sample ID        | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batc |
| 390-4914-1           | FS01                   | Total/NA  | Solid  | 8021B  | 5741      |
| 390-4914-2           | FS02                   | Total/NA  | Solid  | 8021B  | 5741      |
| 90-4914-3            | FS03                   | Total/NA  | Solid  | 8021B  | 5741      |
| 90-4914-4            | FS04                   | Total/NA  | Solid  | 8021B  | 5741      |
| 90-4914-5            | FS05                   | Total/NA  | Solid  | 8021B  | 5741      |
| 90-4914-6            | FS06                   | Total/NA  | Solid  | 8021B  | 5741      |
| 90-4914-7            | FS07                   | Total/NA  | Solid  | 8021B  | 574       |
| 890-4914-8           | FS08                   | Total/NA  | Solid  | 8021B  | 574       |
| 90-4914-9            | FS09                   | Total/NA  | Solid  | 8021B  | 574       |
| 90-4914-10           | FS10                   | Total/NA  | Solid  | 8021B  | 574       |
| 90-4914-11           | SS05A                  | Total/NA  | Solid  | 8021B  | 574       |
| 90-4914-12           | SS06A                  | Total/NA  | Solid  | 8021B  | 574       |
| 90-4914-13           | SS07A                  | Total/NA  | Solid  | 8021B  | 574       |
| 90-4914-14           | SS08A                  | Total/NA  | Solid  | 8021B  | 574       |
| /IB 880-57308/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 5730      |
| IB 880-57410/5-A     | Method Blank           | Total/NA  | Solid  | 8021B  | 574       |
| .CS 880-57410/1-A    | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 574       |
| CSD 880-57410/2-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 574       |
| 390-4913-A-1-B MS    | Matrix Spike           | Total/NA  | Solid  | 8021B  | 5741      |
| 890-4913-A-1-C MSD   | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 5741      |

#### Analysis Batch: 57381

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 890-4914-15        | SS09A                  | Total/NA  | Solid  | 8021B  | 57416      |
| 890-4914-16        | SW01                   | Total/NA  | Solid  | 8021B  | 57416      |
| 890-4914-17        | SW02                   | Total/NA  | Solid  | 8021B  | 57416      |
| MB 880-57324/5-A   | Method Blank           | Total/NA  | Solid  | 8021B  | 57324      |
| MB 880-57416/5-A   | Method Blank           | Total/NA  | Solid  | 8021B  | 57416      |
| LCS 880-57416/1-A  | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 57416      |
| LCSD 880-57416/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 57416      |
| 890-4915-A-1-C MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 57416      |
| 890-4915-A-1-D MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 57416      |

#### Prep Batch: 57410

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method | Prep Batch |
|---------------|------------------|-----------|--------|--------|------------|
| 890-4914-1    | FS01             | Total/NA  | Solid  | 5035   |            |
| 890-4914-2    | FS02             | Total/NA  | Solid  | 5035   |            |
| 890-4914-3    | FS03             | Total/NA  | Solid  | 5035   |            |
| 890-4914-4    | FS04             | Total/NA  | Solid  | 5035   |            |
| 890-4914-5    | FS05             | Total/NA  | Solid  | 5035   |            |
| 890-4914-6    | FS06             | Total/NA  | Solid  | 5035   |            |
| 890-4914-7    | FS07             | Total/NA  | Solid  | 5035   |            |
| 890-4914-8    | FS08             | Total/NA  | Solid  | 5035   |            |

Client: Ensolum Project/Site: Brinninstool Unit 003H

#### GC VOA (Continued)

#### Prep Batch: 57410 (Continued)

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 890-4914-9         | FS09                   | Total/NA  | Solid  | 5035   |            |
| 890-4914-10        | FS10                   | Total/NA  | Solid  | 5035   |            |
| 890-4914-11        | SS05A                  | Total/NA  | Solid  | 5035   |            |
| 890-4914-12        | SS06A                  | Total/NA  | Solid  | 5035   |            |
| 890-4914-13        | SS07A                  | Total/NA  | Solid  | 5035   |            |
| 890-4914-14        | SS08A                  | Total/NA  | Solid  | 5035   |            |
| MB 880-57410/5-A   | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-57410/1-A  | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-57410/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 890-4913-A-1-B MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 890-4913-A-1-C MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

#### Prep Batch: 57416

| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |  |
|--------------------|------------------------|-----------|--------|--------|------------|--|
| 890-4914-15        | SS09A                  | Total/NA  | Solid  | 5035   |            |  |
| 890-4914-16        | SW01                   | Total/NA  | Solid  | 5035   |            |  |
| 890-4914-17        | SW02                   | Total/NA  | Solid  | 5035   |            |  |
| MB 880-57416/5-A   | Method Blank           | Total/NA  | Solid  | 5035   |            |  |
| LCS 880-57416/1-A  | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |  |
| LCSD 880-57416/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |  |
| 890-4915-A-1-C MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |  |
| 890-4915-A-1-D MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |  |

#### Analysis Batch: 57491

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 890-4914-1    | FS01             | Total/NA  | Solid  | Total BTEX |            |
| 890-4914-2    | FS02             | Total/NA  | Solid  | Total BTEX |            |
| 890-4914-3    | FS03             | Total/NA  | Solid  | Total BTEX |            |
| 890-4914-4    | FS04             | Total/NA  | Solid  | Total BTEX |            |
| 890-4914-5    | FS05             | Total/NA  | Solid  | Total BTEX |            |
| 890-4914-6    | FS06             | Total/NA  | Solid  | Total BTEX |            |
| 890-4914-7    | FS07             | Total/NA  | Solid  | Total BTEX |            |
| 890-4914-8    | FS08             | Total/NA  | Solid  | Total BTEX |            |
| 890-4914-9    | FS09             | Total/NA  | Solid  | Total BTEX |            |
| 890-4914-10   | FS10             | Total/NA  | Solid  | Total BTEX |            |
| 890-4914-11   | SS05A            | Total/NA  | Solid  | Total BTEX |            |
| 890-4914-12   | SS06A            | Total/NA  | Solid  | Total BTEX |            |
| 890-4914-13   | SS07A            | Total/NA  | Solid  | Total BTEX |            |
| 890-4914-14   | SS08A            | Total/NA  | Solid  | Total BTEX |            |
| 890-4914-15   | SS09A            | Total/NA  | Solid  | Total BTEX |            |
| 890-4914-16   | SW01             | Total/NA  | Solid  | Total BTEX |            |
| 890-4914-17   | SW02             | Total/NA  | Solid  | Total BTEX |            |

#### Analysis Batch: 57560

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| MB 880-57410/5-A   | Method Blank           | Total/NA  | Solid  | 8021B  | 57410      |
| LCS 880-57410/1-A  | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 57410      |
| LCSD 880-57410/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 57410      |
| 890-4913-A-1-B MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 57410      |
| 890-4913-A-1-C MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 57410      |

Page 102 of 160

5 6

**8** 9

#### Job ID: 890-4914-1 SDG: 03D2024197

Client: Ensolum Project/Site: Brinninstool Unit 003H

SDG: 03D2024197

#### GC Semi VOA

#### Prep Batch: 57501

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|--------------------|------------------------|-----------|--------|-------------|------------|
| 890-4914-11        | SS05A                  | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4914-12        | SS06A                  | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4914-13        | SS07A                  | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4914-14        | SS08A                  | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4914-15        | SS09A                  | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4914-16        | SW01                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4914-17        | SW02                   | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-57501/1-A   | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-57501/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-57501/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4915-A-1-F MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4915-A-1-G MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

#### Analysis Batch: 57664

| 890-4914-17           | SW02                   | Total/NA  | Solid  | 8015NM Prep |            |     |
|-----------------------|------------------------|-----------|--------|-------------|------------|-----|
| MB 880-57501/1-A      | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            | 8   |
| LCS 880-57501/2-A     | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |     |
| LCSD 880-57501/3-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            | 9   |
| 890-4915-A-1-F MS     | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |     |
| 890-4915-A-1-G MSD    | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            | 10  |
| Analysis Batch: 57664 |                        |           |        |             |            | 4.4 |
| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |     |
| 890-4914-11           | SS05A                  | Total/NA  | Solid  | 8015B NM    | 57501      | 40  |
| 890-4914-12           | SS06A                  | Total/NA  | Solid  | 8015B NM    | 57501      |     |
| 890-4914-13           | SS07A                  | Total/NA  | Solid  | 8015B NM    | 57501      | 40  |
| 890-4914-14           | SS08A                  | Total/NA  | Solid  | 8015B NM    | 57501      | 13  |
| 890-4914-15           | SS09A                  | Total/NA  | Solid  | 8015B NM    | 57501      |     |
| 890-4914-16           | SW01                   | Total/NA  | Solid  | 8015B NM    | 57501      | 14  |
| 890-4914-17           | SW02                   | Total/NA  | Solid  | 8015B NM    | 57501      |     |
| MB 880-57501/1-A      | Method Blank           | Total/NA  | Solid  | 8015B NM    | 57501      |     |
| LCS 880-57501/2-A     | Lab Control Sample     | Total/NA  | Solid  | 8015B NM    | 57501      |     |
| LCSD 880-57501/3-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM    | 57501      |     |
| 890-4915-A-1-F MS     | Matrix Spike           | Total/NA  | Solid  | 8015B NM    | 57501      |     |
| 890-4915-A-1-G MSD    | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM    | 57501      |     |
|                       |                        |           |        |             |            |     |

#### Prep Batch: 57801

| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method      | Prep Batch |
|--------------------|------------------------|-----------|--------|-------------|------------|
| 890-4914-1         | FS01                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4914-2         | FS02                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4914-3         | FS03                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4914-4         | FS04                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4914-5         | FS05                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4914-6         | FS06                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4914-7         | FS07                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4914-8         | FS08                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4914-9         | FS09                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4914-10        | FS10                   | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-57801/1-A   | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-57801/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-57801/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4913-A-1-F MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4913-A-1-G MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

#### Analysis Batch: 57842

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 890-4914-1    | FS01             | Total/NA  | Solid  | 8015 NM |            |
| 890-4914-2    | FS02             | Total/NA  | Solid  | 8015 NM |            |
| 890-4914-3    | FS03             | Total/NA  | Solid  | 8015 NM |            |

5 6 7

Client: Ensolum Project/Site: Brinninstool Unit 003H

#### GC Semi VOA (Continued)

#### Analysis Batch: 57842 (Continued)

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 890-4914-4    | FS04             | Total/NA  | Solid  | 8015 NM |            |
| 890-4914-5    | FS05             | Total/NA  | Solid  | 8015 NM |            |
| 890-4914-6    | FS06             | Total/NA  | Solid  | 8015 NM |            |
| 890-4914-7    | FS07             | Total/NA  | Solid  | 8015 NM |            |
| 890-4914-8    | FS08             | Total/NA  | Solid  | 8015 NM |            |
| 890-4914-9    | FS09             | Total/NA  | Solid  | 8015 NM |            |
| 890-4914-10   | FS10             | Total/NA  | Solid  | 8015 NM |            |
| 890-4914-11   | SS05A            | Total/NA  | Solid  | 8015 NM |            |
| 890-4914-12   | SS06A            | Total/NA  | Solid  | 8015 NM |            |
| 890-4914-13   | SS07A            | Total/NA  | Solid  | 8015 NM |            |
| 890-4914-14   | SS08A            | Total/NA  | Solid  | 8015 NM |            |
| 890-4914-15   | SS09A            | Total/NA  | Solid  | 8015 NM |            |
| 890-4914-16   | SW01             | Total/NA  | Solid  | 8015 NM |            |
| 890-4914-17   | SW02             | Total/NA  | Solid  | 8015 NM |            |

#### Analysis Batch: 58259

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| 890-4914-1         | FS01                   | Total/NA  | Solid  | 8015B NM | 57801      |
| 890-4914-2         | FS02                   | Total/NA  | Solid  | 8015B NM | 57801      |
| 890-4914-3         | FS03                   | Total/NA  | Solid  | 8015B NM | 57801      |
| 890-4914-4         | FS04                   | Total/NA  | Solid  | 8015B NM | 57801      |
| 890-4914-5         | FS05                   | Total/NA  | Solid  | 8015B NM | 57801      |
| 890-4914-6         | FS06                   | Total/NA  | Solid  | 8015B NM | 57801      |
| 890-4914-7         | FS07                   | Total/NA  | Solid  | 8015B NM | 57801      |
| 890-4914-8         | FS08                   | Total/NA  | Solid  | 8015B NM | 57801      |
| 890-4914-9         | FS09                   | Total/NA  | Solid  | 8015B NM | 57801      |
| 890-4914-10        | FS10                   | Total/NA  | Solid  | 8015B NM | 57801      |
| MB 880-57801/1-A   | Method Blank           | Total/NA  | Solid  | 8015B NM | 57801      |
| LCS 880-57801/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 57801      |
| LCSD 880-57801/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 57801      |
| 890-4913-A-1-F MS  | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 57801      |
| 890-4913-A-1-G MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 57801      |

#### HPLC/IC

#### Leach Batch: 57317

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method   | Prep Batch |
|---------------|------------------|-----------|--------|----------|------------|
| 890-4914-1    | FS01             | Soluble   | Solid  | DI Leach |            |
| 890-4914-2    | FS02             | Soluble   | Solid  | DI Leach |            |
| 890-4914-3    | FS03             | Soluble   | Solid  | DI Leach |            |
| 890-4914-4    | FS04             | Soluble   | Solid  | DI Leach |            |
| 890-4914-5    | FS05             | Soluble   | Solid  | DI Leach |            |
| 890-4914-6    | FS06             | Soluble   | Solid  | DI Leach |            |
| 890-4914-7    | FS07             | Soluble   | Solid  | DI Leach |            |
| 890-4914-8    | FS08             | Soluble   | Solid  | DI Leach |            |
| 890-4914-9    | FS09             | Soluble   | Solid  | DI Leach |            |
| 890-4914-10   | FS10             | Soluble   | Solid  | DI Leach |            |
| 890-4914-11   | SS05A            | Soluble   | Solid  | DI Leach |            |
| 890-4914-12   | SS06A            | Soluble   | Solid  | DI Leach |            |
| 890-4914-13   | SS07A            | Soluble   | Solid  | DI Leach |            |
| 890-4914-14   | SS08A            | Soluble   | Solid  | DI Leach |            |

#### Eurofins Carlsbad

Page 104 of 160

#### Job ID: 890-4914-1 SDG: 03D2024197

Client: Ensolum Project/Site: Brinninstool Unit 003H

#### HPLC/IC (Continued)

#### Leach Batch: 57317 (Continued)

| Lab Sample ID<br>MB 880-57317/1-A | Client Sample ID<br>Method Blank | Prep Type<br>Soluble | Matrix<br>Solid | DI Leach | Prep Batch |
|-----------------------------------|----------------------------------|----------------------|-----------------|----------|------------|
| LCS 880-57317/2-A                 | Lab Control Sample               | Soluble              | Solid           | DI Leach |            |
| LCSD 880-57317/3-A                | Lab Control Sample Dup           | Soluble              | Solid           | DI Leach |            |
| 890-4914-5 MS                     | FS05                             | Soluble              | Solid           | DI Leach |            |
| 890-4914-5 MSD                    | FS05                             | Soluble              | Solid           | DI Leach |            |

#### Leach Batch: 57365

| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method   | Prep Batch | 8 |
|--------------------|------------------------|-----------|--------|----------|------------|---|
| 890-4914-15        | SS09A                  | Soluble   | Solid  | DI Leach |            |   |
| 890-4914-16        | SW01                   | Soluble   | Solid  | DI Leach |            |   |
| 890-4914-17        | SW02                   | Soluble   | Solid  | DI Leach |            |   |
| MB 880-57365/1-A   | Method Blank           | Soluble   | Solid  | DI Leach |            |   |
| LCS 880-57365/2-A  | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |   |
| LCSD 880-57365/3-A | Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |   |
| 890-4914-15 MS     | SS09A                  | Soluble   | Solid  | DI Leach |            |   |
| 890-4914-15 MSD    | SS09A                  | Soluble   | Solid  | DI Leach |            |   |

#### Analysis Batch: 57418

| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 890-4914-1         | FS01                   | Soluble   | Solid  | 300.0  | 57317      |
| 890-4914-2         | FS02                   | Soluble   | Solid  | 300.0  | 57317      |
| 890-4914-3         | FS03                   | Soluble   | Solid  | 300.0  | 57317      |
| 890-4914-4         | FS04                   | Soluble   | Solid  | 300.0  | 57317      |
| 890-4914-5         | FS05                   | Soluble   | Solid  | 300.0  | 57317      |
| 890-4914-6         | FS06                   | Soluble   | Solid  | 300.0  | 57317      |
| 890-4914-7         | FS07                   | Soluble   | Solid  | 300.0  | 57317      |
| 890-4914-8         | FS08                   | Soluble   | Solid  | 300.0  | 57317      |
| 890-4914-9         | FS09                   | Soluble   | Solid  | 300.0  | 57317      |
| 890-4914-10        | FS10                   | Soluble   | Solid  | 300.0  | 57317      |
| 890-4914-11        | SS05A                  | Soluble   | Solid  | 300.0  | 57317      |
| 890-4914-12        | SS06A                  | Soluble   | Solid  | 300.0  | 57317      |
| 890-4914-13        | SS07A                  | Soluble   | Solid  | 300.0  | 57317      |
| 890-4914-14        | SS08A                  | Soluble   | Solid  | 300.0  | 57317      |
| MB 880-57317/1-A   | Method Blank           | Soluble   | Solid  | 300.0  | 57317      |
| LCS 880-57317/2-A  | Lab Control Sample     | Soluble   | Solid  | 300.0  | 57317      |
| LCSD 880-57317/3-A | Lab Control Sample Dup | Soluble   | Solid  | 300.0  | 57317      |
| 890-4914-5 MS      | FS05                   | Soluble   | Solid  | 300.0  | 57317      |
| 890-4914-5 MSD     | FS05                   | Soluble   | Solid  | 300.0  | 57317      |

#### Analysis Batch: 57420

| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 890-4914-15        | SS09A                  | Soluble   | Solid  | 300.0  | 57365      |
| 890-4914-16        | SW01                   | Soluble   | Solid  | 300.0  | 57365      |
| 890-4914-17        | SW02                   | Soluble   | Solid  | 300.0  | 57365      |
| MB 880-57365/1-A   | Method Blank           | Soluble   | Solid  | 300.0  | 57365      |
| LCS 880-57365/2-A  | Lab Control Sample     | Soluble   | Solid  | 300.0  | 57365      |
| LCSD 880-57365/3-A | Lab Control Sample Dup | Soluble   | Solid  | 300.0  | 57365      |
| 890-4914-15 MS     | SS09A                  | Soluble   | Solid  | 300.0  | 57365      |
| 890-4914-15 MSD    | SS09A                  | Soluble   | Solid  | 300.0  | 57365      |

Page 105 of 160

#### Job ID: 890-4914-1 SDG: 03D2024197

Project/Site: Brinninstool Unit 003H

5

9

Job ID: 890-4914-1 SDG: 03D2024197

#### Lab Sample ID: 890-4914-1 Matrix: Solid

Date Collected: 07/07/23 10:25 Date Received: 07/07/23 14:57

**Client Sample ID: FS01** 

Client: Ensolum

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.05 g  | 5 mL   | 57410  | 07/11/23 12:32 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 57379  | 07/12/23 02:01 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 57491  | 07/12/23 11:12 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 57842  | 07/24/23 14:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.04 g | 10 mL  | 57801  | 07/17/23 09:21 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 58259  | 07/22/23 17:10 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.01 g  | 50 mL  | 57317  | 07/10/23 13:53 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 57418  | 07/11/23 18:29 | СН      | EET MID |

#### **Client Sample ID: FS02**

Date Collected: 07/07/23 10:30

Date Received: 07/07/23 14:57

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 57410  | 07/11/23 12:32 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 57379  | 07/12/23 02:21 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 57491  | 07/12/23 11:12 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 57842  | 07/24/23 14:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.91 g  | 10 mL  | 57801  | 07/17/23 09:21 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 58259  | 07/22/23 17:32 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.02 g  | 50 mL  | 57317  | 07/10/23 13:53 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 57418  | 07/11/23 18:35 | СН      | EET MID |

#### **Client Sample ID: FS03**

#### Date Collected: 07/07/23 10:35 Date Received: 07/07/23 14:57

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.97 g  | 5 mL   | 57410  | 07/11/23 12:32 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 57379  | 07/12/23 02:41 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 57491  | 07/12/23 11:12 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 57842  | 07/24/23 14:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.99 g  | 10 mL  | 57801  | 07/17/23 09:21 | ткс     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 58259  | 07/22/23 17:54 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.04 g  | 50 mL  | 57317  | 07/10/23 13:53 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 57418  | 07/11/23 18:40 | CH      | EET MID |

#### **Client Sample ID: FS04** Date Collected: 07/07/23 10:40 Date Received: 07/07/23 14:57

|           | Batch    | Batch      |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method     | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035       |     |        | 5.03 g  | 5 mL   | 57410  | 07/11/23 12:32 | EL      | EET MID |
| Total/NA  | Analysis | 8021B      |     | 1      | 5 mL    | 5 mL   | 57379  | 07/12/23 03:02 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX |     | 1      |         |        | 57491  | 07/12/23 11:12 | SM      | EET MID |

**Eurofins Carlsbad** 

# Lab Sample ID: 890-4914-2

Lab Sample ID: 890-4914-3

Lab Sample ID: 890-4914-4

Matrix: Solid

Matrix: Solid

Matrix: Solid

Project/Site: Brinninstool Unit 003H

Job ID: 890-4914-1 SDG: 03D2024197

#### Lab Sample ID: 890-4914-4 Matrix: Solid

Lab Sample ID: 890-4914-5

Lab Sample ID: 890-4914-6

Lab Sample ID: 890-4914-7

Matrix: Solid

Matrix: Solid

Matrix: Solid

Date Collected: 07/07/23 10:40 Date Received: 07/07/23 14:57

**Client Sample ID: FS04** 

Client: Ensolum

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 57842  | 07/24/23 14:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.92 g  | 10 mL  | 57801  | 07/17/23 09:21 | ТКС     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 58259  | 07/22/23 18:16 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.98 g  | 50 mL  | 57317  | 07/10/23 13:53 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 57418  | 07/11/23 18:45 | СН      | EET MID |

#### Client Sample ID: FS05 Date Collected: 07/07/23 10:45

#### Date Received: 07/07/23 14:57

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.97 g  | 5 mL   | 57410  | 07/11/23 12:32 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 57379  | 07/12/23 05:05 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 57491  | 07/12/23 11:12 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 57842  | 07/24/23 14:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 57801  | 07/17/23 09:21 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 58259  | 07/22/23 18:49 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.03 g  | 50 mL  | 57317  | 07/10/23 13:53 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 57418  | 07/11/23 18:50 | СН      | EET MID |

#### **Client Sample ID: FS06**

Date Collected: 07/07/23 10:50 Date Received: 07/07/23 14:57

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.99 g  | 5 mL   | 57410  | 07/11/23 12:32 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 57379  | 07/12/23 05:25 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 57491  | 07/12/23 11:12 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 57842  | 07/24/23 14:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.98 g  | 10 mL  | 57801  | 07/17/23 09:21 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 58259  | 07/22/23 19:11 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5 g     | 50 mL  | 57317  | 07/10/23 13:53 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 57418  | 07/11/23 19:05 | CH      | EET MID |

#### Client Sample ID: FS07 Date Collected: 07/07/23 10:55

# Date Received: 07/07/23 14:57

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.01 g  | 5 mL   | 57410  | 07/11/23 12:32 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 57379  | 07/12/23 05:46 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 57491  | 07/12/23 11:12 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 57842  | 07/24/23 14:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.00 g | 10 mL  | 57801  | 07/17/23 09:21 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 58259  | 07/22/23 19:33 | SM      | EET MID |

Eurofins Carlsbad

Released to Imaging: 3/31/2025 9:28:6193AM

#### Lab Chronicle

Job ID: 890-4914-1 SDG: 03D2024197

Matrix: Solid

Lab Sample ID: 890-4914-7

#### **Client Sample ID: FS07** Date Collected: 07/07/23 10:55

Project/Site: Brinninstool Unit 003H

Client: Ensolum

Date Received: 07/07/23 14:57

|           | Batch    | Batch    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|----------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Soluble   | Leach    | DI Leach |     |        | 5.01 g  | 50 mL  | 57317  | 07/10/23 13:53 | KS      | EET MID |
| Soluble   | Analysis | 300.0    |     | 1      |         |        | 57418  | 07/11/23 19:10 | СН      | EET MID |

#### **Client Sample ID: FS08**

#### Date Collected: 07/07/23 11:00 Date Received: 07/07/23 14:57

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 57410  | 07/11/23 12:32 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 57379  | 07/12/23 06:06 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 57491  | 07/12/23 11:12 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 57842  | 07/24/23 14:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.96 g  | 10 mL  | 57801  | 07/17/23 09:21 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 58259  | 07/22/23 19:56 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.99 g  | 50 mL  | 57317  | 07/10/23 13:53 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 57418  | 07/11/23 19:26 | СН      | EET MID |

#### Client Sample ID: FS09 Date Collected: 07/07/23 12:05 Date Received: 07/07/23 14:57

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.05 g  | 5 mL   | 57410  | 07/11/23 12:32 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 57379  | 07/12/23 06:27 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 57491  | 07/12/23 11:12 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 57842  | 07/24/23 14:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.97 g  | 10 mL  | 57801  | 07/17/23 09:21 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 58259  | 07/22/23 20:18 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.97 g  | 50 mL  | 57317  | 07/10/23 13:53 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 57418  | 07/11/23 19:31 | СН      | EET MID |

#### **Client Sample ID: FS10** Date Collected: 07/07/23 12:10 Date Received: 07/07/23 14:57

Lab Sample ID: 890-4914-10 Matrix: Solid

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.00 g  | 5 mL   | 57410  | 07/11/23 12:32 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 57379  | 07/12/23 06:47 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 57491  | 07/12/23 11:12 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 57842  | 07/24/23 14:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.08 g | 10 mL  | 57801  | 07/17/23 09:21 | ткс     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 58259  | 07/22/23 20:41 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5 g     | 50 mL  | 57317  | 07/10/23 13:53 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 57418  | 07/11/23 19:36 | СН      | EET MID |

**Eurofins Carlsbad** 

Lab Sample ID: 890-4914-8 Matrix: Solid

9

#### Lab Sample ID: 890-4914-9 Matrix: Solid

Released to Imaging: 3/31/2025 9:28:5193AM
Project/Site: Brinninstool Unit 003H

**Client Sample ID: SS05A** 

Date Collected: 07/07/23 12:15

Date Received: 07/07/23 14:57

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client: Ensolum

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Initial

Amount

4.96 g

5 mL

9.99 g

1 uL

4.99 g

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

Batch

57410

57379

57491

57842

57501

57664

57317

57418

Number

Dil

1

1

1

1

1

Factor

Run

Job ID: 890-4914-1 SDG: 03D2024197

## Lab Sample ID: 890-4914-11

Analyst

EL

SM

SM

SM

ткс

SM

ĸs

СН

Lab Sample ID: 890-4914-12

Lab Sample ID: 890-4914-13

Lab Sample ID: 890-4914-14

Matrix: Solid

Lab

EET MID

Matrix: Solid

Matrix: Solid

### Client Sample ID: SS06A Date Collected: 07/07/23 12:20

Date Received: 07/07/23 14:57

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 57410  | 07/11/23 12:32 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 57379  | 07/12/23 07:28 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 57491  | 07/12/23 11:12 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 57842  | 07/17/23 13:24 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.04 g | 10 mL  | 57501  | 07/12/23 12:11 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 57664  | 07/14/23 17:41 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.01 g  | 50 mL  | 57317  | 07/10/23 13:53 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 57418  | 07/11/23 19:46 | СН      | EET MID |

### Client Sample ID: SS07A Date Collected: 07/07/23 12:25

### Date Received: 07/07/23 14:57

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.01 g  | 5 mL   | 57410  | 07/11/23 12:32 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 57379  | 07/12/23 07:49 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 57491  | 07/12/23 11:12 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 57842  | 07/17/23 13:24 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 57501  | 07/12/23 12:11 | ткс     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 57664  | 07/14/23 18:03 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.01 g  | 50 mL  | 57317  | 07/10/23 13:53 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 57418  | 07/11/23 19:52 | СН      | EET MID |

### Client Sample ID: SS08A Date Collected: 07/07/23 12:30 Date Received: 07/07/23 14:57

|           | Batch    | Batch      |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method     | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035       |     |        | 5.02 g  | 5 mL   | 57410  | 07/11/23 12:32 | EL      | EET MID |
| Total/NA  | Analysis | 8021B      |     | 1      | 5 mL    | 5 mL   | 57379  | 07/12/23 08:09 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX |     | 1      |         |        | 57491  | 07/12/23 11:12 | SM      | EET MID |

**Eurofins Carlsbad** 

Prepared

or Analyzed

07/11/23 12:32

07/12/23 07:07

07/12/23 11:12

07/17/23 13:24

07/12/23 12:11

07/14/23 17:19

07/10/23 13:53

07/11/23 19:41

## Released to Imaging: 3/31/2025 91286193AMM

Matrix: Solid

Project/Site: Brinninstool Unit 003H

**Client Sample ID: SS08A** 

Date Collected: 07/07/23 12:30

Date Received: 07/07/23 14:57

Client: Ensolum

Soluble

Job ID: 890-4914-1 SDG: 03D2024197

## Lab Sample ID: 890-4914-14

Analyst

SM

TKC

SM

KS

СН

Lab Sample ID: 890-4914-15

07/11/23 19:57

57418

Matrix: Solid

Lab

EET MID

EET MID

EET MID

EET MID

EET MID

Matrix: Solid

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 57842  | 07/17/23 13:24 |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.05 g | 10 mL  | 57501  | 07/12/23 12:11 |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 57664  | 07/15/23 07:36 |
| Soluble   | Leach    | DI Leach    |     |        | 5.02 g  | 50 mL  | 57317  | 07/10/23 13:53 |

### Client Sample ID: SS09A Date Collected: 07/07/23 12:35

Analysis

300.0

### Date Received: 07/07/23 12:55

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.01 g  | 5 mL   | 57416  | 07/11/23 13:40 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 57381  | 07/12/23 05:44 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 57491  | 07/12/23 14:48 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 57842  | 07/17/23 13:24 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.07 g | 10 mL  | 57501  | 07/12/23 12:11 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 57664  | 07/15/23 08:28 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5 g     | 50 mL  | 57365  | 07/11/23 12:00 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 57420  | 07/11/23 13:46 | СН      | EET MID |

1

### **Client Sample ID: SW01**

Date Collected: 07/07/23 12:40 Date Received: 07/07/23 14:57

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 57416  | 07/11/23 13:40 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 57381  | 07/12/23 06:04 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 57491  | 07/12/23 14:48 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 57842  | 07/17/23 13:24 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 57501  | 07/12/23 12:11 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 57664  | 07/15/23 08:50 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.97 g  | 50 mL  | 57365  | 07/11/23 12:00 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 57420  | 07/11/23 14:04 | CH      | EET MID |

### Client Sample ID: SW02

Date Collected: 07/07/23 12:45 Date Received: 07/07/23 14:57

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 57416  | 07/11/23 13:40 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 57381  | 07/12/23 06:25 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 57491  | 07/12/23 14:48 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 57842  | 07/17/23 13:24 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.99 g  | 10 mL  | 57501  | 07/12/23 12:11 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 57664  | 07/15/23 09:11 | SM      | EET MID |

Eurofins Carlsbad

Matrix: Solid

11 12 13

## Lab Sample ID: 890-4914-16

Lab Sample ID: 890-4914-17

Matrix: Solid

### Lab Chronicle

Job ID: 890-4914-1 SDG: 03D2024197

### Client Sample ID: SW02 Date Collected: 07/07/23 12:45

Project/Site: Brinninstool Unit 003H

Client: Ensolum

|           | Batch    | Batch    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |   |
|-----------|----------|----------|-----|--------|---------|--------|--------|----------------|---------|---------|---|
| Prep Type | Туре     | Method   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     | 5 |
| Soluble   | Leach    | DI Leach |     |        | 4.98 g  | 50 mL  | 57365  | 07/11/23 12:00 | KS      | EET MID | - |
| Soluble   | Analysis | 300.0    |     | 1      |         |        | 57420  | 07/11/23 14:10 | СН      | EET MID | 6 |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

## Lab Sample ID: 890-4914-17

Matrix: Solid

| Ļ           | 5             |
|-------------|---------------|
|             |               |
|             |               |
| 8           | 3             |
|             |               |
| Ş           | 9             |
| <b>9</b>    | <b>)</b>      |
| 9<br>1<br>1 | )<br>()<br>() |

Eurofins Carlsbad

|                                                   |              | Accreditation/Co                     | ertification Summary                         |                                       |
|---------------------------------------------------|--------------|--------------------------------------|----------------------------------------------|---------------------------------------|
| client: Ensolum<br>project/Site: Brinninstoo      | ol Unit 003H |                                      |                                              | Job ID: 890-4914-1<br>SDG: 03D2024197 |
| aboratory: Eurofi<br>nless otherwise noted, all a |              | y were covered under each accr       | reditation/certification below.              |                                       |
| Authority                                         |              | Program                              | Identification Number                        | Expiration Date                       |
| -<br>exas                                         |              | NELAP                                | T104704400-23-26                             | 06-30-24                              |
| The following analytes a the agency does not off  |              | t, but the laboratory is not certifi | ied by the governing authority. This list ma | ay include analytes for which         |
| Analysis Method                                   | Prep Method  | Matrix                               | Analyte                                      |                                       |
| 8015 NM                                           |              | Solid                                | Total TPH                                    |                                       |
| 8015B NM                                          | 8015NM Prep  | Solid                                | Total TPH                                    |                                       |
| Total BTEX                                        |              | Solid                                | Total BTEX                                   |                                       |
|                                                   |              |                                      |                                              |                                       |
|                                                   |              |                                      |                                              |                                       |
|                                                   |              |                                      |                                              |                                       |
|                                                   |              |                                      |                                              |                                       |
|                                                   |              |                                      |                                              |                                       |
|                                                   |              |                                      |                                              |                                       |
|                                                   |              |                                      |                                              |                                       |

Eurofins Carlsbad

### **Method Summary**

Client: Ensolum Project/Site: Brinninstool Unit 003H Job ID: 890-4914-1 SDG: 03D2024197

| 8021B       Volatile Organic Compounds (GC)       SW846       EET MID         Total BTEX       Total BTEX Calculation       TAL SOP       EET MID         8015 NM       Diesel Range Organics (DRO) (GC)       SW846       EET MID         8015B NM       Diesel Range Organics (DRO) (GC)       SW846       EET MID         800.0       Anions, Ion Chromatography       EPA       EET MID         5035       Closed System Purge and Trap       SW846       EET MID         8015NM Prep       Microextraction       SW846       EET MID         DI Leach       Deionized Water Leaching Procedure       ASTM       EET MID         Protocol References:         ASTM = ASTM International       EPA = US Environmental Protection Agency       SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.         TAL SOP = TestAmerica Laboratories, Standard Operating Procedure       Laboratory References:       EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440 | Method      | Method Description                                                            | Protocol                             | Laboratory |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------|--------------------------------------|------------|
| 8015 NMDiesel Range Organics (DRO) (GC)SW846EET MID8015 NMDiesel Range Organics (DRO) (GC)SW846EET MID8015 NMDiesel Range Organics (DRO) (GC)SW846EET MID800.0Anions, Ion ChromatographyEPAEET MID5035Closed System Purge and TrapSW846EET MID8015 NM PrepMicroextractionSW846EET MIDDI LeachDeionized Water Leaching ProcedureASTMEET MIDProtocol References:ASTM = ASTM International<br>EPA = US Environmental Protection Agency<br>SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.<br>TAL SOP = TestAmerica Laboratories, Standard Operating ProcedureSUB And Its Updates.                                                                                                                                                                                                                                                                                                                                                                                                                     | 8021B       | Volatile Organic Compounds (GC)                                               | SW846                                | EET MID    |
| Bit M       Diesel Range Organics (DRO) (GC)       SW846       EET MID         300.0       Anions, Ion Chromatography       EPA       EET MID         5035       Closed System Purge and Trap       SW846       EET MID         8015NM Prep       Microextraction       SW846       EET MID         DI Leach       Deionized Water Leaching Procedure       ASTM       EET MID         Protocol References:         ASTM = ASTM International       EPA = US Environmental Protection Agency       SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.       TAL SOP = TestAmerica Laboratories, Standard Operating Procedure         Laboratory References:                                                                                                                                                                                                                                                                                                                                           | Total BTEX  | Total BTEX Calculation                                                        | TAL SOP                              | EET MID    |
| 300.0       Anions, Ion Chromatography       EPA       EET MID         5035       Closed System Purge and Trap       SW846       EET MID         3015NM Prep       Microextraction       SW846       EET MID         30115NM Prep       Deionized Water Leaching Procedure       SW846       EET MID         DI Leach       Deionized Water Leaching Procedure       ASTM       EET MID         Protocol References:         ASTM = ASTM International       EPA = US Environmental Protection Agency       SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.       TAL SOP = TestAmerica Laboratories, Standard Operating Procedure                                                                                                                                                                                                                                                                                                                                                                 | 8015 NM     | Diesel Range Organics (DRO) (GC)                                              | SW846                                | EET MID    |
| 5035       Closed System Purge and Trap       SW846       EET MID         5035       Microextraction       SW846       EET MID         5015NM Prep       Microextraction       SW846       EET MID         DI Leach       Deionized Water Leaching Procedure       ASTM       EET MID         Protocol References:         ASTM = ASTM International       EPA = US Environmental Protection Agency       SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.       TAL SOP = TestAmerica Laboratories, Standard Operating Procedure         Laboratory References:                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8015B NM    | Diesel Range Organics (DRO) (GC)                                              | SW846                                | EET MID    |
| 8015NM Prep       Microextraction       SW846       EET MID         DI Leach       Deionized Water Leaching Procedure       ASTM       EET MID         Protocol References:         ASTM = ASTM International       EPA = US Environmental Protection Agency         SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.       TAL SOP = TestAmerica Laboratories, Standard Operating Procedure         Laboratory References:       Laboratory References:       Kasta Standard Operating Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 300.0       | Anions, Ion Chromatography                                                    | EPA                                  | EET MID    |
| DI Leach Deionized Water Leaching Procedure ASTM EET MID   Protocol References:   ASTM = ASTM International   EPA = US Environmental Protection Agency:   SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.   TAL SOP = TestAmerica Laboratories, Standard Operating Procedure   Laboratory References:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5035        | Closed System Purge and Trap                                                  | SW846                                | EET MID    |
| Protocol References:<br>ASTM = ASTM International<br>EPA = US Environmental Protection Agency<br>SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.<br>TAL SOP = TestAmerica Laboratories, Standard Operating Procedure<br>Laboratory References:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8015NM Prep | Microextraction                                                               | SW846                                | EET MID    |
| ASTM = ASTM International<br>EPA = US Environmental Protection Agency<br>SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.<br>TAL SOP = TestAmerica Laboratories, Standard Operating Procedure<br>Laboratory References:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DI Leach    | Deionized Water Leaching Procedure                                            | ASTM                                 | EET MID    |
| TAL SOP = TestAmerica Laboratories, Standard Operating Procedure Laboratory References:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EPA = US    | Environmental Protection Agency                                               |                                      |            |
| Laboratory References:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SW846 = "   | Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Ed | tion, November 1986 And Its Updates. |            |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TAL SOP =   | <ul> <li>TestAmerica Laboratories, Standard Operating Procedure</li> </ul>    |                                      |            |
| EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                                                               |                                      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EET MID =   | Eurofins Midland, 1211 W. Florida Ave, Midland, 1X 79701, TEL (432)704-5440   |                                      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                               |                                      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                               |                                      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                               |                                      |            |

Eurofins Carlsbad

### Sample Summary

Client: Ensolum Project/Site: Brinninstool Unit 003H

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       | Depth |                                                                                                                |
|---------------|------------------|--------|----------------|----------------|-------|----------------------------------------------------------------------------------------------------------------|
| 890-4914-1    | FS01             | Solid  | 07/07/23 10:25 | 07/07/23 14:57 | 2.5   |                                                                                                                |
| 890-4914-2    | FS02             | Solid  | 07/07/23 10:30 | 07/07/23 14:57 | 2.5   |                                                                                                                |
| 890-4914-3    | FS03             | Solid  | 07/07/23 10:35 | 07/07/23 14:57 | 2.5   | , and the second se |
| 890-4914-4    | FS04             | Solid  | 07/07/23 10:40 | 07/07/23 14:57 | 2.5   | •••••••••••••••••••••••••••••••••••••••                                                                        |
| 890-4914-5    | FS05             | Solid  | 07/07/23 10:45 | 07/07/23 14:57 | 2.5   |                                                                                                                |
| 890-4914-6    | FS06             | Solid  | 07/07/23 10:50 | 07/07/23 14:57 | 2.5   |                                                                                                                |
| 890-4914-7    | FS07             | Solid  | 07/07/23 10:55 | 07/07/23 14:57 | 1     |                                                                                                                |
| 890-4914-8    | FS08             | Solid  | 07/07/23 11:00 | 07/07/23 14:57 | 1     |                                                                                                                |
| 890-4914-9    | FS09             | Solid  | 07/07/23 12:05 | 07/07/23 14:57 | 1     |                                                                                                                |
| 890-4914-10   | FS10             | Solid  | 07/07/23 12:10 | 07/07/23 14:57 | 1     |                                                                                                                |
| 890-4914-11   | SS05A            | Solid  | 07/07/23 12:15 | 07/07/23 14:57 | 1     |                                                                                                                |
| 890-4914-12   | SS06A            | Solid  | 07/07/23 12:20 | 07/07/23 14:57 | 1     | 9                                                                                                              |
| 890-4914-13   | SS07A            | Solid  | 07/07/23 12:25 | 07/07/23 14:57 | 1     |                                                                                                                |
| 890-4914-14   | SS08A            | Solid  | 07/07/23 12:30 | 07/07/23 14:57 | 1     |                                                                                                                |
| 890-4914-15   | SS09A            | Solid  | 07/07/23 12:35 | 07/07/23 14:57 | 1     |                                                                                                                |
| 890-4914-16   | SW01             | Solid  | 07/07/23 12:40 | 07/07/23 14:57 | 1     |                                                                                                                |
| 890-4914-17   | SW02             | Solid  | 07/07/23 12:45 | 07/07/23 14:57 | 1     |                                                                                                                |
|               |                  |        |                |                |       | 1.                                                                                                             |
|               |                  |        |                |                |       | 1                                                                                                              |
|               |                  |        |                |                |       |                                                                                                                |

### Job ID: 890-4914-1 SDG: 03D2024197

Received by OCD: 1/7/202532:44:14 PM

🛟 eurofins

## 13

Employment Teching

# 7/24/2023

| - cure                                                                          |             |                | Enviror<br>Kenco | nment Tes          | ting.              |              | EL Pa      | so, TX   | (915) 5                        | 85-344     | 3, Lubi      | ntonio, T<br>bock, TX<br>bad, NM | X (210)<br>(806) 7 | 509-33<br>94-129 | 6                                              |        |                   |          | W       | /ork    | Orde    | er No     | ):                                         |        | 1 7                               |
|---------------------------------------------------------------------------------|-------------|----------------|------------------|--------------------|--------------------|--------------|------------|----------|--------------------------------|------------|--------------|----------------------------------|--------------------|------------------|------------------------------------------------|--------|-------------------|----------|---------|---------|---------|-----------|--------------------------------------------|--------|-----------------------------------|
| Project Manager:                                                                | Hadlie      | Green          |                  | -                  |                    | Bill to: (if |            |          |                                |            |              |                                  |                    |                  |                                                | ٦      |                   |          |         |         | xence   |           | Pag<br>Comme                               |        | l of                              |
| Company Name:                                                                   |             | um, LLC        |                  |                    |                    | Compan       |            |          | Kalei Jennings<br>Ensolum, LLC |            |              |                                  |                    |                  | Program: UST/PST PRP Brownfields RRC Superfund |        |                   |          |         |         |         | Superfund |                                            |        |                                   |
| Address:                                                                        |             | -              | ,<br>feld St S   | uite 400           |                    | Address:     |            |          |                                |            |              | St Suite                         | 400                |                  |                                                | -      | State of Project: |          |         |         |         |           |                                            | _      |                                   |
|                                                                                 |             | nd, TX 7       |                  |                    |                    |              |            |          |                                |            |              |                                  |                    |                  |                                                | Repo   | orting: I         | Level II | Le      | vel III | 🗌 PS    | T/UST [   | ] TRR                                      |        |                                   |
| City, State ZIP:                                                                |             |                |                  |                    | Email              | hgreen(      |            | lum cr   |                                |            |              |                                  | com                |                  |                                                |        | Deliv             | erable   | s: EDI  |         |         | ADaF      | т 🗆                                        | Othe   | er:                               |
| Phone:                                                                          | 432-5       | 57-8895        | >                |                    | Email.             | Ingreen@     | wenso      |          | <u>лп, кр</u>                  | ernsing    | <u>ys(we</u> | nsolun                           |                    |                  |                                                |        |                   |          |         |         |         |           | 1                                          |        | the Order                         |
| Project Name:                                                                   |             | Brinnins       | stool Unit       | t 003H             |                    | Around       |            | Pres.    |                                |            |              | 11                               |                    | ANAL             | YSIS I                                         | REQ    | UEST              | 1        | 1       | -       | 1       | T         |                                            |        | ative Codes                       |
| Project Number:                                                                 |             | 03             | D202419          | 97                 | Routine            | Rush         |            | Code     |                                |            | -            |                                  |                    |                  |                                                |        |                   |          |         |         | -       |           | None: N                                    |        | DI Water: H <sub>2</sub>          |
| Project Location:                                                               |             | 32.297         | 33,-103.         | 58598              | Due Date:          |              |            |          |                                |            |              |                                  |                    |                  |                                                |        | 1                 |          |         |         |         |           | Cool: C                                    |        | MeOH: Me                          |
| Sampler's Name:                                                                 |             | Peter          | r Van Pa         | tten               | TAT starts th      |              |            |          |                                |            |              |                                  |                    |                  |                                                |        |                   |          |         |         |         |           | HCL: H<br>H <sub>2</sub> S0 <sub>4</sub> : |        | HNO <sub>3</sub> : HN<br>NaOH: Na |
| PO #:                                                                           | 1           |                |                  | 2                  | the lab, if red    |              |            | sua      |                                |            | 1            |                                  |                    |                  |                                                |        |                   |          |         |         |         |           | H <sub>3</sub> PO <sub>4</sub> :           |        | NaOH. Na                          |
| SAMPLE RECE                                                                     |             |                | Blank:           | Yes No             | Wet ice:           | Yes          | No         | me       | 0.0)                           |            | 100          |                                  |                    | IN AND IN A      |                                                |        |                   |          |         | NaHSC   |         | as        |                                            |        |                                   |
| Samples Received                                                                |             | Yes            |                  | Thermometer        |                    | in           |            | ara      | (EPA: 300.0)                   |            |              |                                  |                    |                  |                                                |        |                   |          | 1       |         |         | Na2S2C    | -                                          |        |                                   |
| Cooler Custody Sea                                                              |             | Yes N<br>Yes N |                  | Correction Fa      |                    | 2            | <u>5</u> 9 |          | EP                             |            |              |                                  |                    |                  |                                                |        | t Hit             | 11.61    |         |         |         |           |                                            |        | aOH: Zn                           |
| Sample Custody Se<br>Total Containers:                                          | als.        | res N          | IN IN A          | Corrected Te       |                    | 3.           | a          |          | DES (                          | 2          | 121)         |                                  |                    | 1010             |                                                |        |                   |          |         | 11      |         |           | NaOH+                                      | Ascort | bic Acid: SAPC                    |
| otal containers.                                                                |             |                |                  |                    | Time               |              | Grab/      | # of     | N N                            | (801       | X (80        |                                  |                    | 890-             | 4914 (                                         | Chain  | ofCu              | ustody   |         |         |         |           |                                            |        |                                   |
| Sample Ide                                                                      | ntificatio  | on             | Matrix           | Date<br>Sampled    | Sampled            | Depth        | Comp       |          |                                | TPH (8015) | BTEX (8021)  |                                  |                    |                  | 1                                              |        |                   |          |         | 1       | 1       | Sample    |                                            |        | Comments                          |
| FS                                                                              | 01          |                | Soil             | 7/7/2023           | 1025               | 2.5          | Comp       | 1        | x                              | x          | x            |                                  |                    |                  |                                                |        |                   |          |         |         |         | -         |                                            |        |                                   |
| FS                                                                              | 02          |                | Soil             | 7/7/2023           | 1030               | 2.5          | Comp       | 1        | x                              | x          | x            |                                  |                    |                  |                                                |        |                   |          |         |         |         |           |                                            |        |                                   |
| FS                                                                              | 03          |                | Soil             | 7/7/2023           | 1035               | 2.5          | Comp       | 1        | x                              | x          | x            |                                  |                    |                  |                                                |        |                   |          |         |         |         |           | · ·                                        |        |                                   |
| FS                                                                              | 04          |                | Soil             | 7/7/2023           | 1040               | 2.5          | Comp       | 1        | x                              | x          | x            |                                  |                    |                  |                                                |        |                   | -        |         |         |         |           |                                            |        |                                   |
| FS                                                                              | 05          |                | Soil             | 7/7/2023           | 1045               | 2.5          | Comp       | 1        | x                              | x          | X            |                                  |                    |                  |                                                |        |                   |          |         |         |         |           |                                            |        |                                   |
| FS                                                                              | 06          |                | Soil             | 7/7/2023           | 1050               | 2.5          | Comp       | 1        | ×                              | x          | x            |                                  |                    |                  |                                                |        |                   | -        |         |         |         |           |                                            |        |                                   |
| FS                                                                              | 07          |                | Soil             | 7/7/2023           | 1055               | 1            | Comp       | 1        | x                              | x          | x            |                                  |                    |                  |                                                |        |                   | -        |         | _       |         | -         |                                            |        |                                   |
| FS                                                                              | 38          |                | Soil             | 7/7/2023           | 1100               | 1            | Comp       | 1        | x                              | ×          | X            |                                  |                    |                  |                                                |        |                   | -        |         | -       |         |           |                                            |        |                                   |
| FS                                                                              | 09          |                | Soil             | 7/7/2023           | 1205               | 1            | Comp       | 1        | x                              | x          | x            |                                  |                    |                  |                                                | _      |                   |          |         |         |         |           |                                            | _      |                                   |
| FS                                                                              | 10          |                | Soil             | 7/7/2023           | 1210               | 1            | Comp       | 1        | x                              | x          | X            |                                  |                    |                  |                                                |        |                   |          |         |         | 1       |           |                                            |        |                                   |
| Total 200.7 / 6<br>Circle Method(s) a                                           | and Met     |                | be analy         | zed                | RCRA 13P<br>TCLP/S | PLP 601      | 10: 8R     | CRA      | Sb A                           | As Ba      | Be           | Cd Cr                            | Co C               | u Pb             | Mn M                                           | No N   | li Se             | Ag       | TIU     | _       | Hg:     | 1631      | a Sr Tl<br>/245.1/                         |        |                                   |
| lotice: Signature of this<br>if service. Eurofins Xer<br>if Eurofins Xenco. A m | and will be | Roble ash      | for the co       | of of complete and | tehall not accur   | ma any reer  | oneihilit  | v for an | V losee                        | s or exn   | enses i      | ncurred I                        | ov the cli         | ent if su        | uch losse                                      | es are | due to            | circums  | stances | peyona  | the con | troi      |                                            |        |                                   |
| Relinquished b                                                                  | y: (Sign    | ature)         | TC               | ) Received         | d by: (Signa       | ture)        |            |          | Date                           | /Time      |              | Re                               | linquis            | shed b           | oy: (Sig                                       | natu   | ire)              |          | Rec     | eived   | by: (S  | ignat     | ure)                                       |        | Date/Time                         |
| Hall Rt                                                                         | E           |                | tt               | Jep G              | 10                 |              |            | 1.       | 7.2                            | 3          | 140          | \$7                              |                    |                  |                                                |        |                   |          |         |         |         |           |                                            |        |                                   |
|                                                                                 |             |                |                  |                    | 40                 |              |            |          |                                |            |              | 4                                |                    |                  |                                                |        |                   |          |         |         |         |           |                                            | 3      |                                   |
|                                                                                 |             |                |                  |                    |                    |              |            |          |                                |            |              |                                  |                    |                  |                                                |        |                   |          |         |         |         |           |                                            |        |                                   |

Chain of Custody

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

Received by OCD: 1/7/202532:44:14 PM

## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

**Environment Testing** 

Xenco

## Chain of Custody

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199

Work Order No: \_\_\_\_

|                                                                                   |           | 1.00            |            | 6 m                |                      |              |               |               |                               |            |              |         |             | _         |                   |         |                                                |         |         | www    | xenco    | .com | Page                                            |         | 2                          |
|-----------------------------------------------------------------------------------|-----------|-----------------|------------|--------------------|----------------------|--------------|---------------|---------------|-------------------------------|------------|--------------|---------|-------------|-----------|-------------------|---------|------------------------------------------------|---------|---------|--------|----------|------|-------------------------------------------------|---------|----------------------------|
| Project Manager:                                                                  | Hadli     | e Green         | _          |                    |                      | Bill to: (if | differen      | )             | Kalei                         | Jennir     | ngs          |         |             |           |                   |         | Work Order Comments                            |         |         |        |          |      |                                                 |         |                            |
| Company Name:                                                                     | Enso      | lum, LLC        |            |                    |                      | Compan       | y Name        | :             | Enso                          | um, Ll     | LC           |         |             |           |                   |         | Program: UST/PST PRP Brownfields RRC Superfund |         |         |        |          |      |                                                 |         |                            |
| Address:                                                                          | 601 N     | Marienfe        | d St S     | uite 400           |                      | Address      | :             |               | 601 N Marienfeld St Suite 400 |            |              |         |             | 1 1       | State of Project: |         |                                                |         |         |        |          |      |                                                 |         |                            |
| City, State ZIP:                                                                  | Midla     | nd, TX 79       | 701        |                    |                      | City, Sta    | te ZIP:       |               | Midla                         | nd, TX     | 7970         |         |             |           |                   |         |                                                |         |         |        | Level IV |      |                                                 |         |                            |
| Phone:                                                                            | 1         | 57-8895         |            |                    | Email:               | hgreen       |               | lum.co        | om, kj                        | enning     | qs@e         | nsolun  | n.com       |           |                   |         | Deliverables: EDD ADaPT Other:                 |         |         |        |          |      |                                                 |         |                            |
| Project Name:                                                                     | 1         | Brinninst       |            | t 003H             | Turr                 | Around       |               |               |                               |            |              |         |             | ANAL      | YSIS F            | REQI    | JEST                                           |         |         |        |          |      | Pre                                             | servat  | ive Codes                  |
| Project Number:                                                                   |           |                 | 202419     |                    | Routine              | Rush         |               | Pres.<br>Code |                               |            |              | 1       |             | T         | T                 |         |                                                |         |         |        |          |      | None: NC                                        | )       | DI Water: H <sub>2</sub> C |
| Project Location:                                                                 |           | 32.2973         |            |                    | Due Date:            |              |               | Code          |                               |            |              |         |             |           |                   |         |                                                |         |         |        |          |      | Cool: Coo                                       | a       | MeOH: Me                   |
| Sampler's Name:                                                                   |           |                 | Van Pa     |                    | TAT starts th        | e dav rece   | ived by       |               |                               |            |              |         |             |           |                   |         |                                                |         |         |        |          |      | HCL: HC                                         |         | HNO3: HN                   |
| PO #:                                                                             |           |                 |            |                    | the lab, if red      |              |               |               |                               |            |              |         |             |           |                   |         |                                                |         |         |        |          |      | H2S04: H2                                       |         | NaOH: Na                   |
| SAMPLE RECE                                                                       | PT        | Temp B          | lank:      | Yes No             | Wet Ice:             | Yes          | No            | letei         | 6                             |            |              |         |             |           |                   |         |                                                |         |         |        |          |      | H₃PO₄: H                                        | Р       |                            |
| Samples Received I                                                                | ntact:    |                 | No         | Thermometer        | · ID·                |              |               | ram           | 300.0)                        |            |              |         |             |           |                   |         | 2.5                                            |         |         |        |          |      | NaHSO <sub>4</sub> :                            |         |                            |
| Cooler Custody Sea                                                                | s:        | Yes No          | NA         | Correction Fa      | ictor:               |              |               | Pa            | (EPA:                         |            |              |         |             |           |                   |         |                                                |         |         |        |          |      | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> : |         |                            |
| Sample Custody Sea                                                                | als:      | Yes No          | N/A        | Temperature        | Reading:             |              |               |               | S (E                          |            | =            |         |             |           |                   |         |                                                |         |         |        |          |      | Zn Acetat                                       |         |                            |
| Total Containers:                                                                 |           |                 |            | Corrected          | mpehature:           |              | _             |               | E E                           | 015)       | 015)<br>8021 |         |             |           |                   |         |                                                |         |         |        |          |      | NaOH+A:                                         | scorbic | Acid: SAPC                 |
| Sample Ider                                                                       | ntificat  | ion             | Matrix     | Date<br>Sampled    | Time<br>Sampled      | Depth        | Grab/<br>Comp | # of<br>Cont  | CHLORIDES                     | TPH (8015) | BTEX (8021)  |         |             |           |                   |         |                                                |         |         |        |          |      | Sar                                             | nple C  | Comments                   |
| SSO                                                                               | 5A        |                 | Soil       | 7/7/2023           | 1215                 | 1            | Comp          | 1             | х                             | x          | ×            |         |             |           |                   |         |                                                |         |         |        |          |      |                                                 |         |                            |
| SSO                                                                               | 6A        |                 | Soil       | 7/7/2023           | 1220                 | 1            | Comp          | 1             | x                             | x          | x            |         |             |           |                   |         |                                                |         |         |        |          |      |                                                 |         |                            |
| SSO                                                                               | 7A        |                 | Soil       | 7/7/2023           | 1225                 | 1            | Comp          | 1             | x                             | ×          | x            |         |             |           |                   |         |                                                |         | _       |        |          |      |                                                 |         |                            |
| SSO                                                                               | BA        |                 | Soil       | 7/7/2023           | 1230                 | 1            | Comp          | 1             | x                             | x          | x            |         |             |           |                   |         |                                                |         |         |        |          |      |                                                 |         |                            |
| SSO                                                                               | A         |                 | Soil       | 7/7/2023           | 1235                 | 1            | Comp          | 1             | x                             | x          | X            |         |             |           |                   |         |                                                |         |         |        |          |      |                                                 |         |                            |
| SWO                                                                               | 01        |                 | Soil       | 7/7/2023           | 1240                 | 1            | Comp          | 1             | ×                             | x          | x            |         |             |           |                   | _       |                                                |         |         |        |          |      |                                                 |         |                            |
| SWO                                                                               | )2        |                 | Soil       | 7/7/2023           | 1245                 | 1            | Comp          | 1             | x                             | ×          | X            | -       |             |           |                   |         |                                                |         |         |        |          |      |                                                 |         |                            |
|                                                                                   |           |                 |            |                    |                      |              | 10            | 7.4           | E                             |            |              | -       | -           |           |                   |         |                                                |         |         |        |          |      |                                                 |         |                            |
|                                                                                   |           |                 |            |                    | THE                  | FU           | fin 1         | 40            | 1 m                           | -          |              |         |             |           |                   |         |                                                |         |         |        |          |      |                                                 |         |                            |
|                                                                                   |           |                 |            |                    |                      |              |               |               |                               |            | 1            | 1       |             |           |                   |         |                                                |         |         |        |          |      |                                                 |         |                            |
| Total 200.7 / 60<br>Circle Method(s) a                                            | nd Me     |                 | e analy    | zed                | RCRA 13P<br>TCLP / S | PLP 60       | 10: 8R        | CRA           | Sb A                          | As Ba      | Ве           | Cd Cr   | Co C        | u Pb      | Mn M              | 10 N    | i Se                                           | Ag T    | U       |        | Hg: 1    | 1631 | a Sr TI S<br>/245.1/7                           |         |                            |
| Notice: Signature of this<br>of service. Eurofins Xen<br>of Eurofins Xenco. A mir | d lliw or | a liable only f | or the cou | at of examples and | i chail not accu     | ne any res   | nonsibilit    | v for an      | v losses                      | or exo     | enses i      | ncurred | ov the clie | ent if su | ich losse         | s are o | iue to c                                       | ircumst | ances t | beyond | the cont | rol  |                                                 |         |                            |
| Relinquished by                                                                   |           |                 | 6          |                    | d by: (Signa         |              |               |               |                               | /Time      |              | -       | linquis     |           |                   | _       | _                                              |         |         |        | by: (Si  |      | ure)                                            |         | Date/Time                  |
| FrhVmTa                                                                           | the       |                 |            | ue (s              | 40                   |              |               | 7.            | 10                            | 13         | 14           | 57      |             |           |                   |         |                                                |         |         |        |          |      |                                                 |         |                            |
| 3                                                                                 |           |                 |            |                    | V                    |              |               |               |                               |            |              | 4       |             |           |                   |         |                                                |         |         |        |          |      |                                                 |         |                            |
| 5                                                                                 |           |                 |            |                    |                      |              |               |               |                               |            |              | 6       |             |           |                   |         |                                                |         |         |        |          |      |                                                 |         |                            |

Job Number: 890-4914-1 SDG Number: 03D2024197

List Source: Eurofins Carlsbad

### Login Sample Receipt Checklist

Client: Ensolum

Login Number: 4914 List Number: 1 Creator: Clifton, Cloe

| Question                                                                         | Answer | Comment                             |
|----------------------------------------------------------------------------------|--------|-------------------------------------|
| The cooler's custody seal, if present, is intact.                                | True   |                                     |
| Sample custody seals, if present, are intact.                                    | True   |                                     |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |                                     |
| Samples were received on ice.                                                    | True   |                                     |
| Cooler Temperature is acceptable.                                                | True   |                                     |
| Cooler Temperature is recorded.                                                  | True   |                                     |
| COC is present.                                                                  | True   |                                     |
| COC is filled out in ink and legible.                                            | True   |                                     |
| COC is filled out with all pertinent information.                                | True   |                                     |
| Is the Field Sampler's name present on COC?                                      | True   |                                     |
| There are no discrepancies between the containers received and the COC.          | True   |                                     |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |                                     |
| Sample containers have legible labels.                                           | True   |                                     |
| Containers are not broken or leaking.                                            | True   |                                     |
| Sample collection date/times are provided.                                       | True   |                                     |
| Appropriate sample containers are used.                                          | N/A    | Refer to Job Narrative for details. |
| Sample bottles are completely filled.                                            | True   |                                     |
| Sample Preservation Verified.                                                    | N/A    |                                     |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |                                     |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").  | N/A    |                                     |

14

Job Number: 890-4914-1 SDG Number: 03D2024197

List Source: Eurofins Midland

List Creation: 07/11/23 11:07 AM

### Login Sample Receipt Checklist

Client: Ensolum

Login Number: 4914 List Number: 2 Creator: Rodriguez, Leticia

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present                                                                   | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information                                 | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is               | N/A    |         |

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").



## APPENDIX D

**NMOCD** Notifications

Released to Imaging: 3/31/2025 91286193AM

## [ \*\*EXTERNAL EMAIL\*\*]

Hadlie,

The OCD has received your notification. Include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

JH

Jocelyn Harimon • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 1220 South St. Francis Drive | Santa Fe, NM 87505 (505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov http:// www.emnrd.nm.gov



From: Hadlie Green <<u>hgreen@ensolum.com</u>>
Sent: Thursday, June 29, 2023 8:15 AM
To: Enviro, OCD, EMNRD <<u>OCD.Enviro@emnrd.nm.gov</u>>
Cc: Kalei Jennings <<u>kjennings@ensolum.com</u>>; Peter Van Patten <<u>pvanpatten@ensolum.com</u>>;
Subject: [EXTERNAL] COP - Sampling Notification (Week of 7/3/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

ConocoPhillips Company (COP) plans to complete sampling activities at the following site the week of July 3, 2023.

- Red Raider BKS Battery / NAPP2315734307
  - o Sampling Date: 7/6/2023 @ 10:00 AM MST
- Brinninstool Unit 3H / NAPP2315635182
  - o Sampling Date: 7/7/2023 @ 10:00 AM MST

Thank you,



Hadlie Green Project Geologist 432-557-8895 hgreen@ensolum.com Ensolum, LLC



## APPENDIX E

Final C-141

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018

Page 122 of 160

Revised August 24, 2018 Submit to appropriate OCD District office

| Incident ID    | NAPP2315635182 |
|----------------|----------------|
| District RP    |                |
| Facility ID    | fAPP2203246737 |
| Application ID |                |

## **Release Notification**

## **Responsible Party**

| Responsible Party       | COG Operating, LLC                             | OGRID                        | 217817         |  |  |
|-------------------------|------------------------------------------------|------------------------------|----------------|--|--|
| Contact Name            | Jacob Laird                                    | Contact Telephone            | (575) 703-5482 |  |  |
| Contact email           | Jacob.Laird@ConocoPhillips.com                 | Incident # (assigned by OCD) | NAPP2315635182 |  |  |
| Contact mailing address | 600 West Illinois Avenue, Midland, Texas 79701 |                              |                |  |  |

### **Location of Release Source**

Latitude \_\_\_32.2973

Longitude -103.5859

(NAD 83 in decimal degrees to 5 decimal places)

| Site Name                            |         | Brinninstool | Unit 003H | Site Type | Flowline             |  |
|--------------------------------------|---------|--------------|-----------|-----------|----------------------|--|
| Date Release Discovered May 29, 2023 |         |              |           |           | API# (if applicable) |  |
| Linit Lattar                         | Section | Township     | Danga     |           | County               |  |

| Unit Letter | Section | Township | Range | County |
|-------------|---------|----------|-------|--------|
| А           | 20      | 23S      | 33E   | Lea    |

Surface Owner: State Federal Tribal Private (Name: Hughes Properties

## Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

| Crude Oil        | Volume Released (bbls)                                                         | Volume Recovered (bbls)                 |
|------------------|--------------------------------------------------------------------------------|-----------------------------------------|
| Produced Water   | Volume Released (bbls) 2.3059                                                  | Volume Recovered (bbls) 0               |
|                  | Is the concentration of dissolved chloride in the produced water >10,000 mg/l? | Yes No                                  |
| Condensate       | Volume Released (bbls)                                                         | Volume Recovered (bbls)                 |
| Natural Gas      | Volume Released (Mcf)                                                          | Volume Recovered (Mcf)                  |
| Other (describe) | Volume/Weight Released (provide units)                                         | Volume/Weight Recovered (provide units) |

Cause of Release

The release was caused by transfer line damage.

The release was off the pad.

Evaluation will be made of the site to determine if we may commence remediation immediately or delineate any possible impact from the release and we will present a remediation work plan to the NMOCD for approval prior to any significant remediation activities.

| Page  | 2 |
|-------|---|
| 1 ugo | - |

### Oil Conservation Division

| Incident ID    | NAPP2315635182 |
|----------------|----------------|
| District RP    |                |
| Facility ID    | fAPP2203246737 |
| Application ID |                |

| Was this a major<br>release as defined by<br>19.15.29.7(A) NMAC? | If YES, for what reason(s) does the responsible party consider this a major release?  |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                                                                  |                                                                                       |
| If YES, was immediate no                                         | otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? |

## **Initial Response**

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

| Printed Name Brittany N. Esparza          | Title: Environmental Technician |
|-------------------------------------------|---------------------------------|
| Signature:                                | Date: $\frac{6/5/2023}{(100)}$  |
| email:Brittany.Esparza@ConocoPhillips.com | Telephone: (432) 221-0398       |
|                                           |                                 |
| OCD Only                                  |                                 |
| Received by: Jocelyn Harimon              | Date:06/05/2023                 |

| C. Received by OCD: 1/7<br>into a series of<br>rectangles | /2025312:<br>Length<br>(ft.) | 44:14 PM<br>Width<br>(ft.) | Average<br>Depth<br>(in.) | On/Off<br>Pad<br>(dropdown) | Soil Spilled-Fluid<br>Saturation<br>(%.) | Estimated volume of each<br>area<br>(bbl.) | Total Estimated<br>Volume of Spill<br>(bbl.) |
|-----------------------------------------------------------|------------------------------|----------------------------|---------------------------|-----------------------------|------------------------------------------|--------------------------------------------|----------------------------------------------|
| Rectangle A                                               | 60.0                         | 30.0                       | 0.4                       | Off-Pad ∽                   | 15.02%                                   | 10.01                                      | 1.50                                         |
| Rectangle B                                               | 60.0                         | 30.0                       | 0.2                       | Off-Pad ∽                   | 15.02%                                   | 5.34                                       | 0.80                                         |
| Rectangle C                                               |                              |                            |                           | ~                           |                                          | 0.00                                       |                                              |
| Rectangle D                                               |                              |                            |                           | ~                           | [                                        | 0.00                                       | 0                                            |
| Rectangle E                                               |                              |                            |                           | ~                           |                                          | 0.00                                       |                                              |
| Rectangle F                                               | 2                            |                            |                           | ~                           | 5                                        | 0.00                                       | 10                                           |
| Rectangle G                                               |                              |                            |                           | ~                           |                                          | 0.00                                       |                                              |
| Rectangle H                                               | 3 S                          |                            | 3                         | ~                           | 2<br>                                    | 0.00                                       |                                              |
| Rectangle I                                               |                              | i i i                      |                           | ~                           |                                          | 0.00                                       |                                              |
| Doctonalo I<br>Released to Imaginos                       | 2/21/2025                    | 0122510                    | 24344                     | ~                           |                                          | 0.00                                       | a strategiese and                            |
| — Released to Imaging:                                    | 3/31/2023                    | 2120019                    | YAANIT                    | \$\$\$\$\$                  | Total S                                  | ubsurface Volume Released:                 | 2.3059                                       |

| Total Estimated<br>Contaminated<br>Soil,<br>uncompacted,<br>25% (yd <sup>3</sup> .) | NAP Page 124 of 160<br>Curre. Page 124 of 160<br>RMR Handover Volume,<br>(yd <sup>3</sup> .) |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 2.60                                                                                |                                                                                              |
| 1.39                                                                                |                                                                                              |
| 0.00                                                                                |                                                                                              |
| 0.00                                                                                |                                                                                              |
| 0.00                                                                                | 750                                                                                          |
| 0.00                                                                                | 150                                                                                          |
| 0.00                                                                                |                                                                                              |
| 0.00                                                                                |                                                                                              |
| 0.00                                                                                |                                                                                              |
| 0.00                                                                                |                                                                                              |
| 3.99                                                                                | BU                                                                                           |

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

**State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

| Operator:          | OGRID:                                    |
|--------------------|-------------------------------------------|
| COG OPERATING LLC  | 229137                                    |
| 600 W Illinois Ave | Action Number:                            |
| Midland, TX 79701  | 223771                                    |
|                    | Action Type:                              |
|                    | [C-141] Release Corrective Action (C-141) |
| CONDITIONS         |                                           |

#### Created By Condition Condition Date 6/5/2023 jharimon None

CONDITIONS

Page 125 of 160

Action 223771

Received by OCD: 1/7/2025 12:44:14 PM State of New Mexico

Oil Conservation Division

|                | Page 126 of 160 |
|----------------|-----------------|
| Incident ID    | NAPP2315635182  |
| District RP    |                 |
| Facility ID    | fAPP2203246737  |
| Application ID |                 |

## Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

| What is the shallowest depth to groundwater beneath the area affected by the release?                                                                                                           | <u>&gt;100</u> (ft bgs) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Did this release impact groundwater or surface water?                                                                                                                                           | 🗌 Yes 🛛 No              |
| Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?                                                              | 🗌 Yes 🛛 No              |
| Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?                                                    | 🗌 Yes 🛛 No              |
| Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?                                                            | 🗌 Yes 🛛 No              |
| Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes? | 🗌 Yes 🛛 No              |
| Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?                                                                                                | 🗌 Yes 🛛 No              |
| Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?                                                           | 🗌 Yes 🛛 No              |
| Are the lateral extents of the release within 300 feet of a wetland?                                                                                                                            | 🗌 Yes 🛛 No              |
| Are the lateral extents of the release overlying a subsurface mine?                                                                                                                             | 🗌 Yes 🛛 No              |
| Are the lateral extents of the release overlying an unstable area such as karst geology?                                                                                                        | 🗌 Yes 🛛 No              |
| Are the lateral extents of the release within a 100-year floodplain?                                                                                                                            | 🗌 Yes 🛛 No              |
| Did the release impact areas <b>not</b> on an exploration, development, production, or storage site?                                                                                            | 🛛 Yes 🗌 No              |

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

### Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- $\square$  Depth to water determination
- Determination of water sources and significant watercourses within <sup>1</sup>/<sub>2</sub>-mile of the lateral extents of the release
- $\boxtimes$  Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

•

Page 3

| Received by OCD: 1/7/2                                                                                                                                                                                             | 02532:44:14 PM<br>State of New Mexico                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          | Page 127 of 160                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Incident ID                                                                                                              | NAPP2315635182                                                                                                  |
| Page 4                                                                                                                                                                                                             | Oil Conservation Divis                                                                                                                                                                                                                                          | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | District RP                                                                                                              |                                                                                                                 |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Facility ID                                                                                                              | fAPP2203246737                                                                                                  |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Application ID                                                                                                           |                                                                                                                 |
| regulations all operators a<br>public health or the enviro<br>failed to adequately inves<br>addition, OCD acceptance<br>and/or regulations.<br>Printed Name:Jacob<br>Signature: <i>Jacob</i><br>email:Jacob.Laird@ | nformation given above is true and complete t<br>are required to report and/or file certain releas<br>onment. The acceptance of a C-141 report by<br>stigate and remediate contamination that pose<br>e of a C-141 report does not relieve the opera<br>o Laird | the ocd does not relieve the a threat to groundwater, surfactor of responsibility for complexity | rrective actions for rele<br>operator of liability sho<br>ce water, human health<br>iance with any other feo<br>Engineer | eases which may endanger<br>ould their operations have<br>or the environment. In<br>deral, state, or local laws |
| OCD Only                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                                                                                                 |
| Received by:                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                 | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                          |                                                                                                                 |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                                                                                                 |

Page 6

Oil Conservation Division

| Incident ID    | NAPP2315635182 |
|----------------|----------------|
| District RP    |                |
| Facility ID    | fAPP2203246737 |
| Application ID |                |

Page 128 of 160

## Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

| Closure Report Attachment Checklist: Each of the following items must be included in the closure report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A scaled site and sampling diagram as described in 19.15.29.11 NMAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Description of remediation activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules<br>and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which<br>may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability<br>should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water,<br>human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for<br>compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially<br>restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in<br>accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.<br>Printed Name:Jacob Laird Title: _Environmental Engineer<br>Signature: <i>Jacob Laird</i> Date:9/14/2023<br>email:Jacob.Laird@conocophillips.com Telephone:575-703-5482 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| OCD Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Received by:         Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Closure Approved by: Nelson Velez Date:D1/12/2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Printed Name: Nelson Velez Title:Environmental Specialist - Adv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

## **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

| Operator:          | OGRID:                                    |
|--------------------|-------------------------------------------|
| COG OPERATING LLC  | 229137                                    |
| 600 W Illinois Ave | Action Number:                            |
| Midland, TX 79701  | 266282                                    |
|                    | Action Type:                              |
|                    | [C-141] Release Corrective Action (C-141) |

#### CONDITIONS

| Created<br>By | Condition                                                                                                                                                                                                                                            | Condition<br>Date |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| nvelez        | Release did not require notification per 19.15.29.10 NMAC (<= 5 bbls). Should accept for the record; however, documentation submitted met the applicable closure standards; therefore, the remediation closure report is approved. Release resolved. | 1/12/2024         |

Action 266282



## APPENDIX B

Photographic Log





## APPENDIX C

Laboratory Analytical Reports & Chain of Custody Documentation

Received by OCD: 1/7/2025 12:44:14 PM



**Environment Testing** 

### Page 133 of 160

**ANALYTICAL REPORT** 

## PREPARED FOR

Attn: Hadlie Green Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 11/20/2024 2:53:52 PM

## JOB DESCRIPTION

Brinninstool Unit 3H Lea County, NM

## **JOB NUMBER**

880-51210-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notes and contact information

## **Eurofins Midland**

## Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

## Authorization

AMER

Generated 11/20/2024 2:53:52 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-51210-1 SDG: Lea County, NM

## **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 8  |
| QC Sample Results      | 9  |
| QC Association Summary | 12 |
| Lab Chronicle          | 14 |
| Certification Summary  | 15 |
| Method Summary         | 16 |
| Sample Summary         | 17 |
| Chain of Custody       | 18 |
| Receipt Checklists     | 19 |
|                        |    |

2

### **Definitions/Glossary**

| Client: Ensolum                    |  |
|------------------------------------|--|
| Project/Site: Brinninstool Unit 3H |  |

Job ID: 880-51210-1 SDG: Lea County, NM

| Qualifiers     |                                                                                                             | 3  |
|----------------|-------------------------------------------------------------------------------------------------------------|----|
| GC VOA         |                                                                                                             |    |
| Qualifier      | Qualifier Description                                                                                       |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |    |
| GC Semi VOA    |                                                                                                             | 5  |
| Qualifier      | Qualifier Description                                                                                       |    |
| S1+            | Surrogate recovery exceeds control limits, high biased.                                                     |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |    |
| HPLC/IC        |                                                                                                             |    |
| Qualifier      | Qualifier Description                                                                                       |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    | 8  |
| Glossary       |                                                                                                             | 9  |
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |    |
| ¢.             | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |    |
| %R             | Percent Recovery                                                                                            |    |
| CFL            | Contains Free Liquid                                                                                        |    |
| CFU            | Colony Forming Unit                                                                                         |    |
| CNF            | Contains No Free Liquid                                                                                     |    |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |    |
| Dil Fac        | Dilution Factor                                                                                             | 12 |
| DL             | Detection Limit (DoD/DOE)                                                                                   | 13 |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |    |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |    |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |    |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |    |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |    |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                 |    |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |    |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |    |
| MDL            | Method Detection Limit                                                                                      |    |
| ML             | Minimum Level (Dioxin)                                                                                      |    |
| MPN            | Most Probable Number                                                                                        |    |
| MQL            | Method Quantitation Limit                                                                                   |    |

Eurofins Midland

Not Calculated

Negative / Absent

Positive / Present Practical Quantitation Limit

Presumptive

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

NC

ND

NEG

POS

PQL

PRES QC

RER

RL RPD

TEF

TEQ

TNTC

### **Case Narrative**

Job ID: 880-51210-1

### Client: Ensolum Project: Brinninstool Unit 3H

### Job ID: 880-51210-1

### **Eurofins Midland**

#### Job Narrative 880-51210-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

### Receipt

The samples were received on 11/18/2024 4:05 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.2°C.

### **Receipt Exceptions**

The following samples were received and analyzed from an unpreserved bulk soil jar: CS-1 (Caliche backfill) (880-51210-1) and CS-2 (Topsoil backfill) (880-51210-2).

### GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

### **Diesel Range Organics**

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-96013 and analytical batch 880-96065 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

### HPLC/IC

Method 300\_ORGFM\_28D - Soluble: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-96074 and analytical batch 880-96095 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 880-51210-1 SDG: Lea County, NM

### Client Sample ID: CS-1 (Caliche backfill) Date Collected: 11/18/24 11:35

Date Received: 11/18/24 16:05

Project/Site: Brinninstool Unit 3H

Sample Depth: 0.25

Client: Ensolum

| Method: SW846 8021B - Volat<br>Analyte                                           |                      | Qualifier   | RL                 | Unit         | D | Prepared       | Analyzed                         | Dil Fac  |
|----------------------------------------------------------------------------------|----------------------|-------------|--------------------|--------------|---|----------------|----------------------------------|----------|
| Benzene                                                                          | <0.00201             |             | 0.00201            | 0mt<br>mg/Kg |   | 11/19/24 08:56 | 11/19/24 18:18                   |          |
| Toluene                                                                          | <0.00201             | -           | 0.00201            | mg/Kg        |   | 11/19/24 08:56 | 11/19/24 18:18                   |          |
| Ethylbenzene                                                                     | 0.00349              | 0           | 0.00201            | mg/Kg        |   | 11/19/24 08:56 | 11/19/24 18:18                   |          |
| n-Xylene & p-Xylene                                                              | <0.00349             |             | 0.00201            | mg/Kg        |   | 11/19/24 08:56 | 11/19/24 18:18                   |          |
|                                                                                  |                      | 0           | 0.00201            |              |   | 11/19/24 08:56 | 11/19/24 18:18                   |          |
| o-Xylene                                                                         | 0.0648               |             |                    | mg/Kg        |   |                |                                  |          |
| Xylenes, Total                                                                   | 0.0648               |             | 0.00402            | mg/Kg        |   | 11/19/24 08:56 | 11/19/24 18:18                   |          |
| Surrogate                                                                        | %Recovery            | Qualifier   | Limits             |              |   | Prepared       | Analyzed                         | Dil Fa   |
| 4-Bromofluorobenzene (Surr)                                                      | 119                  |             | 70 - 130           |              |   | 11/19/24 08:56 | 11/19/24 18:18                   |          |
| 1,4-Difluorobenzene (Surr)                                                       | 97                   |             | 70 - 130           |              |   | 11/19/24 08:56 | 11/19/24 18:18                   |          |
| Method: TAL SOP Total BTEX                                                       | - Total BTEX Cal     | culation    |                    |              |   |                |                                  |          |
| Analyte                                                                          | Result               | Qualifier   | RL                 | Unit         | D | Prepared       | Analyzed                         | Dil Fa   |
| Total BTEX                                                                       | 0.0683               |             | 0.00402            | mg/Kg        |   |                | 11/19/24 18:18                   |          |
| Method: SW846 8015 NM - Die                                                      | esel Range Organ     | ics (DRO) ( | GC)                |              |   |                |                                  |          |
| Analyte                                                                          |                      | Qualifier   | RL                 | Unit         | D | Prepared       | Analyzed                         | Dil Fac  |
| Total TPH                                                                        | <49.8                | U           | 49.8               | mg/Kg        |   |                | 11/19/24 17:04                   |          |
| Method: SW846 8015B NM - D                                                       | )iesel Range Orga    | nics (DRO)  | (60)               |              |   |                |                                  |          |
| Analyte                                                                          | •••                  | Qualifier   | RL                 | Unit         | D | Prepared       | Analyzed                         | Dil Fa   |
| Gasoline Range Organics                                                          | <49.8                |             | 49.8               | mg/Kg        |   | 11/18/24 15:17 | 11/19/24 17:04                   |          |
| (GRO)-C6-C10                                                                     |                      |             |                    | 5.5          |   |                |                                  |          |
| Diesel Range Organics (Over                                                      | <49.8                | U           | 49.8               | mg/Kg        |   | 11/18/24 15:17 | 11/19/24 17:04                   |          |
| C10-C28)                                                                         |                      |             |                    |              |   |                |                                  |          |
| Oil Range Organics (Over C28-C36)                                                | <49.8                | U           | 49.8               | mg/Kg        |   | 11/18/24 15:17 | 11/19/24 17:04                   |          |
| Surrogate                                                                        | %Recovery            | Qualifier   | Limits             |              |   | Prepared       | Analyzed                         | Dil Fa   |
| 1-Chlorooctane                                                                   | 89                   |             | 70 - 130           |              |   | 11/18/24 15:17 | 11/19/24 17:04                   |          |
| o-Terphenyl                                                                      | 71                   |             | 70 - 130           |              |   | 11/18/24 15:17 | 11/19/24 17:04                   | -        |
| Method: EPA 300.0 - Anions, I                                                    | lon Chromatograg     | hy - Solubl | e                  |              |   |                |                                  |          |
| Analyte                                                                          |                      | Qualifier   | RL                 | Unit         | D | Prepared       | Analyzed                         | Dil Fac  |
| Chloride                                                                         | 117                  |             | 9.98               | mg/Kg        |   |                | 11/19/24 20:58                   | 1        |
| lient Sample ID: CS-2 (To                                                        | opsoil backfill)     |             |                    |              |   | Lab Sam        | ple ID: 880-5                    | 1210-2   |
| ate Collected: 11/18/24 11:37                                                    | ,                    |             |                    |              |   |                |                                  | x: Solid |
| ate Received: 11/18/24 16:05                                                     |                      |             |                    |              |   |                |                                  |          |
| Sample Depth: 0.25                                                               |                      |             |                    |              |   |                |                                  |          |
|                                                                                  |                      |             |                    |              |   |                |                                  |          |
| Method: SW846 8021B - Volat                                                      | ile Organic Comp     | ounds (GC)  | )                  |              |   |                |                                  |          |
|                                                                                  |                      | Qualifier   | RL                 | Unit         | D | Prepared       | Analyzed                         | Dil Fac  |
| Analyte                                                                          | < 0.00202            | U           | 0.00202            | mg/Kg        |   | 11/19/24 08:56 | 11/19/24 18:39                   |          |
|                                                                                  | <0.00202             |             |                    | mg/Kg        |   | 11/19/24 08:56 | 11/19/24 18:39                   |          |
| Benzene                                                                          | <0.00202             | U           | 0.00202            |              |   |                |                                  |          |
| Benzene<br>Toluene                                                               |                      |             | 0.00202<br>0.00202 | mg/Kg        |   | 11/19/24 08:56 | 11/19/24 18:39                   |          |
| Benzene<br>Toluene<br>Ethylbenzene                                               | <0.00202             | U           |                    |              |   |                | 11/19/24 18:39<br>11/19/24 18:39 |          |
| Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>o-Xylene | <0.00202<br><0.00202 | U<br>U      | 0.00202            | mg/Kg        |   | 11/19/24 08:56 |                                  |          |

Eurofins Midland

Lab Sample ID: 880-51210-1 Matrix: Solid 5

Released to Imaging: 3/31/2025 9:23:19 AM

Surrogate

Dil Fac

1

Matrix: Solid

### **Client Sample Results**

Client: Ensolum Project/Site: Brinninstool Unit 3H

Job ID: 880-51210-1 SDG: Lea County, NM

Lab Sample ID: 880-51210-2

### Client Sample ID: CS-2 (Topsoil backfill) Date Collected: 11/18/24 11:37

Date Received: 11/18/24 16:05 Sample Depth: 0.25

| Surrogate                                     | %Recovery       | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------------|-----------------|-------------|----------|-------|---|----------------|----------------|---------|
| 1,4-Difluorobenzene (Surr)                    | 95              |             | 70 - 130 |       |   | 11/19/24 08:56 | 11/19/24 18:39 | 1       |
| Method: TAL SOP Total BTEX - 1                | Total BTEX Calo | culation    |          |       |   |                |                |         |
| Analyte                                       | Result          | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                                    | <0.00404        | U           | 0.00404  | mg/Kg |   |                | 11/19/24 18:39 | 1       |
| Method: SW846 8015 NM - Diese                 | el Range Organ  | ics (DRO) ( | GC)      |       |   |                |                |         |
| Analyte                                       |                 | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                                     | <49.9           | U           | 49.9     | mg/Kg |   |                | 11/19/24 17:20 | 1       |
| Method: SW846 8015B NM - Dies                 | sel Range Orga  | nics (DRO)  | (GC)     |       |   |                |                |         |
| Analyte                                       | Result          | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics                       | <49.9           | U           | 49.9     | mg/Kg |   | 11/18/24 15:17 | 11/19/24 17:20 | 1       |
| (GRO)-C6-C10                                  |                 |             |          |       |   |                |                |         |
| Diesel Range Organics (Over                   | <49.9           | U           | 49.9     | mg/Kg |   | 11/18/24 15:17 | 11/19/24 17:20 | 1       |
| C10-C28)<br>Oil Range Organics (Over C28-C36) | <49.9           | U           | 49.9     | mg/Kg |   | 11/18/24 15:17 | 11/19/24 17:20 | 1       |
| Surrogate                                     | %Recovery       | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                                |                 | Quanner     | 70 - 130 |       |   | 11/18/24 15:17 | 11/19/24 17:20 | 1       |
| o-Terphenyl                                   | 80              |             | 70 - 130 |       |   | 11/18/24 15:17 | 11/19/24 17:20 | 1       |
| Method: EPA 300.0 - Anions, Ion               | Chromatogram    | hy - Solubl | ٥        |       |   |                |                |         |
| MCG10G. LI A 300.0 - A110113, 101             | Sinomatograp    | ny - oolabi | •        |       |   |                |                |         |
| Analyte                                       | Result          | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |

5

Project/Site: Brinninstool Unit 3H

### Job ID: 880-51210-1 SDG: Lea County, NM

## Method: 8021B - Volatile Organic Compounds (GC)

### Matrix: Solid

Client: Ensolum

| _                  |                         |          |          | Percent Surrogate Recovery (Acceptance Limits) |   |
|--------------------|-------------------------|----------|----------|------------------------------------------------|---|
|                    |                         | BFB1     | DFBZ1    |                                                |   |
| Lab Sample ID      | Client Sample ID        | (70-130) | (70-130) |                                                | 5 |
| 880-51210-1        | CS-1 (Caliche backfill) | 119      | 97       |                                                |   |
| 880-51210-2        | CS-2 (Topsoil backfill) | 116      | 95       |                                                | 6 |
| LCS 880-96057/1-A  | Lab Control Sample      | 102      | 95       |                                                |   |
| LCSD 880-96057/2-A | Lab Control Sample Dup  | 105      | 101      |                                                |   |
| MB 880-96057/5-A   | Method Blank            | 111      | 90       |                                                |   |
| Surrogate Legend   |                         |          |          |                                                | 8 |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

### Matrix: Solid

|                    |                         |                  |                   | Percent Surrogate Recovery (Acceptance Limits) |   |
|--------------------|-------------------------|------------------|-------------------|------------------------------------------------|---|
| Lab Sample ID      | Client Sample ID        | 1CO1<br>(70-130) | OTPH1<br>(70-130) |                                                |   |
| 880-51210-1        | CS-1 (Caliche backfill) | 89               | 71                |                                                |   |
| 880-51210-2        | CS-2 (Topsoil backfill) | 102              | 80                |                                                |   |
| LCS 880-96013/2-A  | Lab Control Sample      | 93               | 85                |                                                | 1 |
| LCSD 880-96013/3-A | Lab Control Sample Dup  | 93               | 84                |                                                |   |
| MB 880-96013/1-A   | Method Blank            | 166 S1+          | 132 S1+           |                                                |   |

#### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Prep Type: Total/NA

### **QC Sample Results**

0.00400

0.00200

### Method: 8021B - Volatile Organic Compounds (GC)

| Lab Sample ID: MB 880-96057/5-A<br>Matrix: Solid<br>Analysis Batch: 96051 |          |           |         |       |
|---------------------------------------------------------------------------|----------|-----------|---------|-------|
|                                                                           | MB       | MB        |         |       |
| Analyte                                                                   | Result   | Qualifier | RL      | Unit  |
| Benzene                                                                   | <0.00200 | U         | 0.00200 | mg/Kg |
| Toluene                                                                   | <0.00200 | U         | 0.00200 | mg/Kg |
| Ethylbenzene                                                              | <0.00200 | U         | 0.00200 | mg/Kg |

<0.00400 U

<0.00200 U

| Xylenes, Total              | <0.00400  | <0.00400 U |          |  |
|-----------------------------|-----------|------------|----------|--|
|                             | МВ        | МВ         |          |  |
| Surrogate                   | %Recovery | Qualifier  | Limits   |  |
| 4-Bromofluorobenzene (Surr) | 111       |            | 70 - 130 |  |
| 1,4-Difluorobenzene (Surr)  | 90        |            | 70 - 130 |  |

### Lab Sample ID: LCS 880-96057/1-A Matrix: Solid

### Analysis Batch: 96051

m-Xylene & p-Xylene

o-Xylene

|                     | Spike | LCS    | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|--------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.1185 |           | mg/Kg |   | 119  | 70 - 130 |  |
| Toluene             | 0.100 | 0.1133 |           | mg/Kg |   | 113  | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.1111 |           | mg/Kg |   | 111  | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.2266 |           | mg/Kg |   | 113  | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.1217 |           | mg/Kg |   | 122  | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 102       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 95        |           | 70 - 130 |

### Lab Sample ID: LCSD 880-96057/2-A

### Matrix: Solid

| Analysis Batch: 96051 |       |        |           |       |   |      | Prep     | Batch: | 96057 |
|-----------------------|-------|--------|-----------|-------|---|------|----------|--------|-------|
|                       | Spike | LCSD   | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte               | Added | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               | 0.100 | 0.1220 |           | mg/Kg |   | 122  | 70 - 130 | 3      | 35    |
| Toluene               | 0.100 | 0.1141 |           | mg/Kg |   | 114  | 70 - 130 | 1      | 35    |
| Ethylbenzene          | 0.100 | 0.1211 |           | mg/Kg |   | 121  | 70 - 130 | 9      | 35    |
| m-Xylene & p-Xylene   | 0.200 | 0.2336 |           | mg/Kg |   | 117  | 70 - 130 | 3      | 35    |
| o-Xylene              | 0.100 | 0.1201 |           | mg/Kg |   | 120  | 70 - 130 | 1      | 35    |
|                       |       |        |           |       |   |      |          |        |       |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 105       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 101       |           | 70 - 130 |

Page 141 of 160

Dil Fac

1

1

1

1

1

1

1

1

Dil Fac

Analyzed

11/19/24 11:26

11/19/24 11:26

11/19/24 11:26

11/19/24 11:26

11/19/24 11:26

11/19/24 11:26

Analyzed

11/19/24 11:26

11/19/24 11:26

### Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

D

mg/Kg

mg/Kg

mg/Kg

Prepared

11/19/24 08:56

11/19/24 08:56

11/19/24 08:56

11/19/24 08:56

11/19/24 08:56

11/19/24 08:56

Prepared

11/19/24 08:56

11/19/24 08:56

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 96057

| Eurofins | Midland  |
|----------|----------|
| Euronns  | williand |

## **QC Sample Results**

Client: Ensolum Project/Site: Brinninstool Unit 3H

### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                  | / <b>1-A</b>                                                           |                                                                 |                                                                                                                            |                        |                   |               |        |                                    | ample ID: Met                                                                                               |                                   |                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|---------------|--------|------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                                 |                                                                                                                            |                        |                   |               |        |                                    | Prep Type                                                                                                   |                                   |                                                   |
| Analysis Batch: 96065                                                                                                                                                                                                                                                                                                                                          |                                                                        | IB MB                                                           |                                                                                                                            |                        |                   |               |        |                                    | Prep Ba                                                                                                     | tch:                              | 96013                                             |
| Analyte                                                                                                                                                                                                                                                                                                                                                        | Res                                                                    |                                                                 |                                                                                                                            | RL                     | Unit              |               | D      | Prepared                           | Applyzod                                                                                                    |                                   | Dil Fa                                            |
| Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                        |                                                                        |                                                                 |                                                                                                                            | 50.0                   |                   | ~             |        | 11/18/24 15:17                     | Analyzed 11/19/24 07:1                                                                                      |                                   | DIIFa                                             |
| GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                    | -30                                                                    | .0 0                                                            |                                                                                                                            | 50.0                   | mg/K              | 9             |        | 11/10/24 13.17                     | 11/19/24 07.1                                                                                               | 1                                 |                                                   |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                    | <50                                                                    | .0 U                                                            | 5                                                                                                                          | 50.0                   | mg/K              | q             |        | 11/18/24 15:17                     | 11/19/24 07:1                                                                                               | 1                                 |                                                   |
| C10-C28)                                                                                                                                                                                                                                                                                                                                                       |                                                                        |                                                                 |                                                                                                                            |                        | 0                 | 5             |        |                                    |                                                                                                             |                                   |                                                   |
| Dil Range Organics (Over C28-C36)                                                                                                                                                                                                                                                                                                                              | <50                                                                    | .0 U                                                            | 5                                                                                                                          | 50.0                   | mg/K              | g             |        | 11/18/24 15:17                     | 11/19/24 07:1                                                                                               | 1                                 |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                |                                                                        | IB MB                                                           |                                                                                                                            |                        |                   |               |        |                                    |                                                                                                             |                                   |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                | %Recove                                                                |                                                                 | r Limits                                                                                                                   | _                      |                   |               |        | Prepared                           | Analyzed                                                                                                    |                                   | Dil Fa                                            |
| Surrogate<br>Chlorooctane                                                                                                                                                                                                                                                                                                                                      |                                                                        | $\frac{\mathbf{Q}}{\mathbf{S}} = \frac{\mathbf{Q}}{\mathbf{S}}$ | 70 - 13                                                                                                                    |                        |                   |               | -      | 11/18/24 15:17                     | 11/19/24 07:1                                                                                               |                                   | DIIFa                                             |
| p-Terphenyl                                                                                                                                                                                                                                                                                                                                                    |                                                                        | 32 S1+                                                          | 70 - 13                                                                                                                    |                        |                   |               |        | 11/18/24 15:17                     | 11/19/24 07:1                                                                                               |                                   |                                                   |
| - reipileilyi                                                                                                                                                                                                                                                                                                                                                  | 1                                                                      | 52 317                                                          | 70 - 73                                                                                                                    | 30                     |                   |               |        | 11/10/24 15.17                     | 11/19/24 07.1                                                                                               | 1                                 |                                                   |
| Lab Sample ID: LCS 880-96013                                                                                                                                                                                                                                                                                                                                   | 3/2-A                                                                  |                                                                 |                                                                                                                            |                        |                   |               | Cli    | ent Sample                         | ID: Lab Conti                                                                                               | rol Sa                            | amol                                              |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                  |                                                                        |                                                                 |                                                                                                                            |                        |                   |               |        | ont oumpro                         | Prep Type                                                                                                   |                                   |                                                   |
| Analysis Batch: 96065                                                                                                                                                                                                                                                                                                                                          |                                                                        |                                                                 |                                                                                                                            |                        |                   |               |        |                                    | Prep Ba                                                                                                     |                                   |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                                 | Spike                                                                                                                      | LCS                    | LCS               |               |        |                                    | %Rec                                                                                                        |                                   |                                                   |
| Analyte                                                                                                                                                                                                                                                                                                                                                        |                                                                        |                                                                 | Added                                                                                                                      | Result                 | Qualifier         | Unit          |        | D %Rec                             | Limits                                                                                                      |                                   |                                                   |
| Basoline Range Organics                                                                                                                                                                                                                                                                                                                                        |                                                                        |                                                                 | 1000                                                                                                                       | 987.4                  |                   | mg/Kg         |        |                                    | 70 - 130                                                                                                    |                                   |                                                   |
| GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                    |                                                                        |                                                                 |                                                                                                                            |                        |                   | 5 5           |        |                                    |                                                                                                             |                                   |                                                   |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                    |                                                                        |                                                                 | 1000                                                                                                                       | 790.7                  |                   | mg/Kg         |        | 79                                 | 70 - 130                                                                                                    |                                   |                                                   |
| C10-C28)                                                                                                                                                                                                                                                                                                                                                       |                                                                        |                                                                 |                                                                                                                            |                        |                   |               |        |                                    |                                                                                                             |                                   |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                                 |                                                                                                                            |                        |                   |               |        |                                    |                                                                                                             |                                   |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                | 1.05.1                                                                 | 20                                                              |                                                                                                                            |                        |                   |               |        |                                    |                                                                                                             |                                   |                                                   |
| Surrogate                                                                                                                                                                                                                                                                                                                                                      | LCS L<br>%Recovery Q                                                   |                                                                 | l imits                                                                                                                    |                        |                   |               |        |                                    |                                                                                                             |                                   |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                | %Recovery Q                                                            | CS<br>ualifier                                                  | Limits                                                                                                                     |                        |                   |               |        |                                    |                                                                                                             |                                   |                                                   |
| -Chlorooctane                                                                                                                                                                                                                                                                                                                                                  | %Recovery<br>93                                                        |                                                                 | 70 - 130                                                                                                                   |                        |                   |               |        |                                    |                                                                                                             |                                   |                                                   |
| -Chlorooctane                                                                                                                                                                                                                                                                                                                                                  | %Recovery Q                                                            |                                                                 |                                                                                                                            |                        |                   |               |        |                                    |                                                                                                             |                                   |                                                   |
| I-Chlorooctane<br>D-Terphenyl                                                                                                                                                                                                                                                                                                                                  | %Recovery 93<br>93<br>85                                               |                                                                 | 70 - 130                                                                                                                   |                        |                   | Cli           | ent S  | Sample ID: L                       | ab Control Sa                                                                                               | ample                             | e Du                                              |
| I-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-960                                                                                                                                                                                                                                                                                                   | %Recovery 93<br>93<br>85                                               |                                                                 | 70 - 130                                                                                                                   |                        |                   | Cli           | ent S  | Sample ID: L                       | ab Control Sa<br>Prep Type                                                                                  |                                   |                                                   |
| I-Chlorooctane<br>Terphenyl<br>Lab Sample ID: LCSD 880-960<br>Matrix: Solid                                                                                                                                                                                                                                                                                    | %Recovery 93<br>93<br>85                                               |                                                                 | 70 - 130                                                                                                                   |                        |                   | Cli           | ent S  | Sample ID: L                       | ab Control Sa<br>Prep Type<br>Prep Ba                                                                       | e: Tot                            | tal/N                                             |
| I-Chlorooctane<br>Terphenyl<br>Lab Sample ID: LCSD 880-960<br>Matrix: Solid                                                                                                                                                                                                                                                                                    | %Recovery 93<br>93<br>85                                               |                                                                 | 70 - 130                                                                                                                   | LCSD                   | LCSD              | Cli           | ent S  | Sample ID: L                       | Prep Type                                                                                                   | e: Tot                            | tal/N<br>9601                                     |
| -Chlorooctane<br>-Terphenyl<br>Lab Sample ID: LCSD 880-960<br>Matrix: Solid<br>Analysis Batch: 96065                                                                                                                                                                                                                                                           | %Recovery 93<br>93<br>85                                               |                                                                 | 70 - 130<br>70 - 130                                                                                                       |                        | LCSD<br>Qualifier | Cli           | ent S  | Sample ID: L                       | Prep Type<br>Prep Ba<br>%Rec                                                                                | e: Tot                            | tal/N<br>9601<br>RP                               |
| -Chlorooctane<br>-Terphenyl<br>Lab Sample ID: LCSD 880-960<br>Matrix: Solid<br>Analysis Batch: 96065                                                                                                                                                                                                                                                           | %Recovery 93<br>93<br>85                                               |                                                                 | 70 - 130<br>70 - 130<br><b>Spike</b>                                                                                       |                        |                   |               | ent S  | -                                  | Prep Type<br>Prep Ba<br>%Rec                                                                                | e: Tot<br>tch: 9                  | tal/N<br>9601<br>RP<br>Lim                        |
| I-Chlorooctane<br>D-Terphenyl<br>Lab Sample ID: LCSD 880-960<br>Matrix: Solid<br>Analysis Batch: 96065<br>Analyte<br>Basoline Range Organics                                                                                                                                                                                                                   | %Recovery 93<br>93<br>85                                               |                                                                 | 70 - 130<br>70 - 130<br>Spike<br>Added                                                                                     | Result                 |                   | Unit          | ent S  | D %Rec                             | Prep Type<br>Prep Ba<br>%Rec<br>Limits                                                                      | e: Tot<br>tch:<br>RPD             | tal/N<br>9601<br>RP<br>Lim                        |
| I-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-960<br>Matrix: Solid<br>Analysis Batch: 96065<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10                                                                                                                                                                                                    | %Recovery 93<br>93<br>85                                               |                                                                 | 70 - 130<br>70 - 130<br>Spike<br>Added                                                                                     | Result                 |                   | Unit          | ent S  | D %Rec                             | Prep Type<br>Prep Ba<br>%Rec<br>Limits                                                                      | e: Tot<br>tch:<br>RPD             | tal/N<br>9601<br>RP<br>Lim                        |
| I-Chlorooctane<br>D-Terphenyl<br>Lab Sample ID: LCSD 880-960<br>Matrix: Solid<br>Analysis Batch: 96065<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                     | %Recovery 93<br>93<br>85                                               |                                                                 | 70 - 130<br>70 - 130<br><b>Spike</b><br>Added<br>1000                                                                      | <b>Result</b><br>988.8 |                   | Unit<br>mg/Kg | ent S  | D %Rec 99                          | Prep Type<br>Prep Ba<br>%Rec<br>Limits<br>70 - 130                                                          | e: Tot<br>tch:<br>RPD<br>0        | tal/N<br>9601<br>RP<br>Lim                        |
| I-Chlorooctane<br>D-Terphenyl<br>Lab Sample ID: LCSD 880-960<br>Matrix: Solid<br>Analysis Batch: 96065<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                     | <u>%Recovery</u> 93<br>93<br>13/3-A                                    | ualifier                                                        | 70 - 130<br>70 - 130<br><b>Spike</b><br>Added<br>1000                                                                      | <b>Result</b><br>988.8 |                   | Unit<br>mg/Kg | ent S  | D %Rec 99                          | Prep Type<br>Prep Ba<br>%Rec<br>Limits<br>70 - 130                                                          | e: Tot<br>tch:<br>RPD<br>0        | tal/N<br>9601<br>RP<br>Lim                        |
| I-Chlorooctane<br>b-Terphenyl<br>Lab Sample ID: LCSD 880-960<br>Matrix: Solid<br>Analysis Batch: 96065<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                         | <u>%Recovery</u> 93<br>93<br>13/3-A<br>                                | ualifier                                                        | 70 - 130<br>70 - 130<br><b>Spike</b><br>Added<br>1000                                                                      | <b>Result</b><br>988.8 |                   | Unit<br>mg/Kg | ent S  | D %Rec 99                          | Prep Type<br>Prep Ba<br>%Rec<br>Limits<br>70 - 130                                                          | e: Tot<br>tch:<br>RPD<br>0        | tal/N<br>9601<br>RP<br>Lim                        |
| I-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-960<br>Matrix: Solid<br>Analysis Batch: 96065<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate                                                                                                                                           | <u>%Recovery</u> 93<br>93<br>13/3-A<br>                                | ualifier                                                        | 70 - 130<br>70 - 130<br><b>Spike</b><br>Added<br>1000                                                                      | <b>Result</b><br>988.8 |                   | Unit<br>mg/Kg | ent S  | D %Rec 99                          | Prep Type<br>Prep Ba<br>%Rec<br>Limits<br>70 - 130                                                          | e: Tot<br>tch:<br>RPD<br>0        | tal/N<br>9601<br>RP<br>Lim                        |
| I-Chlorooctane<br>D-Terphenyl<br>Lab Sample ID: LCSD 880-960<br>Matrix: Solid<br>Analysis Batch: 96065<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>I-Chlorooctane                                                                                                                          | %Recovery         Q           93         85           13/3-A           | ualifier                                                        | 70 - 130<br>70 - 130<br><b>Spike</b><br>Added<br>1000<br>1000<br><u>Limits</u><br>70 - 130                                 | <b>Result</b><br>988.8 |                   | Unit<br>mg/Kg | ent S  | D %Rec 99                          | Prep Type<br>Prep Ba<br>%Rec<br>Limits<br>70 - 130                                                          | e: Tot<br>tch:<br>RPD<br>0        | tal/N<br>9601<br>RP<br>Lim<br>2                   |
| -Chlorooctane<br>-Terphenyl<br>Lab Sample ID: LCSD 880-960<br>Matrix: Solid<br>Analysis Batch: 96065<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>biesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>-Chlorooctane                                                                                                                             | <u>%Recovery</u> 93<br>93<br>13/3-A<br><br>                            | ualifier                                                        | 70 - 130<br>70 - 130<br><b>Spike</b><br>Added<br>1000<br>1000                                                              | <b>Result</b><br>988.8 |                   | Unit<br>mg/Kg | ent \$ | D %Rec 99                          | Prep Type<br>Prep Ba<br>%Rec<br>Limits<br>70 - 130                                                          | e: Tot<br>tch:<br>RPD<br>0        | tal/N<br>9601<br>RF<br>Lin                        |
| -Chlorooctane<br>-Terphenyl<br>Lab Sample ID: LCSD 880-960<br>Matrix: Solid<br>Analysis Batch: 96065<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>-Chlorooctane<br>D-Terphenyl                                                                                                              | %Recovery         Q           93         85           13/3-A         - | ualifier                                                        | 70 - 130<br>70 - 130<br><b>Spike</b><br>Added<br>1000<br>1000<br><u>Limits</u><br>70 - 130                                 | <b>Result</b><br>988.8 |                   | Unit<br>mg/Kg | ent \$ | D %Rec 99                          | Prep Type<br>Prep Ba<br>%Rec<br>Limits<br>70 - 130                                                          | e: Tot<br>tch:<br>RPD<br>0        | tal/N<br>9601<br>RF<br>Lin                        |
| I-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-9607<br>Matrix: Solid<br>Analysis Batch: 96065<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>I-Chlorooctane<br>p-Terphenyl<br>lethod: 300.0 - Anions, Iou                                                                          | %Recovery         Q           93         85           13/3-A           | ualifier                                                        | 70 - 130<br>70 - 130<br><b>Spike</b><br>Added<br>1000<br>1000<br><u>Limits</u><br>70 - 130                                 | <b>Result</b><br>988.8 |                   | Unit<br>mg/Kg | ent \$ | <u>D</u> <u>%Rec</u><br>99 –<br>78 | Prep Type           Prep Ba           %Rec           Limits         1           70 - 130           70 - 130 | e: Tot<br>tch: 9<br>0<br>1        | tal/N<br>9601<br>RF<br>Linr<br>2                  |
| I-Chlorooctane<br>-Terphenyl<br>Lab Sample ID: LCSD 880-9607<br>Matrix: Solid<br>Analysis Batch: 96065<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>I-Chlorooctane<br>-Terphenyl<br>ethod: 300.0 - Anions, Iou<br>Lab Sample ID: MB 880-96074/                                              | %Recovery         Q           93         85           13/3-A           | ualifier                                                        | 70 - 130<br>70 - 130<br><b>Spike</b><br>Added<br>1000<br>1000<br><u>Limits</u><br>70 - 130                                 | <b>Result</b><br>988.8 |                   | Unit<br>mg/Kg | ent \$ | <u>D</u> <u>%Rec</u><br>99 –<br>78 | Prep Type<br>Prep Ba<br>%Rec<br>Limits 1<br>70 - 130<br>70 - 130                                            | e: Tot<br>tch: :<br>RPD<br>0<br>1 | tal/N<br>9601<br>RP<br>Lim<br>2<br>2              |
| I-Chlorooctane<br>-Terphenyl<br>Lab Sample ID: LCSD 880-960<br>Matrix: Solid<br>Analysis Batch: 96065<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>I-Chlorooctane<br>D-Terphenyl<br>ethod: 300.0 - Anions, Ioi<br>Lab Sample ID: MB 880-96074/<br>Matrix: Solid                             | %Recovery         Q           93         85           13/3-A           | ualifier                                                        | 70 - 130<br>70 - 130<br><b>Spike</b><br>Added<br>1000<br>1000<br><u>Limits</u><br>70 - 130                                 | <b>Result</b><br>988.8 |                   | Unit<br>mg/Kg | ent \$ | <u>D</u> <u>%Rec</u><br>99 –<br>78 | Prep Type           Prep Ba           %Rec           Limits         1           70 - 130           70 - 130 | e: Tot<br>tch: :<br>RPD<br>0<br>1 | tal/N<br>9601<br>RP<br>Lim<br>2<br>2              |
| I-Chlorooctane<br>-Terphenyl<br>Lab Sample ID: LCSD 880-960<br>Matrix: Solid<br>Analysis Batch: 96065<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>I-Chlorooctane<br>D-Terphenyl<br>ethod: 300.0 - Anions, Ioi<br>Lab Sample ID: MB 880-96074/<br>Matrix: Solid                             | %Recovery         Q           93         85           13/3-A           | ualifier                                                        | 70 - 130<br>70 - 130<br><b>Spike</b><br>Added<br>1000<br>1000<br><u>Limits</u><br>70 - 130                                 | <b>Result</b><br>988.8 |                   | Unit<br>mg/Kg | ent \$ | <u>D</u> <u>%Rec</u><br>99 –<br>78 | Prep Type<br>Prep Ba<br>%Rec<br>Limits 1<br>70 - 130<br>70 - 130                                            | e: Tot<br>tch: :<br>RPD<br>0<br>1 | tal/N.<br>9601<br>RP<br>Lim<br>2<br>2             |
| Surrogate<br>1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-960'<br>Matrix: Solid<br>Analysis Batch: 96065<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>p-Terphenyl<br>lethod: 300.0 - Anions, Ioi<br>Lab Sample ID: MB 880-96074/<br>Matrix: Solid<br>Analyte | %Recovery         Q           93         85           13/3-A           | ualifier<br>CSD<br>ualifier                                     | 70 - 130<br>70 - 130<br>70 - 130<br><b>Spike</b><br>Added<br>1000<br>1000<br>1000<br><u>Limits</u><br>70 - 130<br>70 - 130 | <b>Result</b><br>988.8 |                   | Unit<br>mg/Kg | ent \$ | <u>D</u> <u>%Rec</u><br>99 –<br>78 | Prep Type<br>Prep Ba<br>%Rec<br>Limits 1<br>70 - 130<br>70 - 130                                            | e: Tot<br>tch: :<br>RPD<br>0<br>1 | tal/NJ<br>9601<br>RPI<br>2<br>2<br>2<br>8<br>Blan |

5

6 7 8

## **QC Sample Results**

Client: Ensolum Project/Site: Brinninstool Unit 3H Job ID: 880-51210-1 SDG: Lea County, NM

### Method: 300.0 - Anions, Ion Chromatography (Continued)

| Lab Sample ID: LCS 880-96074/2-A<br>Matrix: Solid<br>Analysis Batch: 96095 |       |        |           |       | Client | t Sample | ID: Lab Co<br>Prep | ontrol Sa<br>Type: S |        |
|----------------------------------------------------------------------------|-------|--------|-----------|-------|--------|----------|--------------------|----------------------|--------|
| Analysis Baton. soose                                                      | Spike | LCS    | LCS       |       |        |          | %Rec               |                      |        |
| Analyte                                                                    | Added | Result | Qualifier | Unit  | D      | %Rec     | Limits             |                      |        |
| Chloride                                                                   | 250   | 256.0  |           | mg/Kg |        | 102      | 90 - 110           |                      |        |
| Lab Sample ID: LCSD 880-96074/3-A<br>Matrix: Solid                         |       |        |           | Clie  | nt Sam | ple ID:  | Lab Contro<br>Pren | ol Sampl<br>Type: S  |        |
| Analysis Batch: 96095                                                      |       |        |           |       |        |          | Пер                | Type. O              | orubic |
| · ·····, ··· · ···· · · · · · · · · · ·                                    | Spike | LCSD   | LCSD      |       |        |          | %Rec               |                      | RPD    |
| Analyte                                                                    | Added | Result | Qualifier | Unit  | D      | %Rec     | Limits             | RPD                  | Limit  |
| Chloride                                                                   | 250   | 255.7  |           | mg/Kg |        | 102      | 90 _ 110           | 0                    | 20     |

**Client Sample ID** 

Method Blank

CS-1 (Caliche backfill)

CS-2 (Topsoil backfill)

Lab Control Sample

**Client Sample ID** 

Method Blank

CS-1 (Caliche backfill)

CS-2 (Topsoil backfill)

Lab Control Sample

Lab Control Sample Dup

Lab Control Sample Dup

## **QC Association Summary**

Client: Ensolum Project/Site: Brinninstool Unit 3H

### **GC VOA**

Lab Sample ID

880-51210-1

880-51210-2

880-51210-1

880-51210-2

MB 880-96057/5-A

LCS 880-96057/1-A

LCSD 880-96057/2-A

MB 880-96057/5-A

LCS 880-96057/1-A

LCSD 880-96057/2-A

Prep Batch: 96057

### Analysis Batch: 96051

| n Summar              | У               |                      |                |   |
|-----------------------|-----------------|----------------------|----------------|---|
|                       | -               | Job ID               | ): 880-51210-1 |   |
|                       |                 | SDG: Le              | ea County, NM  |   |
|                       |                 |                      |                |   |
|                       |                 |                      |                |   |
| Ргер Туре             | Matrix          | Method               | Prep Batch     |   |
| Total/NA              | Solid           | 8021B                | 96057          | 5 |
| Total/NA              | Solid           | 8021B                | 96057          |   |
| Total/NA              | Solid           | 8021B                | 96057          |   |
| Total/NA              | Solid           | 8021B                | 96057          |   |
| Total/NA              | Solid           | 8021B                | 96057          |   |
| Ргер Туре             | Matrix          | Method               | Prep Batch     | 8 |
| Total/NA              | Solid           | 5035                 |                |   |
| Total/NA              | Solid           | 5035                 |                | 9 |
| Total/NA              | Solid           | 5035                 |                |   |
| Total/NA              | Solid           | 5035                 |                |   |
| Total/NA              | Solid           | 5035                 |                |   |
| Pron Tuno             | Motvix          | Mothod               | Bron Botob     |   |
| Prep Type<br>Total/NA | Matrix<br>Solid | Method<br>Total BTEX | Prep Batch     |   |
| Total/NA              | Solid           | Total BTEX           |                | 1 |
|                       |                 |                      |                | 1 |
| Prep Type             | Matrix          | Method               | Prep Batch     |   |
| Total/NA              | Solid           | 8015NM Prep          | ·              |   |
| Total/NA              | Solid           | 8015NM Prep          |                |   |
| Total/NA              | Solid           | 8015NM Prep          |                |   |
| Total/NA              | Solid           | 8015NM Prep          |                |   |
| Total/NA              | Solid           | 8015NM Prep          |                |   |
| Prep Туре             | Matrix          | Method               | Prep Batch     |   |
| Total/NA              | Solid           | 8015B NM             | 96013          |   |
| Total/NA              | Solid           | 8015B NM             | 96013          |   |
|                       |                 |                      |                |   |

## Analysis Batch: 96196

| Lab Sample ID | Client Sample ID        | Ргер Туре | Matrix | Method     | Prep Batch |
|---------------|-------------------------|-----------|--------|------------|------------|
| 880-51210-1   | CS-1 (Caliche backfill) | Total/NA  | Solid  | Total BTEX |            |
| 880-51210-2   | CS-2 (Topsoil backfill) | Total/NA  | Solid  | Total BTEX |            |
|               |                         |           |        |            |            |

### GC Semi VOA

### Prep Batch: 96013

| Lab Sample ID      | Client Sample ID        | Prep Type | Matrix | Method      | Prep Batch |
|--------------------|-------------------------|-----------|--------|-------------|------------|
| 880-51210-1        | CS-1 (Caliche backfill) | Total/NA  | Solid  | 8015NM Prep |            |
| 880-51210-2        | CS-2 (Topsoil backfill) | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-96013/1-A   | Method Blank            | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-96013/2-A  | Lab Control Sample      | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-96013/3-A | Lab Control Sample Dup  | Total/NA  | Solid  | 8015NM Prep |            |

### Analysis Batch: 96065

| Lab Sample ID      | Client Sample ID        | Prep Type | Matrix | Method   | Prep Batch |
|--------------------|-------------------------|-----------|--------|----------|------------|
| 880-51210-1        | CS-1 (Caliche backfill) | Total/NA  | Solid  | 8015B NM | 96013      |
| 880-51210-2        | CS-2 (Topsoil backfill) | Total/NA  | Solid  | 8015B NM | 96013      |
| MB 880-96013/1-A   | Method Blank            | Total/NA  | Solid  | 8015B NM | 96013      |
| LCS 880-96013/2-A  | Lab Control Sample      | Total/NA  | Solid  | 8015B NM | 96013      |
| LCSD 880-96013/3-A | Lab Control Sample Dup  | Total/NA  | Solid  | 8015B NM | 96013      |

#### Analysis Batch: 96177

| Lab Sample ID | Client Sample ID        | Ргер Туре | Matrix | Method  | Prep Batch |
|---------------|-------------------------|-----------|--------|---------|------------|
| 880-51210-1   | CS-1 (Caliche backfill) | Total/NA  | Solid  | 8015 NM |            |
| 880-51210-2   | CS-2 (Topsoil backfill) | Total/NA  | Solid  | 8015 NM |            |
|               |                         |           |        |         |            |

### HPLC/IC

### Leach Batch: 96074

| Lab Sample ID      | Client Sample ID        | Ргер Туре | Matrix | Method Prep | Batch |
|--------------------|-------------------------|-----------|--------|-------------|-------|
| 880-51210-1        | CS-1 (Caliche backfill) | Soluble   | Solid  | DI Leach    |       |
| 880-51210-2        | CS-2 (Topsoil backfill) | Soluble   | Solid  | DI Leach    |       |
| MB 880-96074/1-A   | Method Blank            | Soluble   | Solid  | DI Leach    |       |
| LCS 880-96074/2-A  | Lab Control Sample      | Soluble   | Solid  | DI Leach    |       |
| LCSD 880-96074/3-A | Lab Control Sample Dup  | Soluble   | Solid  | DI Leach    |       |
Client: Ensolum Project/Site: Brinninstool Unit 3H

Job ID: 880-51210-1 SDG: Lea County, NM

### HPLC/IC

### Analysis Batch: 96095

| nalysis Batch: 96095 | <b>i</b>                |           |        |        |            |
|----------------------|-------------------------|-----------|--------|--------|------------|
| _ab Sample ID        | Client Sample ID        | Prep Type | Matrix | Method | Prep Batch |
| 380-51210-1          | CS-1 (Caliche backfill) | Soluble   | Solid  | 300.0  | 96074      |
| 380-51210-2          | CS-2 (Topsoil backfill) | Soluble   | Solid  | 300.0  | 96074      |
| /IB 880-96074/1-A    | Method Blank            | Soluble   | Solid  | 300.0  | 96074      |
| CS 880-96074/2-A     | Lab Control Sample      | Soluble   | Solid  | 300.0  | 96074      |
| CSD 880-96074/3-A    | Lab Control Sample Dup  | Soluble   | Solid  | 300.0  | 96074      |
|                      |                         |           |        |        |            |
|                      |                         |           |        |        |            |
|                      |                         |           |        |        |            |
|                      |                         |           |        |        |            |
|                      |                         |           |        |        |            |
|                      |                         |           |        |        |            |
|                      |                         |           |        |        |            |
|                      |                         |           |        |        |            |
|                      |                         |           |        |        |            |
|                      |                         |           |        |        |            |
|                      |                         |           |        |        |            |
|                      |                         |           |        |        |            |
|                      |                         |           |        |        |            |
|                      |                         |           |        |        |            |

Eurofins Midland

Page 145 of 160

Dilution

Factor

1

1

1

1

1

Run

Batch

96057

96051

96196 SM

96177 SM

96013 EL

96074 SA

96065

96095 CH

Number Analyst

MNR

MNR

TKC

Lab

EET MID

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

### Client Sample ID: CS-1 (Caliche backfill) Date Collected: 11/18/24 11:35 Date Received: 11/18/24 16:05

Batch

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Method

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Job ID: 880-51210-1 SDG: Lea County, NM

### Lab Sample ID: 880-51210-1 Matrix: Solid

Prepared

or Analyzed

11/19/24 08:56

11/19/24 18:18

11/19/24 18:18

11/19/24 17:04

11/18/24 15:17

11/19/24 17:04

11/19/24 09:43

11/19/24 20:58

| L | _ab | Sample | ID: | 880-51210-2   |
|---|-----|--------|-----|---------------|
|   |     |        |     | Matrix, Solid |

Matrix: Solid

### Client Sample ID: CS-2 (Topsoil backfill) Date Collected: 11/18/24 11:37

Analysis

### Date Received: 11/18/24 16:05

|           | Batch    | Batch       |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|-------------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Туре     | Method      | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Prep     | 5035        |     |          | 96057  | MNR     | EET MID | 11/19/24 08:56 |
| Total/NA  | Analysis | 8021B       |     | 1        | 96051  | MNR     | EET MID | 11/19/24 18:39 |
| Total/NA  | Analysis | Total BTEX  |     | 1        | 96196  | SM      | EET MID | 11/19/24 18:39 |
| Total/NA  | Analysis | 8015 NM     |     | 1        | 96177  | SM      | EET MID | 11/19/24 17:20 |
| Total/NA  | Prep     | 8015NM Prep |     |          | 96013  | EL      | EET MID | 11/18/24 15:17 |
| Total/NA  | Analysis | 8015B NM    |     | 1        | 96065  | ТКС     | EET MID | 11/19/24 17:20 |
| Soluble   | Leach    | DI Leach    |     |          | 96074  | SA      | EET MID | 11/19/24 09:43 |
| Soluble   | Analysis | 300.0       |     | 1        | 96095  | CH      | EET MID | 11/19/24 21:06 |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

**Eurofins Midland** 

Accreditation/Certification Summary

Client: Ensolum Project/Site: Brinninstool Unit 3H

#### Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| uthority               | Progra                       | m                              | Identification Number                    | Expiration Date        |
|------------------------|------------------------------|--------------------------------|------------------------------------------|------------------------|
| exas                   | NELAF                        | NELAP                          |                                          | 06-30-25               |
|                        |                              |                                |                                          |                        |
| for which the agency d | oes not offer certification. |                                | ied by the governing authority. This lis | t may include analytes |
| • ,                    |                              | t the laboratory is not certif | ied by the governing authority. This lis | t may include analytes |
| for which the agency d | oes not offer certification. |                                |                                          | t may include analytes |

10

Job ID: 880-51210-1 SDG: Lea County, NM

Eurofins Midland

## **Method Summary**

Client: Ensolum Project/Site: Brinninstool Unit 3H Job ID: 880-51210-1 SDG: Lea County, NM

| Method        | Method Description                 | Protocol | Laboratory |
|---------------|------------------------------------|----------|------------|
| 8021B         | Volatile Organic Compounds (GC)    | SW846    | EET MID    |
| Total BTEX    | Total BTEX Calculation             | TAL SOP  | EET MID    |
| 8015 NM       | Diesel Range Organics (DRO) (GC)   | SW846    | EET MID    |
| 8015B NM      | Diesel Range Organics (DRO) (GC)   | SW846    | EET MID    |
| 300.0         | Anions, Ion Chromatography         | EPA      | EET MID    |
| 5035          | Closed System Purge and Trap       | SW846    | EET MID    |
| 8015NM Prep   | Microextraction                    | SW846    | EET MID    |
| DI Leach      | Deionized Water Leaching Procedure | ASTM     | EET MID    |
| Protocol Refe | rences:                            |          |            |
| ASTM = A      | STM International                  |          |            |

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Released to Imaging: 3/31/2025 9:23:19 AM

### Job ID: 880-51210-1 SDG: Lea County, NM

Client: Ensolum Project/Site: Brinninstool Unit 3H

| Lab Sample ID | Client Sample ID        | Matrix | Collected      | Received       | Depth |    |
|---------------|-------------------------|--------|----------------|----------------|-------|----|
| 880-51210-1   | CS-1 (Caliche backfill) | Solid  | 11/18/24 11:35 | 11/18/24 16:05 | 0.25  | 4  |
| 880-51210-2   | CS-2 (Topsoil backfill) | Solid  | 11/18/24 11:37 | 11/18/24 16:05 | 0.25  |    |
|               |                         |        |                |                |       | 5  |
|               |                         |        |                |                |       |    |
|               |                         |        |                |                |       |    |
|               |                         |        |                |                |       | 8  |
|               |                         |        |                |                |       | 9  |
|               |                         |        |                |                |       | 1  |
|               |                         |        |                |                |       |    |
|               |                         |        |                |                |       | 1: |
|               |                         |        |                |                |       | 1: |
|               |                         |        |                |                |       |    |

.

| Hobbs, NM (575)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 194-1290 / 194-1290 / 194-1290 / 14 / 1940 / 194-1290 / 194-1290 / 194-1290 / 1940 / 1940 / 1940 / 1940 / 1940 /                                                                                                    | www.xenco.com Page 1 c                                                                           | of 1                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------|
| Project Manager: 0302 02 4197 ( HOLie Green) Bill to: if differenti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hadle Gren                                                                                                                                                                                                          | omments                                                                                          |                            |
| Fristhin, LLC Company Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Enseption, LLC                                                                                                                                                                                                      | Program: UST/PST Brownfields RRC                                                                 | Superfund                  |
| 601 N Marienfield Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                  |                            |
| 79701 City, State ZIP:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                     | Reporting: Level II Level III PST/UST TRRP                                                       |                            |
| 895 Email: hgreen ens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | am Com                                                                                                                                                                                                              | Deliverables: EDD ADaPT Other:                                                                   |                            |
| Umt 3H Tum Around                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ANALYSIS REQUEST                                                                                                                                                                                                    | Preservative                                                                                     | e Codes                    |
| 120202497 21M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                     |                                                                                                  | DI Water: H <sub>2</sub> O |
| ris Name: Udeh A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                  | MeOH: Me<br>HNO 3: HN      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80                                                                                                                                                                                                                  | N 2204:172<br>H3P04:142                                                                          | PN CLOPN                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                   | NaHSO 4: NABIS                                                                                   |                            |
| -~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80<br>275<br>210                                                                                                                                                                                                    | Na 25 <sub>3</sub> O <sub>3</sub> : NaSO <sub>3</sub><br>Zn Acetate-NaOH: Zn                     | t: Zn                      |
| Corrected Temperature: 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                   | NaOH+Ascorbic Acid: SAPC                                                                         | cid: SAPC                  |
| Depth Grab/ # of<br>Comp Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HQT<br>HQT                                                                                                                                                                                                          | Sample Comments                                                                                  | mments                     |
| 4 1135 0:25 C 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | × × ×                                                                                                                                                                                                               |                                                                                                  |                            |
| -2 (Topson'l backful) 5 41 18/24 1137 0:25 C 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×××                                                                                                                                                                                                                 |                                                                                                  |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                  |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                  |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                  |                            |
| Total 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas 11 AI Sb A   Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010 : 8RCRA Sb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K<br>CRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U                                                                                                           | Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr Tl Sn U V Zn<br>e Ag Tl U Hg: 1631 / 245.1 / 7470 / 7471 |                            |
| Motce: Signature of thyrdocument and relinquistment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affliates and subcontractors. It assigns standard terms and conditions of sepfice. Burdins Xenco, will be lable only for the cost of samples and shall not assume any tespensability for any losses or expenses incurred by the client if such losses are due to chrumstances beyond the control of sepfice. A finiting charge of \$55 to valit be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated of supervisions and the total sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated | s Xenco, Its affiliates and subcontractors. It assigns standard term<br>s incurred by the client If such hosses are due to circumstances bey<br>offirs Xenco, but not analyzed. These terms will be enforced unless | a and conditions<br>ond the control<br>previously negodiated.                                    |                            |
| Received by: (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date/Time Relinquished by: (Signature)                                                                                                                                                                              | Received by: (Signature)                                                                         | Date/Time                  |
| The state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 024 / (005 2<br>4                                                                                                                                                                                                 |                                                                                                  |                            |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                   |                                                                                                  |                            |

### Login Sample Receipt Checklist

Client: Ensolum

Login Number: 51210 List Number: 1 Creator: Vasquez, Julisa

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is               | N/A    |         |

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 880-51210-1

SDG Number: Lea County, NM

#### List Source: Eurofins Midland

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

| 73   |      | ~   | 4 11 |
|------|------|-----|------|
| Vaaa | 157  | O.t | 160  |
| Page | 1.34 | 01  | 100  |
|      |      | ~ / |      |

QUESTIONS

Action 417949

| QUESTIONS          |                                                        |  |  |  |
|--------------------|--------------------------------------------------------|--|--|--|
| Operator:          | OGRID:                                                 |  |  |  |
| COG OPERATING LLC  | 229137                                                 |  |  |  |
| 600 W Illinois Ave | Action Number:                                         |  |  |  |
| Midland, TX 79701  | 417949                                                 |  |  |  |
|                    | Action Type:                                           |  |  |  |
|                    | [C-141] Reclamation Report C-141 (C-141-v-Reclamation) |  |  |  |

#### QUESTIONS

| Prerequisites     |                                                      |
|-------------------|------------------------------------------------------|
| Incident ID (n#)  | nAPP2315635182                                       |
| Incident Name     | NAPP2315635182 BRINNINSTOOL UNIT 003H @ 30-025-41371 |
| Incident Type     | Produced Water Release                               |
| Incident Status   | Reclamation Report Received                          |
| Incident Well     | [30-025-41371] BRINNINSTOOL UNIT #003H               |
| Incident Facility | [fAPP2203246737] BRINNINSTOOL UNIT 3H BATTERY        |

#### Location of Release Source

| Please answer all the questions in this group. |                        |  |  |  |
|------------------------------------------------|------------------------|--|--|--|
| Site Name                                      | BRINNINSTOOL UNIT 003H |  |  |  |
| Date Release Discovered                        | 05/29/2023             |  |  |  |
| Surface Owner                                  | Private                |  |  |  |

#### Incident Details

| Please answer all the questions in this group.                                                       |                        |
|------------------------------------------------------------------------------------------------------|------------------------|
| Incident Type                                                                                        | Produced Water Release |
| Did this release result in a fire or is the result of a fire                                         | No                     |
| Did this release result in any injuries                                                              | No                     |
| Has this release reached or does it have a reasonable probability of reaching a<br>watercourse       | No                     |
| Has this release endangered or does it have a reasonable probability of<br>endangering public health | No                     |
| Has this release substantially damaged or will it substantially damage property or the environment   | No                     |
| Is this release of a volume that is or may with reasonable probability be detrimental to fresh water | Νο                     |

#### Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.

| Crude Oil Released (bbls) Details                                                                                                                       | Not answered.                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Produced Water Released (bbls) Details                                                                                                                  | Not answered.                                                                              |
| Is the concentration of chloride in the produced water >10,000 mg/l                                                                                     | No                                                                                         |
| Condensate Released (bbls) Details                                                                                                                      | Not answered.                                                                              |
| Natural Gas Vented (Mcf) Details                                                                                                                        | Not answered.                                                                              |
| Natural Gas Flared (Mcf) Details                                                                                                                        | Not answered.                                                                              |
| Other Released Details                                                                                                                                  | Cause:    Other (Specify)   Released: 0 (Unknown Released Amount)   Recovered: 0   Lost: 0 |
| Are there additional details for the questions above (i.e. any answer containing<br>Other, Specify, Unknown, and/or Fire, or any negative lost amounts) | Not answered.                                                                              |

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 153 of 160

QUESTIONS, Page 2

Action 417949

| QUESTIONS (continued) |                                                        |  |
|-----------------------|--------------------------------------------------------|--|
| Operator:             | OGRID:                                                 |  |
| COG OPERATING LLC     | 229137                                                 |  |
| 600 W Illinois Ave    | Action Number:                                         |  |
| Midland, TX 79701     | 417949                                                 |  |
|                       | Action Type:                                           |  |
|                       | [C-141] Reclamation Report C-141 (C-141-v-Reclamation) |  |

QUESTIONS

| Nature and Volume of Release (continued)                                                                                                                |                                                                               |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Is this a gas only submission (i.e. only significant Mcf values reported)                                                                               | More info needed to determine if this will be treated as a "gas only" report. |  |
| Was this a major release as defined by Subsection A of 19.15.29.7 NMAC                                                                                  | Unavailable.                                                                  |  |
| Reasons why this would be considered a submission for a notification of a major release                                                                 | Unavailable.                                                                  |  |
| With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form. |                                                                               |  |

| Initial Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|
| The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |  |
| The source of the release has been stopped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | True                                                                                                                        |  |
| The impacted area has been secured to protect human health and the<br>environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | True                                                                                                                        |  |
| Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | True                                                                                                                        |  |
| All free liquids and recoverable materials have been removed and managed<br>appropriately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | True                                                                                                                        |  |
| If all the actions described above have not been undertaken, explain why                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                          |  |
| Per Paragraph (4) of Subsection B of 19.15.29.8 NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of Subsection A of 19.15.29.11 NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.                                                                                                                                                                                                                    |                                                                                                                             |  |
| I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. |                                                                                                                             |  |
| I hereby agree and sign off to the above statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Name: Brittany Esparza<br>Title: Environmental Technician<br>Email: brittany.Esparza@ConocoPhillips.com<br>Date: 01/07/2025 |  |

General Information Phone: (505) 629-6116

Operator

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

COG OPERATING LLC

Any other fresh water well or spring

Incorporated municipal boundaries or a defined municipal fresh water well field

Did the release impact areas not on an exploration, development, production, or

Categorize the risk of this well / site being in a karst geology

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

**QUESTIONS** (continued)

OGRID:

229137

Page 154 of 160

QUESTIONS, Page 3

Action 417949

| 600 W Illinois Ave<br>Midland, TX 79701                                                                                       | Action Number:<br>417949                                                                                            |  |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                               | Action Type:<br>[C-141] Reclamation Report C-141 (C-141-v-Reclamation)                                              |  |
| QUESTIONS                                                                                                                     |                                                                                                                     |  |
| Site Characterization                                                                                                         |                                                                                                                     |  |
|                                                                                                                               | I and beyond). This information must be provided to the appropriate district office no later than 90 days after the |  |
| What is the shallowest depth to groundwater beneath the area affected by the<br>release in feet below ground surface (ft bgs) | Between 100 and 500 (ft.)                                                                                           |  |
| What method was used to determine the depth to ground water                                                                   | NM OSE iWaters Database Search                                                                                      |  |
| Did this release impact groundwater or surface water                                                                          | No                                                                                                                  |  |
| What is the minimum distance, between the closest lateral extents of the release a                                            | nd the following surface areas:                                                                                     |  |
| A continuously flowing watercourse or any other significant watercourse                                                       | Between 1 and 5 (mi.)                                                                                               |  |
| Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)                                             | Greater than 5 (mi.)                                                                                                |  |
| An occupied permanent residence, school, hospital, institution, or church                                                     | Greater than 5 (mi.)                                                                                                |  |
| A spring or a private domestic fresh water well used by less than five households<br>for domestic or stock watering purposes  | Between 1 and 5 (mi.)                                                                                               |  |

Between 1 and 5 (mi.)

Between 1 and 5 (mi.)

Greater than 5 (mi.)

Greater than 5 (mi.)

Greater than 5 (mi.)

Greater than 5 (mi.)

None

No

#### Remediation Plan

storage site

A wetland

A subsurface mine

A 100-year floodplain

An (non-karst) unstable area

| Please answer all the questions the | nat apply or are indicated. This information must be provided to                                                        | the appropriate district office no later than 90 days after the release discovery date.                            |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Requesting a remediation            | plan approval with this submission                                                                                      | Yes                                                                                                                |
| Attach a comprehensive report de    | monstrating the lateral and vertical extents of soil contamination                                                      | n associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.             |
| Have the lateral and vertica        | I extents of contamination been fully delineated                                                                        | Yes                                                                                                                |
| Was this release entirely co        | ontained within a lined containment area                                                                                | No                                                                                                                 |
| Soil Contamination Sampling         | : (Provide the highest observable value for each, in mi                                                                 | illigrams per kilograms.)                                                                                          |
| Chloride                            | (EPA 300.0 or SM4500 CI B)                                                                                              | 3890                                                                                                               |
| TPH (GRO+DRO+MRO)                   | (EPA SW-846 Method 8015M)                                                                                               | 262                                                                                                                |
| GRO+DRO                             | (EPA SW-846 Method 8015M)                                                                                               | 155                                                                                                                |
| BTEX                                | (EPA SW-846 Method 8021B or 8260B)                                                                                      | 0                                                                                                                  |
| Benzene                             | (EPA SW-846 Method 8021B or 8260B)                                                                                      | 0                                                                                                                  |
|                                     | IMAC unless the site characterization report includes completed<br>elines for beginning and completing the remediation. | d efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, |
| On what estimated date wi           | II the remediation commence                                                                                             | 06/21/2023                                                                                                         |
| On what date will (or did) the      | ne final sampling or liner inspection occur                                                                             | 07/07/2023                                                                                                         |
| On what date will (or was)          | the remediation complete(d)                                                                                             | 07/07/2023                                                                                                         |
| What is the estimated surfa         | ace area (in square feet) that will be reclaimed                                                                        | 1405                                                                                                               |
| What is the estimated volu          | me (in cubic yards) that will be reclaimed                                                                              | 120                                                                                                                |
| What is the estimated surfa         | ace area (in square feet) that will be remediated                                                                       | 1405                                                                                                               |
| What is the estimated volu          | me (in cubic yards) that will be remediated                                                                             | 120                                                                                                                |
|                                     |                                                                                                                         | e time of submission and may (be) change(d) over time as more remediation efforts are completed.                   |
| The OOD second and the taxes are    | d an an a distinct and a second second based to be an indicated by a diverte of in-                                     |                                                                                                                    |

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

**Online Phone Directory** https://www.emnrd.nm.gov/ocd/contact-us

# **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

| Operator:                                                                                             | OGRID:                                                                                                       |  |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| COG OPERATING LLC                                                                                     | 229137                                                                                                       |  |
| 600 W Illinois Ave<br>Midland. TX 79701                                                               | Action Number:<br>417949                                                                                     |  |
|                                                                                                       | Action Type:                                                                                                 |  |
|                                                                                                       | [C-141] Reclamation Report C-141 (C-141-v-Reclamation)                                                       |  |
| UESTIONS                                                                                              |                                                                                                              |  |
| Remediation Plan (continued)                                                                          |                                                                                                              |  |
| Please answer all the questions that apply or are indicated. This information must be provided to the |                                                                                                              |  |
| his remediation will (or is expected to) utilize the following processes to remediate                 | / reduce contaminants:                                                                                       |  |
| (Select all answers below that apply.)                                                                |                                                                                                              |  |
| (Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)                        | Yes                                                                                                          |  |
| Which OCD approved facility will be used for off-site disposal                                        | BRINNINSTOOL UNIT 3H BATTERY [fAPP2203246737]                                                                |  |
| OR which OCD approved well (API) will be used for off-site disposal                                   | Not answered.                                                                                                |  |
| OR is the off-site disposal site, to be used, out-of-state                                            | Not answered.                                                                                                |  |
| OR is the off-site disposal site, to be used, an NMED facility                                        | Not answered.                                                                                                |  |
| (Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)                                | Νο                                                                                                           |  |
| (In Situ) Soil Vapor Extraction                                                                       | Not answered.                                                                                                |  |
| (In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)                     | Not answered.                                                                                                |  |
| (In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)                                    | Not answered.                                                                                                |  |
| (In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)                              | Not answered.                                                                                                |  |
| Ground Water Abatement pursuant to 19.15.30 NMAC                                                      | Not answered.                                                                                                |  |
| OTHER (Non-listed remedial process)                                                                   | Not answered.                                                                                                |  |
| er Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed ef     | forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA |  |

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

| I hereby agree and sign off to the above statement | Name: Brittany Esparza<br>Title: Environmental Technician<br>Email: brittany.Esparza@ConocoPhillips.com<br>Date: 01/07/2025 |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                                    |                                                                                                                             |
|                                                    |                                                                                                                             |

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Page 155 of 160

Action 417949

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

| Page 1 | 56 | of 1 | 60 |
|--------|----|------|----|
|--------|----|------|----|

QUESTIONS, Page 5

Action 417949

| QUESTIONS (continued)                   |                                                                        |  |
|-----------------------------------------|------------------------------------------------------------------------|--|
| Operator:<br>COG OPERATING LLC          | OGRID: 229137                                                          |  |
| 600 W Illinois Ave<br>Midland, TX 79701 | Action Number:<br>417949                                               |  |
|                                         | Action Type:<br>[C-141] Reclamation Report C-141 (C-141-v-Reclamation) |  |
|                                         |                                                                        |  |

### QUESTIONS

| Deferral Requests Only                                                                                                                                                                         |    |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation. |    |  |
| Requesting a deferral of the remediation closure due date with the approval of this submission                                                                                                 | Νο |  |

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 417949

Page 157 of 160

| QUESTIONS (continued) |                                                        |  |
|-----------------------|--------------------------------------------------------|--|
| Operator:             | OGRID:                                                 |  |
| COG OPERATING LLC     | 229137                                                 |  |
| 600 W Illinois Ave    | Action Number:                                         |  |
| Midland, TX 79701     | 417949                                                 |  |
|                       | Action Type:                                           |  |
|                       | [C-141] Reclamation Report C-141 (C-141-v-Reclamation) |  |

#### QUESTIONS

| Sampling Event Information                                                                      |            |
|-------------------------------------------------------------------------------------------------|------------|
| Last sampling notification (C-141N) recorded                                                    | 417964     |
| Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC | 07/07/2023 |
| What was the (estimated) number of samples that were to be gathered                             | 5          |
| What was the sampling surface area in square feet                                               | 3          |

#### Remediation Closure Request

| nly answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Requesting a remediation closure approval with this submission                                                                                                                                                                                                                       | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Have the lateral and vertical extents of contamination been fully delineated                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Was this release entirely contained within a lined containment area                                                                                                                                                                                                                  | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| All areas reasonably needed for production or subsequent drilling operations have<br>been stabilized, returned to the sites existing grade, and have a soil cover that<br>prevents ponding of water, minimizing dust and erosion                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| What was the total surface area (in square feet) remediated                                                                                                                                                                                                                          | 1405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| What was the total volume (cubic yards) remediated                                                                                                                                                                                                                                   | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene   | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| What was the total surface area (in square feet) reclaimed                                                                                                                                                                                                                           | 1405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| What was the total volume (in cubic yards) reclaimed                                                                                                                                                                                                                                 | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Summarize any additional remediation activities not included by answers (above)                                                                                                                                                                                                      | excavation of impacted and waste-containing soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                      | closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a<br>notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| to report and/or file certain release notifications and perform corrective actions for releas<br>the OCD does not relieve the operator of liability should their operations have failed to a<br>water, human health or the environment. In addition, OCD acceptance of a C-141 repor | knowledge and understand that pursuant to OCD rules and regulations all operators are required<br>ises which may endanger public health or the environment. The acceptance of a C-141 report by<br>adequately investigate and remediate contamination that pose a threat to groundwater, surface<br>t does not relieve the operator of responsibility for compliance with any other federal, state, or<br>ially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed<br>ng notification to the OCD when reclamation and re-vegetation are complete. |  |
| I have been seen a sime off to the scheme of the scheme of                                                                                                                                                                                                                           | Name: Brittany Esparza<br>Title: Environmental Technician                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |

| Date. 01/07/2025 | Thereby agree and sign on to the above statement | Title: Environmental Technician<br>Email: brittany.Esparza@ConocoPhillips.com<br>Date: 01/07/2025 |
|------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------|
|------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------|

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 158 of 160

QUESTIONS, Page 7

Action 417949

| QUESTIONS (continued) |                                                        |  |
|-----------------------|--------------------------------------------------------|--|
| Operator:             | OGRID:                                                 |  |
| COG OPERATING LLC     | 229137                                                 |  |
| 600 W Illinois Ave    | Action Number:                                         |  |
| Midland, TX 79701     | 417949                                                 |  |
|                       | Action Type:                                           |  |
|                       | [C-141] Reclamation Report C-141 (C-141-v-Reclamation) |  |

#### QUESTIONS

| Reclamation Report                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Only answer the questions in this group if all reclamation steps have been completed.                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Requesting a reclamation approval with this submission                                                                                                                                                                                                                               | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| What was the total reclamation surface area (in square feet) for this site                                                                                                                                                                                                           | 1405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| What was the total volume of replacement material (in cubic yards) for this site                                                                                                                                                                                                     | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                      | four feet of non-waste containing, uncontaminated, earthen material with chloride concentrations less than 600<br>over must include a top layer, which is either the background thickness of topsoil or one foot of suitable material                                                                                                                                                                                                                                                                                                                                                       |
| Is the soil top layer complete and is it suitable material to establish vegetation                                                                                                                                                                                                   | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| On what (estimated) date will (or was) the reseeding commence(d)                                                                                                                                                                                                                     | 10/23/2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Summarize any additional reclamation activities not included by answers (above)                                                                                                                                                                                                      | Reseeded entire release and excavation area to promote vegetation growth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                      | t field notes, photographs of reclaimed area, and a narrative of the reclamation activities. Refer to 19.15.29.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| to report and/or file certain release notifications and perform corrective actions for release<br>the OCD does not relieve the operator of liability should their operations have failed to<br>water, human health or the environment. In addition, OCD acceptance of a C-141 report | knowledge and understand that pursuant to OCD rules and regulations all operators are required<br>ases which may endanger public health or the environment. The acceptance of a C-141 report by<br>adequately investigate and remediate contamination that pose a threat to groundwater, surface<br>rt does not relieve the operator of responsibility for compliance with any other federal, state, or<br>ially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed<br>ing notification to the OCD when reclamation and re-vegetation are complete. |
| I hereby agree and sign off to the above statement                                                                                                                                                                                                                                   | Name: Brittany Esparza<br>Title: Environmental Technician<br>Email: brittany.Esparza@ConocoPhillips.com<br>Date: 01/07/2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# **State of New Mexico** Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

**QUESTIONS** (continued)

| Operator:          | OGRID:                                                 |
|--------------------|--------------------------------------------------------|
| COG OPERATING LLC  | 229137                                                 |
| 600 W Illinois Ave | Action Number:                                         |
| Midland, TX 79701  | 417949                                                 |
|                    | Action Type:                                           |
|                    | [C-141] Reclamation Report C-141 (C-141-v-Reclamation) |

#### QUESTIONS

Revegetation Report

Only answer the questions in this group if all surface restoration, reclamation and re-vegetation obligations have been satisfied

Requesting a restoration complete approval with this submission

No Per Paragraph (4) of Subsection (D) of 19.15.29.13 NMAC for any major or minor release containing liquids, the responsible party must notify the division when reclamation and re-vegetation are complete

QUESTIONS, Page 8

Action 417949

General Information Phone: (505) 629-6116

CONDITIONS

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

| s and Natural Resources | Action 417949 |
|-------------------------|---------------|
| orvation Division       |               |

CONDITIONS

| Operator:          | OGRID:                                                 |
|--------------------|--------------------------------------------------------|
| COG OPERATING LLC  | 229137                                                 |
| 600 W Illinois Ave | Action Number:                                         |
| Midland, TX 79701  | 417949                                                 |
|                    | Action Type:                                           |
|                    | [C-141] Reclamation Report C-141 (C-141-v-Reclamation) |

| Created By | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Condition<br>Date |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| jburdine   | The reclamation report has been approved pursuant to 19.15.29.13 E. NMAC. The acceptance of this report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment; or if the location fails to revegetate properly. In addition, the OCD approval does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. | 3/31/2025         |