Released Volume Calculation

Length 59 feet

Width 46 feet

Thickness 0.5 in

1,357 gal = 32 Est. Total Bbls Released

Volume = L*W*T

Total Released Volume = 1,357 gallons (US, dry)

32 Bbls

Site Characterization Report and Remediation Workplan

April 30, 2025

State J 2 #017 30-025-33277 Incident #nSAP0225252743 and Incident #nAPP2511834534 Lease B0-1534 Lea County, New Mexico

Prepared For:

Southwest Royalties, Inc. P.O. Box 53570 Midland, Texas 79710

Prepared By:

Crain Environmental 2925 East 17th Street Odessa, Texas 79761

Cynthia K. Crain, P.G.

Table of Contents

1.0	INTRODUCTION	3
2.0	BACKGROUND	3
3.0	NMOCD CLOSURE CRITERIA	3
3.1	Groundwater Evaluation	4
3.2	Surface Features and Other Development	4
3.3	Wetlands, Floodplain, and Karst Geology	5
3.4	Closure Criteria Applicable to the Site	5
4.0	SITE ASSESSMENT/CHARACTERIZATION RESULTS	6
4.1	Site Map	6
4.2	Depth to Groundwater	
4.3	Wellhead Protection Area	
4.4	Distance to Nearest Significant Watercourse	6
4.5	Investigation Results	7
4.6	Laboratory Analytical Data Quality Assurance/Quality Control Results	7
5.0	Proposed Remediation Activities	
6.0	Schedule of Implementation	8
7.0	Distribution	9

TABLE

Table 1: Summary of Soil Sample Analytical Results

FIGURES

Figure 1 – Site Location Map

Figure 2 - Wellhead Protection Area Map

Figure 3 – National Wetlands Inventory Map

Figure 4 – Karst Potential Map

Figure 5 – Sample Location Map

APPENDICES

Appendix A – NMOSE Point of Diversion Summary

Appendix B - Biological Desktop Review

Appendix C – Laboratory Reports and Chain-of-Custody Documentation

Appendix D – Photographic Documentation

1.0 Introduction

On behalf of Southwest Royalties, Inc. (SWR), Crain Environmental (CE) has prepared this Site Characterization Report and Remediation Workplan for historical releases at the State J 2 #017 (Site), located in Unit Letter I, Section 2, Township 22 South, Range 36 East, Lea County, New Mexico, at Global Positioning Coordinates (GPS) 32.4172592, -103.2306595. The property surface rights are owned by the State of New Mexico (Lease BO-1534).

The State J 2 #017 is located approximately 4.5 miles southwest of Eunice, New Mexico, in an area of oil and gas activity and cattle grazing. The Site can be accessed by traveling south from Eunice, New Mexico on Legion Road for 3 miles to Delaware Basin Road. Travel west on Delaware Basin Road for 2.74 miles and turn north on the lease road. Travel north for 1.27 miles to the Site. There are no locked gates or other access issues. The attached Figure 1 shows the Site location.

2.0 Background

At the request of the New Mexico State Land Office (NMSLO) Environmental Compliance Office (ECO), a soil investigation was conducted on the well pad where historical aerial photos indicated a past release, and at the tank battery where an open New Mexico Oil Conservation Division (NMOCD) Incident (#nSAP0225252743) was located.

The soil investigation indicated that a historical release had occurred east of the wellhead, and a Notification of Release (NOR) was submitted to the NMOCD on April 28, 2025. Incident #nAPP2511834534 was assigned to the release.

This Site Characterization Report and Remediation Workplan has been prepared in accordance with 19.15.29.11 New Mexico Administrative Code (NMAC) and is being submitted for Incident #s nSAP0225252743 and nAPP2511834534.

3.0 NMOCD Closure Criteria

Cleanup standards for produced water spills are provided in 19.15.29 NMAC. The cleanup standards (described in the rule as "Closure Criteria") are based primarily on depth to groundwater but are also based on other criteria. Three different Closure Criteria are provided in the rule. The most stringent apply to sites where groundwater is found within 50 feet of the ground surface or if the release occurred within one of the following areas:

- Within 300 feet of any continuously flowing watercourse or any other significant watercourse.
- Within 200 feet of any lakebed, sinkhole or playa lake (measured from the ordinary highwater mark).
- Within 300 feet from an occupied permanent residence, school, hospital, institution or church.
- Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes.
- Within 1,000 feet of any fresh water well or spring.

- Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to Section 3-27-3 NMSA 1978 as amended.
- Within 300 feet of a wetland.
- Within the area overlying a subsurface mine.
- Within an unstable area such as a karst formation.
- Within a 100-year floodplain.

CE reviewed available information to determine the Closure Criteria for the Site. The findings of this evaluation are summarized below.

3.1 Groundwater Evaluation

A review of the New Mexico Office of the State Engineer (NMOSE) records indicated there is one water well located within a 0.5-mile radius of the Site (CP 00761 POD 1) and no depth to groundwater is provided. Two water wells (CP 00763 and L 09966) are located within a 1-mile radius of the Site, and a depth to groundwater for each well is reported to be greater than 50' below ground surface (bgs).

No surface water was present in the area at the time of Site assessment activities, and vegetation is sparse. The United States Fish & Wildlife Service (USFWS) National Wetlands Inventory Map shows a Riverine located approximately 20 feet from the southwest corner of the Site. The Riverine is considered by the USFWS to be an intermittent streambed that is intermittently flooded. Figure 3 provides a USFWS map. According to the Bureau of Land Management (BLM) karst potential map, the Site is located within a "low karst potential" area. Figure 4 provides a karst potential map. Appendix A provides a copy of the NMOSE Point of Diversion Summary for well CO 00761 POD 1. Figure 2 provides a wellhead protection area map that shows the location of the water well within a 0.5-mile radius of the Site.

As the Riverine is located approximately 20 feet from the southwest corner of the Site, the most stringent Closure Criteria will be applicable to the Site.

3.2 Surface Features and Other Development

CE reviewed recent aerial photographs, topographic maps, the NMOSE Point of Discharge (POD) GIS website, and information available from the Lea County, New Mexico Central Appraisal District website. As shown on Figure 1, the Site is not located:

- Within 300 feet of any continuously flowing watercourse or any other significant watercourse.
 - No continuously flowing watercourses (rivers, streams, arroyos, etc.) are apparent within 300 feet of the Site in the aerial map (Figure 3).
- Within 200 feet of any lakebed, sinkhole or playa lake (measured from the ordinary highwater mark).
 - The aerial map (Figure 3) indicates there is not a lakebed, sinkhole or playa lake located within 200 feet of the Site.
- Within 300 feet from an occupied permanent residence, school, hospital, institution or church.

- The Site Location Map (Figure 1) and information available from the Lea County, New Mexico Central Appraisal District do not show or list any permanent residence, school, hospital, institution or church located within 300 feet of the Site.
- Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes.
 - No wells or springs located within 500 feet of the Site appear in any of the NMOSE records reviewed by CE.
- Within 1,000 feet of any fresh water well or spring.
 - No freshwater wells or springs located within 1,000 feet of the Site appear in any of the records reviewed by CE.
- Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to Section 3-27-3 NMSA 1978 as amended.
 - Based on the property and other records review by CE, the Site is not located in incorporated municipal boundaries or within a defined municipal fresh water well field.
- Within the area overlying a subsurface mine.
 - Based on the property and other records reviewed by CE, the Site is not located within an area overlying a subsurface mine.

3.3 Wetlands, Floodplain, and Karst Geology

A review of the USFWS wetlands map indicated the Site is not located within 300 feet of a wetland but is located within 80 feet of a Riverine. The New Mexico BLM karst potential map indicates the Site is located within a "low karst potential" area. Figures 3 and 4 depict the USFWS map and the karst potential map, respectively.

3.4 Closure Criteria Applicable to the Site

A review of the New Mexico Office of the State Engineer (NMOSE) records indicated there is one water well located within a 0.5-mile radius of the Site (CP 00761 POD 1) and no depth to groundwater is provided. Appendix A provides a copy of the NMOSE Point of Diversion Summary. Figure 2 provides a wellhead protection area map that shows the location of the water well within a 0.5-mile radius of the Site.

No surface water was present in the area at the time of Site assessment activities, and vegetation is sparse. The United States Fish & Wildlife Service (USFWS) National Wetlands Inventory Map shows a Riverine located approximately 20 feet from the southwest corner of the Site. The Riverine is considered by the USFWS to be an intermittent streambed that is intermittently flooded. Figure 3 provides a USFWS map. According to the Bureau of Land Management (BLM) karst potential map, the Site is located within a "low karst potential" area. Figure 4 provides a karst potential map.

As the Riverine is located approximately 20 feet from the southwest corner of the Site, the most stringent Closure Criteria will be applicable to the Site. A summary of the Closure Criteria is provided in the table below and in Table 1.

NMOCD Closure Criteria

		Closure Criteria Based on Depth to Groundwater (mg/kg)				
Constituent of Concern		≤ 50 feet bgs 51 feet to 100 feet bgs		> 100 feet bgs		
Chloride (EPA 300)		600	10,000	20,000		
TPH (EPA	GRO + DRO + MRO	100	2,500	2,500		
8015M)	GRO + DRO	NA	1,000	1,000		
Total BTEX (EPA 8021 or 8260)		50	50	50		
Benzene	(EPA 8021 or 8260)	10	10	10		

Notes: NA = not applicable

bgs = below ground surface
mg/kg = milligrams per kilogram
GRO = gasoline range organics
DRO = diesel range organics
MRO = motor oil range organics
TPH = total petroleum hydrocarbons

BTEX = benzene, toluene, ethylbenzene, and total xylenes Green highlighted cells denote applicable Closure Criteria.

4.0 Site Assessment/Characterization Results

As per 19.15.29.11 NMAC, a Site Characterization Report will have the components described in Sections 4.1 through 4.5 of this document.

4.1 Site Map

As required by 19.15.29.11 NMAC, a scaled diagram showing significant Site infrastructure, sample point locations, and known subsurface features such as utilities are provided on Figure 5.

4.2 Depth to Groundwater

As discussed in Section 3.1, a depth to groundwater is thought to be greater than 50' bgs; however a Riverine is located approximately 20 feet from the southwest corner of the Site. The assumed depth to groundwater will be less than 50' bgs.

4.3 Wellhead Protection Area

The 0.5-mile wellhead protection area is shown on Figure 2. There were no other water sources, springs, or other sources of freshwater extraction identified within 0.5-mile of the Site.

4.4 Distance to Nearest Significant Watercourse

The horizontal distance to the nearest significant watercourse as defined in Subsection P of 19.15.17.7 NMAC is greater than 0.5-mile from the Site.

4.5 Investigation Results

As all sample locations were in areas that were previously disturbed, compliance with the Cultural Properties Protection (CPP) Rule did not apply, and an Archaeological Survey was not completed prior to the soil investigation. A biological desktop review was conducted, and no sensitive wildlife or plant species were found in proximity to the subject Site. A copy of the U.S. Fish & Wildlife Service database review is included as Appendix B.

On March 18, 2025, test holes were dug at 12 locations (TH-1 to TH-12) as approved in the Remediation/Reclamation Workplan, and soil samples were collected at depth of 1', 2', 3', and 4.1' bgs at each location. At test hole TH-12, samples were also collected at depths of 6' and 8' bgs. All samples from each test hole were field tested for chloride concentrations, and concentrations in each sample were recorded below 600 milligrams per kilogram (mg/kg).

All samples were placed in laboratory prepared containers, properly labeled, immediately placed on ice, and hand delivered to Eurofins Environment Testing (Eurofins) in Midland, Texas. Samples from each test hole at depths of 1' and 4.1' bgs, plus samples from test hole TH-12 at depths of 6' and 8' were analyzed for total petroleum hydrocarbons (TPH) by EPA Method 8015 Modified, benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chlorides by EPA Method 300.0. Samples from each test hole at depths of 2' and 3' were held pending sample results.

Table 1 provides a summary of the laboratory results from the test trenches. Figure 5 shows the sample locations and concentrations. The laboratory report and chain-of-custody documentation is included as Appendix C. A photographic log that documents assessment activities is included as Appendix D.

Referring to Table 1, concentrations of benzene, total BTEX, and chlorides were reported below the test method detection limits or Closure Criteria in each sample. Concentrations of TPH were reported above the Closure Criteria in samples collected from test holes TH-4 at 1' bgs (336 mg/kg), TH-5 at 1' (5,620 mg/kg) and 4.1' (105 mg/kg), TH-6 at 1' (505 mg/kg), TH-11 at 1' (1,370 mg/kg) and 4.1' (3,050 mg/kg), and TH-12 at 1' (14,100 mg/kg), 4.1' (6,520 mg/kg), and 6' (1,320 mg/kg).

4.6 Laboratory Analytical Data Quality Assurance/Quality Control Results

Laboratory data in Report Number 880-55872-1 generated by Eurofins, was reviewed to ensure that reported analytical results met data quality objectives. It was determined by quality control data associated with analytical results that reported concentrations of target analytes are defensible and that measurement data reliability is within the expected limits of sampling and analytical error. All analytical results are usable for characterization of soil at the Site. The laboratory analytical results are provided as Appendix B.

5.0 Proposed Remediation Activities

The State J 2 #017 well was plugged and abandoned in April of 2025; however, the tank battery and ancillary equipment will continue to be used for other SWR wells.

SWR proposes to excavate impacted soil encompassing test hole locations TH-4, TH-5, TH-6, TH-11, and TH-12 until five-point confirmation samples collected from the bottom and sidewalls of the excavation(s) report TPH, BTEX, and chloride concentrations below the NMOCD Closure Criteria (i.e., complete horizontal and vertical delineation will be completed during remediation). Each confirmation sample will be representative of no more than 200 square feet.

It is estimated that the excavation encompassing sample points TH-4 and TH-6 will extend to a depth of approximately 2' bgs, the excavation around sample point TH-5 will extend to a depth of approximately 4.5' bgs, and the excavation at the storage tanks (sample points TH-11 and TH-12) will extend to a depth of approximately 7.5' bgs.

All excavated soil will be disposed of at an NMOCD approved disposal facility. The remediation area covers a surface area of approximately 5,550 square feet, and it is estimated that approximately 1,090 cubic yards of soil will be hauled to disposal.

Upon receipt of laboratory results that all TPH, BTEX, and chloride concentrations are reported below the Closure Criteria, a Remediation Summary and Closure Report for Incident # nSAP02252743 and Incident #nAPP2511834534 will be submitted to the NMOCD and ECO. The Closure Reports will include photographs of the excavations, laboratory results with chain-of-custody documentation, and a scaled map of the excavations.

Upon NMOCD and ECO approval of the Closure Reports, the excavation(s) will be backfilled to grade with non-impacted similar material obtained from a nearby pit. Pursuant to 19.15.29.13 NMAC, the surface areas will be restored to pre-release conditions. Surface grading will be performed to near original conditions and contoured to prevent erosion and ponding, promote stability, and preserve storm water flow patterns.

6.0 Schedule of Implementation

SWR proposes to begin remediation activities within 30 days of NMOCD and ECO approval of this Site Characterization Report and Remediation Workplan. The ECO will be notified at least 2 business days prior to the start of remediation activities, and sample notifications will be provided to ECO and NMOCD at least 2 business days prior to sample collection(s).

Remediation activities are anticipated to be completed within 90 days of initiation, and a Remediation Summary and Closure Report for Incident # nSAP02252743 and #nAPP2511834534 will be submitted to the NMOCD and ECO within 30 days of receiving the laboratory results of final confirmation samples.

7.0 **Distribution**

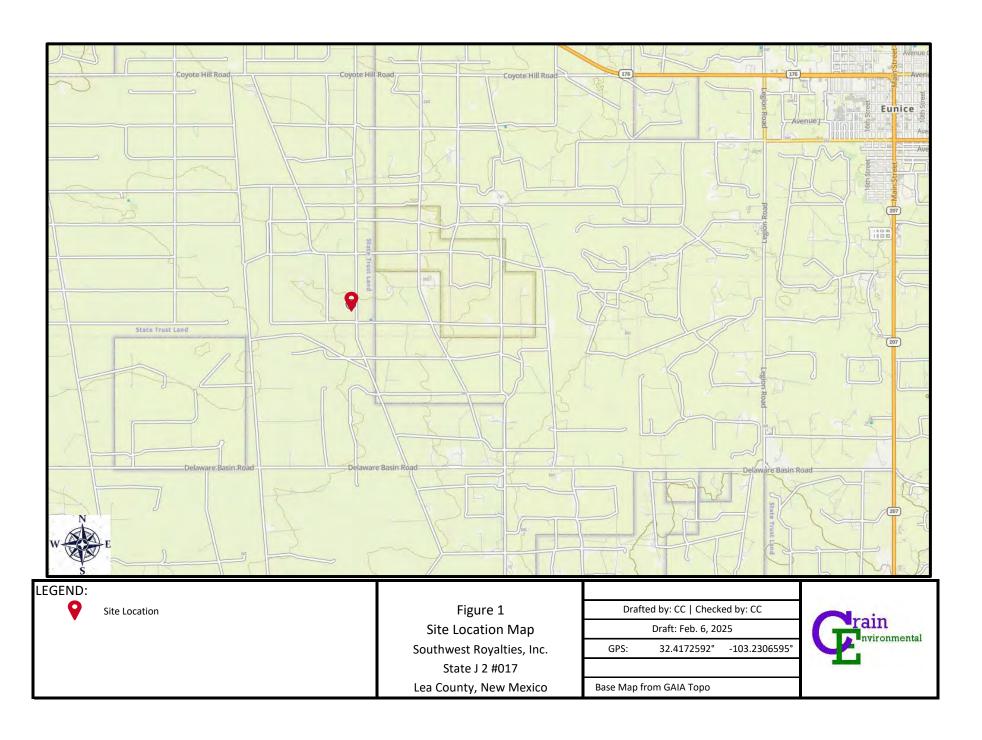
Copy 1: Environmental Compliance Office ECO@nmslo.gov

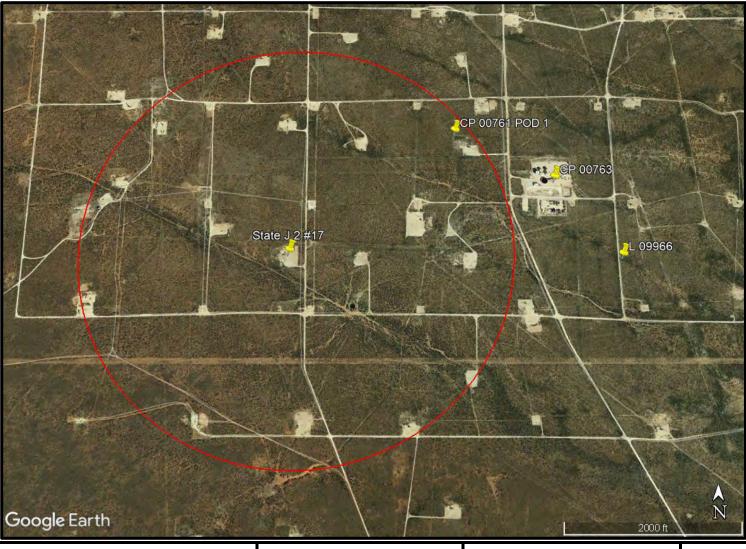
TABLE

Received by OCD: 4/30/2025 11:57:09 AM

TABLE 1 SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS SOUTHWEST ROYALTIES, INC. STATE J 2 #017

Sample ID	Sample Date	Sample Depth	Soil Status	TPH (GRO)	TPH (DRO)	TPH (MRO)	Total TPH	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	Chloride
	Date Deptil				milligrams per kilogram (mg/kg)								
NMO	CD Closure (Criteria					100	10	-	-	-	50	600
TH-1 (1')	03/18/25	1'	In Situ	<14.5	<15.1	<15.1	<15.1	<0.00141	<0.00202	<0.00110	<0.00231	<0.00231	186 F1
TH-1 (4.1')	03/18/25	4.1'	In Situ	<14.5	<15.1	<15.1	<15.1	<0.00138	<0.00199	<0.00108	<0.00227	<0.00227	17.5
TH-2 (1')	03/18/25	1'	In Situ	<14.5	<15.1	<15.1	<15.1	<0.00139	<0.00200	<0.00109	<0.00228	<0.00228	121
TH-2 (4.1')	03/18/25	4.1'	In Situ	<14.5	<15.1	<15.1	<15.1	<0.00139	<0.00200	<0.00109	<0.00229	<0.00229	103
TH-3 (1')	03/18/25	1'	In Situ	<14.5	<15.1	<15.1	<15.1	<0.00139	<0.00200	<0.00109	<0.00228	<0.00228	83.5
TH-3 (4.1')	03/18/25	4.1'	In Situ	<14.5	<15.1	<15.1	<15.1	<0.00138	<0.00198	<0.00108	<0.00226	<0.00226	190
TH-4 (1')	03/18/25	1'	In Situ	<14.5	336 *1	<15.1	336	<0.00138	<0.00199	<0.00108	<0.00227	<0.00227	81.8
TH-4 (4.1')	03/18/25	4.1'	In Situ	<14.5	<15.1	<15.1	<15.1	<0.00139	<0.00200	<0.00109	<0.00229	<0.00229	75.2
TH-5 (1')	03/18/25	1'	In Situ	<14.5	5,620 *1	<15.1	5,620	<0.00140	<0.00201	<0.00110	<0.00230	<0.00230	150
TH-5 (4.1')	03/18/25	4.1'	In Situ	<14.4	105 *1	<15.0	105	<0.00140	<0.00201	<0.00110	<0.00229	<0.00229	116
TH-6 (1')	03/18/25	1'	In Situ	<14.5	505 *1	<15.1	505	<0.00139	<0.00199	<0.00108	<0.00228	<0.00228	67.1
TH-6 (4.1')	03/18/25	4.1'	In Situ	<14.5	<15.1	<15.1	<15.1	<0.00138	<0.00198	<0.00108	<0.00226	<0.00226	161
TH-7 (1')	•	1'	In Situ		<15.1	<15.1		<0.00138				<0.00227	138
TH-7 (4.1')	03/18/25 03/18/25	4.1'	In Situ	<14.5 <14.5	<15.1	<15.1	<15.1 <15.1	<0.00138	<0.00199 <0.00200	<0.00108 <0.00109	<0.00227 <0.00228	<0.00227	115
					•								
TH-8 (1') TH-8 (4.1')	03/18/25 03/18/25	1' 4.1'	In Situ In Situ	<14.4 <14.5	<15.0 <15.1	<15.0 <15.1	<15.0 <15.1	<0.00139 <0.00139	<0.00200 <0.00200	<0.00109 <0.00109	<0.00229 <0.00228	<0.00229 <0.00228	71.2 64.8
					-								
TH-9 (1')	03/18/25	1' 4.1'	In Situ	<14.4	<15.0 <15.0	<15.0	<15.0	<0.00138	<0.00198	<0.00108	<0.00226	<0.00226	388 203
TH-9 (4.1')	03/18/25		In Situ	<14.4		<15.0	<15.0	<0.00138	<0.00199	<0.00108	<0.00227	<0.00227	
TH-10 (1')	03/18/25	1'	In Situ	<14.4	<15.0	<15.0	<15.0	<0.00139	<0.00200	<0.00109	<0.00228	<0.00228	109
TH-10 (4.1')	03/18/25	4.1'	In Situ	<14.5	<15.1	<15.1	<15.1	<0.00138	<0.00198	<0.00108	<0.00227	<0.00227	311
TH-11 (1')	03/18/25	1'	In Situ	<14.5	1,370	<15.1	1,370	<0.00139	<0.00200	<0.00109	<0.00228	<0.00228	89.4
TH-11 (4.1')	03/18/25	4.1'	In Situ	40.3 J	3,010	<15.0	3,050	<0.00139	<0.00199	<0.00108	0.278	0.278	135
TH-12 (1')	03/18/25	1'	In Situ	<288	14,100	<300	14,100	<0.00138	<0.00199	<0.00108	0.0314 J	0.0314 J	237
TH-12 (4.1')	03/18/25	4.1'	In Situ	365 J	6,150	<302	6,520	<0.0690	<0.0992	<0.0540	1.07	1.07	465
TH-12 (6')	03/18/25	6'	In Situ	94.6	1,230	<15.1	1,320	<0.0689	<0.0990	0.151	0.425	0.576	325
TH-12 (8')	03/18/25	8'	In Situ	<14.5	24.8 J	<15.1	24.8 J	<0.0347	<0.0499	<0.0272	<0.0570	<0.0570	216 F1

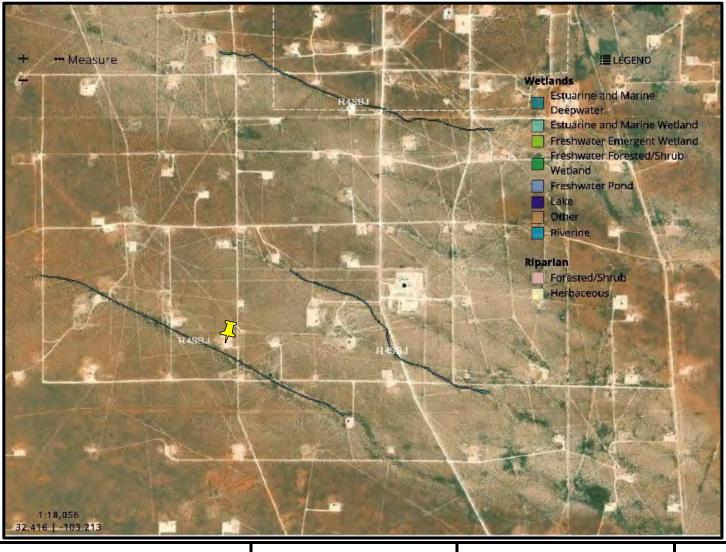

Notes:


- GRO: Gasoline Range Organics
- 2. DRO: Diesel Range Organics
- 3. MRO: Motor Oil Range Organics
- 4. -: No NMOCD Closure Criteria established.
- 5. bgs: Below Ground Surface
- 6. Bold indicates the COC was above the appropriate laboratory method/sample detection limit.
- 7. < indicates the COC was below the appropriate laboratory method/sample detection limit.
- 8. Bold and yellow highlighting indicates the COC was above the appropriate NMOCD Closure Criteria.
- 9. J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- 10. F1: MS and/or MSD recovery exceeds control limits.
- 11. *1: LCS/LCSD RPD exceeds control limits.


<

FIGURES

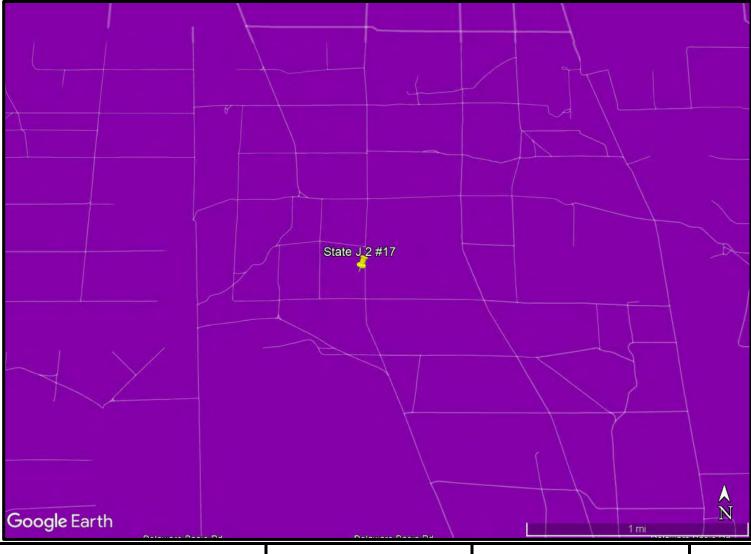
Base map from Google Earth Pro

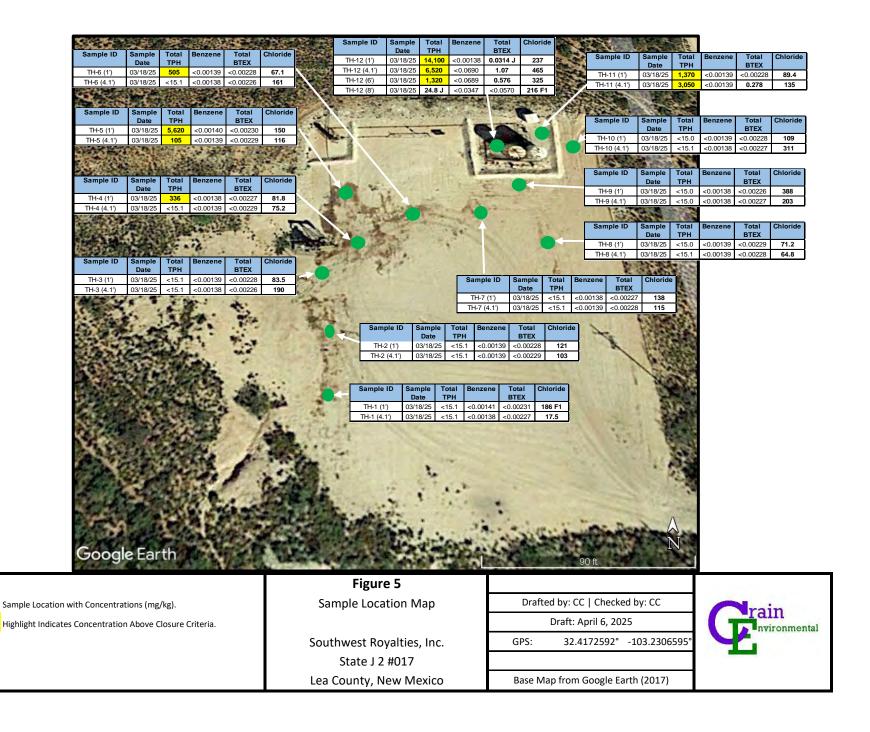

Figure 2
Wellhead Protection Area Map
Southwest Royalties, Inc.
State J 2 #017
Lea County, New Mexico

Drafted by: CC | Checked by: CC

Draft: April 6, 2025

GPS: 32.4172592° -103.2306595°




Figure 4
Karst Potential Map
Southwest Royalties, Inc.
State J 2 #017
Lea County, New Mexico

Drafted by: CC | Checked by: CC

Draft: April 6, 2025

GPS: 32.4172592° -103.2306595°

LEGEND:

Appendix A: NMOSE Point of Diversion Summary

Point of Diversion Summary

quarters are 1=NW 2=NE 3=SW 4=SE quarters are smallest to largest

NAD83 UTM in meters

Well Tag	POD Nbr	Q64	Q16	Q4	Sec	Tws	Rng	x	Υ	Мар
	CP 00761 POD1	SE	SW	NW	01	225	36E	666964.0	3588569.0 *	•

* UTM location was derived from PLSS - see Help

Driller License:	1612	Driller Company:	CAPSTAR DRILLING, L.P.		
Driller Name:	WILSON S. M	ICCLURY			
Drill Start Date:	1991-09-22	Drill Finish Date:	1992-01-07	Plug Date:	
Log File Date:	1994-08-16	PCW Rcv Date:	1994-08-16	Source:	Artesian
Pump Type:	SUBMER	Pipe Discharge Size:	4	Estimated Yield:	
Casing Size:	8.63	Depth Well:	5000	Depth Water:	

Water Bearing Stratifications:

Тор	Bottom	Description
4080	5000	Limestone/Dolomite/Chalk

Meter Information

Meter Number:	10252	Meter Make:	HALLIBURTON
Meter Serial Number:	4SBF2540	Meter Multiplier:	1.0000
Number of Dials:	9	Meter Type:	Diversion
Unit of Measure:	Barrels 42 gal.	Reading Frequency:	Quarterly

Meter Readings (in Acre-Feet)

Read Date	Year	Mtr Reading	Flag	Rdr	Comment	Mtr Amount	Online
2005-12-31	2005	0.000	Α	RPT		0.000	
2006-03-31	2006	0.000	Α	RPT		0.000	
2006-06-30	2006	0.000	Α	RPT		0.000	
2006-10-30	2006	0.000	А	RPT		0.000	
2006-12-31	2006	0.000	А	RPT		0.000	

Read Date	Year	Mtr Reading	Flag	Rdr	Comment	Mtr Amount	Online
2014-03-31	2014	0.000	А	RPT		0.000	
2014-06-30	2014	0.000	А	RPT		0.000	

YTD Meter Amounts:

Year	Amount
2005	0.000
2006	0.000
2014	0.000

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

4/30/25 12:04 AM MST Point of Diversion Summary

©2024 New Mexico Office of the State Engineer, All Rights Reserved. | <u>Disclaimer</u> | <u>Contact Us</u> | <u>Help</u> | <u>Home</u> |

Appendix B: Biological Desktop Review

Project code: 2025-0079048 04/06/2025 05:53:43 UTC

PROJECT SUMMARY

Project Code: 2025-0079048 Project Name: State J 2 #017

Project Type: Non-NPL Site Remediation

Project Description: Soil remediation

Project Location:

The approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/@32.4174195,-103.23131530779142,14z

Counties: Lea County, New Mexico

Project code: 2025-0079048 04/06/2025 05:53:43 UTC

BIRDS

NAME STATUS

Lesser Prairie-chicken *Tympanuchus pallidicinctus*

Endangered

Population: Southern DPS

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/1924

Northern Aplomado Falcon Falco femoralis septentrionalis

Population: U.S.A (AZ, NM)
No critical habitat has been designated for this species.
Species profile: https://ecos.fws.gov/ecp/species/1923

Population, Non-Essential

Experimental

INSECTS

NAME STATUS

Monarch Butterfly *Danaus plexippus*

Proposed

There is **proposed** critical habitat for this species. Your location does not overlap the critical habitat.

habitat.
Species profile: https://ecos.fws.gov/ecp/species/9743

Threatened

CRITICAL HABITATS

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

YOU ARE STILL REQUIRED TO DETERMINE IF YOUR PROJECT(S) MAY HAVE EFFECTS ON ALL ABOVE LISTED SPECIES.

Appendix C: Laboratory Report and Chain-of-Custody Documentation

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Cindy Crain Crain Environmental 2925 E. 17th St. Odessa, Texas 79761

Generated 3/28/2025 9:09:25 AM

JOB DESCRIPTION

State J 2 #17 Lea Co, NM

JOB NUMBER

880-55872-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 3/28/2025 9:09:25 AM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440 2

_

4

6

10

13

14

Client: Crain Environmental
Project/Site: State J 2 #17

Laboratory Job ID: 880-55872-1
SDG: Lea Co, NM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	7
Surrogate Summary	27
QC Sample Results	29
QC Association Summary	39
Lab Chronicle	46
Certification Summary	54
Method Summary	55
Sample Summary	56
Chain of Custody	57
Receint Checklists	60

3

4

6

8

10

11

13

14

Definitions/Glossary

Client: Crain Environmental Job ID: 880-55872-1 Project/Site: State J 2 #17 SDG: Lea Co, NM

Qualifiers

00	111	^
GC	V	JA

Qualifier **Qualifier Description**

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier	Qualifier Description
*1	LCS/LCSD RPD exceeds control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
U	Indicates the analyte was analyzed for but not detected.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit NC

Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Midland

Case Narrative

Client: Crain Environmental Job ID: 880-55872-1 Project: State J 2 #17

Eurofins Midland Job ID: 880-55872-1

Job Narrative 880-55872-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/20/2025 4:43 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.2°C.

GC VOA

Method 8021B: The matrix spike (MS) recoveries for preparation batch 880-105767 and analytical batch 880-105769 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: The following samples were diluted due to <physical characteristics>, such as color, odor, appearance, viscosity, etc.>>: TH-11 (1') (880-55872-21), TH-11 (4.1') (880-55872-22), TH-12 (1') (880-55872-23), TH-12 (4.1') (880-55872-24), TH-12 (6') (880-55872-25) and TH-12 (8') (880-55872-26). Elevated reporting limits (RL) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: (LCSD 880-105762/3-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (880-55872-A-1-E MS). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: TH-5 (1') (880-55872-9). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-105762 and analytical batch 880-105738 recovered outside control limits for the following analytes: Gasoline Range Organics (GRO)-C6-C10 and Diesel Range Organics (Over C10-C28).

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: TH-11 (4.1') (880-55872-22). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: TH-8 (1') (880-55872-15), TH-8 (4.1') (880-55872-16), TH-9 (1) (880-55872-17), TH-9 (4.1') (880-55872-18), TH-10 (1') (880-55872-19), TH-10 (4.1') (880-55872-20), TH-11 (1') (880-55872-21), TH-12 (6') (880-55872-25), (LCS 880-105765/2-A), (LCSD 880-105765/3-A), (880-55872-A-14-C MS) and (880-55872-A-14-D MSD). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: TH-7 (4.1') (880-55872-14). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: TH-12 (1') (880-55872-23) and TH-12 (4.1') (880-55872-24). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

Case Narrative

Client: Crain Environmental Job ID: 880-55872-1
Project: State J 2 #17

Job ID: 880-55872-1 (Continued)

Eurofins Midland

HPLC/IC

Method 300_ORGFM_28D - Soluble: The Chloride matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-105780 and analytical batch 880-105791 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

The associated samples are: TH-11 (1') (880-55872-21), TH-11 (4.1') (880-55872-22), TH-12 (1') (880-55872-23), TH-12 (4.1') (880-55872-24) and TH-12 (6') (880-55872-25).

Method 300_ORGFM_28D - Soluble: The Chloride matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-105780 and analytical batch 880-105791 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

The associated samples are: TH-12 (8') (880-55872-26), (880-55872-A-26-D MS) and (880-55872-A-26-E MSD).

Method 300_ORGFM_28D - Soluble: The Chloride matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-105761 and analytical batch 880-105770 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

The associated samples are: TH-1 (1') (880-55872-1), TH-1 (4.1') (880-55872-2), TH-2 (1') (880-55872-3), TH-2 (4.1') (880-55872-4), TH-3 (1') (880-55872-5), TH-3 (4.1') (880-55872-6), TH-4 (1') (880-55872-7), TH-4 (4.1') (880-55872-8), TH-5 (1') (880-55872-9), TH-5 (4.1') (880-55872-10), (880-55872-A-1-B MS) and (880-55872-A-1-C MSD).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

_

4

6

7

_

4 4

12

13

14

Job ID: 880-55872-1

Client: Crain Environmental Project/Site: State J 2 #17 SDG: Lea Co, NM

Client Sample ID: TH-1 (1') Lab Sample ID: 880-55872-1

Date Collected: 03/18/25 10:30 Matrix: Solid Date Received: 03/20/25 16:43

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00141	U	0.00202	0.00141	mg/Kg		03/21/25 12:23	03/22/25 02:45	
Toluene	<0.00202	U	0.00202	0.00202	mg/Kg		03/21/25 12:23	03/22/25 02:45	
Ethylbenzene	< 0.00110	U	0.00202	0.00110	mg/Kg		03/21/25 12:23	03/22/25 02:45	
m-Xylene & p-Xylene	<0.00231	U	0.00404	0.00231	mg/Kg		03/21/25 12:23	03/22/25 02:45	
o-Xylene	< 0.00160	U	0.00202	0.00160	mg/Kg		03/21/25 12:23	03/22/25 02:45	
Xylenes, Total	<0.00231	U	0.00404	0.00231	mg/Kg		03/21/25 12:23	03/22/25 02:45	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	100		70 - 130				03/21/25 12:23	03/22/25 02:45	
1,4-Difluorobenzene (Surr)	92		70 - 130				03/21/25 12:23	03/22/25 02:45	
Method: TAL SOP Total BTEX	. Total BTE	X Calculat	tion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00231	U	0.00404	0.00231	mg/Kg			03/22/25 02:45	•
Method: SW846 8015 NM - Di	esel Range	Organics (DRO) (GC)						
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<15.1		50.0	15.1	mg/Kg			03/22/25 01:56	
Method: SW846 8015B NM - D	Diesel Range	organics	(DRO) (GC)						
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<14.5	U *1	50.0	14.5	mg/Kg		03/21/25 11:26	03/22/25 01:56	
(GRO)-C6-C10 Diesel Range Organics (Over	<15.1	U *1	50.0	15.1	mg/Kg		03/21/25 11:26	03/22/25 01:56	
C10-C28)									
Oil Range Organics (Over C28-C36)	<15.1	U	50.0	15.1	mg/Kg		03/21/25 11:26	03/22/25 01:56	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	120		70 - 130				03/21/25 11:26	03/22/25 01:56	
o-Terphenyl	111		70 - 130				03/21/25 11:26	03/22/25 01:56	
Marthaul EDA 000 0 Author		toaronby	Soluble						
Method: EPA 300.0 - Anions,	ion Chroma	tograpily -	Soluble						
Method: EPA 300.0 - Anions, Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Client Sample ID: TH-1 (4.1') Lab Sample ID: 880-55872-2 Date Collected: 03/18/25 10:45 **Matrix: Solid**

Date Received: 03/20/25 16:43

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00138	U	0.00199	0.00138	mg/Kg		03/21/25 12:23	03/22/25 03:05	1
Toluene	<0.00199	U	0.00199	0.00199	mg/Kg		03/21/25 12:23	03/22/25 03:05	1
Ethylbenzene	<0.00108	U	0.00199	0.00108	mg/Kg		03/21/25 12:23	03/22/25 03:05	1
m-Xylene & p-Xylene	<0.00227	U	0.00398	0.00227	mg/Kg		03/21/25 12:23	03/22/25 03:05	1
o-Xylene	< 0.00157	U	0.00199	0.00157	mg/Kg		03/21/25 12:23	03/22/25 03:05	1
Xylenes, Total	<0.00227	U	0.00398	0.00227	mg/Kg		03/21/25 12:23	03/22/25 03:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				03/21/25 12:23	03/22/25 03:05	1
1,4-Difluorobenzene (Surr)	92		70 - 130				03/21/25 12:23	03/22/25 03:05	1

Eurofins Midland

Client: Crain Environmental Job ID: 880-55872-1 Project/Site: State J 2 #17 SDG: Lea Co, NM

Client Sample ID: TH-1 (4.1') Lab Sample ID: 880-55872-2

Date Collected: 03/18/25 10:45 **Matrix: Solid** Date Received: 03/20/25 16:43

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00227	U	0.00398	0.00227	mg/Kg			03/22/25 03:05	-
Method: SW846 8015 NM - Die	esel Range (Organics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<15.1	U	50.0	15.1	mg/Kg			03/22/25 02:45	1
Method: SW846 8015B NM - D	Diesel Range	Organics	(DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<14.5	U *1	50.0	14.5	mg/Kg		03/21/25 11:26	03/22/25 02:45	
(GRO)-C6-C10									
Diesel Range Organics (Over	<15.1	U *1	50.0	15.1	mg/Kg		03/21/25 11:26	03/22/25 02:45	•
C10-C28)									
Oil Range Organics (Over C28-C36)	<15.1	U	50.0	15.1	mg/Kg		03/21/25 11:26	03/22/25 02:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	119		70 - 130				03/21/25 11:26	03/22/25 02:45	
	111		70 - 130				03/21/25 11:26	03/22/25 02:45	

17.5 10.1 03/21/25 18:24 Chloride 0.399 mg/Kg Client Sample ID: TH-2 (1') Lab Sample ID: 880-55872-3 Date Collected: 03/18/25 11:00 **Matrix: Solid**

RL

MDL Unit

Prepared

Analyzed

Result Qualifier

Date Received: 03/20/25 16:43

Released to Imaging: 5/27/2025 8:52:13 AM

Analyte

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00139	U	0.00200	0.00139	mg/Kg		03/21/25 12:23	03/22/25 03:26	1
Toluene	<0.00200	U	0.00200	0.00200	mg/Kg		03/21/25 12:23	03/22/25 03:26	1
Ethylbenzene	< 0.00109	U	0.00200	0.00109	mg/Kg		03/21/25 12:23	03/22/25 03:26	1
m-Xylene & p-Xylene	<0.00228	U	0.00399	0.00228	mg/Kg		03/21/25 12:23	03/22/25 03:26	1
o-Xylene	<0.00158	U	0.00200	0.00158	mg/Kg		03/21/25 12:23	03/22/25 03:26	1
Xylenes, Total	<0.00228	U	0.00399	0.00228	mg/Kg		03/21/25 12:23	03/22/25 03:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130				03/21/25 12:23	03/22/25 03:26	1
1,4-Difluorobenzene (Surr)	88		70 - 130				02/24/25 42:22	03/22/25 03:26	-
·							03/21/25 12.23	03/22/23 03.20	ı
Method: TAL SOP Total BT Analyte	EX - Total BTE Result	Qualifier	tion RL		Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BT Analyte Total BTEX	TEX - Total BTE Result <0.00228	Qualifier U	RL 0.00399	MDL 0.00228		<u>D</u>			Dil Fac
Method: TAL SOP Total BT Analyte Total BTEX Method: SW846 8015 NM -	TEX - Total BTE Result <0.00228 Diesel Range	Qualifier U	RL 0.00399	0.00228		<u>D</u>		Analyzed	1
Method: TAL SOP Total BT Analyte Total BTEX Method: SW846 8015 NM - Analyte	TEX - Total BTE Result <0.00228 Diesel Range	Qualifier U Organics (Qualifier	RL 0.00399 DRO) (GC)	0.00228	mg/Kg	_ =	Prepared	Analyzed 03/22/25 03:26	1
Method: TAL SOP Total BT Analyte Total BTEX Method: SW846 8015 NM - Analyte Total TPH	EX - Total BTE Result <0.00228 Diesel Range (Result <15.1	Qualifier U Organics (Qualifier U	RL 0.00399 - DRO) (GC) RL 49.9	0.00228 MDL 15.1	mg/Kg Unit	_ =	Prepared	Analyzed 03/22/25 03:26 Analyzed	1
Method: TAL SOP Total BT Analyte Total BTEX Method: SW846 8015 NM - Analyte Total TPH Method: SW846 8015B NM	EX - Total BTE Result <0.00228 Diesel Range Result <15.1 - Diesel Range	Qualifier U Organics (Qualifier U	RL 0.00399 - DRO) (GC) RL 49.9	0.00228 MDL 15.1	mg/Kg Unit	_ =	Prepared	Analyzed 03/22/25 03:26 Analyzed	Dil Fac
Method: TAL SOP Total BT Analyte Total BTEX Method: SW846 8015 NM - Analyte Total TPH Method: SW846 8015B NM Analyte Gasoline Range Organics (GRO)-C6-C10	EX - Total BTE Result <0.00228 Diesel Range Result <15.1 - Diesel Range	Qualifier U Organics (Qualifier U Organics (Qualifier U	RL 0.00399 DRO) (GC) RL 49.9 (DRO) (GC)	0.00228 MDL 15.1	mg/Kg Unit mg/Kg	<u></u>	Prepared Prepared	Analyzed 03/22/25 03:26 Analyzed 03/22/25 03:01	Dil Fac

Eurofins Midland

Dil Fac

Job ID: 880-55872-1

Client: Crain Environmental Project/Site: State J 2 #17

Analyte

Chloride

Released to Imaging: 5/27/2025 8:52:13 AM

SDG: Lea Co, NM

Client Sample ID: TH-2 (1')

Lab Sample ID: 880-55872-3

Date Collected: 03/18/25 11:00 Date Received: 03/20/25 16:43 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<15.1		49.9		mg/Kg	_ =	<u>.</u>	03/22/25 03:01	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	125	Quantito	70 - 130					03/22/25 03:01	
o-Terphenyl	117		70 - 130 70 - 130					03/22/25 03:01	
Method: EPA 300.0 - Anions, Analyte		tography Qualifier	- Soluble RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	121		9.96		mg/Kg	_ =		03/21/25 18:30	
Client Sample ID: TH-2 (4	111						ah Sample	D: 880-55	272_/
Date Collected: 03/18/25 11:15	. 1)						ab Sample	ו פ. 000-33 Matrix	
Date Received: 03/20/25 16:43								Matrix	
Method: SW846 8021B - Volat	ile Organic	Compour	ids (GC)						
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00139	U	0.00200	0.00139	mg/Kg		03/21/25 12:23	03/22/25 03:46	-
Toluene	<0.00200	U	0.00200	0.00200	mg/Kg		03/21/25 12:23	03/22/25 03:46	
Ethylbenzene	<0.00109	U	0.00200	0.00109	mg/Kg		03/21/25 12:23	03/22/25 03:46	
m-Xylene & p-Xylene	<0.00229		0.00401	0.00229	mg/Kg		03/21/25 12:23	03/22/25 03:46	
o-Xylene	< 0.00159	U	0.00200	0.00159	0 0		03/21/25 12:23	03/22/25 03:46	
Xylenes, Total	<0.00229		0.00401	0.00229	mg/Kg			03/22/25 03:46	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	108		70 - 130					03/22/25 03:46	
1,4-Difluorobenzene (Surr)	94		70 - 130				03/21/25 12:23	03/22/25 03:46	
: Method: TAL SOP Total BTEX	Total BTE	V Calcula	tion						
Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzod	Dil Fa
Total BTEX	<0.00229		0.00401	0.00229				Analyzed 03/22/25 03:46	DII Fac
TOTAL DIEX	\0.00229	U	0.00401	0.00229	mg/rxg			03/22/23 03.40	
Method: SW846 8015 NM - Die		_		MDI	1114	_	B	A	D!! E-
Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fa
Total TPH	<15.1	U	50.0	15.1	mg/Kg			03/22/25 03:17	•
Method: SW846 8015B NM - D	•	•	, , ,						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<14.5	U *1	50.0	14.5	mg/Kg		03/21/25 11:26	03/22/25 03:17	•
Diesel Range Organics (Over	<15.1	U *1	50.0	15.1	mg/Kg		03/21/25 11:26	03/22/25 03:17	
C10-C28)					- 0				
Oil Range Organics (Over C28-C36)	<15.1	U	50.0	15.1	mg/Kg		03/21/25 11:26	03/22/25 03:17	
Oil Range Organics (Over C26-C36)							Duamana		Dil Fa
,	%Recovery	Qualifier	Limits				Prepared	Analyzed	DII Fa
Surrogate 1-Chlorooctane	%Recovery	Qualifier	70 - 130					03/22/25 03:17	DII Fa

Eurofins Midland

Analyzed

03/21/25 18:36

RL

9.92

MDL Unit

0.392 mg/Kg

Prepared

Dil Fac

Result Qualifier

103

Job ID: 880-55872-1 SDG: Lea Co, NM

Client Sample ID: TH-3 (1') Lab Sample ID: 880-55872-5

Date Collected: 03/18/25 11:30 Matrix: Solid

Date Received: 03/20/25 16:43

Client: Crain Environmental

Project/Site: State J 2 #17

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00139	U	0.00200	0.00139	mg/Kg		03/21/25 12:23	03/22/25 04:07	
Toluene	<0.00200	U	0.00200	0.00200	mg/Kg		03/21/25 12:23	03/22/25 04:07	•
Ethylbenzene	< 0.00109	U	0.00200	0.00109	mg/Kg		03/21/25 12:23	03/22/25 04:07	•
m-Xylene & p-Xylene	<0.00228	U	0.00399	0.00228	mg/Kg		03/21/25 12:23	03/22/25 04:07	
o-Xylene	<0.00158	U	0.00200	0.00158	mg/Kg		03/21/25 12:23	03/22/25 04:07	•
Xylenes, Total	<0.00228	U	0.00399	0.00228	mg/Kg		03/21/25 12:23	03/22/25 04:07	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	104		70 - 130				03/21/25 12:23	03/22/25 04:07	
1,4-Difluorobenzene (Surr)	93		70 - 130				03/21/25 12:23	03/22/25 04:07	
Method: TAL SOP Total BTEX	C - Total BTE	X Calculat	ion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00228	U	0.00399	0.00228	mg/Kg			03/22/25 04:07	1
14 (I I OMO (O CO (T NIX D)		• • •	DDO) (00)						
	_	Organics (Qualifier	DRO) (GC)	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte	_	Qualifier	, , ,		Unit mg/Kg	<u>D</u>	Prepared	Analyzed 03/22/25 03:34	
Analyte Total TPH	Result <15.1	Qualifier U	RL 49.8			D_	Prepared		
Analyte Total TPH Method: SW846 8015B NM - [Result <15.1	Qualifier U	RL 49.8	15.1		<u>D</u> D	Prepared Prepared		
Analyte Total TPH Method: SW846 8015B NM - E Analyte Gasoline Range Organics	Result <15.1	Qualifier U Organics Qualifier	RL 49.8	15.1 MDL	mg/Kg	_ =		03/22/25 03:34	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - E Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <15.1 Diesel Range Result	Qualifier U Organics Qualifier U *1	RL 49.8 (DRO) (GC) RL	15.1 MDL 14.5	mg/Kg Unit	_ =	Prepared 03/21/25 11:26	03/22/25 03:34 Analyzed	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - E Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <15.1 Diesel Range Result <14.5	Qualifier U Organics Qualifier U *1 U *1	RL 49.8 (DRO) (GC) RL 49.8	15.1 MDL 14.5 15.1	mg/Kg Unit mg/Kg	_ =	Prepared 03/21/25 11:26 03/21/25 11:26	03/22/25 03:34 Analyzed 03/22/25 03:34	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - E Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	Result <15.1 Diesel Range Result <14.5 <15.1	Qualifier U Organics Qualifier U *1 U *1	RL 49.8 (DRO) (GC) RL 49.8	15.1 MDL 14.5 15.1	mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 03/21/25 11:26 03/21/25 11:26	03/22/25 03:34 Analyzed 03/22/25 03:34 03/22/25 03:34	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - E Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	Result <15.1	Qualifier U Organics Qualifier U *1 U *1	RL 49.8 (DRO) (GC) RL 49.8 49.8	15.1 MDL 14.5 15.1	mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 03/21/25 11:26 03/21/25 11:26 03/21/25 11:26	03/22/25 03:34 Analyzed 03/22/25 03:34 03/22/25 03:34 03/22/25 03:34	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <15.1	Qualifier U Organics Qualifier U *1 U *1	RL 49.8 (DRO) (GC) RL 49.8 49.8 49.8	15.1 MDL 14.5 15.1	mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 03/21/25 11:26 03/21/25 11:26 03/21/25 11:26 Prepared 03/21/25 11:26	03/22/25 03:34 Analyzed 03/22/25 03:34 03/22/25 03:34 03/22/25 03:34 Analyzed	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <15.1	Qualifier U Organics Qualifier U *1 U *1 U Qualifier	RL 49.8 (DRO) (GC) RL 49.8 49.8 49.8 Limits 70 - 130 70 - 130	15.1 MDL 14.5 15.1	mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 03/21/25 11:26 03/21/25 11:26 03/21/25 11:26 Prepared 03/21/25 11:26	Analyzed 03/22/25 03:34 Analyzed 03/22/25 03:34 03/22/25 03:34 Analyzed 03/22/25 03:34	Dil Fac
Method: SW846 8015 NM - Di Analyte Total TPH Method: SW846 8015B NM - Di Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Analyte	Result <15.1	Qualifier U Organics Qualifier U *1 U *1 U Qualifier	RL 49.8 (DRO) (GC) RL 49.8 49.8 49.8 Limits 70 - 130 70 - 130	15.1 MDL 14.5 15.1 15.1	mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 03/21/25 11:26 03/21/25 11:26 03/21/25 11:26 Prepared 03/21/25 11:26	Analyzed 03/22/25 03:34 Analyzed 03/22/25 03:34 03/22/25 03:34 Analyzed 03/22/25 03:34	Dil Fac

Client Sample ID: TH-3 (4.1')

Date Collected: 03/18/25 11:45

Lab Sample ID: 880-55872-6

Matrix: Solid

Date Received: 03/20/25 16:43

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00138	U	0.00198	0.00138	mg/Kg		03/21/25 12:23	03/22/25 04:27	1
Toluene	<0.00198	U	0.00198	0.00198	mg/Kg		03/21/25 12:23	03/22/25 04:27	1
Ethylbenzene	<0.00108	U	0.00198	0.00108	mg/Kg		03/21/25 12:23	03/22/25 04:27	1
m-Xylene & p-Xylene	<0.00226	U	0.00396	0.00226	mg/Kg		03/21/25 12:23	03/22/25 04:27	1
o-Xylene	< 0.00157	U	0.00198	0.00157	mg/Kg		03/21/25 12:23	03/22/25 04:27	1
Xylenes, Total	<0.00226	U	0.00396	0.00226	mg/Kg		03/21/25 12:23	03/22/25 04:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				03/21/25 12:23	03/22/25 04:27	1
1,4-Difluorobenzene (Surr)	91		70 - 130				03/21/25 12:23	03/22/25 04:27	1

Eurofins Midland

2

3

4

6

8

10

12

13

Client: Crain Environmental Job ID: 880-55872-1 Project/Site: State J 2 #17 SDG: Lea Co, NM

Client Sample ID: TH-3 (4.1')

Lab Sample ID: 880-55872-6 Date Collected: 03/18/25 11:45 Matrix: Solid

Date Received: 03/20/25 16:43

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00226	U	0.00396	0.00226	mg/Kg			03/22/25 04:27	1
Method: SW846 8015 NM - Die	esel Range	Organics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<15.1	U	50.0	15.1	mg/Kg			03/22/25 03:49	1
Method: SW846 8015B NM - D	Diesel Range	e Organics	(DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<14.5	U *1	50.0	14.5	mg/Kg		03/21/25 11:26	03/22/25 03:49	
(GRO)-C6-C10									
Diesel Range Organics (Over	<15.1	U *1	50.0	15.1	mg/Kg		03/21/25 11:26	03/22/25 03:49	•
C10-C28)									
Oil Range Organics (Over C28-C36)	<15.1	U	50.0	15.1	mg/Kg		03/21/25 11:26	03/22/25 03:49	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	124	-	70 - 130				03/21/25 11:26	03/22/25 03:49	-
o-Terphenyl	121		70 - 130				03/21/25 11:26	03/22/25 03:49	

Analyte Result Qualifier RL MDL Unit Prepared Analyzed 9.94 03/21/25 18:59 190 0.393 mg/Kg **Chloride** Client Sample ID: TH-4 (1') Lab Sample ID: 880-55872-7

Date Collected: 03/18/25 12:00

Released to Imaging: 5/27/2025 8:52:13 AM

Date Received: 03/20/25 16:4	.3								
Method: SW846 8021B - Vol	atile Organic	Compoun	ds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00138	U	0.00199	0.00138	mg/Kg		03/21/25 12:23	03/22/25 04:48	1
Toluene	< 0.00199	U	0.00199	0.00199	mg/Kg		03/21/25 12:23	03/22/25 04:48	1
Ethylbenzene	<0.00108	U	0.00199	0.00108	mg/Kg		03/21/25 12:23	03/22/25 04:48	1
m-Xylene & p-Xylene	<0.00227	U	0.00398	0.00227	mg/Kg		03/21/25 12:23	03/22/25 04:48	1
o-Xylene	< 0.00157	U	0.00199	0.00157	mg/Kg		03/21/25 12:23	03/22/25 04:48	1
Xylenes, Total	<0.00227	U	0.00398	0.00227	mg/Kg		03/21/25 12:23	03/22/25 04:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				03/21/25 12:23	03/22/25 04:48	1
1,4-Difluorobenzene (Surr)	90		70 - 130				03/21/25 12:23	03/22/25 04:48	1
Method: TAL SOP Total BTE	X - Total BTE	X Calculat	tion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00227	U	0.00398	0.00227	mg/Kg			03/22/25 04:48	1

Method: SW846 8015 NM - Die	d: SW846 8015 NM - Diesel Range Organics (DRO) (GC)								
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	336		50.0	15.1	mg/Kg			03/22/25 04:05	1

Method: SW846 8015B NM - D	Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics (GRO)-C6-C10	<14.5	U *1	50.0	14.5	mg/Kg		03/21/25 11:26	03/22/25 04:05	1	
Diesel Range Organics (Over C10-C28)	336	*1	50.0	15.1	mg/Kg		03/21/25 11:26	03/22/25 04:05	1	

Eurofins Midland

Matrix: Solid

Job ID: 880-55872-1

SDG: Lea Co, NM

Client Sample ID: TH-4 (1')

Client: Crain Environmental

Project/Site: State J 2 #17

Lab Sample ID: 880-55872-7

Date Collected: 03/18/25 12:00 Date Received: 03/20/25 16:43

Matrix: Solid

Analyte	Diesel Range	_			•	_			
0.1 D		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Oil Range Organics (Over C28-C36)	<15.1	U	50.0	15.1	mg/Kg		03/21/25 11:26	03/22/25 04:05	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1-Chlorooctane	123		70 - 130				03/21/25 11:26	03/22/25 04:05	
o-Terphenyl	119		70 - 130				03/21/25 11:26	03/22/25 04:05	
Method: EPA 300.0 - Anions	, Ion Chroma	ography -	Soluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Chloride	81.8		9.96	0.393	mg/Kg			03/21/25 19:04	
lient Sample ID: TH-4 ((4.1')					L	ab Sample	D: 880-55	872
ate Collected: 03/18/25 12:1							-	Matrix	: Soli
Method: SW846 8021B - Vola		Compound	ds (GC)						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
Benzene	<0.00139	U	0.00200	0.00139	mg/Kg		03/21/25 12:23	03/22/25 05:08	
Toluene	<0.00200	U	0.00200	0.00200	mg/Kg		03/21/25 12:23	03/22/25 05:08	
Ethylbenzene	< 0.00109	U	0.00200	0.00109	mg/Kg		03/21/25 12:23	03/22/25 05:08	
m-Xylene & p-Xylene	<0.00229	U	0.00400	0.00229	mg/Kg		03/21/25 12:23	03/22/25 05:08	
o-Xylene	<0.00158	U	0.00200	0.00158	mg/Kg		03/21/25 12:23	03/22/25 05:08	
Xylenes, Total	<0.00229	U	0.00400	0.00229	mg/Kg		03/21/25 12:23	03/22/25 05:08	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	107		70 - 130				03/21/25 12:23	03/22/25 05:08	
1,4-Difluorobenzene (Surr)	92		70 - 130				03/21/25 12:23	03/22/25 05:08	
Method: TAL SOP Total BTE			ion						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00229	U	0.00400	0.00229	mg/Kg			03/22/25 05:08	
Method: SW846 8015 NM - D	_	•	, , ,			_			
Analyte		Qualifier	RL -		Unit	D	Prepared	Analyzed	Dil F
Total TPH	<15.1	U	49.9	15.1	mg/Kg			03/22/25 04:22	
Method: SW846 8015B NM -	•	•	, , ,		1114	_	B	A	D:: F
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
0 1: 0 0 :	<14.5	U ~1	49.9	14.5	mg/Kg		03/21/25 11:26	03/22/25 04:22	
(GRO)-C6-C10				15 1	mg/Kg		03/21/25 11:26	03/22/25 04:22	
(GRO)-C6-C10 Diesel Range Organics (Over	<15.1	U *1	49.9	10.1					
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<15.1 <15.1		49.9 49.9		mg/Kg		03/21/25 11:26	03/22/25 04:22	
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)		U			mg/Kg		03/21/25 11:26 Prepared	03/22/25 04:22 Analyzed	Dil F
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	<15.1	U	49.9		mg/Kg		Prepared		Dil F
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<15.1 %Recovery	U	49.9 <i>Limits</i>		mg/Kg		Prepared 03/21/25 11:26	Analyzed	Dil F
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<15.1 **Recovery 121 120	U Qualifier	49.9 Limits 70 - 130 70 - 130		mg/Kg		Prepared 03/21/25 11:26	Analyzed 03/22/25 04:22	Dil F

Eurofins Midland

03/21/25 19:10

9.98

0.394 mg/Kg

75.2

Chloride

3/28/2025

Client: Crain Environmental

Job ID: 880-55872-1 SDG: Lea Co, NM

Project/Site: State J 2 #17 SDG: Lea Co, NM Client Sample ID: TH-5 (1') Lab Sample ID: 880-55872-9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00140	U	0.00201	0.00140	mg/Kg		03/21/25 12:23	03/22/25 05:29	1
Toluene	< 0.00201	U	0.00201	0.00201	mg/Kg		03/21/25 12:23	03/22/25 05:29	1
Ethylbenzene	< 0.00110	U	0.00201	0.00110	mg/Kg		03/21/25 12:23	03/22/25 05:29	1
m-Xylene & p-Xylene	<0.00230	U	0.00402	0.00230	mg/Kg		03/21/25 12:23	03/22/25 05:29	1
o-Xylene	< 0.00159	U	0.00201	0.00159	mg/Kg		03/21/25 12:23	03/22/25 05:29	1
Xylenes, Total	<0.00230	U	0.00402	0.00230	mg/Kg		03/21/25 12:23	03/22/25 05:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130				03/21/25 12:23	03/22/25 05:29	1
1,4-Difluorobenzene (Surr)	88		70 - 130				03/21/25 12:23	03/22/25 05:29	1
Method: TAL SOP Total BTEX	(- Total BTE	X Calculat	ion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00230	П	0.00402	0.00230	ma/Ka			03/22/25 05:29	1
- -				0.00250	mg/rtg			00/22/20 00:20	•
Method: SW846 8015 NM - Di Analyte	esel Range			MDL		D	Prepared	Analyzed	Dil Fac
<u>-</u> Method: SW846 8015 NM - Di	esel Range	Organics (DRO) (GC)	MDL		<u>D</u>	Prepared		Dil Fac
Method: SW846 8015 NM - Di Analyte	esel Range (Result	Organics (Qualifier	DRO) (GC) RL 49.9	MDL	Unit	<u>D</u>	Prepared	Analyzed	
Method: SW846 8015 NM - Di Analyte Total TPH	esel Range (Result 5620	Organics (Qualifier	DRO) (GC) RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed	
Method: SW846 8015 NM - Di Analyte Total TPH Method: SW846 8015B NM - E	esel Range (Result 5620	Organics (Qualifier Organics Qualifier	DRO) (GC) RL 49.9	MDL 15.1	Unit mg/Kg	_ =		Analyzed 03/22/25 04:37	Dil Fac
Method: SW846 8015 NM - Di Analyte Total TPH Method: SW846 8015B NM - E Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	esel Range (Result 5620)	Organics (Qualifier Organics Qualifier U*1	DRO) (GC) RL 49.9 (DRO) (GC) RL	MDL 15.1 MDL 14.5	Unit mg/Kg	_ =	Prepared 03/21/25 11:26	Analyzed 03/22/25 04:37 Analyzed	Dil Fac
Method: SW846 8015 NM - Di Analyte Total TPH Method: SW846 8015B NM - E Analyte Gasoline Range Organics (GRO)-C6-C10	Result 5620 Diesel Range Result <a #"="" href="mailto:result-state-of-state-s</td><td>Organics (Qualifier Organics Qualifier U*1</td><td>DRO) (GC) RL 49.9 (DRO) (GC) RL 49.9</td><td>MDL
15.1
MDL
14.5</td><td>Unit mg/Kg Unit mg/Kg</td><td>_ =</td><td>Prepared 03/21/25 11:26 03/21/25 11:26</td><td>Analyzed 03/22/25 04:37 Analyzed 03/22/25 04:37</td><td>Dil Fac</td></tr><tr><td>Method: SW846 8015 NM - Di
Analyte Total TPH Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)</td><td>Result 5620 Diesel Range Result < 14.5 5620	Organics (Qualifier Organics Qualifier U*1 U	DRO) (GC) RL 49.9 (DRO) (GC) RL 49.9 49.9	MDL 15.1 MDL 14.5	Unit mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 03/21/25 11:26 03/21/25 11:26	Analyzed 03/22/25 04:37 Analyzed 03/22/25 04:37 03/22/25 04:37	1 Dil Fac
Method: SW846 8015 NM - Di Analyte Total TPH Method: SW846 8015B NM - Di Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	Result 5620 Diesel Range Result < 14.5 5620 < 15.1	Organics (Qualifier Organics Qualifier U*1 U	DRO) (GC) RL 49.9 (DRO) (GC) RL 49.9 49.9 49.9	MDL 15.1 MDL 14.5	Unit mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 03/21/25 11:26 03/21/25 11:26 03/21/25 11:26	Analyzed 03/22/25 04:37 Analyzed 03/22/25 04:37 03/22/25 04:37 03/22/25 04:37	Dil Fac
Method: SW846 8015 NM - Di Analyte Total TPH Method: SW846 8015B NM - Di Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	Result Second Result Second Result Second S	Organics (Qualifier Organics Qualifier U*1 U	DRO) (GC) RL 49.9 (DRO) (GC) RL 49.9 49.9 49.9 Limits	MDL 15.1 MDL 14.5	Unit mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 03/21/25 11:26 03/21/25 11:26 03/21/25 11:26 Prepared 03/21/25 11:26	Analyzed 03/22/25 04:37 Analyzed 03/22/25 04:37 03/22/25 04:37 03/22/25 04:37 Analyzed	1
Method: SW846 8015 NM - Di Analyte Total TPH Method: SW846 8015B NM - Di Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result Second Result Second Result Second S	Organics (Qualifier Organics Qualifier U*1 *1 U Qualifier S1+	DRO) (GC) RL 49.9 (DRO) (GC) RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130	MDL 15.1 MDL 14.5	Unit mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 03/21/25 11:26 03/21/25 11:26 03/21/25 11:26 Prepared 03/21/25 11:26	Analyzed 03/22/25 04:37 Analyzed 03/22/25 04:37 03/22/25 04:37 Analyzed 03/22/25 04:37	Dil Fac
Method: SW846 8015 NM - Di Analyte Total TPH Method: SW846 8015B NM - Di Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Organics (Qualifier Organics Qualifier U*1 *1 U Qualifier S1+	DRO) (GC) RL 49.9 (DRO) (GC) RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130	MDL 15.1 MDL 14.5	Unit mg/Kg Unit mg/Kg mg/Kg mg/Kg	_ =	Prepared 03/21/25 11:26 03/21/25 11:26 03/21/25 11:26 Prepared 03/21/25 11:26	Analyzed 03/22/25 04:37 Analyzed 03/22/25 04:37 03/22/25 04:37 Analyzed 03/22/25 04:37	Dil Fac

Client Sample ID: TH-5 (4.1')

Date Collected: 03/18/25 12:45

Lab Sample ID: 880-55872-10

Matrix: Solid

Date Received: 03/20/25 16:43

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00139	U	0.00200	0.00139	mg/Kg		03/21/25 12:23	03/22/25 05:49	1
Toluene	<0.00200	U	0.00200	0.00200	mg/Kg		03/21/25 12:23	03/22/25 05:49	1
Ethylbenzene	<0.00109	U	0.00200	0.00109	mg/Kg		03/21/25 12:23	03/22/25 05:49	1
m-Xylene & p-Xylene	<0.00229	U	0.00401	0.00229	mg/Kg		03/21/25 12:23	03/22/25 05:49	1
o-Xylene	< 0.00159	U	0.00200	0.00159	mg/Kg		03/21/25 12:23	03/22/25 05:49	1
Xylenes, Total	<0.00229	U	0.00401	0.00229	mg/Kg		03/21/25 12:23	03/22/25 05:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				03/21/25 12:23	03/22/25 05:49	1
1,4-Difluorobenzene (Surr)	86		70 - 130				03/21/25 12:23	03/22/25 05:49	1

Eurofins Midland

2

3

5

_

10

12

4 4

Job ID: 880-55872-1 SDG: Lea Co, NM

Client Sample ID: TH-5 (4.1') Lab Sample ID: 880-55872-10 Date Collected: 03/18/25 12:45

Matrix: Solid

03/21/25 11:26 03/22/25 04:54

Date Received: 03/20/25 16:43

Client: Crain Environmental

Project/Site: State J 2 #17

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00229	U	0.00401	0.00229	mg/Kg			03/22/25 05:49	1
Method: SW846 8015 NM - Di	esel Range (Organics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	105		49.7	15.0	mg/Kg			03/22/25 04:54	1
Method: SW846 8015B NM - DAnalyte	_	_	. , . ,		Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics	_	Qualifier	. , . ,	MDL	Unit mg/Kg	<u>D</u>	Prepared 03/21/25 11:26	Analyzed 03/22/25 04:54	Dil Fac
Analyte	Result	Qualifier U *1	RL	MDL 14.4		<u>D</u>	03/21/25 11:26		Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10	Result < 14.4	Qualifier U *1	RL 49.7	MDL 14.4	mg/Kg	<u>D</u>	03/21/25 11:26	03/22/25 04:54	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result < 14.4	Qualifier U *1 *1	RL 49.7	14.4 15.0	mg/Kg	<u>D</u>	03/21/25 11:26	03/22/25 04:54	1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <14.4 105	Qualifier U*1 *1	RL 49.7	14.4 15.0	mg/Kg	<u>D</u>	03/21/25 11:26 03/21/25 11:26	03/22/25 04:54	Dil Fac 1 1 Dil Fac

Method: EPA 300.0 - Anions, Ior	n Chromat	tography - S	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	116		10.1	0.398	mg/Kg			03/21/25 19:22	1

70 - 130

Client Sample ID: TH-6 (1') Lab Sample ID: 880-55872-11 **Matrix: Solid**

Date Collected: 03/18/25 13:00

Gasoline Range Organics

Diesel Range Organics (Over

Released to Imaging: 5/27/2025 8:52:13 AM

(GRO)-C6-C10

C10-C28)

o-Terphenyl

Date Received: 03/20/25 16:43	

124

<14.5 U *1

505 *1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00139	U	0.00199	0.00139	mg/Kg		03/21/25 12:23	03/22/25 07:23	1
Toluene	< 0.00199	U	0.00199	0.00199	mg/Kg		03/21/25 12:23	03/22/25 07:23	1
Ethylbenzene	<0.00108	U	0.00199	0.00108	mg/Kg		03/21/25 12:23	03/22/25 07:23	1
m-Xylene & p-Xylene	<0.00228	U	0.00398	0.00228	mg/Kg		03/21/25 12:23	03/22/25 07:23	1
o-Xylene	< 0.00158	U	0.00199	0.00158	mg/Kg		03/21/25 12:23	03/22/25 07:23	1
Xylenes, Total	<0.00228	U	0.00398	0.00228	mg/Kg		03/21/25 12:23	03/22/25 07:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				03/21/25 12:23	03/22/25 07:23	1
1,4-Difluorobenzene (Surr)	92		70 - 130				03/21/25 12:23	03/22/25 07:23	1
Method: TAL SOP Total BT	EX - Total BTE	X Calculat	ion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00228	U	0.00398	0.00228	mg/Kg			03/22/25 07:23	1
Method: SW846 8015 NM -	Diesel Range	Organics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	505		50.0	15.1	mg/Kg			03/22/25 05:26	1
- Method: SW846 8015B NM	- Diesel Range	Organics	(DRO) (GC)						
Analyte	_	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Midland

03/21/25 11:26 03/22/25 05:26

03/21/25 11:26 03/22/25 05:26

50.0

50.0

14.5 mg/Kg

15.1 mg/Kg

Job ID: 880-55872-1

SDG: Lea Co, NM

Lab Sample ID: 880-55872-11

Matrix: Solid

Client Sample ID: TH-6 (1') Date Collected: 03/18/25 13:00

Date Received: 03/20/25 16:43

Client: Crain Environmental

Project/Site: State J 2 #17

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Oil Range Organics (Over C28-C36)	<15.1	U	50.0	15.1	mg/Kg		03/21/25 11:26	03/22/25 05:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	119		70 - 130				03/21/25 11:26	03/22/25 05:26	1
o-Terphenyl	118		70 - 130				03/21/25 11:26	03/22/25 05:26	1

Method: EPA 300.0 - Anions, lor	Chroma	tography - S	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	67.1		9.94	0.393	mg/Kg			03/21/25 19:27	1

Client Sample ID: TH-6 (4.1') Date Collected: 03/18/25 13:15

Lab Sample ID: 880-55872-12 Matrix: Solid Date Received: 03/20/25 16:43

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00138	U	0.00198	0.00138	mg/Kg		03/21/25 12:23	03/22/25 07:43	1
Toluene	<0.00198	U	0.00198	0.00198	mg/Kg		03/21/25 12:23	03/22/25 07:43	1
Ethylbenzene	<0.00108	U	0.00198	0.00108	mg/Kg		03/21/25 12:23	03/22/25 07:43	
m-Xylene & p-Xylene	<0.00226	U	0.00396	0.00226	mg/Kg		03/21/25 12:23	03/22/25 07:43	1
o-Xylene	< 0.00157	U	0.00198	0.00157	mg/Kg		03/21/25 12:23	03/22/25 07:43	1
Xylenes, Total	<0.00226	U	0.00396	0.00226	mg/Kg		03/21/25 12:23	03/22/25 07:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	105		70 - 130				03/21/25 12:23	03/22/25 07:43	
1,4-Difluorobenzene (Surr)	91		70 - 130				03/21/25 12:23	03/22/25 07:43	1
Method: TAL SOP Total BTEX	- Total BTE	X Calculat	ion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00226	U	0.00396	0.00226	mg/Kg			03/22/25 07:43	
Method: SW846 8015 NM - Di	esel Range (Organics (DRO) (GC)						
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<15.1	U	50.0	15.1	mg/Kg			03/22/25 05:42	1
Method: SW846 8015B NM - D	Diesel Range	e Organics	(DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<14.5	U *1	50.0	14.5	mg/Kg		03/21/25 11:26	03/22/25 05:42	1
Diesel Range Organics (Over C10-C28)	<15.1	U *1	50.0	15.1	mg/Kg		03/21/25 11:26	03/22/25 05:42	1
Oil Range Organics (Over C28-C36)	<15.1	U	50.0	15.1	mg/Kg		03/21/25 11:26	03/22/25 05:42	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	117		70 - 130				03/21/25 11:26	03/22/25 05:42	-
o-Terphenyl	117		70 - 130				03/21/25 11:26	03/22/25 05:42	•
Method: EPA 300.0 - Anions,	lon Chroma	togranhy -	Soluble						

Eurofins Midland

03/21/25 19:45

10.0

0.397 mg/Kg

161

Chloride

Client Sample ID: TH-7 (1')

Job ID: 880-55872-1 SDG: Lea Co, NM

Client: Crain Environmental Project/Site: State J 2 #17

Lab Sample ID: 880-55872-13

Date Collected: 03/18/25 10:00 Date Received: 03/20/25 16:43

0 01111	 			
	M	atrix:	Solid	

Analyte	tile Organic Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00138		0.00199	0.00138		_ =	03/21/25 12:23	03/22/25 08:04	
Toluene	<0.00199		0.00199	0.00199					
Ethylbenzene	<0.00108	U	0.00199	0.00108			03/21/25 12:23	03/22/25 08:04	
m-Xylene & p-Xylene	<0.00227	U	0.00398	0.00227	mg/Kg		03/21/25 12:23	03/22/25 08:04	
o-Xylene	<0.00157	U	0.00199	0.00157			03/21/25 12:23	03/22/25 08:04	
Xylenes, Total	<0.00227	U	0.00398	0.00227			03/21/25 12:23	03/22/25 08:04	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	107		70 - 130				03/21/25 12:23	03/22/25 08:04	
1,4-Difluorobenzene (Surr)	90		70 - 130				03/21/25 12:23	03/22/25 08:04	
Method: TAL SOP Total BTEX	(- Total BTE	X Calculat	ion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00227	U	0.00398	0.00227	mg/Kg			03/22/25 08:04	
Method: SW846 8015 NM - Di	esel Range	Organics (DRO) (GC)						
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<15.1	U	49.8	15.1	mg/Kg			03/22/25 05:58	
Method: SW846 8015B NM - [Diesel Range	Organics	(DDO) (OO)						
	JICOCI I KUIIM	, Organics	(DRO) (GC)						
Analyte	_	Qualifier	(DRO) (GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	_	Qualifier			Unit mg/Kg	<u>D</u>	Prepared 03/21/25 11:26	Analyzed 03/22/25 05:58	Dil Fa
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U *1	RL	14.5		<u>D</u>	03/21/25 11:26		
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <14.5	Qualifier U *1 U *1	RL 49.8	14.5 15.1	mg/Kg	<u>D</u>	03/21/25 11:26 03/21/25 11:26	03/22/25 05:58	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	<14.5 <15.1	Qualifier U *1 U *1	49.8 49.8	14.5 15.1	mg/Kg	<u>D</u>	03/21/25 11:26 03/21/25 11:26	03/22/25 05:58 03/22/25 05:58	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	Result <14.5 <15.1 <15.1	Qualifier U *1 U *1	49.8 49.8 49.8	14.5 15.1	mg/Kg	<u>D</u>	03/21/25 11:26 03/21/25 11:26 03/21/25 11:26	03/22/25 05:58 03/22/25 05:58 03/22/25 05:58	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <14.5 <15.1 <15.1 %Recovery	Qualifier U *1 U *1	49.8 49.8 49.8 49.8	14.5 15.1	mg/Kg	<u>D</u>	03/21/25 11:26 03/21/25 11:26 03/21/25 11:26 Prepared 03/21/25 11:26	03/22/25 05:58 03/22/25 05:58 03/22/25 05:58 Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <14.5 <15.1 <15.1 %Recovery 119 116	Qualifier U*1 U*1 U Qualifier	49.8 49.8 49.8 Limits 70 - 130 70 - 130	14.5 15.1	mg/Kg	<u> </u>	03/21/25 11:26 03/21/25 11:26 03/21/25 11:26 Prepared 03/21/25 11:26	03/22/25 05:58 03/22/25 05:58 03/22/25 05:58 Analyzed 03/22/25 05:58	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Analyte	Result <14.5 <15.1 <15.1	Qualifier U*1 U*1 U Qualifier	49.8 49.8 49.8 Limits 70 - 130 70 - 130	14.5 15.1	mg/Kg mg/Kg mg/Kg	<u>D</u>	03/21/25 11:26 03/21/25 11:26 03/21/25 11:26 Prepared 03/21/25 11:26	03/22/25 05:58 03/22/25 05:58 03/22/25 05:58 Analyzed 03/22/25 05:58	Dil Fa

Client Sample ID: TH-7 (4.1') Lab Sample ID: 880-55872-14

Date Collected: 03/18/25 10:15 Matrix: Solid Date Received: 03/20/25 16:43

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00139	U	0.00200	0.00139	mg/Kg		03/21/25 12:23	03/22/25 08:24	1
Toluene	<0.00200	U	0.00200	0.00200	mg/Kg		03/21/25 12:23	03/22/25 08:24	1
Ethylbenzene	< 0.00109	U	0.00200	0.00109	mg/Kg		03/21/25 12:23	03/22/25 08:24	1
m-Xylene & p-Xylene	<0.00228	U	0.00399	0.00228	mg/Kg		03/21/25 12:23	03/22/25 08:24	1
o-Xylene	<0.00158	U	0.00200	0.00158	mg/Kg		03/21/25 12:23	03/22/25 08:24	1
Xylenes, Total	<0.00228	U	0.00399	0.00228	mg/Kg		03/21/25 12:23	03/22/25 08:24	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130	03/21/25 12:23	03/22/25 08:24	1
1,4-Difluorobenzene (Surr)	90		70 - 130	03/21/25 12:23	03/22/25 08:24	1

Job ID: 880-55872-1

Client: Crain Environmental Project/Site: State J 2 #17 SDG: Lea Co, NM

Client Sample ID: TH-7 (4.1')

Date Collected: 03/18/25 10:15 Date Received: 03/20/25 16:43

Lab Sample ID: 880-55872-14

Lab Sample ID: 880-55872-15

Matrix: Solid

Method: TAL SOP Total BTEX - Total BTEX Calculation									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00228	U	0.00399	0.00228	mg/Kg			03/22/25 08:24	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<15.1	U	49.8	15.1	mg/Kg			03/22/25 01:56	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<14.5	U	49.8	14.5	mg/Kg		03/21/25 11:44	03/22/25 01:56	1
Diesel Range Organics (Over C10-C28)	<15.1	U	49.8	15.1	mg/Kg		03/21/25 11:44	03/22/25 01:56	1
Oil Range Organics (Over C28-C36)	<15.1	U	49.8	15.1	mg/Kg		03/21/25 11:44	03/22/25 01:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1 Chlorocetane	13/	C1_	70 120				02/21/25 11:44	02/22/25 01:56	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Anaiyzea	DII Fac
1-Chlorooctane	134	S1+	70 - 130	03/21/25 11:44	03/22/25 01:56	1
o-Terphenyl	126		70 - 130	03/21/25 11:44	03/22/25 01:56	1
_						

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	115		9.96	0.393	mg/Kg			03/21/25 20:08	1

Client Sample ID: TH-8 (1')

Released to Imaging: 5/27/2025 8:52:13 AM

Date Collected: 03/18/25 09:05

Date Received: 03/20/25 16:43

Total BTEX

-		
Method: SW846 8021B	 Volatile Organic Compounds (GC 	(:

Michiga. Offoro our ID - vo	latile Organic	Compoun	us (UU)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00139	U	0.00200	0.00139	mg/Kg		03/21/25 12:23	03/22/25 08:45	1
Toluene	<0.00200	U	0.00200	0.00200	mg/Kg		03/21/25 12:23	03/22/25 08:45	1
Ethylbenzene	<0.00109	U	0.00200	0.00109	mg/Kg		03/21/25 12:23	03/22/25 08:45	1
m-Xylene & p-Xylene	<0.00229	U	0.00401	0.00229	mg/Kg		03/21/25 12:23	03/22/25 08:45	1
o-Xylene	<0.00159	U	0.00200	0.00159	mg/Kg		03/21/25 12:23	03/22/25 08:45	1
Xylenes, Total	<0.00229	U	0.00401	0.00229	mg/Kg		03/21/25 12:23	03/22/25 08:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				03/21/25 12:23	03/22/25 08:45	1

1,4-Difluorobenzene (Surr)	90	70 - 130		C)3/21/25 12:23	03/22/25 08:45	1	
Method: TAL SOP Total BTEX - 1	Total BTEX Calculat	ion						
Δnalyte	Result Qualifier	RI	MDI Unit	D	Prenared	Analyzed	Dil Fac	

0.00401

0.00229 mg/Kg

Method: SW846 8	3015 NM - Diese	I Range Organics	(DRO) (GC)

<0.00229 U

Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<15.0	U	49.6	15.0	mg/Kg			03/22/25 02:45	1

ı					
ı	Method: SW846 8	O1ED NIM	Discol Pango	Organica	(DDO) (CC)
	I IVIETTICU. SVVO46 O	with action .	· Diesei Kallue	OLUAIII.S	IDROHUGO.

Method: 544846 8015B NW - L	Jiesei Range	organics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<14.4	U	49.6	14.4	mg/Kg		03/21/25 11:44	03/22/25 02:45	1
Diesel Range Organics (Over C10-C28)	<15.0	U	49.6	15.0	mg/Kg		03/21/25 11:44	03/22/25 02:45	1

Eurofins Midland

03/22/25 08:45

Matrix: Solid

Client: Crain Environmental Job ID: 880-55872-1 Project/Site: State J 2 #17 SDG: Lea Co, NM

Client Sample ID: TH-8 (1') Lab Sample ID: 880-55872-15 Date Collected: 03/18/25 09:05

Matrix: Solid

Date Received: 03/20/25 16:43

Method: SW846 8015B NM - D	Diesel Range	Organics	(DRO) (GC)	(Conti	nued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<15.0	U	49.6	15.0	mg/Kg		03/21/25 11:44	03/22/25 02:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	147	S1+	70 - 130				03/21/25 11:44	03/22/25 02:45	1
o-Terphenyl	137	S1+	70 - 130				03/21/25 11:44	03/22/25 02:45	1
-									

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier **MDL** Unit Prepared Analyzed Dil Fac Chloride 71.2 9.98 0.394 mg/Kg 03/21/25 20:13

Client Sample ID: TH-8 (4.1') Lab Sample ID: 880-55872-16 Date Collected: 03/18/25 09:20 **Matrix: Solid**

Date Received: 03/20/25 16:43

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00139	U	0.00200	0.00139	mg/Kg		03/21/25 12:23	03/22/25 09:05	1
Toluene	<0.00200	U	0.00200	0.00200	mg/Kg		03/21/25 12:23	03/22/25 09:05	1
Ethylbenzene	<0.00109	U	0.00200	0.00109	mg/Kg		03/21/25 12:23	03/22/25 09:05	1
m-Xylene & p-Xylene	<0.00228	U	0.00399	0.00228	mg/Kg		03/21/25 12:23	03/22/25 09:05	1
o-Xylene	<0.00158	U	0.00200	0.00158	mg/Kg		03/21/25 12:23	03/22/25 09:05	1
Xylenes, Total	<0.00228	U	0.00399	0.00228	mg/Kg		03/21/25 12:23	03/22/25 09:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				03/21/25 12:23	03/22/25 09:05	1
1,4-Difluorobenzene (Surr)	91		70 - 130				03/21/25 12:23	03/22/25 09:05	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total BTEX	<0.00228	U	0.00399	0.00228	mg/Kg			03/22/25 09:05	1	
Method: SW846 8015 NM - Dies	sel Range (Organics (DRO) (GC)							

Method. 344040 0013 MM - Dies	sei Kange Organics (Dr	(00)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Total TPH	<15.1 U	49.9	15.1	mg/Kg			03/22/25 03:01	1		
Method: SW846 8015B NM - Di	esel Range Organics ([DRO) (GC)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<14.5	U	49.9	14.5	mg/Kg		03/21/25 11:44	03/22/25 03:01	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<15.1	U	49.9	15.1	mg/Kg		03/21/25 11:44	03/22/25 03:01	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<15.1	U	49.9	15.1	mg/Kg		03/21/25 11:44	03/22/25 03:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	151	S1+	70 - 130				03/21/25 11:44	03/22/25 03:01	1

o-Terphenyl	146	S1+	70 - 130				03/21/25 11:44	03/22/25 03:01	1
Method: EPA 300.0 - Anions, I	on Chromat	ography -	Soluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	64.8		10.1	0.398	mg/Kg			03/21/25 20:19	1

Client: Crain Environmental Job ID: 880-55872-1 Project/Site: State J 2 #17 SDG: Lea Co, NM

Client Sample ID: TH-9 (1')

Lab Sample ID: 880-55872-17 Date Collected: 03/18/25 09:30 **Matrix: Solid**

Date Received: 03/20/25 16:43

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00138	U	0.00198	0.00138	mg/Kg		03/21/25 12:23	03/22/25 09:26	1
Toluene	<0.00198	U	0.00198	0.00198	mg/Kg		03/21/25 12:23	03/22/25 09:26	1
Ethylbenzene	<0.00108	U	0.00198	0.00108	mg/Kg		03/21/25 12:23	03/22/25 09:26	1
m-Xylene & p-Xylene	<0.00226	U	0.00396	0.00226	mg/Kg		03/21/25 12:23	03/22/25 09:26	1
o-Xylene	< 0.00157	U	0.00198	0.00157	mg/Kg		03/21/25 12:23	03/22/25 09:26	1
Xylenes, Total	<0.00226	U	0.00396	0.00226	mg/Kg		03/21/25 12:23	03/22/25 09:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				03/21/25 12:23	03/22/25 09:26	1
1,4-Difluorobenzene (Surr)	88		70 - 130				03/21/25 12:23	03/22/25 09:26	1
Method: TAL SOP Total BT	EX - Total BTE	X Calculat	ion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00226	U	0.00396	0.00226	mg/Kg			03/22/25 09:26	1
Method: SW846 8015 NM -	Diesel Range	Organics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method. 344040 0013 MM - Dies	sei Kaliye C	nyanics (i	JKO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<15.0	U	49.7	15.0	mg/Kg			03/22/25 03:17	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<14.4	U	49.7	14.4	mg/Kg		03/21/25 11:44	03/22/25 03:17	1
Diesel Range Organics (Over C10-C28)	<15.0	U	49.7	15.0	mg/Kg		03/21/25 11:44	03/22/25 03:17	1
Oil Range Organics (Over C28-C36)	<15.0	U	49.7	15.0	mg/Kg		03/21/25 11:44	03/22/25 03:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	144	S1+	70 - 130				03/21/25 11:44	03/22/25 03:17	1
o-Terphenyl	137	S1+	70 - 130				03/21/25 11:44	03/22/25 03:17	1

1	Method: EPA 300.0 - Anions, Ion Chromatography - Soluble									
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	388		10.0	0.395	mg/Kg			03/21/25 20:25	1

Client Sample ID: TH-9 (4.1') Lab Sample ID: 880-55872-18 Date Collected: 03/18/25 09:45 **Matrix: Solid** Date Received: 03/20/25 16:43

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00138	U	0.00199	0.00138	mg/Kg		03/21/25 12:23	03/22/25 09:46	1
Toluene	< 0.00199	U	0.00199	0.00199	mg/Kg		03/21/25 12:23	03/22/25 09:46	1
Ethylbenzene	<0.00108	U	0.00199	0.00108	mg/Kg		03/21/25 12:23	03/22/25 09:46	1
m-Xylene & p-Xylene	<0.00227	U	0.00398	0.00227	mg/Kg		03/21/25 12:23	03/22/25 09:46	1
o-Xylene	< 0.00157	U	0.00199	0.00157	mg/Kg		03/21/25 12:23	03/22/25 09:46	1
Xylenes, Total	<0.00227	U	0.00398	0.00227	mg/Kg		03/21/25 12:23	03/22/25 09:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				03/21/25 12:23	03/22/25 09:46	1
1,4-Difluorobenzene (Surr)	91		70 - 130				03/21/25 12:23	03/22/25 09:46	1

Job ID: 880-55872-1

Client: Crain Environmental Project/Site: State J 2 #17 SDG: Lea Co, NM

Client Sample ID: TH-9 (4.1') Lab Sample ID: 880-55872-18

Date Collected: 03/18/25 09:45 **Matrix: Solid** Date Received: 03/20/25 16:43

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00227	U	0.00398	0.00227	mg/Kg			03/22/25 09:46	1
Method: SW846 8015 NM - Die	sel Range (Organics (DRO) (GC)						
Analyte	_	Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<15.0	U	49.7	15.0	mg/Kg			03/22/25 03:34	1
Method: SW846 8015B NM - D	iesel Range	Organics	(DRO) (GC))					
Analyte	_	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<14.4	U	49.7	14.4	mg/Kg		03/21/25 11:44	03/22/25 03:34	1
(GRO)-C6-C10									
Diesel Range Organics (Over C10-C28)	<15.0	U	49.7	15.0	mg/Kg		03/21/25 11:44	03/22/25 03:34	•
Oil Range Organics (Over C28-C36)	<15.0	U	49.7	15.0	mg/Kg		03/21/25 11:44	03/22/25 03:34	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	143	S1+	70 - 130				03/21/25 11:44	03/22/25 03:34	-
o-Terphenyl	139	S1+	70 - 130				03/21/25 11:44	03/22/25 03:34	

Client Sample ID: TH-10 (1') Lab Sample ID: 880-55872-19 Date Collected: 03/18/25 14:35 **Matrix: Solid**

203

9.92

0.392 mg/Kg

Date Received: 03/20/25 16:43

Released to Imaging: 5/27/2025 8:52:13 AM

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00139	U	0.00200	0.00139	mg/Kg		03/21/25 12:23	03/22/25 10:07	
Toluene	<0.00200	U	0.00200	0.00200	mg/Kg		03/21/25 12:23	03/22/25 10:07	
Ethylbenzene	< 0.00109	U	0.00200	0.00109	mg/Kg		03/21/25 12:23	03/22/25 10:07	
m-Xylene & p-Xylene	<0.00228	U	0.00399	0.00228	mg/Kg		03/21/25 12:23	03/22/25 10:07	
o-Xylene	<0.00158	U	0.00200	0.00158	mg/Kg		03/21/25 12:23	03/22/25 10:07	
Xylenes, Total	<0.00228	U	0.00399	0.00228	mg/Kg		03/21/25 12:23	03/22/25 10:07	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	103		70 - 130				03/21/25 12:23	03/22/25 10:07	
1,4-Difluorobenzene (Surr)	91		70 400				00/04/05 40 00	00/00/05 40:07	
Method: TAL SOP Total B1	EX - Total BTE			MDI	11-4	5	03/21/25 12:23		D:: 5-
Method: TAL SOP Total B1	EX - Total BTE	Qualifier			Unit mg/Kg	<u>D</u>	Prepared	Analyzed 03/22/25 10:07	Dil Fa
Method: TAL SOP Total BT Analyte Total BTEX	TEX - Total BTE Result <0.00228	Qualifier U	RL 0.00399	MDL 0.00228		<u>D</u>		Analyzed	Dil Fa
Method: TAL SOP Total BT Analyte Total BTEX Method: SW846 8015 NM -	TEX - Total BTE Result <0.00228 Diesel Range	Qualifier U Organics (tion RL 0.00399 -	0.00228	mg/Kg	_ =	Prepared	Analyzed 03/22/25 10:07	Dil Fac
Method: TAL SOP Total BT Analyte Total BTEX Method: SW846 8015 NM - Analyte	TEX - Total BTE Result <0.00228 Diesel Range (Result	Qualifier U Organics (Qualifier	RL 0.00399 (DRO) (GC)	0.00228 MDL	mg/Kg Unit	<u>D</u>		Analyzed 03/22/25 10:07 Analyzed	Dil Fac
Method: TAL SOP Total BT Analyte Total BTEX Method: SW846 8015 NM - Analyte Total TPH	TEX - Total BTE Result <0.00228 Diesel Range Result <15.0	Qualifier U Organics (Qualifier U	RL 0.00399 - (DRO) (GC) RL 49.6	0.00228 MDL 15.0	mg/Kg	_ =	Prepared	Analyzed 03/22/25 10:07	
Method: TAL SOP Total BT Analyte Total BTEX Method: SW846 8015 NM - Analyte Total TPH	TEX - Total BTE Result <0.00228 Diesel Range Result <15.0 I - Diesel Range	Qualifier U Organics (Qualifier U Organics (Organics (RL 0.00399 - (DRO) (GC) RL 49.6	0.00228 MDL 15.0	mg/Kg Unit mg/Kg	_ =	Prepared	Analyzed 03/22/25 10:07 Analyzed	Dil Fa
Method: TAL SOP Total BT Analyte Total BTEX Method: SW846 8015 NM - Analyte Total TPH Method: SW846 8015B NM	TEX - Total BTE Result <0.00228 Diesel Range Result <15.0 I - Diesel Range Result	Qualifier U Organics (Qualifier U Organics (Qualifier U	RL 0.00399 - (DRO) (GC) RL 49.6	0.00228 MDL 15.0	mg/Kg Unit	_ =	Prepared	Analyzed 03/22/25 10:07 Analyzed	Dil Fa
Method: TAL SOP Total B1 Analyte	TEX - Total BTE Result <0.00228 Diesel Range Result <15.0 I - Diesel Range	Qualifier U Organics (Qualifier U Organics (Qualifier U	RL 0.00399 - (DRO) (GC) RL 49.6	0.00228 MDL 15.0	mg/Kg Unit mg/Kg Unit	<u>D</u>	Prepared Prepared	Analyzed 03/22/25 10:07 Analyzed 03/22/25 03:49	

Eurofins Midland

03/21/25 20:30

Client: Crain Environmental Job ID: 880-55872-1 Project/Site: State J 2 #17 SDG: Lea Co, NM

Client Sample ID: TH-10 (1') Lab Sample ID: 880-55872-19 Date Collected: 03/18/25 14:35

Matrix: Solid

Date Received: 03/20/25 16:43

Analyte	Result	Qualifier	(DRO) (GC)	•	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<15.0		49.6		mg/Kg	_ =		03/22/25 03:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	141	S1+	70 - 130				03/21/25 11:44	03/22/25 03:49	1
o-Terphenyl	137	S1+	70 - 130				03/21/25 11:44	03/22/25 03:49	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	109		10.0	0.397	mg/Kg			03/21/25 20:36	1

Client Sample ID: TH-10 (4.1') Lab Sample ID: 880-55872-20 Date Collected: 03/18/25 14:50 **Matrix: Solid**

Date Received: 03/20/25 16:43

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00138	U	0.00198	0.00138	mg/Kg		03/21/25 12:23	03/22/25 10:27	
Toluene	<0.00198	U	0.00198	0.00198	mg/Kg		03/21/25 12:23	03/22/25 10:27	
Ethylbenzene	<0.00108	U	0.00198	0.00108	mg/Kg		03/21/25 12:23	03/22/25 10:27	
m-Xylene & p-Xylene	< 0.00227	U	0.00397	0.00227	mg/Kg		03/21/25 12:23	03/22/25 10:27	
o-Xylene	< 0.00157	U	0.00198	0.00157	mg/Kg		03/21/25 12:23	03/22/25 10:27	
Xylenes, Total	<0.00227	U	0.00397	0.00227	mg/Kg		03/21/25 12:23	03/22/25 10:27	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	103		70 - 130				03/21/25 12:23	03/22/25 10:27	
1,4-Difluorobenzene (Surr)	91		70 - 130				03/21/25 12:23	03/22/25 10:27	
Method: TAL SOP Total BTEX	: Total BTE	X Calculat	ion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte Total BTEX	<0.00227		RL 0.00397	MDL 0.00227		<u>D</u>	Prepared	Analyzed 03/22/25 10:27	Dil Fa
Total BTEX	<0.00227	U	0.00397			<u>D</u>	Prepared		Dil Fa
	<0.00227	U	0.00397	0.00227		<u>D</u>	Prepared Prepared		
Total BTEX Method: SW846 8015 NM - Di	<0.00227	Organics (Qualifier	0.00397 DRO) (GC)	0.00227 MDL	mg/Kg Unit			03/22/25 10:27	Dil Fa
Total BTEX Method: SW846 8015 NM - Di Analyte Total TPH	<0.00227 esel Range (Result <15.1	Organics (Qualifier	0.00397 DRO) (GC) RL 49.8	0.00227 MDL	mg/Kg Unit			03/22/25 10:27 Analyzed	Dil Fa
Total BTEX Method: SW846 8015 NM - Di Analyte	<0.00227 esel Range (Result <15.1 Diesel Range	Organics (Qualifier	0.00397 DRO) (GC) RL 49.8	0.00227 MDL	mg/Kg Unit mg/Kg			03/22/25 10:27 Analyzed	Dil Fa
Total BTEX Method: SW846 8015 NM - Di Analyte Total TPH Method: SW846 8015B NM - E Analyte Gasoline Range Organics	<0.00227 esel Range (Result <15.1 Diesel Range	Organics (Qualifier U Organics Qualifier Qualifier	0.00397 DRO) (GC) RL 49.8 (DRO) (GC)	0.00227 MDL 15.1	mg/Kg Unit mg/Kg	<u>D</u>	Prepared	03/22/25 10:27 Analyzed 03/22/25 04:05	Dil Fa
Total BTEX Method: SW846 8015 NM - Di Analyte Total TPH Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<0.00227 esel Range (Result <15.1 Diesel Range Result	Organics (Qualifier U Organics Qualifier U	0.00397 DRO) (GC) RL 49.8 (DRO) (GC) RL	0.00227 MDL 15.1 MDL 14.5	mg/Kg Unit mg/Kg Unit	<u>D</u>	Prepared Prepared 03/21/25 11:44	03/22/25 10:27 Analyzed 03/22/25 04:05 Analyzed	Dil Fa
Total BTEX Method: SW846 8015 NM - Di Analyte Total TPH Method: SW846 8015B NM - E	<0.00227 esel Range (Result <15.1 Diesel Range (Result <14.5	Organics (Qualifier U Organics Qualifier U	0.00397 DRO) (GC) RL 49.8 (DRO) (GC) RL 49.8	0.00227 MDL 15.1 MDL 14.5 15.1	mg/Kg Unit mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared 03/21/25 11:44 03/21/25 11:44	03/22/25 10:27 Analyzed 03/22/25 04:05 Analyzed 03/22/25 04:05	Dil Fa
Total BTEX Method: SW846 8015 NM - Di Analyte Total TPH Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<0.00227 esel Range (Organics (Qualifier U Organics Qualifier U Organics Qualifier U U	0.00397 DRO) (GC) RL 49.8 (DRO) (GC) RL 49.8 49.8	0.00227 MDL 15.1 MDL 14.5 15.1	mg/Kg Unit mg/Kg Unit mg/Kg mg/Kg	<u>D</u>	Prepared Prepared 03/21/25 11:44 03/21/25 11:44	03/22/25 10:27 Analyzed 03/22/25 04:05 Analyzed 03/22/25 04:05 03/22/25 04:05	Dil Fa Dil Fa Dil Fa
Total BTEX Method: SW846 8015 NM - Di Analyte Total TPH Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	<0.00227 esel Range (Result <15.1 Diesel Range Result <14.5 <15.1 <15.1 <8ecovery	Organics (Qualifier U Organics Qualifier U Organics Qualifier U U	0.00397 DRO) (GC) RL 49.8 (DRO) (GC) RL 49.8 49.8 49.8	0.00227 MDL 15.1 MDL 14.5 15.1	mg/Kg Unit mg/Kg Unit mg/Kg mg/Kg	<u>D</u>	Prepared Prepared 03/21/25 11:44 03/21/25 11:44	03/22/25 10:27 Analyzed 03/22/25 04:05 Analyzed 03/22/25 04:05 03/22/25 04:05	Dil Fa

Eurofins Midland

Analyzed

03/21/25 20:42

RL

9.96

MDL Unit

0.393 mg/Kg

Prepared

Result Qualifier

311

Dil Fac

Analyte

Chloride

Client: Crain Environmental

Project/Site: State J 2 #17

Job ID: 880-55872-1 SDG: Lea Co, NM

Client Sample ID: TH-11 (1')

Lab Sample ID: 880-55872-21 Matrix: Solid

Date Collected: 03/18/25 14:05 Date Received: 03/20/25 16:43

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0139	U	0.0200	0.0139	mg/Kg		03/21/25 12:11	03/21/25 19:19	10
Toluene	<0.0200	U	0.0200	0.0200	mg/Kg		03/21/25 12:11	03/21/25 19:19	10
Ethylbenzene	<0.0109	U	0.0200	0.0109	mg/Kg		03/21/25 12:11	03/21/25 19:19	10
m-Xylene & p-Xylene	<0.0228	U	0.0399	0.0228	mg/Kg		03/21/25 12:11	03/21/25 19:19	10
o-Xylene	<0.0158	U	0.0200	0.0158	mg/Kg		03/21/25 12:11	03/21/25 19:19	10
Xylenes, Total	<0.0228	U	0.0399	0.0228	mg/Kg		03/21/25 12:11	03/21/25 19:19	10
Surrogato	%Pocovory	Qualifier	l imite				Propared	Analyzod	Dil Eac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	127		70 - 130	03/21/25 12:11	03/21/25 19:19	10
1,4-Difluorobenzene (Surr)	90		70 - 130	03/21/25 12:11	03/21/25 19:19	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.0228	U	0.0399	0.0228	mg/Kg			03/21/25 19:19	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	1370		50.0	15.1	mg/Kg			03/22/25 04:22	1

Method: SW846 8015B	NM - Diesel Range	Organics	(DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<14.5	U	50.0	14.5	mg/Kg		03/21/25 11:44	03/22/25 04:22	1
Diesel Range Organics (Over C10-C28)	1370		50.0	15.1	mg/Kg		03/21/25 11:44	03/22/25 04:22	1
Oil Range Organics (Over C28-C36)	<15.1	U	50.0	15.1	mg/Kg		03/21/25 11:44	03/22/25 04:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Method: EPA 300.0 - Anions.	Ion Chromatography	- Soluble		
o-Terphenyl	144 S1+	70 - 130	03/21/25 11:44 03/22/25 04:22	1
1-Chlorooctane	140 S1+	70 - 130	03/21/25 11:44 03/22/25 04:22	1

Method: EPA 300.0 - Anions, Id	on Chromatography -	Soluble					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	89.4	10.0	0.397 mg/Kg			03/21/25 21:11	1

Client Sample ID: TH-11 (4.1') Lab Sample ID: 880-55872-22

Date Collected: 03/18/25 14:20 **Matrix: Solid** Date Received: 03/20/25 16:43

Method: SW846 8021B	- Volatile	Organic	Compounds	(GC)

Wethod: 544846 8021B - Vo	nathe Organic	Compound	as (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0139	U	0.0199	0.0139	mg/Kg		03/21/25 12:11	03/21/25 19:39	10
Toluene	< 0.0199	U	0.0199	0.0199	mg/Kg		03/21/25 12:11	03/21/25 19:39	10
Ethylbenzene	<0.0108	U	0.0199	0.0108	mg/Kg		03/21/25 12:11	03/21/25 19:39	10
m-Xylene & p-Xylene	0.135		0.0398	0.0228	mg/Kg		03/21/25 12:11	03/21/25 19:39	10
o-Xylene	0.143		0.0199	0.0158	mg/Kg		03/21/25 12:11	03/21/25 19:39	10
Xylenes, Total	0.278		0.0398	0.0228	mg/Kg		03/21/25 12:11	03/21/25 19:39	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130				03/21/25 12:11	03/21/25 19:39	10
1,4-Difluorobenzene (Surr)	93		70 - 130				03/21/25 12:11	03/21/25 19:39	10

Job ID: 880-55872-1

Client: Crain Environmental Project/Site: State J 2 #17 SDG: Lea Co, NM

Client Sample ID: TH-11 (4.1')

Date Collected: 03/18/25 14:20 Date Received: 03/20/25 16:43

Lab Sample ID: 880-55872-22

03/21/25 11:44 03/22/25 04:37

Matrix: Solid

Analyte	Result Qualif	ier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.278	0.0398	0.0228	mg/Kg			03/21/25 19:39	1
Method: SW846 8015 NN	- Diesel Range Organ	ics (DRO) (GC)						

Result Qualifier RL Dil Fac Analyte **MDL** Unit Prepared Analyzed 49.7 03/22/25 04:37 **Total TPH** 3050 15.0 mg/Kg

Method: SW846 8015B NM - D	_	_	. , ,						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	40.3	J	49.7	14.4	mg/Kg		03/21/25 11:44	03/22/25 04:37	1
Diesel Range Organics (Over C10-C28)	3010		49.7	15.0	mg/Kg		03/21/25 11:44	03/22/25 04:37	1
Oil Range Organics (Over C28-C36)	<15.0	U	49.7	15.0	mg/Kg		03/21/25 11:44	03/22/25 04:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	151	S1+	70 - 130				03/21/25 11:44	03/22/25 04:37	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble									
	Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	135	10.1	0.399	mg/Kg			03/21/25 21:17	1

70 - 130

168 S1+

Lab Sample ID: 880-55872-23 Client Sample ID: TH-12 (1') Date Collected: 03/18/25 13:35 **Matrix: Solid**

Date Received: 03/20/25 16:43

o-Terphenyl

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0138	U	0.0199	0.0138	mg/Kg		03/21/25 12:11	03/21/25 20:00	10
Toluene	<0.0199	U	0.0199	0.0199	mg/Kg		03/21/25 12:11	03/21/25 20:00	10
Ethylbenzene	<0.0108	U	0.0199	0.0108	mg/Kg		03/21/25 12:11	03/21/25 20:00	10
m-Xylene & p-Xylene	0.0314	J	0.0398	0.0227	mg/Kg		03/21/25 12:11	03/21/25 20:00	10
o-Xylene	< 0.0157	U	0.0199	0.0157	mg/Kg		03/21/25 12:11	03/21/25 20:00	10
Xylenes, Total	0.0314	J	0.0398	0.0227	mg/Kg		03/21/25 12:11	03/21/25 20:00	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130				03/21/25 12:11	03/21/25 20:00	10
4 4 5 77 1 (0)	00								
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTE						_	03/21/25 12:11		
Method: TAL SOP Total BTE Analyte	X - Total BTE Result	Qualifier	ion RL	MDL		<u>D</u>	03/21/25 12:11 Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTE Analyte Total BTEX	X - Total BTE Result 0.0314	Qualifier J	RL 0.0398	MDL 0.0227	Unit mg/Kg	<u>D</u>			
Method: TAL SOP Total BTE Analyte Total BTEX Method: SW846 8015 NM - D	X - Total BTE Result 0.0314	Qualifier J Organics (ion RL 0.0398 DRO) (GC)	0.0227	mg/Kg	— -	Prepared	Analyzed 03/21/25 20:00	Dil Fac
Method: TAL SOP Total BTE Analyte Total BTEX Method: SW846 8015 NM - D Analyte	X - Total BTE Result 0.0314 Diesel Range (Result	Qualifier J	RL 0.0398 DRO) (GC) RL	0.0227	mg/Kg	<u>D</u>		Analyzed 03/21/25 20:00 Analyzed	Dil Fac
Method: TAL SOP Total BTE Analyte	X - Total BTE Result 0.0314	Qualifier J Organics (ion RL 0.0398 DRO) (GC)	0.0227	mg/Kg	— -	Prepared	Analyzed 03/21/25 20:00	Dil Fac
Method: TAL SOP Total BTE Analyte Total BTEX Method: SW846 8015 NM - D Analyte	X - Total BTE Result 0.0314 Diesel Range (Result 14100	Qualifier J Organics (Qualifier	RL 0.0398 — DRO) (GC) RL 992	0.0227	mg/Kg	— -	Prepared	Analyzed 03/21/25 20:00 Analyzed	Dil Fac
Method: TAL SOP Total BTE Analyte Total BTEX Method: SW846 8015 NM - D Analyte Total TPH	X - Total BTE Result 0.0314 Diesel Range Result 14100 Diesel Range	Qualifier J Organics (Qualifier	RL 0.0398 — DRO) (GC) RL 992	0.0227	mg/Kg Unit mg/Kg	— -	Prepared	Analyzed 03/21/25 20:00 Analyzed	Dil Fac
Method: TAL SOP Total BTE Analyte Total BTEX Method: SW846 8015 NM - D Analyte Total TPH Method: SW846 8015B NM -	X - Total BTE Result 0.0314 Diesel Range Result 14100 Diesel Range	Qualifier J Organics (Qualifier Organics Qualifier Qualifier	DRO) (GC) RL 992	0.0227 MDL 300	mg/Kg Unit mg/Kg	<u></u> <u>D</u>	Prepared Prepared	Analyzed 03/21/25 20:00 Analyzed 03/25/25 13:05 Analyzed	Dil Fac

Client Sample ID: TH-12 (1')

Job ID: 880-55872-1 SDG: Lea Co, NM

Client: Crain Environmental Project/Site: State J 2 #17

Lab Sample ID: 880-55872-23

Matrix: Solid

Date Collected: 03/18/25 13:35 Date Received: 03/20/25 16:43

Method: SW846 8015B NM - D	Diesel Range	Organics	(DRO) (GC)	(Conti	nued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<300	U	992	300	mg/Kg		03/25/25 07:32	03/25/25 13:05	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	182	S1+	70 - 130				03/25/25 07:32	03/25/25 13:05	20
o-Terphenyl	308	S1+	70 - 130				03/25/25 07:32	03/25/25 13:05	20

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier **MDL** Unit Prepared Analyzed Dil Fac Chloride 237 9.96 0.393 mg/Kg 03/21/25 21:23

Client Sample ID: TH-12 (4.1')

Date Collected: 03/18/25 13:50 Date Received: 03/20/25 16:43

Lab Sample ID: 880-55872-24 **Matrix: Solid**

Method: SW846 8021B - Volatile Organic Compounds (GC) Result Qualifier Analyte RL MDL Unit Prepared Dil Fac Analyzed Benzene <0.0690 U 0.0992 0.0690 mg/Kg 03/21/25 12:11 03/21/25 20:20 50 Toluene <0.0992 U 0.0992 0.0992 mg/Kg 03/21/25 12:11 03/21/25 20:20 50 Ethylbenzene <0.0540 U 0.0992 0.0540 mg/Kg 03/21/25 12:11 03/21/25 20:20 50 0.198 0.113 mg/Kg 03/21/25 12:11 03/21/25 20:20 m-Xylene & p-Xylene 0.589 50 0.0786 mg/Kg o-Xylene 0.477 0.0992 03/21/25 12:11 03/21/25 20:20 50 03/21/25 12:11 03/21/25 20:20 **Xylenes, Total** 1.07 0.198 0.113 mg/Kg 50

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	88		70 - 130	03/21/25 12:11	03/21/25 20:20	50	
1,4-Difluorobenzene (Surr)	87		70 - 130	03/21/25 12:11	03/21/25 20:20	50	

Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac **Total BTEX** 1.07 0.198 0.113 mg/Kg 03/21/25 20:20

Method: SW846 8015 NM - Die	sel Range Organics (DR	(GC)					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	6520	999	302 mg/Kg			03/25/25 13:21	1

Method: SW846 8015B NM - L	Jiesei Range	Organics	(DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	365	J	999	290	mg/Kg		03/25/25 07:32	03/25/25 13:21	20
Diesel Range Organics (Over C10-C28)	6150		999	302	mg/Kg		03/25/25 07:32	03/25/25 13:21	20
Oil Range Organics (Over C28-C36)	<302	U	999	302	mg/Kg		03/25/25 07:32	03/25/25 13:21	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	175	S1+	70 - 130	03/25/25 07:32	03/25/25 13:21	20
o-Terphenyl	231	S1+	70 - 130	03/25/25 07:32 (03/25/25 13:21	20

Method: EPA 300.0 - Anions, lo	n Chromat	tography - S	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	465		9.92	0.392	mg/Kg			03/21/25 21:29	1

Job ID: 880-55872-1

Client: Crain Environmental Project/Site: State J 2 #17

SDG: Lea Co, NM

Client Sample ID: TH-12 (6') Date Collected: 03/18/25 15:10

Lab Sample ID: 880-55872-25

Date Received: 03/20/25 16:43

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0689	U	0.0990	0.0689	mg/Kg		03/21/25 12:11	03/21/25 20:40	50
Toluene	<0.0990	U	0.0990	0.0990	mg/Kg		03/21/25 12:11	03/21/25 20:40	50
Ethylbenzene	0.151		0.0990	0.0539	mg/Kg		03/21/25 12:11	03/21/25 20:40	50
m-Xylene & p-Xylene	0.227		0.198	0.113	mg/Kg		03/21/25 12:11	03/21/25 20:40	50
o-Xylene	0.198		0.0990	0.0784	mg/Kg		03/21/25 12:11	03/21/25 20:40	50
Xylenes, Total	0.425		0.198	0.113	mg/Kg		03/21/25 12:11	03/21/25 20:40	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				03/21/25 12:11	03/21/25 20:40	50
1,4-Difluorobenzene (Surr)	86		70 - 130				03/21/25 12:11	03/21/25 20:40	50
- Method: TAL SOP Total BT	EX - Total BTE	X Calculat	tion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.576		0.198	0 113	mg/Kg		-	03/21/25 20:40	

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac 50.0 03/22/25 05:42 **Total TPH** 1320 15.1 mg/Kg

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	94.6		50.0	14.5	mg/Kg		03/21/25 11:44	03/22/25 05:42	1
Diesel Range Organics (Over C10-C28)	1230		50.0	15.1	mg/Kg		03/21/25 11:44	03/22/25 05:42	1
Oil Range Organics (Over C28-C36)	<15.1	U	50.0	15.1	mg/Kg		03/21/25 11:44	03/22/25 05:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	141	S1+	70 - 130				03/21/25 11:44	03/22/25 05:42	1
o-Terphenyl	140	S1+	70 - 130				03/21/25 11:44	03/22/25 05:42	1

Method: EPA 300.0 - Anions, loi	n Chromat	ography - S	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	325		9.98	0.394	mg/Kg			03/21/25 21:35	1

Client Sample ID: TH-12 (8') Lab Sample ID: 880-55872-26 Date Collected: 03/18/25 15:20 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0347	U	0.0499	0.0347	mg/Kg		03/21/25 12:11	03/21/25 21:01	25
Toluene	<0.0499	U	0.0499	0.0499	mg/Kg		03/21/25 12:11	03/21/25 21:01	25
Ethylbenzene	<0.0272	U	0.0499	0.0272	mg/Kg		03/21/25 12:11	03/21/25 21:01	25
m-Xylene & p-Xylene	<0.0570	U	0.0998	0.0570	mg/Kg		03/21/25 12:11	03/21/25 21:01	25
o-Xylene	<0.0395	U	0.0499	0.0395	mg/Kg		03/21/25 12:11	03/21/25 21:01	25
Xylenes, Total	<0.0570	U	0.0998	0.0570	mg/Kg		03/21/25 12:11	03/21/25 21:01	25
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	122		70 - 130				03/21/25 12:11	03/21/25 21:01	25
1,4-Difluorobenzene (Surr)	94		70 - 130				03/21/25 12:11	03/21/25 21:01	25

Date Received: 03/20/25 16:43

Client Sample Results

Client: Crain Environmental

Project/Site: State J 2 #17

Job ID: 880-55872-1

SDG: Lea Co, NM

Client Sample ID: TH-12 (8')

Lab Sample ID: 880-55872-26

Date Collected: 03/18/25 15:20 Matrix: Solid

Date Received: 03/20/25 16:43

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.0570	U	0.0998	0.0570	mg/Kg			03/21/25 21:01	1
Method: SW846 8015 NM - Die	esel Range (Organics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	24.8	J	50.0	15.1	mg/Kg			03/22/25 05:58	1
Method: SW846 8015B NM - D	iesel Range	e Organics	(DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<14.5	U	50.0	14.5	mg/Kg		03/21/25 11:44	03/22/25 05:58	1
Diesel Range Organics (Over C10-C28)	24.8	J	50.0	15.1	mg/Kg		03/21/25 11:44	03/22/25 05:58	1
Oil Range Organics (Over C28-C36)	<15.1	U	50.0	15.1	mg/Kg		03/21/25 11:44	03/22/25 05:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	124	·	70 - 130				03/21/25 11:44	03/22/25 05:58	1
o-Terphenyl	118		70 - 130				03/21/25 11:44	03/22/25 05:58	1
Method: EPA 300.0 - Anions, I	on Chroma	tography -	Soluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	216	F1	10.0	0.395	mg/Kg			03/21/25 21:40	1

2

3

4

6

8

10

12

13

14

Surrogate Summary

Client: Crain Environmental

Project/Site: State J 2 #17

Job ID: 880-55872-1

SDG: Lea Co, NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

Sample ID Client Sample ID (70-130) (70-130) -18016-A-21-C MS Matrix Spike 98 92 -18016-A-21-D MSD Matrix Spike Duplicate 98 92 -55872-1 TH-1 (1') 100 92 -55872-1 MS TH-1 (1') 100 92 -55872-1 MSD TH-1 (1') 100 92 -55872-1 MSD TH-1 (1') 101 92 -55872-2 TH-1 (A.1') 101 92 -55872-3 TH-2 (1') 105 88 -55872-3 TH-2 (4') 104 93 -55872-6 TH-3 (1') 104 91 -55872-6 TH-3 (4.1') 107 99 90 -55872-8 TH-4 (1') 99 90 -55872-8 TH-5 (1') 97 88 -55872-9 TH-5 (1') 97 88 -55872-11 TH-6 (1') 101 92 -55872-11 TH-6 (1') 101 92 -55872-12 TH-6 (4.1') 105 91 -55872-13 TH-7 (1') 105 90 -55872-14 TH-7 (4.1') 105 90 -55872-15 TH-8 (1') 104 91 -55872-16 TH-8 (1') 104 91 -55872-17 TH-9 (1') 107 90 -55872-18 TH-9 (4.1') 105 90 -55872-19 TH-10 (1') 104 88 -55872-19 TH-10 (1') 103 91 -55872-20 TH-10 (A.1') 103 91 -55872-21 TH-11 (1') 127 90 -55872-22 TH-11 (4.1') 103 91 -55872-23 TH-12 (1') 103 89 -55872-24 TH-12 (1') 103 89 -55872-25 TH-12 (6') 117 88 87 -55872-26 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94	
18016-A-21-C MS	
-18016-A-21-D MSD Matrix Spike Duplicate 98 9255872-1 TH-1 (1') 100 9255872-1 MSD TH-1 (1') 98 95 9555872-2 TH-1 (4.1') 101 9255872-3 TH-2 (1') 105 8855872-4 TH-2 (4.1') 105 8855872-4 TH-3 (1') 104 9355872-5 TH-3 (1') 104 9155872-6 TH-3 (4.1') 107 99 9055872-7 TH-4 (1') 99 9055872-8 TH-5 (1') 97 8855872-9 TH-5 (1') 97 8855872-9 TH-5 (1') 100 8655872-11 TH-6 (1') 101 9255872-12 TH-6 (4.1') 101 9255872-13 TH-7 (1') 105 9155872-14 TH-7 (4.1') 105 9155872-14 TH-8 (1') 105 9155872-15 TH-8 (1') 107 9055872-16 TH-8 (1') 101 9055872-17 TH-9 (1') 104 9155872-18 TH-9 (4.1') 105 9155872-19 TH-10 (1') 104 9155872-10 TH-9 (4.1') 105 9155872-11 TH-9 (1') 104 9155872-12 TH-10 (1') 104 9155872-13 TH-9 (1') 104 9155872-14 TH-9 (1') 104 9155872-15 TH-8 (1') 104 9155872-16 TH-8 (4.1') 104 9155872-17 TH-9 (1') 104 9155872-18 TH-9 (4.1') 102 9155872-19 TH-10 (1') 103 9155872-20 TH-10 (4.1') 103 9155872-21 TH-11 (1') 127 9055872-22 TH-11 (4.1') 100 9355872-23 TH-12 (1') 103 8955872-24 TH-12 (4.1') 88 8755872-25 TH-12 (8') 117 8655872-26 TH-12 (8') 122 9455872-26 TH-12 (8') 122 94 -	
TH-1 (1') 100 92 -55872-1 MS	
1.55872-1 MS	
TH-1 (1')	
TH-1 (4.1') TH-1 (4.1') TH-2 (1') TH-2 (1') TH-2 (4.1') TH-2 (4.1') TH-2 (4.1') TH-3 (1') TH-3 (1') TH-4 (1') TH-4 (1') TH-55872-5 TH-3 (1') TH-4 (1') TH-55872-7 TH-4 (1') TH-4 (1') TH-55872-8 TH-5 (1') TH-5 (1') TH-5 (1') TH-5 (1') TH-5 (1') TH-5 (1') TH-6 (1') TH-6 (1') TH-6 (1') TH-6 (1') TH-7 (1')	
TH-2 (1')	
2-55872-4 TH-2 (4.1') 108 94 2-55872-5 TH-3 (1') 104 93 2-55872-6 TH-3 (4.1') 104 91 2-55872-7 TH-4 (1') 99 90 2-55872-8 TH-4 (4.1') 107 92 2-55872-9 TH-5 (1') 97 88 2-55872-10 TH-5 (4.1') 100 86 2-55872-11 TH-6 (1') 101 92 2-55872-12 TH-6 (4.1') 105 91 2-55872-13 TH-7 (1') 107 90 2-55872-14 TH-7 (4.1') 105 90 2-55872-15 TH-8 (1') 101 90 2-55872-16 TH-8 (4.1') 104 91 2-55872-17 TH-9 (1') 104 88 2-55872-18 TH-10 (1') 103 91 2-55872-20 TH-11 (4.1') 103 91 2-55872-21 TH-11 (4.1') 110 93 2-55872-22 TH-11 (4.1') 110 93 3-55872-23 TH-12 (4')' 103 8	
-55872-5 TH-3 (1') 104 93 -55872-6 TH-3 (4.1') 104 91 -55872-7 TH-4 (1') 99 90 -55872-8 TH-4 (4.1') 107 92 -55872-9 TH-5 (1') 97 88 -55872-10 TH-5 (1') 100 86 -55872-11 TH-6 (1') 101 92 -55872-12 TH-6 (4.1') 105 91 -55872-13 TH-7 (1') 107 90 -55872-14 TH-7 (4.1') 105 90 -55872-15 TH-8 (1') 101 90 -55872-16 TH-8 (4.1') 104 91 -55872-17 TH-9 (1') 104 88 -55872-18 TH-9 (4.1') 102 91 -55872-19 TH-10 (1') 103 91 -55872-10 TH-10 (1') 103 91 -55872-20 TH-10 (4.1') 103 91 -55872-21 TH-11 (1') 103 91 -55872-22 TH-11 (4.1') 110 93 -55872-23 TH-12 (1') 103 89 -55872-24 TH-12 (4.1') 88 87 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94	
-55872-6 TH-3 (4.1') 104 91 -55872-7 TH-4 (1') 99 90 -55872-8 TH-4 (4.1') 107 92 -55872-9 TH-5 (1') 97 88 -55872-10 TH-5 (4.1') 100 86 -55872-11 TH-6 (1') 101 92 -55872-12 TH-6 (4.1') 105 91 -55872-13 TH-7 (1') 107 90 -55872-14 TH-7 (4.1') 105 90 -55872-15 TH-8 (1') 101 90 -55872-16 TH-8 (4.1') 104 91 -55872-17 TH-9 (1') 104 88 -55872-17 TH-9 (1') 104 88 -55872-18 TH-9 (4.1') 102 91 -55872-19 TH-10 (4.1') 103 91 -55872-20 TH-11 (1') 103 91 -55872-21 TH-11 (1') 103 91 -55872-22 TH-11 (4.1') 109 93 -55872-23 TH-12 (1') 103 89 -55872-24 TH-12 (4.1') 88 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94 -5880-105766/1-A Lab Control Sample 106	
-55872-7 TH-4 (1') 99 90 -55872-8 TH-4 (4.1') 107 92 -55872-9 TH-5 (1') 97 88 -55872-10 TH-5 (4.1') 100 86 -55872-11 TH-6 (1') 101 92 -55872-12 TH-6 (4.1') 105 91 -55872-13 TH-7 (1') 107 90 -55872-14 TH-7 (4.1') 105 90 -55872-15 TH-8 (1') 101 90 -55872-16 TH-8 (4.1') 104 91 -55872-17 TH-9 (1') 104 88 -55872-18 TH-9 (4.1') 102 91 -55872-18 TH-10 (1') 103 91 -55872-19 TH-10 (1') 103 91 -55872-20 TH-11 (4.1') 103 91 -55872-21 TH-11 (1') 103 91 -55872-22 TH-11 (4.1') 100 93 -55872-22 TH-11 (4.1') 100 93 -55872-24 TH-12 (4.1') 88 87 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94 -5880-105766/1-A Lab Control Sample 106 90	
-55872-7 TH-4 (1') 99 90 -55872-8 TH-4 (4.1') 107 92 -55872-9 TH-5 (1') 97 88 -55872-10 TH-5 (4.1') 100 86 -55872-11 TH-6 (1') 101 92 -55872-12 TH-6 (4.1') 105 91 -55872-13 TH-7 (1') 107 90 -55872-14 TH-7 (4.1') 105 90 -55872-15 TH-8 (1') 101 90 -55872-16 TH-8 (4.1') 104 91 -55872-17 TH-9 (1') 104 88 -55872-18 TH-9 (4.1') 102 91 -55872-18 TH-10 (1') 103 91 -55872-19 TH-10 (1') 103 91 -55872-20 TH-11 (4.1') 103 91 -55872-21 TH-11 (1') 103 91 -55872-22 TH-11 (4.1') 100 93 -55872-22 TH-11 (4.1') 100 93 -55872-24 TH-12 (4.1') 88 87 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94 -5880-105766/1-A Lab Control Sample 106 90	
TH-4 (4.1') 107 92 -55872-9 TH-5 (1') 97 88 -55872-10 TH-5 (4.1') 100 86 -55872-11 TH-6 (1') 101 92 -55872-12 TH-6 (4.1') 105 91 -55872-13 TH-7 (1') 107 90 -55872-14 TH-7 (4.1') 105 90 -55872-15 TH-8 (1') 101 90 -55872-16 TH-8 (4.1') 104 91 -55872-17 TH-9 (1') 104 88 -55872-18 TH-9 (4.1') 102 91 -55872-19 TH-10 (1') 103 91 -55872-20 TH-10 (4.1') 103 91 -55872-21 TH-11 (1') 127 90 -55872-22 TH-11 (4.1') 10 93 -55872-23 TH-12 (1') 103 89 -55872-24 TH-12 (4.1') 88 87 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94 -5880-105766/1-A Lab Control Sample 106 90	
TH-5 (1') 97 88 -55872-10 TH-5 (4.1') 100 86 -55872-11 TH-6 (1') 101 92 -55872-12 TH-6 (4.1') 107 90 -55872-13 TH-7 (1') 105 91 -55872-14 TH-7 (4.1') 105 90 -55872-15 TH-8 (1') 101 90 -55872-16 TH-8 (4.1') 104 91 -55872-17 TH-9 (1') 104 88 -55872-18 TH-9 (4.1') 102 91 -55872-19 TH-10 (1') 103 91 -55872-20 TH-10 (4.1') 103 91 -55872-21 TH-11 (1') 127 90 -55872-22 TH-11 (4.1') 110 93 -55872-23 TH-12 (1') 103 89 -55872-24 TH-12 (4.1') 88 87 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94 -5880-105766/1-A Lab Control Sample 106 90	
-55872-10 TH-5 (4.1') 100 86 -55872-11 TH-6 (1') 101 92 -55872-12 TH-6 (4.1') 105 91 -55872-13 TH-7 (1') 107 90 -55872-14 TH-7 (4.1') 105 90 -55872-15 TH-8 (1') 101 90 -55872-16 TH-8 (4.1') 104 91 -55872-17 TH-9 (1') 104 88 -55872-18 TH-9 (4.1') 102 91 -55872-19 TH-10 (1') 103 91 -55872-20 TH-10 (4.1') 103 91 -55872-21 TH-11 (1') 127 90 -55872-22 TH-11 (4.1') 110 93 -55872-23 TH-12 (1') 103 89 -55872-24 TH-12 (4.1') 88 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94 -5880-1057666/1-A Lab Control Sample 106 90	
TH-6 (1') 101 92 -55872-12 TH-6 (4.1') 105 91 -55872-13 TH-7 (1') 107 90 -55872-14 TH-7 (4.1') 105 90 -55872-15 TH-8 (1') 101 90 -55872-16 TH-8 (4.1') 104 91 -55872-17 TH-9 (1') 104 88 -55872-18 TH-9 (4.1') 102 91 -55872-19 TH-10 (1') 103 91 -55872-20 TH-10 (4.1') 103 91 -55872-21 TH-11 (1') 127 90 -55872-22 TH-11 (4.1') 110 93 -55872-23 TH-12 (1') 103 89 -55872-24 TH-12 (4.1') 88 87 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94 -5880-105766/1-A Lab Control Sample 106 90	
TH-6 (4.1') 105 91 -55872-13 TH-7 (1') 107 90 -55872-14 TH-7 (4.1') 105 90 -55872-15 TH-8 (1') 101 90 -55872-16 TH-8 (4.1') 104 91 -55872-17 TH-9 (1') 104 88 -55872-18 TH-9 (4.1') 102 91 -55872-19 TH-10 (1') 103 91 -55872-20 TH-10 (4.1') 103 91 -55872-21 TH-11 (1') 127 90 -55872-22 TH-11 (4.1') 110 93 -55872-23 TH-12 (1') 103 89 -55872-24 TH-12 (4.1') 88 87 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94 880-105766/1-A Lab Control Sample 106 90	
TH-7 (1') 107 90 -55872-14 TH-7 (4.1') 105 90 -55872-15 TH-8 (1') 101 90 -55872-16 TH-8 (4.1') 104 91 -55872-17 TH-9 (1') 104 88 -55872-18 TH-9 (4.1') 102 91 -55872-19 TH-10 (1') 103 91 -55872-20 TH-10 (4.1') 103 91 -55872-21 TH-11 (1') 127 90 -55872-22 TH-11 (4.1') 110 93 -55872-23 TH-12 (1') 103 89 -55872-24 TH-12 (4.1') 88 87 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94 8 880-105766/1-A Lab Control Sample 106 90	
-55872-14 TH-7 (4.1') 105 90 -55872-15 TH-8 (1') 101 90 -55872-16 TH-8 (4.1') 104 91 -55872-17 TH-9 (1') 104 88 -55872-18 TH-9 (4.1') 102 91 -55872-19 TH-10 (1') 103 91 -55872-20 TH-10 (4.1') 103 91 -55872-21 TH-11 (1') 127 90 -55872-22 TH-11 (4.1') 110 93 -55872-23 TH-12 (1') 103 89 -55872-24 TH-12 (8') 117 86 -55872-25 TH-12 (8') 122 94 -5880-105766/1-A Lab Control Sample 106 90	
-55872-15 TH-8 (1') 101 90 -55872-16 TH-8 (4.1') 104 91 -55872-17 TH-9 (1') 104 88 -55872-18 TH-9 (4.1') 102 91 -55872-19 TH-10 (1') 103 91 -55872-20 TH-10 (4.1') 103 91 -55872-21 TH-11 (1') 127 90 -55872-22 TH-11 (4.1') 110 93 -55872-23 TH-12 (1') 103 89 -55872-24 TH-12 (4.1') 88 87 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94	
TH-8 (4.1') 104 91 -55872-17 TH-9 (1') 104 88 -55872-18 TH-9 (4.1') 102 91 -55872-19 TH-10 (1') 103 91 -55872-20 TH-10 (4.1') 103 91 -55872-21 TH-11 (1') 127 90 -55872-22 TH-11 (4.1') 110 93 -55872-23 TH-12 (1') 103 89 -55872-24 TH-12 (4.1') 88 87 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94 880-105766/1-A Lab Control Sample 106 90	
-55872-17 TH-9 (1') 104 88 -55872-18 TH-9 (4.1') 102 91 -55872-19 TH-10 (1') 103 91 -55872-20 TH-10 (4.1') 103 91 -55872-21 TH-11 (1') 127 90 -55872-22 TH-11 (4.1') 110 93 -55872-23 TH-12 (1') 103 89 -55872-24 TH-12 (4.1') 88 87 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94	
-55872-18 TH-9 (4.1') 102 91 -55872-19 TH-10 (1') 103 91 -55872-20 TH-10 (4.1') 103 91 -55872-21 TH-11 (1') 127 90 -55872-22 TH-11 (4.1') 110 93 -55872-23 TH-12 (1') 103 89 -55872-24 TH-12 (4.1') 88 87 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94 -5880-105766/1-A Lab Control Sample 106 90	
TH-10 (1') 103 91 -55872-20 TH-10 (4.1') 103 91 -55872-21 TH-11 (1') 127 90 -55872-22 TH-11 (4.1') 110 93 -55872-23 TH-12 (1') 103 89 -55872-24 TH-12 (4.1') 88 87 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94 8 880-105766/1-A Lab Control Sample 106 90	
-55872-20 TH-10 (4.1') 103 91 -55872-21 TH-11 (1') 127 90 -55872-22 TH-11 (4.1') 110 93 -55872-23 TH-12 (1') 103 89 -55872-24 TH-12 (4.1') 88 87 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94 8 880-105766/1-A Lab Control Sample 106 90	
-55872-21 TH-11 (1') 127 90 -55872-22 TH-11 (4.1') 110 93 -55872-23 TH-12 (1') 103 89 -55872-24 TH-12 (4.1') 88 87 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94 \$880-105766/1-A Lab Control Sample 106 90	
-55872-22 TH-11 (4.1') 110 93 -55872-23 TH-12 (1') 103 89 -55872-24 TH-12 (4.1') 88 87 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94 \$ 880-105766/1-A Lab Control Sample 106 90	
-55872-23 TH-12 (1') 103 89 -55872-24 TH-12 (4.1') 88 87 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94 \$ 880-105766/1-A Lab Control Sample 106 90	
-55872-24 TH-12 (4.1') 88 87 -55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94 \$880-105766/1-A Lab Control Sample 106 90	
-55872-25 TH-12 (6') 117 86 -55872-26 TH-12 (8') 122 94 8 880-105766/1-A Lab Control Sample 106 90	
-55872-26 TH-12 (8') 122 94 8 880-105766/1-A Lab Control Sample 106 90	
8 880-105766/1-A Lab Control Sample 106 90	
\$ 880_105767/1_∆	
\$ 880-105767/1-A Lab Control Sample 98 93 \$D 880-105766/2-A Lab Control Sample Dup 103 89	
SD 880-105760/2-A Lab Control Sample Dup 103 89 SD 880-105767/2-A Lab Control Sample Dup 100 95	
880-105766/5-A Lab Control Sample Dup 100 95	
880-105767/5-A Method Blank 99 82 880-105769/8 Method Blank 103 86	

BFB = 4-Bromofluorobenzene (Surr) DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Per	cent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-55872-1	TH-1 (1')	120	111	
880-55872-1 MS	TH-1 (1')	142 S1+	125	

Eurofins Midland

3

5

8

10

12

13

Surrogate Summary

Client: Crain Environmental

Project/Site: State J 2 #17

Job ID: 880-55872-1

SDG: Lea Co, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

			Perce	ent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-55872-1 MSD	TH-1 (1')	119	125	
880-55872-2	TH-1 (4.1')	119	111	
880-55872-3	TH-2 (1')	125	117	
880-55872-4	TH-2 (4.1')	116	113	
880-55872-5	TH-3 (1')	125	115	
880-55872-6	TH-3 (4.1')	124	121	
880-55872-7	TH-4 (1')	123	119	
880-55872-8	TH-4 (4.1')	121	120	
880-55872-9	TH-5 (1')	127	140 S1+	
880-55872-10	TH-5 (4.1')	125	124	
880-55872-11	TH-6 (1')	119	118	
880-55872-12	TH-6 (4.1')	117	117	
880-55872-13	TH-7 (1')	119	116	
880-55872-14	TH-7 (4.1')	134 S1+	126	
880-55872-14 MS	TH-7 (4.1')	133 S1+	134 S1+	
880-55872-14 MSD	TH-7 (4.1')	132 S1+	133 S1+	
880-55872-15	TH-8 (1')	147 S1+	137 S1+	
880-55872-16	TH-8 (4.1')	151 S1+	146 S1+	
880-55872-17	TH-9 (1')	144 S1+	137 S1+	
880-55872-18	TH-9 (4.1')	143 S1+	139 S1+	
880-55872-19	TH-10 (1')	141 S1+	137 S1+	
880-55872-20	TH-10 (4.1')	145 S1+	141 S1+	
880-55872-21	TH-11 (1')	140 S1+	144 S1+	
880-55872-22	TH-11 (4.1')	151 S1+	168 S1+	
380-55872-23	TH-12 (1')	182 S1+	308 S1+	
380-55872-24	TH-12 (4.1')	175 S1+	231 S1+	
880-55872-25	TH-12 (6')	141 S1+	140 S1+	
880-55872-26	TH-12 (8')	124	118	
890-7841-A-1-F MS	Matrix Spike	116	104	
890-7841-A-1-G MSD	Matrix Spike Duplicate	100	108	
LCS 880-105762/2-A	Lab Control Sample	128	117	
LCS 880-105765/2-A	Lab Control Sample	136 S1+	143 S1+	
LCS 880-105952/2-A	Lab Control Sample	122	113	
LCSD 880-105762/3-A	Lab Control Sample Dup	132 S1+	146 S1+	
_CSD 880-105765/3-A	Lab Control Sample Dup	158 S1+	140 S1+	
_CSD 880-105952/3-A	Lab Control Sample Dup	122	112	
MB 880-105762/1-A	Method Blank	103	100	
MB 880-105765/1-A	Method Blank	120	118	
MB 880-105952/1-A	Method Blank	107	104	
500 .00002/171				

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl

QC Sample Results

Client: Crain Environmental Job ID: 880-55872-1 Project/Site: State J 2 #17 SDG: Lea Co, NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-105766/5-A

Matrix: Solid

Analysis Batch: 105722

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 105766

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00139	U	0.00200	0.00139	mg/Kg		03/21/25 12:11	03/21/25 13:39	1
Toluene	<0.00200	U	0.00200	0.00200	mg/Kg		03/21/25 12:11	03/21/25 13:39	1
Ethylbenzene	<0.00109	U	0.00200	0.00109	mg/Kg		03/21/25 12:11	03/21/25 13:39	1
m-Xylene & p-Xylene	<0.00228	U	0.00399	0.00228	mg/Kg		03/21/25 12:11	03/21/25 13:39	1
o-Xylene	<0.00158	U	0.00200	0.00158	mg/Kg		03/21/25 12:11	03/21/25 13:39	1
Xylenes, Total	<0.00228	U	0.00399	0.00228	mg/Kg		03/21/25 12:11	03/21/25 13:39	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed
4-Bromofluorobenzene (Surr)	92		70 - 130	03/21/25 12:11	03/21/25 13:39
1,4-Difluorobenzene (Surr)	81		70 - 130	03/21/25 12:11	03/21/25 13:39

Spike

Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 105722

Lab Sample ID: LCS 880-105766/1-A

Prep Type: Total/NA Prep Batch: 105766

%Rec

		_						
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09041		mg/Kg		90	70 - 130	
Toluene	0.100	0.08376		mg/Kg		84	70 - 130	
Ethylbenzene	0.100	0.08318		mg/Kg		83	70 - 130	
m-Xylene & p-Xylene	0.200	0.1806		mg/Kg		90	70 - 130	
o-Xylene	0.100	0.09080		mg/Kg		91	70 - 130	

LCS LCS

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	106	70 - 130
1,4-Difluorobenzene (Surr)	90	70 - 130

Lab Sample ID: LCSD 880-105766/2-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Solid

Analysis Batch: 105722

Prep Type: Total/NA Prep Batch: 105766

	Spike	LCSD LC	CSD			%Rec		RPD
Analyte	Added	Result Qu	ualifier Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09659	mg/l	 (g	97	70 - 130	7	35
Toluene	0.100	0.08666	mg/l	(g	87	70 - 130	3	35
Ethylbenzene	0.100	0.08557	mg/l	(g	86	70 - 130	3	35
m-Xylene & p-Xylene	0.200	0.1833	mg/l	(g	92	70 - 130	1	35
o-Xylene	0.100	0.09212	mg/l	(g	92	70 - 130	1	35

LCSD LCSD

<0.00201 U

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		70 - 130
1,4-Difluorobenzene (Surr)	89		70 - 130

Lab Sample ID: 820-18016-A-21-C MS

Matrix: Solid

Toluene

Analysis Batch: 105722

Client Sample ID: Matrix Spike Prep Type: Total/NA

70 - 130

Prep Batch: 105766

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	<0.00140	U	0.100	0.09117		mg/Kg		91	70 - 130

0.100

Eurofins Midland

0.08710

mg/Kg

Dil Fac

Prep Batch: 105766

Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

QC Sample Results

Client: Crain Environmental Job ID: 880-55872-1 Project/Site: State J 2 #17 SDG: Lea Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 820-18016-A-21-C MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 105722

-	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Ethylbenzene	<0.00109	U	0.100	0.08819		mg/Kg		88	70 - 130
m-Xylene & p-Xylene	<0.00229	U	0.200	0.1890		mg/Kg		95	70 - 130
o-Xylene	< 0.00159	U	0.100	0.09518		mg/Kg		95	70 - 130

MS MS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 108 70 - 130

1,4-Difluorobenzene (Surr) 70 - 130 92

Lab Sample ID: 820-18016-A-21-D MSD

Matrix: Solid Analysis Batch: 105722

Analysis Batch: 105722									Prep Ba	itch: 10)5766
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00140	U	0.100	0.07989		mg/Kg		80	70 - 130	13	35
Toluene	<0.00201	U	0.100	0.07560		mg/Kg		76	70 - 130	14	35
Ethylbenzene	<0.00109	U	0.100	0.07290		mg/Kg		73	70 - 130	19	35
m-Xylene & p-Xylene	<0.00229	U	0.200	0.1548		mg/Kg		77	70 - 130	20	35
o-Xylene	<0.00159	U	0.100	0.07687		mg/Kg		77	70 - 130	21	35

MSD MSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 98 70 - 130 92 1,4-Difluorobenzene (Surr) 70 - 130

Ma

An

ab Sample ID: MB 880-105767/5-A	Client Sample ID: Method Blank
latrix: Solid	Prep Type: Total/NA
nalysis Batch: 105769	Prep Batch: 105767
MB MB	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00139	U	0.00200	0.00139	mg/Kg		03/21/25 12:23	03/22/25 02:23	1
Toluene	<0.00200	U	0.00200	0.00200	mg/Kg		03/21/25 12:23	03/22/25 02:23	1
Ethylbenzene	<0.00109	U	0.00200	0.00109	mg/Kg		03/21/25 12:23	03/22/25 02:23	1
m-Xylene & p-Xylene	<0.00228	U	0.00399	0.00228	mg/Kg		03/21/25 12:23	03/22/25 02:23	1
o-Xylene	<0.00158	U	0.00200	0.00158	mg/Kg		03/21/25 12:23	03/22/25 02:23	1
Xylenes, Total	<0.00228	U	0.00399	0.00228	mg/Kg		03/21/25 12:23	03/22/25 02:23	1

	IVID	IND				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130	03/21/25 12:23	03/22/25 02:23	1
1,4-Difluorobenzene (Surr)	82		70 - 130	03/21/25 12:23	03/22/25 02:23	1

MR MR

Lab Sample ID: LCS 880-105767/1-A

Matrix: Solid Analysis Batch: 105769							Prep Type: Total/NA Prep Batch: 105767
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.09989		mg/Kg		100	70 - 130
Toluene	0.100	0.08950		mg/Kg		89	70 - 130
Ethylbenzene	0.100	0.09230		mg/Kg		92	70 - 130
m-Xylene & p-Xylene	0.200	0.1931		mg/Kg		97	70 - 130

Eurofins Midland

Client Sample ID: Lab Control Sample

QC Sample Results

Client: Crain Environmental Job ID: 880-55872-1 SDG: Lea Co, NM Project/Site: State J 2 #17

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-105767/1-A **Client Sample ID: Lab Control Sample**

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 105769 Prep Batch: 105767**

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits o-Xylene 0 100 0.09728 mg/Kg 97 70 - 130

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 98 70 - 130 1,4-Difluorobenzene (Surr) 93 70 - 130

Lab Sample ID: LCSD 880-105767/2-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 105769** Prep Batch: 105767

Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Limits **RPD** Limit **Analyte** Unit D %Rec Benzene 0.100 0.1017 mg/Kg 102 70 - 130 2 35 Toluene 0.100 0.09082 mg/Kg 91 70 - 130 35 Ethylbenzene 0.100 mg/Kg 94 70 - 130 35 0.09375 2 m-Xylene & p-Xylene 0.200 98 70 - 130 35 0.1954 mg/Kg

0.09855

mg/Kg

99

70 - 130

Prep Batch: 105767

0.100

LCSD LCSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 100 70 - 130 1,4-Difluorobenzene (Surr) 95 70 - 130

Lab Sample ID: 880-55872-1 MS Client Sample ID: TH-1 (1') Prep Type: Total/NA

Matrix: Solid

o-Xylene

Analysis Batch: 105769

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier %Rec Limits **Analyte** Unit D <0.00141 U Benzene 0.100 0.09731 mg/Kg 97 70 - 130 Toluene <0.00202 U 0.100 0.08599 mg/Kg 86 70 - 130 Ethylbenzene <0.00110 U 0.100 0.08665 mg/Kg 87 70 - 130 m-Xylene & p-Xylene <0.00231 U 0.200 0.1790 mg/Kg 89 70 - 130 o-Xylene <0.00160 U 0.100 0.08962 mg/Kg 90 70 - 130

MS MS %Recovery Surrogate Qualifier Limits 70 - 130 4-Bromofluorobenzene (Surr) 98 1,4-Difluorobenzene (Surr) 70 - 130 95

Lab Sample ID: 880-55872-1 MSD Client Sample ID: TH-1 (1') Prep Type: Total/NA

Matrix: Solid

105/6/
RPD
Limit
35
35
35
35
35
5 2 2

Eurofins Midland

35

Client: Crain Environmental Job ID: 880-55872-1 Project/Site: State J 2 #17 SDG: Lea Co, NM

Limits

70 - 130

70 - 130

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

MSD MSD %Recovery Qualifier

100

92

Lab Sample ID: 880-55872-1 MSD

Matrix: Solid

Analysis Batch: 105769

Client Sample ID: TH-1 (1') Prep Type: Total/NA

Prep Batch: 105767

Client Sample ID: Method Blank Lab Sample ID: MB 880-105769/8

Matrix: Solid

Surrogate

Analysis Batch: 105769

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Prep Type: Total/NA

MB MB **Analyte** Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Benzene <0.00139 U 0.00200 0.00139 mg/Kg 03/21/25 15:25 Toluene <0.00200 U 0.00200 0.00200 mg/Kg 03/21/25 15:25 Ethylbenzene <0.00109 U 0.00200 0.00109 mg/Kg 03/21/25 15:25 m-Xylene & p-Xylene <0.00229 U 0.00400 0.00229 mg/Kg 03/21/25 15:25 o-Xylene <0.00158 U 0.00200 0.00158 mg/Kg 03/21/25 15:25 <0.00229 U 0.00400 0.00229 mg/Kg Xylenes, Total 03/21/25 15:25

MB MB %Recovery Surrogate Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 103 70 - 130 03/21/25 15:25 1,4-Difluorobenzene (Surr) 86 70 - 130 03/21/25 15:25

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

MB MB

Lab Sample ID: MB 880-105762/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA **Analysis Batch: 105738** Prep Batch: 105762

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Gasoline Range Organics <14.5 U 50.0 03/21/25 11:25 03/22/25 01:07 14.5 mg/Kg (GRO)-C6-C10 50.0 03/21/25 11:25 03/22/25 01:07 Diesel Range Organics (Over <15 1 U 15.1 mg/Kg C10-C28)

Oil Range Organics (Over C28-C36) 50.0 15.1 mg/Kg 03/21/25 11:25 03/22/25 01:07 <15.1 U MB MB

Limits Surrogate %Recovery Qualifier Prepared Analyzed Dil Fac 1-Chlorooctane 70 - 130 03/21/25 11:25 03/22/25 01:07 103 o-Terphenyl 100 70 - 130 03/21/25 11:25 03/22/25 01:07

Lab Sample ID: LCS 880-105762/2-A

Matrix: Solid

Analysis Batch: 105738

LCS LCS %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits 70 - 130 Gasoline Range Organics 1000 922.9 mg/Kg 92 (GRO)-C6-C10 Diesel Range Organics (Over 1000 923.3 92 70 - 130 mg/Kg

C10-C28)

LCS LCS %Recovery Qualifier Limits Surrogate 1-Chlorooctane 128 70 - 130 o-Terphenyl 117 70 - 130

Eurofins Midland

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 105762

Released to Imaging: 5/27/2025 8:52:13 AM

Lab Sample ID: LCSD 880-105762/3-A

Client: Crain Environmental Job ID: 880-55872-1 SDG: Lea Co, NM Project/Site: State J 2 #17

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 105762**

Analysis Batch: 105738							Prep Ba	atch: 10	05762
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	1163	*1	mg/Kg		116	70 - 130	23	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	1259	*1	mg/Kg		126	70 - 130	31	20

C10-C28)

Matrix: Solid

LCSD LCSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 132 S1+ 70 - 130 70 - 130 o-Terphenyl 146 S1+

Lab Sample ID: 880-55872-1 MS Client Sample ID: TH-1 (1')

Matrix: Solid

Prep Type: Total/NA **Prep Batch: 105762 Analysis Batch: 105738**

%Rec Sample Sample Spike MS MS Result Qualifier Added Result Qualifier D %Rec Limits Analyte Unit Gasoline Range Organics <14.5 U *1 996 974.6 98 70 - 130 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <15.1 U *1 996 1013 mg/Kg 102 70 - 130

C10-C28)

MS MS Surrogate %Recovery Qualifier Limits 142 S1+ 1-Chlorooctane 70 - 130 o-Terphenyl 125 70 - 130

Lab Sample ID: 880-55872-1 MSD Client Sample ID: TH-1 (1')

Matrix: Solid

Analysis Batch: 105738

<15.1 U

Prep Batch: 105762 Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Gasoline Range Organics <14.5 U *1 996 96 70 - 130 20 959.8 2 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <15.1 U *1 996 1062 mg/Kg 107 70 - 130 5 20

C10-C28)

MSD MSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 119 70 - 130 125 70 - 130 o-Terphenyl

Lab Sample ID: MB 880-105765/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 105740

Oil Range Organics (Over C28-C36)

MB MB Result Qualifier Dil Fac Analyte RL **MDL** Unit Prepared Analyzed 03/21/25 11:44 03/22/25 01:07 Gasoline Range Organics <14.5 U 50.0 14.5 mg/Kg (GRO)-C6-C10 <15.1 U 50.0 03/21/25 11:44 03/22/25 01:07 Diesel Range Organics (Over 15.1 mg/Kg C10-C28)

50.0

15.1 mg/Kg

Eurofins Midland

Prep Batch: 105765

03/21/25 11:44 03/22/25 01:07

Prep Type: Total/NA

Client: Crain Environmental Job ID: 880-55872-1 SDG: Lea Co, NM Project/Site: State J 2 #17

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-105765/1-A

Matrix: Solid

Analysis Batch: 105740

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 105765

MB MB %Recovery Qualifier Limits Prepared Analyzed Dil Fac Surrogate 03/21/25 11:44 03/22/25 01:07 1-Chlorooctane 120 70 - 130 o-Terphenyl 118 70 - 130 03/21/25 11:44 03/22/25 01:07

Lab Sample ID: LCS 880-105765/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 105740

Prep Type: Total/NA

Prep Batch: 105765

%Rec LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics 1000 1179 mg/Kg 118 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over 1000 1234 mg/Kg 123 70 - 130 C10-C28)

LCS LCS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 136 S1+ 70 - 130 70 - 130 o-Terphenyl 143 S1+

Lab Sample ID: LCSD 880-105765/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 105740

Prep Type: Total/NA

Prep Batch: 105765 %Rec **RPD**

Spike LCSD LCSD Added Result Qualifier Limits **RPD** Limit Analyte Unit D %Rec Gasoline Range Organics 1000 1179 mg/Kg 118 70 - 130 0 20 (GRO)-C6-C10 Diesel Range Organics (Over 1000 70 - 130 1139 mg/Kg 114 20 C10-C28)

LCSD LCSD

Surrogate %Recovery Qualifier Limits 1-Chlorooctane 158 S1+ 70 - 130 o-Terphenyl 140 S1+ 70 - 130

Lab Sample ID: 880-55872-14 MS Client Sample ID: TH-7 (4.1')

Matrix: Solid

Analysis Batch: 105740

Prep Type: Total/NA

Prep Batch: 105765

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec <14.5 U 999 1087 109 70 - 130 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <15.1 U 999 1200 mg/Kg 120 70 - 130

C10-C28)

MS MS

%Recovery Qualifier Limits Surrogate 1-Chlorooctane 133 S1+ 70 - 130 o-Terphenyl 134 S1+ 70 - 130

Client: Crain Environmental Job ID: 880-55872-1 SDG: Lea Co, NM Project/Site: State J 2 #17

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

<15.1 U

Lab Sample ID: 880-55872-14 MSD Client Sample ID: TH-7 (4.1') **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 105740 **Prep Batch: 105765**

999

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit %Rec <14.5 U Gasoline Range Organics 999 1017 mg/Kg 102 70 - 130 7 20 (GRO)-C6-C10

1163

Diesel Range Organics (Over C10-C28)

MSD MSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 132 S1+ 70 - 130 70 - 130 o-Terphenyl 133 S1+

Lab Sample ID: MB 880-105952/1-A

Matrix: Solid

Analysis Batch: 105970

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 105952**

mg/Kg

116

70 - 130

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

3

MB MB Result Qualifier RL MDL Unit Analyte **Prepared** Analyzed Dil Fac <14.5 U 50.0 03/25/25 07:32 03/25/25 04:42 Gasoline Range Organics 14.5 mg/Kg (GRO)-C6-C10 03/25/25 07:32 03/25/25 04:42 Diesel Range Organics (Over <15.1 U 50.0 15.1 mg/Kg C10-C28) Oil Range Organics (Over C28-C36) 03/25/25 07:32 03/25/25 04:42 <15.1 U 50.0 15.1 mg/Kg

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 107 70 - 130 03/25/25 07:32 03/25/25 04:42 70 - 130 o-Terphenyl 104 03/25/25 07:32 03/25/25 04:42

Lab Sample ID: LCS 880-105952/2-A

Matrix: Solid

Analysis Batch: 105970							Prep Ba	atch: 105952
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	936.0		mg/Kg		94	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	957.4		mg/Kg		96	70 - 130	
C10-C28)								

LCS LCS Surrogate %Recovery Qualifier Limits 122

Matrix: Solid							Prep ly	pe: ιοτ	ai/NA
Analysis Batch: 105970							Prep Ba	itch: 10	05952
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	937.1		mg/Kg		94	70 - 130	0	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	954.2		mg/Kg		95	70 - 130	0	20
C10-C28)									

Eurofins Midland

20

1-Chlorooctane 70 - 130 113 70 - 130 o-Terphenyl Lab Sample ID: LCSD 880-105952/3-A Client Sample ID: Lab Control Sample Dup

Released to Imaging: 5/27/2025 8:52:13 AM

Client: Crain Environmental Job ID: 880-55872-1 SDG: Lea Co, NM Project/Site: State J 2 #17

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-105952/3-A

Matrix: Solid

Analysis Batch: 105970

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 105952

LCSD LCSD %Recovery Qualifier Limits Surrogate 1-Chlorooctane 122 70 - 130 o-Terphenyl 112 70 - 130

Client Sample ID: Matrix Spike Lab Sample ID: 890-7841-A-1-F MS **Prep Type: Total/NA**

Matrix: Solid

Analysis Batch: 105970

Diesel Range Organics (Over

Prep Batch: 105952 %Rec MS MS Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Gasoline Range Organics <14.5 U 994 869.4 mg/Kg 87 70 - 130 (GRO)-C6-C10

886.4

994

C10-C28)

MS MS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 116 70 - 130 70 - 130 o-Terphenyl 104

16.0 J

Lab Sample ID: 890-7841-A-1-G MSD

Matrix: Solid

Analysis Batch: 105970

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

88

70 - 130

Prep Batch: 105952

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Result Qualifier Limits **RPD** Limit Analyte Unit D %Rec <14.5 U 70 - 130 Gasoline Range Organics 994 889.9 mg/Kg 90 2 20 (GRO)-C6-C10 994 70 - 130 Diesel Range Organics (Over 16.0 J 961.1 mg/Kg 95 8 20 C10-C28)

MSD MSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 100 70 - 130 70 - 130 o-Terphenyl 108

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-105761/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 105770

Prep Type: Soluble

mg/Kg

Result Qualifier RL **MDL** Unit Dil Fac Analyte Prepared Analyzed 10.0 Chloride <0.395 U 0.395 mg/Kg 03/21/25 17:50

Lab Sample ID: LCS 880-105761/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

MB MB

Analysis Batch: 105770

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Chloride 250 248.2 99 mq/Kq

Client: Crain Environmental

Project/Site: State J 2 #17

Job ID: 880-55872-1

SDG: Lea Co, NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCSD 880-105761/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble Analysis Batch: 105770** Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Unit %Rec Limits RPD Limit Analyte D

Lab Sample ID: 880-55872-1 MS Client Sample ID: TH-1 (1') **Matrix: Solid**

249.1

mg/Kg

100

90 - 110

%Rec

250

Prep Type: Soluble

0

20

Analysis Batch: 105770 Sample Sample Spike MS MS

Result Qualifier Added Result Qualifier Unit D %Rec Limits Analyte 186 F1 252 90 - 110 Chloride 370.8 F1 mg/Kg 73

Lab Sample ID: 880-55872-1 MSD Client Sample ID: TH-1 (1')

Matrix: Solid Prep Type: Soluble

Analysis Batch: 105770

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Result Qualifier Limits **RPD Analyte** Unit D %Rec Limit Chloride 186 F1 252 372.2 F1 90 - 110 20 mg/Kg

Lab Sample ID: 880-55872-11 MS Client Sample ID: TH-6 (1') **Matrix: Solid Prep Type: Soluble**

Chloride

Analysis Batch: 105770

Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 67.1 249 323.4 mg/Kg 103 90 - 110

Lab Sample ID: 880-55872-11 MSD Client Sample ID: TH-6 (1') **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 105770

MSD MSD RPD Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Chloride 67.1 249 324.2 103 mg/Kg 90 - 110

Lab Sample ID: MB 880-105780/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 105791

MB MB

Result Qualifier **MDL** Unit Analyte RL Dil Fac Prepared Analyzed 10.0 Chloride < 0.395 U 0.395 mg/Kg 03/21/25 20:01

Lab Sample ID: LCS 880-105780/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 105791

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit %Rec 250 Chloride 248.2 mg/Kg 99 90 - 110

Lab Sample ID: LCSD 880-105780/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 105791

Spike LCSD LCSD %Rec **RPD RPD** Added Analyte Result Qualifier Unit D %Rec Limits Limit Chloride 250 248.2 mg/Kg 99 90 - 110 20

QC Sample Results

Client: Crain Environmental Job ID: 880-55872-1 Project/Site: State J 2 #17 SDG: Lea Co, NM

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 880-55872-26 MS Client Sample ID: TH-12 (8')

Matrix: Solid Prep Type: Soluble Analysis Batch: 105791

%Rec Sample Sample Spike MS MS Result Qualifier Analyte Result Qualifier Added Unit %Rec Limits Chloride 216 F1 250 516.9 F1 mg/Kg 120 90 - 110

Lab Sample ID: 880-55872-26 MSD Client Sample ID: TH-12 (8')

Matrix: Solid Prep Type: Soluble

Analysis Batch: 105791

RPD Sample Sample Spike MSD MSD %Rec

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 216 F1 250 517.1 F1 120 90 - 110 0 mg/Kg

Client: Crain Environmental
Project/Site: State J 2 #17
Job ID: 880-55872-1
SDG: Lea Co, NM

GC VOA

Analysis Batch: 105722

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-21	TH-11 (1')	Total/NA	Solid	8021B	105766
880-55872-22	TH-11 (4.1')	Total/NA	Solid	8021B	105766
880-55872-23	TH-12 (1')	Total/NA	Solid	8021B	105766
880-55872-24	TH-12 (4.1')	Total/NA	Solid	8021B	105766
880-55872-25	TH-12 (6')	Total/NA	Solid	8021B	105766
880-55872-26	TH-12 (8')	Total/NA	Solid	8021B	105766
MB 880-105766/5-A	Method Blank	Total/NA	Solid	8021B	105766
LCS 880-105766/1-A	Lab Control Sample	Total/NA	Solid	8021B	105766
LCSD 880-105766/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	105766
820-18016-A-21-C MS	Matrix Spike	Total/NA	Solid	8021B	105766
820-18016-A-21-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	105766

Prep Batch: 105766

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-21	TH-11 (1')	Total/NA	Solid	5035	
880-55872-22	TH-11 (4.1')	Total/NA	Solid	5035	
880-55872-23	TH-12 (1')	Total/NA	Solid	5035	
880-55872-24	TH-12 (4.1')	Total/NA	Solid	5035	
880-55872-25	TH-12 (6')	Total/NA	Solid	5035	
880-55872-26	TH-12 (8')	Total/NA	Solid	5035	
MB 880-105766/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-105766/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-105766/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
820-18016-A-21-C MS	Matrix Spike	Total/NA	Solid	5035	
820-18016-A-21-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 105767

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-1	TH-1 (1')	Total/NA	Solid	5035	<u> </u>
880-55872-2	TH-1 (4.1')	Total/NA	Solid	5035	
880-55872-3	TH-2 (1')	Total/NA	Solid	5035	
880-55872-4	TH-2 (4.1')	Total/NA	Solid	5035	
880-55872-5	TH-3 (1')	Total/NA	Solid	5035	
880-55872-6	TH-3 (4.1')	Total/NA	Solid	5035	
880-55872-7	TH-4 (1')	Total/NA	Solid	5035	
880-55872-8	TH-4 (4.1')	Total/NA	Solid	5035	
880-55872-9	TH-5 (1')	Total/NA	Solid	5035	
880-55872-10	TH-5 (4.1')	Total/NA	Solid	5035	
880-55872-11	TH-6 (1')	Total/NA	Solid	5035	
880-55872-12	TH-6 (4.1')	Total/NA	Solid	5035	
880-55872-13	TH-7 (1')	Total/NA	Solid	5035	
880-55872-14	TH-7 (4.1')	Total/NA	Solid	5035	
880-55872-15	TH-8 (1')	Total/NA	Solid	5035	
880-55872-16	TH-8 (4.1')	Total/NA	Solid	5035	
880-55872-17	TH-9 (1')	Total/NA	Solid	5035	
880-55872-18	TH-9 (4.1')	Total/NA	Solid	5035	
880-55872-19	TH-10 (1')	Total/NA	Solid	5035	
880-55872-20	TH-10 (4.1')	Total/NA	Solid	5035	
MB 880-105767/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-105767/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-105767/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Eurofins Midland

2

2

4

6

8

9

11

4.0

1 4

14

Job ID: 880-55872-1 Client: Crain Environmental Project/Site: State J 2 #17 SDG: Lea Co, NM

GC VOA (Continued)

Prep Batch: 105767 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-1 MS	TH-1 (1')	Total/NA	Solid	5035	
880-55872-1 MSD	TH-1 (1')	Total/NA	Solid	5035	

Analysis Batch: 105769

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-1	TH-1 (1')	Total/NA	Solid	8021B	105767
880-55872-2	TH-1 (4.1')	Total/NA	Solid	8021B	105767
880-55872-3	TH-2 (1')	Total/NA	Solid	8021B	105767
880-55872-4	TH-2 (4.1')	Total/NA	Solid	8021B	105767
880-55872-5	TH-3 (1')	Total/NA	Solid	8021B	105767
880-55872-6	TH-3 (4.1')	Total/NA	Solid	8021B	105767
880-55872-7	TH-4 (1')	Total/NA	Solid	8021B	105767
880-55872-8	TH-4 (4.1')	Total/NA	Solid	8021B	105767
880-55872-9	TH-5 (1')	Total/NA	Solid	8021B	105767
880-55872-10	TH-5 (4.1')	Total/NA	Solid	8021B	105767
880-55872-11	TH-6 (1')	Total/NA	Solid	8021B	105767
880-55872-12	TH-6 (4.1')	Total/NA	Solid	8021B	105767
880-55872-13	TH-7 (1')	Total/NA	Solid	8021B	105767
880-55872-14	TH-7 (4.1')	Total/NA	Solid	8021B	105767
880-55872-15	TH-8 (1')	Total/NA	Solid	8021B	105767
880-55872-16	TH-8 (4.1')	Total/NA	Solid	8021B	105767
880-55872-17	TH-9 (1')	Total/NA	Solid	8021B	105767
880-55872-18	TH-9 (4.1')	Total/NA	Solid	8021B	105767
880-55872-19	TH-10 (1')	Total/NA	Solid	8021B	105767
880-55872-20	TH-10 (4.1')	Total/NA	Solid	8021B	105767
MB 880-105767/5-A	Method Blank	Total/NA	Solid	8021B	105767
MB 880-105769/8	Method Blank	Total/NA	Solid	8021B	
LCS 880-105767/1-A	Lab Control Sample	Total/NA	Solid	8021B	105767
LCSD 880-105767/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	105767
880-55872-1 MS	TH-1 (1')	Total/NA	Solid	8021B	105767
880-55872-1 MSD	TH-1 (1')	Total/NA	Solid	8021B	105767

Analysis Batch: 105906

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-1	TH-1 (1')	Total/NA	Solid	Total BTEX	
880-55872-2	TH-1 (4.1')	Total/NA	Solid	Total BTEX	
880-55872-3	TH-2 (1')	Total/NA	Solid	Total BTEX	
880-55872-4	TH-2 (4.1')	Total/NA	Solid	Total BTEX	
880-55872-5	TH-3 (1')	Total/NA	Solid	Total BTEX	
880-55872-6	TH-3 (4.1')	Total/NA	Solid	Total BTEX	
880-55872-7	TH-4 (1')	Total/NA	Solid	Total BTEX	
880-55872-8	TH-4 (4.1')	Total/NA	Solid	Total BTEX	
880-55872-9	TH-5 (1')	Total/NA	Solid	Total BTEX	
880-55872-10	TH-5 (4.1')	Total/NA	Solid	Total BTEX	
880-55872-11	TH-6 (1')	Total/NA	Solid	Total BTEX	
880-55872-12	TH-6 (4.1')	Total/NA	Solid	Total BTEX	
880-55872-13	TH-7 (1')	Total/NA	Solid	Total BTEX	
880-55872-14	TH-7 (4.1')	Total/NA	Solid	Total BTEX	
880-55872-15	TH-8 (1')	Total/NA	Solid	Total BTEX	
880-55872-16	TH-8 (4.1')	Total/NA	Solid	Total BTEX	
880-55872-17	TH-9 (1')	Total/NA	Solid	Total BTEX	

Client: Crain Environmental
Project/Site: State J 2 #17
Job ID: 880-55872-1
SDG: Lea Co, NM

GC VOA (Continued)

Analysis Batch: 105906 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-18	TH-9 (4.1')	Total/NA	Solid	Total BTEX	
880-55872-19	TH-10 (1')	Total/NA	Solid	Total BTEX	
880-55872-20	TH-10 (4.1')	Total/NA	Solid	Total BTEX	
880-55872-21	TH-11 (1')	Total/NA	Solid	Total BTEX	
880-55872-22	TH-11 (4.1')	Total/NA	Solid	Total BTEX	
880-55872-23	TH-12 (1')	Total/NA	Solid	Total BTEX	
880-55872-24	TH-12 (4.1')	Total/NA	Solid	Total BTEX	
880-55872-25	TH-12 (6')	Total/NA	Solid	Total BTEX	
880-55872-26	TH-12 (8')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 105738

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-1	TH-1 (1')	Total/NA	Solid	8015B NM	105762
880-55872-2	TH-1 (4.1')	Total/NA	Solid	8015B NM	105762
880-55872-3	TH-2 (1')	Total/NA	Solid	8015B NM	105762
880-55872-4	TH-2 (4.1')	Total/NA	Solid	8015B NM	105762
880-55872-5	TH-3 (1')	Total/NA	Solid	8015B NM	105762
880-55872-6	TH-3 (4.1')	Total/NA	Solid	8015B NM	105762
880-55872-7	TH-4 (1')	Total/NA	Solid	8015B NM	105762
880-55872-8	TH-4 (4.1')	Total/NA	Solid	8015B NM	105762
880-55872-9	TH-5 (1')	Total/NA	Solid	8015B NM	105762
880-55872-10	TH-5 (4.1')	Total/NA	Solid	8015B NM	105762
880-55872-11	TH-6 (1')	Total/NA	Solid	8015B NM	105762
880-55872-12	TH-6 (4.1')	Total/NA	Solid	8015B NM	105762
880-55872-13	TH-7 (1')	Total/NA	Solid	8015B NM	105762
MB 880-105762/1-A	Method Blank	Total/NA	Solid	8015B NM	105762
LCS 880-105762/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	105762
LCSD 880-105762/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	105762
880-55872-1 MS	TH-1 (1')	Total/NA	Solid	8015B NM	105762
880-55872-1 MSD	TH-1 (1')	Total/NA	Solid	8015B NM	105762

Analysis Batch: 105740

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-14	TH-7 (4.1')	Total/NA	Solid	8015B NM	105765
880-55872-15	TH-8 (1')	Total/NA	Solid	8015B NM	105765
880-55872-16	TH-8 (4.1')	Total/NA	Solid	8015B NM	105765
880-55872-17	TH-9 (1')	Total/NA	Solid	8015B NM	105765
880-55872-18	TH-9 (4.1')	Total/NA	Solid	8015B NM	105765
880-55872-19	TH-10 (1')	Total/NA	Solid	8015B NM	105765
880-55872-20	TH-10 (4.1')	Total/NA	Solid	8015B NM	105765
880-55872-21	TH-11 (1')	Total/NA	Solid	8015B NM	105765
880-55872-22	TH-11 (4.1')	Total/NA	Solid	8015B NM	105765
880-55872-25	TH-12 (6')	Total/NA	Solid	8015B NM	105765
880-55872-26	TH-12 (8')	Total/NA	Solid	8015B NM	105765
MB 880-105765/1-A	Method Blank	Total/NA	Solid	8015B NM	105765
LCS 880-105765/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	105765
LCSD 880-105765/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	105765
880-55872-14 MS	TH-7 (4.1')	Total/NA	Solid	8015B NM	105765
880-55872-14 MSD	TH-7 (4.1')	Total/NA	Solid	8015B NM	105765

Eurofins Midland

C

_

0

10

12

13

14

Client: Crain Environmental
Project/Site: State J 2 #17
Job ID: 880-55872-1
SDG: Lea Co, NM

GC Semi VOA

Prep Batch: 105762

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-1	TH-1 (1')	Total/NA	Solid	8015NM Prep	
880-55872-2	TH-1 (4.1')	Total/NA	Solid	8015NM Prep	
880-55872-3	TH-2 (1')	Total/NA	Solid	8015NM Prep	
880-55872-4	TH-2 (4.1')	Total/NA	Solid	8015NM Prep	
880-55872-5	TH-3 (1')	Total/NA	Solid	8015NM Prep	
880-55872-6	TH-3 (4.1')	Total/NA	Solid	8015NM Prep	
880-55872-7	TH-4 (1')	Total/NA	Solid	8015NM Prep	
880-55872-8	TH-4 (4.1')	Total/NA	Solid	8015NM Prep	
880-55872-9	TH-5 (1')	Total/NA	Solid	8015NM Prep	
880-55872-10	TH-5 (4.1')	Total/NA	Solid	8015NM Prep	
880-55872-11	TH-6 (1')	Total/NA	Solid	8015NM Prep	
880-55872-12	TH-6 (4.1')	Total/NA	Solid	8015NM Prep	
880-55872-13	TH-7 (1')	Total/NA	Solid	8015NM Prep	
MB 880-105762/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-105762/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-105762/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-55872-1 MS	TH-1 (1')	Total/NA	Solid	8015NM Prep	
880-55872-1 MSD	TH-1 (1')	Total/NA	Solid	8015NM Prep	

Prep Batch: 105765

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-14	TH-7 (4.1')	Total/NA	Solid	8015NM Prep	
880-55872-15	TH-8 (1')	Total/NA	Solid	8015NM Prep	
880-55872-16	TH-8 (4.1')	Total/NA	Solid	8015NM Prep	
880-55872-17	TH-9 (1')	Total/NA	Solid	8015NM Prep	
880-55872-18	TH-9 (4.1')	Total/NA	Solid	8015NM Prep	
880-55872-19	TH-10 (1')	Total/NA	Solid	8015NM Prep	
880-55872-20	TH-10 (4.1')	Total/NA	Solid	8015NM Prep	
880-55872-21	TH-11 (1')	Total/NA	Solid	8015NM Prep	
880-55872-22	TH-11 (4.1')	Total/NA	Solid	8015NM Prep	
880-55872-25	TH-12 (6')	Total/NA	Solid	8015NM Prep	
880-55872-26	TH-12 (8')	Total/NA	Solid	8015NM Prep	
MB 880-105765/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-105765/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-105765/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-55872-14 MS	TH-7 (4.1')	Total/NA	Solid	8015NM Prep	
880-55872-14 MSD	TH-7 (4.1')	Total/NA	Solid	8015NM Prep	

Prep Batch: 105952

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-23	TH-12 (1')	Total/NA	Solid	8015NM Prep	
880-55872-24	TH-12 (4.1')	Total/NA	Solid	8015NM Prep	
MB 880-105952/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-105952/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-105952/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-7841-A-1-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-7841-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 105970

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-23	TH-12 (1')	Total/NA	Solid	8015B NM	105952

Eurofins Midland

Page 42 of 60

Job ID: 880-55872-1 Client: Crain Environmental Project/Site: State J 2 #17 SDG: Lea Co, NM

GC Semi VOA (Continued)

Analysis Batch: 105970 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-24	TH-12 (4.1')	Total/NA	Solid	8015B NM	105952
MB 880-105952/1-A	Method Blank	Total/NA	Solid	8015B NM	105952
LCS 880-105952/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	105952
LCSD 880-105952/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	105952
890-7841-A-1-F MS	Matrix Spike	Total/NA	Solid	8015B NM	105952
890-7841-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	105952

Analysis Batch: 106012

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-1	TH-1 (1')	Total/NA	Solid	8015 NM	
880-55872-2	TH-1 (4.1')	Total/NA	Solid	8015 NM	
880-55872-3	TH-2 (1')	Total/NA	Solid	8015 NM	
880-55872-4	TH-2 (4.1')	Total/NA	Solid	8015 NM	
880-55872-5	TH-3 (1')	Total/NA	Solid	8015 NM	
880-55872-6	TH-3 (4.1')	Total/NA	Solid	8015 NM	
880-55872-7	TH-4 (1')	Total/NA	Solid	8015 NM	
880-55872-8	TH-4 (4.1')	Total/NA	Solid	8015 NM	
880-55872-9	TH-5 (1')	Total/NA	Solid	8015 NM	
880-55872-10	TH-5 (4.1')	Total/NA	Solid	8015 NM	
880-55872-11	TH-6 (1')	Total/NA	Solid	8015 NM	
880-55872-12	TH-6 (4.1')	Total/NA	Solid	8015 NM	
880-55872-13	TH-7 (1')	Total/NA	Solid	8015 NM	
880-55872-14	TH-7 (4.1')	Total/NA	Solid	8015 NM	
880-55872-15	TH-8 (1')	Total/NA	Solid	8015 NM	
880-55872-16	TH-8 (4.1')	Total/NA	Solid	8015 NM	
880-55872-17	TH-9 (1')	Total/NA	Solid	8015 NM	
880-55872-18	TH-9 (4.1')	Total/NA	Solid	8015 NM	
880-55872-19	TH-10 (1')	Total/NA	Solid	8015 NM	
880-55872-20	TH-10 (4.1')	Total/NA	Solid	8015 NM	
880-55872-21	TH-11 (1')	Total/NA	Solid	8015 NM	
880-55872-22	TH-11 (4.1')	Total/NA	Solid	8015 NM	
880-55872-23	TH-12 (1')	Total/NA	Solid	8015 NM	
880-55872-24	TH-12 (4.1')	Total/NA	Solid	8015 NM	
880-55872-25	TH-12 (6')	Total/NA	Solid	8015 NM	
880-55872-26	TH-12 (8')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 105761

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-1	TH-1 (1')	Soluble	Solid	DI Leach	
880-55872-2	TH-1 (4.1')	Soluble	Solid	DI Leach	
880-55872-3	TH-2 (1')	Soluble	Solid	DI Leach	
880-55872-4	TH-2 (4.1')	Soluble	Solid	DI Leach	
880-55872-5	TH-3 (1')	Soluble	Solid	DI Leach	
880-55872-6	TH-3 (4.1')	Soluble	Solid	DI Leach	
880-55872-7	TH-4 (1')	Soluble	Solid	DI Leach	
880-55872-8	TH-4 (4.1')	Soluble	Solid	DI Leach	
880-55872-9	TH-5 (1')	Soluble	Solid	DI Leach	
880-55872-10	TH-5 (4.1')	Soluble	Solid	DI Leach	
880-55872-11	TH-6 (1')	Soluble	Solid	DI Leach	

Eurofins Midland

Page 43 of 60

Job ID: 880-55872-1 Client: Crain Environmental Project/Site: State J 2 #17 SDG: Lea Co, NM

HPLC/IC (Continued)

Leach Batch: 105761 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-12	TH-6 (4.1')	Soluble	Solid	DI Leach	
880-55872-13	TH-7 (1')	Soluble	Solid	DI Leach	
880-55872-14	TH-7 (4.1')	Soluble	Solid	DI Leach	
880-55872-15	TH-8 (1')	Soluble	Solid	DI Leach	
880-55872-16	TH-8 (4.1')	Soluble	Solid	DI Leach	
880-55872-17	TH-9 (1')	Soluble	Solid	DI Leach	
880-55872-18	TH-9 (4.1')	Soluble	Solid	DI Leach	
880-55872-19	TH-10 (1')	Soluble	Solid	DI Leach	
880-55872-20	TH-10 (4.1')	Soluble	Solid	DI Leach	
MB 880-105761/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-105761/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-105761/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-55872-1 MS	TH-1 (1')	Soluble	Solid	DI Leach	
880-55872-1 MSD	TH-1 (1')	Soluble	Solid	DI Leach	
880-55872-11 MS	TH-6 (1')	Soluble	Solid	DI Leach	
880-55872-11 MSD	TH-6 (1')	Soluble	Solid	DI Leach	

Analysis Batch: 105770

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-1	TH-1 (1')	Soluble	Solid	300.0	105761
880-55872-2	TH-1 (4.1')	Soluble	Solid	300.0	105761
880-55872-3	TH-2 (1')	Soluble	Solid	300.0	105761
880-55872-4	TH-2 (4.1')	Soluble	Solid	300.0	105761
880-55872-5	TH-3 (1')	Soluble	Solid	300.0	105761
880-55872-6	TH-3 (4.1')	Soluble	Solid	300.0	105761
880-55872-7	TH-4 (1')	Soluble	Solid	300.0	105761
880-55872-8	TH-4 (4.1')	Soluble	Solid	300.0	105761
880-55872-9	TH-5 (1')	Soluble	Solid	300.0	105761
880-55872-10	TH-5 (4.1')	Soluble	Solid	300.0	105761
880-55872-11	TH-6 (1')	Soluble	Solid	300.0	105761
880-55872-12	TH-6 (4.1')	Soluble	Solid	300.0	105761
880-55872-13	TH-7 (1')	Soluble	Solid	300.0	105761
880-55872-14	TH-7 (4.1')	Soluble	Solid	300.0	105761
880-55872-15	TH-8 (1')	Soluble	Solid	300.0	105761
880-55872-16	TH-8 (4.1')	Soluble	Solid	300.0	105761
880-55872-17	TH-9 (1')	Soluble	Solid	300.0	105761
880-55872-18	TH-9 (4.1')	Soluble	Solid	300.0	105761
880-55872-19	TH-10 (1')	Soluble	Solid	300.0	105761
880-55872-20	TH-10 (4.1')	Soluble	Solid	300.0	105761
MB 880-105761/1-A	Method Blank	Soluble	Solid	300.0	105761
LCS 880-105761/2-A	Lab Control Sample	Soluble	Solid	300.0	105761
LCSD 880-105761/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	105761
880-55872-1 MS	TH-1 (1')	Soluble	Solid	300.0	105761
880-55872-1 MSD	TH-1 (1')	Soluble	Solid	300.0	105761
880-55872-11 MS	TH-6 (1')	Soluble	Solid	300.0	105761
880-55872-11 MSD	TH-6 (1')	Soluble	Solid	300.0	105761

Leach Batch: 105780

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-21	TH-11 (1')	Soluble	Solid	DI Leach	
880-55872-22	TH-11 (4.1')	Soluble	Solid	DI Leach	

Eurofins Midland

Page 44 of 60

Client: Crain Environmental
Project/Site: State J 2 #17
Job ID: 880-55872-1
SDG: Lea Co, NM

HPLC/IC (Continued)

Leach Batch: 105780 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-23	TH-12 (1')	Soluble	Solid	DI Leach	
880-55872-24	TH-12 (4.1')	Soluble	Solid	DI Leach	
880-55872-25	TH-12 (6')	Soluble	Solid	DI Leach	
880-55872-26	TH-12 (8')	Soluble	Solid	DI Leach	
MB 880-105780/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-105780/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-105780/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-55872-26 MS	TH-12 (8')	Soluble	Solid	DI Leach	
880-55872-26 MSD	TH-12 (8')	Soluble	Solid	DI Leach	

Analysis Batch: 105791

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55872-21	TH-11 (1')	Soluble	Solid	300.0	105780
880-55872-22	TH-11 (4.1')	Soluble	Solid	300.0	105780
880-55872-23	TH-12 (1')	Soluble	Solid	300.0	105780
880-55872-24	TH-12 (4.1')	Soluble	Solid	300.0	105780
880-55872-25	TH-12 (6')	Soluble	Solid	300.0	105780
880-55872-26	TH-12 (8')	Soluble	Solid	300.0	105780
MB 880-105780/1-A	Method Blank	Soluble	Solid	300.0	105780
LCS 880-105780/2-A	Lab Control Sample	Soluble	Solid	300.0	105780
LCSD 880-105780/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	105780
880-55872-26 MS	TH-12 (8')	Soluble	Solid	300.0	105780
880-55872-26 MSD	TH-12 (8')	Soluble	Solid	300.0	105780

Eurofins Midland

6

3

Л

8

9

10

12

13

14

Job ID: 880-55872-1 SDG: Lea Co, NM

Client Sample ID: TH-1 (1')

Client: Crain Environmental

Project/Site: State J 2 #17

Date Collected: 03/18/25 10:30 Date Received: 03/20/25 16:43

Lab Sample ID: 880-55872-1

03/21/25 18:24 SMC

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	105767	03/21/25 12:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	105769	03/22/25 02:45	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/22/25 02:45	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106012	03/22/25 01:56	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	105762	03/21/25 11:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	105738	03/22/25 01:56	TKC	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	105761	03/21/25 10:53	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105770	03/21/25 18:07	SMC	EET MID

Lab Sample ID: 880-55872-2 Client Sample ID: TH-1 (4.1') Date Collected: 03/18/25 10:45 **Matrix: Solid**

Date Received: 03/20/25 16:43

Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Type Run **Factor Amount** Amount Number or Analyzed **Analyst** Lab Total/NA 5035 105767 03/21/25 12:23 MNR EET MID Prep 5.03 g 5 mL 8021B Total/NA 5 mL 105769 03/22/25 03:05 MNR **EET MID** Analysis 5 mL 1 Total/NA Total BTEX 03/22/25 03:05 AJ Analysis 105906 **EET MID** 1 Total/NA 8015 NM 03/22/25 02:45 AJ **EET MID** Analysis 1 106012 Total/NA Prep 8015NM Prep 10.00 g 10 mL 105762 03/21/25 11:26 FC **EET MID** Total/NA 8015B NM 105738 03/22/25 02:45 TKC Analysis 1 uL 1 uL **EET MID** Soluble 50 mL 105761 Leach DI Leach 4.95 g 03/21/25 10:53 SA **EET MID**

Client Sample ID: TH-2 (1') Lab Sample ID: 880-55872-3 Date Collected: 03/18/25 11:00 **Matrix: Solid**

50 mL

50 mL

105770

1

Date Received: 03/20/25 16:43

Analysis

Soluble

300.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	105767	03/21/25 12:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	105769	03/22/25 03:26	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/22/25 03:26	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106012	03/22/25 03:01	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	105762	03/21/25 11:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	105738	03/22/25 03:01	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	105761	03/21/25 10:53	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105770	03/21/25 18:30	SMC	EET MID

Client Sample ID: TH-2 (4.1') Lab Sample ID: 880-55872-4 Date Collected: 03/18/25 11:15 **Matrix: Solid**

Date Received: 03/20/25 16:43

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	105767	03/21/25 12:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	105769	03/22/25 03:46	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/22/25 03:46	AJ	EET MID

Eurofins Midland

Page 46 of 60

EET MID

Job ID: 880-55872-1 SDG: Lea Co, NM

Client Sample ID: TH-2 (4.1')

Date Collected: 03/18/25 11:15 Date Received: 03/20/25 16:43

Client: Crain Environmental

Project/Site: State J 2 #17

Lab Sample ID: 880-55872-4

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			106012	03/22/25 03:17	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	105762	03/21/25 11:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	105738	03/22/25 03:17	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	105761	03/21/25 10:53	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105770	03/21/25 18:36	SMC	EET MID

Lab Sample ID: 880-55872-5

Matrix: Solid

Date Collected: 03/18/25 11:30 Date Received: 03/20/25 16:43

Client Sample ID: TH-3 (1')

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	105767	03/21/25 12:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	105769	03/22/25 04:07	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/22/25 04:07	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106012	03/22/25 03:34	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	105762	03/21/25 11:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	105738	03/22/25 03:34	TKC	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	105761	03/21/25 10:53	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105770	03/21/25 18:41	SMC	EET MID

Lab Sample ID: 880-55872-6 Client Sample ID: TH-3 (4.1') Date Collected: 03/18/25 11:45 **Matrix: Solid**

Date Received: 03/20/25 16:43

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	105767	03/21/25 12:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	105769	03/22/25 04:27	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/22/25 04:27	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106012	03/22/25 03:49	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	105762	03/21/25 11:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	105738	03/22/25 03:49	TKC	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	105761	03/21/25 10:53	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105770	03/21/25 18:59	SMC	EET MID

Client Sample ID: TH-4 (1') Lab Sample ID: 880-55872-7 Date Collected: 03/18/25 12:00 **Matrix: Solid**

Date Received: 03/20/25 16:43

Released to Imaging: 5/27/2025 8:52:13 AM

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	105767	03/21/25 12:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	105769	03/22/25 04:48	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/22/25 04:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106012	03/22/25 04:05	AJ	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.01 g 1 uL	10 mL 1 uL	105762 105738	03/21/25 11:26 03/22/25 04:05	FC TKC	EET MID EET MID

Job ID: 880-55872-1 SDG: Lea Co, NM

Client Sample ID: TH-4 (1')

Client: Crain Environmental

Project/Site: State J 2 #17

Date Collected: 03/18/25 12:00 Date Received: 03/20/25 16:43

Lab Sample ID: 880-55872-7

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.02 g	50 mL	105761	03/21/25 10:53	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105770	03/21/25 19:04	SMC	EET MID

Client Sample ID: TH-4 (4.1')

Date Collected: 03/18/25 12:15 Date Received: 03/20/25 16:43

Lab Sample ID: 880-55872-8

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	105767	03/21/25 12:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	105769	03/22/25 05:08	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/22/25 05:08	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106012	03/22/25 04:22	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	105762	03/21/25 11:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	105738	03/22/25 04:22	TKC	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	105761	03/21/25 10:53	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105770	03/21/25 19:10	SMC	EET MID

Client Sample ID: TH-5 (1')

Date Collected: 03/18/25 12:30 Date Received: 03/20/25 16:43

Lab Sample ID: 880-55872-9

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	105767	03/21/25 12:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	105769	03/22/25 05:29	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/22/25 05:29	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106012	03/22/25 04:37	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	105762	03/21/25 11:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	105738	03/22/25 04:37	TKC	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	105761	03/21/25 10:53	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105770	03/21/25 19:16	SMC	EET MID

Client Sample ID: TH-5 (4.1')

Date Collected: 03/18/25 12:45

Date Received: 03/20/25 16:43

Lab Sample ID:	880-55872-10
	Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	105767	03/21/25 12:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	105769	03/22/25 05:49	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/22/25 05:49	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106012	03/22/25 04:54	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	105762	03/21/25 11:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	105738	03/22/25 04:54	TKC	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	105761	03/21/25 10:53	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105770	03/21/25 19:22	SMC	EET MID

Eurofins Midland

Job ID: 880-55872-1 SDG: Lea Co, NM

Client Sample ID: TH-6 (1')

Client: Crain Environmental

Project/Site: State J 2 #17

Date Collected: 03/18/25 13:00 Date Received: 03/20/25 16:43

Lab Sample ID: 880-55872-11

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	105767	03/21/25 12:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	105769	03/22/25 07:23	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/22/25 07:23	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106012	03/22/25 05:26	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	105762	03/21/25 11:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	105738	03/22/25 05:26	TKC	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	105761	03/21/25 10:53	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105770	03/21/25 19:27	SMC	EET MID

Client Sample ID: TH-6 (4.1') Lab Sample ID: 880-55872-12 Date Collected: 03/18/25 13:15 **Matrix: Solid**

Date Received: 03/20/25 16:43

Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Type Run **Factor Amount** Amount Number or Analyzed **Analyst** Lab Total/NA 5035 105767 03/21/25 12:23 MNR **EET MID** Prep 5.05 g 5 mL 8021B Total/NA 5 mL 105769 03/22/25 07:43 MNR **EET MID** Analysis 5 mL 1 Total/NA Total BTEX 03/22/25 07:43 AJ Analysis 105906 **EET MID** 1 Total/NA 8015 NM 03/22/25 05:42 AJ **EET MID** Analysis 1 106012 Total/NA Prep 8015NM Prep 10.01 g 10 mL 105762 03/21/25 11:26 FC **EET MID** Total/NA 8015B NM 105738 03/22/25 05:42 TKC Analysis 1 uL 1 uL **EET MID** Soluble 50 mL 105761 Leach DI Leach 4.98 g 03/21/25 10:53 SA **EET MID** 300.0 03/21/25 19:45 SMC Soluble Analysis 1 50 mL 50 mL 105770 **EET MID**

Client Sample ID: TH-7 (1') Lab Sample ID: 880-55872-13 Date Collected: 03/18/25 10:00 Matrix: Solid

Date Received: 03/20/25 16:43

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	105767	03/21/25 12:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	105769	03/22/25 08:04	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/22/25 08:04	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106012	03/22/25 05:58	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	105762	03/21/25 11:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	105738	03/22/25 05:58	TKC	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	105761	03/21/25 10:53	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105770	03/21/25 19:50	SMC	EET MID

Client Sample ID: TH-7 (4.1') Lab Sample ID: 880-55872-14 Date Collected: 03/18/25 10:15 **Matrix: Solid**

Date Received: 03/20/25 16:43

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	105767	03/21/25 12:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	105769	03/22/25 08:24	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/22/25 08:24	AJ	EET MID

Eurofins Midland

Page 49 of 60

SDG: Lea Co, NM

Client Sample ID: TH-7 (4.1')

Date Collected: 03/18/25 10:15 Date Received: 03/20/25 16:43

Client: Crain Environmental

Project/Site: State J 2 #17

Lab Sample ID: 880-55872-14

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			106012	03/22/25 01:56	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	105765	03/21/25 11:44	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	105740	03/22/25 01:56	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	105761	03/21/25 10:53	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105770	03/21/25 20:08	SMC	EET MID

Lab Sample ID: 880-55872-15 Client Sample ID: TH-8 (1') Date Collected: 03/18/25 09:05 **Matrix: Solid**

Date Received: 03/20/25 16:43

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method Amount Amount Number Type Run **Factor** or Analyzed Analyst Lab Total/NA Prep 5035 4.99 g 105767 03/21/25 12:23 MNR 5 mL **EET MID** Total/NA Analysis 8021B 5 mL 5 mL 105769 03/22/25 08:45 MNR **EET MID** 1 Total/NA Analysis **Total BTEX** 1 105906 03/22/25 08:45 AJ **EET MID** Total/NA 8015 NM 03/22/25 02:45 AJ Analysis 106012 **EET MID** Total/NA Prep 8015NM Prep 10.09 g 10 mL 105765 03/21/25 11:44 FC **EET MID** Total/NA 8015B NM 105740 03/22/25 02:45 TKC Analysis 1 uL 1 uL **EET MID** Soluble Leach DI Leach 5.01 g 50 mL 105761 03/21/25 10:53 SA **EET MID** Analysis 300.0 50 mL 50 mL 105770 03/21/25 20:13 SMC **EET MID** Soluble 1

Lab Sample ID: 880-55872-16 Client Sample ID: TH-8 (4.1') Date Collected: 03/18/25 09:20 **Matrix: Solid**

Date Received: 03/20/25 16:43

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	105767	03/21/25 12:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	105769	03/22/25 09:05	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/22/25 09:05	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106012	03/22/25 03:01	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	105765	03/21/25 11:44	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	105740	03/22/25 03:01	TKC	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	105761	03/21/25 10:53	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105770	03/21/25 20:19	SMC	EET MID

Client Sample ID: TH-9 (1') Lab Sample ID: 880-55872-17 Date Collected: 03/18/25 09:30 **Matrix: Solid**

Date Received: 03/20/25 16:43

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	105767	03/21/25 12:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	105769	03/22/25 09:26	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/22/25 09:26	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106012	03/22/25 03:17	AJ	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.06 g 1 uL	10 mL 1 uL	105765 105740	03/21/25 11:44 03/22/25 03:17	FC TKC	EET MID EET MID

Eurofins Midland

Job ID: 880-55872-1

SDG: Lea Co, NM

Client Sample ID: TH-9 (1')

Client: Crain Environmental

Project/Site: State J 2 #17

Date Collected: 03/18/25 09:30 Date Received: 03/20/25 16:43

Lab Sample ID: 880-55872-17

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.00 g	50 mL	105761	03/21/25 10:53	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105770	03/21/25 20:25	SMC	EET MID

Lab Sample ID: 880-55872-18 Client Sample ID: TH-9 (4.1')

Date Collected: 03/18/25 09:45 Date Received: 03/20/25 16:43

Janiple 15. 000-3307 2-10	_ab
Matrix: Solid	

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	105767	03/21/25 12:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	105769	03/22/25 09:46	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/22/25 09:46	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106012	03/22/25 03:34	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.07 g	10 mL	105765	03/21/25 11:44	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	105740	03/22/25 03:34	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	105761	03/21/25 10:53	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105770	03/21/25 20:30	SMC	EET MID

Lab Sample ID: 880-55872-19 Client Sample ID: TH-10 (1')

Date Collected: 03/18/25 14:35 Date Received: 03/20/25 16:43

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	105767	03/21/25 12:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	105769	03/22/25 10:07	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/22/25 10:07	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106012	03/22/25 03:49	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	105765	03/21/25 11:44	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	105740	03/22/25 03:49	TKC	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	105761	03/21/25 10:53	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105770	03/21/25 20:36	SMC	EET MID

Client Sample ID: TH-10 (4.1')

Lab Sample ID: 880-55872-20 Date Collected: 03/18/25 14:50 **Matrix: Solid**

Date Received: 03/20/25 16:43

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	105767	03/21/25 12:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	105769	03/22/25 10:27	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/22/25 10:27	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106012	03/22/25 04:05	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	105765	03/21/25 11:44	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	105740	03/22/25 04:05	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	105761	03/21/25 10:53	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105770	03/21/25 20:42	SMC	EET MID

Eurofins Midland

Client: Crain Environmental

Project/Site: State J 2 #17

Lab Sample ID: 880-55872-21

Matrix: Solid

Date Collected: 03/18/25 14:05 Date Received: 03/20/25 16:43

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	105766	03/21/25 12:11	MNR	EET MID
Total/NA	Analysis	8021B		10	5 mL	5 mL	105722	03/21/25 19:19	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/21/25 19:19	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106012	03/22/25 04:22	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	105765	03/21/25 11:44	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	105740	03/22/25 04:22	TKC	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	105780	03/21/25 13:48	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105791	03/21/25 21:11	SMC	EET MID

Client Sample ID: TH-11 (4.1')

Lab Sample ID: 880-55872-22 Date Collected: 03/18/25 14:20

Matrix: Solid

Date Received: 03/20/25 16:43

Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Type Run **Factor Amount** Amount Number or Analyzed **Analyst** Lab Total/NA 5035 105766 03/21/25 12:11 EET MID Prep 5.02 g 5 mL MNR Total/NA 8021B 105722 **EET MID** Analysis 10 5 mL 5 mL 03/21/25 19:39 MNR Total/NA Analysis Total BTEX 105906 03/21/25 19:39 AJ **EET MID** 1 Total/NA 8015 NM **EET MID** Analysis 1 106012 03/22/25 04:37 AJ Total/NA Prep 8015NM Prep 10.06 g 10 mL 105765 03/21/25 11:44 FC **EET MID** Total/NA 8015B NM 105740 Analysis 1 uL 1 uL 03/22/25 04:37 TKC **EET MID** Soluble DI Leach 4.95 g 50 mL 105780 03/21/25 13:48 SA **EET MID** Leach 300.0 Soluble Analysis 1 50 mL 50 mL 105791 03/21/25 21:17 SMC **EET MID**

Client Sample ID: TH-12 (1')

Lab Sample ID: 880-55872-23

Date Collected: 03/18/25 13:35 Date Received: 03/20/25 16:43

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	105766	03/21/25 12:11	MNR	EET MID
Total/NA	Analysis	8021B		10	5 mL	5 mL	105722	03/21/25 20:00	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/21/25 20:00	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106012	03/25/25 13:05	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	105952	03/25/25 07:32	FC	EET MID
Total/NA	Analysis	8015B NM		20	1 uL	1 uL	105970	03/25/25 13:05	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	105780	03/21/25 13:48	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105791	03/21/25 21:23	SMC	EET MID

Client Sample ID: TH-12 (4.1')

Analysis

Total BTEX

Lab Sample ID: 880-55872-24

03/21/25 20:20 AJ

105906

Date Collected: 03/18/25 13:50 Date Received: 03/20/25 16:43

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	105766	03/21/25 12:11	MNR	EET MID
Total/NA	Analysis	8021B		50	5 mL	5 mL	105722	03/21/25 20:20	MNR	EET MID

1

Eurofins Midland

Total/NA

EET MID

Client: Crain Environmental Project/Site: State J 2 #17

Lab Sample ID: 880-55872-24

Lab Sample ID: 880-55872-26

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client Sample ID: TH-12 (4.1') Date Collected: 03/18/25 13:50

Date Received: 03/20/25 16:43

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			106012	03/25/25 13:21	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	105952	03/25/25 07:32	FC	EET MID
Total/NA	Analysis	8015B NM		20	1 uL	1 uL	105970	03/25/25 13:21	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	105780	03/21/25 13:48	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105791	03/21/25 21:29	SMC	EET MID

Client Sample ID: TH-12 (6') Lab Sample ID: 880-55872-25 Date Collected: 03/18/25 15:10

Date Received: 03/20/25 16:43

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	105766	03/21/25 12:11	MNR	EET MID
Total/NA	Analysis	8021B		50	5 mL	5 mL	105722	03/21/25 20:40	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/21/25 20:40	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106012	03/22/25 05:42	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	105765	03/21/25 11:44	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	105740	03/22/25 05:42	TKC	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	105780	03/21/25 13:48	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105791	03/21/25 21:35	SMC	EET MID

Client Sample ID: TH-12 (8')

Date Collected: 03/18/25 15:20

Date Received: 03/20/25 16:43

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	105766	03/21/25 12:11	MNR	EET MID
Total/NA	Analysis	8021B		25	5 mL	5 mL	105722	03/21/25 21:01	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105906	03/21/25 21:01	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106012	03/22/25 05:58	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	105765	03/21/25 11:44	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	105740	03/22/25 05:58	TKC	EET MID
Soluble	Leach	DI Leach			5.00 g	50 mL	105780	03/21/25 13:48	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105791	03/21/25 21:40	SMC	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Accreditation/Certification Summary

Client: Crain Environmental

Project/Site: State J 2 #17

Job ID: 880-55872-1

SDG: Lea Co, NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	am	Identification Number	Expiration Date
exas	NELAI	ס	T104704400	06-30-25
TI. 6 II				
• ,	•	•	not certified by the governing authori	ty. This list may includ
• ,	s are included in this repo does not offer certification	•	not certified by the governing authori	ity. This list may includ
• ,	•	•	not certified by the governing authori Analyte	ty. This list may includ
for which the agency	does not offer certification		, , ,	ty. This list may inclu

4

5

7

10

12

13

Method Summary

Client: Crain Environmental Project/Site: State J 2 #17

Job ID: 880-55872-1 SDG: Lea Co. NM

SDG: Lea Co, NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

_

8

11

4.0

Sample Summary

Client: Crain Environmental Project/Site: State J 2 #17

880-55872-25

880-55872-26

TH-12 (6')

TH-12 (8')

Job ID: 880-55872-1 SDG: Lea Co, NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-55872-1	TH-1 (1')	Solid	03/18/25 10:30	03/20/25 16:43
880-55872-2	TH-1 (4.1')	Solid	03/18/25 10:45	03/20/25 16:43
880-55872-3	TH-2 (1')	Solid	03/18/25 11:00	03/20/25 16:43
880-55872-4	TH-2 (4.1')	Solid	03/18/25 11:15	03/20/25 16:43
880-55872-5	TH-3 (1')	Solid	03/18/25 11:30	03/20/25 16:43
880-55872-6	TH-3 (4.1')	Solid	03/18/25 11:45	03/20/25 16:43
880-55872-7	TH-4 (1')	Solid	03/18/25 12:00	03/20/25 16:43
880-55872-8	TH-4 (4.1')	Solid	03/18/25 12:15	03/20/25 16:43
880-55872-9	TH-5 (1')	Solid	03/18/25 12:30	03/20/25 16:43
880-55872-10	TH-5 (4.1')	Solid	03/18/25 12:45	03/20/25 16:43
880-55872-11	TH-6 (1')	Solid	03/18/25 13:00	03/20/25 16:43
880-55872-12	TH-6 (4.1')	Solid	03/18/25 13:15	03/20/25 16:43
880-55872-13	TH-7 (1')	Solid	03/18/25 10:00	03/20/25 16:43
880-55872-14	TH-7 (4.1')	Solid	03/18/25 10:15	03/20/25 16:43
880-55872-15	TH-8 (1')	Solid	03/18/25 09:05	03/20/25 16:43
880-55872-16	TH-8 (4.1')	Solid	03/18/25 09:20	03/20/25 16:43
880-55872-17	TH-9 (1')	Solid	03/18/25 09:30	03/20/25 16:43
880-55872-18	TH-9 (4.1')	Solid	03/18/25 09:45	03/20/25 16:43
880-55872-19	TH-10 (1')	Solid	03/18/25 14:35	03/20/25 16:43
880-55872-20	TH-10 (4.1')	Solid	03/18/25 14:50	03/20/25 16:43
880-55872-21	TH-11 (1')	Solid	03/18/25 14:05	03/20/25 16:43
880-55872-22	TH-11 (4.1')	Solid	03/18/25 14:20	03/20/25 16:43
880-55872-23	TH-12 (1')	Solid	03/18/25 13:35	03/20/25 16:43
880-55872-24	TH-12 (4.1')	Solid	03/18/25 13:50	03/20/25 16:43

Solid

Solid

03/18/25 15:10 03/20/25 16:43

03/18/25 15:20 03/20/25 16:43

of

Page

Revised Date: 08/25/2020 Rev. 2020.2

Date/Time

Received by: (Signature)

880-55872 Chain of Custody www.xenco.com Wor Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Chain of Custody **Environment Testing** Xenco eurofins 🕏

Tem Face Tem	Address: City, State ZIP: City, State ZIP: Rush Around Rush Reday received by received	Parameters of Train Misland TX Misland TX Sals Misland TX Sals Sals	ANALYSIS REQUES	Program: UST/PST PRP Brownfields State of Project: ////////////////////////////////////	PST/UST TRRP Level IV PST/UST Other: Preservative Codes None: NO DI Water: H ₂ O Cool: Cool MeOH: Me HCL: HC HNO 3: HN H ₃ PO 4: HP NaHSO 4: NABIS Na ₂ S ₂ O ₃ : NaSO 3
te ZIP: Care C. 1744 St. Name: State 5 2 # 17 Number: Lea Lo., WM Is Name: Loss No WA Is Temperature Faction Factor Seals: Yes No WA Corrected Temperature Factor Seample Identification Corrected Temp	Address: City, State ZIP: City, State ZIP: I Lindy, Indound I Rush I Rus	Michaels & Signature of Signatu	79710 ANALYSIS REQUES		Other: Other: Preservative ne: NO I: Cool O4: HP SO 4: NABIS SO 2: NASO 3
Name: State 3 # 17 Number: Cocation: Lea Co., WM Lea Co	City, State ZIP: Cindy Around Rush Redy received by eceived by 4:30pm (Yes) No TRS 2.5	Miol Miol Miol Miol Miol Miol Miol Miol	ANALYSIS REQUES		Other: Other: Preservative ie: NO I: Cool I: Cool O4: HP O4: HP SSO 4: NABIS
Name: State 5 2 # 17 Number: Cocation: Lea Co., NM Is Name: Lea Co., NM Is Name: Lea Co., NM Is RECEIPT Temp Blank: Yes (No) S Received Intact: Yes No NA Custody Seals: Yes No NA Custody Seals: Yes No NA Correction Fac Custody Seals: Yes No NA Correction Fac Corrected Temperature Face Corrected Te	n Around n Around Rush re day received by ceived by 4:30pm (Yes) No	рагатетет	ANALYSIS REQUES	EDD ADaPT	Other: Preservative te: NO I: Cool I: HC 04: HP ISO 4: NABIS
t Name: 1 Cartion: 1 Carection: 1 Carection Factorial Facto	n Around Rush e day received by ceived by 4:30pm (Yes) No			None Cool: H ₂ SO H ₃ PO NaHS Na ₂ S	
t Number: Lea Co., NM er's Name: Lea Co., NM LE RECEIPT Temp Blank: Yes (No) Seceived Intact: Yes No MAF Custody Seals: Yes No MAF Correction Fac Containers: Conrected Temperature Face Containers: Corrected Temperature Face Conrected Temperature Face Conrected Temperature Face Corrected Tempera	Rush e day received by ceived by 4:30pm (Yes) No		Sapi-	None Cooi: HCL:1 H250 H3PO Na45 Na55	m
er's Name: Lea Co., NM er's Name: Lindly Crain PLE RECEIPT Temp Blank: Yes (No) PLE RECEIPT Temp Blank: Ye	re day received by ceived by (Yes) No		SPP!-	Cool: H ₂ SO H ₃ PO NaH5 Na ₂ S	m
PLE RECEIPT Seceived Intact: Custody Seals: Custody Seals: Custody Seals: Conrected Temperature Factorial Information Sample Information Conrected Temperature Factorial Information Sample Information Matrix Date	re day received by cceived by (Yes) No		SPP!-	HCL-I H ₂ SO H ₃ PO NaHS Na ₅ S	m
PLE RECEIPT Temp Blank: Yes (No Seceived Intact: Yes No Mes Correction Face Custody Seals: Yes No Mes Temperature Face Custody Seals: Yes No Mes Temperature Face Containers: Corrected Temperature Face Corrected	Yes No		Sapi-	H ₂ SO H ₃ PO NaHS Na ₂ S	m
Yes No N/A Yes No N/A Yes No N/A Yes No N/A	A In		SPP!-	H ₃ PC NaHS Na ₂ S	O 4: HP ISO 4: NABIS S ₂ O ₃ : NaSO ₃
Yes No WA	2 100		SPP!-	Na ₂ S 7n Ac	S ₂ O ₃ : NaSO ₃
Seals: Yes No WA	n'n'	X.	- וִסְי	ZnAg	
dentification	~				Zn Acetate+NaOH: Zn
Matrix	1	A		NaOh	NaOH+Ascorbic Acid: SAPC
	Depth Grab/	# of Cont	747		Sample Comments
TH-1 (11) 5 3/18/25 1030	1' 6	X	X		
TH-1 (4.1)	4.1'	1 1 1			
TH-2 (1)	1,				
TH-2 (4.1)	4.1'				
74.3 (1) 1130	1,				
TH-3 (41) 1145	4.1'				
TH. 4 (1)					
TH-4 (4.1)	4.1'				
74.5 (1.)	1,				
(4.)· · · · · · · · · · · · · · · · · · ·	41.17	~ ~ ~	-		

submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotia Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control Relinquished by: (Signature) Date/Time of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample Received by: (signature) Relipquished by: (S)gnature)

40KS

Work Order No:

Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334

Environment Testing

eurofins 🛟

Xenco

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Chain of Custody

Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296

Date/Time

Received by: (Signature)

Relinquished by: (Signature)

Date/Time

Received by: (Signature)

Relinquished by: (Signature)

of Eurofins. Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins. Xenco, but not analyzed. These terms will be enforced unless previously negotiated

Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco. Its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control

							1000 (0.0) Like (0.00) (0.00) Like (0.00)		CWWW	www.xenco.com	Page &	o o
Project Manager:	indy Gain			Bill to: (if different)	(‡)	10050	a Hale		Wo	Work Order Comments		
Company Name:	rain Crimon	Tricomental		Company Name:	2:	SWR			Program: UST/PST P	PRP Bro	Brownfields RRC	Superfund
Address:	2925 C. 1744	4 SJ.		Address:		P.O. C	P.O. Box 53570	70	State of Project: NM			
re ZIP:	Dalessa TX 7976	79761		City, State ZIP:		Midle	Midland TX 79710	21167	Reporting: Level Level	/el III 🗆	PST/UST TRRP Level IV	☐ Level IV ☐
Phone: //5	1575) 441-7244	1744	Email:	Cindy,	rain	O am	Cindy craise amail. com		Deliverables: EDD	ADal	ADaPT ☐ Other:	
Project Name:	State 52 # 17	11/4	Tum	Turn Around				ANALYSIS REQUEST	UEST		Preservative Codes	ve Codes
Project Number:			Routine	Rush	A B						None: NO	DI Water: H ₂ O
Project Location:	ea Co. NM		Due Date:								Cool: Cool	MeOH: Me
Sampler's Name: DO#:	ndy Crain		TAT starts the the lab, if rece	TAT starts the day received by the lab, if received by 4:30pm							HCL: HC H ₂ SO 4: H ₂	HNO 3: HN NaOH: Na
SAMPLE RECEIPT	Temp Blank:	Yes No	Wet ice:	Yes No	eters	2					H ₃ PO ₄ : HP	
Samples Received Intact:	Yes No	Thermometer ID:	r ID:		mei	15	Sō				NaHSO 4: NABIS	
Cooler Custody Seals:	Yes No N/A	Correction Factor:	actor:		eq	510	70				Na 2 S 2 O 3: Na SO 3	
Sample Custody Seals:	Yes No N/A	Temperature Reading:	: Reading:			18	?/-				Zn Acetate+NaOH: Zn	H: Zn
Total Containers:		Corrected Temperature:	mperature:			H	0/			_	NaOH+Ascorbic Acid: SAPC	Acid: SAPC
Sample Identification	Matrix	Date	Time	Depth Grab/	# of Cont	-81	40				Sample Comments	mments
TH-6 (1.)	S	3/18/25	1300	1. 6		$\stackrel{X}{\triangleright}$	X					
TH-し (サバ)	-	_	13/5	4.1'	_	-						
TH-7 (1.)			1000	1,								
TH-7 (41)			1015	4.1'								
TH- 8 (1.)			9000	- 1								
TH. 8 (4.1			0830	4.1'								
4			0860									
TH-9 (4.1)			0945	4.1'								
TH-10 (1)			1435),								
TH-10 (4.1)	→	>	1450	4.1.4	>	→	~					
Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	200.8 / 6020: letal(s) to be ana		CRA 13PPI TCLP / SF	8RCRA 13PPM Texas 11 TCLP / SPLP 6010 : 8RC	Al Sb /	As Ba Be As Ba B	Al Sb As Ba Be B Cd Ca Cr CRA Sb As Ba Be Cd Cr Co C	A 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo NTCLP/SPLP6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U	Ji K Se	O ₂ Na Sr 31 / 245.1	Ag SiO ₂ Na Sr Tl Sn U V Zn Hg: 1631/245.1/7470/7471	

Work Order No:

Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334

Environment Testing Xenco

Chain of Custody

1

2

3

4

6

7

10

12

	Xenco			EL Pa	so, TX (915) 585-3443, Li	EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296) 794-1296				
				Hobi	os, NM (575) 392-7550, C	Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	5) 988-3199		www.xenco.com	m Page	3 of 3
Project Manager:	ind Cain			Bill to: (if different)	nt)	10050	a Hale			Work Order Comments	Comments	
Company Name:	rain Griron	irironmenal		Company Name:	ài	SWR			Program: UST	UST/PST PRP B	Brownfields	RRC Superfund
	2925 C. 174	1. 5%		Address:		P.O. Bax		53570	0			
City, State ZIP:	dessa TX	7976	1	City, State ZIP:		Midland,	od, Th	01797	Reporting: Level II		PST/UST	PST/UST TRRP Level IV
Phone: (5)	575) 441.7244	1244	Email:	Cindy		of dr	crain & grail. con	2	Deliverables:	EDD A	ADaPT O	Other:
Project Name:	State 52	#17	Tum	Around				ANALYSIS REQUEST	JEST		Presei	Preservative Codes
er:			Routine	Rush	Pres. Code	_					None: NO	DI Water: H ₂ O
	a Co. NM		Due Date:								Cool: Cool	MeOH: Me
	Lindy Crain		TAT starts the the lab, if rec	TAT starts the day received by the lab, if received by 4:30pm							HCL: HC H,SO 4: H,	HNO 3: HN
SAMPLE RECEIPT	Temp Blank:	Yes No	Wet Ice:	Yes No	eters	Y	-				H3PO4: HP	
Samples Received Intact:	Yes No	Thermometer ID:	er ID:		rame		S				NaHSO 4: NABIS	ABIS
Cooler Custody Seals:	Yes No N/A	Correction Factor:	actor:		eq		0				Na25203: NaSO 3	aSO 3
Sample Custody Seals:	Yes No N/A	Temperature Reading:	e Reading:				0!				Zn Acetate+NaOH: Zn	-NaOH: Zn
Total Containers:		Corrected Temperature:	emperature:			He	01				NaOH+Asco	NaOH+Ascorbic Acid: SAPC
Sample Identification	n Matrix	Date	Time	Depth Grab/	# of Cont		47				Samp	Sample Comments
(三)	S	3/18/25	1405	-	-	X	X					
TH-11 (4.1)			1420	4.1'	_	_						
74.12 (11)			1335	1,								
			1350	4.1'								
7			1510	2								
TH-12 (8)	>	>	1520	00	>	>	>					
	_		400			_				- :	_ 1	
Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	200.8 / 6020: letal(s) to be ana		8RCRA 13PPM TCLP / SPLF	A 13PPM Texas 11 AL S TCLP / SPLP 6010 : 8RCRA	Al Sb A	Sb As Ba Be B	Cd Cr Co	b As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag	Mo Ni K TI U	Se Ag SiO ₂ Na Sr Tl Sn I Hg: 1631 / 245.1 / 7470	Sr Tl Sn U V Z 5.1 / 7470 / 7471	Zn 71
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously nego	nd relinquishment of samp the only for the cost of samp e of \$85,00 will be applied	oles constitutes a v ples and shall not a to each project an	alid purchase ord assume any respo nd a charge of \$5	er from clent compar nsibility for any losses for each sample subn	ny to Eurofins or expenses vitted to Euro	Xenco, its affili incurred by the fins Xenco, but	stes and subcont client if such los not analyzed. Th	er from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions nusbility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	ms and conditions syond the control ss previously negotiated.			
Relinguished by: (Signature)	ature)	Received b	Received by: (Signature)	(6)	, ,	pate/Time	Re	Relinquished by: (Signature)		Received by: (Signature)	ure)	Date/Time
" (indy nain	.3		1		3/79	15 /4	H13 2					
u			7				4				+	

Login Sample Receipt Checklist

Client: Crain Environmental Job Number: 880-55872-1 SDG Number: Lea Co, NM

Login Number: 55872 List Source: Eurofins Midland

List Number: 1

Creator: Vasquez, Julisa

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Euronnis Midiand

Released to Imaging: 5/27/2025 8:52:13 AM

2

3

4

_

7

9

11

. .

Appendix D: Photographic Documentation

PHOTOGRAPHIC DOCUMENTATION (MARCH 18, 2025) STATE J 2 #017

View of well sign.

View to NW of Site.

View to N of TH-8.

PHOTOGRAPHIC DOCUMENTATION (MARCH 18, 2025) STATE J 2 #017

View to NW of TH-2.

View to NW of TH-4.

View to NW of TH-3.

View to N of TH-5.

PHOTOGRAPHIC DOCUMENTATION (MARCH 18, 2025) STATE J 2 #017

View to N of TH-10.

View to NW of TH-6.

View to W of TH-11.

View to NE of TH-12.

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116
Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 457181

QUESTIONS

Operator:	OGRID:
SOUTHWEST ROYALTIES INC	21355
P O BOX 53570	Action Number:
Midland, TX 79710	457181
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2511834534
Incident Name	NAPP2511834534 STATE J 2 #017 @ 30-025-33277
Incident Type	Oil Release
Incident Status	Remediation Plan Received
Incident Well	[30-025-33277] STATE J 2 #017

Location of Release Source	
Please answer all the questions in this group.	
Site Name	State J 2 #017
Date Release Discovered	04/02/2025
Surface Owner	State

Incident Details	
Please answer all the questions in this group.	
Incident Type	Oil Release
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	No
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

Nature and Volume of Release	
Material(s) released, please answer all that apply below. Any calculations or specific justifications fo	or the volumes provided should be attached to the follow-up C-141 submission.
Crude Oil Released (bbls) Details	Cause: Normal Operations Well Crude Oil Released: 19 BBL Recovered: 0 BBL Lost: 19 BBL.
Produced Water Released (bbls) Details	Not answered.
Is the concentration of chloride in the produced water >10,000 mg/l	No
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	This is a historical release being investigated and remediated at the request of SLO/ECO as the well has been P&A'd.

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116
Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 457181

QUESTIONS (continued)

QUESTI	ONS (Continued)
Operator: SOUTHWEST ROYALTIES INC	OGRID: 21355
P O BOX 53570 Midland, TX 79710	Action Number: 457181
Wildiand, 17,79710	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)
QUESTIONS	
Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No
Reasons why this would be considered a submission for a notification of a major release	Unavailable.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e.	gas only) are to be submitted on the C-129 form.
Initial Response	
The responsible party must undertake the following actions immediately unless they could create a si	
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative o ed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	mowledge and understand that pursuant to OCD rules and regulations all operators are required uses which may endanger public health or the environment. The acceptance of a C-141 report by idequately investigate and remediate contamination that pose a threat to groundwater, surface to does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Cindy Crain Email: cindy.crain@gmail.com Date: 04/30/2025

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116 Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 3

Action 457181

QUESTIONS (continued)

Operator:	OGRID:
SOUTHWEST ROYALTIES INC	21355
P O BOX 53570	Action Number:
Midland, TX 79710	457181
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Site Characterization			
Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.			
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 26 and 50 (ft.)		
What method was used to determine the depth to ground water	Estimate or Other		
Did this release impact groundwater or surface water	No		
What is the minimum distance, between the closest lateral extents of the release ar	nd the following surface areas:		
A continuously flowing watercourse or any other significant watercourse	Greater than 5 (mi.)		
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)		
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)		
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 (mi.)		
Any other fresh water well or spring	Greater than 5 (mi.)		
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)		
A wetland	Between 1 and 100 (ft.)		
A subsurface mine	Greater than 5 (mi.)		
An (non-karst) unstable area	Greater than 5 (mi.)		
Categorize the risk of this well / site being in a karst geology	Low		
A 100-year floodplain	Between 1 and 100 (ft.)		
Did the release impact areas not on an exploration, development, production, or storage site	No		

Remediation Plan			
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.			
Requesting a remediation plan approval with this submission	Yes		
Attach a comprehensive report demonstrating the lateral and vertical extents of soil contaminatio	on associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.		
Have the lateral and vertical extents of contamination been fully delineated	Yes		
Was this release entirely contained within a lined containment area	No		
Soil Contamination Sampling: (Provide the highest observable value for each, in m	nilligrams per kilograms.)		
Chloride (EPA 300.0 or SM4500 Cl B)	311		
TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M)	5620		
GRO+DRO (EPA SW-846 Method 8015M)	5620		
BTEX (EPA SW-846 Method 8021B or 8260B)	0		
Benzene (EPA SW-846 Method 8021B or 8260B)	0		
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes complete which includes the anticipated timelines for beginning and completing the remediation.	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,		
On what estimated date will the remediation commence	06/17/2025		
On what date will (or did) the final sampling or liner inspection occur	06/30/2025		
On what date will (or was) the remediation complete(d)	07/14/2025		
What is the estimated surface area (in square feet) that will be reclaimed	5447 987		
What is the estimated volume (in cubic yards) that will be reclaimed			
What is the estimated surface area (in square feet) that will be remediated	5447		
What is the estimated volume (in cubic yards) that will be remediated	987		
These estimated dates and measurements are recognized to be the best guess or calculation at the	he time of submission and may (be) change(d) over time as more remediation efforts are completed.		

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 457181

QUESTIONS (continued)

Operator:	OGRID:
SOUTHWEST ROYALTIES INC	21355
P O BOX 53570	Action Number:
Midland, TX 79710	457181
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Remediation Plan (continued)			
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.			
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:			
(Select all answers below that apply.)			
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes		
Which OCD approved facility will be used for off-site disposal	TNM-55-95 [fAB0000000061]		
OR which OCD approved well (API) will be used for off-site disposal	Not answered.		
OR is the off-site disposal site, to be used, out-of-state	Not answered.		
OR is the off-site disposal site, to be used, an NMED facility	Not answered.		
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.		
(In Situ) Soil Vapor Extraction	Not answered.		
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.		
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.		
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.		
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.		
OTHER (Non-listed remedial process)	Not answered.		
2- 0.b			

Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Name: Cindy Crain
Email: cindy.crain@gmail.com
Date: 04/30/2025

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 457181

QUESTIONS (continued)

Operator:	OGRID:
SOUTHWEST ROYALTIES INC	21355
P O BOX 53570	Action Number:
Midland, TX 79710	457181
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Deferral Requests Only		
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.		
Requesting a deferral of the remediation closure due date with the approval of this submission	No	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 457181

QUESTIONS (continued)

QUESTIONS (continued)			
Operator: SOUTHWEST ROYALTIES INC P O BOX 53570		OGRID: 21355 Action Number:	
Midland, TX 79710		457181 Action Type:	
		[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)	
QUESTIONS			
Sampling Event Information			
Last sampling notification (C-141N) recorded	{Unavailable.}		
Remediation Closure Request			
Only answer the questions in this group if seeking remediation closure for this release because	e all remediation steps	have been completed.	
Requesting a remediation closure approval with this submission	No		

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 457181

CONDITIONS

Operator:	OGRID:
SOUTHWEST ROYALTIES INC	21355
P O BOX 53570	Action Number:
Midland, TX 79710	457181
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

CONDITIONS

(E	-	Condition	Condition Date
	nvelez	Accepted for the record. Remediation plan was approved as written through App ID 457167.	5/27/2025