SITE INFORMATION

	Report T	ype: Closu	re Report	1R-4690	<u>/ nOY17</u>	7125417	51						
General Site Inf	ormation:												
Site:		Manda B Trac	ct C Tank Batte	ery									
Company:		JR Oil											
Section, Towns		Unit C	Sec. 28	T 22S	R 37E								
Lease Number:													
County:		Lea County, I											
GPS:		<u>32.368859</u> -103.169723											
Surface Owner:		Private											
Mineral Owner:		Private	Private rom intersection of HWY 18 and King Rd, head West on King Rd and follow for 0.56 miles. Turn										
Directions:			on of HWY 18 and lease road and fo				iow for 0.56 miles. Turn						
		ngni (North) on	lease load and it	100 101 0.46 11	liles. Location								
Release Data:													
Date Released:		4/26/2017	4/26/2017										
Type Release:		Oil and Produ	ced Water										
Source of Conta	mination:	Failed Check	Valve										
Fluid Released:		4 bbls oil & 10	bbls water										
Fluids Recovere	d:	4.5 bbls oil & v											
Official Commu	nication:												
Name:	Joe Tippy				Clair Gon	zales							
Company:	JR OIL LTD				Tetra Tec	h							
Address:	PO Box 2975		901 W. Wall St.										
					Ste 100								
City:	Hobbs, New Mexi	co 88241											
Phone number:	(575) 390 - 1280				(432) 682	Texas, 79701 -4559							
Fnone number. Fax:	(373) 390 - 1280				(432) 002	-+003							
Fax: Email:	JoeTippy@valo	rn et eem			oloir cor	zales@tetra	taab aam						
		INEL COM											

Site Characterization	
Depth to Groundwater:	At 0.50 miles from site depth of groundwater is 60.46' ft, 02.09.2023, USGS
Karst Potential:	Low

Recommended R	emedial Action Le	evels (RRALs)		
Benzene	Total BTEX	TPH (GRO+DRO)	TPH (GRO+DRO+MRO)	Chlorides
10 mg/kg	50 mg/kg	1,000 mg/kg	2,500 mg/kg	10,000 mg/kg

August 14, 2024

New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Remediation Closure Report JR Oil LTD Myers Langlie Mattix Unit Sat #2 Lea County, New Mexico nAPP2128751635

Oil Conservation Division:

Tetra Tech, Inc. (Tetra Tech) was contracted by JR Oil LTD (JR Oil) to assess a release that occurred at the Myers Langlie Mattix Unit Sat #2, Unit P, Section 25, Township 23 South, Range 26 East, Lea County, New Mexico (Site). The spill site coordinates are 32.2634272°, -103.2135886°. The site location is shown on **Figures 1 and 2**.

Background

According to the State of New Mexico C-141 Initial Report, the release at the Site was caused by the plugged trunk line causing an overpressure event, causing the release of 10 barrels (bbls) of oil and 240 bbls of produced water. The release flowed alongside the lease road and migrated into the adjacent pasture. Additionally, 9.0 bbls of oil and 239 produced water were recovered from the release. On September 30, 2021, the release was discovered. On October 2, 2021, the release was reported to the New Mexico Oil Conservation Division (NMOCD). The C-141 is shown in **Appendix A**.

Site Characterization

Significant Water Features

According to the NFHL (National Flood Hazard Layer) Flood Data Application and the USGS (United States Geological Survey) National Water Information System Mapper, there were no watercourses, lakebeds, sinkholes, playa lakes, springs, wetlands, subsurface mines, private domestic water wells, or floodplains located within the specified distances. Additionally, the site is located in a low karst area. The NFHL Map, USGS Mapper, and Karst map are shown in **Appendix B**.

Significant Boundaries

According to Google Earth US Government City Boundaries and US School Districts, the lateral extents of the release were not within an incorporated municipal boundary, defined municipal fresh water well field, or a school district. Additionally, there were no occupied permanent residences, schools, hospitals, institution, or churches located within the specified distances of the lateral extents of the release.

Groundwater Review

Groundwater research was completed for the site through the USGS (United States Geological Survey) National Water Information System and New Mexico Office of the State Engineer (NMOSE) Water Rights Reporting System. Groundwater research conducted through these two resources, show the three closest water wells within a 1.0-mile radius of the Site. The well reported on the USGS National Water Information System reports a total depth of 263 ft bgs and measured water level of 119.21 ft bgs and is approximately 0.71 miles of the Site. The well reported on the NMOSE Water Rights Reporting Systems reports a total depth of 190 ft bgs and a measured water level of 87.00 ft bgs and is approximately 0.39 miles of the Site. The groundwater information is shown in **Appendix B**.

Distance from Site	Date of Data	Resource of Information	Depth of Well	Depth to Water
0.71 Miles	02/09/2023	USGS	263'	119.21'
0.39 Miles	09/06/2010	NMOSE	190'	87.00'

Regulatory

A risk-based evaluation was performed for the site following the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills, and Releases, updated July 18, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the site characterization, the proposed RRAL for TPH, beyond the top 4.0' of soil, is 2,500 mg/kg (GRO + DRO + ORO) and 1,000 mg/kg (DRO + GRO). Additionally, based on the site characterization, the proposed RRAL for chlorides, beyond the top 4.0' of soil, is 10,000 mg/kg.

Site Assessment Activities

Initial Site Assessment Activities

Tetra Tech conducted site assessment activities on May 31, 2023. A total of nine (9) exploratory bores (AH-1 through AH-9) were installed to depths ranging from surface to 1.5 ft bgs, to attempt to assess the investigative area. Deeper samples were not collected from all exploratory bores (AH-1 through AH-9) due to dense geological formation. Additionally, a total of ten (10) horizontals (H-1 through H-10) were installed to total depths of 1.0 ft bgs, to assess the soil directly outside of the investigative area. The impact and sample locations are shown on **Figure 3**.

The samples were submitted to Eurofins Laboratories in Midland, Texas and Cardinal Laboratories in Hobbs, New Mexico to be analyzed for TPH by method 8015 modified, BTEX by method 8021B, and Chloride by EPA Method 300.0 or Method SM 4500. The analytical results are summarized in **Table 1** and the analytical laboratory reports are included in **Appendix C**.

Referring to Table 1, exploratory bores (AH-1 through AH-9) did not indicate benzene, BTEX, or Chloride concentrations above reclamation standards. However, exploratory bores (AH-1 through AH-3, and AH-7 through AH-9) indicated TPH concentrations above reclamation standards, with concentrations ranging from 149 mg/kg to 1,420 mg/kg, at depths ranging from

surface to 1.5 ft bgs. Additionally, horizontal borings (H-1 through H-8) indicated chloride, TPH, benzene, and BTEX concentrations below reclamation standards.

Additional Site Assessment Activities

On January 11, 2024, and January 17, 2024, a total of seven (7) delineation trenches (T-1 through T-7) were installed to total depths ranging from 4.0 ft bgs to 14.0 ft bgs in the areas of exploratory bores (AH-1 through AH-3, and AH-6 through AH-9), where auger refusal was encountered during the initial delineation assessment activities, to attempt to fully delineate the determined release impacted area. The impact and sample locations are shown on **Figure 3**.

The samples were submitted to Eurofins Laboratories in Midland, Texas and Cardinal Laboratories in Hobbs, New Mexico to be analyzed for TPH by method 8015 modified, BTEX by method 8021B, and Chloride by EPA Method 300.0 or Method SM 4500. The analytical results are summarized in **Table 2** and the analytical laboratory reports are included in **Appendix C**.

Referring to Table 1, vertical delineation trenches (T-1 through T-7) indicated benzene, BTEX, and TPH concentrations below reclamation standards. However, trench (T-3) indicated chloride concentrations above reclamation standards, ranging from 768 mg/kg to 1,040 mg/kg at depths ranging from surface to 4.0 ft bgs. Vertical delineation was found in all trenches (T-1 through T-7), for all constituents.

Remediation Activities

JR Oil conducted remediation activities from January 11, 2024 to March 29, 2024. The areas of determined impact were excavated to total depths ranging from 1.0 ft bgs to 4.0 ft bgs. Additionally, a superficial scrape was conducted of the investigative area that reported all constituents below reclamation standards for housekeeping purposes. The excavation areas and depths are shown on **Figure 4A and Figure 4B**.

Following remediation activities, Tetra Tech conducted confirmation sampling by collecting 5-point composite bottom hole samples and 5-point composite sidewall samples every 200 square feet within the excavation. All confirmation samples are collected as a composite 5-point die pattern to ensure a representative sample of sidewalls and floor of the excavation are collected. Additionally, a C-141N was filed for the sampling notification as well, and is attached along with the final C-141 in **Appendix A**. However, two (2) of the four (4) sampling notifications were not placed correctly due to misunderstanding of the December 1, 2023 Process Updates Notice implementation process. A total of twenty-nine (29) bottom holes (BH-1 through BH-29) were collected and a total of nineteen (19) sidewalls (SW-1 through SW-19) were collected to confirm full removal of the impacted soil. The confirmation soil samples were submitted to Eurofins Laboratories in Midland, Texas and Cardinal Laboratories in Hobbs, New Mexico to be analyzed for TPH by method 8015 modified, BTEX by method 8021B, and Chloride by EPA Method 300.0 or Method SM 4500. The analytical results are summarized in **Table 3** and the analytical laboratory reports are included in **Appendix C**.

Regarding all final samples collected from the excavation, analytical results indicated benzene, BTEX, TPH, and chloride concentrations were below the reclamation standards for all excavated areas with depths less than 4.0 ft bgs, and below RRALs for all excavation areas with depths of 4.0 ft bgs.

Conclusions

Based on the C-141's (nAPP2128751635) and information provided by JR Oil, Tetra Tech performed site characterization and groundwater research to determine groundwater depth, proximity from significant water features, and proximity from specified populated entities to determine RRALs and assess the impacted area. Based on the OCD *Guidelines for Remediation of Leaks, Spills, and Releases*, updated July 18, 2023, according to the groundwater data found during research activities, for soil beyond the top 4.0 ft, RRALs of 10,000 mg/kg for chlorides and 2,500 mg/kg for total TPH were followed. Based on Tetra Tech assessment activities, exploratory bores (AH-1 through AH-3, and AH-7 through AH-9) indicated TPH concentrations above reclamation standards and trench (T-3) indicated chloride concentrations above reclamation standards.

Following remediation of the areas of impact, Tetra Tech conducted confirmation soil sampling of the area by collecting 5-point composite confirmation bottom hole and sidewall samples to ensure the impacted soil was fully removed. Approximately 977 cubic yards total of impacted soil was removed and properly disposed of. The area was backfilled with clean to surface grade material. The analytical results indicated all confirmation samples reported below the reclamation standards for all excavated areas with depths less than 4.0 ft bgs, and below RRALs for all excavation areas with depths of 4.0 ft bgs, for all constituents.

The disturbed area was approximately 7,170 square feet and following future reclamation of the area, the site will be seeded with seed mix appropriate for sites with loamy fine sand to sandy clay loam soil composition. Revegetation of the site will be monitored, following the rain season (March through June) and if vegetation has not progressed, the site will be reseeded as needed to meet the requirement of 50 percent life-form coverage and at least 70 percent plant cover based on pre-disturbed levels, as stated by the NMOCD. Following the proper vegetation of the site, a vegetation report will be submitted to prove restoration of the site and will request full closure. The soil survey data is shown **Appendix D**.

Based on this information, it is recommended that the remediated pad at this Site requires no further action. The C-141 is included in **Appendix A**.

If you require any additional information or have any questions or comments, please contact us at (432) 682-4559.

Respectfully submitted, TETRA TECH

Brittany Long, Project Manager

Clair Gonzales, P.G. Senior Project Manager

Figures

.

Released to Imaging: 5/30/2025 1:25:27 PM

Service Layer Credits: World Street Map, ESRI.

Service Layer Credits: USGS, Topographic, 2020.

Service Layer Credits: Google Maps, 2024.

Service Layer Credits: Google Maps, 2024.

Received by OCD: 2/14/2025 2:33:49 PM

Service Layer Credits: Google Maps, 2024.

Tables

Table 1 JR Oil MLMU SATELLITE 2 Lea County, New Mexico

0 1 15		Sample	Soil	Status		TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
RRALs								100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg
AH-1	5/31/2023	0-1	-	Х	<50.0	598	<50.0	598	<0.00202	<0.00202	<0.00202	<0.00403	< 0.00403	39.6
AH-2	5/31/2023	0-1	-	Х	<49.8	1,420	<49.8	1,420	< 0.00199	<0.00199	<0.00199	< 0.00398	< 0.00398	61.1
AH-3	5/31/2023	0-1	-	Х	<49.9	149	<49.9	149	<0.00198	<0.00198	<0.00198	< 0.00396	< 0.00396	210
AH-4	5/31/2023	0-1	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	64.1
AH-5	5/31/2023	0-1	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	43.5
All-5	"	1-1.5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	57.2
AH-6	5/31/2023	0-1	Х	-	<49.8	71.0	<49.8	71.0	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	55.6
AH-7	5/31/2023	0-1	-	Х	<49.9	169	<49.9	169	<0.00199	< 0.00199	<0.00199	<0.00398	<0.00398	38.1
AH-8	5/31/2023	0-1	-	Х	<50.0	665	<50.0	665	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	41.2
AH-9	5/31/2023	0-1	-	Х	<50.0	462	<50.0	462	< 0.00202	< 0.00202	<0.00202	< 0.00404	< 0.00404	44.0
AU-2	"	1-1.5	-	Х	<49.8	416	119	535	< 0.00199	<0.00199	<0.00199	<0.00398	<0.00398	48.9

Table 1 JR Oil MLMU SATELLITE 2 Lea County, New Mexico

O a marke ID	D Sample Date Sample		Soil	Status		TPH (mg/kg)			Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
RRALs								100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg
H-1	5/31/2023	0-1	Х	-	<49.9	73.4	<49.9	73.4	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	53.9
H-2	5/31/2023	0-1	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	74.9
H-3	5/31/2023	0-1	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	36.7
H-4	5/31/2023	0-1	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	42.9
H-5	5/31/2023	0-1	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	61.1
H-6	5/31/2023	0-1	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	44.5
H-7	5/31/2023	0-1	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	49.4
H-8	5/31/2023	0-1	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	38.7
H-9	5/31/2023	0-1	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	37.1
H-10	5/31/2023	0-1	Х	-	<49.9	66.4	<49.9	66.4	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	43.0

NOTES

Released to Imaging: 5/30/2025 1:25:27 PM

RRALs (Recommended Remediation Action Levels) are based on NMOCD (New Mexico Oil Conservation Devision) Guidelines for Remediation of Leaks, Spills, and Releases.

All screening values and results are presented in milligrams per kilogram (mg/kg)

Bolded cells represent a detected concentration above the respective screening value.

< = analyte was not detected above the respective sample detection limit

ft = feet below ground surface

(-) = not analyzed for respective constituent

TPH = total petroleum hydrocarbons

BTEX = benzene, toluene, ethylbenzene, xylene

Excavated

Myers Langlie Mattix Unit Satellite 2

Lea County, New Mexico

Released to Imaging: 5/30/2025 1:25:27 PM

Sample ID	Sample Date	Excavtion Depth (ft)	Soil	Status		TPH (m	g/kg)		Benzene (mg/kg)	Toluene (mg/kg)	Ethlybenzene (mg/kg)	Xylene (mg/kg)	Total BTEX (mg/kg)	Chloride (mg/kg)
		Deptil (It)	In-Situ	Removed	GRO	DRO	MRO	Total			(iiig/kg)			(119/109)
RRALs								100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg
DD41 - (0-1)														40.000
RRALs (Soil Beyond the Top 4.0')					1,000	mg/kg		2,500 mg/kg	10 mg/kg				50 mg/kg	10,000 mg/kg
	1/11/2024	0-1'	Х	-	<10.0	<10.0	<10.0	<10.0	< 0.050	<0.050	< 0.050	<0.150	< 0.300	368
	1/11/2024	2.0'	X	_	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	< 0.300	224
Trench-1	1/11/2024	3.0'	X	_	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	< 0.300	192
	1/11/2024	4.0'	X	-	<10.0	<10.0	<10.0	<10.0	<0.050	< 0.050	<0.050	<0.150	< 0.300	384
				I										
	1/11/2024	0-1'	X	-	<10.0	<10.0	<10.0	<10.0	< 0.050	<0.050	< 0.050	< 0.150	< 0.300	<16.0
Trench-2	1/11/2024	2.0'	X	-	<10.0	<10.0	<10.0	<10.0	< 0.050	<0.050	< 0.050	< 0.150	< 0.300	<16.0
	1/11/2024	3.0' 4.0'	X	-	<10.0	<10.0	<10.0	<10.0	< 0.050	< 0.050	< 0.050	<0.150	< 0.300	<16.0
	1/11/2024	4.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
	1/11/2024	0-1'	-	Х	<10.0	<10.0	<10.0	<10.0	< 0.050	<0.050	<0.050	<0.150	<0.300	768
	1/11/2024	2.0'	-	Х	<10.0	<10.0	<10.0	<10.0	< 0.050	<0.050	<0.050	<0.150	<0.300	992
	1/11/2024	3.0'	-	Х	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	1,040
	1/11/2024	4.0'	-	Х	<10.0	<10.0	<10.0	<10.0	< 0.050	<0.050	<0.050	<0.150	<0.300	976
	1/17/2024	5.0'	Х	-	<50.0	<50.0	<50.0	<50.0	< 0.00199	< 0.00199	<0.00199	<0.00398	<0.00398	753
	1/17/2024	6.0'	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	653
Trench-3	1/17/2024	7.0'	Х	-	<49.6	<49.6	<49.6	<49.6	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	607
Trenci-5	1/17/2024	8.0'	Х	-	<50.1	<50.1	<50.1	<50.1	< 0.00199	< 0.00199	<0.00199	<0.00398	<0.00398	767
	1/17/2024	9.0'	Х	-	<50.4	<50.4	<50.4	<50.4	<0.00198	<0.00198	<0.00198	< 0.00396	<0.00396	495
	1/17/2024	10.0'	Х	-	<50.5	<50.5	<50.5	<50.5	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	403
	1/17/2024	11.0'	Х	-	<49.7	<49.7	<49.7	<49.7	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	456
	1/17/2024	12.0'	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	436
	1/17/2024	13.0'	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	406
	1/17/2024	14.0'	Х	-	<50.2	<50.2	<50.2	<50.2	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	299
	1/11/2024	0-1'	Х	- 1	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
	1/11/2024	2.0'	X	-	<10.0	<10.0	<10.0	<10.0	<0.050	< 0.050	<0.050	<0.150	< 0.300	32.0
Trench-4	1/11/2024	3.0'	X	-	<10.0	<10.0	<10.0	<10.0	< 0.050	< 0.050	<0.050	<0.150	< 0.300	16.0
	1/11/2024	4.0'	X	-	<10.0	<10.0	<10.0	<10.0	<0.050	< 0.050	< 0.050	<0.150	< 0.300	16.0
	1/11/2024	0.1	Х		<10.0	<10.0	<10.0	<10.0	<0.050	0.058	<0.050	<0.150	<0.300	320
	1/11/2024	0-1' 2.0'	X	-	13.5	<10.0	<10.0	13.5	<0.050	0.058	<u><0.050</u> 0.111	<0.150	<0.300	320 560
Trench-5	1/11/2024	3.0'	X	-	<10.0	<10.0	<10.0	<10.0	<0.073	<0.050	<0.050	<0.150	<0.300	448
	1/11/2024	3.0 4.0'	X	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	< 0.300	448 544
	1/11/2024	4.0	^	-	<10.0	<10.0	<10.0	N10.0	NU.000	NU.UOU	NU.000	NU. 150	NU.300	044

Table 2 JR Oil

Myers Langlie Mattix Unit Satellite 2

Lea County, New Mexico

Sample ID	Sample Date	Excavtion	Soil	Status		TPH (m	ıg/kg)		Benzene (mg/kg)	Toluene (mg/kg)	Ethlybenzene	Xylene (mg/kg)	Total BTEX (mg/kg)	Chloride
	-	Depth (ft)	In-Situ	Removed	GRO	DRO	MRO	Total			(mg/kg)			(mg/kg)
RRALs								100	10				50	600 mg/kg
110425			-					mg/kg	mg/kg				mg/kg	ooo mg/kg
	1/11/2024	0-1'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	< 0.050	<0.050	<0.150	< 0.300	<16.0
Trench-6	1/11/2024	2.0'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	< 0.050	<0.050	<0.150	< 0.300	16.0
Trench-0	1/11/2024	3.0'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	< 0.050	<0.050	<0.150	< 0.300	16.0
	1/11/2024	4.0'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
	4/44/0004	0.41	V	1	-10.0	-10.0	-10.0	- 10.0	-0.050	-0.050	10.050	-0.450	-0.000	40.0
	1/11/2024	0-1'	X	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
Trench-7	1/11/2024	2.0'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
rielicii-/	1/11/2024	3.0'	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	< 0.300	16.0
	1/11/2024	4.0'	X	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0

NOTES

Released to Imaging: 5/30/2025 1:25:27 PM

.

RRALs (Recommended Remediation Action Levels) are based on NMOCD (New Mexico Oil Conservation Devision) Guidelines for Remediation of Leaks, Spills, and Releases.

All screening values and results are presented in milligrams per kilogram (mg/kg) Bolded cells represent a detected concentration above the respective screening value.

< = analyte was not detected above the respective sample detection limit

ft = feet below ground surface

(-) = not analyzed for respective constituent

TPH = total petroleum hydrocarbons

BTEX = benzene, toluene, ethylbenzene, xylene

Remediated

Table 3 JR Oil LTD Myers Langlie Mattix Unit Satellite 2 Lea County, New Mexico

Released to Imaging: 5/30/2025 1:25:27 PM

	Sample	Sample	Soil	Soil Status TPH (mg					Benzene	Toluene	Ethlybenzene	Vulana	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	Xylene (mg/kg)	(mg/kg)	(mg/kg)
RRALs								100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg
RRALs					1,000	mg/kg		2,500	10				50	10,000
(Beyond Top 4.0' of Soil) BH-1	1/22/2024	1.0	Х	-	<10.0	23.2	<10.0	mg/kg 23.2	mg/kg <0.050	<0.050	<0.050	<0.150	mg/kg <0.300	mg/kg 128
BH-2	1/22/2024	1.0	Х	-	<10.0	21.7	<10.0	21.7	< 0.050	< 0.050	< 0.050	<0.150	< 0.300	112
	1/22/2024	1.0	-	Х	<10.0	95.1	33.1	128	< 0.050	< 0.050	< 0.050	<0.150	< 0.300	96.0
BH-3	2/14/2024	2.0	х	-	<50.2	<50.2	<50.2	<50.2	<0.00200	<0.00200	<0.00200	< 0.00399	< 0.00399	69.7
	1/22/2024	1.0	-	Х	<10.0	170	56.5	227	< 0.050	<0.050	< 0.050	<0.150	< 0.300	176
BH-4	2/14/2024	2.0	х	-	<50.5	<50.5	<50.5	<50.5	<0.00198	<0.00198	< 0.00198	<0.00396	< 0.00396	58.4
BH-5	1/22/2024	1.0	Х	-	<10.0	46.4	25.9	72.3	<0.050	<0.050	<0.050	<0.150	<0.300	96.0
	1/22/2024	1.0	-	Х	<10.0	279	134	413	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-6	2/14/2024	2.0	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	61.0
BH-7	1/22/2024	1.0	Х	-	<10.0	43.5	20.3	63.8	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
BH-8	1/22/2024	2.0	-	Х	<10.0	139	44.3	183	<0.050	<0.050	<0.050	<0.150	<0.300	240
БП-0	2/14/2024	3.0	Х	-	<49.7	60.8	<49.7	60.8	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	214
BH-9	1/22/2024	2.0	-	Х	<10.0	72.1	27.6	100	<0.050	<0.050	<0.050	<0.150	<0.300	1,020
511-5	2/14/2024	3.0	Х	-	<49.9	67.7	<49.9	67.7	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	197
BH-10	2/14/2024	4.0	Х	-	<50.1	99	<50.1	98.6	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	1,830
BH-11	2/14/2024	4.0	Х	-	<10.0	730	341	1,071	<0.050	<0.050	<0.050	<0.150	<0.300	1,260
BH-12	2/14/2024	4.0	Х	-	<10.0	64.1	46.1	110	<0.050	<0.050	<0.050	<0.150	<0.300	448
BH-13	2/14/2024	4.0	Х	-	<10.0	36.1	17.4	53.5	<0.050	<0.050	<0.050	<0.150	<0.300	720
BH-14	2/14/2024	4.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	720
BH-15	2/14/2024	4.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	816
BH-16	2/14/2024	4.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	944
BH-17	2/14/2024	4.0	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	752
BH-18	2/14/2024	2.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	256
BH-19	2/14/2024	2.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	496
BH-20	2/14/2024	2.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	208
BH-21	1/22/2024	2.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	592

Table 3 JR Oil LTD Myers Langlie Mattix Unit Satellite 2 Lea County, New Mexico

Sample D Bay B				Soil	Status		TPH (mg/kg)							
IRRALSImply apply appl	Sample ID					GRO			Total				-		
RRAL Beyond DeviceFinal MatrixSingleSingleSingleSingleSingleSingleBH2127021.51.51.41.09.09.009.0009.	RRALs														
BH-20 1/22/024 2.5 - X 100 92.7 94.1 91.9 0.085 0.216 0.07 0.371 209 BH-22 1/22/024 4.0 X <	RRALs					1 000	ma/ka								
BH.22 1/14/2024 4.0 X - 6.03 94.2 <0.000	(Beyond Top 4.0' of Soil)											[
BH-23 1/22/2024 1/5 - X 1/2 0/2 <th0 2<="" th=""> 0/2<th>BH-22</th><th></th><th></th><th>-</th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th0>	BH-22			-				-							
BH-23 21/42024 4.0 X - 650.3 74.5 60.0020 40.0020 40.0020 50.0020 50.000 50.00 5			4.0	~		<50.3	94.2	<50.3	94.2	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	875
BH-24 1/22/2024 1.5 . X <100	BH-23		-	-	Х	<10.0	216	126	342	<0.050	<0.050	<0.050	<0.150	<0.300	208
BH-24 214/2024 4.0 X - 45.00 45.00 45.000 40.0009 40.0009 40.0009 40.0009 40.0009 40.0009 40.00099 40.00199 40.00		2/14/2024	4.0	Х	-	<50.3	74.5	<50.3	74.5	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	530
2142024 4.0 X - <	BH-24	1/22/2024	1.5	-	Х	<10.0	102	68.6	171	<0.050	<0.050	<0.050	<0.150	<0.300	160
BH-26 1/22/024 1.5 X - <10.0	D11-24	2/14/2024	4.0	Х	-	<50.5	<50.5	<50.5	<50.5	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	505
BH-27 1/22/202 1.5 . X 10.0 303 2.3.0 6.0.0 <0.0.050	BH-25	1/22/2024	1.5	Х	-	<10.0	39.5	16.2	55.7	<0.050	<0.050	<0.050	<0.150	<0.300	144
BH-27 2/14/2024 4.0 X - 2 2 2 - - - - - 2 2 2 2 2 2 2 2 2 0.0198 - 0.0198 - 0.00398 - 0.00398 - 0.00398 - 0.00398 - 0.00398 - 0.00398 - 0.00398 - 0.00398 - 0.00398 - 0.00398 - 0.00398 - 0.00398 - 0.00398 - 0.00398 - 0.00398 - 0.00398 - 0.00398 - 0.00398 - 0.00398 - 0.00	BH-26	1/22/2024	1.5	Х	-	<10.0	29.3	15.4	44.7	<0.050	<0.050	<0.050	<0.150	<0.300	112
214/2024 4.0 X - < 50.0	BH_27	1/22/2024	1.5	-	Х	<10.0	303	224	527	<0.050	<0.050	<0.050	<0.150	<0.300	176
BH-28 2/14/2024 4.0 X - c49.9 c49.9 c49.9 c40.9 c0.0018 c0.00188 c0.0030 fd1.00	511-27	2/14/2024	4.0	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	81.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	511.00	1/22/2024	1.5	-	Х	<10.0	157	127	284	< 0.050	<0.050	< 0.050	<0.150	< 0.300	112
BH-29 21/14/2024 4.0 X -	BH-28	2/14/2024	4.0	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00396	< 0.00396	102
BH-29 2/14/2024 4.0 X - <50.2		1/22/2024	1.5	-	Х	<10.0	140	128	268	<0.050	<0.050	<0.050	<0 150	<0.300	64.0
SW-2 1/22/2024 - X - <10.0	BH-29	2/14/2024	4.0	х	-										100
SW-3 1/22/2024 - X - <10.0	SW-1	1/22/2024	-	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	96.0
SW-4 1/22/2024 - X - <10.0	SW-2	1/22/2024	-	Х	-	<10.0	38.8	23.8	62.6	<0.050	<0.050	<0.050	<0.150	<0.300	176
Markade Markade <t< th=""><th>SW-3</th><th>1/22/2024</th><th>-</th><th>Х</th><th>-</th><th><10.0</th><th>53.1</th><th>10.6</th><th>63.7</th><th><0.050</th><th><0.050</th><th><0.050</th><th><0.150</th><th><0.300</th><th>64.0</th></t<>	SW-3	1/22/2024	-	Х	-	<10.0	53.1	10.6	63.7	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
SW-5 2/12/2024 - - X <50.5	SW-4	1/22/2024	-	Х	-	<10.0	20.0	<10.0	20.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
$\frac{1}{3/21/2024} - X + \frac{1}{100} + \frac{1}{300.5} + \frac{1}{110} + \frac{1}{300.5} + \frac{1}{110} + \frac{1}{300.500} + \frac{1}{300.50000} + \frac{1}{30000000} + \frac{1}{300000000} + \frac{1}{300000000} + \frac{1}{300000000} + \frac{1}{300000000} + \frac{1}{3000000000} + \frac{1}{3000000000} + \frac{1}{3000000000} + \frac{1}{30000000000} + \frac{1}{30000000000000} + \frac{1}{300000000000000000000000000000000000$		1/22/2024	-	-	Х	<10.0	309	78.4	387	<0.050	<0.050	<0.050	<0.150	< 0.300	80.0
SW-6 1/22/2024 - - X <10.0	SW-5	2/12/2024	-	-	Х	<50.5	715	<50.5	715	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	72.9
SW-6 2/12/2024 - X - <50.0		3/21/2024	-	Х	-	<10.0	26.2	<10.0	26.2	<0.050	<0.050	<0.050	<0.150	<0.300	160
SW-6 2/12/2024 - X - <		1/22/2024	-	-	Х	<10.0	1,440	296	1,736	< 0.050	<0.050	<0.050	<0.150	< 0.300	144
SW-8 1/22/2024 - X <10.0	SW-6	2/12/2024	-	х	-			<50.0	,						
SW-8 2/14/2024 - X - <50.3	SW-7	1/22/2024	-	-	Х	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	1,720
2/14/2024 - X - <50.3	C)W 0	1/22/2024	-	-	Х	<10.0	<10.0	<10.0	<10.0	< 0.050	<0.050	<0.050	<0.150	< 0.300	992
	5₩-8	2/14/2024	-	Х	-	<50.3	<50.3	<50.3	<50.3	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	76.5
SW-9 3/21/2024 X <10.0 28.7 <10.0 28.7 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <		2/12/2024	-	-	Х	<50.4	101	<50.4	101	< 0.00199	<0.00199	<0.00199	< 0.00398	< 0.00398	78.0
	SW-9	3/21/2024	-	-	Х	<10.0	28.7	<10.0	28.7	<0.050	<0.050	<0.050	<0.150	< 0.300	608
3/29/2024 - X - <10.0 <10.0 <10.0 <10.0 <0.050 <0.050 <0.050 <0.050 <0.150 <0.300 256		3/29/2024	-	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050		<0.050	<0.150		256

Table 3 JR Oil LTD Myers Langlie Mattix Unit Satellite 2 Lea County, New Mexico

	Sample	Sample	Soil	Status		TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
RRALs								100 mg/kg	10 mg/kg			•	50 mg/kg	600 mg/kg
RRALs (Beyond Top 4.0' of Soil)					1,000	mg/kg		2,500 mg/kg	10 mg/kg				50 mg/kg	10,000 mg/kg
SW-10	2/12/2024	-	-	Х	<49.7	110	<49.7	110	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	902
	3/21/2024	-	Х	-	<10.0	43.4	13.5	56.9	<0.050	<0.050	<0.050	<0.150	<0.300	144
SW-11	2/12/2024	-	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	61.8
SW-12	1/22/2024	-	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	400
SW-13	1/22/2024	-	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	320
SW-14	1/22/2024	-	-	Х	<10.0	224	190	414	<0.050	0.061	0.054	<0.150	<0.300	336
	2/12/2024	-	Х	-	<50.2	<50.2	<50.2	<50.2	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	57.7
SW-15	1/22/2024	-	Х	-	<10.0	<10.0	13.0	13.0	<0.050	<0.050	<0.050	<0.150	<0.300	176
SW-16	1/22/2024	-	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-17	1/22/2024	-	Х	-	<10.0	25.0	43.4	68.4	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
SW-18	1/22/2024	-	-	Х	<10.0	59.9	89.9	150	<0.050	<0.050	<0.050	<0.150	<0.300	272
	2/12/2024	-	Х	-	<50.3	<50.3	<50.3	<50.3	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	67.6
SW-19	2/12/2024	-	Х	-	<50.3	60.4	<50.3	60.4	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	145

NOTES

Released to Imaging: 5/30/2025 1:25:27 PM

RRALs (Recommended Remediation Action Levels) are based on NMOCD (New Mexico Oil Conservation Devision) Guidelines for Remediation of Leaks, Spills, and Releases.

All screening values and results are presented in milligrams per kilogram (mg/kg) Bolded cells represent a detected concentration above the respective screening value.

< = analyte was not detected above the respective sample detection limit

ft = feet below ground surface

(-) = not analyzed for respective constituent

TPH = total petroleum hydrocarbons

BTEX = benzene, toluene, ethylbenzene, xylene

Remediated

Removed

Photographic Documentation

Released to Imaging: 5/30/2025 1:25:27 PM

Page 21 of 307

TETRA TECH

JR Oil Myers Langlie Mattix Unit Sat #2 Lea County, New Mexico

View of Remediation Activities – View Northwest

View of Remediation Activities - View Northwest

Page 22 of 307

TETRA TECH

JR Oil Myers Langlie Mattix Unit Sat #2 Lea County, New Mexico

View of Remediation Activities – View Southeast

View of Remediation Activities - View North

Page 23 of 307

П

TETRA TECH

JR Oil Myers Langlie Mattix Unit Sat #2 Lea County, New Mexico

View of Remediation Activities - View West

View of Remediation Activities - View East

Appendix A

C-141 Document

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

32.2634272

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	nAPP2128751635
District RP	· · · · · · · · · · · · · · · · · · ·
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	JR OIL LTD	OGRID	
Contact Name	JOE TIPPY	Contact Telephone	575-390-1380
Contact email	joetippy@valornet.com	Incident # (assigned by OCD)	nAPP2128751635
Contact mailing address	PO BOX 2975 HOBBS, NM 8	8241	

Location of Release Source

Latitude

-103. 2135886

Longitude _____ [NAD 83 in decimal degrees to 5 decimal places]

Site Name	MYERS LANGLIE MATTIX UNIT SAT #2	Site Type	SATELLITE
Date Release Discovered	9/30/21	API# (if applicable)	

Unit Letter	Section	Township	Range	County
Р	25	23S	26E	LEA

Surface Owner: State Federal Tribal Private (Name: LEA COUNTY PARTNERS

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls) 10bbls	Volume Recovered (bbls) 9bbls
Produced Water	Volume Released (bbls) 240bbls	Volume Recovered (bbls) 239bbls
	Is the concentration of dissolved chloride in the produced water >10.000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Course of Dalarse		

Cause of Release

TRUNK LINE PLUGGED OFF CAUSING AN OVERPRESSURE EVENT

Form C-141	State of New Mexico
Page 2	Oil Conservation Division

Incident ID	nAPP2128751635	
District RP		_
Facility ID		
Application ID		

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? 250 EST. BBLS OF OIL/PRODUCED WATER, EST 12,000 CHLORIDES
Tyes No	
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?
PHONE CALL TO COUL PRODUCTION	GARY ROBINSON (OCD), ON 10/2/21 AND EMAIL 10/2/21 BY JOSH LATIMER JR FOREMAN
	Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: JOSH LATIMER	Title: PRODUCATION FOREMAN
Signature:	Date: $11/(2/2)$
email: JLATIMER@COLTENERGYNM.COM	Telephone: 575-414-9188
OCD Only	
Received by:	Date: 11/16/2021

Received by OCD: 2/14/2025 2:33:49 PM

****** LIQUID SPILLS - VOLUME CALCULATIONS ******

NAPP2128751635

Page 27 of 307

	Location of spill:	Myers Lang	lie Mattix Unit S	at #2				Date of Spill:	9/30/2021	
							s	ite Soil Type: Fine S	and	
	Average Daily Production:		BBL Oil		BBL Water					
	Total	Area Calcu	lations							
Total Surface Area	width		length		wet soil depth	oil (%)				
Rectangle Area #1	25 ft	Х	780 ft	Х	0 in	4%				
Rectangle Area #2	2 0 ft	Х	0 ft	Х	0 in	0%				
Rectangle Area #3	3 0 ft	Х	0 ft	Х	0 in	0%				
Rectangle Area #4	l Oft	Х	0 ft	Х	<mark>0</mark> in	0%				
Rectangle Area #5	5 0 ft	Х	0 ft	Х	0 in	0%				
Rectangle Area #6	6 0 ft	Х	0 ft	Х	0 in	0%				
Rectangle Area #7	7 0 ft	Х	0 ft	Х	0 in	0%				
Rectangle Area #8	3 0 ft	х	0 ft	х	0 in	0%				

Porosity 0.16 gal per gal

Saturated	d Soil Volume Calculations:					
		<u>H2O</u>	OIL		Soil Type	Porosity
Area #1	19500 sq. ft.	78 cu. ft.	3	cu. ft.	Clay	0.15
Area #2	0 sq. ft.	cu. ft.		cu. ft.	Peat	0.40
Area #3	0 sq. ft.	cu. ft.		cu. ft.	Glacial Sediments	0.13
Area #4	0 sq. ft.	cu. ft.		cu. ft.	Sandy Clay	0.12
Area #5	0 sq. ft.	cu. ft.		cu. ft.	Silt	0.16
Area #6	0 sq. ft.	cu. ft.		cu. ft.	Loess	0.25
Area #7	0 sq. ft.	cu. ft.		cu. ft.	Fine Sand	0.16
Area #8	0 sq. ft.	cu. ft.		cu. ft.	Medium Sand	0.25
Total Solid/Liquid Volume:	19,500 sq. ft.	78 cu. ft.	3	cu. ft.	Coarse Sand	0.26
					Gravely Sand	0.26
Estimate	d Volumes Spilled				Fine Gravel	0.26
		<u>H2O</u>	OIL		Medium Gravel	0.25
Liqu	uid in Soil:	2.2 BBL	0.1	BBL	Coarse Gravel	0.18
Liquid Re	ecovered :	239.0 BBL	<u>9.0</u>	BBL	Sandstone	0.25
					Siltstone	0.18
S	Spill Liquid	241.2 BBL	9.1	BBL	Shale	0.05
Total Sp	pill Liquid:	250.3	3		Limestone	0.13
					Basalt	0.19
Reco	vered Volumes				Volcanic Tuff	0.20
Estimated oil recovered:	9.0 BBL				Standing Liquids	
stimated water recovered:	239.0 BBL					

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 28cof 307 QUESTIONS

Action 303020

QUESTIONS Operator: OGRID: J R OIL, LTD. CO. 256073 P.O. Box 53657 Action Number: Lubbock, TX 79453 303020 Action Type: [NOTIFY] Notification Of Sampling (C-141N)

QUESTIONS

Prerequisites					
Incident ID (n#)	nAPP2128751635				
Incident Name	NAPP2128751635 MYERS LANGLIE MATRIX UNIT #2 @ 0				
Incident Type	Other				
Incident Status	Initial C-141 Received				

Location of Release Source

Site Name	MYERS LANGLIE MATRIX UNIT #2					
Date Release Discovered	09/30/2021					
Surface Owner	Private					

Sampling Event General Information

Please answer all the questions in this group.		
What is the sampling surface area in square feet	9,219	
What is the estimated number of samples that will be gathered	72	
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	01/16/2024	
Time sampling will commence	08:45 AM	
Please provide any information necessary for observers to contact samplers	TetraTech Brittany Long - 432-741-5813	
Please provide any information necessary for navigation to sampling site	• Directions – From intersection of HWY 18 and Deep Wells Rd, head west on Deep Wells Rd, follow for 1.83 miles. Turn right (North) onto lease road, follow for 0.05 miles, stay to the right at the "y", follow for 0.14 miles.	

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
J R OIL, LTD. CO.	256073
P.O. Box 53657	Action Number:
Lubbock, TX 79453	303020
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

CONDITIONS

Create By	d Condition	Condition Date
jtippy	Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.	1/12/2024

Action 303020

CONDITIONS

Page 29eof 307

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 30eof 307

QUESTIONS

Action 311668

QUESTIONS

Operator: C	OGRID:
J R OIL, LTD. CO.	256073
P.O. Box 53657	Action Number:
Lubbock, TX 79453	311668
٩	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2128751635
Incident Name	NAPP2128751635 MYERS LANGLIE MATRIX UNIT #2 @ 0
Incident Type	Other
Incident Status	Initial C-141 Received

Location of Release Source

Site Name	MYERS LANGLIE MATRIX UNIT #2
Date Release Discovered	09/30/2021
Surface Owner	Private

Sampling Event General Information

Please answer all the questions in this group.		
What is the sampling surface area in square feet	2,200	
What is the estimated number of samples that will be gathered	22	
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	02/08/2024	
Time sampling will commence	09:00 AM	
Please provide any information necessary for observers to contact samplers	Tetra Tech - 432-741-5813	
Please provide any information necessary for navigation to sampling site	From intersection of HWY 18 and Deep Wells Rd, head west on Deep Wells Rd, follow for 1.83 miles. Turn right (North) onto lease road, follow for 0.05 miles, stay to the right at the "y", follow for 0.14 miles.	

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
J R OIL, LTD. CO.	256073
P.O. Box 53657	Action Number:
Lubbock, TX 79453	311668
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

CONDITIONS

Created By Condition Condition Date Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the 2/6/2024 tetratech remediation closure samples not being accepted.

Action 311668

Page 31eof 307
CONDITIONS

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 32eof 307

QUESTIONS

Action 324474

QUESTIONS

Operator:	OGRID:
J R OIL, LTD. CO.	256073
P.O. Box 53657	Action Number:
Lubbock, TX 79453	324474
	Action Type:
	[NOTIEY] Notification Of Sampling (C-141N)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2128751635
Incident Name	NAPP2128751635 MYERS LANGLIE MATRIX UNIT #2 @ 0
Incident Type	Other
Incident Status	Initial C-141 Received

Location of Release Source

Site Name	MYERS LANGLIE MATRIX UNIT #2
Date Release Discovered	09/30/2021
Surface Owner	Private

Sampling Event General Information

Please answer all the questions in this group.		
What is the sampling surface area in square feet	1,600	
What is the estimated number of samples that will be gathered	8	
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	03/21/2024	
Time sampling will commence	08:00 AM	
Please provide any information necessary for observers to contact samplers	Tetra Tech/432-741-5813	
Please provide any information necessary for navigation to sampling site	From intersection of HWY 18 and Deep Wells Rd, head west on Deep Wells Rd, follow for 1.83 miles. Turn right (North) onto lease road, follow for 0.05 miles, stay to the right at the "y", follow for 0.14 miles.	

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
J R OIL, LTD. CO.	256073
P.O. Box 53657	Action Number:
Lubbock, TX 79453	324474
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

CONDITIONS

Created By	Condition	Condition Date
tetratech	Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.	3/19/2024

Action 324474

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 34cof 307

QUESTIONS

Action 327421

QUESTIONS

Operator:	OGRID:
J R OIL, LTD. CO.	256073
P.O. Box 53657	Action Number:
Lubbock, TX 79453	327421
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2128751635
Incident Name	NAPP2128751635 MYERS LANGLIE MATRIX UNIT #2 @ 0
Incident Type	Other
Incident Status	Initial C-141 Received

Location of Release Source

Site Name	MYERS LANGLIE MATRIX UNIT #2
Date Release Discovered	09/30/2021
Surface Owner	Private

Sampling Event General Information

Please answer all the questions in this group.		
What is the sampling surface area in square feet	200	
What is the estimated number of samples that will be gathered	1	
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	03/29/2024	
Time sampling will commence	02:20 PM	
Please provide any information necessary for observers to contact samplers	Tetra Tech / 432-741-5813	
Please provide any information necessary for navigation to sampling site	From intersection of HWY 18 and Deep Wells Rd, head west on Deep Wells Rd, follow for 1.83 miles. Turn right (North) onto lease road, follow for 0.05 miles, stay to the right at the "y", follow for 0.14 miles.	

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
J R OIL, LTD. CO.	256073
P.O. Box 53657	Action Number:
Lubbock, TX 79453	327421
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

CONDITIONS

Created By	Condition	Condition Date
tetratech	Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.	3/27/2024

Action 327421

Appendix B

Site Characterization Documents

New Mexico Office of the State Engineer **Point of Diversion Summary**

			(quarte	rs are 1=N	W 2=N	IE 3=SW	(4=SE)				
			(quart	ers are sm	allest to	o largest)		(NAD83 U	TM in meters)		
Well Tag	POD	Number	Q64 (Q16 Q4	Sec	Tws	Rng	Х	Y		
	CP 0	1027 POD1	4	2 4	36	23S	36E	668436	3570425 🌍		
Driller Lice	ense:	1626	Driller	Compai	ıy:	TA	LOR D	RILLING			
Driller Nar	ne:	TAYLOR, ROY	ALLEN								
Drill Start	Date:	09/06/2010	Drill Fi	nish Da	te:	0	9/07/201	0 PI	ug Date:		
Log File Date: 09/29/2010			PCW R	PCW Rcv Date:					Source:		
Pump Type	e: Pipe Discharge Size: Estimated Yield: 10				100 GPM						
Casing Size	e:	5.99	Depth V	Well:		1	90 feet	D	Estimated Yield: 10 Depth Water: 87		
	Wate	er Bearing Stratif	ications:	Т	op l	Bottom	Descr	iption			
				87			185 Sandston		ne/Gravel/Conglomerate		
		Casing Per	forations:	Т	op l	Bottom					
				1	10	190					

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

6/15/23 3:44 PM

POINT OF DIVERSION SUMMARY

Click to hideNews Bulletins

- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for the Nation

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 321540103125701

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 321540103125701 23S.36E.36.314122

Lea County, New Mexico Latitude 32°15'32", Longitude 103°13'28" NAD27

Land-surface elevation 3,330.20 feet above NGVD29 The depth of the well is 263 feet below land surface.

This well is completed in the Pecos River Basin alluvial aquifer (N100PCSRVR) national aquifer.

This well is completed in the Ogallala Formation (1210GLL) local aquifer.

Output formats

Table of data		
Tab-separated data		
<u>Graph of data</u>		
Reselect period		

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measur
1965-10-20		D	62610		3199.98	NGVD29	Р	Z		
1965-10-20		D	62611		3201.33	NAVD88	Р	Z		
1965-10-20		D	72019	130.22			Р	Z		
1970-12-17		D	62610		3200.18	NGVD29	1	Z		
1970-12-17		D	62611		3201.53	NAVD88	1	Z		
1970-12-17		D	72019	130.02			1	Z		
1976-01-20		D	62610		3200.40	NGVD29	1	Z		
1976-01-20		D	62611		3201.75	NAVD88	1	Z		
1976-01-20		D	72019	129.80			1	Z		
1981-03-25		D	62610		3197.16	NGVD29	1	Z		
1981-03-25		D	62611		3198.51	NAVD88	1	Z		
1981-03-25		D	72019	133.04			1	Z		
1986-03-20		D	62610		3201.87	NGVD29	1	Z		
1986-03-20		D	62611		3203.22	NAVD88	1	Z		
1986-03-20		D	72019	128.33			1	Z		
1991-05-08		D	62610		3207.56	NGVD29	1	Z		

Resained by QCD: 2/14/2025 2:33:49 PM

USGS Groundwater for USA: Water Levels -- 1 sites

Page 39 of 307

0/20, 0.011										
Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measu
1991-05-08		D	62611		3208.91	NAVD88	1	Z		
1991-05-08		D	72019	122.64			1	Z		
1996-02-22		D	62610		3209.28	NGVD29	1	S		
1996-02-22		D	62611		3210.63	NAVD88	1	S		
1996-02-22		D	72019	120.92			1	S		
2001-02-21		D	62610		3210.29	NGVD29	1	S		
2001-02-21		D	62611		3211.64	NAVD88	1	S		
2001-02-21		D	72019	119.91			1	S		
2006-02-23	18:00 UTC	m	62610		3209.01	NGVD29	1	S	USGS	
2006-02-23	18:00 UTC	m	62611		3210.36	NAVD88	1	S	USGS	
2006-02-23	18:00 UTC	m	72019	121.19			1	S	USGS	
2010-12-16	19:50 UTC	m	62610		3210.63	NGVD29	1	S	USGS	
2010-12-16	19:50 UTC	m	62611		3211.98	NAVD88	1	S	USGS	
2010-12-16	19:50 UTC	m	72019	119.57			1	S	USGS	
2016-01-06	16:10 UTC	m	62610		3210.24	NGVD29	1	V	USGS	
2016-01-06	16:10 UTC	m	62611		3211.59	NAVD88	1	V	USGS	
2016-01-06	16:10 UTC	m	72019	119.96			1	V	USGS	
2021-01-22	20:36 UTC	m	62610		3211.08	NGVD29	1	S	USGS	
2021-01-22	20:36 UTC	m	62611		3212.43	NAVD88	1	S	USGS	
2021-01-22	20:36 UTC	m	72019	119.12			1	S	USGS	
2022-01-25	19:25 UTC	m	62610		3211.09	NGVD29	1	S	USGS	
2022-01-25	19:25 UTC	m	62611		3212.44	NAVD88	1	S	USGS	
2022-01-25		m	72019	119.11			1	S	USGS	
2023-02-09		m	62610		3210.99	NGVD29	1	S	USGS	
2023-02-09		m	62611		3212.34	NAVD88	1	S	USGS	
2023-02-09	18:48 UTC	m	72019	119.21			1	S	USGS	

		Explanation
Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Water-level date-time accuracy	m	Date is accurate to the Minute
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Status	Р	Pumping
Method of measurement	S	Steel-tape measurement.
Method of measurement	V	Calibrated electric-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Measuring agency	USGS	U.S. Geological Survey
Source of measurement		Not determined
Source of measurement	S	Measured by personnel of reporting agency.
Water-level approval status	А	Approved for publication Processing and review completed.

.

<u>Questions or Comments</u> <u>Automated retrievals</u> <u>Help</u> <u>Data Tips</u> <u>Explanation of terms</u> <u>Subscribe for system changes</u> <u>News</u>

Accessibility FOIA Privacy Policies and N

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2023-06-15 17:58:22 EDT 0.29 0.24 nadww01

Rottins: // wis water at a uses of your is ferrer and a start of the second s

USA.gov

.

New Mexico NFHL Data

FEMA, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

nmflood.org is made possible through a collaboration with NMDHSEM,

This is a non-regulatory product for informational use only. Please consult your local floodplain administrator for further information.

Site Information

Received by OCD: 2/14/2025 2:33:49 PM

Appendix C

Laboratory Reports

Received by OCD: 2/14/2025 2:33:49 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Brittany Long Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701 Generated 6/7/2023 9:34:27 AM

JOB DESCRIPTION

MLMU SATELLITE 2 SDG NUMBER 212C-MD-03133 TASK 100

JOB NUMBER

890-4770-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 6/7/2023 9:34:27 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	7
Surrogate Summary	24
QC Sample Results	26
QC Association Summary	34
Lab Chronicle	40
Certification Summary	47
Method Summary	48
Sample Summary	49
Chain of Custody	50
Receipt Checklists	53

Page 47 of 307

Job ID: 890-4770-1

SDG: 212C-MD-03133 TASK 100

Qualifiers

Qualifiero		3
GC VOA		
Qualifier	Qualifier Description	
*+	LCS and/or LCSD is outside acceptance limits, high biased.	
F1	MS and/or MSD recovery exceeds control limits.	5
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		
Qualifier	Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	8
HPLC/IC		
Qualifier	Qualifier Description	9
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not	
	applicable.	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	

	- ,
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL. RA. RE. IN	Indicates a Dilution. Re-analysis. Re-extraction, or addi

DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

DLC	Decision Level Concentration (Natiocher
EDL	Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

Limit of Quantitation (DoD/DOE) LOQ MCL EPA recommended "Maximum Contaminant Level"

Minimum Detectable Activity (Radiochemistry) MDA

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit

ML Minimum Level (Dioxin) Most Probable Number MPN

MQL Method Quantitation Limit Not Calculated NC

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent Positive / Present POS

PQL Practical Quantitation Limit

Г

Presumptive PRES

QC **Quality Control** RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Page 48 of 307

Job ID: 890-4770-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-4770-1

Receipt

The samples were received on 6/1/2023 4:45 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.4°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: H-1 (0-1') (890-4770-1), H-2 (0-1') (890-4770-2), H-3 (0-1') (890-4770-3), H-4 (0-1') (890-4770-4), H-5 (0-1') (890-4770-5), H-6 (0-1') (890-4770-6), H-7 (0-1') (890-4770-7), H-8 (0-1') (890-4770-8), H-9 (0-1') (890-4770-9), H-10 (0-1') (890-4770-10), AH-1 (0-1') (890-4770-11), AH-2 (0-1') (890-4770-12), AH-3 (0-1') (890-4770-13), AH-4 (0-1') (890-4770-14), AH-5 (0-1') (890-4770-15), AH-5 (1-1.5') (890-4770-16), AH-6 (0-1') (890-4770-17), AH-7 (0-1') (890-4770-18), AH-8 (0-1') (890-4770-19), AH-9 (0-1') (890-4770-20) and AH-9 (1-1.5') (890-4770-21).

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-54780 and analytical batch 880-54839 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: The laboratory control sample duplicate (LCSD) for preparation batch 880-54777 and analytical batch 880-54872 recovered outside control limits for the following analytes: Benzene. These analytes were biased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-54872 recovered above the upper control limit for Benzene, Toluene, Ethylbenzene, m-Xylene & p-Xylene and o-Xylene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method 8021B: Surrogate recovery for the following samples were outside control limits: H-2 (0-1') (890-4770-2), H-3 (0-1') (890-4770-3), H-4 (0-1') (890-4770-4), H-5 (0-1') (890-4770-5), H-6 (0-1') (890-4770-6), H-7 (0-1') (890-4770-7), H-9 (0-1') (890-4770-9), AH-1 (0-1') (890-4770-11), AH-2 (0-1') (890-4770-12), AH-3 (0-1') (890-4770-13), AH-4 (0-1') (890-4770-14), AH-5 (0-1') (890-4770-15), AH-5 (1-1.5') (890-4770-16), AH-6 (0-1') (890-4770-17), AH-7 (0-1') (890-4770-18), AH-8 (0-1') (890-4770-19) and AH-9 (0-1') (890-4770-20). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The method blank for preparation batch 880-54721 and analytical batch 880-54716 contained Diesel Range Organics (Over C10-C28) above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (MB 880-54739/1-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (CCV 880-54713/62). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-54668 and 880-54668 and analytical batch 880-54798 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Job ID: 890-4770-1 (Continued)

Project/Site: MLMU SATELLITE 2

Client: Tetra Tech, Inc.

Laboratory: Eurofins Carlsbad (Continued)

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-54669 and 880-54669 and analytical batch 880-54800 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Lab Sample ID: 890-4770-1

Matrix: Solid

5

Client Sample ID: H-1 (0-1') Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

Date Received: 06/01/23	10
Sample Depth: 0 - 1	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U *+	0.00201		mg/Kg		06/05/23 14:53	06/06/23 15:11	
Toluene	<0.00201	U	0.00201		mg/Kg		06/05/23 14:53	06/06/23 15:11	
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		06/05/23 14:53	06/06/23 15:11	
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		06/05/23 14:53	06/06/23 15:11	
o-Xylene	<0.00201	U	0.00201		mg/Kg		06/05/23 14:53	06/06/23 15:11	
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		06/05/23 14:53	06/06/23 15:11	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	128		70 - 130				06/05/23 14:53	06/06/23 15:11	
1,4-Difluorobenzene (Surr)	91		70 - 130				06/05/23 14:53	06/06/23 15:11	
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402		mg/Kg			06/07/23 10:05	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (0	GC)						
Analyte	• •	Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	73.4		49.9		mg/Kg			06/06/23 11:29	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		06/05/23 10:57	06/06/23 04:15	
Diesel Range Organics (Over C10-C28)	73.4		49.9		mg/Kg		06/05/23 10:57	06/06/23 04:15	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/05/23 10:57	06/06/23 04:15	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	115		70 - 130				06/05/23 10:57	06/06/23 04:15	
o-Terphenyl	88		70 - 130				06/05/23 10:57	06/06/23 04:15	
Method: EPA 300.0 - Anions, Ion	· · ·	-	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	53.9	F1	5.03		mg/Kg			06/05/23 19:38	
							Lab Sar	nple ID: 890-	4770-2
lient Sample ID: H-2 (0-1)								Matri	x: Solid
								in the second seco	
ate Collected: 05/31/23 00:00									
Client Sample ID: H-2 (0-1') ate Collected: 05/31/23 00:00 ate Received: 06/01/23 16:45 ample Depth: 0 - 1									
ate Collected: 05/31/23 00:00 ate Received: 06/01/23 16:45	Organic Comp	ounds (GC)							

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00202	U *+	0.00202	mg/Kg		06/05/23 14:53	06/06/23 15:38	1
Toluene	<0.00202	U	0.00202	mg/Kg		06/05/23 14:53	06/06/23 15:38	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		06/05/23 14:53	06/06/23 15:38	1
m-Xylene & p-Xylene	<0.00403	U	0.00403	mg/Kg		06/05/23 14:53	06/06/23 15:38	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		06/05/23 14:53	06/06/23 15:38	1
Xylenes, Total	<0.00403	U	0.00403	mg/Kg		06/05/23 14:53	06/06/23 15:38	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	142	S1+	70 - 130			06/05/23 14:53	06/06/23 15:38	1

Client Sample Results

Limits

70 - 130

RL

RL

49.9

RL

0.00403

MDL Unit

MDL Unit

MDL Unit

mg/Kg

mg/Kg

Job ID: 890-4770-	-1
SDG: 212C-MD-03133 TASK 10	0

Prepared

06/05/23 14:53

Prepared

Prepared

Prepared

D

D

D

Client Sample ID: H-2 (0-1')

Project/Site: MLMU SATELLITE 2

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

Sample Depth: 0 - 1

1,4-Difluorobenzene (Surr)

Surrogate

Analyte

Analyte

Analyte

Total TPH

Total BTEX

Client: Tetra Tech, Inc.

Lab Sample ID: 890-4770-2

Analyzed

06/06/23 15:38

Analyzed

06/07/23 10:05

Analyzed

06/06/23 11:29

Analyzed

Matrix: Solid

Dil Fac

Dil Fac

Dil Fac

Dil Fac

Matrix: Solid

1

Gasoline Range Organics	<49.9	U	49.9	mg/Kg	06/05/23 10:57	06/05/23 22:57	1	
(GRO)-C6-C10 Diesel Range Organics (Over	<49.9	u	49.9	mg/Kg	06/05/23 10:57	06/05/23 22:57	1	
C10-C28)	10.0	0	10.0	119/13	00,00,20 10.01	00,00,20 22.01		40
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg	06/05/23 10:57	06/05/23 22:57	1	13
	~-							
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
1-Chlorooctane	% <i>Recovery</i>	Quaimer			06/05/23 10:57	06/05/23 22:57	1	
		Qualifier			·	-	1 1	
1-Chlorooctane o-Terphenyl			70 - 130 70 - 130		06/05/23 10:57	06/05/23 22:57	1 1	
1-Chlorooctane			70 - 130 70 - 130		06/05/23 10:57	06/05/23 22:57	1 1	

	· · · · · · · · · · · · · · · · · · ·
Analyte	Result Qualifier

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

%Recovery Qualifier

Result Qualifier

Result Qualifier

Result Qualifier

<49.9 U

98

<0.00403 U

Chloride	74.9	4.99	mg/Kg	06/05/23 19:54 1
Client Sample ID: H-3 (0-1')				Lab Sample ID: 890-4770-3

Client Sample ID: H-3 (0-1')

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45 Sample Depth: 0 - 1

Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U *+	0.00199		mg/Kg		06/05/23 14:53	06/06/23 16:04	1
Toluene	<0.00199	U	0.00199		mg/Kg		06/05/23 14:53	06/06/23 16:04	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/05/23 14:53	06/06/23 16:04	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/05/23 14:53	06/06/23 16:04	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/05/23 14:53	06/06/23 16:04	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/05/23 14:53	06/06/23 16:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	139	S1+	70 - 130				06/05/23 14:53	06/06/23 16:04	1
1,4-Difluorobenzene (Surr)	96		70 - 130				06/05/23 14:53	06/06/23 16:04	1
- Method: TAL SOP Total BTEX -	Total BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/07/23 10:05	1
- Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/06/23 11:29	1

Client Sample Results

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Lab Sample ID: 890-4770-3

Lab Sample ID: 890-4770-4

Client Sample ID: H-3 (0-1')

Project/Site: MLMU SATELLITE 2

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

Sample Depth: 0 - 1

Client: Tetra Tech, Inc.

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		06/05/23 10:57	06/06/23 06:43	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		06/05/23 10:57	06/06/23 06:43	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/05/23 10:57	06/06/23 06:43	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130				06/05/23 10:57	06/06/23 06:43	1
o-Terphenyl	82		70 - 130				06/05/23 10:57	06/06/23 06:43	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	36.7		5.01		mg/Kg			06/05/23 20:00	1

Client Sample ID: H-4 (0-1')

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

Sample Depth: 0 - 1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U *+	0.00200		mg/Kg		06/05/23 14:53	06/06/23 16:30	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/05/23 14:53	06/06/23 16:30	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/05/23 14:53	06/06/23 16:30	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		06/05/23 14:53	06/06/23 16:30	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/05/23 14:53	06/06/23 16:30	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		06/05/23 14:53	06/06/23 16:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	139	S1+	70 - 130				06/05/23 14:53	06/06/23 16:30	1
								00/00/00 10 00	4
1,4-Difluorobenzene (Surr)	92	culation	70 - 130				06/05/23 14:53	06/06/23 16:30	1
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX		culation	70 - 130				06/05/23 14:53	06/06/23 16:30	1
Method: TAL SOP Total BTEX Analyte	- Total BTEX Calo Result	Qualifier	RL	MDL	Unit	D	06/05/23 14:53 Prepared	Analyzed	
Method: TAL SOP Total BTEX	- Total BTEX Cal	Qualifier		MDL	<mark>Unit</mark> mg/Kg	<u>D</u>			7 Dil Fac
Method: TAL SOP Total BTEX Analyte	- Total BTEX Cale Result <0.00400	Qualifier U	RL 0.00400	MDL		<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX	- Total BTEX Cale Result <0.00400	Qualifier U	RL 0.00400	MDL	mg/Kg	<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die	- Total BTEX Cale Result <0.00400	Qualifier U ics (DRO) (Qualifier	RL 0.00400		mg/Kg		Prepared	Analyzed 06/07/23 10:05	1
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH	- Total BTEX Cale Result <0.00400 esel Range Organ Result <50.0	Qualifier U ics (DRO) (Qualifier U	RL 0.00400 GC) RL 50.0		mg/Kg Unit		Prepared	Analyzed 06/07/23 10:05 Analyzed	1
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH Method: SW846 8015B NM - D	- Total BTEX Cale Result <0.00400 esel Range Organ Result <50.0	Qualifier U ics (DRO) (Qualifier U	RL 0.00400 GC) RL 50.0		mg/Kg Unit mg/Kg		Prepared	Analyzed 06/07/23 10:05 Analyzed	1
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	- Total BTEX Cale Result <0.00400 esel Range Organ Result <50.0	Qualifier U ics (DRO) (1 Qualifier U enics (DRO) Qualifier	RL 0.00400 GC) RL 50.0 (GC)	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 06/07/23 10:05 Analyzed 06/06/23 11:29	1 Dil Fac 1

C10-C28) 06/05/23 10:57 Oll Range Organics (Over C28-C36) <50.0 U 50.0 06/06/23 00:01 mg/Kg 1 Limits Dil Fac %Recovery Qualifier Prepared Analyzed Surrogate 70 - 130 06/05/23 10:57 1-Chlorooctane 06/06/23 00:01 111 1 o-Terphenyl 85 70 - 130 06/05/23 10:57 06/06/23 00:01 1

		Clier	nt Sample R	lesults	5				
Client: Tetra Tech, Inc. Project/Site: MLMU SATELLITE 2							SDG: 212	Job ID: 890 C-MD-03133 TA	
Client Sample ID: H-4 (0-1') Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45 Sample Depth: 0 - 1							Lab Sar	nple ID: 890- Matri	4770-4 x: Solid
Method: EPA 300.0 - Anions, Ion (Analyte		hy - Solub Qualifier	le RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	42.9		4.96		mg/Kg			06/05/23 20:05	1
Client Sample ID: H-5 (0-1') Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45 Sample Depth: 0 - 1							Lab Sar	nple ID: 890- Matri	4770-5 x: Solid
Method: SW846 8021B - Volatile C			·	мрі	11:4		Dremoved	Anglungd	
Analyte Benzene	Result <0.00201	Qualifier	RL	MDL	Unit mg/Kg	D	Prepared 06/05/23 14:53	Analyzed 06/06/23 16:56	Dil Fac
Toluene	<0.00201		0.00201		mg/Kg		06/05/23 14:53	06/06/23 16:56	1
Ethylbenzene	<0.00201		0.00201		mg/Kg		06/05/23 14:53	06/06/23 16:56	1
m-Xylene & p-Xylene	< 0.00402		0.00402		mg/Kg		06/05/23 14:53	06/06/23 16:56	· · · · · · · 1
o-Xylene	< 0.00201		0.00201		mg/Kg		06/05/23 14:53	06/06/23 16:56	1
Xylenes, Total	< 0.00402		0.00402		mg/Kg		06/05/23 14:53	06/06/23 16:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	149	S1+	70 - 130				06/05/23 14:53	06/06/23 16:56	1
1,4-Difluorobenzene (Surr)	95		70 - 130				06/05/23 14:53	06/06/23 16:56	1
Method: TAL SOP Total BTEX - To	tal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			06/07/23 10:05	1
Method: SW846 8015 NM - Diesel						_			
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH Method: SW846 8015B NM - Diese	<49.9 Al Range Orga	U Inics (DRO)	49.9) (GC)		mg/Kg			06/06/23 11:29	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	_	mg/Kg		06/05/23 10:57	06/06/23 00:23	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		06/05/23 10:57	06/06/23 00:23	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/05/23 10:57	06/06/23 00:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	113		70 - 130				06/05/23 10:57	06/06/23 00:23	1
o-Terphenyl	87		70 _ 130				06/05/23 10:57	06/06/23 00:23	1
Method: EPA 300.0 - Anions, Ion (Analyte		hy - Solub Qualifier	le RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
			·						

Eurofins Carlsbad

06/05/23 20:11

Chloride

4.98

mg/Kg

61.1

1

Client Sample ID: H-6 (0-1')

Project/Site: MLMU SATELLITE 2

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

Sample Depth: 0 - 1

Client: Tetra Tech, Inc.

Lab Sample ID: 890-4770-6 Matrix: Solid

5

	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00200	U *+	0.00200		mg/Kg		06/05/23 14:53	06/06/23 17:22	1
<0.00200	U	0.00200		mg/Kg		06/05/23 14:53	06/06/23 17:22	1
<0.00200	U	0.00200		mg/Kg		06/05/23 14:53	06/06/23 17:22	1
<0.00401	U	0.00401		mg/Kg		06/05/23 14:53	06/06/23 17:22	1
<0.00200	U	0.00200		mg/Kg		06/05/23 14:53	06/06/23 17:22	1
<0.00401	U	0.00401		mg/Kg		06/05/23 14:53	06/06/23 17:22	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
138	S1+	70 - 130				06/05/23 14:53	06/06/23 17:22	1
98		70 - 130				06/05/23 14:53	06/06/23 17:22	1
BTEX Calc	ulation							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00401	U	0.00401		mg/Kg			06/07/23 10:05	1
nge Organ	ics (DRO) (GC)						
		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<49.8	U	49.8		mg/Kg			06/06/23 11:29	1
	U	49.8		mg/Kg		06/05/23 10:57	06/06/23 00:44	Dil Fac
<49.8	U	49.8		mg/Kg		06/05/23 10:57	06/06/23 00:44	1
<49.8	U	49.8		mg/Kg		06/05/23 10:57	06/06/23 00:44	1
<49.8	U	49.8		mg/Kg		06/05/23 10:57	06/06/23 00:44	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
%Recovery 102	Qualifier	Limits				Prepared 06/05/23 10:57	Analyzed	Dil Fac
-	Qualifier							
102 76	Qualifier	70 ₋ 130 70 ₋ 130				06/05/23 10:57	06/06/23 00:44	1
102 76 omatograp		70 ₋ 130 70 ₋ 130	MDL	Unit	D	06/05/23 10:57	06/06/23 00:44	1
	<0.00200 <0.00401 %Recovery 138 98 BTEX Calc Result <0.00401 nge Organ Result <49.8 ange Orga Result <49.8	<0.00200	<0.00200		<0.00200	< 0.00200 U 0.00200 mg/Kg < 0.00401 U 0.00401 mg/Kg $\frac{%Recovery}{138}$ $\frac{Qualifier}{S1+}$ $\frac{Limits}{70-130}$ $\frac{8}{98}$ $70-130$ BTEX Calculation mg/Kg $\frac{Result}{\sqrt{0.00401}}$ $\frac{Qualifier}{\sqrt{0.00401}}$ $\frac{RL}{mg/Kg}$ $\frac{MDL}{mg/Kg}$ $\frac{nge Organics (DRO) (GC)}{Result}$ $\frac{Qualifier}{\sqrt{49.8}}$ $\frac{RL}{\sqrt{49.8}}$ $\frac{MDL}{\sqrt{3000}}$ $\frac{Unit}{mg/Kg}$ $\frac{D}{mg/Kg}$ $\frac{49.8}{\sqrt{3000}}$ $\frac{Qualifier}{\sqrt{30000}}$ $\frac{RL}{49.8}$ $\frac{MDL}{mg/Kg}$ $\frac{D}{mg/Kg}$ $\frac{49.8}{\sqrt{3000}}$ $\frac{Qualifier}{\sqrt{30000}}$ $\frac{RL}{49.8}$ $\frac{MDL}{mg/Kg}$ $\frac{D}{mg/Kg}$ $\frac{49.8}{\sqrt{3000}}$ $\frac{49.8}{\sqrt{3000}}$ $\frac{MDL}{MDL}$ $\frac{Unit}{mg/Kg}$ $\frac{D}{Mg/Kg}$	< 0.00200 U 0.00200 mg/Kg $06/05/23$ $14:53$ < 0.00401 U 0.00401 mg/Kg $06/05/23$ $14:53$ $< ? Recovery$ Qualifier Limits Prepared $06/05/23$ $14:53$ $? Recovery$ Qualifier Limits $06/05/23$ $14:53$ $06/05/23$ $14:53$ $? Recovery$ Qualifier R MDL Unit D $06/05/23$ $14:53$ BTEX Calculation Result Qualifier RL MDL Unit D Prepared < 0.00401 U 0.00401 MDL Unit D Prepared < 0.00401 U 0.00401 MDL Unit D Prepared < 0.00401 U 0.00401 MDL Unit D Prepared < 49.8 U 49.8 MDL Unit D Prepared < 49.8 U 49.8 mg/Kg $06/05/23$ $10:57$ < 49.8 U 49.8 mg/Kg $06/05/23$ $10:57$ </td <td><0.00200</td> U 0.00200 mg/Kg 06/05/23 14:53 06/06/23 17:22 <0.00401	<0.00200

4-Bromofluorobenzene (Surr)	144	S1+	70 - 130		06/05/23 14:53	06/06/23 17:48	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Xylenes, Total	<0.00399	U	0.00399	mg/Kg	06/05/23 14:53	06/06/23 17:48	1
o-Xylene	<0.00200	U	0.00200	mg/Kg	06/05/23 14:53	06/06/23 17:48	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg	06/05/23 14:53	06/06/23 17:48	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg	06/05/23 14:53	06/06/23 17:48	1
Toluene	<0.00200	U	0.00200	mg/Kg	06/05/23 14:53	06/06/23 17:48	1
Benzene	<0.00200	U *+	0.00200	mg/Kg	06/05/23 14:53	06/06/23 17:48	1

Client Sample Results

Limits

70 - 130

RL

RL

49.9

RL

49.9

0.00399

MDL Unit

MDL Unit

MDL Unit

mg/Kg

mg/Kg

mg/Kg

Job ID: 890-4770-	1
SDG: 212C-MD-03133 TASK 100	0

Analyzed

06/06/23 17:48

Analyzed

06/07/23 10:05

Analyzed

06/06/23 11:29

Analyzed

06/06/23 01:05

06/06/23 01:05

06/06/23 01:05

Lab Sample ID: 890-4770-8

Client Sample ID: H-7 (0-1') Date Collected: 05/31/23 00:00

Client: Tetra Tech, Inc.

Date Received: 06/01/23 16:45

Project/Site: MLMU SATELLITE 2

Sample Depth: 0 - 1

1,4-Difluorobenzene (Surr)

Gasoline Range Organics

Surrogate

Analyte

Analyte

Analyte

(GRO)-C6-C10

Total TPH

Total BTEX

Lab	Sample	ID:	890-4770-7
			Martin Oalla

Prepared

06/05/23 14:53

Prepared

Prepared

Prepared

06/05/23 10:57

D

D

D

Matrix: Solid

Dil Fac

Dil Fac

Dil Fac

Dil Fac

Matrix: Solid

1

1	
Dil Fac	
1	
1	
1	13

Surrogate	%Recovery	Qualifier	Limits		Prepared
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg	06/05/23 10:57
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg	06/05/23 10:57

%Recovery Qualifier

Result Qualifier

Result Qualifier

Result Qualifier

<49.9 U

<49.9 U

96

<0.00399 U

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed
1-Chlorooctane	104		70 - 130	-	06/05/23 10:57	06/06/23 01:05
o-Terphenyl	79		70 - 130		06/05/23 10:57	06/06/23 01:05

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	49.4		4.98		mg/Kg			06/05/23 20:33	1

Client Sample ID: H-8 (0-1')

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45 Sample Depth: 0 - 1

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U *+	0.00200		mg/Kg		06/05/23 14:53	06/06/23 18:14	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/05/23 14:53	06/06/23 18:14	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/05/23 14:53	06/06/23 18:14	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		06/05/23 14:53	06/06/23 18:14	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/05/23 14:53	06/06/23 18:14	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		06/05/23 14:53	06/06/23 18:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	130		70 - 130				06/05/23 14:53	06/06/23 18:14	1
1,4-Difluorobenzene (Surr)	86		70 - 130				06/05/23 14:53	06/06/23 18:14	1
Method: TAL SOP Total BTEX	- Total BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			06/07/23 10:05	1
- Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			06/06/23 11:29	1

Client Sample Results

Job ID: 890-4770-1
SDG: 212C-MD-03133 TASK 100

Lab Sample ID: 890-4770-9

Matrix: Solid

Client Sample ID: H-8 (0-1')

Project/Site: MLMU SATELLITE 2

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

Sample Depth: 0 - 1

Client: Tetra Tech, Inc.

Lab Sample ID: 890-4770-8
Matrix: Solid

-	
Method: SW846 8015B NM - Diesel Range Organics (D	RO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		06/05/23 10:57	06/06/23 01:26	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		06/05/23 10:57	06/06/23 01:26	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		06/05/23 10:57	06/06/23 01:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130				06/05/23 10:57	06/06/23 01:26	1
o-Terphenyl	83		70 - 130				06/05/23 10:57	06/06/23 01:26	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	38.7		5.05		mg/Kg			06/05/23 20:38	1

Client Sample ID: H-9 (0-1')

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

Sample Depth: 0 - 1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U *+	0.00200		mg/Kg		06/05/23 14:53	06/06/23 18:40	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/05/23 14:53	06/06/23 18:40	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/05/23 14:53	06/06/23 18:40	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		06/05/23 14:53	06/06/23 18:40	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/05/23 14:53	06/06/23 18:40	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		06/05/23 14:53	06/06/23 18:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	142	S1+	70 - 130				06/05/23 14:53	06/06/23 18:40	1
((D)() ()	95		70 - 130				06/05/23 14:53	06/06/23 18:40	1
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX		culation	70 - 130				00/03/23 14.33	00,00,20 10.40	
Method: TAL SOP Total BTEX	- Total BTEX Cal								
Method: TAL SOP Total BTEX Analyte	- Total BTEX Calo Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte	- Total BTEX Cal	Qualifier		MDL	Unit mg/Kg	<u>D</u>			Dil Fac
Method: TAL SOP Total BTEX	- Total BTEX Cald Result <0.00399	Qualifier U	RL 0.00399	MDL		<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die	- Total BTEX Cale Result <0.00399	Qualifier U	RL 0.00399			<u>D</u> 		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	- Total BTEX Cale Result <0.00399	Qualifier U ics (DRO) (Qualifier	RL 0.00399 — GC)		mg/Kg		Prepared	Analyzed 06/07/23 10:05	1
Method: TAL SOP Total BTEX Analyte Total BTEX	- Total BTEX Cale Result <0.00399 esel Range Organ Result <49.8	Qualifier U ics (DRO) (Qualifier U	RL 0.00399 GC) RL 49.8		mg/Kg Unit		Prepared	Analyzed 06/07/23 10:05 Analyzed	1
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Dio Analyte Total TPH Method: SW846 8015B NM - D	- Total BTEX Cale Result <0.00399 esel Range Organ Result <49.8 Diesel Range Orga	Qualifier U ics (DRO) (Qualifier U	RL 0.00399 GC) RL 49.8	MDL	mg/Kg Unit		Prepared	Analyzed 06/07/23 10:05 Analyzed	1
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH	- Total BTEX Cale Result <0.00399 esel Range Organ Result <49.8 Diesel Range Orga	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier	RL	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 06/07/23 10:05 Analyzed 06/06/23 11:29	1 Dil Fac

1

		Clier	nt Sample R	lesults	5				
Client: Tetra Tech, Inc. Project/Site: MLMU SATELLITE 2							SDG: 212	Job ID: 890 C-MD-03133 TA	
Client Sample ID: H-9 (0-1') Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45 Sample Depth: 0 - 1							Lab Sar	nple ID: 890- Matri	4770-9 ix: Solid
– Method: EPA 300.0 - Anions, Ion C Analyte		hy - Solub Qualifier	le RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	37.1		4.97		mg/Kg		·	06/05/23 20:44	1
Client Sample ID: H-10 (0-1') Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45 Sample Depth: 0 - 1							Lab Sam	ple ID: 890-4 Matri	770-10 ix: Solid
Method: SW846 8021B - Volatile O			·						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201		0.00201		mg/Kg		06/05/23 14:53	06/06/23 19:06	1
	<0.00201		0.00201		mg/Kg		06/05/23 14:53	06/06/23 19:06	1
Ethylbenzene	<0.00201		0.00201		mg/Kg		06/05/23 14:53	06/06/23 19:06	1
m-Xylene & p-Xylene	< 0.00402		0.00402		mg/Kg		06/05/23 14:53	06/06/23 19:06	1
o-Xylene	< 0.00201		0.00201		mg/Kg		06/05/23 14:53	06/06/23 19:06	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		06/05/23 14:53	06/06/23 19:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	130		70 - 130				06/05/23 14:53	06/06/23 19:06	1
1,4-Difluorobenzene (Surr)	86		70 - 130				06/05/23 14:53	06/06/23 19:06	1
Method: TAL SOP Total BTEX - Tot	tal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			06/07/23 10:05	1
_ Method: SW846 8015 NM - Diesel I	Range Organ	ics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	66.4		49.9		mg/Kg			06/06/23 11:29	1
– Method: SW846 8015B NM - Diese	l Range Orga	nics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		06/05/23 10:57	06/06/23 04:36	1
Diesel Range Organics (Over C10-C28)	66.4		49.9		mg/Kg		06/05/23 10:57	06/06/23 04:36	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/05/23 10:57	06/06/23 04:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	114	_	70 - 130				06/05/23 10:57	06/06/23 04:36	1
o-Terphenyl	87		70 - 130				06/05/23 10:57	06/06/23 04:36	1
Method: EPA 300.0 - Anions, Ion C		-			11:4	_	Dreas	Anol:	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

06/05/23 20:49

Chloride

4.99

mg/Kg

43.0

1

Client Sample ID: AH-1 (0-1')

Project/Site: MLMU SATELLITE 2

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

Sample Depth: 0 - 1

Client: Tetra Tech, Inc.

Lab Sample ID: 890-4770-11

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00202	U *+	0.00202		mg/Kg		06/05/23 14:53	06/06/23 20:49	1
Toluene	<0.00202	U	0.00202		mg/Kg		06/05/23 14:53	06/06/23 20:49	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		06/05/23 14:53	06/06/23 20:49	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		06/05/23 14:53	06/06/23 20:49	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		06/05/23 14:53	06/06/23 20:49	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		06/05/23 14:53	06/06/23 20:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	122		70 - 130				06/05/23 14:53	06/06/23 20:49	1
1,4-Difluorobenzene (Surr)	81		70 - 130				06/05/23 14:53	06/06/23 20:49	1
Method: TAL SOP Total BTEX - To	otal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			06/07/23 10:05	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	598		50.0		mg/Kg			06/06/23 11:29	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		06/05/23 10:57	06/06/23 04:57	1
Diesel Range Organics (Over C10-C28)	598		50.0		mg/Kg		06/05/23 10:57	06/06/23 04:57	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/05/23 10:57	06/06/23 04:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130				06/05/23 10:57	06/06/23 04:57	1
o-Terphenyl	76		70 - 130				06/05/23 10:57	06/06/23 04:57	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	39.6		5.01	_	mg/Kg	_		06/05/23 20:55	1
Client Sample ID: AH-2 (0-1') ate Collected: 05/31/23 00:00 ate Received: 06/01/23 16:45 ample Depth: 0 - 1							Lab Sam	ple ID: 890-4 Matri	770-12 x: Solid
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199		0.00199		mg/Kg		06/05/23 14:53	06/06/23 21:15	1
Toluene	<0.00199	U	0.00199		mg/Kg		06/05/23 14:53	06/06/23 21:15	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/05/23 14:53	06/06/23 21:15	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/05/23 14:53	06/06/23 21:15	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/05/23 14:53	06/06/23 21:15	1

Xylenes, Total <0.00398 U 0.00398 06/05/23 14:53 06/06/23 21:15 mg/Kg Surrogate %Recovery Qualifier Limits Prepared Analyzed 4-Bromofluorobenzene (Surr) 140 S1+ 70 - 130 06/05/23 14:53 06/06/23 21:15

Eurofins Carlsbad

1

1

Dil Fac

Client Sample Results

Limits

70 - 130

RL

RL

49.8

RL

49.8

49.8

0.00398

MDL Unit

MDL Unit

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

ma/Ka

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Client Sample ID: AH-2 (0-1')

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

%Recovery Qualifier

Result Qualifier

Result Qualifier

Result Qualifier

<49.8 U

1420

93

<0.00398 U

1420

Project/Site: MLMU SATELLITE 2

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

Sample Depth: 0 - 1

1,4-Difluorobenzene (Surr)

Gasoline Range Organics

Diesel Range Organics (Over

Surrogate

Analyte

Analyte

Analyte

C10-C28) Oll Range Organ

Xvlenes, Total

(GRO)-C6-C10

Total TPH

Total BTEX

Client: Tetra Tech, Inc.

mple	ID:	890-477	0
		Matrix:	S

Analyzed

06/06/23 21:15

Analyzed

06/07/23 10:05

Analyzed

06/06/23 11:29

Analyzed

06/06/23 03:33

06/06/23 03:33

06/06/23 21:41

Lab Sa

Prepared

06/05/23 14:53

Prepared

Prepared

Prepared

06/05/23 10:57

06/05/23 10:57

06/05/23 14:53

D

D

D

70-12 : Solid	
	5
Dil Fac 1	
Dil Fac 1	8
Dil Fac	9
1	
Dil Fac	
1	
1	13
Dil Fac	
1 1	

1

1

1

Dil Fac

C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		06/05/23 10:57	06/06/23 03:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				06/05/23 10:57	06/06/23 03:33	1
o-Terphenyl	77		70 - 130				06/05/23 10:57	06/06/23 03:33	1
- Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	61.1		4.97		mg/Kg			06/05/23 21:11	1
Client Sample ID: AH-3 (0-1'))						Lab Sam	ple ID: 890-4	770-13
Date Collected: 05/31/23 00:00								Matri	x: Solid
Date Received: 06/01/23 16:45									
Sample Depth: 0 - 1									
 Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)	l.						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U *+	0.00198		mg/Kg		06/05/23 14:53	06/06/23 21:41	1
Toluene	<0.00198	U	0.00198		mg/Kg		06/05/23 14:53	06/06/23 21:41	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		06/05/23 14:53	06/06/23 21:41	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		06/05/23 14:53	06/06/23 21:41	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		06/05/23 14:53	06/06/23 21:41	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed
4-Bromofluorobenzene (Surr)	149	S1+	70 - 130	06/05/23 14:53	06/06/23 21:
1,4-Difluorobenzene (Surr)	93		70 - 130	06/05/23 14:53	06/06/23 21:

<0.00396 U

Method: TAL SOP Total BTEX -	Fotal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00396	U	0.00396		mg/Kg			06/07/23 10:05	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (0	GC)						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	149		49.9		mg/Kg			06/06/23 11:29	1

0.00396

Matrix: Solid

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Lab Sample ID: 890-4770-13

Lab Sample ID: 890-4770-14

Client Sample ID: AH-3 (0-1')

Project/Site: MLMU SATELLITE 2

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

Sample Depth: 0 - 1

Client: Tetra Tech, Inc.

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		06/05/23 10:57	06/06/23 03:54	
Diesel Range Organics (Over C10-C28)	149		49.9		mg/Kg		06/05/23 10:57	06/06/23 03:54	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/05/23 10:57	06/06/23 03:54	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	99		70 - 130				06/05/23 10:57	06/06/23 03:54	
o-Terphenyl	74		70 - 130				06/05/23 10:57	06/06/23 03:54	

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	210		5.04		mg/Kg			06/05/23 21:16	1

Client Sample ID: AH-4 (0-1')

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

Sam	ple	Depth:	: 0 - 1	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U *+	0.00198		mg/Kg		06/05/23 14:53	06/06/23 22:07	
Toluene	<0.00198	U	0.00198		mg/Kg		06/05/23 14:53	06/06/23 22:07	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		06/05/23 14:53	06/06/23 22:07	
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		06/05/23 14:53	06/06/23 22:07	
o-Xylene	<0.00198	U	0.00198		mg/Kg		06/05/23 14:53	06/06/23 22:07	
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		06/05/23 14:53	06/06/23 22:07	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	154	S1+	70 - 130				06/05/23 14:53	06/06/23 22:07	
1,4-Difluorobenzene (Surr)	100		70 - 130				06/05/23 14:53	06/06/23 22:07	1
Method: TAL SOP Total BTEX - T Analyte Total BTEX		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fa
	Result <0.00397	Qualifier U	0.00397	MDL	Unit mg/Kg Unit	<u>D</u> 	Prepared		Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese	Result <0.00397	Qualifier U ics (DRO) (Qualifier	0.00397		mg/Kg		<u>.</u>	06/07/23 10:05	1
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese	Result <0.00397 Range Organ Result <49.9 sel Range Orga	Qualifier U ics (DRO) (Qualifier U nics (DRO)	0.00397 GC) <u>RL</u> 49.9 (GC)	MDL	mg/Kg Unit mg/Kg	D	Prepared	06/07/23 10:05 Analyzed 06/06/23 11:29	Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte	Result <0.00397 el Range Organ Result <49.9 sel Range Orga Result	Qualifier U ics (DRO) (1 Qualifier U nics (DRO) Qualifier	0.00397 GC) RL 49.9 (GC) RL	MDL	mg/Kg Unit mg/Kg Unit		Prepared	06/07/23 10:05 Analyzed 06/06/23 11:29 Analyzed	
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	Result <0.00397 Range Organ Result <49.9 sel Range Orga	Qualifier U ics (DRO) (1 Qualifier U nics (DRO) Qualifier	0.00397 GC) <u>RL</u> 49.9 (GC)	MDL	mg/Kg Unit mg/Kg	D	Prepared	06/07/23 10:05 Analyzed 06/06/23 11:29	Dil Fa
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH	Result <0.00397 el Range Organ Result <49.9 sel Range Orga Result	Qualifier U ics (DRO) (1 Qualifier U nics (DRO) Qualifier U	0.00397 GC) RL 49.9 (GC) RL	MDL	mg/Kg Unit mg/Kg Unit	D	Prepared	06/07/23 10:05 Analyzed 06/06/23 11:29 Analyzed	Dil Fa

%Recovery Qualifier Dil Fac Limits Prepared Analyzed Surrogate 70 - 130 06/05/23 10:57 06/06/23 02:08 1-Chlorooctane 104 1 o-Terphenyl 80 70 - 130 06/05/23 10:57 06/06/23 02:08 1

		Clier	nt Sample R	esults	;				
Client: Tetra Tech, Inc. Project/Site: MLMU SATELLITE 2							SDG: 212	Job ID: 890 C-MD-03133 TA	
Client Sample ID: AH-4 (0-1))						Lab Sam	ple ID: 890-4	770-14
Date Collected: 05/31/23 00:00	,							-	x: Solid
Date Received: 06/01/23 16:45									
Sample Depth: 0 - 1									
_ Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solub	le						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	64.1		4.98		mg/Kg			06/05/23 21:33	1
Client Sample ID: AH-5 (0-1))						Lab Sam	ple ID: 890-4	770-15
Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45 Sample Depth: 0 - 1								-	x: Solid
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U *+	0.00199		mg/Kg		06/05/23 14:53	06/06/23 22:34	1
Toluene	<0.00199	U	0.00199		mg/Kg		06/05/23 14:53	06/06/23 22:34	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/05/23 14:53	06/06/23 22:34	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/05/23 14:53	06/06/23 22:34	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/05/23 14:53	06/06/23 22:34	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/05/23 14:53	06/06/23 22:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	147	S1+	70 - 130				06/05/23 14:53	06/06/23 22:34	1
1,4-Difluorobenzene (Surr)	89		70 - 130				06/05/23 14:53	06/06/23 22:34	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/07/23 10:05	1
- Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/06/23 11:29	1
- Method: SW846 8015B NM - Dies	ol Pango Orga	nice (DPO)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9		49.9		mg/Kg		06/05/23 10:57	06/06/23 02:51	1
(GRO)-C6-C10 Diesel Range Organics (Over	<49.9	ш	49.9		mg/Kg		06/05/23 10:57	06/06/23 02:51	1
C10-C28)	10.0	0	10.0		mg/rtg		00/00/20 10:01	00/00/20 02:01	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/05/23 10:57	06/06/23 02:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130				06/05/23 10:57	06/06/23 02:51	1
o-Terphenyl	77		70 - 130				06/05/23 10:57	06/06/23 02:51	1
_ Method: EPA 300.0 - Anions, Ion	Chromatogram	hy - Solub	le						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	43.5		5.05						

Eurofins Carlsbad

Lab Sample ID: 890-4770-16

Matrix: Solid

5

Project/Site: MLMU SATELLITE 2

Client: Tetra Tech, Inc.

Client Sample ID: AH-5 (1-1.5') Date Collected: 05/31/23 00:00

Date Received: 06/01/23 16:45 Sample Depth: 1 - 1.5

oumpio Doptin. I	
Method: SW846	8021B - Volatile Organic Compounds

	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U *+	0.00200		mg/Kg		06/05/23 14:53	06/06/23 23:00	
Toluene	<0.00200	U	0.00200		mg/Kg		06/05/23 14:53	06/06/23 23:00	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/05/23 14:53	06/06/23 23:00	
n-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		06/05/23 14:53	06/06/23 23:00	
p-Xylene	<0.00200	U	0.00200		mg/Kg		06/05/23 14:53	06/06/23 23:00	
Kylenes, Total	<0.00400	U	0.00400		mg/Kg		06/05/23 14:53	06/06/23 23:00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	154	S1+	70 - 130				06/05/23 14:53	06/06/23 23:00	
1,4-Difluorobenzene (Surr)	94		70 - 130				06/05/23 14:53	06/06/23 23:00	
Method: TAL SOP Total BTEX - To									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00400	U	0.00400		mg/Kg			06/07/23 10:05	
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (G	iC)						
Analyte		Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fa
	<50.0		50.0					06/06/23 11:29	-
Fotal TPH					mg/Kg			06/06/23 11:29	
Гоtal ТРН Method: SW846 8015B NM - Diese Analyte	el Range Orga Result	nics (DRO) (Qualifier	(GC)	MDL	mg/Kg Unit	D	Prepared	Analyzed	
Method: SW846 8015B NM - Diese	l Range Orga	nics (DRO) (Qualifier	(GC)	MDL		<u>D</u>	Prepared 06/05/23 10:57		Dil Fa
Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	el Range Orga Result	unics (DRO) (Qualifier U	(GC)	MDL	Unit	<u>D</u>	-	Analyzed	Dil Fa
Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	el Range Orga Result <50.0	u <mark>Qualifier</mark> U	(GC) 	MDL	Unit mg/Kg	<u>D</u>	06/05/23 10:57	Analyzed 06/06/23 02:30	Dil Fa
Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate	el Range Orga <u>Result</u> <50.0 <50.0 <50.0 %Recovery	unics (DRO) (Qualifier U U U	(GC) <u>RL</u> 50.0 50.0 50.0 Limits	MDL	Unit mg/Kg mg/Kg	D	06/05/23 10:57 06/05/23 10:57 06/05/23 10:57 06/05/23 10:57 Prepared	Analyzed 06/06/23 02:30 06/06/23 02:30 06/06/23 02:30 Analyzed	Dil Fa
Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate I-Chlorooctane	el Range Orga <u>Result</u> <50.0 <50.0 <50.0 <u>%Recovery</u> 114	unics (DRO) (Qualifier U U U	(GC) <u>RL</u> 50.0 50.0 <u>Limits</u> 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	06/05/23 10:57 06/05/23 10:57 06/05/23 10:57 06/05/23 10:57 Prepared 06/05/23 10:57	Analyzed 06/06/23 02:30 06/06/23 02:30 06/06/23 02:30 Analyzed 06/06/23 02:30	Dil Fa
Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36)	el Range Orga <u>Result</u> <50.0 <50.0 <50.0 %Recovery	unics (DRO) (Qualifier U U U	(GC) <u>RL</u> 50.0 50.0 50.0 Limits	MDL	Unit mg/Kg mg/Kg	<u>D</u>	06/05/23 10:57 06/05/23 10:57 06/05/23 10:57 06/05/23 10:57 Prepared	Analyzed 06/06/23 02:30 06/06/23 02:30 06/06/23 02:30 Analyzed	Dil Fa
Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane 2-Terphenyl Method: EPA 300.0 - Anions, Ion C	El Range Orga Result <50.0 <50.0 <50.0 %Recovery 114 89 Chromatograp	unics (DRO) (Qualifier U U Qualifier Ohy - Soluble	(GC) <u>RL</u> 50.0 50.0 <u>50.0</u> <u>Limits</u> 70 - 130 70 - 130		Unit mg/Kg mg/Kg mg/Kg		06/05/23 10:57 06/05/23 10:57 06/05/23 10:57 Prepared 06/05/23 10:57 06/05/23 10:57	Analyzed 06/06/23 02:30 06/06/23 02:30 06/06/23 02:30 Analyzed 06/06/23 02:30 06/06/23 02:30	Dil Fa
Method: SW846 8015B NM - Diese Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate I-Chlorooctane D-Terphenyl Method: EPA 300.0 - Anions, Ion C Analyte	El Range Orga <u>Result</u> <50.0 <50.0 <50.0 <i>%Recovery</i> 114 89 Chromatograp Result	unics (DRO) (Qualifier U U Qualifier	(GC) <u>RL</u> 50.0 50.0 <u>50.0</u> <u>Limits</u> 70 - 130 70 - 130 9 <u>RL</u>		Unit mg/Kg mg/Kg mg/Kg Unit	D	06/05/23 10:57 06/05/23 10:57 06/05/23 10:57 06/05/23 10:57 Prepared 06/05/23 10:57	Analyzed 06/06/23 02:30 06/06/23 02:30 06/06/23 02:30 Analyzed 06/06/23 02:30 06/06/23 02:30	Dil Fa
Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate I-Chlorooctane D-Terphenyl	El Range Orga Result <50.0 <50.0 <50.0 %Recovery 114 89 Chromatograp	unics (DRO) (Qualifier U U Qualifier Ohy - Soluble	(GC) <u>RL</u> 50.0 50.0 <u>50.0</u> <u>Limits</u> 70 - 130 70 - 130		Unit mg/Kg mg/Kg mg/Kg		06/05/23 10:57 06/05/23 10:57 06/05/23 10:57 Prepared 06/05/23 10:57 06/05/23 10:57	Analyzed 06/06/23 02:30 06/06/23 02:30 06/06/23 02:30 Analyzed 06/06/23 02:30 06/06/23 02:30	Dil Fa Dil Fa
Method: SW846 8015B NM - Diese Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate I-Chlorooctane D-Terphenyl Method: EPA 300.0 - Anions, Ion C Analyte	El Range Orga <u>Result</u> <50.0 <50.0 <50.0 <i>%Recovery</i> 114 89 Chromatograp Result	unics (DRO) (Qualifier U U Qualifier Ohy - Soluble	(GC) <u>RL</u> 50.0 50.0 <u>50.0</u> <u>Limits</u> 70 - 130 70 - 130 9 <u>RL</u>		Unit mg/Kg mg/Kg mg/Kg Unit		06/05/23 10:57 06/05/23 10:57 06/05/23 10:57 Prepared 06/05/23 10:57 06/05/23 10:57 Prepared	Analyzed 06/06/23 02:30 06/06/23 02:30 06/06/23 02:30 Analyzed 06/06/23 02:30 06/06/23 02:30	Dil Fa Dil Fa

-				
Method: SW846 8021E	- Volatile	Organic Co	npounds	(GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U *+	0.00198		mg/Kg		06/05/23 14:53	06/06/23 23:26	1
Toluene	<0.00198	U	0.00198		mg/Kg		06/05/23 14:53	06/06/23 23:26	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		06/05/23 14:53	06/06/23 23:26	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		06/05/23 14:53	06/06/23 23:26	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		06/05/23 14:53	06/06/23 23:26	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		06/05/23 14:53	06/06/23 23:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	161	S1+	70 - 130				06/05/23 14:53	06/06/23 23:26	1

Client Sample Results

Limits

70 - 130

RL

RL

49.8

0.00397

MDL Unit

MDL Unit

MDL Unit

mg/Kg

mg/Kg

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Analyzed

06/06/23 23:26

Analyzed

06/07/23 10:05

Analyzed

06/06/23 11:29

Analyzed

Lab Sample ID: 890-4770-18

Matrix: Solid

1

1

1

1

1

1

Dil Fac

Client Sample ID: AH-6 (0-1')

Project/Site: MLMU SATELLITE 2

Date Collected: 05/31/23 00:00 6:45

Date F

1,4-Difluorobenzene (Surr)

Client: Tetra Tech, Inc.

Surrogate

Analyte

Analyte

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

m-Xylene & p-Xylene

Total TPH

Total BTEX

Date Received:	06/01/23	1
Sample Depth:	0 - 1	

3DG: 2120-MD-03133 TASK 100
Lab Sample ID: 890-4770-17

Prepared

06/05/23 14:53

Prepared

Prepared

Prepared

D

D

D

Matrix: Solid

Dil Fac

Dil Fac

Dil Fac

Dil Fac

1

	6

Method: SW846 8015B NM - Diesel	Range Organics (DRO) (G	C)	
Analyte	Result Qualifier	RL	

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

%Recovery Qualifier

Result Qualifier

Result Qualifier

94

<0.00397 U

71.0

Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg	06/05/23 10:57	06/06/23 06:22	1
Diesel Range Organics (Over	71.0		49.8	mg/Kg	06/05/23 10:57	06/06/23 06:22	1
C10-C28) Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg	06/05/23 10:57	06/06/23 06:22	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130		06/05/23 10:57	06/06/23 06:22	1
o-Terphenyl	77		70 - 130		06/05/23 10:57	06/06/23 06:22	1

Method: EPA 300.0 - Anions, lo	on Chromatography - Soluble

Analyte		alifier RL	MDL Unit	D	Prepared Ana	lyzed Dil Fa	
Chloride	55.6	5.05	mg/Kg		06/05/2	23 21:49	Ī

Client Sample ID: AH-7 (0-1')

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45 Sample Depth: 0 - 1

Method: SW846 8021B - Volatile Organic Compounds (GC) Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac <0.00199 U *+ 0.00199 mg/Kg 06/05/23 14:53 06/06/23 23:52 <0.00199 U 0.00199 06/05/23 14:53 06/06/23 23:52 mg/Kg <0.00199 U 0.00199 mg/Kg 06/05/23 14:53 06/06/23 23:52 <0.00398 U 0.00398 06/05/23 14:53 06/06/23 23:52 mg/Kg <0.00199 U 0.00199 mg/Kg 06/05/23 14:53 06/06/23 23:52

Xylenes, Total	<0.00398	U	0.00398	mg/Kg	06/05/23 14:53	06/06/23 23:52
Surrogate 4-Bromofluorobenzene (Surr)		Qualifier S1+	<i>Limits</i>		Prepared 06/05/23 14:53	Analyzed
4-Бromonuorobenzene (Surr) 1,4-Difluorobenzene (Surr)	84	57+	70 - 130 70 - 130		06/05/23 14:53 06/05/23 14:53	06/06/23 23:52 06/06/23 23:52

Method: TAL SOP Total BTEX - 1	Total BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/07/23 10:05	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	169		49.9		mg/Kg			06/06/23 11:29	1

Matrix: Solid

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Lab Sample ID: 890-4770-18

Lab Sample ID: 890-4770-19

Matrix: Solid

Client Sample ID: AH-7 (0-1')

Project/Site: MLMU SATELLITE 2

Date	Collected:	05/31/23	00:00
-			

Date Received: 06/01/23 16:45

Client: Tetra Tech, Inc.

Sampi	e Dep	un: 0 -	

Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		06/05/23 10:57	06/06/23 06:00	1
Diesel Range Organics (Over C10-C28)	169		49.9		mg/Kg		06/05/23 10:57	06/06/23 06:00	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/05/23 10:57	06/06/23 06:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130				06/05/23 10:57	06/06/23 06:00	1
o-Terphenyl	79		70 - 130				06/05/23 10:57	06/06/23 06:00	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	38.1		4.98		mg/Kg			06/05/23 21:55	1

Client Sample ID: AH-8 (0-1')

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

_	_			
Samp	le D	epth:	0 -	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U *+	0.00201		mg/Kg		06/05/23 14:53	06/07/23 00:19	1
Toluene	<0.00201	U	0.00201		mg/Kg		06/05/23 14:53	06/07/23 00:19	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		06/05/23 14:53	06/07/23 00:19	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		06/05/23 14:53	06/07/23 00:19	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		06/05/23 14:53	06/07/23 00:19	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		06/05/23 14:53	06/07/23 00:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	142	S1+	70 - 130				06/05/23 14:53	06/07/23 00:19	1
1,4-Difluorobenzene (Surr)	86		70 - 130				06/05/23 14:53	06/07/23 00:19	1
Method: TAL SOP Total BTEX - T Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Result <0.00402	Qualifier U	0.00402	MDL	Unit mg/Kg Unit	<u>D</u>	Prepared	Analyzed 06/07/23 10:05 Analyzed	Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese	Result <0.00402	Qualifier U	0.00402		mg/Kg		<u> </u>	06/07/23 10:05	1
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH	Result <0.00402 Range Organ Result 665	Qualifier U ics (DRO) (Qualifier	0.00402 GC) RL 50.0		mg/Kg Unit		<u> </u>	06/07/23 10:05	1
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte	Result <0.00402 Range Organ Result 665 sel Range Orga	Qualifier U ics (DRO) (Qualifier	0.00402 GC) RL 50.0		mg/Kg Unit mg/Kg		<u> </u>	06/07/23 10:05	
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	Result <0.00402 Range Organ Result 665 sel Range Orga	Qualifier U ics (DRO) (Qualifier nics (DRO) Qualifier	0.00402 GC) RL 50.0 (GC)	MDL	mg/Kg Unit mg/Kg	D	Prepared	06/07/23 10:05 Analyzed 06/06/23 11:29	Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese	Result <0.00402 el Range Organ Result 665 sel Range Orga Result	Qualifier U ics (DRO) (Qualifier nics (DRO) Qualifier	0.00402 GC) RL 50.0 (GC) RL	MDL	mg/Kg Unit mg/Kg Unit	D	Prepared	06/07/23 10:05 Analyzed 06/06/23 11:29 Analyzed	Dil Fa

·		Clier	nt Sample R	esults	5				
Client: Tetra Tech, Inc.								Job ID: 890)-4770-1
Project/Site: MLMU SATELLITE 2							SDG: 212	C-MD-03133 TA	ASK 100
Client Sample ID: AH-8 (0-1')							Lab Sam	ple ID: 890-4	770-19
Date Collected: 05/31/23 00:00								-	ix: Solid
Date Received: 06/01/23 16:45									
Sample Depth: 0 - 1									
Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Solub	le						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Chloride	41.2		5.01		mg/Kg			06/05/23 22:00	1
Client Sample ID: AH-9 (0-1')							Lab Sam	ple ID: 890-4	770-20
Date Collected: 05/31/23 00:00								Matr	ix: Solid
Date Received: 06/01/23 16:45									
Sample Depth: 0 - 1									
Method: SW846 8021B - Volatile O	rganic Comp	ounds (GC)						
Analyte	• •	Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U *+	0.00202		mg/Kg		06/05/23 14:53	06/07/23 00:45	1
Toluene	<0.00202	U	0.00202		mg/Kg		06/05/23 14:53	06/07/23 00:45	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		06/05/23 14:53	06/07/23 00:45	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		06/05/23 14:53	06/07/23 00:45	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		06/05/23 14:53	06/07/23 00:45	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		06/05/23 14:53	06/07/23 00:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	146	S1+	70 - 130				06/05/23 14:53	06/07/23 00:45	1
1,4-Difluorobenzene (Surr)	86		70 - 130				06/05/23 14:53	06/07/23 00:45	1
Method: TAL SOP Total BTEX - Tot	tal BTEX Calo	culation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			06/07/23 10:05	1
Method: SW846 8015 NM - Diesel I									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	462		50.0		mg/Kg			06/06/23 11:29	1
					0 0				
Method: SW846 8015B NM - Diese) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		06/05/23 10:57	06/06/23 05:40	1
Diesel Range Organics (Over C10-C28)	462		50.0		mg/Kg		06/05/23 10:57	06/06/23 05:40	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/05/23 10:57	06/06/23 05:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130				06/05/23 10:57	06/06/23 05:40	1
o-Terphenyl	72		70 - 130				06/05/23 10:57	06/06/23 05:40	1
Method: EPA 300.0 - Anions, Ion C	hromatograp	ohy - Solub	le						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

06/05/23 22:05

Chloride

4.99

mg/Kg

44.0

1

Client Sample ID: AH-9 (1-1.5')

Date Collected: 05/31/23 00:00

Project/Site: MLMU SATELLITE 2

Client: Tetra Tech, Inc.

Analyzed

06/07/23 00:56

06/07/23 00:56

06/07/23 00:56

06/07/23 00:56

06/07/23 00:56

06/07/23 00:56

Analyzed

06/07/23 00:56

06/07/23 00:56

D

Prepared

06/05/23 15:06

06/05/23 15:06

06/05/23 15:06

06/05/23 15:06

06/05/23 15:06

06/05/23 15:06

Prepared

06/05/23 15:06

06/05/23 15:06

Lab Sample ID: 890-4770-21 Matrix: Solid

5 Dil Fac Dil Fac 1

1

1

1

1

1

1

1

Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC)		
Analyte	Result	Qualifier	RL	MDL
Benzene	<0.00199	U	0.00199	
Toluene	<0.00199	U	0.00199	
Ethylbenzene	<0.00199	U F1	0.00199	
m-Xylene & p-Xylene	<0.00398	U F1	0.00398	
o-Xylene	<0.00199	U F1	0.00199	
Xylenes, Total	<0.00398	U F1	0.00398	
Surrogate	%Recovery	Qualifier	Limits	
4-Bromofluorobenzene (Surr)	84		70 - 130	
1,4-Difluorobenzene (Surr)	97		70 - 130	

			ы		11		Description	A	D!!
Analyte	Result	Qualifier		MDL	Unit	U	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/07/23 10:17	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	535		49.8		mg/Kg			06/05/23 16:57	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		06/05/23 09:17	06/05/23 14:19	1
(GRO)-C6-C10									
Diesel Range Organics (Over	416		49.8		mg/Kg		06/05/23 09:17	06/05/23 14:19	1
C10-C28)									
Oll Range Organics (Over	119		49.8		mg/Kg		06/05/23 09:17	06/05/23 14:19	1
C28-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	115		70 - 130				06/05/23 09:17	06/05/23 14:19	1
o-Terphenyl	106		70 - 130				06/05/23 09:17	06/05/23 14:19	1
_ Method: EPA 300.0 - Anions, Io	n Chromatograg	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Surrogate Summary

DFBZ1

(70-130)

91

Client: Tetra Tech, Inc. Project/Site: MLMU SATELLITE 2

Lab Sample ID 890-4770-1

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Client Sample ID

H-1 (0-1')

890-4770-1 MS	H-1 (0-1')	122	109
890-4770-1 MSD	H-1 (0-1')	126	94
890-4770-2	H-2 (0-1')	142 S1+	98
890-4770-3	H-3 (0-1')	139 S1+	96
890-4770-4	H-4 (0-1')	139 S1+	92
890-4770-5	H-5 (0-1')	149 S1+	95
890-4770-6	H-6 (0-1')	138 S1+	98
890-4770-7	H-7 (0-1')	144 S1+	96
890-4770-8	H-8 (0-1')	130	86
890-4770-9	H-9 (0-1')	142 S1+	95
890-4770-10	H-10 (0-1')	130	86
890-4770-11	AH-1 (0-1')	122	81
890-4770-12	AH-2 (0-1')	140 S1+	93
890-4770-13	AH-3 (0-1')	149 S1+	93
890-4770-14	AH-4 (0-1')	154 S1+	100
890-4770-15	AH-5 (0-1')	147 S1+	89
890-4770-16	AH-5 (1-1.5')	154 S1+	94
890-4770-17	AH-6 (0-1')	161 S1+	94
890-4770-18	AH-7 (0-1')	137 S1+	84
890-4770-19	AH-8 (0-1')	142 S1+	86
890-4770-20	AH-9 (0-1')	146 S1+	86
890-4770-21	AH-9 (1-1.5')	84	97
890-4770-21 MS	AH-9 (1-1.5')	93	95
890-4770-21 MSD	AH-9 (1-1.5')	96	101
LCS 880-54777/1-A	Lab Control Sample	105	82
LCS 880-54780/1-A	Lab Control Sample	96	95

112

95

75

90

86

99

89

88

117

108

BFB1

(70-130)

128

Surrogate Legend

LCSD 880-54777/2-A

LCSD 880-54780/2-A

MB 880-54777/5-A

MB 880-54780/5-A

MB 880-54853/5-A

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

Lab Control Sample Dup

Lab Control Sample Dup

Method Blank

Method Blank

Method Blank

Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 (70-130) (70-130) Lab Sample ID **Client Sample ID** 880-29062-A-21-C MS Matrix Spike 111 101 880-29062-A-21-D MSD Matrix Spike Duplicate 123 118 890-4770-1 H-1 (0-1') 115 88 890-4770-2 H-2 (0-1') 121 92 890-4770-2 MS 88 H-2 (0-1') 126 890-4770-2 MSD H-2 (0-1') 129 90 890-4770-3 H-3 (0-1') 108 82

Eurofins Carlsbad

Page 68 of 307

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Percent Surrogate Recovery (Acceptance Limits)

Prep Type: Total/NA

Prep Type: Total/NA

Client: Tetra Tech, Inc. Project/Site: MLMU SATELLITE 2

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid

Prep	Type: Total	/NA

				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	·	5
890-4770-4	H-4 (0-1')	111	85		
890-4770-5	H-5 (0-1')	113	87		6
890-4770-6	H-6 (0-1')	102	76		U
890-4770-7	H-7 (0-1')	104	79		
890-4770-8	H-8 (0-1')	109	83		
890-4770-9	H-9 (0-1')	114	87		
890-4770-10	H-10 (0-1')	114	87		8
890-4770-11	AH-1 (0-1')	99	76		
890-4770-12	AH-2 (0-1')	106	77		9
890-4770-13	AH-3 (0-1')	99	74		
890-4770-14	AH-4 (0-1')	104	80		
890-4770-15	AH-5 (0-1')	101	77		
890-4770-16	AH-5 (1-1.5')	114	89		
890-4770-17	AH-6 (0-1')	100	77		
890-4770-18	AH-7 (0-1')	103	79		
890-4770-19	AH-8 (0-1')	105	81		
890-4770-20	AH-9 (0-1')	95	72		13
890-4770-21	AH-9 (1-1.5')	115	106		13
LCS 880-54721/2-A	Lab Control Sample	101	101		
LCS 880-54739/2-A	Lab Control Sample	118	92		
LCSD 880-54721/3-A	Lab Control Sample Dup	103	103		
LCSD 880-54739/3-A	Lab Control Sample Dup	100	77		
MB 880-54721/1-A	Method Blank	115	121		
MB 880-54739/1-A	Method Blank	10 S1-	8 S1-		

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl

Eurofins Carlsbad

Released to Imaging: 5/30/2025 1:25:27 PM

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMU SATELLITE 2

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-54777/5-A

Matrix: Solid Analysis Batch: 54872

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		06/05/23 14:53	06/06/23 14:45	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/05/23 14:53	06/06/23 14:45	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/05/23 14:53	06/06/23 14:45	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		06/05/23 14:53	06/06/23 14:45	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/05/23 14:53	06/06/23 14:45	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		06/05/23 14:53	06/06/23 14:45	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	75		70 - 130				06/05/23 14:53	06/06/23 14:45	1
1,4-Difluorobenzene (Surr)	88		70 - 130				06/05/23 14:53	06/06/23 14:45	1

Lab Sample ID: LCS 880-54777/1-A Matrix: Solid

Analysis Batch: 54872

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1258		mg/Kg		126	70 - 130	
Toluene	0.100	0.1140		mg/Kg		114	70 - 130	
Ethylbenzene	0.100	0.09965		mg/Kg		100	70 - 130	
m-Xylene & p-Xylene	0.200	0.2133		mg/Kg		107	70 - 130	
o-Xylene	0.100	0.1042		mg/Kg		104	70 - 130	

Surrogate 4-Bromofluorobenzene (Surr)	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		70 - 130
1,4-Difluorobenzene (Surr)	82		70 - 130

Lab Sample ID: LCSD 880-54777/2-A

Matrix: Solid

Analysis Batch: 54872							Prep	Batch:	54777
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1388	*+	mg/Kg		139	70 - 130	10	35
Toluene	0.100	0.1232		mg/Kg		123	70 - 130	8	35
Ethylbenzene	0.100	0.1210		mg/Kg		121	70 - 130	19	35
m-Xylene & p-Xylene	0.200	0.2363		mg/Kg		118	70 - 130	10	35
o-Xylene	0.100	0.1141		mg/Kg		114	70 - 130	9	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	112		70 - 130
1,4-Difluorobenzene (Surr)	99		70 - 130

Lab Sample ID: 890-4770-1 MS Matrix: Solid

Analysis Bataby 54972

Analysis Batch: 54872									Prep Batch: 54777
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	<0.00201	U *+	0.101	0.1229		mg/Kg		122	70 - 130
Toluene	<0.00201	U	0.101	0.09436		mg/Kg		94	70 - 130

Eurofins Carlsbad

Client Sample ID: H-1 (0-1')

Prep Type: Total/NA

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 54777

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Bat

Prep Type: Total/NA

tch:	54777	

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-4770-1 MS Matrix: Solid									CII	ent Sample ID:	
										Prep Type:	
Analysis Batch: 54872	Sample	Sam	nlo	Spike	MS	MC				Prep Bate	:n: 5 477
Analyta	Result			Spike		MS Qualifiar	Unit		D % Baa	%Rec	
Analyte	<0.00201			Added		Qualifier	Unit		D %Rec	Limits	
Ethylbenzene					0.07856		mg/Kg		78	70 - 130	
n-Xylene & p-Xylene	< 0.00402			0.202	0.1487		mg/Kg		74	70 - 130	
-Xylene	<0.00201	U		0.101	0.07288		mg/Kg		72	70 - 130	
	MS	MS									
Surrogate	%Recovery	Qua	lifier	Limits							
I-Bromofluorobenzene (Surr)	122			70 - 130							
,4-Difluorobenzene (Surr)	109			70 - 130							
₋ab Sample ID: 890-4770-1 MSI Matrix: Solid)								Cli	ent Sample ID: Prep Type:	
Analysis Batch: 54872										Prep Bate	
anary 515 Daton. 54072	Sample	Sam	nle	Spike	MSD	MSD				%Rec	RF
nalyte	Result			Added		Qualifier	Unit		D %Rec	Limits RI	
enzene		U *+		0.100	0.1218		mg/Kg		<u>– /// 122</u> –	70 - 130	1
oluene	<0.00201			0.100	0.09926		mg/Kg		99	70 - 130 70 - 130	5
thylbenzene	<0.00201			0.100	0.09920		mg/Kg		99 87		10
n-Xylene & p-Xylene	<0.00201			0.200	0.1524		mg/Kg		76	70 - 130	2
-Xylene	<0.00402			0.200	0.07820		mg/Kg		78	70 - 130 70 - 130	7
Туюне	S0.00201	0		0.100	0.07020		iiig/itg		70	70 - 100	,
	MSD	MSE									
currogate	%Recovery	Qua	lifier	Limits							
-Bromofluorobenzene (Surr)	126			70 - 130							
,4-Difluorobenzene (Surr)	94			70 - 130							
ab Sample ID: MB 880-54780/5	5-A								Client S	ample ID: Meth	od Blar
Matrix: Solid										Prep Type:	Total/N
Analysis Batch: 54839										Prep Bate	h: 5478
		MB	МВ								
nalyte			Qualifier	RL		MDL Unit		D	Prepared	Analyzed	Dil Fa
enzene	<0.0	0200	U	0.00200		mg/K	ζg	(06/05/23 15:06	06/07/23 00:27	
oluene	<0.0	0200	U	0.00200		mg/K	ζg		06/05/23 15:06	06/07/23 00:27	
thylbenzene	<0.0	0200	U	0.00200		mg/K	ξg	(06/05/23 15:06	06/07/23 00:27	
n-Xylene & p-Xylene	<0.0	0400	U	0.00400		mg/K	ξg		06/05/23 15:06	06/07/23 00:27	
-Xylene	<0.0	0200	U	0.00200		mg/K	ίg	(06/05/23 15:06	06/07/23 00:27	
(ylenes, Total	<0.0	0400	U	0.00400		mg/K	ζg	(06/05/23 15:06	06/07/23 00:27	
		ΜВ	МВ								
Surrogate	%Reco		Qualifier	Limits					Prepared	Analyzed	Dil F
-Bromofluorobenzene (Surr)		90		70 - 130					06/05/23 15:06	06/07/23 00:27	
,4-Difluorobenzene (Surr)		117		70 - 130					06/05/23 15:06	06/07/23 00:27	
ab Sample ID: LCS 880-54780/	΄1-Δ							Cli	ent Sample	ID: Lab Contro	l Samp
Aatrix: Solid								01	en campie	Prep Type:	-
Analysis Batch: 54839										Prep Bate	
-mary 515 Daton. 34035				Spike	105	LCS				%Rec	/11. 04/0
				Upinto	200					/01000	
nalvte				-	Result	Qualifier	Unit			l imits	
				Added		Qualifier	Unit		<u>D</u> % Rec 122	Limits	
Analyte				-	Result 0.1219 0.1184	Qualifier	<mark>Unit</mark> mg/Kg mg/Kg		D %Rec - 122 - 118	Limits 70 - 130 70 - 130	

Eurofins Carlsbad

Ethylbenzene

m-Xylene & p-Xylene

0.09711

0.1993

mg/Kg

mg/Kg

97

100

70 - 130

70 - 130

0.100

0.200

Lab Sample ID: LCS 880-54780/1-A

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMU SATELLITE 2

Matrix: Solid

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

A 1 1 B () B ()									_		
Analysis Batch: 54839										Batch:	54780
			Spike		LCS		_		%Rec		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
o-Xylene			0.100	0.09755		mg/Kg		98	70 - 130		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	96		70 - 130								
1,4-Difluorobenzene (Surr)	95		70 - 130								
Lab Sample ID: LCSD 880-5	54780/2-A					Clie	nt Sam	ple ID:	Lab Contro	I Sample	e Dup
Matrix: Solid									Prep T	ype: Tot	tal/NA
Analysis Batch: 54839									Prep	Batch:	54780
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Benzene			0.100	0.1212		mg/Kg		121	70 - 130	1	35
Toluene			0.100	0.1164		mg/Kg		116	70 _ 130	2	35
Ethylbenzene			0.100	0.1012		mg/Kg		101	70 - 130	4	35
m-Xylene & p-Xylene			0.200	0.1920		mg/Kg		96	70 - 130	4	35
o-Xylene			0.100	0.09294		mg/Kg		93	70 - 130	5	35
	LCSD										
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery	Qualifier	Limits 70 - 130								
()	95										
	89		70 - 130								
1,4-Dilluorobenzerie (Surr)											
	1 MS							Client	Sample ID	· / L Q (/	1_1_5"
Lab Sample ID: 890-4770-2	1 MS							Client	Sample ID		
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-4770-2' Matrix: Solid	1 MS							Client	Prep T	ype: Tot	tal/NA
Lab Sample ID: 890-4770-2		Samolo		MS	MS			Client	Prep T Prep		tal/NA
Lab Sample ID: 890-4770-2 Matrix: Solid Analysis Batch: 54839	Sample	•	Spike		MS	Unit	D		Prep T Prep %Rec	ype: Tot	tal/NA
Lab Sample ID: 890-4770-2 Matrix: Solid Analysis Batch: 54839 Analyte	Sample Result	Qualifier	Spike Added	Result	MS Qualifier	Unit ma/Ka	D	%Rec	Prep T Prep %Rec Limits	ype: Tot	tal/NA
Lab Sample ID: 890-4770-2 Matrix: Solid Analysis Batch: 54839 Analyte Benzene	Sample 	Qualifier	Spike Added 0.101	Result 0.1054		mg/Kg	D	%Rec 105	Prep T Prep %Rec Limits 70 - 130	ype: Tot	tal/NA
Lab Sample ID: 890-4770-2 Matrix: Solid Analysis Batch: 54839 Analyte Benzene Toluene	Sample Result <0.00199 <0.00199	Qualifier U U	Spike Added 0.101 0.101	Result 0.1054 0.08777	Qualifier	mg/Kg mg/Kg	<u>D</u>	%Rec 105 87	Prep T Prep %Rec Limits 70 - 130 70 - 130	ype: Tot	tal/NA
Lab Sample ID: 890-4770-2 Matrix: Solid Analysis Batch: 54839 Analyte Benzene Toluene Ethylbenzene	Sample Result <0.00199 <0.00199 <0.00199	Qualifier U U U F1	Spike Added 0.101 0.101 0.101	Result 0.1054 0.08777 0.05889	Qualifier F1	mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 105 87 58	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130	ype: Tot	tal/NA
Lab Sample ID: 890-4770-2 Matrix: Solid Analysis Batch: 54839 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00199 <0.00199 <0.00199 <0.00398	Qualifier U U U F1 U F1	Spike Added 0.101 0.101 0.101 0.202	Result 0.1054 0.08777 0.05889 0.1137	Qualifier F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 105 87 58 56	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: Tot	tal/NA
Lab Sample ID: 890-4770-2 Matrix: Solid Analysis Batch: 54839 Analyte Benzene Toluene Ethylbenzene	Sample Result <0.00199 <0.00199 <0.00199	Qualifier U U U F1 U F1	Spike Added 0.101 0.101 0.101	Result 0.1054 0.08777 0.05889	Qualifier F1 F1	mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 105 87 58	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130	ype: Tot	tal/NA
Lab Sample ID: 890-4770-2 Matrix: Solid Analysis Batch: 54839 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00199	Qualifier U U U F1 U F1	Spike Added 0.101 0.101 0.101 0.202	Result 0.1054 0.08777 0.05889 0.1137	Qualifier F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 105 87 58 56	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: Tot	tal/NA
Lab Sample ID: 890-4770-2 Matrix: Solid Analysis Batch: 54839 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00199	Qualifier U U U F1 U F1 U F1 U F1 <i>MS</i>	Spike Added 0.101 0.101 0.101 0.202	Result 0.1054 0.08777 0.05889 0.1137	Qualifier F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 105 87 58 56	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: Tot	tal/NA
Lab Sample ID: 890-4770-2 Matrix: Solid Analysis Batch: 54839 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 <i>MS</i>	Qualifier U U U F1 U F1 U F1 U F1 <i>MS</i>	Spike Added 0.101 0.101 0.101 0.202 0.101	Result 0.1054 0.08777 0.05889 0.1137	Qualifier F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 105 87 58 56	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: Tot	tal/NA
Lab Sample ID: 890-4770-2 Matrix: Solid Analysis Batch: 54839 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery	Qualifier U U U F1 U F1 U F1 U F1 <i>MS</i>	Spike Added 0.101 0.101 0.101 0.202 0.101 Limits	Result 0.1054 0.08777 0.05889 0.1137	Qualifier F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 105 87 58 56	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: Tot	tal/NA
Lab Sample ID: 890-4770-24 Matrix: Solid Analysis Batch: 54839 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	Sample Result <0.00199	Qualifier U U U F1 U F1 U F1 U F1 <i>MS</i>	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 Limits 70 - 130	Result 0.1054 0.08777 0.05889 0.1137	Qualifier F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 105 87 58 56	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: Tot	tal/NA
Lab Sample ID: 890-4770-24 Matrix: Solid Analysis Batch: 54839 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	Sample Result <0.00199	Qualifier U U U F1 U F1 U F1 U F1 <i>MS</i>	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 Limits 70 - 130	Result 0.1054 0.08777 0.05889 0.1137	Qualifier F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 105 87 58 56 55	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: Tot Batch:	tal/NA 54780
Lab Sample ID: 890-4770-24 Matrix: Solid Analysis Batch: 54839 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	Sample Result <0.00199	Qualifier U U U F1 U F1 U F1 U F1 <i>MS</i>	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 Limits 70 - 130	Result 0.1054 0.08777 0.05889 0.1137	Qualifier F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 105 87 58 56 55	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 500	ype: Tot Batch:	tal/NA 54780
Lab Sample ID: 890-4770-2' Matrix: Solid Analysis Batch: 54839 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-4770-2'	Sample Result <0.00199	Qualifier U U U F1 U F1 U F1 U F1 <i>MS</i>	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 Limits 70 - 130	Result 0.1054 0.08777 0.05889 0.1137	Qualifier F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 105 87 58 56 55	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: Tot Batch:	tal/NA 54780 1-1.5') tal/NA
Lab Sample ID: 890-4770-2' Matrix: Solid Analysis Batch: 54839 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-4770-2' Matrix: Solid	Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 93 95	Qualifier U U U F1 U F1 U F1 U F1 <i>MS</i>	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 Limits 70 - 130	Result 0.1054 0.08777 0.05889 0.1137 0.05562	Qualifier F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 105 87 58 56 55	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: Tof Batch: 	tal/NA 54780 1-1.5') tal/NA 54780
Lab Sample ID: 890-4770-2' Matrix: Solid Analysis Batch: 54839 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-4770-2' Matrix: Solid	Sample Result <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 93 95 1 MSD	Qualifier U UF1 UF1 UF1 MS Qualifier	Spike Added 0.101 0.101 0.101 0.202 0.101 D.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101	Result 0.1054 0.08777 0.05889 0.1137 0.05562 MSD	Qualifier F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg	D 	%Rec 105 87 58 56 55	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: Tof Batch: 	tal/NA 54780 1-1.5') tal/NA 54780 RPD
Lab Sample ID: 890-4770-2' Matrix: Solid Analysis Batch: 54839 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-4770-2' Matrix: Solid Analysis Batch: 54839	Sample Result <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 93 95 1 MSD	Qualifier U U F1 U F1 U F1 MS Qualifier Sample Qualifier	Spike Added 0.101 0.101 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 Description 70 - 130 70 - 130 70 - 130 Spike	Result 0.1054 0.08777 0.05889 0.1137 0.05562 MSD	Qualifier F1 F1 F1 MSD	mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 105 87 58 56 55 Client	Prep T Prep %Rec Limits 70 - 130 70 - 190 %Rec	AH-9 (Batch: 5 ype: Tot Batch: 5	tal/NA 54780 1-1.5') tal/NA 54780 RPD Limit
Lab Sample ID: 890-4770-2' Matrix: Solid Analysis Batch: 54839 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-4770-2' Matrix: Solid Analysis Batch: 54839 Analyte	Sample Result <0.00199	Qualifier U U F1 U F1 U F1 MS Qualifier U	Spike Added 0.101 0.101 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 Limits 70 - 130 70 - 130 Spike Added	Result 0.1054 0.08777 0.05889 0.1137 0.05562	Qualifier F1 F1 F1 MSD	mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 105 87 58 56 55 Client	Prep T Prep %Rec Limits 70 - 130 70 - 190 70 - 130 70 - 190 70 - 1	AH-9 (Batch: ype: Tot Batch: RPD	tal/NA 54780 1-1.5') tal/NA 54780 RPD Limit
Lab Sample ID: 890-4770-2' Matrix: Solid Analysis Batch: 54839 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-4770-2' Matrix: Solid Analysis Batch: 54839 Analyte Benzene	Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 93 95 1 MSD Sample Result <0.00199	Qualifier U U F1 U F1 U F1 MS Qualifier U U	Spike Added 0.101 0.101 0.101 0.202 0.101 Limits 70 - 130 70 - 130 Spike Added 0.101	Result 0.1054 0.08777 0.05889 0.1137 0.05562 MSD Result 0.09741	Qualifier F1 F1 F1 Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg		%Rec 105 87 58 56 55 55 Client %Rec 97	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	<pre>ype: Tof Batch: </pre>	tal/NA 54780 1-1.5') tal/NA 54780 RPD Limit 35 35
Lab Sample ID: 890-4770-2' Matrix: Solid Analysis Batch: 54839 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-4770-2' Matrix: Solid Analysis Batch: 54839 Analyte Benzene Toluene	Sample Result <0.00199	Qualifier U U U F1 U F1 U F1 MS Qualifier Qualifier U U U U F1	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 Limits 70 - 130 70 - 130 Spike Added 0.101	Result 0.1054 0.08777 0.05889 0.1137 0.05562 MSD Result 0.09741 0.0833	Qualifier F1 F1 F1 F1 F1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 105 87 58 56 55	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Prep T Prep %Rec Limits 70 - 130 70 - 130	<pre>ype: Tot Batch: # </pre>	tal/NA 54780 1-1.5') tal/NA
QC Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMU SATELLITE 2

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-4770-21 MSD Matrix: Solid

Analysis Batch: 54839

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	96		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: MB 880-54853/5-A Matrix: Solid

Analysis Batch: 54839

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
< 0.00200	U	0.00200		mg/Kg		06/06/23 10:01	06/06/23 12:50	1
<0.00200	U	0.00200		mg/Kg		06/06/23 10:01	06/06/23 12:50	1
<0.00200	U	0.00200		mg/Kg		06/06/23 10:01	06/06/23 12:50	1
<0.00400	U	0.00400		mg/Kg		06/06/23 10:01	06/06/23 12:50	1
<0.00200	U	0.00200		mg/Kg		06/06/23 10:01	06/06/23 12:50	1
<0.00400	U	0.00400		mg/Kg		06/06/23 10:01	06/06/23 12:50	1
МВ	МВ							
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
86		70 - 130				06/06/23 10:01	06/06/23 12:50	1
108		70 - 130				06/06/23 10:01	06/06/23 12:50	1
	Result <0.00200	Result Qualifier <0.00200	Result Qualifier RL <0.00200	Result Qualifier RL MDL <0.00200	Result Qualifier RL MDL Unit <0.00200	Result Qualifier RL MDL Unit D <0.00200	Result Qualifier RL MDL Unit D Prepared <0.00200	Result Qualifier RL MDL Unit D Prepared Analyzed <0.00200

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

101

101

Lab Sample ID: MB 880-54721/1- Matrix: Solid	A									Client Sa	ample ID: Metho Prep Type:	
Analysis Batch: 54716											Prep Batc	h: 54721
	MB	MB										
Analyte	Result	Qualifier	RL		MDL	Unit		D	Pr	epared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0			mg/K	9	- 06	5/05	5/23 08:00	06/05/23 08:21	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0			mg/K	9	06	5/05	5/23 08:00	06/05/23 08:21	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0			mg/K	g	06	5/05	5/23 08:00	06/05/23 08:21	1
	MB	MB										
Surrogate	%Recovery	Qualifier	Limits						Pr	repared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130					06	5/0	5/23 08:00	06/05/23 08:21	1
o-Terphenyl	121		70 - 130					06	5/03	5/23 08:00	06/05/23 08:21	1
Lab Sample ID: LCS 880-54721/2	2-A							Clie	nt	Sample	ID: Lab Contro	Sample
Matrix: Solid											Prep Type:	Total/NA
Analysis Batch: 54716											Prep Batc	h: 54721
-			Spike	LCS	LCS						%Rec	
Analyte			Added	Result	Qua	lifier	Unit	0	5	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10			1000	1206			mg/Kg			121	70 - 130	
Diesel Range Organics (Over C10-C28)			1000	917.6			mg/Kg			92	70 - 130	
	LCS LCS	6										
Surrogate	%Recovery Qua	alifier	Limits									

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Client Sample ID: AH-9 (1-1.5')

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 54853

Prep Batch: 54780

1-Chlorooctane

o-Terphenyl

70 - 130

70 - 130

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMU SATELLITE 2

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: LCSD 880-547	/21/3-A								Cl	ient	Sam	nple ID: L	ab Contro	I Samp	le Dup
Matrix: Solid														-	otal/NA
Analysis Batch: 54716														Batch	
				Spike		LCSD	LCS	D					%Rec		RPD
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Organics				1000		1211			mg/Kg			121	70 - 130	0	20
(GRO)-C6-C10															
Diesel Range Organics (Over				1000		910.3			mg/Kg			91	70 - 130	1	20
C10-C28)															
	LCSD	LCS	D												
Surrogate	%Recovery	Qua	lifier	Limits											
1-Chlorooctane	103			70 - 130	-										
o-Terphenyl	103			70 - 130											
_															
Lab Sample ID: 880-29062-A-2	21-C MS											Client S	Sample ID	: Matrix	Spike
Matrix: Solid													Prep 1	ype: To	otal/NA
Analysis Batch: 54716															54721
	Sample	Sam	ple	Spike		MS	MS						%Rec		
Analyte	Result	Qua	lifier	Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<49.9	U		998		1039			mg/Kg			100	70 - 130		
Diesel Range Organics (Over	<49.9	U		998		1051			mg/Kg			105	70 - 130		
C10-C28)	10.0	Ũ		000		1001			mg/rtg			100	10-100		
,															
		MS													
Surrogate	%Recovery	Qua	lifier	Limits	-										
1-Chlorooctane	111			70 - 130											
o-Terphenyl _	101			70 - 130											
	21-D MSD									Clie	nt Sa	ample ID:	: Matrix Sp	oike Du	plicate
Matrix: Solid															otal/NA
Analysis Batch: 54716														Batch	
	Sample	Sam	ple	Spike		MSD	MSD)					%Rec		RPD
Analyte	Result	Qua	lifier	Added		Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U		999		1183			mg/Kg			114	70 - 130	13	20
Diesel Range Organics (Over C10-C28)	<49.9	U		999		1214			mg/Kg			122	70 - 130	14	20
010 020)															
•	MSD														
Surrogate	%Recovery	Qua	lifier	Limits	-										
1-Chlorooctane	123			70 - 130											
o-Terphenyl	118			70 - 130											
_ Lab Sample ID: MB 880-54739)/1-A											Client Sa	ample ID:	Method	Blank
Matrix: Solid													Prep 1	ype: To	otal/NA
Analysis Batch: 54713													Prep	Batch	54739
		MB	MB												
Analyte			Qualifier		RL		MDL	Unit		D	P	repared	Analyz	ed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<	50.0	U		50.0			mg/K	9		06/0	5/23 10:57	06/05/23	21:06	1
Diesel Range Organics (Over C10-C28)	<	50.0	U		50.0			mg/K	9		06/0	5/23 10:57	06/05/23	21:06	1
Oll Range Organics (Over C28-C36)	<	50.0	U		50.0			mg/K	g		06/0	5/23 10:57	06/05/23	21:06	1

Eurofins Carlsbad

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMU SATELLITE 2

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-54739/1	I-A							Client S	ample ID: M	ethod	Blank
Matrix: Solid									Prep Ty		
Analysis Batch: 54713									Prep E		
	,	MB MB									
Surrogate	' %Recove		Limits				F	Prepared	Analyzed	4	Dil Fac
1-Chlorooctane		10 S1-	70 - 130)5/23 10:57			1
o-Terphenyl		8 S1-	70 - 130) 5/23 10:57			1
		• • •									
Lab Sample ID: LCS 880-54739/	'2-A						Client	t Sample	ID: Lab Cor	trol S	ample
Matrix: Solid									Prep Ty	pe: To	tal/NA
Analysis Batch: 54713									Prep E	Batch:	54739
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics			1000	1009		mg/Kg		101	70 - 130		
(GRO)-C6-C10			4000	070 0				07	70 400		
Diesel Range Organics (Over C10-C28)			1000	970.6		mg/Kg		97	70 - 130		
010-028)											
	LCS L	.CS									
Surrogate		Qualifier	Limits								
1-Chlorooctane	118		70 - 130								
o-Terphenyl	92		70 - 130								
- Lab Sample ID: LCSD 880-5473	9/3- A					Clie	ont San	nde ID· I	_ab Control	Samn	
Matrix: Solid	5/5-A					One			Prep Ty		
Analysis Batch: 54713									Prep E		
Analysis Baten. 647 16			Spike	LCSD	LCSD				%Rec	aton.	RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	976.1		mg/Kg		98	70 - 130	3	20
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	973.6		mg/Kg		97	70 - 130	0	20
C10-C28)											
	LCSD L	.CSD									
Surrogate	%Recovery 0	Qualifier	Limits								
1-Chlorooctane	100		70 - 130								
o-Terphenyl	77		70 - 130								
-											
Lab Sample ID: 890-4770-2 MS								Cli	ent Sample		· · ·
Matrix: Solid									Prep Ty		
Analysis Batch: 54713			• "						Prep E	satch:	54739
• • •	Sample S	-	Spike		MS		_	o/ -	%Rec		
Analyte	Result C		Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.9 L	J	998	923.8		mg/Kg		90	70 - 130		
(GRO)-C6-C10 Diesel Range Organics (Over	<49.9 L	J	998	801.8		mg/Kg		78	70 - 130		
C10-C28)	10.0 0	-	230	201.0							
<i>.</i>											

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	126		70 - 130
o-Terphenyl	88		70 _ 130

Eurofins Carlsbad

5

Page 75 of 307

Client: Tetra Tech, Inc.

5

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Project/Site: MLMU SATELLITE 2 Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-4770-2 Matrix: Solid									ent Sample Prep 1	ype: To	
										Batch:	
Analysis Batch: 54713	Comula	Comula	Califo	MOD	MSD				%Rec	Datch:	
Analuta	-	Sample Qualifier	Spike Added	MSD		Unit	D	%Rec	Limits	RPD	RPC Limi
Analyte Gasoline Range Organics			999	925.6	Quaimer		<u> </u>		70 - 130	0	20
(GRO)-C6-C10	\$49.9	0	999	925.0		mg/Kg		90	70 - 130	0	20
Diesel Range Organics (Over	<49.9	U	999	823.6		mg/Kg		80	70 - 130	3	20
C10-C28)						5 5					
	MSD	MSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane			70 - 130								
o-Terphenyl	90		70 - 130 70 - 130								
			/01/00								
lethod: 300.0 - Anions,	on Chromat	ography									
Lab Sample ID: MB 880-5460	68/1-A							Client S	ample ID:	Method	Blank
Matrix: Solid									Prep	Type: So	oluble
Analysis Batch: 54798											
		MB MB									
Analyte	R	esult Qualifier		RL	MDL Unit		D P	repared	Analyz	ed	Dil Fac
Chloride	<	<5.00 U		5.00	mg/K	g			06/05/23	16:31	
			Spike		LCS		_		%Rec		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Chloride			250	262.6		mg/Kg		105	90 - 110		
Lab Sample ID: LCSD 880-54	4668/3-A					CI	ent San	nple ID:	Lab Contro	I Sampl	e Dup
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 54798											
-			Spike	LCSD	LCSD				%Rec		
Amaluta											RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	RPC Limi
			Added 250	Result 246.3	Qualifier	mg/Kg	<u>D</u>	%Rec 99	Limits 90 - 110	RPD 6	
Chloride	 B- E MS				Qualifier		<u>D</u>	99		6	Limi 20
Chloride	8-E MS				Qualifier		<u> </u>	99	90 - 110 Sample ID	6	Limi 20 Spike
Chloride Lab Sample ID: 890-4771-A- Matrix: Solid	8-E MS				Qualifier		<u>D</u>	99	90 - 110 Sample ID	6 : Matrix	Limi 20 Spike
Chloride Lab Sample ID: 890-4771-A- Matrix: Solid		Sample		246.3	Qualifier		<u> </u>	99	90 - 110 Sample ID	6 : Matrix	Limi 20 Spike
Chloride Lab Sample ID: 890-4771-A- Matrix: Solid Analysis Batch: 54798	Sample	Sample Qualifier	250	246.3 MS			<u>D</u>	99	90 - 110 Sample ID Prep	6 : Matrix	Limi 20 Spike
Chloride Lab Sample ID: 890-4771-A- Matrix: Solid Analysis Batch: 54798 Analyte	Sample	-	250 Spike	246.3 MS	MS Qualifier	mg/Kg		99 Client	90 - 110 Sample ID Prep %Rec	6 : Matrix	Limi 20 Spike
Chloride Lab Sample ID: 890-4771-A- Matrix: Solid Analysis Batch: 54798 Analyte Chloride	Sample Result 1200	-	250 Spike Added	246.3 MS Result	MS Qualifier	Unit	D	99 Client %Rec 89	90 - 110 Sample ID Prep %Rec Limits 90 - 110	6 : Matrix Type: So	Limi 20 Spike bluble
Chloride Lab Sample ID: 890-4771-A- Matrix: Solid Analysis Batch: 54798 Analyte Chloride Lab Sample ID: 890-4771-A-	Sample Result 1200	-	250 Spike Added	246.3 MS Result	MS Qualifier	Unit	D	99 Client %Rec 89	90 - 110 Sample ID Prep %Rec Limits 90 - 110 D: Matrix Sp	6 : Matrix Type: So 	Limi 20 Spike oluble
Chloride Lab Sample ID: 890-4771-A- Matrix: Solid Analysis Batch: 54798 Analyte Chloride Lab Sample ID: 890-4771-A- Matrix: Solid	Sample Result 1200	-	250 Spike Added	246.3 MS Result	MS Qualifier	Unit	D	99 Client %Rec 89	90 - 110 Sample ID Prep %Rec Limits 90 - 110 D: Matrix Sp	6 : Matrix Type: So	Limi 20 Spike oluble
Chloride Lab Sample ID: 890-4771-A- Matrix: Solid Analysis Batch: 54798 Analyte Chloride Lab Sample ID: 890-4771-A- Matrix: Solid	Sample Result 1200 8-F MSD	-	250 Spike Added	246.3 MS <u>Result</u> 1419	MS Qualifier	Unit	D	99 Client %Rec 89	90 - 110 Sample ID Prep %Rec Limits 90 - 110 D: Matrix Sp	6 : Matrix Type: So 	Limi 20 Spike oluble
Analysis Batch: 54798 Analyte	Sample <u>Result</u> 1200 8-F MSD Sample	Qualifier	250 Spike Added 250	246.3 MS Result 1419 MSD	MS Qualifier 4	Unit	D	99 Client %Rec 89	90 - 110 Sample ID Prep %Rec Limits 90 - 110 D: Matrix Sp Prep	6 : Matrix Type: So 	Limi 20 Spike oluble

Eurofins Carlsbad

0

86

90 - 110

1200

Chloride

250

1412 4

mg/Kg

20

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Project/Site: MLMU SATELLITE 2

Client: Tetra Tech, Inc.

_ Lab Sample ID: MB 880-54669/1-A											Client S	ample ID: I	Nethod	Blank
Matrix: Solid													Type: S	
Analysis Batch: 54800														
		МВ М	в											
Analyte	R	esult Q	ualifier		RL		MDL Ur	it	D	P	repared	Analyz	ed	Dil Fac
Chloride		<5.00 U			5.00		mg	g/Kg			-	06/05/23	19:21	1
-								-						
Lab Sample ID: LCS 880-54669/2-/	Α								Cli	ent	Sample	ID: Lab Co	ontrol S	ample
Matrix: Solid												Prep	Type: S	oluble
Analysis Batch: 54800														
				Spike		LCS	LCS					%Rec		
Analyte				Added		Result	Qualifie	r Unit		D	%Rec	Limits		
Chloride				250		257.0		mg/Kg		_	103	90 - 110		
-														
Lab Sample ID: LCSD 880-54669/3	3-A							CI	ient S	Sam	ple ID: I	Lab Contro	l Sampl	e Dup
Matrix: Solid												Prep	Type: S	oluble
Analysis Batch: 54800														
-				Spike		LCSD	LCSD					%Rec		RPD
Analyte				Added	1	Result	Qualifie	r Unit		D	%Rec	Limits	RPD	Limit
Chloride				250		255.8		mg/Kg		_	102	90 - 110	0	20
-								00						
Lab Sample ID: 890-4770-1 MS											Cli	ent Sample	ID: H-1	(0-1 "
Matrix: Solid												Prep	Type: S	oluble
Analysis Batch: 54800														
	Sample	Sample		Spike		MS	MS					%Rec		
Analyte	Result	Qualifie	r	Added	1	Result	Qualifie	r Unit		D	%Rec	Limits		
Chloride	53.9	F1		252		272.0	F1	mg/Kg		_	87	90 - 110		
-								00						
Lab Sample ID: 890-4770-1 MSD											Cli	ent Sample	ID: H-1	(0-1')
Matrix: Solid													Type: S	
Analysis Batch: 54800														
-	Sample	Sample		Spike		MSD	MSD					%Rec		RPD
Analyte	Result	Qualifie	r	Added	I	Result	Qualifie	r Unit		D	%Rec	Limits	RPD	Limit
Chloride	53.9	-								—		90 - 110	2	20
	00.9	F1		252		267.1	F1	ma/Ka			85			
-	55.9	F1		252		267.1	F1	mg/Kg			85	90 - 110	2	
Lab Sample ID: 890-4770-11 MS	55.9	F1		252		267.1	F1	mg/Kg				nt Sample I		
-	55.9	F1		252		267.1	F1	mg/Kg				nt Sample I	D: AH-1	l (0-1')
Lab Sample ID: 890-4770-11 MS Matrix: Solid	53.9	F1		252		267.1	F1	mg/Kg				nt Sample I		l (0-1')
_ Lab Sample ID: 890-4770-11 MS		F1 Sample		252 Spike		267.1 MS		mg/Kg				nt Sample I	D: AH-1	l (0-1')
Lab Sample ID: 890-4770-11 MS Matrix: Solid Analysis Batch: 54800	Sample					MS	MS			D		nt Sample I Prep	D: AH-1	l (0-1')
Lab Sample ID: 890-4770-11 MS Matrix: Solid Analysis Batch: 54800 Analyte	Sample Result	Sample		Spike Added	1	MS Result		r Unit		D	Clier %Rec	nt Sample I Prep %Rec Limits	D: AH-1	l (0-1')
Lab Sample ID: 890-4770-11 MS Matrix: Solid Analysis Batch: 54800	Sample	Sample		Spike	1	MS	MS			<u>D</u>	Clie	nt Sample I Prep %Rec	D: AH-1	l (0-1')
Lab Sample ID: 890-4770-11 MS Matrix: Solid Analysis Batch: 54800 Analyte Chloride	Sample Result	Sample		Spike Added	1	MS Result	MS	r Unit		<u>D</u>	Clier %Rec 105	nt Sample I Prep %Rec Limits	D: AH-1 Type: S	l (0-1') oluble
Lab Sample ID: 890-4770-11 MS Matrix: Solid Analysis Batch: 54800 Analyte Chloride Lab Sample ID: 890-4770-11 MSD	Sample Result	Sample		Spike Added	1	MS Result	MS	r Unit		<u>D</u>	Clier %Rec 105	nt Sample Prep %Rec Limits 90 - 110 nt Sample	D: AH-1 Type: S	l (0-1') oluble l (0-1')
Lab Sample ID: 890-4770-11 MS Matrix: Solid Analysis Batch: 54800 Analyte Chloride Lab Sample ID: 890-4770-11 MSD Matrix: Solid	Sample Result	Sample		Spike Added	1	MS Result	MS	r Unit		<u>D</u>	Clier %Rec 105	nt Sample Prep %Rec Limits 90 - 110 nt Sample	D: AH-1 Type: S D: AH-1	l (0-1') oluble
Lab Sample ID: 890-4770-11 MS Matrix: Solid Analysis Batch: 54800 Analyte Chloride Lab Sample ID: 890-4770-11 MSD	Sample Result 39.6	Sample	r	Spike Added	1	MS Result	MS Qualifie	r Unit		<u>D</u>	Clier %Rec 105	nt Sample Prep %Rec Limits 90 - 110 nt Sample	D: AH-1 Type: S D: AH-1	l (0-1') oluble
Lab Sample ID: 890-4770-11 MS Matrix: Solid Analysis Batch: 54800 Analyte Chloride Lab Sample ID: 890-4770-11 MSD Matrix: Solid	Sample Result 39.6 Sample	Sample Qualifie	<u>r</u>	Spike Added 251		MS Result 302.7 MSD	MS Qualifie	r Unit mg/Kg		D	Clier %Rec 105	nt Sample I Prep %Rec Limits 90 - 110 nt Sample I Prep	D: AH-1 Type: S D: AH-1	l (0-1') oluble l (0-1') oluble

Client: Tetra Tech, Inc. Project/Site: MLMU SATELLITE 2 Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

GC VOA

Prep Batch: 54777

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4770-1	H-1 (0-1')	Total/NA	Solid	5035	
890-4770-2	H-2 (0-1')	Total/NA	Solid	5035	
890-4770-3	H-3 (0-1')	Total/NA	Solid	5035	
890-4770-4	H-4 (0-1')	Total/NA	Solid	5035	
890-4770-5	H-5 (0-1')	Total/NA	Solid	5035	
890-4770-6	H-6 (0-1')	Total/NA	Solid	5035	
890-4770-7	H-7 (0-1')	Total/NA	Solid	5035	
890-4770-8	H-8 (0-1')	Total/NA	Solid	5035	
890-4770-9	H-9 (0-1')	Total/NA	Solid	5035	
890-4770-10	H-10 (0-1')	Total/NA	Solid	5035	
890-4770-11	AH-1 (0-1')	Total/NA	Solid	5035	
890-4770-12	AH-2 (0-1')	Total/NA	Solid	5035	
890-4770-13	AH-3 (0-1')	Total/NA	Solid	5035	
890-4770-14	AH-4 (0-1')	Total/NA	Solid	5035	
890-4770-15	AH-5 (0-1')	Total/NA	Solid	5035	
890-4770-16	AH-5 (1-1.5')	Total/NA	Solid	5035	
890-4770-17	AH-6 (0-1')	Total/NA	Solid	5035	
890-4770-18	AH-7 (0-1')	Total/NA	Solid	5035	
890-4770-19	AH-8 (0-1')	Total/NA	Solid	5035	
890-4770-20	AH-9 (0-1')	Total/NA	Solid	5035	
MB 880-54777/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-54777/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-54777/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-4770-1 MS	H-1 (0-1')	Total/NA	Solid	5035	
890-4770-1 MSD	H-1 (0-1')	Total/NA	Solid	5035	

Prep Batch: 54780

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4770-21	AH-9 (1-1.5')	Total/NA	Solid	5035	
MB 880-54780/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-54780/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-54780/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-4770-21 MS	AH-9 (1-1.5')	Total/NA	Solid	5035	
890-4770-21 MSD	AH-9 (1-1.5')	Total/NA	Solid	5035	

Analysis Batch: 54839

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4770-21	AH-9 (1-1.5')	Total/NA	Solid	8021B	54780
MB 880-54780/5-A	Method Blank	Total/NA	Solid	8021B	54780
MB 880-54853/5-A	Method Blank	Total/NA	Solid	8021B	54853
LCS 880-54780/1-A	Lab Control Sample	Total/NA	Solid	8021B	54780
LCSD 880-54780/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	54780
890-4770-21 MS	AH-9 (1-1.5')	Total/NA	Solid	8021B	54780
890-4770-21 MSD	AH-9 (1-1.5')	Total/NA	Solid	8021B	54780

Prep Batch: 54853

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-54853/5-A	Method Blank	Total/NA	Solid	5035	

Client: Tetra Tech, Inc. Project/Site: MLMU SATELLITE 2

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

GC VOA

Analysis Batch: 54872

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4770-1	H-1 (0-1')	Total/NA	Solid	8021B	54777
890-4770-2	H-2 (0-1')	Total/NA	Solid	8021B	54777
890-4770-3	H-3 (0-1')	Total/NA	Solid	8021B	54777
890-4770-4	H-4 (0-1')	Total/NA	Solid	8021B	54777
890-4770-5	H-5 (0-1')	Total/NA	Solid	8021B	54777
890-4770-6	H-6 (0-1')	Total/NA	Solid	8021B	54777
890-4770-7	H-7 (0-1')	Total/NA	Solid	8021B	54777
890-4770-8	H-8 (0-1')	Total/NA	Solid	8021B	54777
890-4770-9	H-9 (0-1')	Total/NA	Solid	8021B	54777
890-4770-10	H-10 (0-1')	Total/NA	Solid	8021B	54777
890-4770-11	AH-1 (0-1')	Total/NA	Solid	8021B	54777
890-4770-12	AH-2 (0-1')	Total/NA	Solid	8021B	54777
890-4770-13	AH-3 (0-1')	Total/NA	Solid	8021B	54777
890-4770-14	AH-4 (0-1')	Total/NA	Solid	8021B	54777
890-4770-15	AH-5 (0-1')	Total/NA	Solid	8021B	54777
890-4770-16	AH-5 (1-1.5')	Total/NA	Solid	8021B	54777
890-4770-17	AH-6 (0-1')	Total/NA	Solid	8021B	54777
890-4770-18	AH-7 (0-1')	Total/NA	Solid	8021B	54777
890-4770-19	AH-8 (0-1')	Total/NA	Solid	8021B	54777
890-4770-20	AH-9 (0-1')	Total/NA	Solid	8021B	54777
MB 880-54777/5-A	Method Blank	Total/NA	Solid	8021B	54777
LCS 880-54777/1-A	Lab Control Sample	Total/NA	Solid	8021B	54777
LCSD 880-54777/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	54777
890-4770-1 MS	H-1 (0-1')	Total/NA	Solid	8021B	54777
890-4770-1 MSD	H-1 (0-1')	Total/NA	Solid	8021B	54777

Analysis Batch: 54955

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4770-1	H-1 (0-1')	Total/NA	Solid	Total BTEX	
890-4770-2	H-2 (0-1')	Total/NA	Solid	Total BTEX	
890-4770-3	H-3 (0-1')	Total/NA	Solid	Total BTEX	
890-4770-4	H-4 (0-1')	Total/NA	Solid	Total BTEX	
890-4770-5	H-5 (0-1')	Total/NA	Solid	Total BTEX	
890-4770-6	H-6 (0-1')	Total/NA	Solid	Total BTEX	
890-4770-7	H-7 (0-1')	Total/NA	Solid	Total BTEX	
890-4770-8	H-8 (0-1')	Total/NA	Solid	Total BTEX	
890-4770-9	H-9 (0-1')	Total/NA	Solid	Total BTEX	
890-4770-10	H-10 (0-1')	Total/NA	Solid	Total BTEX	
890-4770-11	AH-1 (0-1')	Total/NA	Solid	Total BTEX	
890-4770-12	AH-2 (0-1')	Total/NA	Solid	Total BTEX	
890-4770-13	AH-3 (0-1')	Total/NA	Solid	Total BTEX	
890-4770-14	AH-4 (0-1')	Total/NA	Solid	Total BTEX	
890-4770-15	AH-5 (0-1')	Total/NA	Solid	Total BTEX	
890-4770-16	AH-5 (1-1.5')	Total/NA	Solid	Total BTEX	
890-4770-17	AH-6 (0-1')	Total/NA	Solid	Total BTEX	
890-4770-18	AH-7 (0-1')	Total/NA	Solid	Total BTEX	
890-4770-19	AH-8 (0-1')	Total/NA	Solid	Total BTEX	
890-4770-20	AH-9 (0-1')	Total/NA	Solid	Total BTEX	
890-4770-21	AH-9 (1-1.5')	Total/NA	Solid	Total BTEX	

Client: Tetra Tech, Inc. Project/Site: MLMU SATELLITE 2

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

GC Semi VOA

Analysis Batch: 54713

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4770-1	H-1 (0-1')	Total/NA	Solid	8015B NM	54739
890-4770-2	H-2 (0-1')	Total/NA	Solid	8015B NM	54739
890-4770-3	H-3 (0-1')	Total/NA	Solid	8015B NM	54739
890-4770-4	H-4 (0-1')	Total/NA	Solid	8015B NM	54739
890-4770-5	H-5 (0-1')	Total/NA	Solid	8015B NM	54739
890-4770-6	H-6 (0-1')	Total/NA	Solid	8015B NM	54739
890-4770-7	H-7 (0-1')	Total/NA	Solid	8015B NM	54739
890-4770-8	H-8 (0-1')	Total/NA	Solid	8015B NM	54739
890-4770-9	H-9 (0-1')	Total/NA	Solid	8015B NM	54739
890-4770-10	H-10 (0-1')	Total/NA	Solid	8015B NM	54739
890-4770-11	AH-1 (0-1')	Total/NA	Solid	8015B NM	54739
890-4770-12	AH-2 (0-1')	Total/NA	Solid	8015B NM	54739
890-4770-13	AH-3 (0-1')	Total/NA	Solid	8015B NM	54739
890-4770-14	AH-4 (0-1')	Total/NA	Solid	8015B NM	54739
890-4770-15	AH-5 (0-1')	Total/NA	Solid	8015B NM	54739
890-4770-16	AH-5 (1-1.5')	Total/NA	Solid	8015B NM	54739
890-4770-17	AH-6 (0-1')	Total/NA	Solid	8015B NM	54739
890-4770-18	AH-7 (0-1')	Total/NA	Solid	8015B NM	54739
890-4770-19	AH-8 (0-1')	Total/NA	Solid	8015B NM	54739
890-4770-20	AH-9 (0-1')	Total/NA	Solid	8015B NM	54739
MB 880-54739/1-A	Method Blank	Total/NA	Solid	8015B NM	54739
LCS 880-54739/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	54739
LCSD 880-54739/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	54739
890-4770-2 MS	H-2 (0-1')	Total/NA	Solid	8015B NM	54739
890-4770-2 MSD	H-2 (0-1')	Total/NA	Solid	8015B NM	54739

Analysis Batch: 54716

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4770-21	AH-9 (1-1.5')	Total/NA	Solid	8015B NM	54721
MB 880-54721/1-A	Method Blank	Total/NA	Solid	8015B NM	54721
LCS 880-54721/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	54721
LCSD 880-54721/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	54721
880-29062-A-21-C MS	Matrix Spike	Total/NA	Solid	8015B NM	54721
880-29062-A-21-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	54721

Prep Batch: 54721

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4770-21	AH-9 (1-1.5')	Total/NA	Solid	8015NM Prep	
MB 880-54721/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-54721/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-54721/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-29062-A-21-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-29062-A-21-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 54739

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4770-1	H-1 (0-1')	Total/NA	Solid	8015NM Prep	
890-4770-2	H-2 (0-1')	Total/NA	Solid	8015NM Prep	
890-4770-3	H-3 (0-1')	Total/NA	Solid	8015NM Prep	
890-4770-4	H-4 (0-1')	Total/NA	Solid	8015NM Prep	
890-4770-5	H-5 (0-1')	Total/NA	Solid	8015NM Prep	

Client: Tetra Tech, Inc. Project/Site: MLMU SATELLITE 2

GC Semi VOA (Continued)

Prep Batch: 54739 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4770-6	H-6 (0-1')	Total/NA	Solid	8015NM Prep	
890-4770-7	H-7 (0-1')	Total/NA	Solid	8015NM Prep	
890-4770-8	H-8 (0-1')	Total/NA	Solid	8015NM Prep	
890-4770-9	H-9 (0-1')	Total/NA	Solid	8015NM Prep	
890-4770-10	H-10 (0-1')	Total/NA	Solid	8015NM Prep	
890-4770-11	AH-1 (0-1')	Total/NA	Solid	8015NM Prep	
890-4770-12	AH-2 (0-1')	Total/NA	Solid	8015NM Prep	
890-4770-13	AH-3 (0-1')	Total/NA	Solid	8015NM Prep	
890-4770-14	AH-4 (0-1')	Total/NA	Solid	8015NM Prep	
890-4770-15	AH-5 (0-1')	Total/NA	Solid	8015NM Prep	
890-4770-16	AH-5 (1-1.5')	Total/NA	Solid	8015NM Prep	
890-4770-17	AH-6 (0-1')	Total/NA	Solid	8015NM Prep	
890-4770-18	AH-7 (0-1')	Total/NA	Solid	8015NM Prep	
890-4770-19	AH-8 (0-1')	Total/NA	Solid	8015NM Prep	
890-4770-20	AH-9 (0-1')	Total/NA	Solid	8015NM Prep	
MB 880-54739/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-54739/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-54739/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Total/NA

Total/NA

Solid

Solid

8015NM Prep

8015NM Prep

Analysis Batch: 54819

H-2 (0-1')

H-2 (0-1')

890-4770-2 MS

890-4770-2 MSD

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4770-1	H-1 (0-1')	Total/NA	Solid	8015 NM	
890-4770-2	H-2 (0-1')	Total/NA	Solid	8015 NM	
890-4770-3	H-3 (0-1')	Total/NA	Solid	8015 NM	
890-4770-4	H-4 (0-1')	Total/NA	Solid	8015 NM	
890-4770-5	H-5 (0-1')	Total/NA	Solid	8015 NM	
890-4770-6	H-6 (0-1')	Total/NA	Solid	8015 NM	
890-4770-7	H-7 (0-1')	Total/NA	Solid	8015 NM	
890-4770-8	H-8 (0-1')	Total/NA	Solid	8015 NM	
890-4770-9	H-9 (0-1')	Total/NA	Solid	8015 NM	
890-4770-10	H-10 (0-1')	Total/NA	Solid	8015 NM	
890-4770-11	AH-1 (0-1')	Total/NA	Solid	8015 NM	
890-4770-12	AH-2 (0-1')	Total/NA	Solid	8015 NM	
890-4770-13	AH-3 (0-1')	Total/NA	Solid	8015 NM	
890-4770-14	AH-4 (0-1')	Total/NA	Solid	8015 NM	
890-4770-15	AH-5 (0-1')	Total/NA	Solid	8015 NM	
890-4770-16	AH-5 (1-1.5')	Total/NA	Solid	8015 NM	
890-4770-17	AH-6 (0-1')	Total/NA	Solid	8015 NM	
890-4770-18	AH-7 (0-1')	Total/NA	Solid	8015 NM	
890-4770-19	AH-8 (0-1')	Total/NA	Solid	8015 NM	
890-4770-20	AH-9 (0-1')	Total/NA	Solid	8015 NM	
890-4770-21	AH-9 (1-1.5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 54668

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4770-21	AH-9 (1-1.5')	Soluble	Solid	DI Leach	
MB 880-54668/1-A	Method Blank	Soluble	Solid	DI Leach	

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Client: Tetra Tech, Inc. Project/Site: MLMU SATELLITE 2

HPLC/IC (Continued)

Leach Batch: 54668 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LCS 880-54668/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-54668/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-4771-A-8-E MS	Matrix Spike	Soluble	Solid	DI Leach	
890-4771-A-8-F MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
each Batch: 54669					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4770-1	H-1 (0-1')	Soluble	Solid	DI Leach	
890-4770-2	H-2 (0-1')	Soluble	Solid	DI Leach	
890-4770-3	H-3 (0-1')	Soluble	Solid	DI Leach	
890-4770-4	H-4 (0-1')	Soluble	Solid	DI Leach	
890-4770-5	H-5 (0-1')	Soluble	Solid	DI Leach	
890-4770-6	H-6 (0-1')	Soluble	Solid	DI Leach	
890-4770-7	H-7 (0-1')	Soluble	Solid	DI Leach	
890-4770-8	H-8 (0-1')	Soluble	Solid	DI Leach	
890-4770-9	H-9 (0-1')	Soluble	Solid	DI Leach	
890-4770-10	H-10 (0-1')	Soluble	Solid	DI Leach	
890-4770-11	AH-1 (0-1')	Soluble	Solid	DI Leach	
890-4770-12	AH-2 (0-1')	Soluble	Solid	DI Leach	
890-4770-13	AH-3 (0-1')	Soluble	Solid	DI Leach	
890-4770-14	AH-4 (0-1')	Soluble	Solid	DI Leach	
890-4770-15	AH-5 (0-1')	Soluble	Solid	DI Leach	
890-4770-16	AH-5 (1-1.5')	Soluble	Solid	DI Leach	
890-4770-17	AH-6 (0-1')	Soluble	Solid	DI Leach	
890-4770-18	AH-7 (0-1')	Soluble	Solid	DI Leach	
890-4770-19	AH-8 (0-1')	Soluble	Solid	DI Leach	
890-4770-20	AH-9 (0-1')	Soluble	Solid	DI Leach	
MB 880-54669/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-54669/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-54669/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-4770-1 MS	H-1 (0-1')	Soluble	Solid	DI Leach	
890-4770-1 MSD	H-1 (0-1')	Soluble	Solid	DI Leach	
890-4770-11 MS	AH-1 (0-1')	Soluble	Solid	DI Leach	
890-4770-11 MSD	AH-1 (0-1')	Soluble	Solid	DI Leach	

Analysis Batch: 54798

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4770-21	AH-9 (1-1.5')	Soluble	Solid	300.0	54668
MB 880-54668/1-A	Method Blank	Soluble	Solid	300.0	54668
LCS 880-54668/2-A	Lab Control Sample	Soluble	Solid	300.0	54668
LCSD 880-54668/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	54668
890-4771-A-8-E MS	Matrix Spike	Soluble	Solid	300.0	54668
890-4771-A-8-F MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	54668

Analysis Batch: 54800

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4770-1	H-1 (0-1')	Soluble	Solid	300.0	54669
890-4770-2	H-2 (0-1')	Soluble	Solid	300.0	54669
890-4770-3	H-3 (0-1')	Soluble	Solid	300.0	54669
890-4770-4	H-4 (0-1')	Soluble	Solid	300.0	54669
890-4770-5	H-5 (0-1')	Soluble	Solid	300.0	54669

Eurofins Carlsbad

Page 82 of 307

6

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Client: Tetra Tech, Inc. Project/Site: MLMU SATELLITE 2

HPLC/IC (Continued)

Analysis Batch: 54800 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4770-6	H-6 (0-1')	Soluble	Solid	300.0	54669
890-4770-7	H-7 (0-1')	Soluble	Solid	300.0	54669 0
890-4770-8	H-8 (0-1')	Soluble	Solid	300.0	54669
890-4770-9	H-9 (0-1')	Soluble	Solid	300.0	54669 6
890-4770-10	H-10 (0-1')	Soluble	Solid	300.0	54669
890-4770-11	AH-1 (0-1')	Soluble	Solid	300.0	54669
890-4770-12	AH-2 (0-1')	Soluble	Solid	300.0	54669
890-4770-13	AH-3 (0-1')	Soluble	Solid	300.0	54669 8
890-4770-14	AH-4 (0-1')	Soluble	Solid	300.0	54669
890-4770-15	AH-5 (0-1')	Soluble	Solid	300.0	54669 9
890-4770-16	AH-5 (1-1.5')	Soluble	Solid	300.0	54669
890-4770-17	AH-6 (0-1')	Soluble	Solid	300.0	54669 1 0
890-4770-18	AH-7 (0-1')	Soluble	Solid	300.0	54669
890-4770-19	AH-8 (0-1')	Soluble	Solid	300.0	54669
890-4770-20	AH-9 (0-1')	Soluble	Solid	300.0	54669
MB 880-54669/1-A	Method Blank	Soluble	Solid	300.0	54669
LCS 880-54669/2-A	Lab Control Sample	Soluble	Solid	300.0	54669
LCSD 880-54669/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	54669
890-4770-1 MS	H-1 (0-1')	Soluble	Solid	300.0	54669 13
890-4770-1 MSD	H-1 (0-1')	Soluble	Solid	300.0	54669
890-4770-11 MS	AH-1 (0-1')	Soluble	Solid	300.0	54669 14
890-4770-11 MSD	AH-1 (0-1')	Soluble	Solid	300.0	54669

Page 83 of 307

Job ID: 890-4770-1

SDG: 212C-MD-03133 TASK 100

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Lab Sample ID: 890-4770-1 Matrix: Solid

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

Project/Site: MLMU SATELLITE 2

Client Sample ID: H-1 (0-1')

Client: Tetra Tech, Inc.

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/06/23 15:11	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/06/23 04:15	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 19:38	СН	EET MID

Lab Sample ID: 890-4770-2

Lab Sample ID: 890-4770-3

Lab Sample ID: 890-4770-4

Matrix: Solid

Matrix: Solid

Client Sample ID: H-2 (0-1') Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/06/23 15:38	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/05/23 22:57	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 19:54	СН	EET MID

Client Sample ID: H-3 (0-1') Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/06/23 16:04	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/06/23 06:43	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 20:00	СН	EET MID

Client Sample ID: H-4 (0-1') Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/06/23 16:30	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

5

9

Released to Imaging: 5/30/2025 1:25:27 PM

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Lab Sample ID: 890-4770-4 Matrix: Solid

Lab Sample ID: 890-4770-5

Lab Sample ID: 890-4770-6

Lab Sample ID: 890-4770-7

Matrix: Solid

Matrix: Solid

Matrix: Solid

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

Project/Site: MLMU SATELLITE 2

Client Sample ID: H-4 (0-1')

Client: Tetra Tech, Inc.

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/06/23 00:01	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 20:05	СН	EET MID

Client Sample ID: H-5 (0-1') Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/06/23 16:56	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/06/23 00:23	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 20:11	СН	EET MID

Client Sample ID: H-6 (0-1')

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/06/23 17:22	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/06/23 00:44	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 20:27	СН	EET MID

Client Sample ID: H-7 (0-1') Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/06/23 17:48	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/06/23 01:05	SM	EET MID

Eurofins Carlsbad

5

Lab Chronicle

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Lab Sample ID: 890-4770-7 Matrix: Solid

Lab Sample ID: 890-4770-8

Lab Sample ID: 890-4770-9

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

Project/Site: MLMU SATELLITE 2

Client Sample ID: H-7 (0-1')

Client: Tetra Tech, Inc.

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.02 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 20:33	СН	EET MID

Client Sample ID: H-8 (0-1') Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/06/23 18:14	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/06/23 01:26	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 20:38	CH	EET MID

Client Sample ID: H-9 (0-1') Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/06/23 18:40	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/06/23 01:47	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 20:44	СН	EET MID

Client Sample ID: H-10 (0-1') Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

Lab Sample ID: 890-4770-10 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/06/23 19:06	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/06/23 04:36	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 20:49	CH	EET MID

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

9

5

9

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Lab Sample ID: 890-4770-11 Matrix: Solid

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

Project/Site: MLMU SATELLITE 2

Client Sample ID: AH-1 (0-1')

Client: Tetra Tech, Inc.

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/06/23 20:49	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/06/23 04:57	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 20:55	СН	EET MID

Lab Sample ID: 890-4770-12

Lab Sample ID: 890-4770-13

Lab Sample ID: 890-4770-14

Matrix: Solid

Matrix: Solid

Date Collected: 05/31/23 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/06/23 21:15	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/06/23 03:33	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 21:11	СН	EET MID

Client Sample ID: AH-3 (0-1') Date Collected: 05/31/23 00:00

Date Received: 06/01/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/06/23 21:41	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/06/23 03:54	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 21:16	CH	EET MID

Client Sample ID: AH-4 (0-1') Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/06/23 22:07	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

Client Sample ID: AH-2 (0-1') Date Received: 06/01/23 16:45

Released to Imaging: 5/30/2025 1:25:27 PM

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Lab Sample ID: 890-4770-14 Matrix: Solid

Lab Sample ID: 890-4770-15

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

Project/Site: MLMU SATELLITE 2

Client Sample ID: AH-4 (0-1')

Client: Tetra Tech, Inc.

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/06/23 02:08	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 21:33	СН	EET MID

Client Sample ID: AH-5 (0-1') Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/06/23 22:34	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/06/23 02:51	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 21:38	СН	EET MID

Client Sample ID: AH-5 (1-1.5')

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/06/23 23:00	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/06/23 02:30	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 21:44	CH	EET MID

Client Sample ID: AH-6 (0-1') Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/06/23 23:26	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/06/23 06:22	SM	EET MID

Eurofins Carlsbad

9

Lab Sample ID: 890-4770-16

Lab Sample ID: 890-4770-17

Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Chronicle

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Lab Sample ID: 890-4770-17

Lab Sample ID: 890-4770-18

Lab Sample ID: 890-4770-19

Client Sample ID: AH-6 (0-1') Date Collected: 05/31/23 00:00

Project/Site: MLMU SATELLITE 2

Client: Tetra Tech, Inc.

Date	Received:	06/01/23	16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.95 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 21:49	CH	EET MID

Client Sample ID: AH-7 (0-1') Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/06/23 23:52	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/06/23 06:00	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 21:55	СН	EET MID

Client Sample ID: AH-8 (0-1') Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/07/23 00:19	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/06/23 05:18	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 22:00	CH	EET MID

Client Sample ID: AH-9 (0-1') Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

Lab Sample ID: 890-4770-20 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	54777	06/05/23 14:53	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54872	06/07/23 00:45	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			54819	06/06/23 11:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	54739	06/05/23 10:57	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/06/23 05:40	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	54669	06/02/23 16:38	KS	EET MID
Soluble	Analysis	300.0		1			54800	06/05/23 22:05	СН	EET MID

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

Matrix: Solid

9

Released to Imaging: 5/30/2025 1:25:27 PM

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Lab Sample ID: 890-4770-21 Matrix: Solid

Date Collected: 05/31/23 00:00 Date Received: 06/01/23 16:45

Project/Site: MLMU SATELLITE 2

Client Sample ID: AH-9 (1-1.5')

Client: Tetra Tech, Inc.

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	54780	06/05/23 15:06	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54839	06/07/23 00:56	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			54955	06/07/23 10:17	SM	EET MID
Total/NA	Analysis	8015 NM		1			54819	06/05/23 16:57	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	54721	06/05/23 09:17	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54716	06/05/23 14:19	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	54668	06/02/23 16:37	KS	EET MID
Soluble	Analysis	300.0		1			54798	06/05/23 17:53	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 5/30/2025 1:25:27 PM

Client: Tetra Tech, Inc. Project/Site: MLMU SATELLITE 2 Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Ithority	Pi	rogram	Identification Number	Expiration Date
xas	N	ELAP	T104704400-22-25	06-30-23
The following analytes	are included in this report, bu	ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for
the agency does not of		Matrix	Analista	
Analysis Method	fer certification. Prep Method	Matrix	Analyte	
0,		Matrix Solid	Analyte Total TPH	

Eurofins Carlsbad

Page 91 of 307

10

Project/Site: MLMU SATELLITE 2

Client: Tetra Tech, Inc.

Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Tetra Tech, Inc. Project/Site: MLMU SATELLITE 2 Job ID: 890-4770-1 SDG: 212C-MD-03133 TASK 100

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-4770-1	H-1 (0-1')	Solid	05/31/23 00:00	06/01/23 16:45	0 - 1
890-4770-2	H-2 (0-1')	Solid	05/31/23 00:00	06/01/23 16:45	0 - 1
890-4770-3	H-3 (0-1')	Solid	05/31/23 00:00	06/01/23 16:45	0 - 1
890-4770-4	H-4 (0-1')	Solid	05/31/23 00:00	06/01/23 16:45	0 - 1
890-4770-5	H-5 (0-1')	Solid	05/31/23 00:00	06/01/23 16:45	0 - 1
890-4770-6	H-6 (0-1')	Solid	05/31/23 00:00	06/01/23 16:45	0 - 1
890-4770-7	H-7 (0-1')	Solid	05/31/23 00:00	06/01/23 16:45	0 - 1
890-4770-8	H-8 (0-1')	Solid	05/31/23 00:00	06/01/23 16:45	0 - 1
890-4770-9	H-9 (0-1')	Solid	05/31/23 00:00	06/01/23 16:45	0 - 1
890-4770-10	H-10 (0-1')	Solid	05/31/23 00:00	06/01/23 16:45	0 - 1
890-4770-11	AH-1 (0-1')	Solid	05/31/23 00:00	06/01/23 16:45	0 - 1
890-4770-12	AH-2 (0-1')	Solid	05/31/23 00:00	06/01/23 16:45	0 - 1
890-4770-13	AH-3 (0-1')	Solid	05/31/23 00:00	06/01/23 16:45	0 - 1
890-4770-14	AH-4 (0-1')	Solid	05/31/23 00:00	06/01/23 16:45	0 - 1
890-4770-15	AH-5 (0-1')	Solid	05/31/23 00:00	06/01/23 16:45	0 - 1
890-4770-16	AH-5 (1-1.5')	Solid	05/31/23 00:00	06/01/23 16:45	1 - 1.5
890-4770-17	AH-6 (0-1')	Solid	05/31/23 00:00	06/01/23 16:45	0 - 1
890-4770-18	AH-7 (0-1')	Solid	05/31/23 00:00	06/01/23 16:45	0 - 1
890-4770-19	AH-8 (0-1')	Solid	05/31/23 00:00	06/01/23 16:45	0 - 1
890-4770-20	AH-9 (0-1')	Solid	05/31/23 00:00	06/01/23 16:45	0 - 1
890-4770-21	AH-9 (1-1.5')	Solid	05/31/23 00:00	06/01/23 16:45	1 - 1.5

TŁ	Tetra Tech, Inc.				Mie	W Wall S idland, Tel (432) ax (432)	exas 79) 682-45	701 59																	
lient Name:	JR Oil	Site Manager:		Brit	tany	/ Lon	g							Cir	-		I NORICE N	KI KI							
Project Name:	MLMU Satellite 2		(432) 74 Brittany.I			ratec	h.co	m																	1
Project Locatio county, state)	n: Lea County, NM	Project #:		2	2120	C-ME	D-031	133 T	ask	100					89	0-47	70 C	nain	of Cu	stody					
nvoice to:	Accounts Payable 901 West Wall Street, Suit 100 Midland, Texas 79701												RO)	-	무							Iched I			
Receiving Labo		Sampler Sign	ature:		Jorg	je Fe	rnad	ez					RO - M	Ph Se H	Pb Se I			2				see atta			
comments:												(8260B	TPH 8015M (GRO - DRO - ORO - MRO)	Cd Cr I	TCLP Metals Ag As Ba Cd Cr Pb Se Hg			8270C/625				nistry (s	Anion/Cation Balance		
		SAMP	LING	MA	TRI	x		ERVATI	VE	ßS	(N)	BTEX	GRO-I	d As Ba	Ag As B	TCLP Volatiles TCLP Semi Volatiles	a dood	ni. Vol. 82	608	s)	Itato	ultate er Chen	Balanc		
LAB #	SAMPLE IDENTIFICATION	YEAR: 2023		<i>α</i>		Τ				TAINE	KED (Y	3021B	015M (270C etals A	Aetals /	olatiles semi Vo		Semi.	8082 /	sbesto	0 0	al Wate	Cation		
LAB USE ONLY)	DATE	TIME	WATER	20H	Ę	HNO3	Ш		# CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TPH 8(Total Metals	TCLP N	TCLP V	RCI	GCIMS	PCB's	PLM (A	Chlorid	Genera	Anion/		
	H-1 (0-1')	5/31/2023			×			×				x	x			Γ	Π		П	\square	x		\square	\square	
	H-2 (0-1')	5/31/2023			x			×				x	×		\square	_		+-	Ц		×	+	\vdash	$\downarrow \downarrow$	\downarrow
	H-3 (0-1')	5/31/2023			×			×				×	×		\square		44	1-	\square	\square	×	+	\square	++	\rightarrow
	H-4 (0-1')	5/31/2023			×	_	\square	×				×	×	_	11	_	\downarrow	+	$\downarrow \downarrow$	\downarrow	×	+	\vdash	44	-+
	H-5 (0-1')	5/31/2023			×		\square	×				×	×	_	11	1		+-	\square	+	×	+	\square	++	\rightarrow
	H-6 (0-1')	5/31/2023		2	×			×				×	×	+	\square	4	\square	+	\square	+	×	+	4	$\downarrow \downarrow$	\rightarrow
	H-7 (0-1')	5/31/2023			×			×				×	×	-	\downarrow	+	\square	+	\square	\downarrow	×	+	\vdash	++	\rightarrow
	H-8 (0-1')	5/31/2023			×			x				×	×	_	\square		\square	-	\square	\square	×	+	\square	++	\rightarrow
	H-9 (0-1')	5/31/2023			x	-		x				×	×	-		-				\square	×	1	\square	\square	-
	H-10 (0-1')	5/31/2023			×			x		-		×	x		\square		ARKS	L	1	1	×	1	ĹĹ		
elinquished b	1 Junder 6-01-23	Received by		¥	l	Q. Di	1.J	3 Tim		45		Sam		LY		C		H:	Same	Day		l hr) 48 hr	72	hr
linquished b	by: Date: Time:	Received by				Da	ate:	Tim	ne:			Y	- 4 - Ni	1-0	07		_						P Rep	oort	

Released to Imaging: 5/30/2025 1:25:27 PM

•

	S		00	0		

Cleant Name: JR Oil Bins Manager: Brittany Long ANALYSIS REQUEST Project Name: MLMU Satellite 2 G1321741-5813 Circle or Specify Method No.) Project Location: Lea County, NM Project Signature: 212C-MD-03133 Task 100 Notes to: Accounts Payable 901 West Wall Street, Suit 100 Midland, Texas 79701 Suit 100 Midland, Texas 79701 Reserving Laboratory: Eurofins Lab Sampler Signature: Jorge Fernadez Signature: Signature: <thsignature:< th=""> <thsignature:< th=""></thsignature:<></thsignature:<>	Ŧ	Tetra Tech, Inc.				M	W Wali Iidland, T Tel (432 Fax (432	exas 7	1559																	
MLMU Satellite 2 (4/2/1/4/1-96/13/ Britrany Long/Betratech.com Import Location: source, state) Lea County, NM Project Location: source, state) Suit 100 Midland, Texas 79701 Sampler Signature: Beorgent: Course Sampler Signature: Dorge Fernadez Sampler Signature: Beorgent: Course Sampler Signature: Dorge Fernadez MLAU Satellite 2 Sampler Signature: Dorge Fernadez Sampler Signature: Beorgent: Course Sampler Signature: Dorge Fernadez Sampler Signature: Course Sampler Signature: Dorge Fernadez AH-1 (0-1) Sampler Signature: Sampler Signature: Dorge Fernadez AH-1 (0-1) Sampler Signature: Signature: Dorge Fernadez AH-1 (0-1) Sampler Signature: Sampler Signature: Dorge Fernadez AH-1 (0-1) Sampler Signature: Sampler Signature: Dorge Fernadez AH-1 (0-1) Sampler Signature: Sampler Signature: Dorge Fernadez AH-2 (0-1) Sampler Signature: Sampler Signature: Dorge Fernadez AH-2 (0-1) Sampler Signature: Sampler Signature: Dorge Fernadez AH-3 (0-1) Sampler Signature: Sampler Signature: Dorge Fernadez AH-5 (0-1) Sam	lient Name:	JR Oil	Site Manager:		Bri	ittany	y Lon	ng																		
Lea County. NM 212C-MD-03133 Task 100 Notice to:: Accounts Payable 901 West Wall Street. Suit 100 Midland, Texas 79701 Jorge Femadez Lab # Sampler Signature: Jorge Femadez Convertes: Sampler Signature: Jorge Femadez Weide to:: Sampler Signature: Jorge Femadez Waterboor Will Street. Suit 100 Midland, Texas 79701 Sampler Signature: Jorge Femadez Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100 Mathematical States 100	Project Name:	MLMU Satellite 2					trated	ch.co	om				1		Cir	cle	or S	5 pe	cify	/ Me	etho		NO.			
AH-1 (0-1) 5/31/2023 x	-		Project #:			212	C-M[D-03	133 1	ask	100												-			
AH-1 (0-1) 5/31/2023 x	nvoice to:													RO)		p p							ched list			
AH-1 (0-1') 5/31/2023 x	eceiving Labor	atory:	Sampler Sign	ature:		Jorç	ge Fe	ernad	dez					RO - M	H S H	Pb Se F							ee atta			
AH-1 (0-1) 5/31/2023 x	omments:												8260B	DRO-O	Cd Cr P	a Cd Cr I		10	70C/625				TDS histry (s			
AH-1 (0-1) 5/31/2023 x			SAMP	LING	м	ATRI	x			VE	ß	(N/	BTEX	GRO-I	n As Ba	lg As Ba	latiles	of duar	Vol. 82	608	s)		ulfate ar Chen	Balanc		
AH-1 (0-1) 5/31/2023 x	LAB #	SAMPLE IDENTIFICATION	YEAR: 2023		~	Π		Γ			AINE	ED (Y	021B	15M (70C	etals A	olatiles emi Vo	0	Vol. 8 Semi.	3082 /	sbesto	ľ	e Si I Wate	ation		
AH-1 (0-1) 5/31/2023 x			DATE	TIME	WATE	SOIL	ТС Н	HNO	Ш		# CON	FILTER	BTEX 8	TPH 80	PAH 82 Total Me	TCLP M	TCLP S	RCI	GC/MS	PCB's	PLM (As	Chloride	Chiorid	Anion/C		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		AH-1 (0-1')															T					x		Π		
AH-4 (0-1) 5/31/2023 x		AH-2 (0-1')	5/31/2023			×			×				x	x						\square		×	\bot	\square		
AH-5 (0-1') 5/31/2023 x		AH-3 (0-1')	5/31/2023			×			x				x	×						\square		x		\square		
AH5 (1-1.5') 5/31/2023 x		AH-4 (0-1')	5/31/2023			x			×				x	x						\square		×		\square	\square	
AH-6 (0-1') 5/31/2023 x		AH-5 (0-1')	5/31/2023			×			x				x	x								x		Ш		
AH-6 (0-1') 5/31/2023 x		AH5 (1-1.5')	5/31/2023			x			x				x	x								x				
AH-7 (0-1') 5/31/2023 x		AH-6 (0-1')	5/31/2023			×		1	×				x	x								×				
AH-8 (0-1') 5/31/2023 x		AH-7 (0-1')	5/31/2023			x			×				x	x								x				
inquished by: Date: Time: Cuch Control		AH-8 (0-1')	5/31/2023			×		-	×	-			×	×			+			\blacksquare	\pm	x	\pm	\pm		
inquished by: Date: Time: Cuch Color (1.23) Check by: Date: Time: Received by: Date: Time: Sample Temperature Received by: Date: Time: Received by: Date: Time: Sample Temperature Received by: Date: Time: Sample Temperature Rush Charges Authorized Rush Charges Authorized		AH 9 (0-1')	5/31/2023			x			x				x	×								x				
inquished by: Date: Time: Date: Time: Date: Time: Special Report Limits or TRRP Report	In	L Farmel_ 6-01-23 Date: Time:		V	9	(Samp	ON	LY			RUS Rust	iH: h Ch	Same	e Day s Auth	v 24 norize	4 hr ed			hr

13

TŁ	Tetra Tech, In	с.					1																<u>Z1</u>
lient Name:	JR Oil	Site Manager:		Britta	ny Lon	g					,	Cir						JES		No			
roject Name:	MLMU Satellite 2		432) 741 Brittany.k		etrated	h.com				T	11				5pe			5410		No.	Î		T
roject Location: county, state)	Lea County, NM	Project #:		21	2C-M[0-0313	3 Tasl	< 100												÷			
ivoice to:	Accounts Payable 901 West Wall Stre Suit 100 Midland, Texas 79701	et,									RO)		0							ched lis			
eceiving Laboratory:	Eurofins Lab	Sampler Signa	ture:	Jo	rge Fe	rnadez	2				RO - MI	b Se Ho	^b b Se H							ee atta			
comments:										8260B	35) RO - O	Cd Cr P	CdCr			24 0C/625				TDS istry (se			
		SAMPI	LING	МАТ	RIX	PRESER		S	î	BTEX	SRO - D	As Ba	g As Ba	atiles		60B / 6. /ol. 827	8			Ifate r Chem	Balance		
LAB #		YEAR: 2023						AINER	ED (Y/	8021B	1005 (F	70C tals Ad	etals A	latiles mi Vol		/ol. 82 Serni. V	082 / 6	bestos		Water	ation F		
LABUSE ONLY		DATE	TIME	WATER SOIL	HCH	HNO ₃ ICE		# CONTAINERS	FILTERED (Y/N)	BTEX 80	TPH TX1005 (Ext to C35) TPH 8015M (GRO - DRO - ORO - MRO)	Total Metals	TCLP Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Volatiles TCLP Semi Volatiles	RCI	GC/MS Vol. 8260B / 624 GC/MS Serni. Vol. 8270C/	PCB's 8	NORM PLM (Asbestos)	Chloride	Chloride Sulfate TDS General Water Chemistry (see attached list)	Anion/C		
AH-:	9 (1-1.5')	5/31/2023		x		x				x	x				Π				×		\square		
		5/31/2023											\downarrow		\square			_	\square	_	\downarrow	++	_
		5/31/2023							-				\downarrow				++	+	\downarrow		\square	++	_
		5/31/2023							1						\downarrow	-	\downarrow		\downarrow	_	\vdash	++	-
		5/31/2023						-				_	\downarrow		++	+	++	+	++	+	┢╌┝		\rightarrow
		5/31/2023							1				$\downarrow \downarrow$	_	\downarrow	-			\square	+	╞╌┼	++	-+
		5/31/2023											$\downarrow \downarrow$	_	\downarrow	+		-	\square	+	┢┥┥		-
		5/31/2023											++	-		_			\downarrow	+	╂┼	++	-+
		5/31/2023						+	-			_		+	\downarrow		\downarrow	_	╞╡	+	┢╋		-
		5/31/2023												DEM	ARKS				Ц		Ц		_
elinquished by:	Date: Time: Fermine 6-01-2	2 (11	ve C	ND	' (e.[23			1	ON								ard T				
elinguished by:	Date: Time:	Received by:			D	ate:	Time:			Sam	iple Ter	npera	ature		RU	SH	Sam	e Day	y 24	4 hr	48 hi	r 72 h	nr
											Pa	1			Rus	sh Ch	narges	s Auti	horize	ed			
elinquished by:	Date: Time:	Received by:			D	ate:	Time:				17)		Ľ	Spe	cial	Repoi	rt Lim	nits or	r TRR	P Re	port	
								_		(Circ	le) HA	ND D	ELIVE	RED	FEC	EX	UPS	Trac	cking	#:			

13 14

Released to Imaging: 5/30/2025 1:25:27 PM

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Login Number: 4770 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-4770-1 SDG Number: 212C-MD-03133 TASK 100

List Source: Eurofins Carlsbad

14

The cooler's custody seal, if present, is intact.

The cooler or samples do not appear to have been compromised or

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time (excluding tests with immediate

There is sufficient vol. for all requested analyses, incl. any requested

Containers requiring zero headspace have no headspace or bubble is

Sample custody seals, if present, are intact.

Login Sample Receipt Checklist

Answer

N/A N/A

True

True True

True

True

True

True

True

True

True

True

True

True

True

True

N/A

True

N/A

Comment

Client: Tetra Tech, Inc.

Login Number: 4770

Creator: Rodriguez, Leticia

Samples were received on ice.

Cooler Temperature is acceptable. Cooler Temperature is recorded.

COC is filled out in ink and legible.

Sample containers have legible labels.

Containers are not broken or leaking.

Sample bottles are completely filled.

Sample Preservation Verified.

Sample collection date/times are provided.

Appropriate sample containers are used.

COC is filled out with all pertinent information

Is the Field Sampler's name present on COC?

List Number: 2

tampered with.

COC is present

HTs)

MS/MSDs

<6mm (1/4").

Question

Job Number: 890-4770-1 SDG Number: 212C-MD-03133 TASK 100

List Source: Eurofins Midland

List Creation: 06/05/23 09:16 AM

January 17, 2024

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MLMUI SATELLITE #2

Enclosed are the results of analyses for samples received by the laboratory on 01/12/24 8:45.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 1 (0-1') (H240144-01)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	2.13	107	2.00	1.06	
Toluene*	<0.050	0.050	01/12/2024	ND	2.16	108	2.00	0.268	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.18	109	2.00	0.481	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.62	110	6.00	0.645	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	368	16.0	01/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	187	93.3	200	1.72	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	179	89.5	200	0.112	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	70.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	66.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 1 (2') (H240144-02)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	2.13	107	2.00	1.06	
Toluene*	<0.050	0.050	01/12/2024	ND	2.16	108	2.00	0.268	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.18	109	2.00	0.481	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.62	110	6.00	0.645	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	01/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	187	93.3	200	1.72	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	179	89.5	200	0.112	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	87.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 1 (3') (H240144-03)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	2.13	107	2.00	1.06	
Toluene*	<0.050	0.050	01/12/2024	ND	2.16	108	2.00	0.268	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.18	109	2.00	0.481	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.62	110	6.00	0.645	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	01/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	187	93.3	200	1.72	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	179	89.5	200	0.112	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	83.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	78.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 1 (4') (H240144-04)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	2.13	107	2.00	1.06	
Toluene*	<0.050	0.050	01/12/2024	ND	2.16	108	2.00	0.268	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.18	109	2.00	0.481	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.62	110	6.00	0.645	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	384	16.0	01/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	187	93.3	200	1.72	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	179	89.5	200	0.112	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	81.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	75.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 2 (0-1') (H240144-05)

BTEX 8021B	mg	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	2.13	107	2.00	1.06	
Toluene*	<0.050	0.050	01/12/2024	ND	2.16	108	2.00	0.268	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.18	109	2.00	0.481	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.62	110	6.00	0.645	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	01/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	187	93.3	200	1.72	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	179	89.5	200	0.112	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	82.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	76.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 2 (2') (H240144-06)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	2.13	107	2.00	1.06	
Toluene*	<0.050	0.050	01/12/2024	ND	2.16	108	2.00	0.268	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.18	109	2.00	0.481	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.62	110	6.00	0.645	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	01/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	187	93.3	200	1.72	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	179	89.5	200	0.112	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	88.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	82.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 2 (3') (H240144-07)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	2.13	107	2.00	1.06	
Toluene*	<0.050	0.050	01/12/2024	ND	2.16	108	2.00	0.268	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.18	109	2.00	0.481	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.62	110	6.00	0.645	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	01/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	187	93.3	200	1.72	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	179	89.5	200	0.112	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	85.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	79.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 2 (4') (H240144-08)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	2.13	107	2.00	1.06	
Toluene*	<0.050	0.050	01/12/2024	ND	2.16	108	2.00	0.268	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.18	109	2.00	0.481	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.62	110	6.00	0.645	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	187	93.3	200	1.72	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	179	89.5	200	0.112	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	85.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	79.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 3 (0-1') (H240144-09)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	2.13	107	2.00	1.06	
Toluene*	<0.050	0.050	01/12/2024	ND	2.16	108	2.00	0.268	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.18	109	2.00	0.481	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.62	110	6.00	0.645	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	768	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	187	93.3	200	1.72	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	179	89.5	200	0.112	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	70.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	64.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 3 (2') (H240144-10)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	2.13	107	2.00	1.06	
Toluene*	<0.050	0.050	01/12/2024	ND	2.16	108	2.00	0.268	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.18	109	2.00	0.481	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.62	110	6.00	0.645	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	992	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	187	93.3	200	1.72	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	179	89.5	200	0.112	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	75.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	69.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 3 (3') (H240144-11)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	2.13	107	2.00	1.06	
Toluene*	<0.050	0.050	01/12/2024	ND	2.16	108	2.00	0.268	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.18	109	2.00	0.481	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.62	110	6.00	0.645	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1040	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	187	93.3	200	1.72	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	179	89.5	200	0.112	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	72.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	66.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 3 (4') (H240144-12)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	2.13	107	2.00	1.06	
Toluene*	<0.050	0.050	01/12/2024	ND	2.16	108	2.00	0.268	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.18	109	2.00	0.481	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.62	110	6.00	0.645	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	976	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/12/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	<10.0	10.0	01/12/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/12/2024	ND					
Surrogate: 1-Chlorooctane	86.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	96.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 4 (0-1') (H240144-13)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	2.13	107	2.00	1.06	
Toluene*	<0.050	0.050	01/12/2024	ND	2.16	108	2.00	0.268	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.18	109	2.00	0.481	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.62	110	6.00	0.645	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/12/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	<10.0	10.0	01/12/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/12/2024	ND					
Surrogate: 1-Chlorooctane	75.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	83.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 4 (2') (H240144-14)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	2.13	107	2.00	1.06	
Toluene*	<0.050	0.050	01/12/2024	ND	2.16	108	2.00	0.268	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.18	109	2.00	0.481	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.62	110	6.00	0.645	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/12/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	<10.0	10.0	01/12/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/12/2024	ND					
Surrogate: 1-Chlorooctane	106	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	115 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 4 (3') (H240144-15)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	2.13	107	2.00	1.06	
Toluene*	<0.050	0.050	01/12/2024	ND	2.16	108	2.00	0.268	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.18	109	2.00	0.481	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.62	110	6.00	0.645	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/12/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	<10.0	10.0	01/12/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/12/2024	ND					
Surrogate: 1-Chlorooctane	94.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 4 (4') (H240144-16)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	2.13	107	2.00	1.06	
Toluene*	<0.050	0.050	01/12/2024	ND	2.16	108	2.00	0.268	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.18	109	2.00	0.481	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.62	110	6.00	0.645	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/12/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	<10.0	10.0	01/12/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/12/2024	ND					
Surrogate: 1-Chlorooctane	97.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	109	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 5 (0-1') (H240144-17)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	2.13	107	2.00	1.06	
Toluene*	0.058	0.050	01/12/2024	ND	2.16	108	2.00	0.268	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.18	109	2.00	0.481	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.62	110	6.00	0.645	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/12/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	<10.0	10.0	01/12/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/12/2024	ND					
Surrogate: 1-Chlorooctane	92.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 5 (2') (H240144-18)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.073	0.050	01/12/2024	ND	2.13	107	2.00	1.06	
Toluene*	0.269	0.050	01/12/2024	ND	2.16	108	2.00	0.268	
Ethylbenzene*	0.111	0.050	01/12/2024	ND	2.18	109	2.00	0.481	
Total Xylenes*	0.221	0.150	01/12/2024	ND	6.62	110	6.00	0.645	
Total BTEX	0.674	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	560	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	13.5	10.0	01/12/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	<10.0	10.0	01/12/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/12/2024	ND					
Surrogate: 1-Chlorooctane	87.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	<i>98.3</i>	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 5 (3') (H240144-19)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	1.94	96.9	2.00	1.98	
Toluene*	<0.050	0.050	01/12/2024	ND	2.06	103	2.00	2.36	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.08	104	2.00	2.74	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.28	105	6.00	2.70	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	448	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	71.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	79.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 5 (4') (H240144-20)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	1.94	96.9	2.00	1.98	
Toluene*	<0.050	0.050	01/12/2024	ND	2.06	103	2.00	2.36	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.08	104	2.00	2.74	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.28	105	6.00	2.70	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	544	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	90.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	102	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 6 (0-1') (H240144-21)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	1.94	96.9	2.00	1.98	
Toluene*	<0.050	0.050	01/12/2024	ND	2.06	103	2.00	2.36	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.08	104	2.00	2.74	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.28	105	6.00	2.70	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	92.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 6 (2') (H240144-22)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	1.94	96.9	2.00	1.98	
Toluene*	<0.050	0.050	01/12/2024	ND	2.06	103	2.00	2.36	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.08	104	2.00	2.74	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.28	105	6.00	2.70	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	78.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	86.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 6 (3') (H240144-23)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	1.94	96.9	2.00	1.98	
Toluene*	<0.050	0.050	01/12/2024	ND	2.06	103	2.00	2.36	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.08	104	2.00	2.74	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.28	105	6.00	2.70	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	86.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 6 (4') (H240144-24)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	1.94	96.9	2.00	1.98	
Toluene*	<0.050	0.050	01/12/2024	ND	2.06	103	2.00	2.36	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.08	104	2.00	2.74	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.28	105	6.00	2.70	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	81.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	91.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 7 (0-1') (H240144-25)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	1.94	96.9	2.00	1.98	
Toluene*	<0.050	0.050	01/12/2024	ND	2.06	103	2.00	2.36	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.08	104	2.00	2.74	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.28	105	6.00	2.70	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	180	90.1	200	3.15	
DRO >C10-C28*	<10.0	10.0	01/15/2024	ND	190	95.1	200	1.47	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	92.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	82.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 7 (2') (H240144-26)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	1.94	96.9	2.00	1.98	
Toluene*	<0.050	0.050	01/12/2024	ND	2.06	103	2.00	2.36	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.08	104	2.00	2.74	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.28	105	6.00	2.70	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	180	90.1	200	3.15	
DRO >C10-C28*	<10.0	10.0	01/15/2024	ND	190	95.1	200	1.47	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	92.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 7 (3') (H240144-27)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	1.94	96.9	2.00	1.98	
Toluene*	<0.050	0.050	01/12/2024	ND	2.06	103	2.00	2.36	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.08	104	2.00	2.74	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.28	105	6.00	2.70	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	01/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	180	90.1	200	3.15	
DRO >C10-C28*	<10.0	10.0	01/15/2024	ND	190	95.1	200	1.47	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	91.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	80.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/12/2024	Sampling Date:	01/11/2024
Reported:	01/17/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Shalyn Rodriguez
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: T - 7 (4') (H240144-28)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	1.94	96.9	2.00	1.98	
Toluene*	<0.050	0.050	01/12/2024	ND	2.06	103	2.00	2.36	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.08	104	2.00	2.74	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.28	105	6.00	2.70	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	112	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	01/15/2024	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	180	90.1	200	3.15	
DRO >C10-C28*	<10.0	10.0	01/15/2024	ND	190	95.1	200	1.47	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	90.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	78.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ent Name:	Tetra Tech, Inc.				N	W Wall Street, St lidland, Texas 797 Tel (432) 682-455 fax (432) 682-394	'05 '9											ŀ	Page			10	f	
ject Name:	JR Oil	Site Manage	er:	В	-	Long				Т					LYS	10.0	250							_
ect Locatio	MLMUI Satellite No,2			bri	ttany.	ong@tetra	tech co	-		1.		(Ci	rcle	or	Spe	cif	y M	eth	T od I	No.)				
nty, state)	Lea County, NM	Project #:				C-MD-0313		ш							11						11			1
iving Labo	ATTN: JR OIL Rex Tippy: Br: Etany																			list)				
nents:	Eurofins Xenco	Sampler Sign	nature:		Miqu	el Flores						e Hg	se Hg							ached				
					34					80B	- ORO)	Total Metals Ag As Ba Cd Cr Pb Se Hg	Cr Pb			25				(see attached list)				
40144				-						EX 8260B 0 C35)	- DRO	a Cd C	Ba Cd		624	8270C/625								
AB #	SAMPLE IDENTIFICATION	YEAR: 2024	PLING	M	ATRIX	PRESERV		RS	(N)	BTEX (Ext to C;	GRO -	g As E	Ag As I	latiles	260B/	/ol. 82	808		Cultato	Chem	Balance			
BUSE)				Щ				CONTAINERS	FILTERED (Y/N)	BTEX 8021B BTEX 82 TPH TX1005 (Ext to C35)	TPH 8015M (PAH 8270C	etals A	TCLP Metals A	TCLP Semi Volatiles	RCI GC/MS Vol. 8260B / 624	Semi. Vol.	082 / 6	PLM (Asbestos)		13	ation B			
	T-1 (0-1')	DATE	TIME	WATEF		HCL HNO ₃	None	# CON	FILTE	TPH T	TPH 8015M PAH 8270C	otal M	CLP V	CLP S	GC/MS	GC/MS	PCB's 8082 / NORM	M (As	Chloride	eneral	Anion/Ca			3
	T-1 (2')	1/11/2024			X	X					X			1-1	20	0	ă ž		δ X	jő	A	++	+	Hold
	T-1 (3')	1/11/2024			X	X			>	X	X	Π		Ħ	+	H	+	+ +	x	+	+	++	+	\vdash
	T-1 (4')	1/11/2024		P	-	X	+		>	<	X			TT		H	+	+	x	++	+	++	+	-
	T-2 (0-1')	1/11/2024				X	++		>		X			Π		\square	+	+-+	x	++	+	++	+	
and the second design of the s	T-2 (2')	1/11/2024		×		X	++		×		X						+	+ +	x	H	+	++	+	
	T-2 (3')	1/11/2024		×		X	+		×		X						+	+++	x	H	+	++	+	_
	Τ-2 (4')			X		X	+		X		×П				\square	+	+	t i	_	H	+	\vdash	+	_
	Γ-3 (0-1')	1/11/2024		X		X			X		$\langle \rangle$		\square		++	+	+	1 x	-	\mathbb{H}	+-	\vdash	+	
) т	F-3 (2')	1/11/2024		X	-	X			X			1	\square	+	++	+		X	-	\vdash	+	\vdash	+	_
shed by:	Date: Time:	1/11/2024 Received by:		X	_	X			X			+	$^{++}$	+	++	+	+	H		\vdash	+	\vdash	+	
shed by:	Date: Time: Date: Time:	1	11	- 1		ate: Tim	2	013			SE O		REN	ARK										4
stred by:	Date: Time: 845 R	eceived by:	Hell e	d	XI	ate: Tim											rd T/				~	~		
	LE A. 15 1 9/11/ 893	ma	100		1		e: 2-21		Sa	mole Te	mperati		I	RU	JSH:	Sam	e Day	y 24	hr	48 hr	(72)	br		

•

ent Name:	Tetra Tech, Inc.				Mi	/ Wall Street, Si dland, Texas 79; el (432) 682-455 ax (432) 682-394	705 59											F	Pag	e .	_	2	of	
ject Name:	JR Oil	Site Manage	er:	Brit	ttany	Long				Т				AN		212	REC	UES	T					
ect Location:	MLMUI Satellite No,2			britta	any.lo	ong@tetra	atech c	om		Η.		(C	ircle	e or	Sp	ecit	fy M	leth	od	No.	.)			
nty, state) ce to:	Lea County, NM	Project #:		-	-	-MD-031														11	1		1	
	ATTN: JR ON Bex TIPEN Britt									-											ist)			
ving Laboratory:	Eurofins Xenco	Sampler Sign	nature:		Aique	I Flores	_			-		Ha	e Hg							Sulfate TDS Nater Chemistry (see attached licit)	achea			
nents:					nigue	Flores				g	- DRO - ORO)	r Ph S	TCLP Metals Ag As Ba Cd Cr Pb Se Hg			5				offeren	96 ana			
Inul										X 8260B	DRO-	Cq C	a Cd O			24 70C/62	PCB's 8082 / 608			TDS tru (cu	iel Kns			
Ю)ЧЦ АВ#			PLING	MAT	TRIX	PRESER		ss	î	BTEX	GRO -	As Ba	As B	tiles		UB/6				te	ance			
BUSE	SAMPLE IDENTIFICATION	YEAR: 2024		α				AINEF	D (Y	218		als Ag	als Ag	ii Vola	000	mi. Vo	2/60	stos)		Sulfa ater C	n Bal			
DNLY		DATE	TIME	WATEF		HCL HNO ₃ ICE	one	# CONTAINERS	FILTERED (Y/N)	BTEX 8021B TPH TX1005	TPH 8015M (al Metals	TCLP Metals A	TCLP Semi Volatiles	The first	MS Se	s 808	NORM PLM (Asbestos)	ide	Chloride Sulfa General Water (Anion/Cation Balance			
T-3 (3')		1/11/2024	_	S ON		ΞΞΩ X	ž	#	Ē			Tota	TCL	TCL	RCI	GCI	PCB	PLM (A	Chloride	Chloride General V	Anior			HOLA
3 T-4 (0-		1/11/2024		x	-	X	-	\vdash		X X	X X	+	\vdash	+	\vdash	+	\square		Х		\square			
- T-4 (2')		1/11/2024		Х		X				x	x	+	+	+		+	\vdash	+++	X	+	\square	+		
5 T-4 (3')		1/11/2024		X		Х			_	x	x	\square	+	++	+	Н	+	+++	X X	+	\vdash	++		\vdash
) T-4 (4')		1/11/2024		X	\vdash	X				X	X			\square		Н	+	+	x	+	\vdash	++	-	\vdash
T-5 (0-1	')	1/11/2024		X	\vdash	X				X	Х					Ħ	+	+	x	+	H	++	+	\vdash
T-5 (2')		1/11/2024		X		X	+		_		X	\square						1	x	++	\vdash	++	+	
2		1/11/2024		X	-	X	+		-		X	\square	-	\square					X	T	\top	$^{++}$	+	-
shed by:		1/11/2024		X	+	1 x	+		- P		X	\square		\square				X		Π	T	Ħ	+	-
Miguel x	V FRADA	Received by:		1.1	Da	ate: Tin	ne:	201			x		DE	MAR				X	(T	1	-
shed by:	1 2010	In	11	Es.	4	NC I	-11		-	AB (JSE (DNL	Y			anda	ard T	AT						
		Received by:				ite: Tim	e:	-										ay 24	1 hr	40 1	6	2		
hed by:	VELna CLZ 1-12-24	Stody	2 DAI	011	1	-12-20	10	845)-7	Tempera	ature	1'				10 00	9 24	• 1H	40 1	1 (12	2 nr		

Released to Imaging: 5/30/2025 1:25:27 PM

.

Client Name:	Tetra Tech, In	ic.		Mie	Wall Street, Ste 100 dland, Texas 79705 el (432) 682-4559 ix (432) 682-3946										P	age		_	3 of
roject Name:	JR Oil	Site Manager:	Brit		Long			T		-									
	MLMUI Satellite No,2		and the second second		ong@tetratech				(Circ	AN le o	r Sp	SIS ecif		UEST etho	d N			
roject Location: county, state)	Lea County, NM	Project #:	Contract of the Owner Party of	and the second second	-MD-03133	.com						1		11					
voice to: eceiving Laboratory:	ATTN: JR OII Rex Tippy Br; L	tany long		- 120	-1412-03133												ist)		
omments:	Eurofins Xenco	Sampler Signature	Λ	Migue	Flores					Se Hg Se Ha							tached		
							-	260B	(OHO - D	Cr Pb			625				(see at		
1240144		SAMPLING	MAT	TRIX	PRESERVATIVE		-	BTEX 8260E (Ext to C35)		TCLP Metals Ag As Ba Cd Cr Pb Se Hg	00	2	GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625			TDS	General Water Chemistry (see attached list)	JCe	
LAB #	SAMPLE IDENTIFICATION	YEAR: 2024		Τ		NER	(Y/N	U U		s Ag A	Volati		8260 i. Vol.	/ 608	(so	ulfate	er Ch	Baiar	
ONLY		DATE	WATER		HCL HNO ₃ ICE None	CONTAINERS	FILTERED (Y/N)	BTEX 8021B BTE TPH TX1005 (Ext to TPH 8015M (CEO	8270C	Metals Metal	TCLP Volatiles TCLP Semi Volatiles		GC/MS Vol. 8260E GC/MS Semi. Vol.	PCB's 8082 / 608 NORM	PLM (Asbestos)	de S	al Wat	Cation	
2 T-6 (0-		1/11/2024		other Designation of the local division of t		0 #	E	TPH TPH	PAH	TCLF	TCLF	SCI	GC/M	PCB's NORM	DLM (Chloride	Bener	ATION A	
27 T-6 (2' 23 T-6 (3')		1/11/2024	X		X		_	x x				\square			X			++	H
0.1		1/11/2024	X	+	X	+		< X				Π			T x	+ +	\vdash	++	
24 T-6 (4')		1/11/2024	X	+	X	+	_	< X				Π			Tx		+	++	++
25 T-7 (0-		1/11/2024	X	++	X		_	(X				Π		1	Tx	+	+	++	++
20 T-7 (2') 27 T-7 (3')	And and a start of the	1/11/2024		\vdash	X		>	X					\square	+	X		+	++	++
Z T-7 (3')		1/11/2024	X	\vdash	X		>	X					T	+	X	+	+	++	++
28 T-7 (4')		1/11/2024	X	\vdash	X		×	X					\square	+	X		+	H	++
		1/11/2024	X		X		X	X		Π			Ħ	+	X	+++	+	H	++
guished b			+++		++++					Π			Ħ	+	F	H	+	\vdash	++
quisned by:	Date: Time:	Received by:			Ite: Time:								Ħ	+		H	+	H	++
mugu	ec xy reores 1/11/2 4 2010	22,	- 1	00		201	3	AB USI		R	EMAR				_				
quished by:	Date: Time: 845	Received by:	mar	Da	UT-11-2	4		10 001						ard TA				~	0
200 L	Date: Time: LIL2 2010 Date: Time: 845 Endre V. 1-12-24 Date: Time:	Kandle	me		te: Time:	0845	10.00	mple Temp	perature			RUSH	: San	ne Day	y 24	hr <mark>4</mark>	8 hr	72 h)
ing ou by.	Date: Time:	Received by:	710	Da		0070	10	.72			F	Rush (Charge	es Aut	horized	L		\sim	
			(0				-#	140			pecia	Repo	art Lim	its or T	000			

Page 131 of 307

¶⇔ Page 33 of 33

.

Released to Imaging: 5/30/2025 1:25:27 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Brittany Long Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701 Generated 1/29/2024 6:04:25 PM

JOB DESCRIPTION

MLMU Satellite 2 Eddy Co, NM

JOB NUMBER

880-38172-1

EOL

RT CR Dng Inc. Vall 100

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 1/29/2024 6:04:25 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 134 of 307

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	7
Surrogate Summary	15
QC Sample Results	16
	20
Lab Chronicle	23
Certification Summary	27
Method Summary	28
Sample Summary	29
Chain of Custody	30
Receipt Checklists	31

Client: Tetra Tech, Inc. Project/Site: MLMU Satellite 2 of 307

3

D: 2/14/2025 2:33:49 PM	Page 135 of 3
Definitions/Glossary	
LMU Satellite 2	Job ID: 880-38172-1 SDG: Eddy Co, NM
Qualifier Description	
LCS and/or LCSD is outside acceptance limits, low biased.	
LCS/LCSD RPD exceeds control limits.	
MS and/or MSD recovery exceeds control limits.	
MS/MSD RPD exceeds control limits	
Surrogate recovery exceeds control limits, low biased.	
Surrogate recovery exceeds control limits, high biased.	
Indicates the analyte was analyzed for but not detected.	
Qualifier Description	
LCS/LCSD RPD exceeds control limits.	
Surrogate recovery exceeds control limits, high biased.	
Indicates the analyte was analyzed for but not detected.	
Qualifier Description	
Indicates the analyte was analyzed for but not detected.	
These commonly used abbreviations may or may not be present in this report.	
Listed under the "D" column to designate that the result is reported on a dry weight basis	
Percent Recovery	
Contains Free Liquid	
Colony Forming Unit	
Contains No Free Liquid	
Duplicate Error Ratio (normalized absolute difference)	
Detection Limit (DoD/DOE)	
Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
Decision Level Concentration (Radiochemistry)	
Estimated Detection Limit (Dioxin)	
Limit of Detection (DoD/DOE)	
Limit of Quantitation (DoD/DOE)	
EPA recommended "Maximum Contaminant Level"	
Minimum Detectable Activity (Radiochemistry)	
Minimum Detectable Concentration (Radiochemistry)	
Method Detection Limit	
Minimum Level (Dioxin)	
Most Probable Number	
Method Quantitation Limit	

U

Qualifiers

GC VOA Qualifier

*_

*1

F1

F2 S1-

S1+

GC Semi VOA

Qualifier	Qualifier Description
*1	LCS/LCSD RPD exceeds control limits.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.
HPLC/IC	

F Q

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
Glossary	
Clossury	

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Eurofins Midland

Released to Imaging: 5/30/2025 1:25:27 PM

Case Narrative

Page 136 of 307

Job ID: 880-38172-1

Client: Tetra Tech, Inc. Project: MLMU Satellite 2

Job ID: 880-38172-1

Eurofins Midland

Job Narrative 880-38172-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 1/19/2024 12:30 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.1°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: Trench-3 (5') (880-38172-1), Trench-3 (6') (880-38172-2), Trench-3 (7') (880-38172-3), Trench-3 (8') (880-38172-4), Trench-3 (9') (880-38172-5), Trench-3 (10') (880-38172-6), Trench-3 (11') (880-38172-7), Trench-3 (12') (880-38172-8), Trench-3 (13') (880-38172-9) and Trench-3 (14') (880-38172-10).

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-71146 and analytical batch 880-71763 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample duplicate (LCSD) recovery is within acceptance limits.

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-71146 and analytical batch 880-71763 was outside the control limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: Trench-3 (9') (880-38172-5). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-71146 and analytical batch 880-71763 recovered outside control limits for the following analytes: Ethylbenzene and m-Xylene & p-Xylene.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-71232 and analytical batch 880-71758 was outside the upper control limits.

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-71232 and analytical batch 880-71758 recovered outside control limits for the following analytes: Diesel Range Organics (Over C10-C28).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-71323 and analytical batch 880-71391 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

Client: Tetra Tech, Inc. Project: MLMU Satellite 2	Case Narrative	Job ID: 880-38172-1
Job ID: 880-38172-1 (Continued)		Eurofins Midland

Eurofins Midland

.

Client Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMU Satellite 2

Client Sample ID: Trench-3 (5') Date Collected: 01/17/24 15:35

Date Received: 01/19/24 12:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U F1	0.00199		mg/Kg		01/19/24 16:42	01/28/24 05:28	
Toluene	<0.00199	U F1 *-	0.00199		mg/Kg		01/19/24 16:42	01/28/24 05:28	1
Ethylbenzene	<0.00199	U F2 F1 *1	0.00199		mg/Kg		01/19/24 16:42	01/28/24 05:28	1
m-Xylene & p-Xylene	<0.00398	U F2 F1 *1	0.00398		mg/Kg		01/19/24 16:42	01/28/24 05:28	1
p-Xylene	<0.00199	U F1	0.00199		mg/Kg		01/19/24 16:42	01/28/24 05:28	1
Xylenes, Total	<0.00398	U F1	0.00398		mg/Kg		01/19/24 16:42	01/28/24 05:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130				01/19/24 16:42	01/28/24 05:28	1
1,4-Difluorobenzene (Surr)	83		70 - 130				01/19/24 16:42	01/28/24 05:28	1
Method: TAL SOP Total BTEX - T	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			01/28/24 05:28	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (G	C)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			01/29/24 01:10	1
	• •	nics (DRO) (Qualifier	<mark>GC)</mark> RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte	Result			MDL		<u>D</u>	Prepared 01/19/24 15:04	Analyzed	Dil Fac
Analyte Gasoline Range Organics	Result	Qualifier		MDL	Unit mg/Kg	<u> </u>			
Analyte Gasoline Range Organics (GRO)-C6-C10	Result	Qualifier U		MDL		<u> </u>			1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0	Qualifier U	RL 50.0	MDL	mg/Kg	<u>D</u>	01/19/24 15:04	01/29/24 01:10	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0	Qualifier U U *1	RL 50.0	MDL	mg/Kg	<u> </u>	01/19/24 15:04	01/29/24 01:10	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 <50.0	Qualifier U U *1	RL 50.0	MDL	mg/Kg mg/Kg	<u>D</u>	01/19/24 15:04 01/19/24 15:04	01/29/24 01:10 01/29/24 01:10	1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate		Qualifier U U *1 U	RL 50.0 50.0 50.0	MDL	mg/Kg mg/Kg	<u>D</u>	01/19/24 15:04 01/19/24 15:04 01/19/24 15:04	01/29/24 01:10 01/29/24 01:10 01/29/24 01:10	1 1 1 <i>Dil Fac</i>
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <50.0 <50.0 <50.0 <50.0	Qualifier U U *1 U	RL 50.0 50.0 50.0 Limits	MDL	mg/Kg mg/Kg	<u> </u>	01/19/24 15:04 01/19/24 15:04 01/19/24 15:04 Prepared	01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 Analyzed	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <	Qualifier U *1 U Qualifier	RL 50.0 50.0 50.0 50.0 50.0 50.0 70 - 130	MDL	mg/Kg mg/Kg	<u>D</u>	01/19/24 15:04 01/19/24 15:04 01/19/24 15:04 Prepared 01/19/24 15:04	01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10	1 1 1 Dil Fac 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion	Result <50.0	Qualifier U U *1 U Qualifier	RL 50.0 50.0 50.0 50.0 50.0 50.0 70 - 130		mg/Kg mg/Kg	<u>D</u>	01/19/24 15:04 01/19/24 15:04 01/19/24 15:04 Prepared 01/19/24 15:04	01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10	1 1 1 Dil Fac 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte	Result <50.0	Qualifier U *1 U Qualifier	RL 50.0 </td <td></td> <td>mg/Kg mg/Kg mg/Kg</td> <td></td> <td>01/19/24 15:04 01/19/24 15:04 01/19/24 15:04 Prepared 01/19/24 15:04 01/19/24 15:04</td> <td>01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10</td> <td>1 1 1 1 1 1 1</td>		mg/Kg mg/Kg mg/Kg		01/19/24 15:04 01/19/24 15:04 01/19/24 15:04 Prepared 01/19/24 15:04 01/19/24 15:04	01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10	1 1 1 1 1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <50.0	Qualifier U *1 U Qualifier	RL 50.0 </td <td></td> <td>mg/Kg mg/Kg mg/Kg Unit</td> <td></td> <td>01/19/24 15:04 01/19/24 15:04 01/19/24 15:04 Prepared 01/19/24 15:04 01/19/24 15:04 Prepared</td> <td>01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 Analyzed 01/29/24 01:10 01/29/24 01:10 Analyzed</td> <td>Dil Fac</td>		mg/Kg mg/Kg mg/Kg Unit		01/19/24 15:04 01/19/24 15:04 01/19/24 15:04 Prepared 01/19/24 15:04 01/19/24 15:04 Prepared	01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 Analyzed 01/29/24 01:10 01/29/24 01:10 Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte Chloride Elient Sample ID: Trench-3 (Result <50.0	Qualifier U *1 U Qualifier	RL 50.0 </td <td></td> <td>mg/Kg mg/Kg mg/Kg Unit</td> <td></td> <td>01/19/24 15:04 01/19/24 15:04 01/19/24 15:04 Prepared 01/19/24 15:04 01/19/24 15:04 Prepared</td> <td>01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 Analyzed 01/24/24 16:40 ple ID: 880-3</td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>		mg/Kg mg/Kg mg/Kg Unit		01/19/24 15:04 01/19/24 15:04 01/19/24 15:04 Prepared 01/19/24 15:04 01/19/24 15:04 Prepared	01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 Analyzed 01/24/24 16:40 ple ID: 880-3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte Chloride lient Sample ID: Trench-3 (ate Collected: 01/17/24 15:38	Result <50.0	Qualifier U *1 U Qualifier	RL 50.0 </td <td></td> <td>mg/Kg mg/Kg mg/Kg Unit</td> <td></td> <td>01/19/24 15:04 01/19/24 15:04 01/19/24 15:04 Prepared 01/19/24 15:04 01/19/24 15:04 Prepared</td> <td>01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 Analyzed 01/24/24 16:40 ple ID: 880-3</td> <td>Dil Fac</td>		mg/Kg mg/Kg mg/Kg Unit		01/19/24 15:04 01/19/24 15:04 01/19/24 15:04 Prepared 01/19/24 15:04 01/19/24 15:04 Prepared	01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 Analyzed 01/24/24 16:40 ple ID: 880-3	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte Chloride Hient Sample ID: Trench-3 (ate Collected: 01/17/24 15:38 ate Received: 01/19/24 12:30	Result <50.0	Qualifier U *1 U Qualifier Ohy - Soluble Qualifier	RL 50.0 </td <td></td> <td>mg/Kg mg/Kg mg/Kg Unit</td> <td></td> <td>01/19/24 15:04 01/19/24 15:04 01/19/24 15:04 Prepared 01/19/24 15:04 01/19/24 15:04 Prepared</td> <td>01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 Analyzed 01/24/24 16:40 ple ID: 880-3</td> <td>Dil Fac</td>		mg/Kg mg/Kg mg/Kg Unit		01/19/24 15:04 01/19/24 15:04 01/19/24 15:04 Prepared 01/19/24 15:04 01/19/24 15:04 Prepared	01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 Analyzed 01/24/24 16:40 ple ID: 880-3	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte Chloride Ch	Result <50.0	Qualifier U *1 U Qualifier Ohy - Soluble Qualifier	RL 50.0 </td <td>MDL</td> <td>mg/Kg mg/Kg mg/Kg Unit</td> <td></td> <td>01/19/24 15:04 01/19/24 15:04 01/19/24 15:04 Prepared 01/19/24 15:04 01/19/24 15:04 Prepared</td> <td>01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 <u>Analyzed</u> 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 <u>Analyzed</u> 01/24/24 16:40 ple ID: 880-3 Matri</td> <td>1 <i>Dil Fac</i> 1 2 2 2 2 2 2 2 2 2 2 2 2 2</td>	MDL	mg/Kg mg/Kg mg/Kg Unit		01/19/24 15:04 01/19/24 15:04 01/19/24 15:04 Prepared 01/19/24 15:04 01/19/24 15:04 Prepared	01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 <u>Analyzed</u> 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 <u>Analyzed</u> 01/24/24 16:40 ple ID: 880-3 Matri	1 <i>Dil Fac</i> 1 2 2 2 2 2 2 2 2 2 2 2 2 2
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <50.0	Qualifier U *1 U Qualifier ohy - Soluble Qualifier	RL 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 Example 5.03	MDL	mg/Kg mg/Kg mg/Kg Unit mg/Kg	<u>D</u>	01/19/24 15:04 01/19/24 15:04 01/19/24 15:04 <i>Prepared</i> 01/19/24 15:04 01/19/24 15:04 Prepared Lab Sam	01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 01/29/24 01:10 Analyzed 01/24/24 16:40 ple ID: 880-3	Dil Fac

3(07	
	3	307

Job ID: 880-38172-1 SDG: Eddy Co, NM

Lab Sample ID: 880-38172-1

Matrix: Solid

5

Eurofins Midland

01/28/24 05:55

01/28/24 05:55

01/28/24 05:55

01/28/24 05:55

Analyzed

01/28/24 05:55

01/28/24 05:55

Released to Imaging: 5/30/2025 1:25:27 PM

Ethylbenzene

Xylenes, Total

o-Xylene

Surrogate

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

0.00200

0.00400

0.00200

0.00400

Limits

70 - 130

70 - 130

mg/Kg

mg/Kg

mg/Kg

mg/Kg

01/19/24 16:42

01/19/24 16:42

01/19/24 16:42

01/19/24 16:42

Prepared

01/19/24 16:42

01/19/24 16:42

<0.00200 U*1

<0.00400 U*1

<0.00200 U

<0.00400 U

%Recovery Qualifier

106

90

1

1

1

1

1

1

Dil Fac

Client Sample Results

Job ID: 880-38172-1 SDG: Eddy Co, NM

Lab Sample ID: 880-38172-2

Client Sample ID: Trench-3 (6')

Date Collected:	01/17/24 15:38
Date Received:	01/19/24 12:30

Project/Site: MLMU Satellite 2

Client: Tetra Tech, Inc.

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			01/28/24 05:55	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			01/29/24 01:30	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		01/19/24 15:04	01/29/24 01:30	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U *1	49.8		mg/Kg		01/19/24 15:04	01/29/24 01:30	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		01/19/24 15:04	01/29/24 01:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	82		70 - 130				01/19/24 15:04	01/29/24 01:30	1
o-Terphenyl	87		70 - 130				01/19/24 15:04	01/29/24 01:30	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hv - Solubl	е						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	653		4.98		mg/Kg			01/24/24 16:45	1

Client Sample ID: Trench-3 (7')

Date Collected: 01/17/24 15:42

Lab Sample ID: 880-38172-3 Matrix: Solid

Date Received: 01/19/24 12:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00201	U	0.00201		mg/Kg		01/19/24 16:42	01/28/24 06:21	1
Toluene	<0.00201	U *-	0.00201		mg/Kg		01/19/24 16:42	01/28/24 06:21	1
Ethylbenzene	<0.00201	U *1	0.00201		mg/Kg		01/19/24 16:42	01/28/24 06:21	1
m-Xylene & p-Xylene	<0.00402	U *1	0.00402		mg/Kg		01/19/24 16:42	01/28/24 06:21	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		01/19/24 16:42	01/28/24 06:21	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		01/19/24 16:42	01/28/24 06:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				01/19/24 16:42	01/28/24 06:21	1
1,4-Difluorobenzene (Surr)	101		70 - 130				01/19/24 16:42	01/28/24 06:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			01/28/24 06:21	1
Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			01/29/24 01:51	1
Method: SW846 8015B NM - Di	esel Range Orga	nics (DRO)	(GC)						
Method. 30040 0013D MM - DI									
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics	Result <49.6			MDL	Unit mg/Kg	<u> </u>	Prepared 01/19/24 15:04	01/29/24 01:51	Dil Fac
Analyte				MDL		D			Dil Fac

Eurofins Midland

Matrix: Solid

5

C10-C28)

Job ID: 880-38172-1 SDG: Eddy Co, NM

Matrix: Solid

5

Lab Sample ID: 880-38172-3

Client Sample ID: Trench-3 (7')

Date Collected: 01/17/24 15:42 Date Received: 01/19/24 12:30

Project/Site: MLMU Satellite 2

Client: Tetra Tech, Inc.

Г

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		01/19/24 15:04	01/29/24 01:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130				01/19/24 15:04	01/29/24 01:51	1
o-Terphenyl	103		70 - 130				01/19/24 15:04	01/29/24 01:51	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	607		5.04		mg/Kg			01/24/24 16:51	1
Chloride	007								
-							Lab Sam	ple ID: 880-3	8172-4
Chloride Client Sample ID: Trench-3 (Date Collected: 01/17/24 15:45							Lab Sam		8172-4 x: Solid

Analyte	Posult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
						<u>-</u>	·		
Benzene	<0.00199	U	0.00199		mg/Kg		01/19/24 16:42	01/28/24 06:48	1
Toluene	<0.00199	U *-	0.00199		mg/Kg		01/19/24 16:42	01/28/24 06:48	1
Ethylbenzene	<0.00199	U *1	0.00199		mg/Kg		01/19/24 16:42	01/28/24 06:48	1
m-Xylene & p-Xylene	<0.00398	U *1	0.00398		mg/Kg		01/19/24 16:42	01/28/24 06:48	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		01/19/24 16:42	01/28/24 06:48	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		01/19/24 16:42	01/28/24 06:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130				01/19/24 16:42	01/28/24 06:48	1
1,4-Difluorobenzene (Surr)	110		70 - 130				01/19/24 16:42	01/28/24 06:48	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	I	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg		_		01/28/24 06:48	1

Method: SW846 8015 NM - Diesel F	ange Organ	nge Organics (DRO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.1	U	50.1		mg/Kg			01/29/24 02:12	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.1	U	50.1		mg/Kg		01/19/24 15:04	01/29/24 02:12	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.1	U *1	50.1		mg/Kg		01/19/24 15:04	01/29/24 02:12	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		01/19/24 15:04	01/29/24 02:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130				01/19/24 15:04	01/29/24 02:12	1
o-Terphenyl	106		70 - 130				01/19/24 15:04	01/29/24 02:12	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	767		5.02		mg/Kg			01/24/24 16:56	1

Client Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMU Satellite 2

Client Sample ID: Trench-3 (9') Date Collected: 01/17/24 15:48

Date Received: 01/19/24 12:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		01/19/24 16:42	01/28/24 07:15	1
Toluene	<0.00198	U *-	0.00198		mg/Kg		01/19/24 16:42	01/28/24 07:15	1
Ethylbenzene	<0.00198	U *1	0.00198		mg/Kg		01/19/24 16:42	01/28/24 07:15	1
n-Xylene & p-Xylene	<0.00396	U *1	0.00396		mg/Kg		01/19/24 16:42	01/28/24 07:15	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		01/19/24 16:42	01/28/24 07:15	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		01/19/24 16:42	01/28/24 07:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130				01/19/24 16:42	01/28/24 07:15	1
1,4-Difluorobenzene (Surr)	138	S1+	70 - 130				01/19/24 16:42	01/28/24 07:15	1
Method: TAL SOP Total BTEX - To									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			01/28/24 07:15	1
Method: SW846 8015 NM - Diesel									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
īotal TPH	<50.4	U	50.4		mg/Kg			01/29/24 02:32	1
Method: SW846 8015B NM - Dies	• •	• • •	• •						
Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Gasoline Range Organics GRO)-C6-C10	<50.4	U	50.4		mg/Kg		01/19/24 15:04	01/29/24 02:32	1
Diesel Range Organics (Over C10-C28)	<50.4	U *1	50.4		mg/Kg		01/19/24 15:04	01/29/24 02:32	1
Oll Range Organics (Over C28-C36)	<50.4	U	50.4		mg/Kg		01/19/24 15:04	01/29/24 02:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130				01/19/24 15:04	01/29/24 02:32	1
p-Terphenyl	102		70 - 130				01/19/24 15:04	01/29/24 02:32	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	495		4.98		mg/Kg			01/24/24 17:01	1
lient Sample ID: Trench-3 (*	10')						Lab Sam	ple ID: 880-3	8172-6
								Matri	x: Solid
ate Collected: 01/17/24 15:52									
ate Received: 01/19/24 12:30	Organic Comp	ounds (GC))						
ate Received: 01/19/24 12:30 Method: SW846 8021B - Volatile (ounds (GC) Qualifier) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ate Received: 01/19/24 12:30 Method: SW846 8021B - Volatile (Analyte			·	MDL	Unit mg/Kg	<u>D</u>	Prepared 01/19/24 16:42	Analyzed	Dil Fac
ate Collected: 01/17/24 15:52 ate Received: 01/19/24 12:30 Method: SW846 8021B - Volatile (Analyte Benzene Toluene	Result	Qualifier	RL	MDL		<u>D</u>			

m-Xylene & p-Xylene	<0.00399	U *1	0.00399	mg/Kg	01/19/24 16:42	01/28/24 07:43	1
o-Xylene	<0.00200	U	0.00200	mg/Kg	01/19/24 16:42	01/28/24 07:43	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg	01/19/24 16:42	01/28/24 07:43	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	% Recovery 94	Qualifier	Limits		Prepared 01/19/24 16:42	Analyzed 01/28/24 07:43	Dil Fac

Eurofins Midland

Page 141 of 307

Job ID: 880-38172-1 SDG: Eddy Co, NM

Lab Sample ID: 880-38172-5

Matrix: Solid

5

Released to Imaging: 5/30/2025 1:25:27 PM

Matrix: Solid

Matrix: Solid

5

Client Sample Results

Job ID: 880-38172-1 SDG: Eddy Co, NM

Client Sample ID: Trench-3 (10') Date Collected: 01/17/24 15:52

Date Received: 01/19/24 12:30

Project/Site: MLMU Satellite 2

Client: Tetra Tech, Inc.

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			01/28/24 07:43	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.5	U	50.5		mg/Kg			01/29/24 02:53	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.5	U	50.5		mg/Kg		01/19/24 15:04	01/29/24 02:53	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.5	U *1	50.5		mg/Kg		01/19/24 15:04	01/29/24 02:53	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		01/19/24 15:04	01/29/24 02:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	89		70 - 130				01/19/24 15:04	01/29/24 02:53	1
o-Terphenyl	95		70 - 130				01/19/24 15:04	01/29/24 02:53	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	403		4.96		mg/Kg			01/24/24 17:06	1

Client Sample ID: Trench-3 (11')

Date Collected: 01/17/24 15:56 Date Received: 01/19/24 12:30 Lab Sample ID: 880-38172-7

Jale	Receiveu.	01/13/24	12.50	
-				

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/19/24 16:42	01/28/24 08:10	1
Toluene	<0.00200	U *-	0.00200		mg/Kg		01/19/24 16:42	01/28/24 08:10	1
Ethylbenzene	<0.00200	U *1	0.00200		mg/Kg		01/19/24 16:42	01/28/24 08:10	1
m-Xylene & p-Xylene	<0.00401	U *1	0.00401		mg/Kg		01/19/24 16:42	01/28/24 08:10	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/19/24 16:42	01/28/24 08:10	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		01/19/24 16:42	01/28/24 08:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130				01/19/24 16:42	01/28/24 08:10	1
1,4-Difluorobenzene (Surr)	126		70 _ 130				01/19/24 16:42	01/28/24 08:10	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			01/28/24 08:10	1
_ Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			01/29/24 03:13	1
-	sel Range Orga	nics (DRO)	(GC)						
Method: SW846 8015B NM - Dies	ser Runge Orge								
Method: SW846 8015B NM - Dies Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL 49.7	MDL	Unit mg/Kg	<u>D</u>	Prepared 01/19/24 15:04	Analyzed 01/29/24 03:13	Dil Fac
Analyte	Result	Qualifier		MDL		<u>D</u>	· · ·		Dil Fac 1

Eurofins Midland

Lab Sample ID: 880-38172-6

C10-C28)

Job ID: 880-38172-1 SDG: Eddy Co, NM

Matrix: Solid

Matrix: Solid

5

12 13

Lab Sample ID: 880-38172-7

Client Sample ID: Trench-3 (11')

Date Collected: 01/17/24 15:56 Date Received: 01/19/24 12:30

Project/Site: MLMU Satellite 2

Client: Tetra Tech, Inc.

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		01/19/24 15:04	01/29/24 03:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	81		70 - 130				01/19/24 15:04	01/29/24 03:13	1
o-Terphenyl	86		70 - 130				01/19/24 15:04	01/29/24 03:13	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	456		4.95		mg/Kg			01/24/24 17:21	1

Date Collected: 01/17/24 15:59

Date Received: 01/19/24 12:30

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		01/19/24 16:42	01/28/24 08:38	1
Toluene	<0.00202	U *-	0.00202		mg/Kg		01/19/24 16:42	01/28/24 08:38	1
Ethylbenzene	<0.00202	U *1	0.00202		mg/Kg		01/19/24 16:42	01/28/24 08:38	1
m-Xylene & p-Xylene	<0.00403	U *1	0.00403		mg/Kg		01/19/24 16:42	01/28/24 08:38	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		01/19/24 16:42	01/28/24 08:38	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		01/19/24 16:42	01/28/24 08:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				01/19/24 16:42	01/28/24 08:38	1
1,4-Difluorobenzene (Surr)	119		70 - 130				01/19/24 16:42	01/28/24 08:38	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			01/28/24 08:38	1

Method: SW846 8015 NM - Diesel R	Range Organ	ics (DRO) (O	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			01/29/24 03:33	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		01/19/24 15:04	01/29/24 03:33	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U *1	50.0		mg/Kg		01/19/24 15:04	01/29/24 03:33	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/19/24 15:04	01/29/24 03:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	92		70 - 130				01/19/24 15:04	01/29/24 03:33	1
o-Terphenyl	100		70 - 130				01/19/24 15:04	01/29/24 03:33	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	436		5.02		mg/Kg			01/24/24 17:26	1

Released to Imaging: 5/30/2025 1:25:27 PM

Client Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMU Satellite 2

Client Sample ID: Trench-3 (13') Date Collected: 01/17/24 16:02

Date Received: 01/19/24 12:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		01/19/24 16:42	01/28/24 09:06	
oluene	<0.00198	U *-	0.00198		mg/Kg		01/19/24 16:42	01/28/24 09:06	
thylbenzene	<0.00198	U *1	0.00198		mg/Kg		01/19/24 16:42	01/28/24 09:06	
n-Xylene & p-Xylene	<0.00397	U *1	0.00397		mg/Kg		01/19/24 16:42	01/28/24 09:06	
o-Xylene	<0.00198	U	0.00198		mg/Kg		01/19/24 16:42	01/28/24 09:06	
Kylenes, Total	<0.00397	U	0.00397		mg/Kg		01/19/24 16:42	01/28/24 09:06	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Bromofluorobenzene (Surr)	99		70 - 130				01/19/24 16:42	01/28/24 09:06	
,4-Difluorobenzene (Surr)	101		70 - 130				01/19/24 16:42	01/28/24 09:06	1
Method: TAL SOP Total BTEX - To									
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
otal BTEX	<0.00397	U	0.00397		mg/Kg			01/28/24 09:06	
Method: SW846 8015 NM - Diese									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
otal TPH	<49.9	U	49.9		mg/Kg			01/29/24 03:53	
Nethod: SW846 8015B NM - Dies	• •		• •						
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<49.9	U	49.9		mg/Kg		01/19/24 15:04	01/29/24 03:53	
Diesel Range Organics (Over C10-C28)	<49.9	U *1	49.9		mg/Kg		01/19/24 15:04	01/29/24 03:53	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/19/24 15:04	01/29/24 03:53	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Chlorooctane	95		70 - 130				01/19/24 15:04	01/29/24 03:53	1
-Terphenyl	103		70 - 130				01/19/24 15:04	01/29/24 03:53	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	406		5.01		mg/Kg			01/24/24 17:42	
ient Sample ID: Trench-3 (14')						Lab Samp	le ID: 880-38	172-10
te Collected: 01/17/24 16:05								Matri	x: Solid
ate Received: 01/19/24 12:30									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg		01/19/24 16:42	01/28/24 09:33	
oluene	<0.00200	U *-	0.00200		mg/Kg		01/19/24 16:42	01/28/24 09:33	
	<0.00200	11 *1	0.00200		mg/Kg		01/19/24 16:42	01/28/24 09:33	
Ethylbenzene	~0.00200	0 1	0.00200		ing/itg		01/10/24 10.42	01/20/24 03.33	

m-Xylene & p-Xylene	<0.00401	U *1	0.00401	mg/Kg	01/19/24 16:42	01/28/24 09:33	1
o-Xylene	<0.00200	U	0.00200	mg/Kg	01/19/24 16:42	01/28/24 09:33	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg	01/19/24 16:42	01/28/24 09:33	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130		01/19/24 16:42	01/28/24 09:33	1
1.4-Difluorobenzene (Surr)	105		70 - 130		01/19/24 16:42	01/28/24 09:33	1
,							

Eurofins Midland

Page 144 of 307

Job ID: 880-38172-1 SDG: Eddy Co, NM

Lab Sample ID: 880-38172-9

Matrix: Solid

5

Released to Imaging: 5/30/2025 1:25:27 PM
Client Sample Results

Job ID: 880-38172-1 SDG: Eddy Co, NM

Lab Sample ID: 880-38172-10

Client Sample ID: Trench-3 (14') Date Collected: 01/17/24 16:05

Date Received: 01/19/24 12:30

Project/Site: MLMU Satellite 2

Client: Tetra Tech, Inc.

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			01/28/24 09:33	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.2	U	50.2		mg/Kg			01/29/24 04:13	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.2	U	50.2		mg/Kg		01/19/24 15:04	01/29/24 04:13	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.2	U *1	50.2		mg/Kg		01/19/24 15:04	01/29/24 04:13	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.2	U	50.2		mg/Kg		01/19/24 15:04	01/29/24 04:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130				01/19/24 15:04	01/29/24 04:13	1
o-Terphenyl	98		70 - 130				01/19/24 15:04	01/29/24 04:13	1
Method: EPA 300.0 - Anions, Ion	Chromatogran	by - Solubl	٩						
Analyte	•••	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	299		5.00		mg/Kg		••••	01/24/24 17:47	1

Client: Tetra Tech, Inc. Project/Site: MLMU Satellite 2

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) BFB1 DFBZ1 (70-130) (70-130) Lab Sample ID **Client Sample ID** 880-38172-1 Trench-3 (5') 90 83 880-38172-1 MS Trench-3 (5') 118 122 880-38172-1 MSD Trench-3 (5') 105 112 880-38172-2 Trench-3 (6') 106 90 880-38172-3 Trench-3 (7') 102 101 880-38172-4 Trench-3 (8') 112 110 880-38172-5 Trench-3 (9') 106 138 S1+ 880-38172-6 Trench-3 (10') 94 112 880-38172-7 Trench-3 (11') 103 126 880-38172-8 Trench-3 (12') 104 119 880-38172-9 Trench-3 (13') 99 101 880-38172-10 108 105 Trench-3 (14') LCS 880-71146/1-A Lab Control Sample 78 73 LCSD 880-71146/2-A Lab Control Sample Dup 100 106 MB 880-71146/5-A Method Blank 57 S1-105 Surrogate Legend BFB = 4-Bromofluorobenzene (Surr) DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 (70-130) (70-130) **Client Sample ID** Lab Sample ID 880-38171-A-1-B MS Matrix Spike 93 86 880-38171-A-1-C MSD Matrix Spike Duplicate 93 86 880-38172-1 Trench-3 (5') 83 88 880-38172-2 82 87 Trench-3 (6') 880-38172-3 Trench-3 (7') 95 103 880-38172-4 Trench-3 (8') 97 106 880-38172-5 94 102 Trench-3 (9') 880-38172-6 Trench-3 (10') 89 95 880-38172-7 Trench-3 (11') 81 86 880-38172-8 Trench-3 (12') 92 100 880-38172-9 Trench-3 (13') 95 103 880-38172-10 Trench-3 (14') 88 98 91 LCS 880-71232/2-A Lab Control Sample 102 LCSD 880-71232/3-A Lab Control Sample Dup 70 75 Method Blank MB 880-71232/1-A 124 136 S1+

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 880-38172-1 SDG: Eddy Co, NM

Prep Type: Total/NA

Page 146 of 307

Prep Type: Total/NA

Project/Site: MLMU Satellite 2

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-71146/5-A Matrix: Solid Analysis Batch: 71763							Client Sa	mple ID: Metho Prep Type: 1 Prep Batch	otal/NA
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/19/24 16:42	01/28/24 05:01	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/19/24 16:42	01/28/24 05:01	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/19/24 16:42	01/28/24 05:01	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		01/19/24 16:42	01/28/24 05:01	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/19/24 16:42	01/28/24 05:01	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		01/19/24 16:42	01/28/24 05:01	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	57	S1-	70 - 130				01/19/24 16:42	01/28/24 05:01	1
1,4-Difluorobenzene (Surr)	105		70 - 130				01/19/24 16:42	01/28/24 05:01	1
Lab Sample ID: LCS 880-71146/1-A						c	lient Sample I	D: Lab Control	Sample

Matrix: Solid

Analysis Batch: 71763

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.07374		mg/Kg		74	70 - 130	
Toluene	0.100	0.08096		mg/Kg		81	70 - 130	
Ethylbenzene	0.100	0.07431		mg/Kg		74	70 - 130	
m-Xylene & p-Xylene	0.200	0.1598		mg/Kg		80	70 - 130	
o-Xylene	0.100	0.08469		mg/Kg		85	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	78		70 - 130
1,4-Difluorobenzene (Surr)	73		70 - 130

Lab Sample ID: LCSD 880-71146/2-A

Matrix: Solid

Analysis Batch: 71763							Prep	Batch:	71146
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1035		mg/Kg		104	70 - 130	34	35
Toluene	0.100	0.09149		mg/Kg		91	70 - 130	12	35
Ethylbenzene	0.100	0.1109	*1	mg/Kg		111	70 - 130	40	35
m-Xylene & p-Xylene	0.200	0.2327	*1	mg/Kg		116	70 - 130	37	35
o-Xylene	0.100	0.1116		mg/Kg		112	70 - 130	27	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		70 - 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Lab Sample ID: 880-38172-1 MS Matrix: Solid

Analysis Batch: 71763

Analysis Batch: 71763									Prep	Batch: 71146
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U F1	0.0996	0.05941	F1	mg/Kg		59	70 - 130	
Toluene	<0.00199	U F1 *-	0.0996	0.04931	F1	mg/Kg		50	70 - 130	

Eurofins Midland

Prep Type: Total/NA

Client Sample ID: Trench-3 (5')

5 6

7

Job ID: 880-38172-1

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Batch: 71146

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMU Satellite 2 Job ID: 880-38172-1 SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

	I MS							Client	Sample ID	: Trench	-3 (5')
Matrix: Solid									Prep 1	Type: To	tal/NA
Analysis Batch: 71763									Prep	Batch:	71146
-	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ethylbenzene	<0.00199	U F2 F1 *1	0.0996	0.06533	F1	mg/Kg		66	70 - 130		
m-Xylene & p-Xylene	<0.00398	U F2 F1 *1	0.199	0.02959	F1	mg/Kg		15	70 - 130		
o-Xylene	<0.00199	U F1	0.0996	0.07680		mg/Kg		76	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	118		70 - 130								
1,4-Difluorobenzene (Surr)	122		70 - 130								
	I MSD							Client	Sample ID Prep 1		
Lab Sample ID: 880-38172-1 Matrix: Solid Analysis Batch: 71763	I MSD							Client	Prep 1	: Trench Type: To Batch:	tal/NA
Matrix: Solid		Sample	Spike	MSD	MSD			Client	Prep 1	Type: To	tal/NA 71146
Matrix: Solid Analysis Batch: 71763	Sample	Sample Qualifier	Spike Added		MSD Qualifier	Unit	D	Client %Rec	Prep 1 Prep	Type: To	tal/NA 71146 RPD
Matrix: Solid Analysis Batch: 71763 Analyte	Sample	Qualifier			Qualifier	_ <mark>Unit</mark> mg/Kg	D		Prep 1 Prep %Rec	Type: To Batch:	tal/NA 71146 RPD Limit
Matrix: Solid Analysis Batch: 71763 Analyte Benzene	Sample Result	Qualifier U F1	Added	Result	Qualifier F1		<u>D</u>	%Rec	Prep 1 Prep %Rec Limits	Batch:	tal/NA
Matrix: Solid Analysis Batch: 71763 Analyte Benzene Toluene	Sample Result <0.00199	Qualifier U F1 U F1 *-	Added	Result 0.04216	Qualifier F1 F1	mg/Kg	<u> </u>	%Rec	Prep 1 Prep %Rec Limits 70 - 130	RPD 34	tal/NA 71146 RPD Limit 35 35
Matrix: Solid Analysis Batch: 71763 Analyte Benzene Toluene Ethylbenzene	Sample Result <0.00199 <0.00199	Qualifier U F1 U F1 *- U F2 F1 *1	Added	Result 0.04216 0.04734	Qualifier F1 F1 F2 F1	mg/Kg mg/Kg	D	%Rec 42 48	Prep 7 Prep %Rec Limits 70 - 130 70 - 130	Sype: To Batch: RPD 34 4	tal/NA 71146 RPD Limit
Matrix: Solid Analysis Batch: 71763 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00199 <0.00199 <0.00199	Qualifier U F1 U F1 *- U F2 F1 *1 U F2 F1 *1	Added 0.0990 0.0990 0.0990	Result 0.04216 0.04734 0.03678	Qualifier F1 F1 F2 F1 F2 F1	mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 42 48 37	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: ToBatch:RPD34456	tal/NA 71146 RPD Limit 35 35 35
Matrix: Solid Analysis Batch: 71763 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199	Qualifier U F1 U F1 *- U F2 F1 *1 U F2 F1 *1	Added 0.0990 0.0990 0.0990 0.198	Result 0.04216 0.04734 0.03678 0.06128	Qualifier F1 F1 F2 F1 F2 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 42 48 37 31	Prep Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	RPD 34 4 56 70	tal/NA 71146 RPD Limit 35 35 35
Matrix: Solid Analysis Batch: 71763 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199	Qualifier U F1 U F1 *- U F2 F1 *1 U F2 F1 *1 U F1 <i>MSD</i>	Added 0.0990 0.0990 0.0990 0.198	Result 0.04216 0.04734 0.03678 0.06128	Qualifier F1 F1 F2 F1 F2 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 42 48 37 31	Prep Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	RPD 34 4 56 70	tal/NA 71146 RPD Limit 35 35 35
Matrix: Solid	Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MSD	Qualifier U F1 U F1 *- U F2 F1 *1 U F2 F1 *1 U F1 <i>MSD</i>	Added 0.0990 0.0990 0.0990 0.198 0.0990	Result 0.04216 0.04734 0.03678 0.06128	Qualifier F1 F1 F2 F1 F2 F1	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 42 48 37 31	Prep Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	RPD 34 4 56 70	tal/NA 71146 RPD Limit 35 35 35

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-71232/1- Matrix: Solid Analysis Batch: 71758	Α						Client Sa	mple ID: Metho Prep Type: ⊺ Prep Batch	otal/NA
	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		01/19/24 15:04	01/28/24 19:33	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		01/19/24 15:04	01/28/24 19:33	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/19/24 15:04	01/28/24 19:33	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	124		70 - 130				01/19/24 15:04	01/28/24 19:33	1
o-Terphenyl	136	S1+	70 - 130				01/19/24 15:04	01/28/24 19:33	1

Page 148 of 307

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMU Satellite 2 Job ID: 880-38172-1 SDG: Eddy Co, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-7123	2/2-A						Client	Sample	BID: Lab Co	ontrol S	ample
Matrix: Solid							onent	Campic		Гуре: То	
Analysis Batch: 71758										Batch:	
Analysis Baten. 7 1700			Spike	LCS	LCS				%Rec	Baten.	11202
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics			1000	890.7	Quaimer	mg/Kg			70 - 130		
(GRO)-C6-C10			1000	090.7		mg/rtg		09	70 - 150		
Diesel Range Organics (Over			1000	999.7		mg/Kg		100	70 - 130		
C10-C28)											
,											
		LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	91		70 - 130								
p-Terphenyl	102		70 - 130								
											_
Lab Sample ID: LCSD 880-712	32/3-A					Clier	nt Sam	iple ID:	Lab Contro		
Matrix: Solid										Гуре: То	
Analysis Batch: 71758										Batch:	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	_	_	1000	744.0		mg/Kg		74	70 - 130	18	20
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	797.5	*1	mg/Kg		80	70 - 130	23	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	70		70 - 130								
o-Terphenyl	75		70 - 130								
Matrix: Solid Analysis Batch: 71758										Type: To Batch:	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics GRO)-C6-C10	<49.8	U	1010	807.8		mg/Kg		76	70 - 130		
Diesel Range Organics (Over C10-C28)	<49.8	U *1	1010	843.2		mg/Kg		84	70 - 130		
	MS	MS									
Surrogate	%Recovery		Limits								
1-Chlorooctane	93		70 - 130								
o-Terphenyl	86		70 - 130 70 - 130								
s is priorigi	50		10 - 100								
Lab Sample ID: 880-38171-A-1						CI	ient Se	ample IF	D: Matrix Sp	nike Dur	licate
Matrix: Solid								pie iL		Гуре: То	
Analysis Batch: 71758										Batch:	
maryoro Dateri. / 1/00	Sample	Sample	Spike	Men	MSD				%Rec	Daten.	RPD
Analyte		Sample Qualifier	Added		Qualifier	Unit	D	% P ^^	Limits	RPD	
Analyte			Added		Quaimer			%Rec		15	Limit
Gasoline Range Organics GRO)-C6-C10	<49.8	0	1010	939.6		mg/Kg		90	70 - 130	15	20
GRO)-C6-C10 Diesel Range Organics (Over	<49.8	U *1	1010	858.2		mg/Kg		85	70 - 130	2	20
C10-C28)	~43.0	0 1	1010	030.2		mynty		00	10 - 150	2	20
		MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	93		70 _ 130								

Eurofins Midland

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMU Satellite 2 Job ID: 880-38172-1 SDG: Eddy Co, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

	SD								(Client	t Sa	mple ID): Matrix S	pike Duj	olicate
Matrix: Solid													Prep	Type: To	tal/NA
Analysis Batch: 71758													Prep	Batch:	71232
	MSD	MSD													
Surrogate %F	Recovery	Quali	fier	Limits											
o-Terphenyl	86			70 - 130	-										
Method: 300.0 - Anions, Ion Ch	iromat	ogra	phy												
Lab Sample ID: MB 880-71323/1-A												Client S	Sample ID:	Method	Blank
Matrix: Solid													Prep	Type: S	olubl
Analysis Batch: 71391															
		МВ	МВ												
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	Pr	epared	Analy	zed	Dil Fa
Chloride	<	<5.00	U		5.00			mg/Kg					01/24/24	15:18	
Lab Sample ID: LCS 880-71323/2-A										Cli	ent	Sample) ID: Lab C	ontrol S	ample
Matrix: Solid											••••	Campio		Type: S	
Analysis Batch: 71391														.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
·····,···				Spike		LCS	LCS						%Rec		
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Chloride				250		244.0			mg/Kg			98	90 - 110		
• •															
Lab Sample ID: LCSD 880-71323/3-/	Α								Cli	ent S	Sam	ple ID: I	Lab Contro		
Matrix: Solid													Prep	Type: S	olubl
Analysis Batch: 71391															
						1000	LCS	כ					%Rec		RPI
-				Spike											
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	
Analyte				•			Qual	ifier	Unit mg/Kg		<u>D</u>	%Rec 97	Limits 90 - 110	RPD 1	
Analyte				Added		Result	Qual	ifier				97		1	20
Analyte Chloride				Added		Result	Qual	ifier				97	90 - 110 Sample ID:	1	2 ¹ 3 (10'
Analyte Chloride Lab Sample ID: 880-38172-6 MS Matrix: Solid				Added		Result	Qual	ifier				97	90 - 110 Sample ID:	1 Trench-	20 3 (10'
Analyte Chloride Lab Sample ID: 880-38172-6 MS	Sample	Samp		Added		Result 242.5	Qual	ifier				97	90 - 110 Sample ID:	1 Trench-	20 3 (10')
Analyte Chloride Lab Sample ID: 880-38172-6 MS Matrix: Solid	Sample Result			Added 250		Result 242.5	MS					97	90 - 110 Sample ID: Prep	1 Trench-	20 3 (10')
Analyte Chloride Lab Sample ID: 880-38172-6 MS Matrix: Solid Analysis Batch: 71391 Analyte				Added 250 Spike		Result 242.5 MS	MS		mg/Kg			97	90 - 110 Sample ID: Prep %Rec	1 Trench-	20 3 (10')
Analyte Chloride Lab Sample ID: 880-38172-6 MS Matrix: Solid Analysis Batch: 71391 Analyte Chloride	Result			Added 250 Spike Added		Result 242.5 MS Result	MS		mg/Kg			97 - 97 - 97 - 97 - 97 - 97 - 97 - 97 -	90 - 110 Sample ID: Prep %Rec Limits	Trench- Type: S	20 3 (10' oluble
Analyte Chloride Lab Sample ID: 880-38172-6 MS Matrix: Solid Analysis Batch: 71391 Analyte Chloride Lab Sample ID: 880-38172-6 MSD	Result			Added 250 Spike Added		Result 242.5 MS Result	MS		mg/Kg			97 - 97 - 97 - 97 - 97 - 97 - 97 - 97 -	90 - 110 Sample ID: Prep %Rec Limits 90 - 110 Sample ID:	Trench- Type: S	2(10' 3 (10' oluble 3 (10'
Analyte Chloride Lab Sample ID: 880-38172-6 MS Matrix: Solid Analysis Batch: 71391 Analyte Chloride Lab Sample ID: 880-38172-6 MSD Matrix: Solid	Result			Added 250 Spike Added		Result 242.5 MS Result	MS		mg/Kg			97 - 97 - 97 - 97 - 97 - 97 - 97 - 97 -	90 - 110 Sample ID: Prep %Rec Limits 90 - 110 Sample ID:	Trench- Type: S	3 (10' 3 (10' 3 (10'
Analyte Chloride Lab Sample ID: 880-38172-6 MS Matrix: Solid Analysis Batch: 71391	Result	Quali	fier	Added 250 Spike Added		Result 242.5 MS Result 646.6	MS		mg/Kg			97 - 97 - 97 - 97 - 97 - 97 - 97 - 97 -	90 - 110 Sample ID: Prep %Rec Limits 90 - 110 Sample ID:	Trench- Type: S	3 (10") oluble 3 (10") oluble
Analyte Chloride Lab Sample ID: 880-38172-6 MS Matrix: Solid Analysis Batch: 71391 Analyte Chloride Lab Sample ID: 880-38172-6 MSD Matrix: Solid	Result 403	Quali	fier	Added 250 Spike Added 248		Result 242.5 MS Result 646.6	MS Qual MSD	ifier	mg/Kg			97 - 97 - 97 - 97 - 97 - 97 - 97 - 97 -	90 - 110 Sample ID: Prep %Rec Limits 90 - 110 Sample ID: Prep	Trench- Type: S	oluble 3 (10')

Eurofins Midland

QC Association Summary

Client: Tetra Tech, Inc. Project/Site: MLMU Satellite 2

Prep Ba

Prep Batch: 71146					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-38172-1	Trench-3 (5')	Total/NA	Solid	5035	
880-38172-2	Trench-3 (6')	Total/NA	Solid	5035	
880-38172-3	Trench-3 (7')	Total/NA	Solid	5035	
880-38172-4	Trench-3 (8')	Total/NA	Solid	5035	
880-38172-5	Trench-3 (9')	Total/NA	Solid	5035	
880-38172-6	Trench-3 (10')	Total/NA	Solid	5035	
880-38172-7	Trench-3 (11')	Total/NA	Solid	5035	
880-38172-8	Trench-3 (12')	Total/NA	Solid	5035	
880-38172-9	Trench-3 (13')	Total/NA	Solid	5035	
880-38172-10	Trench-3 (14')	Total/NA	Solid	5035	

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Solid

Solid

Solid

Solid

Solid

5035

5035

5035

5035

5035

MB 880-71146/5-A	Method Blank
LCS 880-71146/1-A	Lab Control Sample
LCSD 880-71146/2-A	Lab Control Sample Dup
880-38172-1 MS	Trench-3 (5')
880-38172-1 MSD	Trench-3 (5')

Analysis Batch: 71763

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-38172-1	Trench-3 (5')	Total/NA	Solid	8021B	71146
880-38172-2	Trench-3 (6')	Total/NA	Solid	8021B	71146
880-38172-3	Trench-3 (7')	Total/NA	Solid	8021B	71146
880-38172-4	Trench-3 (8')	Total/NA	Solid	8021B	71146
880-38172-5	Trench-3 (9')	Total/NA	Solid	8021B	71146
880-38172-6	Trench-3 (10')	Total/NA	Solid	8021B	71146
880-38172-7	Trench-3 (11')	Total/NA	Solid	8021B	71146
880-38172-8	Trench-3 (12')	Total/NA	Solid	8021B	71146
880-38172-9	Trench-3 (13')	Total/NA	Solid	8021B	71146
880-38172-10	Trench-3 (14')	Total/NA	Solid	8021B	71146
MB 880-71146/5-A	Method Blank	Total/NA	Solid	8021B	71146
LCS 880-71146/1-A	Lab Control Sample	Total/NA	Solid	8021B	71146
LCSD 880-71146/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	71146
880-38172-1 MS	Trench-3 (5')	Total/NA	Solid	8021B	71146
880-38172-1 MSD	Trench-3 (5')	Total/NA	Solid	8021B	71146

Analysis Batch: 71823

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-38172-1	Trench-3 (5')	Total/NA	Solid	Total BTEX	
880-38172-2	Trench-3 (6')	Total/NA	Solid	Total BTEX	
880-38172-3	Trench-3 (7')	Total/NA	Solid	Total BTEX	
880-38172-4	Trench-3 (8')	Total/NA	Solid	Total BTEX	
880-38172-5	Trench-3 (9')	Total/NA	Solid	Total BTEX	
880-38172-6	Trench-3 (10')	Total/NA	Solid	Total BTEX	
880-38172-7	Trench-3 (11')	Total/NA	Solid	Total BTEX	
880-38172-8	Trench-3 (12')	Total/NA	Solid	Total BTEX	
880-38172-9	Trench-3 (13')	Total/NA	Solid	Total BTEX	
880-38172-10	Trench-3 (14')	Total/NA	Solid	Total BTEX	

Page 151 of 307

Job ID: 880-38172-1 SDG: Eddy Co, NM

QC Association Summary

Client: Tetra Tech, Inc. Project/Site: MLMU Satellite 2

GC Semi VOA

Prep Batch: 71232

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-38172-1	Trench-3 (5')	Total/NA	Solid	8015NM Prep	
880-38172-2	Trench-3 (6')	Total/NA	Solid	8015NM Prep	
880-38172-3	Trench-3 (7')	Total/NA	Solid	8015NM Prep	
880-38172-4	Trench-3 (8')	Total/NA	Solid	8015NM Prep	
880-38172-5	Trench-3 (9')	Total/NA	Solid	8015NM Prep	
880-38172-6	Trench-3 (10')	Total/NA	Solid	8015NM Prep	
880-38172-7	Trench-3 (11')	Total/NA	Solid	8015NM Prep	
880-38172-8	Trench-3 (12')	Total/NA	Solid	8015NM Prep	
880-38172-9	Trench-3 (13')	Total/NA	Solid	8015NM Prep	
880-38172-10	Trench-3 (14')	Total/NA	Solid	8015NM Prep	
MB 880-71232/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-71232/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-71232/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-38171-A-1-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-38171-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	
Analysis Batch: 71758					
Lab Sample ID	Client Sample ID	Bron Type	Matrix	Method	Pron Batch

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-38172-1	Trench-3 (5')	Total/NA	Solid	8015B NM	71232
880-38172-2	Trench-3 (6')	Total/NA	Solid	8015B NM	71232
880-38172-3	Trench-3 (7')	Total/NA	Solid	8015B NM	71232
880-38172-4	Trench-3 (8')	Total/NA	Solid	8015B NM	71232
880-38172-5	Trench-3 (9')	Total/NA	Solid	8015B NM	71232
880-38172-6	Trench-3 (10')	Total/NA	Solid	8015B NM	71232
880-38172-7	Trench-3 (11')	Total/NA	Solid	8015B NM	71232
880-38172-8	Trench-3 (12')	Total/NA	Solid	8015B NM	71232
880-38172-9	Trench-3 (13')	Total/NA	Solid	8015B NM	71232
880-38172-10	Trench-3 (14')	Total/NA	Solid	8015B NM	71232
MB 880-71232/1-A	Method Blank	Total/NA	Solid	8015B NM	71232
LCS 880-71232/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	71232
LCSD 880-71232/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	71232
880-38171-A-1-B MS	Matrix Spike	Total/NA	Solid	8015B NM	71232
880-38171-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	71232

Analysis Batch: 71897

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-38172-1	Trench-3 (5')	Total/NA	Solid	8015 NM	
880-38172-2	Trench-3 (6')	Total/NA	Solid	8015 NM	
880-38172-3	Trench-3 (7')	Total/NA	Solid	8015 NM	
880-38172-4	Trench-3 (8')	Total/NA	Solid	8015 NM	
880-38172-5	Trench-3 (9')	Total/NA	Solid	8015 NM	
880-38172-6	Trench-3 (10')	Total/NA	Solid	8015 NM	
880-38172-7	Trench-3 (11')	Total/NA	Solid	8015 NM	
880-38172-8	Trench-3 (12')	Total/NA	Solid	8015 NM	
880-38172-9	Trench-3 (13')	Total/NA	Solid	8015 NM	
880-38172-10	Trench-3 (14')	Total/NA	Solid	8015 NM	

Page 152 of 307

Job ID: 880-38172-1 SDG: Eddy Co, NM

QC Association Summary

Client: Tetra Tech, Inc. Project/Site: MLMU Satellite 2

Leach Batch: 71323

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-38172-1	Trench-3 (5')	Soluble	Solid	DI Leach	
880-38172-2	Trench-3 (6')	Soluble	Solid	DI Leach	
880-38172-3	Trench-3 (7')	Soluble	Solid	DI Leach	
880-38172-4	Trench-3 (8')	Soluble	Solid	DI Leach	
880-38172-5	Trench-3 (9')	Soluble	Solid	DI Leach	
880-38172-6	Trench-3 (10')	Soluble	Solid	DI Leach	
880-38172-7	Trench-3 (11')	Soluble	Solid	DI Leach	
880-38172-8	Trench-3 (12')	Soluble	Solid	DI Leach	
880-38172-9	Trench-3 (13')	Soluble	Solid	DI Leach	
880-38172-10	Trench-3 (14')	Soluble	Solid	DI Leach	
MB 880-71323/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-71323/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-71323/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-38172-6 MS	Trench-3 (10')	Soluble	Solid	DI Leach	
880-38172-6 MSD	Trench-3 (10')	Soluble	Solid	DI Leach	

Analysis Batch: 71391

880-38172-7	Trench-3 (11')	Soluble	Solid	DI Leach		
880-38172-8	Trench-3 (12')	Soluble	Solid	DI Leach		8
880-38172-9	Trench-3 (13')	Soluble	Solid	DI Leach		
880-38172-10	Trench-3 (14')	Soluble	Solid	DI Leach		9
MB 880-71323/1-A	Method Blank	Soluble	Solid	DI Leach		
LCS 880-71323/2-A	Lab Control Sample	Soluble	Solid	DI Leach		
LCSD 880-71323/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach		
880-38172-6 MS	Trench-3 (10')	Soluble	Solid	DI Leach		
880-38172-6 MSD	Trench-3 (10')	Soluble	Solid	DI Leach		
Analysis Batch: 71391						
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	4.0
880-38172-1	Trench-3 (5')	Soluble	Solid	300.0	71323	13
880-38172-2	Trench-3 (6')	Soluble	Solid	300.0	71323	
880-38172-3	Trench-3 (7')	Soluble	Solid	300.0	71323	
880-38172-4	Trench-3 (8')	Soluble	Solid	300.0	71323	
880-38172-5	Trench-3 (9')	Soluble	Solid	300.0	71323	
880-38172-6	Trench-3 (10')	Soluble	Solid	300.0	71323	
880-38172-7	Trench-3 (11')	Soluble	Solid	300.0	71323	
880-38172-8	Trench-3 (12')	Soluble	Solid	300.0	71323	
880-38172-9	Trench-3 (13')	Soluble	Solid	300.0	71323	
880-38172-10	Trench-3 (14')	Soluble	Solid	300.0	71323	
MB 880-71323/1-A	Method Blank	Soluble	Solid	300.0	71323	
LCS 880-71323/2-A	Lab Control Sample	Soluble	Solid	300.0	71323	
LCSD 880-71323/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	71323	
880-38172-6 MS	Trench-3 (10')	Soluble	Solid	300.0	71323	
880-38172-6 MSD	Trench-3 (10')	Soluble	Solid	300.0	71323	

Client Sample ID: Trench-3 (5') Date Collected: 01/17/24 15:35

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Date Received: 01/19/24 12:30

Client: Tetra Tech, Inc. Project/Site: MLMU Satellite 2

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Initial

Amount

5.03 g

5 mL

10.01 g

1 uL

4.97 g

50 mL

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

50 mL

Batch

71146

71763

71823

71897

71232

71758

71323

71391

Number

Dil

1

1

1

1

1

Factor

Run

Job ID: 880-38172-1 SDG: Eddy Co, NM

Lab Sample ID: 880-38172-1

Analyst

MNR

MNR

SM

SM

ткс

SM

SA

SMC

Lab Sample ID: 880-38172-3

Lab Sample ID: 880-38172-4

Prepared

or Analyzed

01/19/24 16:42

01/28/24 05:28

01/28/24 05:28

01/29/24 01:10

01/19/24 15:04

01/29/24 01:10

01/22/24 11:56

01/24/24 16:40

Matrix: Solid

Lab

EET MID

Matrix: Solid

Lab Sample ID: 880-38172-2 Matrix: Solid

trix: Solia

Client Sample ID: Trench-3 (6') Date Collected: 01/17/24 15:38

Date Received: 01/19/24 12:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	71146	01/19/24 16:42	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71763	01/28/24 05:55	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71823	01/28/24 05:55	SM	EET MID
Total/NA	Analysis	8015 NM		1			71897	01/29/24 01:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	71232	01/19/24 15:04	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71758	01/29/24 01:30	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	71323	01/22/24 11:56	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71391	01/24/24 16:45	SMC	EET MID

Client Sample ID: Trench-3 (7') Date Collected: 01/17/24 15:42

Date Received: 01/19/24 12:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	71146	01/19/24 16:42	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71763	01/28/24 06:21	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71823	01/28/24 06:21	SM	EET MID
Total/NA	Analysis	8015 NM		1			71897	01/29/24 01:51	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	71232	01/19/24 15:04	ТКС	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71758	01/29/24 01:51	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	71323	01/22/24 11:56	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71391	01/24/24 16:51	SMC	EET MID

Client Sample ID: Trench-3 (8') Date Collected: 01/17/24 15:45 Date Received: 01/19/24 12:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	71146	01/19/24 16:42	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71763	01/28/24 06:48	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71823	01/28/24 06:48	SM	EET MID

Eurofins Midland

Matrix: Solid

Client Sample ID: Trench-3 (8') Date Collected: 01/17/24 15:45

Date Received: 01/19/24 12:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			71897	01/29/24 02:12	SM	EET MID
Total/NA	Prep	8015NM Prep			9.98 g	10 mL	71232	01/19/24 15:04	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71758	01/29/24 02:12	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	71323	01/22/24 11:56	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71391	01/24/24 16:56	SMC	EET MID

Client Sample ID: Trench-3 (9') Date Collected: 01/17/24 15:48

Date Received: 01/19/24 12:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			5.05 g	5 mL	71146	01/19/24 16:42	MNR	EET MID	
Total/NA	Analysis	8021B		1	5 mL	5 mL	71763	01/28/24 07:15	MNR	EET MID	
Total/NA	Analysis	Total BTEX		1			71823	01/28/24 07:15	SM	EET MID	
Total/NA	Analysis	8015 NM		1			71897	01/29/24 02:32	SM	EET MID	
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	71232	01/19/24 15:04	TKC	EET MID	
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71758	01/29/24 02:32	SM	EET MID	
Soluble	Leach	DI Leach			5.02 g	50 mL	71323	01/22/24 11:56	SA	EET MID	
Soluble	Analysis	300.0		1	50 mL	50 mL	71391	01/24/24 17:01	SMC	EET MID	

Client Sample ID: Trench-3 (10')

Date Collected: 01/17/24 15:52

Date Received: 01/19/24 12:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	71146	01/19/24 16:42	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71763	01/28/24 07:43	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71823	01/28/24 07:43	SM	EET MID
Total/NA	Analysis	8015 NM		1			71897	01/29/24 02:53	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	71232	01/19/24 15:04	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71758	01/29/24 02:53	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	71323	01/22/24 11:56	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71391	01/24/24 17:06	SMC	EET MID

Client Sample ID: Trench-3 (11') Date Collected: 01/17/24 15:56 Date Received: 01/19/24 12:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	71146	01/19/24 16:42	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71763	01/28/24 08:10	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71823	01/28/24 08:10	SM	EET MID
Total/NA	Analysis	8015 NM		1			71897	01/29/24 03:13	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	71232	01/19/24 15:04	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71758	01/29/24 03:13	SM	EET MID

Eurofins Midland

Matrix: Solid

Job ID: 880-38172-1 SDG: Eddy Co, NM

Lab Sample ID: 880-38172-4

Lab Sample ID: 880-38172-5

Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Sample ID: 880-38172-6

Lab Sample ID: 880-38172-7

Matrix: Solid

9

Lab Chronicle

Client: Tetra Tech, Inc. Project/Site: MLMU Satellite 2

Client Sample ID: Trench-3 (11') Date Collected: 01/17/24 15:56 Date Received: 01/19/24 12:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.05 g	50 mL	71323	01/22/24 11:56	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71391	01/24/24 17:21	SMC	EET MID

Client Sample ID: Trench-3 (12') Date Collected: 01/17/24 15:59 Date Received: 01/19/24 12:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	71146	01/19/24 16:42	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71763	01/28/24 08:38	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71823	01/28/24 08:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			71897	01/29/24 03:33	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	71232	01/19/24 15:04	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71758	01/29/24 03:33	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	71323	01/22/24 11:56	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71391	01/24/24 17:26	SMC	EET MID

Client Sample ID: Trench-3 (13') Date Collected: 01/17/24 16:02 Date Received: 01/19/24 12:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	71146	01/19/24 16:42	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71763	01/28/24 09:06	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71823	01/28/24 09:06	SM	EET MID
Total/NA	Analysis	8015 NM		1			71897	01/29/24 03:53	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	71232	01/19/24 15:04	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71758	01/29/24 03:53	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	71323	01/22/24 11:56	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71391	01/24/24 17:42	SMC	EET MID

Client Sample ID: Trench-3 (14') Date Collected: 01/17/24 16:05

Lab Sample ID: 880-38172-10 Matrix: Solid

Lab Sample ID: 880-38172-8

Lab Sample ID: 880-38172-9

Date Received: 01/19/24 12:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	71146	01/19/24 16:42	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71763	01/28/24 09:33	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71823	01/28/24 09:33	SM	EET MID
Total/NA	Analysis	8015 NM		1			71897	01/29/24 04:13	SM	EET MID
Total/NA	Prep	8015NM Prep			9.97 g	10 mL	71232	01/19/24 15:04	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71758	01/29/24 04:13	SM	EET MID
Soluble	Leach	DI Leach			5.00 g	50 mL	71323	01/22/24 11:56	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71391	01/24/24 17:47	SMC	EET MID

Eurofins Midland

Job ID: 880-38172-1 SDG: Eddy Co, NM Lab Sample ID: 880-38172-7 Matrix: Solid

Lab Chronicle

Client: Tetra Tech, Inc. Project/Site: MLMU Satellite 2

Laboratory References: EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440 Job ID: 880-38172-1 SDG: Eddy Co, NM

Eurofins Midland

Client: Tetra Tech, Inc. Project/Site: MLMU Satellite 2

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

0,	Progra	am	Identification Number	Expiration Date
The following analytes for which the agency Analysis Method 8015 NM	NELAF	ס	T104704400-23-26	06-30-24
The following analyte	es are included in this report. bu	t the laboratory is not certif	ied by the governing authority. This lis	t may include analytes
0,	does not offer certification.	2		
0,	1 /	Matrix	Analyte	
Analysis Method	does not offer certification.	2	Analyte Total TPH	

10

Job ID: 880-38172-1

SDG: Eddy Co, NM

Eurofins Midland

Method Summary

Client: Tetra Tech, Inc. Project/Site: MLMU Satellite 2 Job ID: 880-38172-1 SDG: Eddy Co, NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
EPA = US	STM International Environmental Protection Agency		
	'Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edi	tion, November 1986 And Its Updates.	
TAL SOP :	= TestAmerica Laboratories, Standard Operating Procedure		
Laboratory R	eferences: = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		
	,		

Laboratory References:

Eurofins Midland

Sample Summary

Job ID: 880-38172-1
SDG: Eddy Co, NM

lient: Tetra Te					Job ID: 880-38172-1	
roject/Site: MI	LMU Satellite 2				SDG: Eddy Co, NM	
ab Sample ID	Client Sample ID	Matrix	Collected	Received		
30-38172-1	Trench-3 (5')	Solid	01/17/24 15:35	01/19/24 12:30		
30-38172-2	Trench-3 (6')	Solid	01/17/24 15:38	01/19/24 12:30		
30-38172-3	Trench-3 (7')	Solid	01/17/24 15:42	01/19/24 12:30		
30-38172-4	Trench-3 (8')	Solid	01/17/24 15:45	01/19/24 12:30		
30-38172-5	Trench-3 (9')	Solid	01/17/24 15:48	01/19/24 12:30		
30-38172-6	Trench-3 (10')	Solid	01/17/24 15:52	01/19/24 12:30		
80-38172-7	Trench-3 (11')	Solid	01/17/24 15:56	01/19/24 12:30		
0-38172-8	Trench-3 (12')	Solid	01/17/24 15:59	01/19/24 12:30		
80-38172-9	Trench-3 (13')	Solid	01/17/24 16:02	01/19/24 12:30		
30-38172-10	Trench-3 (14')	Solid	01/17/24 16:05	01/19/24 12:30		
						9
						1

.

 Image: Constraint of Custody Record

Æ	Tetra Tech, Inc.				901	Mid Te	and, ⁻ I (432	Texa :) 68:	eet Su as 7970 2-4559 2-3946)1)	0					-	880-	381	72 C	hain c	of Cu	stod	y				
Client Name:	JR Oil	Site Manage	r:	Bri	ttany	y Loi	ng				-						NAL								•		
Project Name:	MLMU Satellite 2	Contact Info	:	<u>brit</u>	ttany	/.lon	g@te	etra	tech	com			11	(C 	Circle or Specify Method No.)										1		
Project Locatior (county, state)	n: Eddy Co, NM	Project #:		212	C-ME	D-031	33 Ta	sk 1	00																		
nvoice to:	JR Oil ATTN Rex Tippy																						 ₽				
Receiving Labo	ratory: Eurofins	Sampler Sig	nature:		Matth	new C	astrej	jon			<u></u>		ORO - MRO)	:	Se Hg								iched list)				
Comments:												8260B	1 • 1		Cr Pb				8270C/625				S r (see atta	,			
		SAMP YEAR 2024	SAMPLING				PRESERVATI METHOD					BTEX (Ext to C3	(GRO - DR	1	Ag As Ba C Ag As Ba C	 Volatiles 	/olatiles	8260B / 624	Vol 8270	/ 608)sc		Sulfate TDS ater Chemistry (Balance			
LAB # (LAB USE ONLY)	SAMPLE IDENTIFICATION	DATE	TIME	WATER	SOIL	HCL	HNO ₃		NONE	# CONTAINERS	FILTERED (Y/N)	BTEX 8021B TPH TX1005	TPH 8015M (GRO - DRO	PAH 8270C	l otal Metals Ag As ba Cd U FCLP Metals Ag As Ba Cd	TCLP Volatiles	TCLP Semi Volatiles RCI	GC/MS Vol 8260B	GC/MS Semi Vol	PCB's 8082 / 608 NORM	PLM (Asbestos)	8	Chloride Sulfate TDS General Water Chemistry (see attached	Anion/Cation Balance	TPH 8015R	НОГД	
	Trench-3 (5')	01/17/24	1535		X		1 1	x	_	1		X	X						0			X		4		-	
	Trench-3 (6')	01/17/24	1538		x			x		1		x	X					-			++	x	╋	+		╈	
	Trench-3 (7')	01/17/24	1542		x			x		1		x	X					1				x	+	+-		+	
	Trench-3 (8')	01/17/24	1545		X			x		1		x	X			Π		1			++	x	1	+		+	
	Trench-3 (9')	01/17/24	1548		x			x		1		х	X						\top			x		+		+	
	Trench-3 (10')	01/17/24	1552		х			x		1		X	X								+-+	x			\square	+	
	Trench-3 (11')	01/17/24	1556		x			x		1		x	X					╈				x			H	\dagger	
	Trench-3 (12')	01/17/24	1559		х			x		1		х	X									x		+		+	
	Trench-3 (13')	01/17/24	1602		х		\square	x		1		x	X			\square						x		+		\uparrow	
	Trench-3 (14')	01/17/24	1605		х			x		1		X	X									x				+	
Relinquished by	Date Time 1-19-24 12:27	Received by	AV	2	`	Da	7/2	Tir 24	112	23	0	1000	_AB ON		E	REMARKS:											
Relinquished/by	VV Date Time	Re derv ed by				Da	te '	Tir	me			Samp G		le Temperature 7 5 .		nperatur					me Day jes Auti			48 hr	72 h	ſſ	
Relinquished by [.]	Date Time	Received by				Da	te	Tir	me				-		·				-				P Repo	ırt			
		ORIGINA	L COPY									(Cure	le) H				D FE			7 20	frackir	og #					

13

.

Job Number: 880-38172-1 SDG Number: Eddy Co, NM

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Login Number: 38172 List Number: 1 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Environment Testing

Page 163 of 307

ANALYTICAL REPORT

PREPARED FOR

Attn: Brittany Long Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701 Generated 2/27/2024 11:19:09 AM

JOB DESCRIPTION

MLMUI Satellite No2 Lea County NM

JOB NUMBER

890-6200-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 2/27/2024 11:19:09 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-6200-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	7
Surrogate Summary	22
QC Sample Results	24
QC Association Summary	32
Lab Chronicle	37
Certification Summary	44
Method Summary	45
Sample Summary	46
Chain of Custody	47
Receipt Checklists	50

Client: Tetra Tech, Inc.
Project/Site: MLMUI Satellite No2

Page 166 of 307

Job ID: 890-6200)-1
SDG: Lea County N	IM

Qualifiers

Quaimers		- 3
GC VOA Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	- 4
S1-	Surrogate recovery exceeds control limits, low biased.	E
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VO		
Qualifier	Qualifier Description	-
*_	LCS and/or LCSD is outside acceptance limits, low biased.	
*1	LCS/LCSD RPD exceeds control limits.	
S1-	Surrogate recovery exceeds control limits, low biased.	8
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	9
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		11
Abbreviation	These commonly used abbreviations may or may not be present in this report.	10
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	4.0
CFL	Contains Free Liquid	13
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	

DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor

 DL
 Detection Limit (DoD/DOE)

 DL, RA, RE, IN
 Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

 DLC
 Decision Level Concentration (Radiochemistry)

 EDL
 Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit

ML Minimum Level (Dioxin)

MPNMost Probable NumberMQLMethod Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Case Narrative

Client: Tetra Tech, Inc. Project: MLMUI Satellite No2 Job ID: 890-6200-1

 Page 167 of 307

 200-1
 2

 bad
 3

 4
 3

 mary
 5

 ns, to
 7

 8
 9

 1,
 11

 0-2),
 12

 2),
 13

Job ID: 890-6200-1

Eurofins Carlsbad

Job Narrative 890-6200-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 2/15/2024 1:42 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -2.0°C.

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SW - 5 (890-6200-1), SW - 6 (890-6200-2), SW - 8 (890-6200-3), SW - 9 (890-6200-4), SW - 10 (890-6200-5), SW - 11 (890-6200-6), SW - 14 (890-6200-7), SW - 18 (890-6200-8), BH - 3 (2.0') (890-6200-9), BH - 4 (2.0') (890-6200-10), BH - 6 (2.0') (890-6200-11), BH - 8 (3.0') (890-6200-12), BH - 9 (3.0') (890-6200-13), BH - 10 (4.0') (890-6200-14), BH - 22 (4.0') (890-6200-15), BH - 23 (4.0') (890-6200-16), BH - 24 (4.0"0 (890-6200-17), BH - 27 (4.0') (890-6200-18), BH - 28 (4.0') (890-6200-19) and BH - 29 (4.0') (890-6200-20).

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-73794 and analytical batch 880-73978 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (MB 880-73996/5-A). Evidence of matrix interferences is not obvious.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-73993 recovered under the lower control limit for Ethylbenzene, m-Xylene & p-Xylene and o-Xylene. The samples associated with this CCV were ran within 12 hours of passing CCV; therefore, the data have been reported.

Method 8021B: Surrogate recovery for the following sample was outside control limits: BH - 10 (4.0') (890-6200-14). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-73897 and analytical batch 880-73993 was outside the control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: SW - 11 (890-6200-6), SW - 14 (890-6200-7), BH - 3 (2.0') (890-6200-9), BH - 4 (2.0') (890-6200-10), BH - 6 (2.0') (890-6200-11) and BH - 23 (4.0') (890-6200-16). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (LCSD 880-73546/3-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The laboratory control sample (LCS) associated with preparation batch 880-73546 and analytical batch 880-73598 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Project: MLMUI Satellite No2

Client: Tetra Tech, Inc.

Case Narrative

Job ID: 890-6200-1

Eurofins Carlsbad

Job ID: 890-6200-1 (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Carlsbad

5

Job ID: 890-6200-1 SDG: Lea County NM

Lab Sample ID: 890-6200-1

Client Sample ID: SW - 5 Date Collected: 02/12/24 00:00

Project/Site: MLMUI Satellite No2

Client: Tetra Tech, Inc.

Date Received: 02/15/24 13:42

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		02/21/24 14:02	02/24/24 13:56	
Toluene	<0.00199	U F1	0.00199		mg/Kg		02/21/24 14:02	02/24/24 13:56	
Ethylbenzene	<0.00199	U F1	0.00199		mg/Kg		02/21/24 14:02	02/24/24 13:56	
m-Xylene & p-Xylene	<0.00398	U F1	0.00398		mg/Kg		02/21/24 14:02	02/24/24 13:56	
o-Xylene	<0.00199	U F1	0.00199		mg/Kg		02/21/24 14:02	02/24/24 13:56	
Xylenes, Total	<0.00398	U F1	0.00398		mg/Kg		02/21/24 14:02	02/24/24 13:56	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	82		70 - 130				02/21/24 14:02	02/24/24 13:56	
1,4-Difluorobenzene (Surr)	110		70 - 130				02/21/24 14:02	02/24/24 13:56	ŝ
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			02/24/24 13:56	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	715		50.5		mg/Kg			02/20/24 22:47	
Method: SW846 8015B NM - Dies Analyte		Qualifier	(GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.5	U *- *1	50.5		mg/Kg		02/19/24 15:13	02/20/24 22:47	
GRO)-C6-C10					0 0				
Diesel Range Organics (Over	715	*- *1	50.5		mg/Kg		02/19/24 15:13	02/20/24 22:47	
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		02/19/24 15:13	02/20/24 22:47	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	120		70 - 130				02/19/24 15:13	02/20/24 22:47	1
p-Terphenyl	107		70 - 130				02/19/24 15:13	02/20/24 22:47	1
Method: EPA 300.0 - Anions, Ion	Chromatogra	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	72.9		5.01		mg/Kg			02/19/24 22:52	
							Lab Sar	nple ID: 890-	6200-2
lient Sample ID: SW - 6									
									x: Solic
ate Collected: 02/12/24 00:00									x: Solic
ate Collected: 02/12/24 00:00 ate Received: 02/15/24 13:42	Organic Comp	ounds (GC)							x: Solid
lient Sample ID: SW - 6 ate Collected: 02/12/24 00:00 ate Received: 02/15/24 13:42 Method: SW846 8021B - Volatile Analyte		<mark>ounds (GC)</mark> Qualifier	RL	MDL	Unit	D	Prepared		x: Solic

1,4-Difluorobenzene (Surr)	113		70 - 130		02/21/24 14:02	02/24/24 14:17	1
4-Bromofluorobenzene (Surr)	93		70 - 130		02/21/24 14:02	02/24/24 14:17	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Xylenes, Total	<0.00402	U	0.00402	mg/Kg	02/21/24 14:02	02/24/24 14:17	1
o-Xylene	<0.00201	U	0.00201	mg/Kg	02/21/24 14:02	02/24/24 14:17	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg	02/21/24 14:02	02/24/24 14:17	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg	02/21/24 14:02	02/24/24 14:17	1
Toluene	<0.00201	U	0.00201	mg/Kg	02/21/24 14:02	02/24/24 14:17	1

Eurofins Carlsbad

5

Client Sample Results

Job ID: 890-6200-1 SDG: Lea County NM

Lab Sample ID: 890-6200-2

Client Sample ID: SW - 6

Project/Site: MLMUI Satellite No2

Client: Tetra Tech, Inc.

Date Collected: 02/12/24 00:00 Date Received: 02/15/24 13:42

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			02/24/24 14:17	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			02/20/24 21:37	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *- *1	50.0		mg/Kg		02/19/24 15:13	02/20/24 21:37	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U *- *1	50.0		mg/Kg		02/19/24 15:13	02/20/24 21:37	
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		02/19/24 15:13	02/20/24 21:37	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	111		70 - 130				02/19/24 15:13	02/20/24 21:37	
o-Terphenyl	93		70 - 130				02/19/24 15:13	02/20/24 21:37	-
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solub	le						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	85.0		4.99		mg/Kg			02/19/24 23:06	
lient Sample ID: SW - 8							Lab San	nple ID: 890-	6200-3

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		02/21/24 14:02	02/24/24 14:38	1
Toluene	<0.00202	U	0.00202		mg/Kg		02/21/24 14:02	02/24/24 14:38	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		02/21/24 14:02	02/24/24 14:38	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		02/21/24 14:02	02/24/24 14:38	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		02/21/24 14:02	02/24/24 14:38	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		02/21/24 14:02	02/24/24 14:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		70 - 130				02/21/24 14:02	02/24/24 14:38	1
1,4-Difluorobenzene (Surr)	110		70 - 130				02/21/24 14:02	02/24/24 14:38	1

Method: TAL SOP Total BTEX -	Total BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			02/24/24 14:38	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (C	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.3	U	50.3		mg/Kg			02/20/24 23:56	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.3	U *- *1	50.3		mg/Kg		02/19/24 15:13	02/20/24 23:56	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.3	U *- *1	50.3		mg/Kg		02/19/24 15:13	02/20/24 23:56	1

Eurofins Carlsbad

C10-C28)

5

Client Sample Results

Job ID: 890-6200-1 SDG: Lea County NM

Lab Sample ID: 890-6200-3

Client Sample ID: SW - 8

Project/Site: MLMUI Satellite No2

Date Collected: 02/12/24 00:00 Date Received: 02/15/24 13:42

Client: Tetra Tech, Inc.

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		02/19/24 15:13	02/20/24 23:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				02/19/24 15:13	02/20/24 23:56	1
o-Terphenyl	103		70 - 130				02/19/24 15:13	02/20/24 23:56	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	76.5		4.98		mg/Kg			02/19/24 23:10	1
Client Sample ID: SW - 9							Lab San	nple ID: 890-	6200-4
Date Collected: 02/12/24 00:00								•	x: Solid

ollected: 02/12/24 00:00

Date Received: 02/15/24 13:42

Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		02/21/24 14:02	02/24/24 14:59	1
Toluene	<0.00199	U	0.00199		mg/Kg		02/21/24 14:02	02/24/24 14:59	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		02/21/24 14:02	02/24/24 14:59	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		02/21/24 14:02	02/24/24 14:59	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		02/21/24 14:02	02/24/24 14:59	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		02/21/24 14:02	02/24/24 14:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		70 - 130				02/21/24 14:02	02/24/24 14:59	1
1,4-Difluorobenzene (Surr)	110		70 - 130				02/21/24 14:02	02/24/24 14:59	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			02/24/24 14:59	1

	Method: SW846 8015 NM - Diesel R	Range Organ	ics (DRO) (G	C)						
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Total TPH	101		50.4		mg/Kg			02/20/24 23:33	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.4	U *- *1	50.4		mg/Kg		02/19/24 15:13	02/20/24 23:33	1
(GRO)-C6-C10									
Diesel Range Organics (Over	101	*- *1	50.4		mg/Kg		02/19/24 15:13	02/20/24 23:33	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.4	U	50.4		mg/Kg		02/19/24 15:13	02/20/24 23:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	120		70 - 130				02/19/24 15:13	02/20/24 23:33	1
o-Terphenyl	101		70 - 130				02/19/24 15:13	02/20/24 23:33	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	78.0		4.95		mg/Kg			02/19/24 23:15	1

5

Job ID: 890-6200-1 SDG: Lea County NM

Lab Sample ID: 890-6200-5

Client Sample ID: SW - 10 Date Collected: 02/12/24 00:00

Project/Site: MLMUI Satellite No2

Client: Tetra Tech, Inc.

Date Received: 02/15/24 13:42

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		02/21/24 14:02	02/24/24 15:20	1
Toluene	<0.00200	U	0.00200		mg/Kg		02/21/24 14:02	02/24/24 15:20	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		02/21/24 14:02	02/24/24 15:20	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		02/21/24 14:02	02/24/24 15:20	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		02/21/24 14:02	02/24/24 15:20	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		02/21/24 14:02	02/24/24 15:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130				02/21/24 14:02	02/24/24 15:20	1
1,4-Difluorobenzene (Surr)	112		70 - 130				02/21/24 14:02	02/24/24 15:20	1
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			02/24/24 15:20	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	110		49.7		mg/Kg			02/20/24 23:10	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics GRO)-C6-C10	<49.7	U *- *1	49.7		mg/Kg		02/19/24 15:13	02/20/24 23:10	1
Diesel Range Organics (Over C10-C28)	110	*- *1	49.7		mg/Kg		02/19/24 15:13	02/20/24 23:10	1
Oll Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		02/19/24 15:13	02/20/24 23:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	122		70 - 130				02/19/24 15:13	02/20/24 23:10	1
o-Terphenyl	110		70 - 130				02/19/24 15:13	02/20/24 23:10	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	902		4.96		mg/Kg			02/19/24 23:20	1
lient Sample ID: SW - 11							Lab Sar	nple ID: 890-	6200-6
ate Collected: 02/12/24 00:00								Matri	x: Solid
ate Received: 02/15/24 13:42									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		02/21/24 14:02	02/24/24 15:41	1
Toluene	<0.00198	U	0.00198		mg/Kg		02/21/24 14:02	02/24/24 15:41	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		02/21/24 14:02	02/24/24 15:41	1

m-Xylene & p-Xylene	<0.00396 U	0.00396	mg/Kg	02/21/24 14:02	02/24/24 15:41	1
o-Xylene	<0.00198 U	0.00198	mg/Kg	02/21/24 14:02	02/24/24 15:41	1
Xylenes, Total	<0.00396 U	0.00396	mg/Kg	02/21/24 14:02	02/24/24 15:41	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	90 %Recovery	Limits 70 _ 130		Prepared 02/21/24 14:02	Analyzed 02/24/24 15:41	Dil Fac

Eurofins Carlsbad

Released to Imaging: 5/30/2025 1:25:27 PM

5

Client Sample Results

Job ID: 890-6200-1 SDG: Lea County NM

Lab Sample ID: 890-6200-6

Client Sample ID: SW - 11

Project/Site: MLMUI Satellite No2

Client: Tetra Tech, Inc.

Date Collected: 02/12/24 00:00 Date Received: 02/15/24 13:42

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			02/24/24 15:41	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			02/21/24 00:19	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *- *1	49.9		mg/Kg		02/19/24 15:13	02/21/24 00:19	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U *- *1	49.9		mg/Kg		02/19/24 15:13	02/21/24 00:19	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		02/19/24 15:13	02/21/24 00:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	134	S1+	70 - 130				02/19/24 15:13	02/21/24 00:19	1
o-Terphenyl	123		70 - 130				02/19/24 15:13	02/21/24 00:19	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	61.8		5.04		mg/Kg			02/19/24 23:34	1

Date Collected: 02/12/24 00:00 Date Received: 02/15/24 13:42 Sample ID: 890-6200-7 Matrix: Solid

-Method: SW846 8021B - Volatile Organic Compounds (GC)

organic oomp		/						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00201	U	0.00201		mg/Kg		02/21/24 14:02	02/24/24 16:02	1
<0.00201	U	0.00201		mg/Kg		02/21/24 14:02	02/24/24 16:02	1
<0.00201	U	0.00201		mg/Kg		02/21/24 14:02	02/24/24 16:02	1
<0.00402	U	0.00402		mg/Kg		02/21/24 14:02	02/24/24 16:02	1
<0.00201	U	0.00201		mg/Kg		02/21/24 14:02	02/24/24 16:02	1
<0.00402	U	0.00402		mg/Kg		02/21/24 14:02	02/24/24 16:02	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
		70 - 130				02/21/24 14:02	02/24/24 16:02	1
106		70 - 130				02/21/24 14:02	02/24/24 16:02	1
	Result <0.00201	Result Qualifier <0.00201	Result Qualifier RL <0.00201	Result Qualifier RL MDL <0.00201	<0.00201	Result Qualifier RL MDL Unit D <0.00201	Result Qualifier RL MDL Unit D Prepared <0.00201	Result Qualifier RL MDL Unit D Prepared Analyzed <0.00201

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			02/24/24 16:02	1
Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.2	U	50.2		mg/Kg			02/21/24 00:42	1
Method: SW846 8015B NM - Di	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
								00/04/04 00 40	
Gasoline Range Organics	<50.2	U *- *1	50.2		mg/Kg		02/19/24 15:13	02/21/24 00:42	1
	<50.2	U *- *1	50.2		mg/Kg		02/19/24 15:13	02/21/24 00:42	1

Eurofins Carlsbad

Released to Imaging: 5/30/2025 1:25:27 PM

C10-C28)

5

Client Sample Results

Job ID: 890-6200-1 SDG: Lea County NM

Lab Sample ID: 890-6200-7

Client Sample ID: SW - 14 Date Collected: 02/12/24 00:00

Project/Site: MLMUI Satellite No2

Client: Tetra Tech, Inc.

Date Collected: 02/12/24 00:00 Date Received: 02/15/24 13:42								Matri	ix: Soli
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC) (Continue	d)					
Analyte		Qualifier	RL	· ·	Unit	D	Prepared	Analyzed	Dil Fa
Oll Range Organics (Over C28-C36)	<50.2	U	50.2		mg/Kg		02/19/24 15:13	02/21/24 00:42	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	151	S1+	70 - 130				02/19/24 15:13	02/21/24 00:42	
o-Terphenyl	139	S1+	70 - 130				02/19/24 15:13	02/21/24 00:42	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	57.7		5.02		mg/Kg			02/19/24 23:38	
lient Sample ID: SW - 18							Lab Sar	nple ID: 890-	6200-
ate Collected: 02/12/24 00:00								Matri	ix: Soli
ate Received: 02/15/24 13:42									
	0								
Method: SW846 8021B - Volatile Analyte		Qualifier	RL	мы	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202		0.00202		mg/Kg		02/21/24 14:02	02/24/24 16:23	Diric
Toluene	< 0.00202		0.00202		mg/Kg		02/21/24 14:02	02/24/24 16:23	
Ethylbenzene	<0.00202		0.00202		mg/Kg		02/21/24 14:02	02/24/24 16:23	
m-Xylene & p-Xylene	<0.00202		0.00202		mg/Kg		02/21/24 14:02	02/24/24 16:23	
o-Xylene	<0.00202		0.00202		mg/Kg		02/21/24 14:02	02/24/24 16:23	
Xylenes, Total	< 0.00404		0.00202		mg/Kg		02/21/24 14:02	02/24/24 16:23	
	-0.00-0-	0	0.00404		iiig/itg		02/21/24 14:02	02/24/24 10:20	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	95		70 - 130				02/21/24 14:02	02/24/24 16:23	
1,4-Difluorobenzene (Surr)	110		70 - 130				02/21/24 14:02	02/24/24 16:23	
Method: TAL SOP Total BTEX - 1	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	< 0.00404	U	0.00404		mg/Kg			02/24/24 16:23	
•									
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)						

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

<50.3 U

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.3	U *- *1	50.3		mg/Kg		02/19/24 15:13	02/21/24 01:05	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.3	U *- *1	50.3		mg/Kg		02/19/24 15:13	02/21/24 01:05	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		02/19/24 15:13	02/21/24 01:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	127		70 - 130				02/19/24 15:13	02/21/24 01:05	1
o-Terphenyl	116		70 - 130				02/19/24 15:13	02/21/24 01:05	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	67.6		5.05		mg/Kg			02/19/24 23:43	1

50.3

mg/Kg

Eurofins Carlsbad

02/21/24 01:05

1

Released to Imaging: 5/30/2025 1:25:27 PM

Total TPH

Job ID: 890-6200-1 SDG: Lea County NM

Lab Sample ID: 890-6200-9

Client Sample ID: BH - 3 (2.0')

Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42

Project/Site: MLMUI Satellite No2

Client: Tetra Tech, Inc.

Benzene	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
	<0.00200	U	0.00200		mg/Kg		02/21/24 14:02	02/24/24 16:44	
Toluene	<0.00200	U	0.00200		mg/Kg		02/21/24 14:02	02/24/24 16:44	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		02/21/24 14:02	02/24/24 16:44	
n-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		02/21/24 14:02	02/24/24 16:44	
p-Xylene	<0.00200	U	0.00200		mg/Kg		02/21/24 14:02	02/24/24 16:44	
Kylenes, Total	<0.00399	U	0.00399		mg/Kg		02/21/24 14:02	02/24/24 16:44	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	76		70 - 130				02/21/24 14:02	02/24/24 16:44	
1,4-Difluorobenzene (Surr)	86		70 - 130				02/21/24 14:02	02/24/24 16:44	
Method: TAL SOP Total BTEX - To	tal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399		mg/Kg			02/24/24 16:44	
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.2	U	50.2		mg/Kg			02/21/24 01:29	
Method: SW846 8015B NM - Diese	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<50.2	U *- *1	50.2		mg/Kg		02/19/24 15:13	02/21/24 01:29	
Diesel Range Organics (Over C10-C28)	<50.2	U *- *1	50.2		mg/Kg		02/19/24 15:13	02/21/24 01:29	
DII Range Organics (Over C28-C36)	<50.2	U	50.2		mg/Kg		02/19/24 15:13	02/21/24 01:29	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	173	S1+	70 - 130				02/19/24 15:13	02/21/24 01:29	
p-Terphenyl	146	S1+	70 - 130				02/19/24 15:13	02/21/24 01:29	
Method: EPA 300.0 - Anions, Ion C	Chromatograp	ohy - Solubl	e						
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte			5.00		mg/Kg			02/19/24 23:48	
Analyte Chloride	69.7		5.00						
Chloride			0.00				Lab Sam	ple ID: 890-6	200-10
Chloride lient Sample ID: BH - 4 (2.0 ate Collected: 02/14/24 00:00							Lab Sam	-	200-1(x: Solie
Chloride lient Sample ID: BH - 4 (2.0 ate Collected: 02/14/24 00:00			0.00				Lab Sam	-	
Chloride lient Sample ID: BH - 4 (2.0) ate Collected: 02/14/24 00:00 ate Received: 02/15/24 13:42 Method: SW846 8021B - Volatile C	') Drganic Comp)					Matri	x: Solie
Chloride lient Sample ID: BH - 4 (2.0) ate Collected: 02/14/24 00:00 ate Received: 02/15/24 13:42 Method: SW846 8021B - Volatile C Malyte) Drganic Comp Result	Qualifier) RL	MDL	Unit	<u>D</u>	Prepared	Matri Analyzed	x: Solio Dil Fa
Chloride lient Sample ID: BH - 4 (2.0) ate Collected: 02/14/24 00:00 ate Received: 02/15/24 13:42 Method: SW846 8021B - Volatile C Analyte Benzene	Drganic Comp Result <0.00198	Qualifier) RL 	MDL	Unit mg/Kg	<u>D</u>	Prepared 02/21/24 14:02	Matri Analyzed 02/24/24 17:05	x: Soli
Chloride lient Sample ID: BH - 4 (2.0) ate Collected: 02/14/24 00:00 ate Received: 02/15/24 13:42 Method: SW846 8021B - Volatile C Analyte Benzene Foluene	() Drganic Comp <u>Result</u> <0.00198 <0.00198	Qualifier U U	RL 0.00198 0.00198	MDL	Unit mg/Kg mg/Kg	<u>D</u>	Prepared 02/21/24 14:02 02/21/24 14:02	Matri Analyzed 02/24/24 17:05 02/24/24 17:05	Dil Fa
Chloride lient Sample ID: BH - 4 (2.0) ate Collected: 02/14/24 00:00 ate Received: 02/15/24 13:42 Method: SW846 8021B - Volatile C Analyte Benzene Foluene Ethylbenzene	() Drganic Comp Result <0.00198 <0.00198 <0.00198	Qualifier U U U	RL 0.00198 0.00198 0.00198	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/21/24 14:02 02/21/24 14:02 02/21/24 14:02	Matri <u>Analyzed</u> 02/24/24 17:05 02/24/24 17:05 02/24/24 17:05	x: Soli
	() Drganic Comp <u>Result</u> <0.00198 <0.00198	Qualifier U U U U U	RL 0.00198 0.00198	MDL	Unit mg/Kg mg/Kg	<u>D</u>	Prepared 02/21/24 14:02 02/21/24 14:02	Matri Analyzed 02/24/24 17:05 02/24/24 17:05	Dil Fa

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	95	70 - 130	02/21/24 14:02	02/24/24 17:05	
1,4-Difluorobenzene (Surr)	106	70 - 130	02/21/24 14:02	02/24/24 17:05	

Eurofins Carlsbad

Matrix: Solid

5

Released to Imaging: 5/30/2025 1:25:27 PM

Fac 1

1

5

Client Sample Results

Job ID: 890-6200-1 SDG: Lea County NM

Lab Sample ID: 890-6200-10

Client Sample ID: BH - 4 (2.0')

Project/Site: MLMUI Satellite No2

Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42

Client: Tetra Tech, Inc.

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
otal BTEX	<0.00396	U	0.00396		mg/Kg			02/24/24 17:05	1
lethod: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
otal TPH	<50.5	U	50.5		mg/Kg			02/21/24 01:51	1
lethod: SW846 8015B NM - Diese	I Range Orga	nics (DRO)	(GC)						
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
asoline Range Organics	<50.5	U *- *1	50.5		mg/Kg		02/19/24 15:13	02/21/24 01:51	1
GRO)-C6-C10									
iesel Range Organics (Over	<50.5	U *- *1	50.5		mg/Kg		02/19/24 15:13	02/21/24 01:51	1
10-C28)									
II Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		02/19/24 15:13	02/21/24 01:51	1
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
-Chlorooctane	144	S1+	70 - 130				02/19/24 15:13	02/21/24 01:51	1
-Terphenyl	124		70 - 130				02/19/24 15:13	02/21/24 01:51	1
lethod: EPA 300.0 - Anions, Ion C	hromatograp	ohy - Solubl	е						
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
hloride	58.4		4.98		mg/Kg			02/19/24 23:52	1
nalyte	Result	-	RL	MDL		<u>D</u>			6

Date Collected: 02/14/24 00:00

Date Received: 02/15/24 13:42

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		02/22/24 17:07	02/27/24 05:45	1
Toluene	<0.00199	U	0.00199		mg/Kg		02/22/24 17:07	02/27/24 05:45	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		02/22/24 17:07	02/27/24 05:45	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		02/22/24 17:07	02/27/24 05:45	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		02/22/24 17:07	02/27/24 05:45	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		02/22/24 17:07	02/27/24 05:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		70 - 130				02/22/24 17:07	02/27/24 05:45	1
1,4-Difluorobenzene (Surr)	95		70 - 130				02/22/24 17:07	02/27/24 05:45	1
- Method: TAL SOP Total BTEX	- Total BTEX Cald	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Total BTEX	<0.00398	U	0.00398		mg/Kg			02/27/24 05:45	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			02/21/24 06:02	1
Mothod: SW846 8015B NM - Did									

wethod: 50046 60156 NW - Dies	sei Range Orga	nics (DRO) (C	36)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *- *1	49.9		mg/Kg		02/19/24 15:13	02/21/24 06:02	1
Diesel Range Organics (Over C10-C28)	<49.9	U *- *1	49.9		mg/Kg		02/19/24 15:13	02/21/24 06:02	1

Eurofins Carlsbad

5

Client Sample Results

Job ID: 890-6200-1 SDG: Lea County NM

Lab Sample ID: 890-6200-11

Client Sample ID: BH - 6 (2.0')

Project/Site: MLMUI Satellite No2

Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42

Client: Tetra Tech, Inc.

Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC) (Continue	d)					
Analyte		Qualifier	RL	-	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		02/19/24 15:13	02/21/24 06:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane		S1+	70 - 130				02/19/24 15:13	02/21/24 06:02	1
o-Terphenyl	149	S1+	70 - 130				02/19/24 15:13	02/21/24 06:02	1
Method: EPA 300.0 - Anions, lor	h Chromatograp	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	61.0		5.04		mg/Kg			02/19/24 23:57	1
lient Sample ID: BH - 8 (3.	0')						Lab Sam	ple ID: 890-6	200-12
ate Collected: 02/14/24 00:00								Matri	x: Solid
ate Received: 02/15/24 13:42									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		02/22/24 17:07	02/27/24 06:06	1
Toluene	<0.00201	U	0.00201		mg/Kg		02/22/24 17:07	02/27/24 06:06	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		02/22/24 17:07	02/27/24 06:06	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		02/22/24 17:07	02/27/24 06:06	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		02/22/24 17:07	02/27/24 06:06	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		02/22/24 17:07	02/27/24 06:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130				02/22/24 17:07	02/27/24 06:06	1
1,4-Difluorobenzene (Surr)	103		70 - 130				02/22/24 17:07	02/27/24 06:06	1
Method: TAL SOP Total BTEX -	Total BTEX Cald	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			02/27/24 06:06	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	60.8		49.7		mg/Kg			02/21/24 04:31	1
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.7	U *- *1	49.7		mg/Kg		02/19/24 15:13	02/21/24 04:31	1
Diesel Range Organics (Over	60.8	*- *1	49.7		mg/Kg		02/19/24 15:13	02/21/24 04:31	1
C10-C28)									

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	117		70 - 130				02/19/24 15:13	02/21/24 04:31	1
o-Terphenyl	109		70 - 130				02/19/24 15:13	02/21/24 04:31	1
	nions, Ion Chromatograp	hy - Solubl	e						
Method: EPA 300.0 - Ar Analyte	· · ·	hy - Solubl Qualifier	e RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

Client Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No2

Client Sample ID: BH - 9 (3.0')

Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		02/26/24 08:29	02/26/24 19:00	1
Toluene	<0.00201	U	0.00201		mg/Kg		02/26/24 08:29	02/26/24 19:00	
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		02/26/24 08:29	02/26/24 19:00	
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		02/26/24 08:29	02/26/24 19:00	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		02/26/24 08:29	02/26/24 19:00	1
Kylenes, Total	<0.00402	U	0.00402		mg/Kg		02/26/24 08:29	02/26/24 19:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	86		70 - 130				02/26/24 08:29	02/26/24 19:00	1
1,4-Difluorobenzene (Surr)	105		70 - 130				02/26/24 08:29	02/26/24 19:00	1
Method: TAL SOP Total BTEX -	Total BTEX Calo	culation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			02/26/24 19:00	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) ((GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	67.7		49.9		mg/Kg			02/21/24 04:54	1
Method: SW846 8015B NM - Die) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<49.9	U *- *1	49.9		mg/Kg		02/19/24 15:13	02/21/24 04:54	,
Diesel Range Organics (Over C10-C28)	67.7	*- *1	49.9		mg/Kg		02/19/24 15:13	02/21/24 04:54	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		02/19/24 15:13	02/21/24 04:54	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	122		70 - 130				02/19/24 15:13	02/21/24 04:54	
p-Terphenyl	112		70 - 130				02/19/24 15:13	02/21/24 04:54	1
Method: EPA 300.0 - Anions, Ior	n Chromatograp	hy - Solub	le						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	197		5.02		mg/Kg			02/20/24 00:15	1
lient Sample ID: BH - 10 (4.0')						Lab Sam	ple ID: 890-6	200-14
ate Collected: 02/14/24 00:00								Matri	x: Solic
ate Received: 02/15/24 13:42									
Method: SW846 8021B - Volatile	• •	•	·			_	_		
Method: SW846 8021B - Volatile Analyte	Result	Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fa
Method: SW846 8021B - Volatile Analyte Benzene	Result <0.00202	Qualifier U	RL	MDL	mg/Kg	<u> </u>	02/26/24 08:29	02/26/24 19:21	Dil Fa
Method: SW846 8021B - Volatile Analyte Benzene Foluene	Result <0.00202	Qualifier U U	RL 0.00202 0.00202	MDL	mg/Kg mg/Kg	<u> </u>	02/26/24 08:29 02/26/24 08:29	02/26/24 19:21 02/26/24 19:21	-
Method: SW846 8021B - Volatile Analyte Benzene Foluene Ethylbenzene	Result <0.00202 <0.00202 <0.00202	Qualifier U U U	RL 0.00202 0.00202 0.00202	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	02/26/24 08:29 02/26/24 08:29 02/26/24 08:29	02/26/24 19:21 02/26/24 19:21 02/26/24 19:21	
ate Received: 02/15/24 13:42 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Result <0.00202	Qualifier U U U	RL 0.00202 0.00202	MDL	mg/Kg mg/Kg	<u>D</u>	02/26/24 08:29 02/26/24 08:29	02/26/24 19:21 02/26/24 19:21	

Eurofins Carlsbad

Page 178 of 307

Job ID: 890-6200-1 SDG: Lea County NM

Lab Sample ID: 890-6200-13

Matrix: Solid

5

Matrix: Solid

5

Client Sample Results

Job ID: 890-6200-1 SDG: Lea County NM

Client Sample ID: BH - 10 (4.0') Date Collected: 02/14/24 00:00

Date Received: 02/15/24 13:42

Project/Site: MLMUI Satellite No2

Client: Tetra Tech, Inc.

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			02/26/24 19:21	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	98.6		50.1		mg/Kg			02/21/24 05:17	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.1	U *- *1	50.1		mg/Kg		02/19/24 15:13	02/21/24 05:17	1
(GRO)-C6-C10									
Diesel Range Organics (Over	98.6	*- *1	50.1		mg/Kg		02/19/24 15:13	02/21/24 05:17	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		02/19/24 15:13	02/21/24 05:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	121		70 - 130				02/19/24 15:13	02/21/24 05:17	1
o-Terphenyl	106		70 - 130				02/19/24 15:13	02/21/24 05:17	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1830		24.9		mg/Kg			02/20/24 00:29	5

Date Collected: 02/14/24 00:00

Date Received: 02/15/24 13:42

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00201 U 02/26/24 08:29 02/26/24 19:42 0.00201 mg/Kg 1 Toluene <0.00201 U 0.00201 02/26/24 08:29 02/26/24 19:42 mg/Kg 1 Ethylbenzene <0.00201 U 0.00201 02/26/24 08:29 02/26/24 19:42 mg/Kg 1 m-Xylene & p-Xylene <0.00402 U 0.00402 mg/Kg 02/26/24 08:29 02/26/24 19:42 1 o-Xylene <0.00201 U 0.00201 mg/Kg 02/26/24 08:29 02/26/24 19:42 1 Xylenes, Total <0.00402 U 0.00402 02/26/24 08:29 02/26/24 19:42 mg/Kg 1 %Recovery Qualifier Dil Fac Limits Prepared Surrogate Analyzed 70 - 130 02/26/24 08:29 02/26/24 19:42 4-Bromofluorobenzene (Surr) 83 1 1,4-Difluorobenzene (Surr) 106 70 - 130 02/26/24 08:29 02/26/24 19:42 1

Method: TAL SOP Total BTEX -	Total BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			02/26/24 19:42	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (O	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	94.2		50.3		mg/Kg			02/21/24 02:37	1
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.3	U *- *1	50.3		mg/Kg		02/19/24 15:13	02/21/24 02:37	1
(GRO)-C6-C10									
Diesel Range Organics (Over	94.2	*- *1	50.3		mg/Kg		02/19/24 15:13	02/21/24 02:37	1
C10-C28)									

Eurofins Carlsbad

0

Lab Sample ID: 890-6200-14

Job ID: 890-6200-1 SDG: Lea County NM

Lab Sample ID: 890-6200-15

Client Sample ID: BH - 22 (4.0')

Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42

Project/Site: MLMUI Satellite No2

Client: Tetra Tech, Inc.

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		02/19/24 15:13	02/21/24 02:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				02/19/24 15:13	02/21/24 02:37	1
o-Terphenyl	100		70 - 130				02/19/24 15:13	02/21/24 02:37	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	875		24.8		mg/Kg			02/20/24 00:34	5
Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42	·	ounds (GC)					Lab Sam	ple ID: 890-6 Matri	
ate Collected: 02/14/24 00:00 ate Received: 02/15/24 13:42 Method: SW846 8021B - Volatile	Organic Comp	ounds (GC) Qualifier	RL	MDL	Unit	D	Lab Sam	Matri	x: Solid
Client Sample ID: BH - 23 (4 Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42 Method: SW846 8021B - Volatile Analyte Benzene	Organic Comp	Qualifier		MDL	Unit mg/Kg	<u>D</u>			200-16 ix: Solid
Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42 Method: SW846 8021B - Volatile Analyte	Organic Comp	Qualifier	RL	MDL		<u>D</u>	Prepared	Matri	x: Solid
ate Collected: 02/14/24 00:00 ate Received: 02/15/24 13:42 Method: SW846 8021B - Volatile Analyte Benzene Toluene	Organic Comp Result <0.00201	Qualifier U U	RL 0.00201	MDL	mg/Kg	<u>D</u>	Prepared 02/26/24 08:29	Matri Analyzed 02/26/24 20:03	x: Solid
ate Collected: 02/14/24 00:00 bate Received: 02/15/24 13:42 Method: SW846 8021B - Volatile Analyte Benzene	Organic Comp <u>Result</u> <0.00201 <0.00201	Qualifier U U U	RL 0.00201 0.00201	MDL	mg/Kg mg/Kg	<u>D</u>	Prepared 02/26/24 08:29 02/26/24 08:29	Matri <u>Analyzed</u> 02/26/24 20:03 02/26/24 20:03	Dil Fac 1
ate Collected: 02/14/24 00:00 ate Received: 02/15/24 13:42 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene	Organic Comp Result <0.00201 <0.00201 <0.00201	Qualifier U U U U U	RL 0.00201 0.00201 0.00201	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/26/24 08:29 02/26/24 08:29 02/26/24 08:29	Matri <u>Analyzed</u> 02/26/24 20:03 02/26/24 20:03 02/26/24 20:03	Dil Fac
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Organic Comp Result <0.00201 <0.00201 <0.00201 <0.00402	Qualifier U U U U U U	RL 0.00201 0.00201 0.00201 0.00201 0.00201	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/26/24 08:29 02/26/24 08:29 02/26/24 08:29 02/26/24 08:29	Matri <u>Analyzed</u> 02/26/24 20:03 02/26/24 20:03 02/26/24 20:03 02/26/24 20:03	Dil Fac
Ante Collected: 02/14/24 00:00 (ate Received: 02/15/24 13:42) Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Organic Comp Result <0.00201 <0.00201 <0.00201 <0.00402 <0.00201 <0.00402 %Recovery	Qualifier U U U U U U U U	RL 0.00201 0.00201 0.00201 0.00201 0.00402 0.00201	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/26/24 08:29 02/26/24 08:29 02/26/24 08:29 02/26/24 08:29 02/26/24 08:29	Matri <u>Analyzed</u> 02/26/24 20:03 02/26/24 20:03 02/26/24 20:03 02/26/24 20:03 02/26/24 20:03	Dil Fac
Ante Collected: 02/14/24 00:00 (ate Received: 02/15/24 13:42) Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total	Organic Comp Result <0.00201 <0.00201 <0.00201 <0.00402 <0.00402 <0.00402	Qualifier U U U U U U U U	RL 0.00201 0.00201 0.00201 0.00201 0.00402 0.00201 0.00402	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/26/24 08:29 02/26/24 08:29 02/26/24 08:29 02/26/24 08:29 02/26/24 08:29 02/26/24 08:29	Matri 02/26/24 20:03 02/26/24 20:03 02/26/24 20:03 02/26/24 20:03 02/26/24 20:03 02/26/24 20:03	2011 Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			02/26/24 20:03	1

Method: SW846 8015 NM - Diesel F	Range Organics (DRO)) (GC)					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	74.5	50.3	mg/Kg			02/21/24 03:00	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.3	U *- *1	50.3		mg/Kg		02/19/24 15:13	02/21/24 03:00	1
(GRO)-C6-C10									
Diesel Range Organics (Over	74.5	*- *1	50.3		mg/Kg		02/19/24 15:13	02/21/24 03:00	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		02/19/24 15:13	02/21/24 03:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	136	S1+	70 - 130				02/19/24 15:13	02/21/24 03:00	1
o-Terphenyl	124		70 - 130				02/19/24 15:13	02/21/24 03:00	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	530		4.96		mg/Kg			02/20/24 00:39	1

Eurofins Carlsbad

Page 18 of 51
Client Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No2

Client Sample ID: BH - 24 (4.0"0 Date Collected: 02/14/24 00:00

Date Received: 02/15/24 13:42

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		02/26/24 08:29	02/26/24 20:25	1
Toluene	<0.00199	U	0.00199		mg/Kg		02/26/24 08:29	02/26/24 20:25	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		02/26/24 08:29	02/26/24 20:25	1
n-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		02/26/24 08:29	02/26/24 20:25	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		02/26/24 08:29	02/26/24 20:25	1
Kylenes, Total	<0.00398	U	0.00398		mg/Kg		02/26/24 08:29	02/26/24 20:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		70 - 130				02/26/24 08:29	02/26/24 20:25	1
1,4-Difluorobenzene (Surr)	102		70 - 130				02/26/24 08:29	02/26/24 20:25	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			02/26/24 20:25	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.5	U	50.5		mg/Kg			02/21/24 03:23	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics GRO)-C6-C10	<50.5	U *- *1	50.5		mg/Kg		02/19/24 15:13	02/21/24 03:23	1
Diesel Range Organics (Over C10-C28)	<50.5	U *- *1	50.5		mg/Kg		02/19/24 15:13	02/21/24 03:23	
Oll Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		02/19/24 15:13	02/21/24 03:23	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
-Chlorooctane	121		70 - 130				02/19/24 15:13	02/21/24 03:23	1
o-Terphenyl	109		70 - 130				02/19/24 15:13	02/21/24 03:23	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	505		5.00		mg/Kg			02/20/24 00:43	1
lient Sample ID: BH - 27 (4	.0')						Lab Sam	ple ID: 890-6	200-18
ate Collected: 02/14/24 00:00								Matri	x: Solic
ate Received: 02/15/24 13:42									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		02/26/24 08:29	02/26/24 20:46	
Toluene	<0.00199	U	0.00199		mg/Kg		02/26/24 08:29	02/26/24 20:46	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		02/26/24 08:29	02/26/24 20:46	
n-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		02/26/24 08:29	02/26/24 20:46	
o-Xylene	<0.00199	U	0.00199		mg/Kg		02/26/24 08:29	02/26/24 20:46	

Job ID: 890-6200-1 SDG: Lea County NM

Lab Sample ID: 890-6200-17

Matrix: Solid

5

1 Dil Fac 1

1

Eurofins Carlsbad

02/26/24 20:46

Analyzed

02/26/24 20:46

02/26/24 20:46

02/26/24 08:29

Prepared

02/26/24 08:29

02/26/24 08:29

Xylenes, Total

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Surrogate

0.00398

Limits

70 - 130

70 - 130

mg/Kg

<0.00398 U

%Recovery Qualifier

84

Matrix: Solid

5

Client Sample Results

Job ID: 890-6200-1 SDG: Lea County NM

Lab Sample ID: 890-6200-18

Client Sample ID: BH - 27 (4.0') Date Collected: 02/14/24 00:00

Date Received: 02/15/24 13:42

Project/Site: MLMUI Satellite No2

Client: Tetra Tech, Inc.

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			02/26/24 20:46	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			02/21/24 05:39	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *- *1	50.0		mg/Kg		02/19/24 15:13	02/21/24 05:39	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U *- *1	50.0		mg/Kg		02/19/24 15:13	02/21/24 05:39	
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		02/19/24 15:13	02/21/24 05:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	116		70 - 130				02/19/24 15:13	02/21/24 05:39	1
o-Terphenyl	101		70 - 130				02/19/24 15:13	02/21/24 05:39	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	81.4		4.99		mg/Kg			02/20/24 00:48	1

Date Collected: 02/14/24 00:00

Date Received: 02/15/24 13:42

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00198 U 0.00198 02/26/24 08:29 02/26/24 21:07 mg/Kg 1 Toluene <0.00198 U 0.00198 02/26/24 08:29 02/26/24 21:07 mg/Kg 1 Ethylbenzene <0.00198 U 02/26/24 08:29 02/26/24 21:07 0.00198 mg/Kg 1 m-Xylene & p-Xylene <0.00396 U 0.00396 mg/Kg 02/26/24 08:29 02/26/24 21:07 1 o-Xylene <0.00198 U 0.00198 mg/Kg 02/26/24 08:29 02/26/24 21:07 1 Xylenes, Total <0.00396 U 0.00396 02/26/24 08:29 02/26/24 21:07 mg/Kg 1 %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 70 - 130 02/26/24 08:29 02/26/24 21:07 4-Bromofluorobenzene (Surr) 79 1 1,4-Difluorobenzene (Surr) 100 70 - 130 02/26/24 08:29 02/26/24 21:07 1

Method: TAL SOP Total BTEX -	Total BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			02/26/24 21:07	1
	el Range Organ	ics (DRO) (C	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			02/21/24 03:46	1
	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *- *1	49.9		mg/Kg		02/19/24 15:13	02/21/24 03:46	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U *- *1	49.9		mg/Kg		02/19/24 15:13	02/21/24 03:46	1
C10-C28)									

Eurofins Carlsbad

Matrix: Solid

5

Client Sample Results

Job ID: 890-6200-1 SDG: Lea County NM

Lab Sample ID: 890-6200-19

Client Sample ID: BH - 28 (4.0')

Project/Site: MLMUI Satellite No2

Client: Tetra Tech, Inc.

Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42								Matri	ix: Soli
Method: SW846 8015B NM - Dies						_	- ·		
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		02/19/24 15:13	02/21/24 03:46	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1-Chlorooctane	109		70 - 130				02/19/24 15:13	02/21/24 03:46	
o-Terphenyl	94		70 - 130				02/19/24 15:13	02/21/24 03:46	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hv - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Chloride	102		5.04		mg/Kg			02/20/24 00:52	
lient Sample ID: BH - 29 (4	.0')						Lab Sam	ple ID: 890-6	200-2
ate Collected: 02/14/24 00:00									ix: Sol
ate Received: 02/15/24 13:42								inatio	
Method: SW846 8021B - Volatile			·	MDI	11:4		Drenered	Analyzed	Dil F
Analyte Benzene		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared 02/26/24 08:29	Analyzed 02/26/24 21:28	
					mg/Kg				
	<0.00200		0.00200		mg/Kg		02/26/24 08:29	02/26/24 21:28	
	<0.00200		0.00200		mg/Kg		02/26/24 08:29	02/26/24 21:28	
m-Xylene & p-Xylene	<0.00399		0.00399		mg/Kg		02/26/24 08:29	02/26/24 21:28	
o-Xylene	<0.00200		0.00200		mg/Kg		02/26/24 08:29	02/26/24 21:28	
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		02/26/24 08:29	02/26/24 21:28	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	78		70 - 130				02/26/24 08:29	02/26/24 21:28	
1,4-Difluorobenzene (Surr)	108		70 - 130				02/26/24 08:29	02/26/24 21:28	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Total BTEX	<0.00399	U	0.00399		mg/Kg			02/26/24 21:28	
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Total TPH	<50.2	U	50.2		mg/Kg			02/21/24 04:08	
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Gasoline Range Organics	<50.2	U *- *1	50.2		mg/Kg		02/19/24 15:13	02/21/24 04:08	
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.2	U *- *1	50.2		mg/Kg		02/19/24 15:13	02/21/24 04:08	
C10-C28)							00/10/0 : := :-	00/04/05 55 55	
Oll Range Organics (Over C28-C36)	<50.2	U	50.2		mg/Kg		02/19/24 15:13	02/21/24 04:08	

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	112		70 - 130				02/19/24 15:13	02/21/24 04:08	1
o-Terphenyl	98		70 - 130				02/19/24 15:13	02/21/24 04:08	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Soluble	•						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	100		5.02		mg/Kg			02/20/24 00:57	1

Eurofins Carlsbad

Percent Surrogate Recovery (Acceptance Limits)

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No2

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

		BFB1	DFBZ1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-39546-A-2-C MS	Matrix Spike	79	120
880-39546-A-2-D MSD	Matrix Spike Duplicate	84	116
890-6200-1	SW - 5	82	110
890-6200-1 MS	SW - 5	91	107
890-6200-1 MSD	SW - 5	90	107
890-6200-2	SW - 6	93	113
890-6200-3	SW - 8	87	110
890-6200-4	SW - 9	87	110
890-6200-5	SW - 10	90	112
890-6200-6	SW - 11	90	111
890-6200-7	SW - 14	110	106
890-6200-8	SW - 18	95	110
890-6200-9	BH - 3 (2.0')	76	86
890-6200-10	BH - 4 (2.0')	95	106
890-6200-11	BH - 4 (2.0) BH - 6 (2.0')	95 85	95
890-6200-12	BH - 8 (3.0')	89	103
890-6200-13	BH - 9 (3.0')	86	105
890-6200-14	BH - 10 (4.0')	59 S1-	103
890-6200-15	BH - 22 (4.0')	83	106
890-6200-16	BH - 23 (4.0')	78	102
890-6200-17	BH - 24 (4.0"0	81	102
890-6200-18	BH - 27 (4.0')	84	107
890-6200-19	BH - 28 (4.0')	79	100
890-6200-20	BH - 29 (4.0')	78	108
890-6251-A-7-C MS	Matrix Spike	104	112
890-6251-A-7-D MSD	Matrix Spike Duplicate	97	120
LCS 880-73794/1-A	Lab Control Sample	83	103
LCS 880-73897/1-A	Lab Control Sample	88	122
LCS 880-73996/1-A	Lab Control Sample	106	124
LCSD 880-73794/2-A	Lab Control Sample Dup	88	108
LCSD 880-73897/2-A	Lab Control Sample Dup	78	113
LCSD 880-73996/2-A	Lab Control Sample Dup	97	125
MB 880-73794/5-A	Method Blank	77	100
MB 880-73897/5-A	Method Blank	69 S1-	104
MB 880-73996/5-A	Method Blank	68 S1-	104
ND 000-10330/0-A		00.01-	100

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
0-6200-1	SW - 5	120	107	·
0-6200-2	SW - 6	111	93	
0-6200-2 MS	SW - 6	113	86	
00-6200-2 MSD	SW - 6	126	96	

Eurofins Carlsbad

Page 184 of 307

Job ID: 890-6200-1 SDG: Lea County NM

Prep Type: Total/NA

2/27/2024

Prep Type: Total/NA

Job ID: 890-6200-1 SDG: Lea County NM

Project/Site: MLMUI Satellite No2 Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid

Client: Tetra Tech, Inc.

Prep Type: Total/NA

		1CO1	OTPH1	Percent Surrogate Recovery (Acceptance Limits)	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
890-6200-3	SW - 8		103		ł
890-6200-4	SW - 9	120	101		
890-6200-5	SW - 10	122	110		
890-6200-6	SW - 11	134 S1+	123		
890-6200-7	SW - 14	151 S1+	139 S1+		
890-6200-8	SW - 18	127	116		
890-6200-9	BH - 3 (2.0')	173 S1+	146 S1+		
890-6200-10	BH - 4 (2.0')	144 S1+	124		
890-6200-11	BH - 6 (2.0')	178 S1+	149 S1+		
890-6200-12	BH - 8 (3.0')	117	109		
890-6200-13	BH - 9 (3.0')	122	112		
890-6200-14	BH - 10 (4.0')	121	106		
890-6200-15	BH - 22 (4.0')	110	100		
890-6200-16	BH - 23 (4.0')	136 S1+	124		
890-6200-17	BH - 24 (4.0"0	121	109		
390-6200-18	BH - 27 (4.0')	116	101		
890-6200-19	BH - 28 (4.0')	109	94		1
390-6200-20	BH - 29 (4.0')	112	98		
_CS 880-73546/2-A	Lab Control Sample	115	124		
_CSD 880-73546/3-A	Lab Control Sample Dup	45 S1-	37 S1-		
MB 880-73546/1-A	Method Blank	129	117		

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Carlsbad

Released to Imaging: 5/30/2025 1:25:27 PM

Job ID: 890-6200-1 SDG: Lea County NM

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 73794

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-73794/5-A	
Marketers O a Rat	

Project/Site: MLMUI Satellite No2

Matrix: Solid Analysis Batch: 73978

Client: Tetra Tech, Inc.

Analysis Batch: 73978								Prep Batch	n: 73794
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		02/21/24 14:02	02/24/24 13:34	1
Toluene	<0.00200	U	0.00200		mg/Kg		02/21/24 14:02	02/24/24 13:34	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		02/21/24 14:02	02/24/24 13:34	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		02/21/24 14:02	02/24/24 13:34	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		02/21/24 14:02	02/24/24 13:34	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		02/21/24 14:02	02/24/24 13:34	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	77		70 - 130				02/21/24 14:02	02/24/24 13:34	1
1,4-Difluorobenzene (Surr)	100		70 - 130				02/21/24 14:02	02/24/24 13:34	1

Lab Sample ID: LCS 880-73794/1-A Matrix: Solid

Analysis Batch: 73978

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1005		mg/Kg		101	70 - 130	
Toluene	0.100	0.07803		mg/Kg		78	70 - 130	
Ethylbenzene	0.100	0.07338		mg/Kg		73	70 - 130	
m-Xylene & p-Xylene	0.200	0.1436		mg/Kg		72	70 - 130	
o-Xylene	0.100	0.07469		mg/Kg		75	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	83		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: LCSD 880-73794/2-A

Matrix: Solid

Analysis Batch: 73978							Prep	Batch:	73794
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1058		mg/Kg		106	70 - 130	5	35
Toluene	0.100	0.08237		mg/Kg		82	70 - 130	5	35
Ethylbenzene	0.100	0.07865		mg/Kg		79	70 - 130	7	35
m-Xylene & p-Xylene	0.200	0.1498		mg/Kg		75	70 - 130	4	35
o-Xylene	0.100	0.07925		mg/Kg		79	70 - 130	6	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	88		70 - 130
1,4-Difluorobenzene (Surr)	108		70 - 130

Lab Sample ID: 890-6200-1 MS Matrix: Solid

Analysis Bataby 72079

Analysis Batch: 73978									Prep	Batch: 73794
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.101	0.1039		mg/Kg		103	70 - 130	
Toluene	<0.00199	U F1	0.101	0.07386		mg/Kg		73	70 - 130	

Eurofins Carlsbad

Client Sample ID: SW - 5

Prep Type: Total/NA

MS MS

0.04358 F1

0.1188 F1

0.06247 F1

Result Qualifier

Spike

Added

0.101

0.202

0.101

Limits

70 - 130

70 - 130

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No2

Lab Sample ID: 890-6200-1 MS

Analysis Batch: 73978

4-Bromofluorobenzene (Surr)

Analysis Batch: 73978

Lab Sample ID: 890-6200-1 MSD

1,4-Difluorobenzene (Surr)

Matrix: Solid

Analyte

o-Xylene

Surrogate

Matrix: Solid

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

m-Xylene & p-Xylene

Ethylbenzene

m-Xylene & p-Xylene

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

<0.00199

%Recovery

<0.00398 UF1

<0.00199 UF1

91

107

MS MS

Result Qualifier

UF1

Qualifier

104

Job ID: 890-6200-1 SDG: Lea County NM

Client Sample ID: SW - 5

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

43

59

62

D

Prep Type: Total/NA

Prep Batch: 73794

7

Client Sample ID: SW - 5
Prep Type: Total/NA
Brop Batch: 72704

Client Sample ID: Method Blank

02/27/24 00:23

Client Sample ID: Lab Control Sample

02/22/24 17:07

Prep Type: Total/NA

Prep Batch: 73897

								Prep	Batch:	73794	
Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
<0.00199	U	0.100	0.09050		mg/Kg		91	70 - 130	14	35	
<0.00199	U F1	0.100	0.06435	F1	mg/Kg		64	70 - 130	14	35	ī
<0.00199	U F1	0.100	0.03906	F1	mg/Kg		39	70 - 130	11	35	
<0.00398	U F1	0.200	0.1005	F1	mg/Kg		50	70 - 130	17	35	F
<0.00199	U F1	0.100	0.05253	F1	mg/Kg		53	70 - 130	17	35	

Unit

mg/Kg

mg/Kg

mg/Kg

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	90		70 - 130
1,4-Difluorobenzene (Surr)	107		70 - 130

Lab Sample ID: MB 880-73897/5-A Matrix: Solid Analysis Batch: 73993

	мв	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		02/22/24 17:07	02/27/24 00:23	1
Toluene	<0.00200	U	0.00200		mg/Kg		02/22/24 17:07	02/27/24 00:23	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		02/22/24 17:07	02/27/24 00:23	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		02/22/24 17:07	02/27/24 00:23	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		02/22/24 17:07	02/27/24 00:23	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		02/22/24 17:07	02/27/24 00:23	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	69	S1-	70 - 130				02/22/24 17:07	02/27/24 00:23	1

70 - 130

1,4-Difluorobenzene (Surr)

Lab Sample ID: LCS 880-73897/1-A Matrix: Solid Analysis Batch: 73993

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.1213		mg/Kg		121	70 - 130
Toluene	0.100	0.09931		mg/Kg		99	70 - 130
Ethylbenzene	0.100	0.09610		mg/Kg		96	70 - 130
m-Xylene & p-Xylene	0.200	0.1951		mg/Kg		98	70 - 130

Eurofins Carlsbad

Prep Type: Total/NA

Prep Batch: 73897

Released to Imaging: 5/30/2025 1:25:27 PM

Lab Sample ID: LCS 880-73897/1-A

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No2

Matrix: Solid

Job ID: 890-6200-1 SDG: Lea County NM

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Analysis Batch: 73993									Prep	Batch:	73897
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
o-Xylene			0.100	0.09613		mg/Kg		96	70 - 130		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	88		70 - 130								
1,4-Difluorobenzene (Surr)	122		70 - 130								
Lab Sample ID: LCSD 880-7	2807/2-1					Clie	nt Sam		Lab Contro	Sampl	
Matrix: Solid	000112-4					Unici	it oui			ype: To	
Analysis Batch: 73993										Batch:	
Analysis Datch. 19999			Spike	LCSD	LCSD				%Rec	Daten.	RPE
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Benzene			0.100	0.1095	Quanner	mg/Kg		110	70 - 130	10	35
Toluene			0.100	0.09718		mg/Kg		97	70 - 130	2	35
Ethylbenzene			0.100	0.08667		mg/Kg		87	70 - 130	10	35
m-Xylene & p-Xylene			0.200	0.1731		mg/Kg		87	70 - 130	12	35
o-Xylene			0.100	0.08481		mg/Kg		85	70 - 130	13	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	78		70 - 130								
Lab Sample ID: 880-39546-A Matrix: Solid	113 A-2-C MS		70 - 130					Client		ype: To	tal/N/
Lab Sample ID: 880-39546-A Matrix: Solid	A-2-C MS	Samolo		MS	MS			Client	Prep T Prep		tal/NA
Lab Sample ID: 880-39546-A Matrix: Solid Analysis Batch: 73993	A-2-C MS Sample	Sample Qualifier	Spike	MS Result	MS Qualifier	Unit	D		Prep T Prep %Rec	ype: To	tal/NA
Lab Sample ID: 880-39546-A Matrix: Solid Analysis Batch: 73993 ^{Analyte}	A-2-C MS Sample	Qualifier	Spike Added	Result	MS Qualifier	- Unit ma/Ka	<u>D</u>	%Rec	Prep T Prep %Rec Limits	ype: To	tal/NA
Lab Sample ID: 880-39546-A Matrix: Solid Analysis Batch: 73993 Analyte Benzene	A-2-C MS Sample 	Qualifier	Spike Added 0.101	Result 0.1157		mg/Kg	<u>D</u>	%Rec	Prep T Prep %Rec Limits 70 - 130	ype: To	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993 Analyte Benzene Toluene Ethylbenzene	A-2-C MS Sample 	Qualifier U U	Spike Added 0.101 0.101	Result 0.1157 0.09812		mg/Kg mg/Kg	D	%Rec 115 97	Prep T Prep %Rec Limits 70 - 130 70 - 130	ype: To	tal/NA
Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993 Analyte Benzene Toluene Ethylbenzene	A-2-C MS Sample 	Qualifier U U U	Spike Added 0.101 0.101 0.101	Result 0.1157 0.09812 0.08444		mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 115 97 84	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130	ype: To	tal/NA
Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	A-2-C MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398	Qualifier U U U U U	Spike Added 0.101 0.101 0.101 0.202	Result 0.1157 0.09812 0.08444 0.1664		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 115 97 84 83	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: To	tal/NA
Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993 Analyte Benzene Toluene Ethylbenzene	A-2-C MS Sample 	Qualifier U U U U U	Spike Added 0.101 0.101 0.101	Result 0.1157 0.09812 0.08444		mg/Kg mg/Kg mg/Kg	D	%Rec 115 97 84	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130	ype: To	tal/NA
Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	A-2-C MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS	Qualifier U U U U U U MS	Spike Added 0.101 0.101 0.101 0.202	Result 0.1157 0.09812 0.08444 0.1664		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 115 97 84 83	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: To	tal/NA
Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	A-2-C MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199	Qualifier U U U U U U MS	Spike Added 0.101 0.101 0.101 0.202	Result 0.1157 0.09812 0.08444 0.1664		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 115 97 84 83	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: To	tal/NA
Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	A-2-C MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS	Qualifier U U U U U U MS	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101	Result 0.1157 0.09812 0.08444 0.1664		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 115 97 84 83	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: To	tal/NA
Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	A-2-C MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery	Qualifier U U U U U U MS	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 Limits	Result 0.1157 0.09812 0.08444 0.1664		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 115 97 84 83	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: To	tal/NA
Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	A-2-C MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 79 120 	Qualifier U U U U U U MS	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 Limits 70 - 130	Result 0.1157 0.09812 0.08444 0.1664		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 115 97 84 83 81	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: To Batch:	tal/NA 73897
Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	A-2-C MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 79 120 	Qualifier U U U U U U MS	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 Limits 70 - 130	Result 0.1157 0.09812 0.08444 0.1664		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 115 97 84 83 81	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: To Batch:	tal/NA 73897
Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-39546-4	A-2-C MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 79 120 	Qualifier U U U U U U MS	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 Limits 70 - 130	Result 0.1157 0.09812 0.08444 0.1664		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 115 97 84 83 81	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Dike Dup	tal/NA 73897
Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-39546-4 Matrix: Solid	A-2-C MS Sample Result <0.00199 <0.00199 <0.00398 <0.00199 <i>%Recovery</i> 79 120 	Qualifier U U U U U U MS	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 Limits 70 - 130	Result 0.1157 0.09812 0.08444 0.1664 0.08116		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 115 97 84 83 81	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ype: To Batch:	blicate tal/NA 73897
Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-39546-4 Matrix: Solid	A-2-C MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 <i>MS</i> <i>%Recovery</i> 79 120 A-2-D MSD	Qualifier U U U U U MS Qualifier	Spike Added 0.101 0.101 0.101 0.202 0.101 D.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 D.202 0.101	Result 0.1157 0.09812 0.08444 0.1664 0.08116	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 115 97 84 83 81	Prep T Prep %Rec Limits 70 - 130 70 - 130	Dike Dup	blicate tal/NA 73897 73897 RPE
Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993	A-2-C MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 <i>MS</i> <i>%Recovery</i> 79 120 A-2-D MSD	Qualifier U U U U U MS Qualifier Sample Qualifier	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 Dimits 70 - 130 70 - 130 Spike	Result 0.1157 0.09812 0.08444 0.1664 0.08116	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	ient Sa	%Rec 115 97 84 83 81	Prep T Prep %Rec Limits 70 - 130 70 - 190 %Rec	Dike Dup Batch: 7	blicate tal/NA 73897 73897 tal/NA 73897 RPE Limi
Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993	A-2-C MS Sample Result <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 79 120 A-2-D MSD Sample Result	Qualifier U U U U U MS Qualifier U	Spike Added 0.101 0.101 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 Limits 70 - 130 70 - 130 Spike Added	Result 0.1157 0.09812 0.08444 0.1664 0.08116	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	%Rec 115 97 84 83 81 81	Prep T Prep %Rec Limits 70 - 130 70 - 190 %Rec Limits	Dike Dup Dike Dup Dype: Tot Batch:	blicate tal/NA 73897 Dlicate tal/NA 73897 RPD Limit
Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993 Analyte Benzene	A-2-C MS Sample Result <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 MS %Recovery 79 120 A-2-D MSD Sample Result <0.00199 	Qualifier U U U U U U MS Qualifier U U U	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 0.202 0.101 D.202 0.101 0.202 0.101 Limits 70 - 130 70 - 130 Spike Added 0.100	Result 0.1157 0.09812 0.08444 0.1664 0.08116	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Cl	ient Sa	%Rec 115 97 84 83 81	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Prep T Prep %Rec Limits 70 - 130 70 - 130	Dike Dup Type: Tot Dike Dup Type: Tot Batch: RPD 14	blicate tal/NA 73897 Second tal/NA 73897 RPD Limit 35 35
Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-39546-4 Matrix: Solid Analysis Batch: 73993 Analyte Benzene Toluene	A-2-C MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 79 120 A-2-D MSD Sample Result <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 	Qualifier U U U U U U U MS Qualifier U U U U	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 <i>Limits</i> 70 - 130 70 - 130 Spike Added 0.100	Result 0.1157 0.09812 0.08444 0.1664 0.08116 MSD Result 0.1008 0.08462	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	ient Sa	%Rec 115 97 84 83 81	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep T Prep %Rec Limits 70 - 130	Dike Dup Type: Tot Dike Dup Type: Tot Batch: 14 15	blicate

Eurofins Carlsbad

Lab Sample ID: 880-39546-A-2-D MSD

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No2

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 73996

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	116		70 - 130

Lab Sample ID: MB 880-73996/5-A Matrix: Solid

Analysis Batch: 73993

Analysis Batch: 73993

Matrix: Solid

-									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		02/26/24 08:29	02/26/24 11:16	1
Toluene	<0.00200	U	0.00200		mg/Kg		02/26/24 08:29	02/26/24 11:16	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		02/26/24 08:29	02/26/24 11:16	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		02/26/24 08:29	02/26/24 11:16	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		02/26/24 08:29	02/26/24 11:16	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		02/26/24 08:29	02/26/24 11:16	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	68	S1-	70 - 130				02/26/24 08:29	02/26/24 11:16	1
1,4-Difluorobenzene (Surr)	106		70 - 130				02/26/24 08:29	02/26/24 11:16	1

Lab Sample ID: LCS 880-73996/1-A Matrix: Solid

Analysis Batch: 73993

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1064		mg/Kg		106	70 - 130	
Toluene	0.100	0.09270		mg/Kg		93	70 - 130	
Ethylbenzene	0.100	0.08924		mg/Kg		89	70 - 130	
m-Xylene & p-Xylene	0.200	0.2223		mg/Kg		111	70 - 130	
o-Xylene	0.100	0.1072		mg/Kg		107	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		70 - 130
1,4-Difluorobenzene (Surr)	124		70 - 130

Lab Sample ID: LCSD 880-73996/2-A Matrix: Solid Analysis Batch: 73993

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Batch: 73996

Prep Type: Total/NA

Prep Batch: 73996

Analysis Batch. 10000									i i cp	Duton.	10000
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.100	0.09412		mg/Kg		94	70 - 130	12	35
Toluene			0.100	0.07787		mg/Kg		78	70 - 130	17	35
Ethylbenzene			0.100	0.08979		mg/Kg		90	70 - 130	1	35
m-Xylene & p-Xylene			0.200	0.1866		mg/Kg		93	70 - 130	17	35
o-Xylene			0.100	0.09016		mg/Kg		90	70 - 130	17	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								

4-Bromofluorobenzene (Surr)	97	70 - 130

Eurofins Carlsbad

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No2

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-7						Clio	nt Sam		_ab Contro	l Samal	
Matrix: Solid	3330/2-A					Cile	int Sain	ipie iD. i		ype: To	
Analysis Batch: 73993										Batch:	
Analysis Datch. 75555									Fieh	Daten.	13330
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1,4-Difluorobenzene (Surr)	125		70 - 130								
- Lab Sample ID: 890-6251-A	-7-C MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid										ype: To	
Analysis Batch: 73993										Batch:	
·····,····	Sample	Sample	Spike	MS	MS				%Rec		
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00201		0.101	0.07492		mg/Kg		74	70 - 130		
Toluene	<0.00201		0.101	0.07363		mg/Kg		73	70 - 130		
Ethylbenzene	< 0.00201		0.101	0.07867		mg/Kg		78	70 - 130		
m-Xylene & p-Xylene	< 0.00402		0.202	0.1593		mg/Kg		79	70 - 130		
o-Xylene	< 0.00201		0.101	0.07769		mg/Kg		77	70 - 130		
-Xylene	-0.00201	0	0.101	0.01100		iiig/itg			10-100		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	104		70 - 130								
1,4-Difluorobenzene (Surr)	112		70 _ 130								
-											
Lab Sample ID: 890-6251-A	-7-D MSD					CI	lient Sa	ample ID	: Matrix Sp		
Matrix: Solid									Prep T	ype: To	al/NA
Analysis Batch: 73993									Prep	Batch:	73996
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U	0.100	0.08240		mg/Kg		82	70 - 130	10	35
Toluene	<0.00201	U	0.100	0.07727		mg/Kg		77	70 - 130	5	35
Ethylbenzene	<0.00201	U	0.100	0.08016		mg/Kg		80	70 - 130	2	35
m-Xylene & p-Xylene	<0.00402	U	0.200	0.1621		mg/Kg		81	70 - 130	2	35
o-Xylene	<0.00201	U	0.100	0.07891		mg/Kg		79	70 - 130	2	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	97		70 - 130								
1,4-Difluorobenzene (Surr)	120		70 _ 130								
 /lethod: 8015B NM - Die	sel Range Ou	anics (I									
-	Ser Range Of	games (L									
Lab Sample ID: MB 880-735	646/1-A							Client S	ample ID:	Method	Blank
Matrix: Solid									Prep T	ype: To	al/NA
Analysis Batch: 73598									Prep	Batch:	73546

Analysis Batch: 73598								Prep Type: 1 Prep Batch	
-	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		02/19/24 15:13	02/20/24 20:27	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		02/19/24 15:13	02/20/24 20:27	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		02/19/24 15:13	02/20/24 20:27	1
	MB	МВ							

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	129		70 - 130	02/19/24 15:13	02/20/24 20:27	1
o-Terphenyl	117		70 - 130	02/19/24 15:13	02/20/24 20:27	1

Eurofins Carlsbad

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No2 Job ID: 890-6200-1 SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-735	646/2-A						Client	t Sampl	e ID: Lab Co		
Matrix: Solid									Prep 1	Type: To	tal/N
Analysis Batch: 73598									Prep	Batch:	7354
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics			1000	981.1		mg/Kg		98	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	1021		mg/Kg		102	70 - 130		
C10-C28)											
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane			70 - 130								
o-Terphenyl	124		70 - 130								
Lab Sample ID: LCSD 880-73	3546/3-A					Clie	nt San	ple ID:	Lab Contro	I Sampl	e Du
Matrix: Solid								· · ·		· Type: To	
Analysis Batch: 73598										Batch:	
			Spike	LCSD	LCSD				%Rec		RI
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lir
Gasoline Range Organics			1000	321.4	*- *1	mg/Kg		32	70 - 130	101	
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	341.5	*- *1	mg/Kg		34	70 - 130	100	
C10-C28)											
	1050	LCSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane		S1-	70 - 130								
o-Terphenyl		S1-	70 - 130 70 - 130								
Matrix: Solid Analysis Batch: 73598									Prep	Type: To Batch:	
		Sample	Spike		MS				%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<50.0	U *- *1	1000	1076		mg/Kg		104	70 - 130		
(GRO)-C6-C10	~50.0	U *- *1	1000	974.0		malka		95	70 - 130		
Diesel Range Organics (Over C10-C28)	<50.0	0 - 1	1000	974.0		mg/Kg		95	70 - 130		
010-020)											
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	113		70 - 130								
o-Terphenyl	86		70 - 130								
Lab Sample ID: 890-6200-2 M	ISD								Client Sam	-	
Matrix: Solid										Туре: То	
Analysis Batch: 73598										Batch:	
	-	Sample	Spike	MSD					%Rec		RF
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lin
Gasoline Range Organics	<50.0	U *- *1	1000	1217		mg/Kg		119	70 - 130	12	
(GRO)-C6-C10			4000						70 /00	4.0	
Diesel Range Organics (Over	<50.0	U *- *1	1000	1108		mg/Kg		108	70 - 130	13	
C10-C28)											
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

Eurofins Carlsbad

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No2 Job ID: 890-6200-1 SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-6200-2 MSD									Client Sam	-	
Matrix: Solid										Type: To	
Analysis Batch: 73598									Prep	Batch:	: 7354
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
o-Terphenyl	96		70 - 130	-							
lethod: 300.0 - Anions, Ion (Chromat	ography									
Lab Sample ID: MB 880-73330/1-/	4							Client	Sample ID:	Method	l Blan
Matrix: Solid									Prep	Type: S	Solubl
Analysis Batch: 73582											
		MB MB									
Analyte		esult Qualifier		RL	MDL Unit		D	Prepared	Analyz		Dil Fa
Chloride	<	<5.00 U		5.00	mg/ł	٢g			02/19/24	22:38	
Lab Sample ID: LCS 880-73330/2	-A						Clier	t Sampl	e ID: Lab Co	ontrol S	Sample
Matrix: Solid									Prep	Type: S	Solubl
Analysis Batch: 73582											
			Spike		LCS				%Rec		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Chloride			250	247.2		mg/Kg		99	90 - 110		
Lab Sample ID: LCSD 880-73330/	3-A					CI	ient Sa	nole ID:	Lab Contro	l Samp	ole Dur
Matrix: Solid										Type: S	
Analysis Batch: 73582										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
,, ,			Spike	LCSD	LCSD				%Rec		RP
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Chloride			250	247.3		mg/Kg		99	90 - 110	0	2
Lab Sample ID: 890-6200-1 MS									Client Sam		SW
Matrix: Solid										Type: S	
Analysis Batch: 73582									пер	Type. c	Joiubi
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Chloride	72.9		251	324.7		mg/Kg		101	90 - 110		
Lab Sample ID: 890-6200-1 MSD									Client Sam		SW - 1
Matrix: Solid										Type: S	
Analysis Batch: 73582									пер	Type. c	Joiubi
Analysis Batch. 10002	Sample	Sample	Spike	MSD	MSD				%Rec		RPI
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Chloride	72.9		251	325.0		mg/Kg		101	90 - 110	0	20
Lab Sample ID: 900 6000 44 MO								Olion	t Comela ID		
Lab Sample ID: 890-6200-11 MS Matrix: Solid								Clien	t Sample ID Prep	: вн - е Туре: S	
										1.00	
Analysis Batch: 73582											
Analysis Batch: 73582	Sample	Sample	Spike	MS	MS				%Rec		
Analysis Batch: 73582	-	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	%Rec Limits		

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No2

Job ID: 890-6200-1 SDG: Lea County NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

ab Sample ID: 890-6200-11 M latrix: Solid nalysis Batch: 73582	SD							Client	Sample ID Prep	: BH - 6 Type: So		
narysis Baten. 10002	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
nalyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	E
nloride	61.0		252	313.3		mg/Kg		100	90 - 110	0	20	
												Í

Eurofins Carlsbad

Client Sample ID

SW - 5

SW - 6

SW - 8

SW - 9

SW - 10

SW - 11

SW - 14

SW - 18

SW - 5

SW - 5

BH - 3 (2.0')

BH - 4 (2.0')

Method Blank

Lab Control Sample

Lab Control Sample Dup

QC Association Summary

Prep Type

Total/NA

Matrix

Solid

Method

5035

5035

5035

5035

5035

5035

5035

5035

5035

5035

5035

5035

5035

5035

5035

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No2

GC VOA

Prep Batch: 73794

Lab Sample ID

890-6200-1

890-6200-2

890-6200-3

890-6200-4

890-6200-5

890-6200-6

890-6200-7

890-6200-8

890-6200-9

890-6200-10

MB 880-73794/5-A

LCS 880-73794/1-A

890-6200-1 MS

890-6200-1 MSD

LCSD 880-73794/2-A

Prep Batch

Job ID: 890-6200-1 SDG: Lea County NM

8

Prep Batch: 73897

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
890-6200-11	BH - 6 (2.0')	Total/NA	Solid	5035		
890-6200-12	BH - 8 (3.0')	Total/NA	Solid	5035		
MB 880-73897/5-A	Method Blank	Total/NA	Solid	5035		
LCS 880-73897/1-A	Lab Control Sample	Total/NA	Solid	5035		
LCSD 880-73897/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		
880-39546-A-2-C MS	Matrix Spike	Total/NA	Solid	5035		
880-39546-A-2-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035		

Analysis Batch: 73978

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-6200-1	SW - 5	Total/NA	Solid	8021B	73794
890-6200-2	SW - 6	Total/NA	Solid	8021B	73794
890-6200-3	SW - 8	Total/NA	Solid	8021B	73794
890-6200-4	SW - 9	Total/NA	Solid	8021B	73794
890-6200-5	SW - 10	Total/NA	Solid	8021B	73794
890-6200-6	SW - 11	Total/NA	Solid	8021B	73794
890-6200-7	SW - 14	Total/NA	Solid	8021B	73794
890-6200-8	SW - 18	Total/NA	Solid	8021B	73794
890-6200-9	BH - 3 (2.0')	Total/NA	Solid	8021B	73794
890-6200-10	BH - 4 (2.0')	Total/NA	Solid	8021B	73794
MB 880-73794/5-A	Method Blank	Total/NA	Solid	8021B	73794
LCS 880-73794/1-A	Lab Control Sample	Total/NA	Solid	8021B	73794
LCSD 880-73794/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	73794
890-6200-1 MS	SW - 5	Total/NA	Solid	8021B	73794
890-6200-1 MSD	SW - 5	Total/NA	Solid	8021B	73794

Analysis Batch: 73993

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-6200-11	BH - 6 (2.0')	Total/NA	Solid	8021B	73897
890-6200-12	BH - 8 (3.0')	Total/NA	Solid	8021B	73897
890-6200-13	BH - 9 (3.0')	Total/NA	Solid	8021B	73996
890-6200-14	BH - 10 (4.0')	Total/NA	Solid	8021B	73996
890-6200-15	BH - 22 (4.0')	Total/NA	Solid	8021B	73996

Eurofins Carlsbad

QC Association Summary

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No2

GC VOA (Continued)

Analysis Batch: 73993 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
890-6200-16	BH - 23 (4.0')	Total/NA	Solid	8021B	73996	
890-6200-17	BH - 24 (4.0"0	Total/NA	Solid	8021B	73996	5
890-6200-18	BH - 27 (4.0')	Total/NA	Solid	8021B	73996	
890-6200-19	BH - 28 (4.0')	Total/NA	Solid	8021B	73996	
890-6200-20	BH - 29 (4.0')	Total/NA	Solid	8021B	73996	
MB 880-73897/5-A	Method Blank	Total/NA	Solid	8021B	73897	
MB 880-73996/5-A	Method Blank	Total/NA	Solid	8021B	73996	_
LCS 880-73897/1-A	Lab Control Sample	Total/NA	Solid	8021B	73897	8
LCS 880-73996/1-A	Lab Control Sample	Total/NA	Solid	8021B	73996	
LCSD 880-73897/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	73897	9
LCSD 880-73996/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	73996	
880-39546-A-2-C MS	Matrix Spike	Total/NA	Solid	8021B	73897	
880-39546-A-2-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	73897	
890-6251-A-7-C MS	Matrix Spike	Total/NA	Solid	8021B	73996	
890-6251-A-7-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	73996	
Prep Batch: 73996						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-6200-13	BH - 9 (3.0')	Total/NA	Solid	5035		
890-6200-14	BH - 10 (4.0')	Total/NA	Solid	5035		
890-6200-15	BH - 22 (4 0')	Total/NA	Solid	5035		

Prep Batch: 73996

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6200-13	BH - 9 (3.0')	Total/NA	Solid	5035	
890-6200-14	BH - 10 (4.0')	Total/NA	Solid	5035	
890-6200-15	BH - 22 (4.0')	Total/NA	Solid	5035	
890-6200-16	BH - 23 (4.0')	Total/NA	Solid	5035	
890-6200-17	BH - 24 (4.0"0	Total/NA	Solid	5035	
890-6200-18	BH - 27 (4.0')	Total/NA	Solid	5035	
890-6200-19	BH - 28 (4.0')	Total/NA	Solid	5035	
890-6200-20	BH - 29 (4.0')	Total/NA	Solid	5035	
MB 880-73996/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-73996/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-73996/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-6251-A-7-C MS	Matrix Spike	Total/NA	Solid	5035	
890-6251-A-7-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 74059

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-6200-1	SW - 5	Total/NA	Solid	Total BTEX	
890-6200-2	SW - 6	Total/NA	Solid	Total BTEX	
890-6200-3	SW - 8	Total/NA	Solid	Total BTEX	
890-6200-4	SW - 9	Total/NA	Solid	Total BTEX	
890-6200-5	SW - 10	Total/NA	Solid	Total BTEX	
890-6200-6	SW - 11	Total/NA	Solid	Total BTEX	
890-6200-7	SW - 14	Total/NA	Solid	Total BTEX	
890-6200-8	SW - 18	Total/NA	Solid	Total BTEX	
890-6200-9	BH - 3 (2.0')	Total/NA	Solid	Total BTEX	
890-6200-10	BH - 4 (2.0')	Total/NA	Solid	Total BTEX	
890-6200-11	BH - 6 (2.0')	Total/NA	Solid	Total BTEX	
890-6200-12	BH - 8 (3.0')	Total/NA	Solid	Total BTEX	
890-6200-13	BH - 9 (3.0')	Total/NA	Solid	Total BTEX	
890-6200-14	BH - 10 (4.0')	Total/NA	Solid	Total BTEX	
890-6200-15	BH - 22 (4.0')	Total/NA	Solid	Total BTEX	
890-6200-16	BH - 23 (4.0')	Total/NA	Solid	Total BTEX	
890-6200-17	BH - 24 (4.0"0	Total/NA	Solid	Total BTEX	

Eurofins Carlsbad

Page 195 of 307

Job ID: 890-6200-1 SDG: Lea County NM

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No2

GC VOA (Continued)

Analysis Batch: 74059 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-6200-18	BH - 27 (4.0')	Total/NA	Solid	Total BTEX	
890-6200-19	BH - 28 (4.0')	Total/NA	Solid	Total BTEX	
890-6200-20	BH - 29 (4.0')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 73546

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-6200-1	SW - 5	Total/NA	Solid	8015NM Prep	
890-6200-2	SW - 6	Total/NA	Solid	8015NM Prep	
890-6200-3	SW - 8	Total/NA	Solid	8015NM Prep	
890-6200-4	SW - 9	Total/NA	Solid	8015NM Prep	
890-6200-5	SW - 10	Total/NA	Solid	8015NM Prep	
890-6200-6	SW - 11	Total/NA	Solid	8015NM Prep	
890-6200-7	SW - 14	Total/NA	Solid	8015NM Prep	
890-6200-8	SW - 18	Total/NA	Solid	8015NM Prep	
890-6200-9	BH - 3 (2.0')	Total/NA	Solid	8015NM Prep	
890-6200-10	BH - 4 (2.0')	Total/NA	Solid	8015NM Prep	
890-6200-11	BH - 6 (2.0')	Total/NA	Solid	8015NM Prep	
890-6200-12	BH - 8 (3.0')	Total/NA	Solid	8015NM Prep	
890-6200-13	BH - 9 (3.0')	Total/NA	Solid	8015NM Prep	
890-6200-14	BH - 10 (4.0')	Total/NA	Solid	8015NM Prep	
890-6200-15	BH - 22 (4.0')	Total/NA	Solid	8015NM Prep	
890-6200-16	BH - 23 (4.0')	Total/NA	Solid	8015NM Prep	
890-6200-17	BH - 24 (4.0"0	Total/NA	Solid	8015NM Prep	
890-6200-18	BH - 27 (4.0')	Total/NA	Solid	8015NM Prep	
890-6200-19	BH - 28 (4.0')	Total/NA	Solid	8015NM Prep	
890-6200-20	BH - 29 (4.0')	Total/NA	Solid	8015NM Prep	
MB 880-73546/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-73546/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-73546/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-6200-2 MS	SW - 6	Total/NA	Solid	8015NM Prep	
890-6200-2 MSD	SW - 6	Total/NA	Solid	8015NM Prep	

Analysis Batch: 73598

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-6200-1	SW - 5	Total/NA	Solid	8015B NM	73546
890-6200-2	SW - 6	Total/NA	Solid	8015B NM	73546
890-6200-3	SW - 8	Total/NA	Solid	8015B NM	73546
890-6200-4	SW - 9	Total/NA	Solid	8015B NM	73546
890-6200-5	SW - 10	Total/NA	Solid	8015B NM	73546
890-6200-6	SW - 11	Total/NA	Solid	8015B NM	73546
890-6200-7	SW - 14	Total/NA	Solid	8015B NM	73546
890-6200-8	SW - 18	Total/NA	Solid	8015B NM	73546
890-6200-9	BH - 3 (2.0')	Total/NA	Solid	8015B NM	73546
890-6200-10	BH - 4 (2.0')	Total/NA	Solid	8015B NM	73546
890-6200-11	BH - 6 (2.0')	Total/NA	Solid	8015B NM	73546
890-6200-12	BH - 8 (3.0')	Total/NA	Solid	8015B NM	73546
890-6200-13	BH - 9 (3.0')	Total/NA	Solid	8015B NM	73546
890-6200-14	BH - 10 (4.0')	Total/NA	Solid	8015B NM	73546
890-6200-15	BH - 22 (4.0')	Total/NA	Solid	8015B NM	73546

Eurofins Carlsbad

Page 196 of 307

Job ID: 890-6200-1 SDG: Lea County NM

QC Association Summary

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No2

GC Semi VOA (Continued)

Analysis Batch: 73598 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6200-16	BH - 23 (4.0')	Total/NA	Solid	8015B NM	73546
890-6200-17	BH - 24 (4.0"0	Total/NA	Solid	8015B NM	73546
890-6200-18	BH - 27 (4.0')	Total/NA	Solid	8015B NM	73546
890-6200-19	BH - 28 (4.0')	Total/NA	Solid	8015B NM	73546
890-6200-20	BH - 29 (4.0')	Total/NA	Solid	8015B NM	73546
MB 880-73546/1-A	Method Blank	Total/NA	Solid	8015B NM	73546
LCS 880-73546/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	73546
LCSD 880-73546/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	73546
890-6200-2 MS	SW - 6	Total/NA	Solid	8015B NM	73546
890-6200-2 MSD	SW - 6	Total/NA	Solid	8015B NM	73546

Analysis Batch: 73764

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-6200-1	SW - 5	Total/NA	Solid	8015 NM	
890-6200-2	6200-2 SW - 6		Solid	8015 NM	
890-6200-3	SW - 8	Total/NA	Solid	8015 NM	
890-6200-4	SW - 9	Total/NA	Solid	8015 NM	
890-6200-5	SW - 10	Total/NA	Solid	8015 NM	
890-6200-6	SW - 11	Total/NA	Solid	8015 NM	
890-6200-7	SW - 14	Total/NA	Solid	8015 NM	
890-6200-8	SW - 18	Total/NA	Solid	8015 NM	
890-6200-9	BH - 3 (2.0')	Total/NA	Solid	8015 NM	
890-6200-10	BH - 4 (2.0')	Total/NA	Solid	8015 NM	
890-6200-11	BH - 6 (2.0')	Total/NA	Solid	8015 NM	
890-6200-12	BH - 8 (3.0')	Total/NA	Solid	8015 NM	
890-6200-13	BH - 9 (3.0')	Total/NA	Solid	8015 NM	
890-6200-14	BH - 10 (4.0')	Total/NA	Solid	8015 NM	
890-6200-15	BH - 22 (4.0')	Total/NA	Solid	8015 NM	
890-6200-16	BH - 23 (4.0')	Total/NA	Solid	8015 NM	
890-6200-17	BH - 24 (4.0"0	Total/NA	Solid	8015 NM	
890-6200-18	BH - 27 (4.0')	Total/NA	Solid	8015 NM	
890-6200-19	BH - 28 (4.0')	Total/NA	Solid	8015 NM	
890-6200-20	BH - 29 (4.0')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 73330

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-6200-1	SW - 5	Soluble	Solid	DI Leach	
890-6200-2	SW - 6	Soluble	Solid	DI Leach	
890-6200-3	SW - 8	Soluble	Solid	DI Leach	
890-6200-4	SW - 9	Soluble	Solid	DI Leach	
890-6200-5	SW - 10	Soluble	Solid	DI Leach	
890-6200-6	SW - 11	Soluble	Solid	DI Leach	
890-6200-7	SW - 14	Soluble	Solid	DI Leach	
890-6200-8	SW - 18	Soluble	Solid	DI Leach	
890-6200-9	BH - 3 (2.0')	Soluble	Solid	DI Leach	
890-6200-10	BH - 4 (2.0')	Soluble	Solid	DI Leach	
890-6200-11	BH - 6 (2.0')	Soluble	Solid	DI Leach	
890-6200-12	BH - 8 (3.0')	Soluble	Solid	DI Leach	
890-6200-13	BH - 9 (3.0')	Soluble	Solid	DI Leach	

Eurofins Carlsbad

Page 197 of 307

Job ID: 890-6200-1 SDG: Lea County NM

QC Association Summary

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No2

HPLC/IC (Continued)

Leach Batch: 73330 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-6200-14	BH - 10 (4.0')	Soluble	Solid	DI Leach	
890-6200-15	BH - 22 (4.0')	Soluble	Solid	DI Leach	
890-6200-16	BH - 23 (4.0')	Soluble	Solid	DI Leach	
890-6200-17	BH - 24 (4.0"0	Soluble	Solid	DI Leach	
890-6200-18	BH - 27 (4.0')	Soluble	Solid	DI Leach	
890-6200-19	BH - 28 (4.0')	Soluble	Solid	DI Leach	
890-6200-20	BH - 29 (4.0')	Soluble	Solid	DI Leach	
MB 880-73330/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-73330/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-73330/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-6200-1 MS	SW - 5	Soluble	Solid	DI Leach	
890-6200-1 MSD	SW - 5	Soluble	Solid	DI Leach	
890-6200-11 MS	BH - 6 (2.0')	Soluble	Solid	DI Leach	
890-6200-11 MSD	BH - 6 (2.0')	Soluble	Solid	DI Leach	

Analysis Batch: 73582

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-6200-1	SW - 5	Soluble	Solid	300.0	73330
890-6200-2	SW - 6	Soluble	Solid	300.0	73330
890-6200-3	SW - 8	Soluble	Solid	300.0	73330
890-6200-4	SW - 9	Soluble	Solid	300.0	73330
890-6200-5	SW - 10	Soluble	Solid	300.0	73330
890-6200-6	SW - 11	Soluble	Solid	300.0	73330
890-6200-7	SW - 14	Soluble	Solid	300.0	73330
890-6200-8	SW - 18	Soluble	Solid	300.0	73330
890-6200-9	BH - 3 (2.0')	Soluble	Solid	300.0	73330
890-6200-10	BH - 4 (2.0')	Soluble	Solid	300.0	73330
890-6200-11	BH - 6 (2.0')	Soluble	Solid	300.0	73330
890-6200-12	BH - 8 (3.0')	Soluble	Solid	300.0	73330
890-6200-13	BH - 9 (3.0')	Soluble	Solid	300.0	73330
890-6200-14	BH - 10 (4.0')	Soluble	Solid	300.0	73330
890-6200-15	BH - 22 (4.0')	Soluble	Solid	300.0	73330
890-6200-16	BH - 23 (4.0')	Soluble	Solid	300.0	73330
890-6200-17	BH - 24 (4.0"0	Soluble	Solid	300.0	73330
890-6200-18	BH - 27 (4.0')	Soluble	Solid	300.0	73330
890-6200-19	BH - 28 (4.0')	Soluble	Solid	300.0	73330
890-6200-20	BH - 29 (4.0')	Soluble	Solid	300.0	73330
MB 880-73330/1-A	Method Blank	Soluble	Solid	300.0	73330
LCS 880-73330/2-A	Lab Control Sample	Soluble	Solid	300.0	73330
LCSD 880-73330/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	73330
890-6200-1 MS	SW - 5	Soluble	Solid	300.0	73330
890-6200-1 MSD	SW - 5	Soluble	Solid	300.0	73330
890-6200-11 MS	BH - 6 (2.0')	Soluble	Solid	300.0	73330
890-6200-11 MSD	BH - 6 (2.0')	Soluble	Solid	300.0	73330

Page 198 of 307

Job ID: 890-6200-1 SDG: Lea County NM

Job ID: 890-6200-1 SDG: Lea County NM

Lab Sample ID: 890-6200-1 Matrix: Solid

Client Sample ID: SW - 5 Date Collected: 02/12/24 00:00 Date Received: 02/15/24 13:42

Project/Site: MLMUI Satellite No2

Client: Tetra Tech, Inc.

Batch	Batch		Dil	l Initial Final Ba	Batch Prepared					
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	73794	02/21/24 14:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73978	02/24/24 13:56	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74059	02/24/24 13:56	SM	EET MID
Total/NA	Analysis	8015 NM		1			73764	02/20/24 22:47	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	73546	02/19/24 15:13	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/20/24 22:47	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	73330	02/16/24 09:33	SA	EET MID
Soluble	Analysis	300.0		1			73582	02/19/24 22:52	СН	EET MID

Client Sample ID: SW - 6

Date Collected: 02/12/24 00:00

Date Received: 02/15/24 13:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	73794	02/21/24 14:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73978	02/24/24 14:17	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74059	02/24/24 14:17	SM	EET MID
Total/NA	Analysis	8015 NM		1			73764	02/20/24 21:37	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	73546	02/19/24 15:13	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/20/24 21:37	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	73330	02/16/24 09:33	SA	EET MID
Soluble	Analysis	300.0		1			73582	02/19/24 23:06	СН	EET MID

Client Sample ID: SW - 8

Date Collected: 02/12/24 00:00 Date Received: 02/15/24 13:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	73794	02/21/24 14:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73978	02/24/24 14:38	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74059	02/24/24 14:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			73764	02/20/24 23:56	SM	EET MID
Total/NA	Prep	8015NM Prep			9.95 g	10 mL	73546	02/19/24 15:13	ТКС	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/20/24 23:56	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	73330	02/16/24 09:33	SA	EET MID
Soluble	Analysis	300.0		1			73582	02/19/24 23:10	СН	EET MID

Client Sample ID: SW - 9 Date Collected: 02/12/24 00:00 Date Received: 02/15/24 13:42

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	73794	02/21/24 14:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73978	02/24/24 14:59	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74059	02/24/24 14:59	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

5 6

9

Dil Initial Final Batch

582 02/19/24 22:52 CH EET MID Lab Sample ID: 890-6200-2 Matrix: Solid

Lab Sample ID: 890-6200-3

Lab Sample ID: 890-6200-4

Matrix: Solid

Released to Imaging: 5/30/2025 1:25:27 PM

Job ID: 890-6200-1 SDG: Lea County NM

Lab Sample ID: 890-6200-4

Matrix: Solid

Matrix: Solid

Date Collected: 02/12/24 00:00 Date Received: 02/15/24 13:42

Client Sample ID: SW - 9

Project/Site: MLMUI Satellite No2

Client: Tetra Tech, Inc.

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			73764	02/20/24 23:33	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	73546	02/19/24 15:13	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/20/24 23:33	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	73330	02/16/24 09:33	SA	EET MID
Soluble	Analysis	300.0		1			73582	02/19/24 23:15	СН	EET MID

Client Sample ID: SW - 10 Date Collected: 02/12/24 00:00

Date Received: 02/15/24 13:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	73794	02/21/24 14:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73978	02/24/24 15:20	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74059	02/24/24 15:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			73764	02/20/24 23:10	SM	EET MID
Total/NA	Prep	8015NM Prep			10.07 g	10 mL	73546	02/19/24 15:13	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/20/24 23:10	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	73330	02/16/24 09:33	SA	EET MID
Soluble	Analysis	300.0		1			73582	02/19/24 23:20	CH	EET MID

Client Sample ID: SW - 11

Date Collected: 02/12/24 00:00 Date Received: 02/15/24 13:42

Batch Batch Dil Initial Final Batch Prepared Method Ргер Туре Туре Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 5.05 g 5 mL 73794 02/21/24 14:02 MNR EET MID Total/NA 8021B 5 mL 5 mL 73978 02/24/24 15:41 MNR EET MID Analysis 1 Total/NA Total BTEX Analysis 1 74059 02/24/24 15:41 SM EET MID Total/NA Analysis 8015 NM 73764 02/21/24 00:19 SM EET MID 1 02/19/24 15:13 Total/NA Prep 8015NM Prep 10.03 g 10 mL 73546 TKC EET MID Total/NA Analysis 8015B NM 1 uL 1 uL 73598 02/21/24 00:19 SM EET MID 1 Soluble Leach DI Leach 4.96 g 50 mL 73330 02/16/24 09:33 SA EET MID Soluble Analysis 300.0 73582 02/19/24 23:34 СН EET MID 1

Client Sample ID: SW - 14 Date Collected: 02/12/24 00:00

Date Received: 02/15/24 13:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	73794	02/21/24 14:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73978	02/24/24 16:02	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74059	02/24/24 16:02	SM	EET MID
Total/NA	Analysis	8015 NM		1			73764	02/21/24 00:42	SM	EET MID
Total/NA	Prep	8015NM Prep			9.96 g	10 mL	73546	02/19/24 15:13	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/21/24 00:42	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

5 9

Lab Sample ID: 890-6200-6

Lab Sample ID: 890-6200-7

Lab Sample ID: 890-6200-5

Matrix: Solid

2/27/2024

Lab Chronicle

Job ID: 890-6200-1 SDG: Lea County NM

Lab Sample ID: 890-6200-7

Lab Sample ID: 890-6200-8

Lab Sample ID: 890-6200-9

Client Sample ID: SW - 14 Date Collected: 02/12/24 00:00

Project/Site: MLMUI Satellite No2

Client: Tetra Tech, Inc.

Date	Received:	02/15/24 13:42	

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.98 g	50 mL	73330	02/16/24 09:33	SA	EET MID
Soluble	Analysis	300.0		1			73582	02/19/24 23:38	СН	EET MID

Client Sample ID: SW - 18 Date Collected: 02/12/24 00:00

Date Received: 02/15/24 13:42	Date	Received:	02/15/24	13:42
-------------------------------	------	------------------	----------	-------

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	73794	02/21/24 14:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73978	02/24/24 16:23	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74059	02/24/24 16:23	SM	EET MID
Total/NA	Analysis	8015 NM		1			73764	02/21/24 01:05	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	73546	02/19/24 15:13	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/21/24 01:05	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	73330	02/16/24 09:33	SA	EET MID
Soluble	Analysis	300.0		1			73582	02/19/24 23:43	CH	EET MID

Client Sample ID: BH - 3 (2.0') Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	73794	02/21/24 14:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73978	02/24/24 16:44	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74059	02/24/24 16:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			73764	02/21/24 01:29	SM	EET MID
Total/NA	Prep	8015NM Prep			9.97 g	10 mL	73546	02/19/24 15:13	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/21/24 01:29	SM	EET MID
Soluble	Leach	DI Leach			5.00 g	50 mL	73330	02/16/24 09:33	SA	EET MID
Soluble	Analysis	300.0		1			73582	02/19/24 23:48	СН	EET MID

Client Sample ID: BH - 4 (2.0') Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42

Lab Sample ID: 890-6200-10 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	73794	02/21/24 14:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73978	02/24/24 17:05	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74059	02/24/24 17:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			73764	02/21/24 01:51	SM	EET MID
Total/NA	Prep	8015NM Prep			9.91 g	10 mL	73546	02/19/24 15:13	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/21/24 01:51	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	73330	02/16/24 09:33	SA	EET MID
Soluble	Analysis	300.0		1			73582	02/19/24 23:52	СН	EET MID

Eurofins Carlsbad

890-6200-1

Matrix: Solid

Matrix: Solid

Matrix: Solid

Job ID: 890-6200-1 SDG: Lea County NM

Lab Sample ID: 890-6200-11

Lab Sample ID: 890-6200-12

Lab Sample ID: 890-6200-13

Lab Sample ID: 890-6200-14

Matrix: Solid

Matrix: Solid

Matrix: Solid

5 6

9

Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42

Project/Site: MLMUI Satellite No2

Client Sample ID: BH - 6 (2.0')

Client: Tetra Tech, Inc.

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	73897	02/22/24 17:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73993	02/27/24 05:45	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74059	02/27/24 05:45	SM	EET MID
Total/NA	Analysis	8015 NM		1			73764	02/21/24 06:02	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	73546	02/19/24 15:13	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/21/24 06:02	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	73330	02/16/24 09:33	SA	EET MID
Soluble	Analysis	300.0		1			73582	02/19/24 23:57	СН	EET MID

Client Sample ID: BH - 8 (3.0')

Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	73897	02/22/24 17:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73993	02/27/24 06:06	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74059	02/27/24 06:06	SM	EET MID
Total/NA	Analysis	8015 NM		1			73764	02/21/24 04:31	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	73546	02/19/24 15:13	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/21/24 04:31	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	73330	02/16/24 09:34	SA	EET MID
Soluble	Analysis	300.0		1			73582	02/20/24 00:11	СН	EET MID

Client Sample ID: BH - 9 (3.0') Date Collected: 02/14/24 00:00

Date Received: 02/15/24 13:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	73996	02/26/24 08:29	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73993	02/26/24 19:00	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74059	02/26/24 19:00	SM	EET MID
Total/NA	Analysis	8015 NM		1			73764	02/21/24 04:54	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	73546	02/19/24 15:13	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/21/24 04:54	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	73330	02/16/24 09:34	SA	EET MID
Soluble	Analysis	300.0		1			73582	02/20/24 00:15	СН	EET MID

Client Sample ID: BH - 10 (4.0') Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	73996	02/26/24 08:29	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73993	02/26/24 19:21	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74059	02/26/24 19:21	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

Client Sample ID: BH - 10 (4.0')

Job ID: 890-6200-1 SDG: Lea County NM

Lab Sample ID: 890-6200-14 Matrix: Solid

Lab Sample ID: 890-6200-15

Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42

Project/Site: MLMUI Satellite No2

Client: Tetra Tech, Inc.

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			73764	02/21/24 05:17	SM	EET MID
Total/NA	Prep	8015NM Prep			9.98 g	10 mL	73546	02/19/24 15:13	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/21/24 05:17	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	73330	02/16/24 09:34	SA	EET MID
Soluble	Analysis	300.0		5			73582	02/20/24 00:29	СН	EET MID

Client Sample ID: BH - 22 (4.0') Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	73996	02/26/24 08:29	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73993	02/26/24 19:42	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74059	02/26/24 19:42	SM	EET MID
Total/NA	Analysis	8015 NM		1			73764	02/21/24 02:37	SM	EET MID
Total/NA	Prep	8015NM Prep			9.95 g	10 mL	73546	02/19/24 15:13	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/21/24 02:37	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	73330	02/16/24 09:34	SA	EET MID
Soluble	Analysis	300.0		5			73582	02/20/24 00:34	CH	EET MID

Client Sample ID: BH - 23 (4.0') Date Collected: 02/14/24 00:00

Date Received: 02/15/24 13:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	73996	02/26/24 08:29	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73993	02/26/24 20:03	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74059	02/26/24 20:03	SM	EET MID
Total/NA	Analysis	8015 NM		1			73764	02/21/24 03:00	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	73546	02/19/24 15:13	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/21/24 03:00	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	73330	02/16/24 09:34	SA	EET MID
Soluble	Analysis	300.0		1			73582	02/20/24 00:39	CH	EET MID

Client Sample ID: BH - 24 (4.0"0 Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	73996	02/26/24 08:29	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73993	02/26/24 20:25	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74059	02/26/24 20:25	SM	EET MID
Total/NA	Analysis	8015 NM		1			73764	02/21/24 03:23	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	73546	02/19/24 15:13	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/21/24 03:23	SM	EET MID

Eurofins Carlsbad

Lab Sample ID: 890-6200-16

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-6200-17 Matrix: Solid

Released to Imaging: 5/30/2025 1:25:27 PM

Matrix: Solid

Lab Chronicle

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No2

Client Sample ID: BH - 24 (4.0"0 Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.00 g	50 mL	73330	02/16/24 09:34	SA	EET MID
Soluble	Analysis	300.0		1			73582	02/20/24 00:43	СН	EET MID

Client Sample ID: BH - 27 (4.0') Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	73996	02/26/24 08:29	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73993	02/26/24 20:46	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74059	02/26/24 20:46	SM	EET MID
Total/NA	Analysis	8015 NM		1			73764	02/21/24 05:39	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	73546	02/19/24 15:13	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/21/24 05:39	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	73330	02/16/24 09:34	SA	EET MID
Soluble	Analysis	300.0		1			73582	02/20/24 00:48	СН	EET MID

Client Sample ID: BH - 28 (4.0') Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	73996	02/26/24 08:29	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73993	02/26/24 21:07	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74059	02/26/24 21:07	SM	EET MID
Total/NA	Analysis	8015 NM		1			73764	02/21/24 03:46	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	73546	02/19/24 15:13	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/21/24 03:46	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	73330	02/16/24 09:34	SA	EET MID
Soluble	Analysis	300.0		1			73582	02/20/24 00:52	СН	EET MID

Client Sample ID: BH - 29 (4.0') Date Collected: 02/14/24 00:00 Date Received: 02/15/24 13:42

Lab Sample ID: 890-6200-20 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	73996	02/26/24 08:29	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73993	02/26/24 21:28	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74059	02/26/24 21:28	SM	EET MID
Total/NA	Analysis	8015 NM		1			73764	02/21/24 04:08	SM	EET MID
Total/NA	Prep	8015NM Prep			9.96 g	10 mL	73546	02/19/24 15:13	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/21/24 04:08	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	73330	02/16/24 09:34	SA	EET MID
Soluble	Analysis	300.0		1			73582	02/20/24 00:57	CH	EET MID

Eurofins Carlsbad

Job ID: 890-6200-1 SDG: Lea County NM Lab Sample ID: 890-6200-17 Matrix: Solid

Lab Sample ID: 890-6200-19 Matrix: Solid

Lab Sample ID: 890-6200-18

Lab Chronicle

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No2

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 890-6200-1 SDG: Lea County NM

Eurofins Carlsbad

Job ID: 890-6200-1

SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
Texas	NELA	כ	T104704400-23-26	06-30-24
The following analy	tes are included in this report, bu	it the laboratory is not certif	ied by the governing authority. This lis	t may include analytes
0	y does not offer certification.	Matrix	Analyte	
Analysis Method	y does not offer certification. Prep Method	Matrix	Analyte	
5	,	Matrix Solid Solid	Analyte Total TPH Total BTEX	

Eurofins Carlsbad

Released to Imaging: 5/30/2025 1:25:27 PM

Method Summary

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No2 Job ID: 890-6200-1 SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	rences:		
	STM International		
FPA = US	Environmental Protection Agency		

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 5/30/2025 1:25:27 PM

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No2

890-6200-2 SW - 6 Solid 02/12/24 00:00 02/15/24 1 890-6200-3 SW - 8 Solid 02/12/24 00:00 02/15/24 1 890-6200-4 SW - 9 Solid 02/12/24 00:00 02/15/24 1 890-6200-5 SW - 10 Solid 02/12/24 00:00 02/15/24 1 890-6200-6 SW - 11 Solid 02/12/24 00:00 02/15/24 1 890-6200-7 SW - 14 Solid 02/12/24 00:00 02/15/24 1 890-6200-8 SW - 18 Solid 02/12/24 00:00 02/15/24 1 890-6200-9 BH - 3 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-10 BH - 4 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-11 BH - 6 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-12 BH - 8 (3.0') Solid 02/14/24 00:00 02/15/24 1	- 6 Solid 02/12/24 00:00 02/15/24 13 - 8 Solid 02/12/24 00:00 02/15/24 13 - 9 Solid 02/12/24 00:00 02/15/24 13 - 10 Solid 02/12/24 00:00 02/15/24 13 - 11 Solid 02/12/24 00:00 02/15/24 13
890-6200-3 SW - 8 Solid 02/12/24 00:00 02/15/24 1 890-6200-4 SW - 9 Solid 02/12/24 00:00 02/15/24 1 890-6200-5 SW - 10 Solid 02/12/24 00:00 02/15/24 1 890-6200-6 SW - 11 Solid 02/12/24 00:00 02/15/24 1 890-6200-7 SW - 14 Solid 02/12/24 00:00 02/15/24 1 890-6200-8 SW - 18 Solid 02/12/24 00:00 02/15/24 1 890-6200-9 BH - 3 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-10 BH - 4 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-11 BH - 6 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-12 BH - 8 (3.0') Solid 02/14/24 00:00 02/15/24 1	- 8 Solid 02/12/24 00:00 02/15/24 13 - 9 Solid 02/12/24 00:00 02/15/24 13 - 10 Solid 02/12/24 00:00 02/15/24 13 - 11 Solid 02/12/24 00:00 02/15/24 13
890-6200-4 SW - 9 Solid 02/12/24 00:00 02/15/24 1 890-6200-5 SW - 10 Solid 02/12/24 00:00 02/15/24 1 890-6200-6 SW - 11 Solid 02/12/24 00:00 02/15/24 1 890-6200-7 SW - 14 Solid 02/12/24 00:00 02/15/24 1 890-6200-8 SW - 18 Solid 02/12/24 00:00 02/15/24 1 890-6200-9 BH - 3 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-10 BH - 4 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-11 BH - 6 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-12 BH - 8 (3.0') Solid 02/14/24 00:00 02/15/24 1	- 9 Solid 02/12/24 00:00 02/15/24 13 - 10 Solid 02/12/24 00:00 02/15/24 13 - 11 Solid 02/12/24 00:00 02/15/24 13
890-6200-5 SW - 10 Solid 02/12/24 00:00 02/15/24 1 890-6200-6 SW - 11 Solid 02/12/24 00:00 02/15/24 1 890-6200-7 SW - 14 Solid 02/12/24 00:00 02/15/24 1 890-6200-8 SW - 18 Solid 02/12/24 00:00 02/15/24 1 890-6200-9 BH - 3 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-10 BH - 4 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-11 BH - 6 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-12 BH - 8 (3.0') Solid 02/14/24 00:00 02/15/24 1	- 10 Solid 02/12/24 00:00 02/15/24 13 - 11 Solid 02/12/24 00:00 02/15/24 13
890-6200-6 SW - 11 Solid 02/12/24 00:00 02/15/24 1 890-6200-7 SW - 14 Solid 02/12/24 00:00 02/15/24 1 890-6200-8 SW - 18 Solid 02/12/24 00:00 02/15/24 1 890-6200-9 BH - 3 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-10 BH - 4 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-11 BH - 6 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-12 BH - 8 (3.0') Solid 02/14/24 00:00 02/15/24 1	- 11 Solid 02/12/24 00:00 02/15/24 13
890-6200-7 SW - 14 Solid 02/12/24 00:00 02/15/24 1 890-6200-8 SW - 18 Solid 02/12/24 00:00 02/15/24 1 890-6200-9 BH - 3 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-10 BH - 4 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-11 BH - 6 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-12 BH - 8 (3.0') Solid 02/14/24 00:00 02/15/24 1	
890-6200-8 SW - 18 Solid 02/12/24 00:00 02/15/24 1 890-6200-9 BH - 3 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-10 BH - 4 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-11 BH - 6 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-12 BH - 8 (3.0') Solid 02/14/24 00:00 02/15/24 1	- 14 Solid 02/12/24 00:00 02/15/24 13
890-6200-9 BH - 3 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-10 BH - 4 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-11 BH - 6 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-12 BH - 8 (3.0') Solid 02/14/24 00:00 02/15/24 1	
890-6200-10 BH - 4 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-11 BH - 6 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-12 BH - 8 (3.0') Solid 02/14/24 00:00 02/15/24 1	- 18 Solid 02/12/24 00:00 02/15/24 13
890-6200-11 BH - 6 (2.0') Solid 02/14/24 00:00 02/15/24 1 890-6200-12 BH - 8 (3.0') Solid 02/14/24 00:00 02/15/24 1	- 3 (2.0') Solid 02/14/24 00:00 02/15/24 13
890-6200-12 BH - 8 (3.0') Solid 02/14/24 00:00 02/15/24 1	- 4 (2.0') Solid 02/14/24 00:00 02/15/24 13
· ·	- 6 (2.0') Solid 02/14/24 00:00 02/15/24 13
	- 8 (3.0') Solid 02/14/24 00:00 02/15/24 13
690-6200-13 DH - 9 (3.0) Solid 02/14/24 00.00 02/15/24	- 9 (3.0') Solid 02/14/24 00:00 02/15/24 13
890-6200-14 BH - 10 (4.0') Solid 02/14/24 00:00 02/15/24 1	- 10 (4.0') Solid 02/14/24 00:00 02/15/24 13
890-6200-15 BH - 22 (4.0') Solid 02/14/24 00:00 02/15/24 1	- 22 (4.0') Solid 02/14/24 00:00 02/15/24 13
890-6200-16 BH - 23 (4.0') Solid 02/14/24 00:00 02/15/24 1	- 23 (4.0') Solid 02/14/24 00:00 02/15/24 13
890-6200-17 BH - 24 (4.0"0 Solid 02/14/24 00:00 02/15/24 1	- 24 (4.0"0 Solid 02/14/24 00:00 02/15/24 13
890-6200-18 BH - 27 (4.0') Solid 02/14/24 00:00 02/15/24 1	- 27 (4.0') Solid 02/14/24 00:00 02/15/24 13
890-6200-19 BH - 28 (4.0') Solid 02/14/24 00:00 02/15/24 1	- 28 (4.0') Solid 02/14/24 00:00 02/15/24 13
890-6200-20 BH - 29 (4.0') Solid 02/14/24 00:00 02/15/24 1	- 29 (4.0') Solid 02/14/24 00:00 02/15/24 13

Job ID: 890-6200-1 SDG: Lea County NM

890-6200 Chain of Custody

Page 1 of 3 Analysis Request of Chain of Custody Record Tetra Tech, Inc. 901W Wall Street, Ste 100 Midland, Texas 79705 TŁ Tel (432) 682-4559 Fax (432) 682-3946 Client Name: Site Manager: ANALYSIS REQUEST Brittany Long JR Oil (Circle or Specify Method No.) Project Name: brittany.long@tetratech.com MLMUI Satellite No,2 Project #: Project Location: Lea County, NM 212C-MD-03133 (county, state) list) attached I Invoice to: Se Hg ATTN: JR Oil Rex Tippy Se Sampler Signature: **Receiving Laboratory: Miquel Flores** TX1005 (Ext to C35) 8015M (GRO - DRO - ORO I As Ba Cd Cr Pb So g As Ba Cd Cr Pb S Water Chemistry (see **Eurofins Xenco** 8260B Comments: TDS 8270C/I 624 Anion/Cation Balance 8260B / (Sulfate PRESERVATIVE B SAMPLING MATRIX Ă Semi. Vol. # CONTAINERS FILTERED (Y/N) CB's 8082 / 608 METHOD 6 Ag PLM (Asbestos) 8021B YEAR: 2024 GC/MS Vol. Semi SAMPLE IDENTIFICATION LAB # Met General Chloride GC/MS Chloride **WATEI** SOIL Hold DATE TIME **NN** CLP LAB USE None IOR ta HCH HCH C S ONLY X X X X SW-5 2/12/2024 х X lх SW-6 2/12/2024 İX x X X х SW-8 2/12/2024 x X łх X SW-9 2/12/2024 1x X Ix SW-10 2/12/2024 Х İх X X SW-11 2/12/2024 x lх IX. X SW-14 2/12/2024 x X X SW-18 X 2/12/2024 34 ZLAB USE ONLY Relinquished by: Miguel A Flores 2/15/24 Time: REMARKS: Received by: Date: Time: R Standard TAT 1340 RUSH: Same Day 24 hr 48 hr 72 hr Relinguished by: Date: Date: Time: Time: eceived by Sample Temperature -2.2 Rush Charges Authorized Date: Date: Received by: Time: Relinguished by: Time: Special Report Limits or TRRP Report Circle) HAND DELIVERED FEDEX UPS Tracking #: **ORIGINAL COPY**

13

4/2025 2:33:49 PM

2/1

OCD.

p)

eceived

2/27/2024

S

TŁ	Tetra Tech, Inc.				Midia Tel i	Vali Stre ind, Texa (432) 68 (432) 68	ns 79705 2-4559																		
Client Name:	JR Oil	Site Manager:		Britt	any L												SIS R								
Project Name:	MLMUI Satellite No,2			britta	ny.lo	ng@l	tetrat	tech.co	om		1	11		rcie	or	Spe 	ecify	M	etho	od I	10.)	11		1	I
Project Location (county, state)	: Lea County, NM	Project #:		2	12C-	MD-0	0313	3													4	StJ			
Invoice to:	ATTN: JR Oil Rex Tippy												PH O	Se Hg							attachad liet	aciteri			
Receiving Labor	atory: Eurofins Xenco	Sampler Sign	ature:	N	Aigue	I Flor	res					ORO	Pb Se	r Pb S			22				1000	See			
Comments:											BTEX 8260	- ORO	U PO	O PO			8/624 8270C/62				m S	-			
		SAMP	LING	MA	TRIX	Pf	METH		RS	(N/A	BTEX	8015M (GRO - DRO - ORO)	Ag As Ba	Ag As Ba	Volatiles Semi Volatiles		Vol. 8260B / 6 Semi. Vol. 82	/ 608	06)	100	Suffate TD: Wotor Chamicto	i Balance			
LAB #	SAMPLE IDENTIFICATION	YEAR: 2024	TIME	WATER		LCL LCL	HNU3 ICE	None	# CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TPH 8015M	PAH 8270C Total Metals	TCLP Metals Ag As Ba Cd Cr Pb	TCLP Volatiles TCLP Semi Vo	RCI	GC/MS Vol. 8260B GC/MS Semi. Vol. 8	PCB's 8082	NORM PI M (Ashestos)	ž.	Chloride S	Anion/Catior			Hold
<u>.</u>	BH-3 (2.0')	2/14/2024	-				×		- +*		X	X		Ē					-	X			Ē		
	ВН-4 (2.0')	2/14/2024			(X				X	X								X					
	BH-6 (2.0')	2/14/2024			(Х				X	X								X					
	BH-8 (3.0')	2/14/2024		×	(Х				Х	X								X	\square				
	BH-9 (3.0')	2/14/2024		×	(X				X	X								X				+	
	BH-10 (4.0')	2/14/2024			(X				X	X								X					
	BH-22 (4.0')	2/14/2024		×	(X				X	X								X					
	BH-23 (4.0')	2/14/2024		×	(X				X	X								X	\square				
	BH-24 (4.0')	2/14/2024		×	(X				X	X								X	\square				-
	BH-27 (4.0')	2/14/2024		×			X				X	X								Х					L
Relinquished by M Relinquished by	iquel A Flores 2/15/24 1340	Received by:	Ler	18	2	Date:	5	ſime: ſime:	13	48	Sampl	e Tem		ILY re]]RU!	Stand	ame	Day	24		18 hr	72 hr	_	
Relinquished by	: Date: Time:	Received by:				Date:	1	lime:						_								Repo	nt		_
											(Circle) HAN	D DEL	IVER	ED F	EDEX	UPS	TI	acking	g #: _					

13

•

TŁ	Tetra Tech, Inc.			90	Midlan Tel (4	ali Stree (d,Texa: 432) 682 432) 682	s 7970 2-4559			_												_	_	
Client Name:	JR Oil	Site Manager		Britta	ny Lo	ong					T		10	line				REC		ST 10d	No	,		
Project Name:	MLMUI Satellite No,2			brittan	y.lon	ng@t	etra	ech.c	om				11									11	11	1
Project Location: (county, state)	Lea County, NM	Project #:		21	2C-N	MD-C	0313	3														ist)		
Involce to:	ATTN: JR Oil Rex Tippy	10												Se Hg	n a							attached list)		
Receiving Labora	ery: Eurofins Xenco	Sampler Sign	ature:	Mi	guel	Flor	es					a						25				see		
Comments:											X 8260	C35)		a Cd C			624	8270C/6			Sulfate TDS	misury (
		SAM	PLING	MAT	RIX	PR	METH	ATIVE	ßS	í.	BTE	(Ext to		AG AS B	st fit s	olatiles	3260B	Vol. 8 608	200	(sc	ulfate	er Une Balan		
LAB #	SAMPLE IDENTIFICATION	YEAR: 2024		Ж					CONTAINERS	FILTERED (Y/N)	8021B	I TX1005 (Ext to C35)	8270C	Total Metals Ag As Ba Cd Cr Pt	Volatile	Semi V	S Vol. 8	GC/MS Semi. Vol. 827 PCR's 8082 / 608	Non W	PLM (Asbestos) Chloride	ide S	VCation		
(LAB USE)		DATE	TIME	WATER		HCL		None	# CO	FILTE	BTEX	HdT	PAH	Total	TCLP	TCLP	GCIM	GC/M	NOR	PLM	Chloride	General Anion/Ca		1
	3H-28 (4.0')	2/14/2024		X			X				_X_	>								_ X	11			
	3H-29 (4.0')	2/14/2024		X			X				X	X					\square		\square	X		\downarrow	\square	-
																					\downarrow			\rightarrow
																		-	+	_	\downarrow		-	
															\perp			-		=	╞╪	\pm	+1	=
																			\square		11	\rightarrow	\square	_
																			\square		\square	++	\square	\rightarrow
																			\square		\downarrow	++	\square	
																			\downarrow	+	\square	\square		\rightarrow
Relinquished by:	Liguel A Flores 2/15/24 1300	Received by		\sim	1	Date:	-	Time:	~	42	>	RII		TALL Y	RE	MARI	St:	anda	rd T	АТ				
n	liquel A Flores 2/15/24 1340	KSV.	In	X i	R	114	5)	3						1									
Relinquished by:	Date: Time:	Received by		0	(Date:		lime:			Sar	nple To	empera	ature		R	USH	San	ne Da	y 24	hr 4	48 hr	72 hr	
												-2	.2		-	R	ush C	harge	es Aut	horize	d			
Relinquished by:	Date: Time:	Received by			[Date:	-	lime:				0.			1									
					_	_					+			-	+	⊟s	pecia	Repo	ort Lin	HIS OF	HHH	Repor	t	
_							-		_		(Cir	cle) H	AND	ELIVE	RED	FED	EXI	JPS	Track	ing #:		_		
		ORIGINAL	COPY								-													

.

Job Number: 890-6200-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Login Number: 6200 List Number: 1 Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Login Number: 6200 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 890-6200-1

SDG Number: Lea County NM List Source: Eurofins Midland

List Creation: 02/19/24 08:27 AM

January 29, 2024

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MLMUI SATELLITE #2

Enclosed are the results of analyses for samples received by the laboratory on 01/24/24 14:08.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 1 (1.0') (H240320-01)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.18	109	2.00	7.38	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	107	2.00	13.7	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.21	111	2.00	15.0	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.63	111	6.00	16.0	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	01/25/2024	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	170	84.9	200	1.63	
DRO >C10-C28*	23.2	10.0	01/24/2024	ND	171	85.3	200	4.65	
EXT DRO >C28-C36	<10.0	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	78.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	89.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 2 (1.0') (H240320-02)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.18	109	2.00	7.38	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	107	2.00	13.7	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.21	111	2.00	15.0	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.63	111	6.00	16.0	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	01/25/2024	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	170	84.9	200	1.63	
DRO >C10-C28*	21.7	10.0	01/24/2024	ND	171	85.3	200	4.65	
EXT DRO >C28-C36	<10.0	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	95.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 3 (1.0') (H240320-03)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.18	109	2.00	7.38	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	107	2.00	13.7	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.21	111	2.00	15.0	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.63	111	6.00	16.0	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.1	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	01/25/2024	ND	416	104	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	170	84.9	200	1.63	
DRO >C10-C28*	95.1	10.0	01/24/2024	ND	171	85.3	200	4.65	
EXT DRO >C28-C36	33.1	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	98.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	115 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 4 (1.0') (H240320-04)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.18	109	2.00	7.38	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	107	2.00	13.7	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.21	111	2.00	15.0	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.63	111	6.00	16.0	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.0	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	01/25/2024	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	170	84.9	200	1.63	
DRO >C10-C28*	170	10.0	01/24/2024	ND	171	85.3	200	4.65	
EXT DRO >C28-C36	56.5	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	106 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	126 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 5 (1.0') (H240320-05)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.18	109	2.00	7.38	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	107	2.00	13.7	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.21	111	2.00	15.0	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.63	111	6.00	16.0	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	01/25/2024	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	170	84.9	200	1.63	
DRO >C10-C28*	46.4	10.0	01/24/2024	ND	171	85.3	200	4.65	
EXT DRO >C28-C36	25.9	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	80.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 6 (1.0') (H240320-06)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.18	109	2.00	7.38	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	107	2.00	13.7	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.21	111	2.00	15.0	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.63	111	6.00	16.0	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	170	84.9	200	1.63	
DRO >C10-C28*	279	10.0	01/24/2024	ND	171	85.3	200	4.65	
EXT DRO >C28-C36	134	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	95.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106 9	6 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 7 (1.0') (H240320-07)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.18	109	2.00	7.38	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	107	2.00	13.7	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.21	111	2.00	15.0	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.63	111	6.00	16.0	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	170	84.9	200	1.63	
DRO >C10-C28*	43.5	10.0	01/24/2024	ND	171	85.3	200	4.65	
EXT DRO >C28-C36	20.3	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	78.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	91.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 8 (2.0') (H240320-08)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.18	109	2.00	7.38	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	107	2.00	13.7	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.21	111	2.00	15.0	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.63	111	6.00	16.0	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.8	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	170	84.9	200	1.63	
DRO >C10-C28*	139	10.0	01/24/2024	ND	171	85.3	200	4.65	
EXT DRO >C28-C36	44.3	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	75.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	100 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 9 (2.0') (H240320-09)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.18	109	2.00	7.38	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	107	2.00	13.7	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.21	111	2.00	15.0	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.63	111	6.00	16.0	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1020	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	170	84.9	200	1.63	
DRO >C10-C28*	72.1	10.0	01/24/2024	ND	171	85.3	200	4.65	
EXT DRO >C28-C36	27.6	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	70.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	82.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 11 (4.0') (H240320-10)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.18	109	2.00	7.38	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	107	2.00	13.7	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.21	111	2.00	15.0	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.63	111	6.00	16.0	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.3	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1260	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	170	84.9	200	1.63	
DRO >C10-C28*	730	10.0	01/25/2024	ND	171	85.3	200	4.65	
EXT DRO >C28-C36	341	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	60.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	68.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 12 (4.0') (H240320-11)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.18	109	2.00	7.38	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	107	2.00	13.7	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.21	111	2.00	15.0	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.63	111	6.00	16.0	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.6	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	448	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	170	84.9	200	1.63	
DRO >C10-C28*	64.1	10.0	01/25/2024	ND	171	85.3	200	4.65	
EXT DRO >C28-C36	46.1	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	96.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 13 (4.0') (H240320-12)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.18	109	2.00	7.38	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	107	2.00	13.7	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.21	111	2.00	15.0	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.63	111	6.00	16.0	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	720	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	170	84.9	200	1.63	
DRO >C10-C28*	36.1	10.0	01/25/2024	ND	171	85.3	200	4.65	
EXT DRO >C28-C36	17.4	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	84.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	101	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 14 (4.0') (H240320-13)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.18	109	2.00	7.38	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	107	2.00	13.7	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.21	111	2.00	15.0	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.63	111	6.00	16.0	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.1	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	720	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	170	84.9	200	1.63	
DRO >C10-C28*	<10.0	10.0	01/25/2024	ND	171	85.3	200	4.65	
EXT DRO >C28-C36	<10.0	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	84.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 15 (4.0') (H240320-14)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.18	109	2.00	7.38	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	107	2.00	13.7	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.21	111	2.00	15.0	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.63	111	6.00	16.0	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	816	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	170	84.9	200	1.63	
DRO >C10-C28*	<10.0	10.0	01/25/2024	ND	171	85.3	200	4.65	
EXT DRO >C28-C36	<10.0	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	87.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 16 (4.0') (H240320-15)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.18	109	2.00	7.38	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	107	2.00	13.7	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.21	111	2.00	15.0	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.63	111	6.00	16.0	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	'kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	944	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	203	101	200	2.14	
DRO >C10-C28*	<10.0	10.0	01/24/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	<10.0	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	92.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 17 (4.0') (H240320-16)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.18	109	2.00	7.38	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	107	2.00	13.7	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.21	111	2.00	15.0	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.63	111	6.00	16.0	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	752	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	203	101	200	2.14	
DRO >C10-C28*	<10.0	10.0	01/24/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	<10.0	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	95.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	108 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 18 (2.5') (H240320-17)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/25/2024	ND	2.18	109	2.00	7.38	
Toluene*	<0.050	0.050	01/25/2024	ND	2.13	107	2.00	13.7	
Ethylbenzene*	<0.050	0.050	01/25/2024	ND	2.21	111	2.00	15.0	
Total Xylenes*	<0.150	0.150	01/25/2024	ND	6.63	111	6.00	16.0	
Total BTEX	<0.300	0.300	01/25/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.1	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	203	101	200	2.14	
DRO >C10-C28*	<10.0	10.0	01/24/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	<10.0	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	97.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	109 \$	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 19 (2.5') (H240320-18)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.1	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	496	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	203	101	200	2.14	
DRO >C10-C28*	<10.0	10.0	01/24/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	<10.0	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	107 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	118 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 20 (2.5') (H240320-19)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.4	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	203	101	200	2.14	
DRO >C10-C28*	<10.0	10.0	01/25/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	<10.0	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	92.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 21 (2.5') (H240320-20)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	592	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	203	101	200	2.14	
DRO >C10-C28*	<10.0	10.0	01/25/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	<10.0	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	87.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 22 (2.5') (H240320-21)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.085	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	0.216	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	0.070	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	0.371	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.6	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	203	101	200	2.14	
DRO >C10-C28*	98.7	10.0	01/25/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	94.1	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	90.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 23 (1.5') (H240320-22)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98. <i>3</i>	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	203	101	200	2.14	
DRO >C10-C28*	216	10.0	01/25/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	126	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	84.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 24 (1.5') (H240320-23)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.6	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	203	101	200	2.14	
DRO >C10-C28*	102	10.0	01/25/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	68.6	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	63.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	76.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 25 (1.5') (H240320-24)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.2	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	203	101	200	2.14	
DRO >C10-C28*	39.5	10.0	01/25/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	16.2	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	67.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	80.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 26 (1.5') (H240320-25)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.8	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	01/25/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	203	101	200	2.14	
DRO >C10-C28*	29.3	10.0	01/25/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	15.4	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	94.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	111 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 27 (1.5') (H240320-26)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	01/25/2024	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	203	101	200	2.14	
DRO >C10-C28*	303	10.0	01/25/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	224	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	94.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	128	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 28 (1.5') (H240320-27)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.8	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	01/25/2024	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	203	101	200	2.14	
DRO >C10-C28*	157	10.0	01/25/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	127	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	103	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	127	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: BH - 29 (1.5') (H240320-28)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.6	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	01/25/2024	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	203	101	200	2.14	
DRO >C10-C28*	140	10.0	01/25/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	128	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	76.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: SW - 1 (H240320-29)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.3	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	01/25/2024	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	203	101	200	2.14	
DRO >C10-C28*	<10.0	10.0	01/25/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	<10.0	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	89.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: SW - 2 (H240320-30)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	01/25/2024	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	203	101	200	2.14	
DRO >C10-C28*	38.8	10.0	01/25/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	23.8	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	99.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	117 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: SW - 3 (H240320-31)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.4	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	01/25/2024	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	203	101	200	2.14	
DRO >C10-C28*	53.1	10.0	01/25/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	10.6	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	125 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	146 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: SW - 4 (H240320-32)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	01/25/2024	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	203	101	200	2.14	
DRO >C10-C28*	20.0	10.0	01/25/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	<10.0	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	81.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	94.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: SW - 5 (H240320-33)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.1	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	01/25/2024	ND	432	108	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	203	101	200	2.14	
DRO >C10-C28*	309	10.0	01/25/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	78.4	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	77.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	94.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: SW - 6 (H240320-34)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	01/25/2024	ND	432	108	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/25/2024	ND	203	101	200	2.14	
DRO >C10-C28*	1440	10.0	01/25/2024	ND	203	102	200	0.937	
EXT DRO >C28-C36	296	10.0	01/25/2024	ND					
Surrogate: 1-Chlorooctane	106	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	144	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: SW - 7 (H240320-35)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1720	16.0	01/25/2024	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	191	95.5	200	8.72	
DRO >C10-C28*	<10.0	10.0	01/24/2024	ND	177	88.7	200	10.3	
EXT DRO >C28-C36	<10.0	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	89.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: SW - 8 (H240320-36)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.8	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	992	16.0	01/25/2024	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	191	95.5	200	8.72	
DRO >C10-C28*	<10.0	10.0	01/24/2024	ND	177	88.7	200	10.3	
EXT DRO >C28-C36	<10.0	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	93.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: SW - 12 (H240320-37)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	2.14	107	2.00	0.357	
Toluene*	<0.050	0.050	01/24/2024	ND	2.13	106	2.00	0.288	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.11	106	2.00	0.248	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.16	103	6.00	0.205	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.0	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	400	16.0	01/25/2024	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	191	95.5	200	8.72	
DRO >C10-C28*	<10.0	10.0	01/24/2024	ND	177	88.7	200	10.3	
EXT DRO >C28-C36	<10.0	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	95.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	100	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: SW - 13 (H240320-38)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	1.93	96.6	2.00	0.568	
Toluene*	<0.050	0.050	01/24/2024	ND	2.05	103	2.00	1.02	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.06	103	2.00	1.21	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.22	104	6.00	1.51	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	01/25/2024	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	191	95.5	200	8.72	
DRO >C10-C28*	<10.0	10.0	01/24/2024	ND	177	88.7	200	10.3	
EXT DRO >C28-C36	<10.0	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	101	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	110 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: SW - 14 (H240320-39)

BTEX 8021B mg		/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	1.93	96.6	2.00	0.568	
Toluene*	0.061	0.050	01/24/2024	ND	2.05	103	2.00	1.02	
Ethylbenzene*	0.054	0.050	01/24/2024	ND	2.06	103	2.00	1.21	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.22	104	6.00	1.51	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	336	16.0	01/25/2024	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	191	95.5	200	8.72	
DRO >C10-C28*	224	10.0	01/24/2024	ND	177	88.7	200	10.3	
EXT DRO >C28-C36	190	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	89.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: SW - 15 (H240320-40)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	1.93	96.6	2.00	0.568	
Toluene*	<0.050	0.050	01/24/2024	ND	2.05	103	2.00	1.02	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.06	103	2.00	1.21	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.22	104	6.00	1.51	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	01/25/2024	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	191	95.5	200	8.72	
DRO >C10-C28*	<10.0	10.0	01/24/2024	ND	177	88.7	200	10.3	
EXT DRO >C28-C36	13.0	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	98.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: SW - 16 (H240320-41)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	1.93	96.6	2.00	0.568	
Toluene*	<0.050	0.050	01/24/2024	ND	2.05	103	2.00	1.02	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.06	103	2.00	1.21	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.22	104	6.00	1.51	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	01/25/2024	ND	432	108	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	191	95.5	200	8.72	
DRO >C10-C28*	<10.0	10.0	01/24/2024	ND	177	88.7	200	10.3	
EXT DRO >C28-C36	<10.0	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	89.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	94.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: SW - 17 (H240320-42)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	1.93	96.6	2.00	0.568	
Toluene*	<0.050	0.050	01/24/2024	ND	2.05	103	2.00	1.02	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.06	103	2.00	1.21	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.22	104	6.00	1.51	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	01/25/2024	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	191	95.5	200	8.72	
DRO >C10-C28*	25.0	10.0	01/24/2024	ND	177	88.7	200	10.3	
EXT DRO >C28-C36	43.4	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	87.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/24/2024	Sampling Date:	01/22/2024
Reported:	01/29/2024	Sampling Type:	Soil
Project Name:	MLMUI SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Dionica Hinojos
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: SW - 18 (H240320-43)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/24/2024	ND	1.93	96.6	2.00	0.568	
Toluene*	<0.050	0.050	01/24/2024	ND	2.05	103	2.00	1.02	
Ethylbenzene*	<0.050	0.050	01/24/2024	ND	2.06	103	2.00	1.21	
Total Xylenes*	<0.150	0.150	01/24/2024	ND	6.22	104	6.00	1.51	
Total BTEX	<0.300	0.300	01/24/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	272	16.0	01/25/2024	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/24/2024	ND	191	95.5	200	8.72	
DRO >C10-C28*	59.9	10.0	01/24/2024	ND	177	88.7	200	10.3	
EXT DRO >C28-C36	89.9	10.0	01/24/2024	ND					
Surrogate: 1-Chlorooctane	92.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	102	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

BS-3	Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager

equest of Chain of Custody Record																					Pa	an	- -	٦
Tetra Tech, Inc.	901W Wall Street, Ste 100 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946																ye	46 of 50						
JR Oil	Site Manager	Site Manager: Brittany Long							Т				ANALYSIS REQUEST								Pade 46 of	, , , , ,		
MLMUI Satellite No,2			brit	tany.I	ong	@tetr	rated	ch.cc	om				_ (lethod No			<u> </u>	
Dn: Lea County, NM	Project #:					D-031																		
ATTN: JR Oil Rex Tippy														5	Hg								attached list)	
oratory: Eurofins Xenco	Sampler Sign	Sampler Signature: Miguel Flores								Se	Se								e attach					
	X 8260B C35) DRO - OP						8	Cd Cr Pb			624	82/UC/625			TDS	stry (see								
200220	SAM	PLING	M	ATRIX		PRESE ME	RVATI	IVE	RS	(N/N)	BTEX	(Ext to C			Ag As Ba	latiles		8260B / 6	/01. 82/ 308			Sulfate	Chemis	alance
SAMPLE IDENTIFICATION	YEAR: 2024 BLYC	TIME	WATER	SOIL	HCL	HNO ₃	None		CONTAINERS	FILTERED (Y	BTEX 8021B	TPH TX1005 (Ext to C35) TPH 8015M (GBO - DBO OBO)	PAH 8270C		TCLP Metals A	TCLP Semi Volatiles		GC/MS Vol. 8260B	PCB's 8082 / 608	NORM	PLM (Asbestos)	Chloride Sul	General Water Chemistry (see	Anion/Cation Balance
BH-1 (1.0')	1/22/2024			X	╀╧		-	-	#		⊡ X			μ		Ϊ₽	RC	800	5 6	ž			e.	An
BH-2 (1.0')	1/22/2024			X	+	Ť,	_	\vdash			Â	X	-	+	+	┢	$\left \cdot \right $	+	+	+			\vdash	+
BH-3 (1.0;)	1/22/2024			x	+		-			-	X		-	+	+	+	\vdash	+	+	+			\vdash	+
BH-4 (1.0')	1/22/2024			x		X	-				X			+	+	+	\vdash	+	+	Н			\vdash	+
BH-5 (1.0')	1/22/2024			X	\top		-				X	X		+	+		\vdash	+	+	Η			\vdash	+
BH-6 (1.0')-	1/22/2024			X							X	X	+	+	+	╋	\vdash	+	+	Н		+	\vdash	+
BH-7 (1.0')	1/22/2024	X		X		X					x	X	+	+	+			+	+	\square	X	+	+	1
BH-8 (2.0')	1/22/2024			X		X					х	x	+ +	+	+	\square		+	+	\mathbb{H}	X	+	+	
BH-9 (2.0')	1/22/2024)	x		X					Х	X	Ħ	+	+	Н		+	+	\vdash		++	+	
Date: Time: 1/24/21 14/06	Received by: Date: Time: Attack i/ufuf 14:08				B US	SE C	NL'	Y	REMARKS:						200/00/2									
Date: Time:	Received by: Date: Time:					ole Ter	npera	ture		RUSH: Same Day 24 hr 48						48 hr	7							
Date: Time:	Received by: Date: Time:					5	,P	L						Charges Authorized										
Date: Time:												Circle) HAND DELIVERED FEDEX UPS Tracking #:								ort				
	ORIGINAL	COPY								I	(Circle	e) HA	ND DI	ELIVE	RED	FE	DEX	UPS	6 Т	rackir	ng #: _			2770

equest of Chain of Custody Record					Ţ.																5	aje		
Tetra Tech, Inc.				Midl Te	land,Te I (432) 6	reet, Ste xas 797 582-455 682-394	05 9																	47 of 50
JR Oil	Site Manager	:	Britt	any	Long	1				40 - 200 - 2014) 1	Т					AN	IAL	YSI	S RE	QU	EST	г		Page
MLMUI Satellite No,2			britta	iny.lc	ong@	tetra	atech	1.00	m		1		_(rcle		r Sj	pec	ify	Me	the	d h	No.)	ļĽ
n: Lea County, NM	Project #:		2	12C	-MD	-031:	33																	
ATTN: JR Oil P.ex Tippy												8		đ	βŗ								had list	וובח וואו
Eurofins Xenco	Sampler Sign	ature:	N	/ligue	el Flo	ores								Pb Se F	Pb Se Hg								e attac	ם מוומר
	A.					*					BTEX 8260B			a Cd Cr I	a Cd Cr			324	8270C/625				TDS istrv (se	ייי ליופו
640320	SAM	PLING	MA	TRIX	F	RESER		/E	RS	(N/	BTE)	(Ext to		g As Ba	Ag As B		latiles	8260B / 624		308			Ifate Chem	Salance
SAMPLE IDENTIFICATION	YEAR: 2024	TIME	WATER	71	HCL	HNO ₃	None		# CONTAINERS	FILTERED (Y/N)		TPH TX1005 (Ext to C35)	PAH 8270C	Total Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Metals Ag As Ba Cd Cr Pb	TCLP Volatiles	I CLP Semi Volatiles RCI	GC/MS Vol. 8	GC/MS Semi. Vol.	PCB's 8082 / 608 NORM	PLM (Asbestos)	oride	Chloride Sulfate TDS General Water Chemistry (see attached list)	Anion/Cation Balance
BH-11 (4.0')	<u> </u>	F	≥ ŭ X		Ĭ	⊆ <u>∓</u> X			#	분	X BT	-	-	Tot	10			U U U U U	С Ю	D L C	PLA			Anio
BH-12 (4.0')	1/22/2024		X		+	X	+ +				Â	X X	-	H	+	-	+	\vdash		+	+	X	+	+
BH-13 (4.0')	1/22/2024		X		+	X	++				X		+	Η	+	+	+	+	-	+	+	X X		+
BH-14 (4.0')	1/22/2024		X	-	\square	x	+ +				X	X	+	\vdash		+	+-	+	-	+	+	x	+	┢
BH-15 (4.0')	1/22/2024		X		\square	X	\square			1	Х	X	+	\mathbb{H}		+	+	\vdash	+	╋	+	X	╋	┢
BH-16 (4.0')	1/22/2024		X		\square	X	\square				x	X	-	\square		+	+	Η	+	+	+	X	+	+
BH-17 (4.0')	1/22/2024		X		\square	X					X	X	+	\square		+	+	Η	+	1	+	X	+	+
BH-18 (2.5')	1/22/2024		X			X	Π				X	X	T	Π	1	+		Н	1	+	\square	x	+	+
BH-19 (2.5')	1/22/2024		X			Х					Х	X		Π	\top	1		Π	+	+	+ +	x	+	t
BH-20 (2.5')	1/22/2024		X	-		Х					Х	X				T		Π	\top	+	+	Х	+	
Date: fime:	Received by:	in			Date:	1bu	Fime:		-08		LA	BU	SE (DNL		REM			anda	ard T)))	• ¹ /2000	ja Gl
Date: Time:	Received by:		9		Date:		Fime:		00			ple Te		ature			RU	ISH:	Sar	ne D	ay	24 hr	48	hr
Date: Time:	Received by:				Date:	1	Time:				T	55	be				Ru	sh C	harg	es Ai	uthori	zed		
Date: Time:												HL	D				Sp	ecial	Rep	ort Li	mits	or TF	RP F	Repo
	ORIGINAL	COPY									(Circl	e) HA	ND E	DELIV	/ERE	D F	EDE	хU	PS	Trac	king #	:		

equest of Chain of Custody Record																				F	Page		
Tetra Tech, Inc.	54 			M	lidland Tel (43			0													uge		48 of 50
JR Oil	Site Manage	r:	Br	ittany	y Lo	ong					1				A	NA	LYS	IS F	REQ	UES	т		Page
MLMUI Satellite No,2			brit	tany.	long	g@t	etrate	ch.c	om		٢,	1	(cle	or S	Spe	cify	y M	eth	od N	lo .)	Ę,
Dn: Lea County, NM	Project #:			212	C-N	1D-0	3133																
ATTN: JR Oil Rex Tippy											1			Б.	p							attached list)	
oratory: Eurofins Xenco	Sampler Sigr	nature:		Migu	uel	Flore	es		2		1	OBO		Cr Pb Se Hg	b Se Hg							attact	מוומרי
						r		×			BTEX 8260B	C35) DRO - OI		Cd Cr P	CdCr		24	8270C/625				TDS strv (see	2013 1000
240320		PLING	м	ATRIX	×		SERVA		ERS	(N/X	8 BTEX	Ext to		Ag As Ba	Ag As Ba	olatiles	RORD / ROA			(5)		ulfate Pr Chemi	Balance
SAMPLE IDENTIFICATION	YEAR: 2024 BLYC	TIME	WATER	SOIL	Ī	HUC HNO3	ICE	None	# CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TPH TX1005(TPH 8015M(PAH 8270C	Total Metals Ag As Ba Cd	TCLP Volatiles	TCLP Semi Volatiles	RCI GC/MS Vol 3	GC/MS Semi. Vol.	PCB's 8082 / 608	NORM PLM (Asbestos)	Chloride	Chloride Sulfate TDS General Water Chemistry (see	Anion/Cation Balance
0 BH-21 (2.5')	1/22/2024		ŕ	X	+		X	-	#	<u>ш</u>	т Х		6	<u>i i i</u>		F	ž č	jö	Ĕ	ž i	1 V	<u>ວ້ 0</u>	Ā
BH-22 (2.5')	1/22/2024	1	Π	Х	+	+	X				x	X	+	+	+	$\left[+ \right]$	+	+	\vdash	+	x	+	++
BH-23 (1.5')	1/22/2024			Х			X	\top		1	x	X	+	+	+	\uparrow	+	+	\vdash		Îx	╋	++
3 BH-24 (1.5')	1/22/2024			Х			X	\top		1	x	X	\square	+	+	\vdash	+	+	\vdash	+	X	+	++
4 BH-25 (1.5')	1/22/2024		П	Х			X		1		x	x	\square	+	+	\vdash	+	+	┢╋	+	x	+	++
ВН-26 (1.5')	1/22/2024		П	Х			X	+	+		x	X	\square	+		\vdash	+	+	\vdash	+	x	+	++
Ч ВН-27 (1.5')	1/22/2024	2	Π	X	T	T	X	+			x	X	\square			\vdash	+	+	\vdash	+	x	+	++
BH-28 (1.5')	1/22/2024		П	X			X				x	X	+	+		\vdash	+	+	\vdash	+	x	+	
BH-29 (1.5')	1/22/2024		П	X	T		X				х	X		+				+	\vdash	+	x	+	
SW-1	1/22/2024			X			X				x	X	\square		\top		+	+		+	x	+	
Date: Time: 1/2/1/2/1/07	Received by:	-	-		Da i/s	ate:	Tim		1:08			3 US		NLY		MAR		ranc	Jard	TAT			200002
Ďate: Time:	Received by:	1			Da	ate:	Tim				Samp			ture							24 hr	48	hr 7
Date: Time:	Received by:				Da	ite:	Tim	e:			5	50	C							Autho			
Date: Time:												714	A									RP F	Report
Keccel	ORIGINAL	COPY				⁶ - E				l	(Circle	e) HA	ND DE	ELIVE	RED	FED	EX	UPS	Tra	cking	#:		

equest of Chain of Custody Record																				P	age			
Tetra Tech. Inc.			90	Midlar Tel (4	Vall Street, nd,Texas 7 (432) 682-4 (432) 682-4	79705 4559				÷									a'		uge		49 of 50	
JR Oil	Site Manage	r:	Britta	ny Lo	.ong					Т					AN	ALY	'SIS	RE	QU	EST	т		Page	
MLMUI Satellite No,2			brittan	y.lor	ng@te	trated	ch.co	m		1	Ē	(cle I	or	Sp	ec	ify	Me	the	h bc	Vo.	닏	
on: Lea County, NM	Project #:		21	2C-1	MD-03	133																		
ATTN: JR Oil Rex Tippy										1				Б								1401 P-	ed list)	
oratory: Eurofins Xenco	Sampler Sigr	ature:	Mig	guel	Flores	S				1				Pb Se Hg								docto	allaci	
										8260B	C35)		Cd Cr	Cd C			4	8270C/625				DS	ily (act	
10200	SAM	PLING	MATE	RIX		ETHOD	IVE	S	Î	втех	(Ext to C		As Ba	As Ba	atiles	0	8260B / 624		8			T ate T	lance	
SAMPLE IDENTIFICATION	YEAR: 2024					Т		NER		21B	005 (E		Is Ag	als Ag	Volatiles Semi Volatiles		I. 826	mi. Vo	2 / 60	stos)		Sulta Sulta	on Ba	
	DATE	TIME	WATER SOIL		HCL HNO ₃	ICE None		CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TPH TX1005 (Ext to C35) TPH 8015M (GBO DBO DBO)	PAH 8270C	Total Metals Ag	TCLP Metals	TCLP Volatiles	RCI	GC/MS Vol. 8260E	C/MS Se	NORM	PLM (Asbestos)	loride	Iloride	Anion/Cation Balance	
€ SW-2	1/22/2024		> 0) X	-		<u> </u>	+	#	<u> </u>	™ X	F F X	-	Ĕ	<u> </u>		ž ž	Ŭ	Ö	ĬŽ			5 0	Ş Ā	
SW-3	1/22/2024		X	+		x	+		\vdash	Â	X		+	+	+	+-	\vdash	+	+	+	X	+	++	_
2 SW-4	1/22/2024	7	X	+		x	+		·	^ X	X		-	+	+	+	\vdash	+	+	+	X	+	++	
3 SW-5	1/22/2024		X		-+-+	x	\vdash		-	X			+	+	+	+	\vdash	+	+	+	X	+	++	_
4 SW-6	1/22/2024		X	+	-+-+	x	\vdash			X			+	+	+	+	\vdash	+	+	+ +	X	+	++	_
5 SW-7	1/22/2024		X		-+-+	x				X			+	+	+	+	\vdash	+	┿	+-+	X	+	++	-
USW-8	1/22/2024		X		-+-+	x				X		+	+	+	+	$\left \cdot \right $	-	+	+	+	X	+	++	-
SW-12	1/22/2024		X			x				x	X	+ +	+	+	+	+	+	+	+	++	\rightarrow	+	++	-
SW-13	1/22/2024		Х	+	-+-+	x				X	X	+ +	+	+	+	+	+	+	+	++	^ X	+	┢┼┥	-
SW-14	1/22/2024		X			x				X	X	+ +	+	+	╋	$\left \cdot \right $	+	+	+	+	^ X	╋	┼┼	-
Date: Time:	Received by:			D	Date:	Time					BUS		NL		EMA		: Sta	nda	rd T	_	~			
Date: Time:	Received by:	m		D	9/2-9 Date:	Time		08		Sam	ple Te	mpera	ture			RUS	SH:	San	ne Da	ay 2	24 hr	48	3 hr	
Date: Time:	Received by:		G-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	D	ate:	Time	:			5	. <i>Б</i> °	C				Rus	h Ch	arge	es Au	ithoria	zed			
Date: Time:											#12	10				Spe	cial F	Repo	ort Lii	mits o	or TR	RP F	Report	t
Recei	ORIGINAL	COPY									le) HA			EREC	D FE	EDEX	UP	S	Track	king #:	:			,

equest of Chain of Castody Record			8																		Pa	age	ſ	
Tetra Tech, Inc.		× 		19	and,Te (432)	Street, exas 7 682-4 682-3	9705 559	D						E.										50 of 50
JR Oil	Site Manager	:	Bri	ittany	Lon	g					Т					AN	ALY	/SIS	RE	QU	EST	Γ		Page (
MLMUI Satellite No,2			brit	tany.lo	ng(Dtet	rate	ch.c	om		1	i i	_ (cle	e or	Sp	bec	ify	Me	tho	d N	lo.)	Ľ.
Lea County, NM	Project #:			212C																				
ATTN: JR Oil Rex Tippy						24	1.3575.54				1			5	B								ed list)	
oratory: Eurofins Xenco	Sampler Sign	ature:		Migue	el Flo	ores	5						040)	Cr Pb Se Hg	Pb Se Hg								e attached	
											8260E		0-0X0	8	ŭ			24	8270C/625				TDS istry (see	
n_{102}		PLING	M	ATRIX			ERVAT		RS	(N)	BTEX			ig As Ba	Ag As Ba	Solatiles		- CD - I			(\$		Sultate ater Chemis	3alance
SAMPLE IDENTIFICATION	YEAR: 2024 JLYG	TIME	WATER	OIL	HCL	HNO ₃	ICE		# CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TPH TX1005 (Ext to	PAH 8015M (GKU	Total Metals Ag As Ba (LP Metals /	TCLP Volatiles TCLP Semi Volatiles		GC/MS Vol. 8260B / 624	GC/MS Semi. Vol.	NORM	PLM (Asbestos)	Chloride	1×	Anion/Cation Balance
SW-15	1/22/2024	F		л Х	Ξ		⊇ z X	-	#		X B1			10 T	2		RCI	ß	8	2 2	1 1 1		<u>e</u>	Ani
SW-16	1/22/2024			X			x	+	+	+	X		$\dot{\cdot}$	$\left \cdot \right $	+	+	+-	$\left \cdot \right $	+	+	H	X X	+	\vdash
SW-17	1/22/2024			X			x	\uparrow		1	х	5		\mathbf{H}	+	+	+	$\left \cdot \right $	╉	┝	+ +	x	+	\vdash
5 SW-18	1/22/2024			Х			X	-			Х	Ś		Π	1	\mp						x	\pm	
								t								╞					\square	\pm	\pm	
							+		+			+	+	$\left \right $	+	-	-	$\left \cdot \right $	+	2		+		
	-		$\left\{ \cdot \right\}$				_								+	\top			1	ŀ		1		
1/24/24 1407	Received by:	i		1/	Date	1/2	Time	10	4:De	5	LA	вU	SE (ONL	Y	REMA](Sta			ΑT	\sum		
à .	Received by:				Date		Time	e:				ple Te		ature		_	_						48	hr 7
Date: Time:	Received by:				Date	:	Time	Ð:				+Jre)			-	sh Ch ecial I					RP R	eport
Vecce	ORIGINAL	COPY										le) H/	100000		EREI	D FI	EDEX	(UF	PS -	Fracki	ing #:			

Environment Testing

Page 264 of 307

ANALYTICAL REPORT

PREPARED FOR

Attn: Brittany Long Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701 Generated 2/26/2024 12:31:13 PM

JOB DESCRIPTION

MLMUI Satellite No 2 Lea County NM

JOB NUMBER

890-6198-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 2/26/2024 12:31:13 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-6198-1 SDG: Lea County NM

Page 266 of 307

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No 2

Qualifier Description

MS and/or MSD recovery exceeds control limits.

Surrogate recovery exceeds control limits, low biased.

Indicates the analyte was analyzed for but not detected.

MS/MSD RPD exceeds control limits

Page 267 of 307

	1
Job ID: 890-6198-1 SDG: Lea County NM	2
	3
	4
	5

GC Semi VO	A
------------	---

Qualifiers GC VOA Qualifier

F1

F2

S1-

U

GC Semi VC	DA Construction of the second s
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
HPLC/IC	
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Case Narrative

Client: Tetra Tech, Inc. Project: MLMUI Satellite No 2 Job ID: 890-6198-1

Eurofins Carlsbad

1 2 3 4

Page 268 of 307

Job ID: 890-6198-1

Job Narrative 890-6198-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 2/15/2024 1:42 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -2.0°C.

Receipt Exceptions

The following sample was received and analyzed from an unpreserved bulk soil jar: SW - 19 (890-6198-1).

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-73802 and analytical batch 880-73977 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: (MB 880-73802/5-A) and (MB 880-73934/5-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Carlsbad

-

Job ID: 890-6198-1 SDG: Lea County NM

Lab Sample ID: 890-6198-1

Client Sample ID: SW - 19 Date Collected: 02/12/24 00:00

Project/Site: MLMUI Satellite No 2

Client: Tetra Tech, Inc.

Date Received: 02/15/24 13:42

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		02/21/24 15:27	02/25/24 03:28	1
Toluene	<0.00200	U	0.00200		mg/Kg		02/21/24 15:27	02/25/24 03:28	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		02/21/24 15:27	02/25/24 03:28	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		02/21/24 15:27	02/25/24 03:28	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		02/21/24 15:27	02/25/24 03:28	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		02/21/24 15:27	02/25/24 03:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130				02/21/24 15:27	02/25/24 03:28	1
1,4-Difluorobenzene (Surr)	90		70 - 130				02/21/24 15:27	02/25/24 03:28	1
Method: TAL SOP Total BTEX - 1	Total BTEX Calo	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00399	U	0.00399		mg/Kg			02/25/24 03:28	1
	Result	ics (DRO) (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte				MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Total TPH	Result 60.4	Qualifier	RL 50.3	MDL		<u>D</u>	Prepared		
Analyte Total TPH Method: SW846 8015B NM - Dies	Result 60.4 sel Range Orga	Qualifier	RL 50.3			D	Prepared Prepared		
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	Result 60.4 sel Range Orga	Qualifier nics (DRO) Qualifier	RL 50.3		mg/Kg		<u>.</u>	02/20/24 10:47	1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result 60.4 sel Range Orga Result	Qualifier nics (DRO) Qualifier	(GC)		mg/Kg Unit		Prepared	02/20/24 10:47 Analyzed	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result 60.4 sel Range Orga Result <50.3	Qualifier nics (DRO) Qualifier U	RL 50.3 (GC) RL 50.3		mg/Kg Unit mg/Kg		Prepared 02/19/24 15:17	02/20/24 10:47 Analyzed 02/20/24 10:47	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result 60.4 sel Range Orga Result <50.3 60.4	Qualifier nics (DRO) Qualifier U	RL 50.3 (GC) RL 50.3 50.3		mg/Kg Unit mg/Kg mg/Kg		Prepared 02/19/24 15:17 02/19/24 15:17	02/20/24 10:47 Analyzed 02/20/24 10:47 02/20/24 10:47	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result 60.4 sel Range Orga Result <50.3	Qualifier nics (DRO) Qualifier U	RL 50.3 (GC) RL 50.3 50.3 50.3		mg/Kg Unit mg/Kg mg/Kg		Prepared 02/19/24 15:17 02/19/24 15:17 02/19/24 15:17	02/20/24 10:47 Analyzed 02/20/24 10:47 02/20/24 10:47 02/20/24 10:47	1 Dil Fac 1 1 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result 60.4 sel Range Orga Result <50.3	Qualifier nics (DRO) Qualifier U	RL 50.3 (GC) RL 50.3 50.3 50.3 50.3 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 02/19/24 15:17 02/19/24 15:17 02/19/24 15:17 02/19/24 15:17 Prepared	02/20/24 10:47 Analyzed 02/20/24 10:47 02/20/24 10:47 02/20/24 10:47 Analyzed	1 Dil Fac 1 1 1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result 60.4 sel Range Orga Result <50.3	Qualifier nics (DRO) Qualifier U U Qualifier	RL 50.3 (GC) RL 50.3 50.3 50.3 50.3 50.3 70.130 70.130 70.130		mg/Kg Unit mg/Kg mg/Kg		Prepared 02/19/24 15:17 02/19/24 15:17 02/19/24 15:17 Prepared 02/19/24 15:17	02/20/24 10:47 Analyzed 02/20/24 10:47 02/20/24 10:47 02/20/24 10:47 Analyzed 02/20/24 10:47	1 Dil Fac 1 1 1 1 1 Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte	Result 60.4 sel Range Orga Result <50.3	Qualifier nics (DRO) Qualifier U U Qualifier	RL 50.3 (GC) RL 50.3 50.3 50.3 50.3 50.3 70.3 70 - 130 70 - 130 70 - 130 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg		Prepared 02/19/24 15:17 02/19/24 15:17 02/19/24 15:17 Prepared 02/19/24 15:17	02/20/24 10:47 Analyzed 02/20/24 10:47 02/20/24 10:47 02/20/24 10:47 Analyzed 02/20/24 10:47	1 Dil Fac 1 1 1 1 1 Dil Fac 1

Eurofins Carlsbad

Matrix: Solid

5

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No 2

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) DFBZ1 BFB1 Lab Sample ID Client Sample ID (70-130) (70-130) SW - 19 890-6198-1 90 90 890-6208-A-21-E MS Matrix Spike 100 109 890-6208-A-21-F MSD Matrix Spike Duplicate 98 111 LCS 880-73802/1-A Lab Control Sample 108 112 LCSD 880-73802/2-A Lab Control Sample Dup 110 120 MB 880-73802/5-A Method Blank 68 S1-100 MB 880-73934/5-A Method Blank 67 S1-106 Surrogate Legend BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits
		1CO1	OTPH1	
b Sample ID	Client Sample ID	(70-130)	(70-130)	
-6198-1	SW - 19	123	114	
)-6198-1 MS	SW - 19	119	98	
198-1 MSD	SW - 19	117	91	
30-73547/2-A	Lab Control Sample	122	129	
880-73547/3-A	Lab Control Sample Dup	110	108	
80-73547/1-A	Method Blank	130	117	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 890-6198-1 SDG: Lea County NM

Prep Type: Total/NA

Page 270 of 307

Eurofins Carlsbad

Client: Tetra Tech, Inc.

Project/Site: MLMUI Satellite No 2 Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-7380	2/5-A								Client Sa	ample ID: N	lethod	Blank
Matrix: Solid										Prep Ty		
Analysis Batch: 73977										Prep	Batch:	7380
	МВ	МВ										
Analyte	Result	Qualifier	RL		MDL	Unit		D	Prepared	Analyze	ed	Dil Fa
Benzene	<0.00200	U	0.00200			mg/Kg		02	/21/24 15:27	02/25/24 0		
Toluene	<0.00200	U	0.00200			mg/Kg		02	/21/24 15:27	02/25/24 0	0:21	
Ethylbenzene	<0.00200		0.00200			mg/Kg			/21/24 15:27	02/25/24 0		
m-Xylene & p-Xylene	<0.00400		0.00400			mg/Kg			/21/24 15:27	02/25/24 0		
o-Xylene	<0.00200		0.00200			mg/Kg			/21/24 15:27	02/25/24 0		
Xylenes, Total	< 0.00400		0.00400			mg/Kg			/21/24 15:27	02/25/24 0		
	-0.00+00	0	0.00400			iiig/itg		02	121/24 10.21	02/20/24 0	0.21	
	MB	МВ										
Surrogate	%Recovery	Qualifier	Limits						Prepared	Analyze	ed	Dil Fa
4-Bromofluorobenzene (Surr)	68	S1-	70 - 130					02	/21/24 15:27	02/25/24 0	0:21	
1,4-Difluorobenzene (Surr)	100		70 - 130					02	/21/24 15:27	02/25/24 0	0:21	
Lab Sample ID: LCS 880-738(Matrix: Solid)2/1-A							Clie	nt Sample	ID: Lab Co Prep Ty	ype: To	otal/N/
Analysis Batch: 73977										Prep	Batch:	73802
			Spike	LCS	LCS					%Rec		
Analyte			Added	Result	Qua	lifier	Unit	D	%Rec	Limits		
Benzene			0.100	0.09199			mg/Kg		92	70 - 130		
Toluene			0.100	0.07926			mg/Kg		79	70 - 130		
Ethylbenzene			0.100	0.08616			mg/Kg		86	70 - 130		
m-Xylene & p-Xylene			0.200	0.1798			mg/Kg		90	70 - 130		
o-Xylene			0.100	0.09995			mg/Kg		100	70 - 130		
	LCS LCS											
Surrogate	%Recovery Qua	lifier	Limits									
4-Bromofluorobenzene (Surr)	108		70 - 130									
1,4-Difluorobenzene (Surr)	112		70 - 130									
Lab Sample ID: LCSD 880-73	802/2-A						Cli	ent Sa	mple ID: L	ab Control	Samp	le Dup
Matrix: Solid										Prep Ty	pe: To	otal/NA
Analysis Batch: 73977											Batch:	
			Spike	LCSD	LCS	D				%Rec		RPD
Analyte			Added	Result	Qua	lifier	Unit	D	%Rec	Limits	RPD	Limi
Benzene			0.100	0.09733			mg/Kg		97	70 - 130	6	3
Toluene			0.100	0.09044			mg/Kg		90	70 - 130	13	3
Ethylbenzene			0.100	0.09546			mg/Kg		95	70 - 130	10	3
m-Xylene & p-Xylene			0.200	0.1997			mg/Kg		100	70 - 130	11	3
p-Xylene			0.100	0.1051			mg/Kg		105	70 - 130 70 - 130	5	3
	LCSD LCS	'n										
Surrogato	%Recovery Qua		Limits									
Surrogate 4-Bromofluorobenzene (Surr)	110 %Recovery		70 - 130									
1,4-Difluorobenzene (Surr)	120		70 - 130 70 - 130									
Lab Sample ID: 890-6208-A-2	1-E MS								Client	Sample ID:		
Matrix: Solid										Prep Ty		
Analysis Batch: 73977	• • •		o "								Batch:	/3802
	Sample Sam	-	Spike		MS				a. =	%Rec		
Analyte	Result Qua	lifier	Added	Result	Qua	lifier	Unit	D	%Rec	Limits		

Eurofins Carlsbad

53

42

70 - 130

70 - 130

<0.00199 U F1

<0.00199 U F2 F1

Benzene

Toluene

0.101

0.101

0.05346 F1

0.04211 F1

mg/Kg

mg/Kg

Job ID: 890-6198-1 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-6208-A-	-21-E MS							Client	Sample ID: Matr	
Matrix: Solid									Prep Type:	
Analysis Batch: 73977									Prep Batc	h: 73802
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D %Rec	Limits	
Ethylbenzene	<0.00199	U F1	0.101	0.05338	F1	mg/Kg		53	70 - 130	
m-Xylene & p-Xylene	<0.00398	U F1	0.202	0.1094	F1	mg/Kg		54	70 - 130	
o-Xylene	<0.00199	U F1	0.101	0.05727	F1	mg/Kg		57	70 - 130	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene (Surr)	100		70 - 130							
1,4-Difluorobenzene (Surr)	109		70 - 130							
Lab Sample ID: 890-6208-A-	-21-F MSD					c	Client	t Sample ID	: Matrix Spike D	uplicate
Matrix: Solid									Prep Type:	
Analysis Batch: 73977									Prep Batc	
-	Sample	Sample	Spike	MSD	MSD				%Rec	RP
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D %Rec	Limits RP	D Lim
Benzene	<0.00199	U F1	0.100	0.06937	F1	mg/Kg		69	70 - 130 2	6 3
Toluene	<0.00199	U F2 F1	0.100	0.06657	F2 F1	mg/Kg		67	70 - 130 4	53
Ethylbenzene	<0.00199	U F1	0.100	0.06720	F1	mg/Kg		67	70 - 130 2	3 3
m-Xylene & p-Xylene	<0.00398	U F1	0.200	0.1375	F1	mg/Kg		69	70 - 130 2	3 3
o-Xylene	<0.00199	U F1	0.100	0.06853	F1	mg/Kg		69	70 - 130 1	8 3
	MSD	MSD								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene (Surr)	98		70 - 130							
1,4-Difluorobenzene (Surr)	111		70 - 130							
Lab Sample ID: MB 880-739	34/5-A							Client Sa	ample ID: Metho	d Blan
Matrix: Solid									Prep Type:	
Analysis Batch: 73977									Prep Batc	
-		MB MB								
Analyte	R	esult Qualifier	RL	_	MDL Uni	t	D	Prepared	Analyzed	Dil Fa
Benzene	<0.0	0200 U	0.00200)	mg/	Kg	_ (02/23/24 14:05	02/24/24 13:35	
Toluene	<0.0	0200 U	0.00200)	mg/	Kg	0	02/23/24 14:05	02/24/24 13:35	
Ethylbenzene	<0.0	0200 U	0.00200)	mg/	Kg	(02/23/24 14:05	02/24/24 13:35	
m-Xylene & p-Xylene	<0.0	0400 U	0.00400)	mg/	Kg	(02/23/24 14:05	02/24/24 13:35	
o-Xylene	<0.0	0200 U	0.00200)	mg/	Kg	0	02/23/24 14:05	02/24/24 13:35	
Xylenes, Total	~0.0	0400 U	0.00400	`	mg/	4		02/23/24 14:05	02/24/24 13:35	

	Ayleries, Total	<0.00400	U	0.00400	ing/kg	02/23/24 14:05	02/24/24 13:35	I
		MB	MB					
	Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene (Surr)	67	S1-	70 - 130		02/23/24 14:05	02/24/24 13:35	1
	1,4-Difluorobenzene (Surr)	106		70 - 130		02/23/24 14:05	02/24/24 13:35	1
-	-							

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-73547/1-A Matrix: Solid Analysis Batch: 73598	мв	МВ					Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batcl	Total/NA
Analyte Gasoline Range Organics (GRO)-C6-C10		Qualifier	RL 50.0	MDL	Unit mg/Kg	<u> </u>	Prepared 02/19/24 15:17	Analyzed 02/20/24 08:02	Dil Fac

Eurofins Carlsbad

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No 2 Job ID: 890-6198-1

Page 273 of 307

SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued) Lab Sample ID: MB 880-73547/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 73598 Prep Batch: 73547 MB MB Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Analyte <50.0 U 50.0 02/19/24 15:17 02/20/24 08:02 **Diesel Range Organics (Over** mg/Kg C10-C28) 50.0 02/20/24 08:02 Oll Range Organics (Over C28-C36) <50.0 U 02/19/24 15:17 mg/Kg MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 130 70 - 130 02/19/24 15:17 02/20/24 08:02 117 70 - 130 02/19/24 15:17 02/20/24 08:02 o-Terphenyl Lab Sample ID: LCS 880-73547/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 73598 Prep Batch: 73547 LCS LCS Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics 1000 1030 103 70 - 130 mg/Kg (GRO)-C6-C10 1000 1035 Diesel Range Organics (Over 104 70 - 130 mg/Kg C10-C28) LCS LCS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 70 - 130 122 o-Terphenyl 129 70 - 130 Lab Sample ID: LCSD 880-73547/3-A **Client Sample ID: Lab Control Sample Dup** Matrix: Solid Prep Type: Total/NA Analysis Batch: 73598 Prep Batch: 73547 Spike LCSD LCSD %Rec RPD Result Qualifier Limits RPD Limit Analyte Added Unit D %Rec Gasoline Range Organics 1000 955.9 96 70 - 130 20 mg/Kg 7 (GRO)-C6-C10 Diesel Range Organics (Over 1000 950.5 mg/Kg 95 70 - 130 9 20 C10-C28) LCSD LCSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 110 70 - 130 o-Terphenyl 108 70 - 130 Lab Sample ID: 890-6198-1 MS Client Sample ID: SW - 19 Matrix: Solid Prep Type: Total/NA Analysis Batch: 73598 Prep Batch: 73547 %Rec Sample Sample Spike MS MS Qualifier Added Qualifier %Rec Analyte Result Result Unit D Limits <50.3 U 1010 Gasoline Range Organics 1085 106 70 - 130 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 60.4 1010 1058 mg/Kg 99 70 - 130 C10-C28) MS MS Surrogate %Recovery Qualifier Limits 119 70 - 130 1-Chlorooctane

Eurofins Carlsbad

1

1

1

o-Terphenyl

70 - 130

98

Job ID: 890-6198-1 SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Marketers One Part	ISD							C	lient Samp		
Matrix: Solid										Type: To	
Analysis Batch: 73598	<u> </u>	<u> </u>	• •							Batch:	
Analista		Sample	Spike		MSD Ovelifier	11		0/ Dee	%Rec	000	RPI
Analyte		Qualifier	Added		Qualifier	Unit	<u>D</u>	%Rec	Limits	RPD	Lim
Gasoline Range Organics (GRO)-C6-C10	<50.3	0	1010	1102		mg/Kg		107	70 - 130	2	2
Diesel Range Organics (Over	60.4		1010	997.3		mg/Kg		93	70 - 130	6	2
C10-C28)						5 5					
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	117		70 - 130								
o-Terphenyl	91		70 - 130								
lethod: 300.0 - Anions, I Lab Sample ID: MB 880-7332 Matrix: Solid		ography						Client S	Sample ID: Prep	Method Type: Se	
Analysis Batch: 73631		MB MB									
Analyta	B	esult Qualifier		RL	MDL Unit		D P	repared	Analy		Dil Fa
Analyte Chloride		5.00 U		5.00	mg/K	~	<u> </u>	repareu	Analyz		DIIFa
Analysis Batch: 73631			0						~-		
			Spike	LCS	LCS				%Rec		
Analyte			Added		Qualifier	Unit	D	%Rec	%Rec Limits		
-						Unit mg/Kg	<u>D</u>	%Rec			
Chloride Lab Sample ID: LCSD 880-73 Matrix: Solid	 3329/3-A		Added	Result		mg/Kg		104	Limits 90 - 110 Lab Contro	DI Sampl Type: So	
Chloride Lab Sample ID: LCSD 880-73 Matrix: Solid	3329/3-A		Added 250	Result 259.4	Qualifier	mg/Kg		104	Limits 90 - 110 Lab Contro Prep		olub
Analyte Chloride Lab Sample ID: LCSD 880-73 Matrix: Solid Analysis Batch: 73631	 3329/3-A		Added 250 Spike	Result 259.4 LCSD	Qualifier	mg/Kg Clie	ent San	104	Limits 90 - 110 Lab Contro Prep %Rec	Type: S	olubi RP
Chloride Lab Sample ID: LCSD 880-73 Matrix: Solid Analysis Batch: 73631 Analyte	3329/3-A		Added 250	Result 259.4 LCSD	Qualifier	mg/Kg		104	Limits 90 - 110 Lab Contro Prep		olub RP Lim
Chloride Lab Sample ID: LCSD 880-73 Matrix: Solid Analysis Batch: 73631 Analyte Chloride Lab Sample ID: 890-6189-A-1 Matrix: Solid			Added 250 Spike Added	Result 259.4 LCSD Result	Qualifier	mg/Kg Clie	ent San	104 nple ID: %Rec 104	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	Type: So	olub RF Lin 2 Spik
Chloride Lab Sample ID: LCSD 880-73 Matrix: Solid	 1-B MS		Added 250 Spike Added 250	Result 259.4 LCSD Result 258.9	Qualifier LCSD Qualifier	mg/Kg Clie	ent San	104 nple ID: %Rec 104	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep	Type: So <u>RPD</u> 0 : Matrix	olubl RP Lim 2 Spik
Chloride Lab Sample ID: LCSD 880-73 Matrix: Solid Analysis Batch: 73631 Analyte Chloride Lab Sample ID: 890-6189-A-1 Matrix: Solid Analysis Batch: 73631	1-B MS Sample	Sample	Added 250 Spike Added 250 Spike	Result 259.4 LCSD Result 258.9	Qualifier LCSD Qualifier MS	Unit mg/Kg	ent San	104 nple ID: %Rec 104 Client	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec	Type: So <u>RPD</u> 0 : Matrix	olubl RP Lim 2 Spik
Chloride Lab Sample ID: LCSD 880-73 Matrix: Solid Analysis Batch: 73631 Analyte Chloride Lab Sample ID: 890-6189-A-1 Matrix: Solid Analysis Batch: 73631	1-B MS Sample	Sample Qualifier	Added 250 Spike Added 250	Result 259.4 LCSD Result 258.9	Qualifier LCSD Qualifier	mg/Kg Clie	ent San	104 nple ID: %Rec 104	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep	Type: So <u>RPD</u> 0 : Matrix	olub RF Lin 2 Spik
Chloride Lab Sample ID: LCSD 880-73 Matrix: Solid Analysis Batch: 73631 Chloride Lab Sample ID: 890-6189-A-1 Matrix: Solid Analysis Batch: 73631 Analyte Chloride Lab Sample ID: 890-6189-A-1 Matrix: Solid	1-B MS Sample Result 144	•	Added 250 Spike Added 250 Spike Added	Result 259.4 LCSD Result 258.9 MS Result	Qualifier LCSD Qualifier MS	Unit mg/Kg	ent San	104 nple ID: %Rec 104 Client %Rec 104	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 D: Matrix S	Type: So <u>RPD</u> 0 : Matrix Type: So	olub RP Lim 2 Spik olub
Chloride Lab Sample ID: LCSD 880-73 Matrix: Solid Analysis Batch: 73631 Chloride Lab Sample ID: 890-6189-A-1 Matrix: Solid Analysis Batch: 73631 Analyte Chloride Lab Sample ID: 890-6189-A-1 Matrix: Solid	1-B MS Sample Result 144	Qualifier	Added 250 Spike Added 250 Spike Added	Result 259.4 LCSD Result 258.9 MS Result 404.2	Qualifier LCSD Qualifier MS	Unit mg/Kg	ent San	104 nple ID: %Rec 104 Client %Rec 104	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 D: Matrix S	Type: So <u>RPD</u> 0 : Matrix Type: So pike Dup	olubi RP Lim 2 Spik olubi
Chloride Lab Sample ID: LCSD 880-73 Matrix: Solid Analysis Batch: 73631 Analyte Chloride Lab Sample ID: 890-6189-A-1 Matrix: Solid	1-B MS Sample <u>Result</u> 144 1-C MSD Sample	Qualifier	Added 250 Spike Added 250 Spike Added 250	Result 259.4 LCSD Result 258.9 MS Result 404.2	Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg	ent San	104 nple ID: %Rec 104 Client %Rec 104	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 D: Matrix Sp Prep	Type: So <u>RPD</u> 0 : Matrix Type: So pike Dup	olub RP Lin 2 Spik olub

Eurofins Carlsbad

Released to Imaging: 5/30/2025 1:25:27 PM

QC Association Summary

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No 2

Job ID: 890-6198-1 SDG: Lea County NM

GC VOA

Prep Batch: 73802

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6198-1	SW - 19	Total/NA	Solid	5035	
MB 880-73802/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-73802/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-73802/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-6208-A-21-E MS	Matrix Spike	Total/NA	Solid	5035	
890-6208-A-21-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
rep Batch: 73934					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-73934/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 73977

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-73934/5-A	Method Blank	Total/NA	Solid	5035	
nalysis Batch: 73977					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
390-6198-1	SW - 19	Total/NA	Solid	8021B	73802
MB 880-73802/5-A	Method Blank	Total/NA	Solid	8021B	73802
MB 880-73934/5-A	Method Blank	Total/NA	Solid	8021B	73934
LCS 880-73802/1-A	Lab Control Sample	Total/NA	Solid	8021B	73802
_CSD 880-73802/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	73802
890-6208-A-21-E MS	Matrix Spike	Total/NA	Solid	8021B	73802
890-6208-A-21-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	73802

Analysis Batch: 74035

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-6198-1	SW - 19	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 73547

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6198-1	SW - 19	Total/NA	Solid	8015NM Prep	
MB 880-73547/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-73547/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-73547/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-6198-1 MS	SW - 19	Total/NA	Solid	8015NM Prep	
890-6198-1 MSD	SW - 19	Total/NA	Solid	8015NM Prep	

Analysis Batch: 73598

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6198-1	SW - 19	Total/NA	Solid	8015B NM	73547
MB 880-73547/1-A	Method Blank	Total/NA	Solid	8015B NM	73547
LCS 880-73547/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	73547
LCSD 880-73547/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	73547
890-6198-1 MS	SW - 19	Total/NA	Solid	8015B NM	73547
890-6198-1 MSD	SW - 19	Total/NA	Solid	8015B NM	73547

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-6198-1	SW - 19	Total/NA	Solid	8015 NM	

Eurofins Carlsbad

QC Association Summary

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No 2 Job ID: 890-6198-1 SDG: Lea County NM

HPLC/IC

Leach Batch: 73329

LCS 880-73329/2-A

LCSD 880-73329/3-A

890-6189-A-1-C MSD

890-6189-A-1-B MS

Lab Control Sample

Matrix Spike

Lab Control Sample Dup

Matrix Spike Duplicate

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6198-1	SW - 19	Soluble	Solid	DI Leach	
MB 880-73329/1-A	Method Blank	Soluble	Solid	DI Leach	
_CS 880-73329/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
_CSD 880-73329/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
390-6189-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-6189-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
nalysis Batch: 73631					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6198-1	SW - 19	Soluble	Solid	300.0	73329
MB 880-73329/1-A	Method Blank	Soluble	Solid	300.0	73329

Soluble

Soluble

Soluble

Soluble

Solid

Solid

Solid

Solid

300.0

300.0

300.0

300.0

Eurofins Carlsbad

```
Page 276 of 307
```

2/26/2024

98-1 NM

73329

73329

73329

73329

12 13

Job ID: 890-6198-1 SDG: Lea County NM

Lab Sample ID: 890-6198-1 Matrix: Solid

Date Collected: 02/12/24 00:00 Date Received: 02/15/24 13:42

Client Sample ID: SW - 19

Project/Site: MLMUI Satellite No 2

Client: Tetra Tech, Inc.

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	73802	02/21/24 15:27	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	73977	02/25/24 03:28	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			74035	02/25/24 03:28	SM	EET MID
Total/NA	Analysis	8015 NM		1			73759	02/20/24 10:47	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	73547	02/19/24 15:17	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	73598	02/20/24 10:47	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	73329	02/16/24 09:30	SA	EET MID
Soluble	Analysis	300.0		1			73631	02/20/24 15:00	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 5/30/2025 1:25:27 PM

Job ID: 890-6198-1

SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Program	l	Identification Number	Expiration Date
exas	NELAP		T104704400-23-26	06-30-24
The following analytes	are included in this report, but the	he laboratory is not certif	fied by the governing authority. This lis	t may include analytes
for which the agency of	loes not offer certification.			
• •	•	<u>Matrix</u>	Analyte Total TPH	

Eurofins Carlsbad

Method Summary

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No 2 Job ID: 890-6198-1 SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	rences:		
ASTM = A	STM International		
EPA = US	Environmental Protection Agency		

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 5/30/2025 1:25:27 PM

Sample Summary

Client: Tetra Tech, Inc. Project/Site: MLMUI Satellite No 2 Job ID: 890-6198-1 SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
890-6198-1	SW - 19	Solid	02/12/24 00:00	02/15/24 13:42

Analysis Requ	est of Chain of Custody Record								890-	6198 (Chain	of C	usto	dy.		1			Р	age	_		<u>1</u> c
TŁ	Tetra Tech, Inc.			,	1W Wall S Midland,T Tel (432) Fax (432	exas 7	79705 4559											_	_				
Client Name:	JR Oil	Site Manager:		Brittan	ny Lon	g							(0)			LYS							
Project Name:	MLMUI Satellite No,2			brittany	/.long(@te	trated	ch.co	m		T	11				Spe 		y m 	etno	0d N 	10.)	H	1
Project Location: (county, state)	Lea County, NM	Project #:		212	2C-ME	D-03	3133														st)		
Invoice to:	ATTN: JR Oil Rex Tippy												우	· 문							Sulfate TDS Water Chemistry (see attached list)		
Receiving Laboratory		Sampler Signa	iture:	Mig	guel F	lore	s					ORO)	Pb Se	Pb Se			5	,			see atta		
Comments:											BTEX 8260B xt to C35)	DRO -	CqC	S			624 70C/62				TDS histry (s	a	
		SAMP	LING	MATR	ax	PRE	SERVAT	IVE	SS	Î	BTE)	TPH 8015M (GRO - DRO - ORO)	Aq As Ba	Ag As Ba	olatiles	10000	GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625	608	el la	10	Sulfate ater Chen	Anion/Cation Balance	
LAB #	SAMPLE IDENTIFICATION	YEAR: 2024		α			Π	Τ	TAINE	ED (Y	3021B X1005	015M (8270C Metals A		Volatile: Semi Vo		Vol. 8 Semi.	8082 /	chesto	ŭ l	al Wate	Cation	
(LAB USE)		DATE	TIME	WATE SOIL	ЧĊГ	HNO	None		# CONTAINERS	FILTERED (Y/N)	BTEX 8021B TPH TX1005	TPH 8(PAH 8: Total M	TCLP Metals	TCLP Volatiles TCLP Semi Volatiles	RCI	GC/MS	PCB's 8082 / 608	NORM PLM (Asbestos)	Chloride	Chloride General	Anion/(
SW	/-19	2/12/2024		X			×				×	×								X		Ħ	Ŧ
	-125			┨┝┥	+	+	++	+	+		+		+		┿	++	+		+	++	+	++	+
						t		T	\square		1	\square		\square	1	\square	1	\square	1	П	1	口	1
						-	++	+	+-		+	Ħ	+	Ħ	+	Ħ	+	+1	+	Ħ	+	#	Ŧ
											+						T		1		1		T
								_	-		-		+	$\left \right $	-	$\left \right $	+	+	+	++	+	++	+
				+++	+	+		+			+	$^{++}$	+		+	++	+		_	\dagger	+		+
Relinquished by:	Date: Time:	Received by		. (Dat	te: 7	Tim	ne:) 5	34	20	USI		ILY	REMA	RKS:	Stan	ndarc	I TA	т			
Relinquished by:	Date: Time:	Received by:	XIL	NX	Da	te:	Tim	ne:	10		Samol	a Tem	peratu	re	[H: S	Same	Day	24 1	nr 48	8 hr	72 h
								_			-	2.	2	-		Rush	n Cha	arges	Autho	orized			
Relinquished by:	Date: Time:	Received by:			Dat	te:	Tim	ie:						_	E		sial R	Report	. Limit	SOLI	RRP	Repor	r
						-		-			(Circle												

.

2/26/2024

Job Number: 890-6198-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Login Number: 6198 List Number: 1 Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

14

Job Number: 890-6198-1 SDG Number: Lea County NM

List Source: Eurofins Midland

List Creation: 02/19/24 08:27 AM

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Login Number: 6198 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

March 26, 2024

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MLMU SATELLITE #2

Enclosed are the results of analyses for samples received by the laboratory on 03/22/24 8:45.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	03/22/2024	Sampling Date:	03/21/2024
Reported:	03/26/2024	Sampling Type:	Soil
Project Name:	MLMU SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Tamara Oldaker
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: SW - 5 (H241502-01)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/22/2024	ND	2.11	105	2.00	1.16	
Toluene*	<0.050	0.050	03/22/2024	ND	2.07	103	2.00	1.14	GC-NC
Ethylbenzene*	<0.050	0.050	03/22/2024	ND	2.03	101	2.00	1.18	
Total Xylenes*	<0.150	0.150	03/22/2024	ND	5.91	98.5	6.00	1.05	
Total BTEX	<0.300	0.300	03/22/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.4	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	03/25/2024	ND	464	116	400	3.51	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/22/2024	ND	175	87.5	200	1.61	
DRO >C10-C28*	26.2	10.0	03/22/2024	ND	169	84.5	200	0.931	
EXT DRO >C28-C36	<10.0	10.0	03/22/2024	ND					
Surrogate: 1-Chlorooctane	84.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	75.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	03/22/2024	Sampling Date:	03/21/2024
Reported:	03/26/2024	Sampling Type:	Soil
Project Name:	MLMU SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Tamara Oldaker
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: SW - 9 (H241502-02)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/22/2024	ND	2.11	105	2.00	1.16	
Toluene*	<0.050	0.050	03/22/2024	ND	2.07	103	2.00	1.14	
Ethylbenzene*	<0.050	0.050	03/22/2024	ND	2.03	101	2.00	1.18	
Total Xylenes*	<0.150	0.150	03/22/2024	ND	5.91	98.5	6.00	1.05	
Total BTEX	<0.300	0.300	03/22/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.8	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	608	16.0	03/25/2024	ND	464	116	400	3.51	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/25/2024	ND	197	98.7	200	1.61	
DRO >C10-C28*	28.7	10.0	03/25/2024	ND	208	104	200	1.66	
EXT DRO >C28-C36	<10.0	10.0	03/25/2024	ND					
Surrogate: 1-Chlorooctane	96.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	113 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	03/22/2024	Sampling Date:	03/21/2024
Reported:	03/26/2024	Sampling Type:	Soil
Project Name:	MLMU SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Tamara Oldaker
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: SW - 10 (H241502-03)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/22/2024	ND	2.11	105	2.00	1.16	
Toluene*	<0.050	0.050	03/22/2024	ND	2.07	103	2.00	1.14	
Ethylbenzene*	<0.050	0.050	03/22/2024	ND	2.03	101	2.00	1.18	
Total Xylenes*	<0.150	0.150	03/22/2024	ND	5.91	98.5	6.00	1.05	
Total BTEX	<0.300	0.300	03/22/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.4	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	03/25/2024	ND	464	116	400	3.51	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/25/2024	ND	197	98.7	200	1.61	
DRO >C10-C28*	43.4	10.0	03/25/2024	ND	208	104	200	1.66	
EXT DRO >C28-C36	13.5	10.0	03/25/2024	ND					
Surrogate: 1-Chlorooctane	93.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
GC-NC	8260 confirmation analysis was performed; initial GC results were not supported by GC/MS analysis and are reported as ND.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager
Ŧ	t of Chain of Custody Record Tetra Tech, Inc.				Mid	Wall Si Iland, Te el (432) (432)	xas 79	9701 559																	Daria 6 of
ient Name:	JR Oil	Site Manager:		Brit	ttany	Long	g													UES		I No).)		à
oject Name:	MLMU Satellite 2		Brittany.lo			-581 atec		m																	
oject Location: ounty, state)	Lea County, NM	Project #:			2120	C-MD)-03	133															list)		
voice to:	ATTN: ATTN: Tetra tech Inc.												MRO)		6Hg								attached list)		
ceiving Laboratory:	Cardinal Labs	Sampler Signa	iture:		Jorg	e Fe	erna	ndez	2			B	- ORO -		Cr Pb Se				325			S	(see at		
mments:				_								EX 8260B	- DRO -		Ba Cd (s	/ 624	8270C/625			e TD	ance		
241502		SAMPLING						METHOD OF CONTRACT.			(V/N)	IB BTE	05 (Ext to M (GRO	0	s Ag As	tiles	I Volatile	l. 8260B / 624	mi. Vol. 32 / 608		estos)	Sulfat	Vater Ch tion Bala		
LAB #	SAMPLE IDENTIFICATION	YEAR: 2023	TIME	WATER	Ы	5	HNO ₃	w.		# CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TPH TX1005 (Ext to C35) TPH 8015M (GRO - DRO - ORO - MRO)	PAH 8270C	Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Volatiles	CLP Sem	C/MS Vo	GC/MS Semi. Vol. PCB's 8082 / 608	NORM	PLM (Asbestos) Chloride	Chloride Sulfate TDS	General Water Chemi Anion/Cation Balance		
ONLY)	r	3/21/2024	Ē	3	й х	Ĭ	Ī	≌ x	+	#	Ē	ш Х	X				μœ		0 1	2	x			Ħ	
1 sw- 2 sw-		3/21/2024			x			x				х	x	\square	+	\square	+	\square	+	H	X	+	\vdash	++	++
3 sw-	10	3/21/2024		╀	x	+	+	x	+	+		X	X		\pm		\pm				×		Ħ	#	
				F		-					-	+	+	H	+	$\left \right $	+	+	$\left \right $	H	+	+	\mathbb{H}	+	
				t		\pm	+								1					\square	H	+	Ħ	\prod	-
				+	$\left \right $	+	+	\mathbb{H}	-	+	+	+	\square	+	+	Н	+		$\left \right $	+	H	+		++	
				t								1				RE	MAR	KS:		Stan	dare	d TA			
elinquished by:	Date: Time: 84	4 la	Mar	1-1	Í	da	A	Lie	1 3	08 3-2	45	4	LAI	NLY				RUSH				24		8 hr	72 hr
Relinquished by: Date: Time:		Received by: Date: Time:						Sa	mple							orized									
elinquished by:	Date: Time:	Received by	/ :			[Date:		Time:		9		#	14	0			Speci	ial Re	port	Limit	s or T	ſRRP	Repor	rt
-			L COPY									(C	ircle)	HAND	DELI	VERE	ED F	EDE	X U	PS -	Track	king #:			

••

4 . . . **4**

April 05, 2024

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MLMU SATELLITE #2

Enclosed are the results of analyses for samples received by the laboratory on 04/01/24 8:59.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	04/01/2024	Sampling Date:	03/29/2024
Reported:	04/05/2024	Sampling Type:	Soil
Project Name:	MLMU SATELLITE #2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-03133	Sample Received By:	Tamara Oldaker
Project Location:	JR OIL - LEA COUNTY, NM		

Sample ID: SW - 9 (H241656-01)

BTEX 8021B	mg/	′kg	Analyze	d By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
Benzene*	<0.050	0.050	04/03/2024	ND	2.02	101	2.00	8.02		
Toluene*	<0.050	0.050	04/03/2024	ND	2.12	106	2.00	6.89		
Ethylbenzene*	<0.050	0.050	04/03/2024	ND	2.17	109	2.00	9.23		
Total Xylenes*	<0.150	0.150	04/03/2024	ND	6.80	113	6.00	12.3		
Total BTEX	<0.300	0.300	04/03/2024	ND						
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4							
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
Chloride	256	16.0	04/03/2024	ND	432	108	400	0.00		
TPH 8015M	mg/	′kg	Analyze	d By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
GRO C6-C10*	<10.0	10.0	04/02/2024	ND	198	99.2	200	2.87		
DRO >C10-C28*	<10.0	10.0	04/02/2024	ND	186	93.2	200	3.70		
EXT DRO >C28-C36	<10.0	10.0	04/02/2024	ND						
Surrogate: 1-Chlorooctane	88.4	% 48.2-13	4							
Surrogate: 1-Chlorooctadecane	101 9	% 49.1-14	8							

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother business interruptors, loss of use, or loss of profits incurred by client, its subsidiaries, afflictes or successors arising out of or related to the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TŁ	Tetra Tech, Inc	с.			Mid Te	lland, Tex el (432) 6	eet, Ste as 79701 82-4559 82-3946								•,					age	1		of
ent Name:	JR Oil	Site Manager	:	Bri	ttany	Long					Т	_			AN	ALY	SIS	REQ	UES	т	_		
oject Name:	MLMU Satellite 2		Brittany.I		2-741						1,	1	(Ci	rcle	e or	Sp	ecit	∱y M	leth	od	No.)		1
ject Location: unty, state)	Lea County, NM	Project #:		and the second second			03133	3			1												
ice to:	ATTN: Tetra tech Inc.					-			49.41	1	1	0									ed list)		
eiving Laboratory:	Cardinal Labs	Sampler Sign	ature:		Jorge	Fer	nande	ez			11	10 - MR		o Se Hg							attache		
iments:						-					8260B	TX1005 (Ext to C35) 8015M (GRO - DRO - ORO - MRO)		TCLP Metals Ag As Ba Cd Cr Pb Se Hg			4 0./825				Chemistry (see attached list)		
HILS		SAMP	LING	MATRIX			PRESERVATIVE METHOD 00 22			î	BTEX 8260B	TX1005 (Ext to C35) 8015M (GRO - DRO		J As Ba		anics	GC/MS Vol. 8260B / 624 GC/MS Semi Vol. 82700	PCB's 8082 / 608			General Water Chemist	giairce	
LAB #	SAMPLE IDENTIFICATION	YEAR: 2024		~		Π			AINE	ED (Y))21B	1005 (I	OC No	tals Ag	latiles		ol. 82	82 / 6	estos)	6	Nater		
ONLY)		DATE	TIME	WATER	SOIL	보	ICE		# CONTAINERS	FILTERED (Y/N)		TPH 801	PAH 8270C	CLP Me	TCLP Volatiles	RCI	C/MS S	CB's 80	PLM (Asb	loride	eneral		
/ SW-9		3/29/2024		Í,			x		#	Ц.	x	x	<u> </u>		F F	2	00	ă i	zā	x	504	+	+
				\mathbb{H}	+	\square	+	-	-	-	\square							П		\square	П	П	1
				\mathbb{H}	+	\vdash	+	+	\vdash		H	+	+	+	+	+	+	\mathbb{H}	+	\vdash	++	┼┼	+
																		\square		+	++	+	+
				\vdash	-	\square	+	-	-		Ц		+	\square	-				\square			П	Ţ
				\vdash		\vdash	++	+			\mathbb{H}	+	+	++	+	\mathbb{H}	+	\mathbb{H}	+	+	++	++	+
							\square												+			\square	+
quished by:	Date: Time:	58 /							085	9					REM	ARKS	F	Sto	ndar		Į		
m		1-29	UMA	14		Va	K	e	4-1-2		- L	AB ON						Sta			\square		
quished by:	Date: Time:	Received by:				Date:	Ti	me:			Samp	ole Ten	perat	ure		RUS	H: S	Same	Day	24	hr 48	hr 7	2 hr
quished by:	Date: Time:	Received by:				Date:	Ti	me:		_		3,1	c			Rus	n Cha	irges	Autho	prized			
				-							#	+14	40			Spec	cial R	eport	Limit	s or T	RRP R	eport	
		ORIGINAL	0001/								-) HAN	-	LIVE	RED	FEDE	X U	PS	Tracki	ng #:			

. Released to Imaging: 5/30/2025 1:25:27 PM

•

Appendix D

Soil Survey Data

Received by OCD: 2/14/2025 2:33:49 PM

Page 295 of 307

USDA Natural Resources Conservation Service Released to Imaging: 5/30/2023 1:25:27 PM Web Soil Survey National Cooperative Soil Survey 8/13/2024 Page 1 of 3

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
WK	Wink loamy fine sand	9.6	100.0%
Totals for Area of Interest	·	9.6	100.0%

Lea County, New Mexico

WK—Wink loamy fine sand

Map Unit Setting

National map unit symbol: dmrm Elevation: 3,000 to 3,400 feet Mean annual precipitation: 10 to 15 inches Mean annual air temperature: 60 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Not prime farmland

Map Unit Composition

Wink and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wink

Setting

Landform: Depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Calcareous sandy alluvium and/or calcareous sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 12 inches: loamy fine sand Bk - 12 to 23 inches: sandy loam BCk - 23 to 60 inches: sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 30 percent
Gypsum, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Low (about 4.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Ecological site: R070BD003NM - Loamy Sand Hydric soil rating: No

Minor Components

Berino

Percent of map unit: 5 percent Ecological site: R070BD003NM - Loamy Sand Hydric soil rating: No

Midessa

Percent of map unit: 4 percent Ecological site: R070BC007NM - Loamy Hydric soil rating: No

Jal

Percent of map unit: 4 percent Ecological site: R070BC030NM - Limy Hydric soil rating: No

Cacique

Percent of map unit: 2 percent Ecological site: R070BD004NM - Sandy Hydric soil rating: No

Data Source Information

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 20, Sep 6, 2023

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 300 of 307

QUESTIONS

Action 432314

QUESTIONS						
Operator:	OGRID:					
J R OIL, LTD. CO.	256073					
P.O. Box 53657	Action Number:					
Lubbock, TX 79453	432314					
	Action Type:					
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)					

OLIECTIONS

QUESTIONS

Prerequisites										
Incident ID (n#)	nAPP2128751635									
Incident Name	NAPP2128751635 MYERS LANGLIE MATRIX UNIT #2 @ 0									
Incident Type	Other									
Incident Status	Remediation Closure Report Received									

Location of Release Source

Please answer all the questions in this group.						
Site Name	MYERS LANGLIE MATRIX UNIT #2					
Date Release Discovered	09/30/2021					
Surface Owner	Private					

Incident Details

Please answer all the questions in this group.							
Incident Type	Other						
Did this release result in a fire or is the result of a fire	No						
Did this release result in any injuries	No						
Has this release reached or does it have a reasonable probability of reaching a watercourse	Νο						
Has this release endangered or does it have a reasonable probability of endangering public health	No						
Has this release substantially damaged or will it substantially damage property or the environment	Νο						
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	Νο						

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.								
Crude Oil Released (bbls) Details	Cause: High Line Pressure Other (Specify) Crude Oil Released: 10 BBL Recovered: 10 BBL Lost: 0 BBL.							
Produced Water Released (bbls) Details	Cause: High Line Pressure Other (Specify) Produced Water Released: 240 BBL Recovered: 240 BBL Lost: 0 BBL.							
Is the concentration of chloride in the produced water >10,000 mg/l	Yes							
Condensate Released (bbls) Details	Not answered.							
Natural Gas Vented (Mcf) Details	Not answered.							
Natural Gas Flared (Mcf) Details	Not answered.							
Other Released Details	Not answered.							
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Trunk line plugged off causing an overpressure event.							

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 301 of 307

QUESTIONS, Page 2

Action 432314

QUESTIONS (continued)	
-----------------------	--

Operator:	OGRID:
J R OIL, LTD. CO.	256073
P.O. Box 53657	Action Number:
Lubbock, TX 79453	432314
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.	

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.	
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
	Not answered. ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-un C-141 submission.	
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: Brittany Long Title: Consultant Email: brittany.long@tetratech.com Date: 02/14/2025	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
J R OIL, LTD. CO.	256073
P.O. Box 53657	Action Number:
Lubbock, TX 79453	432314
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 75 and 100 (ft.)	
What method was used to determine the depth to ground water	NM OSE iWaters Database Search	
Did this release impact groundwater or surface water	No	
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:		
A continuously flowing watercourse or any other significant watercourse	Greater than 5 (mi.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1000 (ft.) and ½ (mi.)	
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 (mi.)	
Any other fresh water well or spring	Greater than 5 (mi.)	
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)	
A wetland	Between 1000 (ft.) and ½ (mi.)	
A subsurface mine	Greater than 5 (mi.)	
An (non-karst) unstable area	Greater than 5 (mi.)	
Categorize the risk of this well / site being in a karst geology	Low	
A 100-year floodplain	Greater than 5 (mi.)	
Did the release impact areas not on an exploration, development, production, or storage site	Yes	

Remediation Plan

Requesting a remediation plan approval with this submission Yes Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC. Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) 1720 Chloride (EPA 300.0 or SM4500 Cl B) 1736 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 1470
Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) 1720 Chloride (EPA 300.0 or SM4500 Cl B) 1720 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 1736
Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Image: No Chloride (EPA 300.0 or SM4500 Cl B) 1720 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 1736
Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Chloride (EPA 300.0 or SM4500 Cl B) TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 1736
Chloride (EPA 300.0 or SM4500 Cl B) 1720 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 1736
TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 1736
GRO+DRO (EPA SW-846 Method 8015M) 1470
BTEX (EPA SW-846 Method 8021B or 8260B) 0.1
Benzene (EPA SW-846 Method 8021B or 8260B) 0.1
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NM which includes the anticipated timelines for beginning and completing the remediation.
On what estimated date will the remediation commence 01/11/2024
On what date will (or did) the final sampling or liner inspection occur 01/22/2024
On what date will (or was) the remediation complete(d) 03/29/2024
What is the estimated surface area (in square feet) that will be reclaimed 7170
What is the estimated volume (in cubic yards) that will be reclaimed 977
What is the estimated surface area (in square feet) that will be remediated 7170
What is the estimated volume (in cubic yards) that will be remediated 977
These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed.

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

QUESTIONS, Page 3

Action 432314

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 303 of 307

QUESTIONS, Page 4

Action 432314

QUESTIONS (continued)	
Operator: J R OIL, LTD. CO.	OGRID: 256073
P.O. Box 53657 Lubbock, TX 79453	Action Number: 432314
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	
Demodiation Dian (continued)	

Remediation Plan (continued)

Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.	
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:	
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes	
Which OCD approved facility will be used for off-site disposal	J&L LANDFARM [fEEM0112339187]	
OR which OCD approved well (API) will be used for off-site disposal	Not answered.	
OR is the off-site disposal site, to be used, out-of-state	Not answered.	
OR is the off-site disposal site, to be used, an NMED facility	Not answered.	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	No	
(In Situ) Soil Vapor Extraction	No	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	No	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	No	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	No	
Ground Water Abatement pursuant to 19.15.30 NMAC	No	
OTHER (Non-listed remedial process) No		
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC which includes the anticipated timelines for beginning and completing the remediation.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: Brittany Long Title: Consultant Email: brittany.long@tetratech.com	

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Date: 02/14/2025

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 432314

Page 304 of 307

QUESTIONS (continued)	
Operator:	OGRID:
J R OIL, LTD. CO.	256073
P.O. Box 53657	Action Number:
Lubbock, TX 79453	432314
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Deferral Requests Only		
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.		
Requesting a deferral of the remediation closure due date with the approval of this submission	Νο	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
J R OIL, LTD. CO.	256073
P.O. Box 53657	Action Number:
Lubbock, TX 79453	432314
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	327421
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	03/29/2024
What was the (estimated) number of samples that were to be gathered	1
What was the sampling surface area in square feet	200

Remediation Closure Request

nly answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	7170	
What was the total volume (cubic yards) remediated	977	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	7170	
What was the total volume (in cubic yards) reclaimed	977	
Summarize any additional remediation activities not included by answers (above)	No additional details	
	closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of	
I berefy cortify that the information given above is true and complete to the best of my	knowledge and understand that pursuant to OCD rules and regulations all operators are required	
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to water, human health or the environment. In addition, OCD acceptance of a C-141 report	ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or ially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed	
	Name: Brittany Long	

I hereby agree and sign off to the above statement	Name: Brittany Long
	Title: Consultant
Thereby agree and sign on to the above statement	Email: brittany.long@tetratech.com
	Date: 02/14/2025

QUESTIONS, Page 6

Action 432314

Page 305 of 307

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
J R OIL, LTD. CO.	256073
P.O. Box 53657	Action Number:
Lubbock, TX 79453	432314
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

No

QUESTIONS, Page 7

Action 432314

.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
J R OIL, LTD. CO.	256073
P.O. Box 53657	Action Number:
Lubbock, TX 79453	432314
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

Created By	Condition	Condition Date
nvelez	None	5/30/2025

CONDITIONS

Page 307 of 307

Action 432314