

SITE INFORMATION

Closure Report Salado Draw 23 Central Tank Battery (03.26.2025) Incident ID: NAPP2508551061 Lea County, New Mexico Unit N Sec 14 T26S R32E 32.035793°, -103.646698°

Condensate Release Point of Release: Equipment failure within flare stack Release Date: 03.26.2025 Volume Released: 0.35 Barrels of Condensate Volume Recovered: 0 Barrels of Condensate

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 500 Midland, Texas 79701

> 310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 REMEDIATION ACTIVITIES

5.0 RECLAMATION ACTIVITIES

6.0 CONCLUSION

FIGURES

FIGURE 1	OVERVIEW	FIGURE 2	TOPOGRAPHIC
FIGURE 3	EXCAVATION	FIGURE 4	RECLAMATION

APPENDICES

- APPENDIX B PHOTOS
- APPENDIX C NMOCD CORRESPONDENCE
- APPENDIX D SITE CHARACTERIZATION AND GROUNDWATER
- APPENDIX E LABORATORY REPORTS

April 29, 2025

Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Closure Report Salado Draw 23 Central Tank Battery (03.26.2025) Incident ID: NAPP2508551061 Chevron U.S.A., Inc. Site Location: Unit N, S14, T26S, R32E (Lat 32.035793°, Long -103.646698°) Lea County, New Mexico

Mr. Bratcher:

On behalf of Chevron U.S.A., Inc. (Chevron), Carmona Resources, LLC has prepared this letter to document site assessment activities for the Saldo Draw 23 Central Tank Battery (03.26.2025). The site is located at 32.035793°, -103.646698° within Unit N, S14, T26S, R32E, in Lea County, New Mexico (Figures 1 and 2).

1.0 Site Information and Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on March 26, 2025, due to equipment failure sending condensate to the flare causing a fire. The incident released approximately zero point three-five (0.35) barrels of condensate with zero (0) barrels of condensate recovered. The impacted area occurred off the pad, as shown in Figure 3. The initial C-141 form is attached in Appendix C.

2.0 Site Characterization and Groundwater

The site is located within a medium karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, there are no known water sources within a 0.50-mile radius of the location. On September 24, 2024, Carmona Resources was onsite to drill a groundwater determination bore to 112' bgs within a 0.50-mile radius of the location. The groundwater determination bore is located approximately 0.42 miles East of the site in S14, T26S, R32E (32.036472°, -103.639639°). The groundwater determination bore was drilled to a depth of 112 feet below the ground surface (ft bgs). No water was detected after 72 hours. A copy of the associated well log is attached in Appendix D.

3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria was utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg.

CARMONA RI

4.0 Remediation Activities

Before collecting samples, a third-party company was onsite to conduct a surface scrape to remove any visibly stained soil, approximately 0.25 feet of soil was removed from an area of about 441 square feet, resulting in the removal of approximately 10 cubic yards of contaminated material.

On April 7, 2025, Carmona Resources, LLC was on site to collect composite confirmation samples and horizontal delineation samples to evaluate soil impacts stemming from the release. A total of four (4) confirmation samples (CS-1 through CS-4) were collected at a depth of 0.25' bgs. A total four (4) horizontal sample points (H-1 through H-4) were installed to total depths ranging from surface to 0.5' bgs surrounding the release area to evaluate the horizontal extent as it was not possible to collect composite confirmation samples of a sidewall less than 0.5'. See Figure 3 for the sample locations. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Eurofins Laboratories in Midland, Texas. The samples were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chloride by EPA method 300.0. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix E.

5.0 Reclamation Activities

Once the remediation activities were completed, the excavated areas were backfilled with clean material to surface grade. The backfill material was sourced from the local landowner located at 32.026201, -103.681488. Excess backfill material stockpiled nearby from a previous remediation project (nAPP2334143989) was utilized and was previously tested on March 19, 2025. See Table 1 for lab analysis on the backfill sample.

On April 28, 2025, the backfilled areas in the pasture were seeded via hand distribution with the appropriate pounds of pure live seed per acre. The topsoil was ripped with hand tools to aid the vegetation process. The seed mixture used was BLM #2 Sandy Mixture. The reclaimed and reseeded area is approximately 441 square feet. See Figure 4 for the reclamation area.

6.0 Conclusions

Based on the assessment results and the analytical data, no further actions are required at the site. Chevron formally requests the closure of this incident. If you have any questions regarding this report or need additional information, please get in touch with us at 432-813-1992.

Sincerely,

Carmona Resources, LLC

Ashton Thielke Environmental Manager

Gilbert Priego Project Manager

310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

APPENDIX A

Table 1 Chevron SALADO DRAW 23 CENTRAL TANK BATTERY (03.26.2025)

Lea County, New Mexico

O and a ID	Dete	D		TPF	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg) (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Chloride (mg/kg)
CS-1	4/7/2025	0.25'	<49.6	<49.6	<49.6	<49.6	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	82.7
CS-2	4/7/2025	0.25'	<49.9	<49.9	<49.9	<49.9	<0.00199	0.00285	<0.00199	<0.00398	<0.00398	102
CS-3	4/7/2025	0.25'	<50.4	62.6	<50.4	62.6	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	101
CS-4	4/7/2025	0.25'	<49.6	<49.6	<49.6	<49.6	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	128
H-1	4/7/2025	0-0.5'	<49.8	<49.8	<49.8	<49.8	0.00285	0.0501	0.0152	0.0643	0.132	55.6
H-2	4/7/2025	0-0.5'	<50.0	<50.0	<50.0	<50.0	0.00321	0.0603	0.0186	0.0816	0.164	118
H-3	4/7/2025	0-0.5'	<49.7	<49.7	<49.7	<49.7	0.00278	0.0483	0.0154	0.0617	0.128	92.2
H-4	4/7/2025	0-0.5'	<49.6	<49.6	<49.6	<49.6	0.00214	0.0346	0.0103	0.0436	0.0906	78.4
Backfill Sample	3/19/2025	-	<49.7	<49.7	<49.7	<49.7	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	121
	ry Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram

TPH - Total Petroleum Hydrocarbons

ft - feet

(CS) Confirmation Sample

(H) Horizontal Sample

APPENDIX B

PHOTOGRAPHIC LOG

Chevron U.S.A., Inc.

Photograph No. 1

Facility:	Salado Draw 23 Central Tank
	Battery (03.26.2025)

County: Lea County, New Mexico

Description:

View East, area of CS-1 through CS-4.

Photograph No. 2

- Facility:Salado Draw 23 Central Tank
Battery (03.26.2025)
- County: Lea County, New Mexico

Description:

View South, area of CS-1 through CS-4.

Photograph No. 3

Facility:	Salado Draw 23 Central Tank
	Battery (03.26.2025)

County: Lea County, New Mexico

Description:

View West, area of CS-1 through CS-4.

PHOTOGRAPHIC LOG

Chevron U.S.A., Inc.

Photograph No. 4

- Facility:Salado Draw 23 Central Tank
Battery (03.26.2025)
- County: Lea County, New Mexico

Description:

View Southeast, seed mix tag.

Photograph No. 5

- Facility:Salado Draw 23 Central Tank
Battery (03.26.2025)
- County: Lea County, New Mexico

Description:

View Northeast of backfilled area and reseeding in progress.

Photograph No. 6

Facility:	Salado Draw 23 Central Tank Battery (03.26.2025)
County:	Lea County, New Mexico

Description:

View Southwest of backfilled area and reseeding in progress.

APPENDIX C

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Operator:		UGRID:
	CHEVRON U S A INC	4323
	6301 Deauville Blvd	Action Number:
	Midland, TX 79706	445961
		Action Type:
		[NOTIFY] Notification Of Release (NOR)

QUESTIONS

Location of Release Source		
Please answer all the questions in this group.		
Site Name	Salado Draw 23 Central Tank Battery	
Date Release Discovered	03/26/2025	
Surface Owner	Federal	

Incident Details

Please answer all the questions in this group.			
Incident Type	Fire		
Did this release result in a fire or is the result of a fire	Yes		
Did this release result in any injuries	No		
Has this release reached or does it have a reasonable probability of reaching a watercourse	Νο		
Has this release endangered or does it have a reasonable probability of endangering public health	Νο		
Has this release substantially damaged or will it substantially damage property or the environment	Νο		
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	Νο		

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.				
Crude Oil Released (bbls) Details	Not answered.			
Produced Water Released (bbls) Details	Not answered.			
Is the concentration of chloride in the produced water >10,000 mg/l	Not answered.			
Condensate Released (bbls) Details	Cause: Equipment Failure Other (Specify) Condensate Released: 0 BBL Recovered: 0 BBL Lost: 0 BBL.			
Natural Gas Vented (Mcf) Details	Not answered.			
Natural Gas Flared (Mcf) Details	Not answered.			
Other Released Details	Not answered.			
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Released from flare stack.			

Action 445961

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 445961

Page 17eof 114

QUESTIONS (continued)		
Operator:	OGRID:	
CHEVRON U S A INC	4323	
6301 Deauville Blvd	Action Number:	
Midland, TX 79706	445961	
	Action Type:	

[NOTIFY] Notification Of Release (NOR)

QUESTIONS

Nature and Volume of Release (continued)				
Is this a gas only submission (i.e. only significant Mcf values reported)	More volume information must be supplied to determine if this will be treated as a "gas only" report.			
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes			
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (2) an unauthorized release of a volume that: (a) results in a fire or is the result of a fire.			
With the implementation of the 10 15 27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.	a case only are to be submitted on the C 120 form			

Initial Response			
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.			
The source of the release has been stopped	True		
The impacted area has been secured to protect human health and the environment	True		
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True		
All free liquids and recoverable materials have been removed and managed appropriately	True		
If all the actions described above have not been undertaken, explain why	Not answered.		
	tion immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of		

Per Paragraph 4 of Subsection B of 19.15.29.6 MMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a harrative o actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

ACKNOWLEDGMENTS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	445961
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

ACKNOWLEDGMENTS

	I acknowledge that I am authorized to submit notification of a release on behalf of my operator.			
	I acknowledge that upon submitting this application, I will be creating a new incident file (assigned to my operator) to track the notification(s) and corrective action(s) for a release, pursuant to NMAC 19.15.29.			
M	l acknowledge that creating a new incident file will require my operator to file subsequent submission(s) of form "C-141, Application for administrative approval of a release notification and corrective action", pursuant to NMAC 19.15.29.			
	I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment.			
	I acknowledge the fact that the acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment.			
	l acknowledge the fact that, in addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.			

Action 445961

Page 18cof 114

General Information Phone: (505) 629-6116

CONDITIONS

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	445961
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

Created By	Condition	Condition Date
branes	When submitting future reports regarding this release, please submit the calculations used or specific justification for the volumes reported on the initial C- 141.	3/26/2025

CONDITIONS

Action 445961

	Diameter (feet)	Above grade Depth (in)	Below grade Depth (in)	Water Cut (%)	Barrels Condensate
Area 1 (Circle)	40	0	0.125		0.35
				Rec Vol	0
				Total	0.35

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Page 21eof 114

Action 446084

QUESTIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	446084
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

QUESTIONS

	Prerequisites		
	Incident ID (n#)	nAPP2508551061	
	Incident Name	NAPP2508551061 SALADO DRAW 23 CENTRAL TANK BATTERY @ 0	
	Incident Type	Fire	
	Incident Status	Initial C-141 Received	
	Incident Facility	[fAPP2134340195] Salado Draw 23 Central Tank Battery	
1			

Location of Release Source

Please answer all the questions in this group.		
Site Name	Salado Draw 23 Central Tank Battery	
Date Release Discovered	03/26/2025	

Date Release Discovered	03/26/2025
Surface Owner	Federal
-	

Incident Details

Please answer all the questions in this group.		
Incident Type	Fire	
Did this release result in a fire or is the result of a fire	Yes	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	Νο	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	Νο	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	Νο	

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.		
Crude Oil Released (bbls) Details	Not answered.	
Produced Water Released (bbls) Details	Not answered.	
Is the concentration of chloride in the produced water >10,000 mg/l	No	
Condensate Released (bbls) Details	Cause: Equipment Failure Other (Specify) Condensate Released: 0 BBL Recovered: 0 BBL Lost: 0 BBL.	
Natural Gas Vented (Mcf) Details	Not answered.	
Natural Gas Flared (Mcf) Details	Not answered.	
Other Released Details	Not answered.	
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Released from flare stack.	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

[C-141] Initial C-141 (C-141-v-Initial)

Action Type:

QUESTIONS, Page 2

Action 446084

Page 22eof 114

QUESTIONS (continued)	
CHEVRON U S A INC	OGRID: 4323
6301 Deauville Blvd Midland, TX 79706	Action Number: 446084

n	JEST	FIO	NS

Operator:

Nature and Volume of Release (continued)		
Is this a gas only submission (i.e. only significant Mcf values reported)	More info needed to determine if this will be treated as a "gas only" report.	
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes	
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (2) an unauthorized release of a volume that: (a) results in a fire or is the result of a fire.	
With the implementation of the 19 15 27 NMAC (05/25/2021) venting and/or flaring of natural gas (i e	a gas only) are to be submitted on the C-129 form	

Initial Response	
The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
	Name: Bayley Ranes

I hereby agree and sign off to the above statement	Name: Bayley Ranes
	Title: Environmental Specialist
	Email: Bayleyranes@chevron.com
	Date: 03/27/2025

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 446084

Page 23cof 114

QUESTIONS (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	446084
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Not answered.	
What method was used to determine the depth to ground water	Not answered.	
Did this release impact groundwater or surface water	Not answered.	
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:		
A continuously flowing watercourse or any other significant watercourse	Not answered.	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Not answered.	
An occupied permanent residence, school, hospital, institution, or church	Not answered.	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Not answered.	
Any other fresh water well or spring	Not answered.	
Incorporated municipal boundaries or a defined municipal fresh water well field	Not answered.	
A wetland	Not answered.	
A subsurface mine	Not answered.	
An (non-karst) unstable area	Not answered.	
Categorize the risk of this well / site being in a karst geology	Not answered.	
A 100-year floodplain	Not answered.	
Did the release impact areas not on an exploration, development, production, or storage site	Not answered.	

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

Requesting a remediation plan approval with this submission

No The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:	
CHEVRON U S A INC	4323	
6301 Deauville Blvd	Action Number:	
Midland, TX 79706	446084	
	Action Type:	
	[C-141] Initial C-141 (C-141-v-Initial)	
CONDITIONS		

Created By		Condition Date
rhamlet	None	3/27/2025

CONDITIONS

Action 446084

Page 24cof 114

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Page 25cof 114

Action 448517

QUESTIONS

C	Operator:	OGRID:
	CHEVRON U S A INC	4323
	6301 Deauville Blvd	Action Number:
	Midland, TX 79706	448517
		Action Type:
		[NOTIFY] Notification Of Sampling (C-141N)

QUESTIONS

nAPP2508551061
NAPP2508551061 SALADO DRAW 23 CENTRAL TANK BATTERY @ 0
Fire
Initial C-141 Approved
[fAPP2134340195] Salado Draw 23 Central Tank Battery

Location of Release Source

Site Name	Salado Draw 23 Central Tank Battery
Date Release Discovered	03/26/2025
Surface Owner	Federal

Sampling Event General Information

Please answer all the questions in this group.	
What is the sampling surface area in square feet	440
What is the estimated number of samples that will be gathered	4
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	04/07/2025
Time sampling will commence	10:00 AM
Please provide any information necessary for observers to contact samplers	Carmona Resources – 432-813-8988
Please provide any information necessary for navigation to sampling site	: "(32.036820, -103.646433) Carmona Resources will be onsite to conduct confirmation sampling and horizontal delineation of this recent release. This flare fire had minor surface charring and has since been scraped to remove all visual impact. This sampling event will determine if all contamination is removed from the site."

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	448517
	Action Type:
	[NOTJEY] Notification Of Sampling (C-141N)

CONDITION	S	
Created By	Condition	Condition Date
abarnhill	Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.	4/3/2025

CONDITIONS

Action 448517

APPENDIX D

115' GWDB - Drilled 2022

112' GWDB - Drilled 2024

精神

a hor

-

Salado Draw 23 Central Tank Battery (03.26.2025) O

101.5' GWDB - Drilled 2020

To make a martin

Google Earth Released to Imaging: 6/9/2025 3:43:26 PM Image @ 2025 Airbus

-

Legend

Page 28 of 114

- 🍰 0.42 Miles
- locitie Radius 0.50 Mile Radius
- 🕹 0.86 Miles
- 🍰 1.04 Miles
- Groundwater Determination Bore
- Salado Draw 23 Central Tank Battery (03.26.2025)

Chevron USA

Salado Draw 23 Central Tank Battery (03.26.2025) O

Google Earth Released to Imaging: 6/9/2025 3:43:26 PM Image © 2025 Airbus

Legend

- 🥖 Medium
- Salado Draw 23 Central Tank Battery (03.26.2025)

N

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD h been repla O=orphane C=the file i closed)	ced, ed,						2=NE 3	s=SW 4=S gest) (I	E) NAD83 UTM in me	eters)	(1	In feet)	
	PO)-		Q	-	-	_	_		,		-	-	Water
POD Number	Code bas CUI		-				1 ws 26S		X 629039		Distance 3181	Well 55	Water	Column
C 04485 POD1	CO	D LE	4	I	I	12	203	32E	029038	3 3346123	3101	55		
C 04549 POD1	CU	B LE	1	1	1	11	26S	32E	627111	1 3548316 🌍	3185	0	0	0
<u>C 02271</u>	R CU	3 LE		2	3	21	26S	32E	624449	9 3544111* 🌍	3507	150	125	25
C 03595 POD1	CU	B LE	4	2	3	21	26S	32E	624423	3 3544045 🌍	3553	280	180	100
C 02271 POD2	CU	B LE	3	2	3	21	26S	32E	624348	3 3544010* 🌍	3635	270	250	20
<u>C 02323</u>	С	LE	3	2	3	21	26S	32E	624348	3 3544010* 🌍	3635	405	405	0
C 03537 POD1	CU	3 LE	3	2	3	21	26S	32E	624250) 3543985 🌍	3735	850		
										Avera	ge Depth to	Water:	192	feet
											Minimum	Depth:	0	feet
											Maximum	Depth:	405	feet
Bocord Count: 7														

Record Count: 7

UTMNAD83 Radius Search (in meters):

Easting (X): 627782

Northing (Y): 3545203

Radius: 4000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Page 30 of 114

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

Contraction of the	Contraction of the second second	THE LOCAL DISCOUTE OF A	A DECEMBER OF A DECEMBER OF A DECEMBER OF	The second s			All the second second	A LOSS COLOR DE LA CARTA		and the second second	CALLER AND PAR OFFICES	
NO	OSE POD NO. Pod 1	. (WELL NO	0.)		WELL TAG ID NO.			OSE FILE NO C-4880	S).			
OCATI	well owner Chevron U		3) (Agent-H&R Enterr	orises, LLC/Ja	mes Hawley)			PHONE (OPT)	ONAL)			
GENERAL AND WELL LOCATION	WELL OWNE PO 3641	ER MAILIN	G ADDRESS	,				CITY Hobbs		STATE NM	88241	ZIP
L AND	WELL	N	DI	EGREES 32	MINUTES 02	SECONE 11.3		* ACCURACY	REQUIRED: ONE TEN	TH OF A	SECOND	
NERAI	(FROM GP	S) LC	ONGITUDE	103	38	22.7	w	* DATUM RE	QUIRED: WGS 84			
1. GE	DESCRIPTIC	ON RELATI	NG WELL LOCATION TO) STREET ADDRE	SS AND COMMON	LANDMA	RKS – PLS	S (SECTION, TO	WNSHJIP, RANGE) WH	ERE AV	AILABLE	
	LICENSE NO WD-1		NAME OF LICENSED		ames Hawley				NAME OF WELL DR H&F		COMPANY orises, LLC	
	DRILLING ST 9-24-		DRILLING ENDED 9-24-24	DEPTH OF COM	PLETED WELL (FT 112'	r) 1		LE DEPTH (FT) 112'	DEPTH WATER FIR	ST ENCO N/.		
N	COMPLETED	O WELL IS:	ARTESIAN *add Centralizer info be		SHALLO	W (UNCON	FINED)		WATER LEVEL PLETED WELL N	/A	DATE STATIC	
VIIO	DRILLING FI	LUID:	✓ AIR									
2. DRILLING & CASING INFORMATION	DRILLING M	ETHOD:	7 ROTARY HAM	MER 🗌 CABLE	TOOL 🗌 OTH	ER – SPECI	FY:		CHECK INSTAI	HERE I	F PITLESS ADAF	TER IS
INFO	DEPTH	(feet bgl)	BORE HOLE	CASING M	ATERIAL AND	O/OR	C	ASING	CASING	CAS	ING WALL	SLOT
DNI	FROM	ТО	DIAM	(include ea	GRADE ich casing string,	and	CONT	NECTION	INSIDE DIAM.	TH	IICKNESS	SIZE
CASI	01	110	(inches)	note se	ections of screen)			TYPE ling diameter)	(inches)		(inches)	(inches)
3 8	0'	112'	6"	No Ca	asing left in hole							
LIN		,										
RIL												
2. D												
				LIST ANNUL	AR SEAL MATER	RIAL AND	GRAVE	PACK SIZE				
Т	DEPTH (BORE HOLE DIAM. (inches)		RANGE BY	Y INTERV.	AL		AMOUNT		METHO	and several se
ANNULAR MATERIAL	FROM	TO		*(if using Cent	ralizers for Artesia	an wells- in V/A	dicate the	spacing below	(cubic feet)		PLACEM	IENT
IATI					1	W 1 X						
ARN												
IUL												
ANI												
Э.												
FOP	OSE INTERI	NAL USE		I								
FILE		TAL USE	2		POD NO			WR-2	0 WELL RECORD a	& LOG	(Version 09/22	2/2022)
LOC	ATION							WELLTACI			PAGE	1.05.2

WELL TAG ID NO.

PAGE 1 OF 2

274030-AC		Constant and the second		Manual States of States and					and the second second
	DEPTH (1 FROM	feet bgl) TO	THICKNESS (feet)	INCLUDE WAT	ND TYPE OF MATERI TER-BEARING CAVITI	ES OR FRACTURE Z	ONES	WATER BEARING? (YES / NO)	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0'	25'	25'		Red Sand			Y √N	
	25'	60'	35'		Reddish Brown San	dy Clay		Y √N	
	60"	65"	5'		Pinkish Tan Sand			Y √N	
	65'	70'	5'		Yellow Sandy (Clay		Y √N	
	70'	80'	10'		Reddish Brown San	dy Clay		Y √N	
J	80'	85'	5'		Pinkish Tan Sand	y Clay		Y √N	
4. HYDROGEOLOGIC LOG OF WELL	85'	112'	27'		Dark Red Sandy	Clay		Y √N	
OF								Y N	
.0G								Y N	
ICI								Y N	
LOG								Y N	
EOI								Y N	
ROC								Y N	
GXB								Y N	
4.]								Y N	
								Y N	
								Y N	
								Y N	
								Y N	
								Y N	
				-				Y N	
	METHOD U	SED TO ES	STIMATE YIELD	OF WATER-BEARI	NG STRATA:		TOT	AL ESTIMATED	
	PUM	P 🔲 A	IR LIFT	BAILER	OTHER - SPECIFY: N/A	Δ	WEI	LL YIELD (gpm):	0.00
NOIS	WELL TES	T TEST STAR	RESULTS - ATT T TIME, END TI	ACH A COPY OF DA ME, AND A TABLE S	ATA COLLECTED DUR SHOWING DISCHARG	ING WELL TESTING E AND DRAWDOWI	G, INCLUDI N OVER TH	NG DISCHARGE E TESTING PERI	METHOD, DD.
5. TEST; RIG SUPERVISI		IE(S) OF DI	wa su	as backfilled to 10 [°] I rface.	water on 9-27-24, well 3GS with drill cutting 3GS with drill cutting 3GS with drill cutting	s, then hydrated Ben	tonite chip	s were poured fro	m 10' BGS to
6. SIGNATURE	THE UNDE	RSIGNED H RECORD OF ERMIT HO		0 DAYS AFTER COM	BEST OF HIS OR HER ND THAT HE OR SHE MPLETION OF WELL I James Hawley		BELIEF, T ELL RECOF	HE FOREGOING D WITH THE ST 9-20-24 DATE	IS A TRUE AND ATE ENGINEER
].	}				DATE	
	E OSE INTERI E NO.	NAL USE			POD NO.			CORD & LOG (Ve	rsion 09/22/2022)
	CATION				FOD NO.	WELL TAG ID			PAGE 2 OF 2
									I FAUE ZUE Z

					BORING	RECORD										
		Start: 12:	39		NO	g	I	PID	REA	DINC	3	S	AMP	LE		REMARKS
GEOLOGIC UNIT		Finish: 14		HOLOGIC	DESCRIPTION USCS	GRAPHIC LOG		мх	<u> </u>	2 14	16_18	NUMBER	PID READING	RECOVERY	DEPTH 8 8 9 8 9 8	ACKGROUND PID READING
	5 5 10	Silty Sand Red, Very Poorly Sc with Calic	orted,Grain che below 5 Quartz Sar	Yellowish ned Quartz, Imbedded	SM											
	15 20 25	Very Fine Rounded Reddish I Yellowish 20', Dry	e Grained C , Poorly So Brown, 5YF	R 5/4, 5/6, below								2			20 1	
	30	Indurated Moderate Sandston Hard at 3	l, 5YR 7/0, Iy Hard Ie Harder B 5'-40', Fine ned Quartz	Pink, elow 30',	Sand Stone											
	40	Red, Very	•	5YR 4/6, ned, Poorly nented, Dry								3			40	3:19 — - - - - - -
	50 55 60 65	Thin Sand	' Interbedde dstone Bed ly Hard, Dr	ls,	Shale							4			<u></u> 1	3:39
	ANDARD PE	JOUS AUGER S/ ENETRATION TE D SAMPLE E (24 HRS)	= EST [-	UATER TAE LABORATO PENETROM	RY TEST L' IETER (TOP		HOI LOC	LE [CAT	DIAN Ton	ER :. IETE : <u>Ma</u> GIS ⁻	R :_ lest	orm	15-	<u>5"</u> 1 S		0107-23 32°2'28.43"N, 0103°39'35.87"W
Aarson & ssociates, Ir Environmental Consulta	nc. ants		DRILL DATE : 10/12/2	2022		NUMBER : 1-1				CON ⁻ /IETH						orough Drilling

					-	RECORD							,					
		Start: 12	2:39		DESCRIPTION USCS	90		PII	D F	REA	DIN	G	S	AM	IPLE	=	REMARKS	
GEOLOGIC	DEPTH	Finish: 14	4:32		CS	GRAPHIC LOG	Р	PM	X.				_ 0	UNG			BACKGROUN	
UNIT		DESC	RIPTION LIT	HOLOGIC	SCR	HA	2			<u>10 12</u>		16_1				DEPTH		3
	70	DLUC		HOLOGIC	DŬ D	GR/											SOIL :	P
	70—			5/9, Reddish	Sand													
			ery Fine G		Stone													
	75_		and,Poorly oderate, W															_
	-	Cemente				· ·												
	_			5YR 4/6 to		· ·												
	80 —		to Reddish			· ·							5			80	13:56	-
				ined Quartz		· ·										00		
	_	Sand, Dry	У		Shale	· ·												
	85 —					· ·												-
	-					·												
	_					· ·												
	90 —					· ·												
						· ·												
						· ·												
	95 —					· ·												
	-					· ·												
	100					· · · · · · · · · · · · · · · · · · ·												
	100					· ·												
	-																	
	105_																	
					Shale													
	_					_ · ·												
	110—					<u> </u>												
	-					<u> </u>												
	115		TD: 115	;'		<u> </u>												
	_		10.110	•														
	120—																	
	120-																	
	125—																	
	-																	
	-																	
	130—																	
	_																	
	-																	
	IE CONTINU	IOUS AUGER S	AMPLER -		BLE (TIMF	OF BORING)								evr)-0107-23	
				L LABORATO			Н	OLE	D	IAN	1ETE	ER :			5'		32°2'28.43	"N
	DISTURBEI			+ PENETROM													/D 103°39'35.8	7"
WA	TER TABLE	E (24 HRS)		NR NO RECOVI			L	AI G	EC	DLO	GIS	т:_	M.	_ar	SOI	n		
Aarson &			DRILL DATE :			NUMBER :	┍	RILL	_IN	IG (CON	TR/	АСТ	OR	<u>:So</u>	car	borough Dril	lir
Aarson & ssociates, Ir Environmental Consultar	nc.		10/12/	2022	BH	 -1		RILL										

					BORIN	G RECORD)										
		Start: 1():35 MDT		NO	00		PI	D R	EAI	DINC	3	S	AMP	LE		REMARKS
GEOLOGIC	DEPTH	Finish: 1	5:15		DESCRIPTION USCS	GRAPHIC LOG	Р	PM	x_				R	DING	RY		BACKGROUND
UNIT		DES		ITHOLOGIC	SCF	ЧЪН	2	4 6	8 10) 12	14	<u>16 18</u>	NUMBER	READING	RECOVERY	ΗL	
	<u> </u>	DLO			D	GR							NUN	DIP	REC	Ш	SOIL :PPM
	0	Silty Sar	nd, 5YR 5	/4, Reddish													_
			/ery Fine														-
	5 _		Sand, Poo	orly Sorted,	ML											5	_
		Dry											1			7	_
		-		3, Pink, Very	/											[']	-
	10 —		ained, Poo	orly Sorted,												10	
		Dry															-
																	-
	15				Calich											15	
																	_
	20																
	20															20	
																	-
	25 —												2			25	_
	25 —	•		/4, Reddish												23	
	_			ned Quartz	ML												-
	30 —		th Caliche										3			30	_
		<u>. </u>), Poorly		_												
				3, Pink, Very orly Sorted													-
	35 —		angular (•	Calich											35	
		(~10mm		olaoto													-
													4			39 40	_
	40		nd, 5YR 6													40	
			Brown, V														
	45			and, Poorly ngular Calich												45	_
		Clasts (~		ngulai Galici													_
	_	•••••)														-
	50 —															50	_
					ML												-
																	-
	55 —															55	
																	_
																	-
	60 —															60	
	_																-
		JOUS AUGER S	SAMPLER	WATER	ABLE (TIN	E OF BORING	/						Che	vro	<u>n/</u>	19	-0180-01
ST	ANDARD PE	ENETRATION T	EST	1		LOCATION		IOLE	DI	AM	ETE	R :_	Sa	lade	2" 5 Г)ra	w 24 CTB
	IDISTURBEI	O SAMPLE		+ PENETR	OMETER (T	ONS/ SQ. FT)		OCA					2.02	2505	<u>83</u> °	°, -′	103.6342389°
<u> </u>	ATER TABLE	E(24 HRS)		NR NO RECO	OVERY		L	AI G	EOI	LO	GIS ⁻	Г:	E. (Cha	ive		
🛆 arson & 🚎	~		DRILL DATE :	4 0000		G NUMBER :		RILL									carborough
Arson & marson & mars	nc. ants		04-1	4-2020	S	B-01	D	RILL	INC	ΞN	1ETH	IOD	-	Air R	lota	iry	

Received by OCD: 5/13/2025 8:28:45 AM

				E	BORING	RECORD						
			:35 MDT		TION	POG) REAI		S	AMP 		REMARKS BACKGROUND
GEOLOGIC UNIT		Finish: 1 DESC	5:15 RIPTION LIT	HOLOGIC	DESCRIPTION USCS	GRAPHIC LOG	X			PID READING	RECOVERY DEPTH	PID READING
	65 	Red, Ver Sorted w	y Fine Gra ith Subanç k Chert Cla	5, Yellowish iined, Poorly gular Caliche asts	ML				5	1	66 70	
	75— — — —										75	
	80										80	
	85	Red, Fine Sorted w	e Grained,	5, Yellowish Poorly gular Caliche	ML						85 90	
	95 — — — 100—	(~2mm)									95	
	105	Dr	TD:101 y After 72			<u>r::::::</u>]			6		10	1.5
ST			EST	WATER TAE	RY TEST LO ETER (TOM		DIAM TION	ETER	: 	alado 2505	2" o Dra ^{83°, -}	
Aarson & Environmental Consulta			DRILL DATE : 04-14-		BORING	NUMBER : -01	ING C		АСТО) 2R :	S	carborough
Received by OCD: 5/13/2025 8:28:45 AM

World_Hillshade

Esri, NASA, NGA, USGS, FEMA, Sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, (c) OpenStreetMap contributors, and the GIS User

Salado Draw 23 Central Tank Battery (03.26.2025)

New Mexico Oil Conservation Division

APPENDIX E

Received by OCD: 5/13/2025 8:28:45 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ashton Thielke Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 4/11/2025 5:04:13 PM

JOB DESCRIPTION

SD 23 Central Tank Battery-Flare Lea Co, NM

JOB NUMBER

880-56559-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notes and contact information

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 4/11/2025 5:04:13 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

SDG: Lea Co, NM

Laboratory Job ID: 880-56559-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	16
Lab Chronicle	19
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	25

-Flare SDG: Lea Co, NM	1
	3

Qualifiers

Qualifiers		- 3
GC VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	_
GC Semi VOA		5
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	- 6
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	- 8
Glossary		-
Abbreviation	These commonly used abbreviations may or may not be present in this report.	- 3
÷.	Listed under the "D" column to designate that the result is reported on a dry weight basis	10
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	19
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

TEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources Project: SD 23 Central Tank Battery-Flare Job ID: 880-56559-1

Job ID: 880-56559-1

Eurofins Midland

Page 44 of 114

559-1

Job Narrative 880-56559-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 4/7/2025 11:17 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.2°C.

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: CS-1 (0.25') (880-56559-1), CS-2 (0.25') (880-56559-2), CS-3 (0.25') (880-56559-3) and CS-4 (0.25') (880-56559-4).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (LCS 880-107111/2-A) and (LCSD 880-107111/3-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare

Client Sample ID: CS-1 (0.25') Date Collected: 04/07/25 00:00

Date Received: 04/07/25 11:17

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		04/07/25 16:11	04/08/25 00:21	
Foluene	<0.00200	U	0.00200		mg/Kg		04/07/25 16:11	04/08/25 00:21	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/07/25 16:11	04/08/25 00:21	
n,p-Xylenes	<0.00401	U	0.00401		mg/Kg		04/07/25 16:11	04/08/25 00:21	
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/07/25 16:11	04/08/25 00:21	
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		04/07/25 16:11	04/08/25 00:21	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	105		70 - 130				04/07/25 16:11	04/08/25 00:21	1
1,4-Difluorobenzene (Surr)	90		70 - 130				04/07/25 16:11	04/08/25 00:21	1
Method: TAL SOP Total BTEX - 1	otal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			04/08/25 00:21	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			04/11/25 04:26	
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics GRO)-C6-C10	<49.6	U	49.6		mg/Kg		04/08/25 10:40	04/11/25 04:26	
Diesel Range Organics (Over C10-C28)	<49.6	U	49.6		mg/Kg		04/08/25 10:40	04/11/25 04:26	
Oil Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		04/08/25 10:40	04/11/25 04:26	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	111		70 - 130				04/08/25 10:40	04/11/25 04:26	1
p-Terphenyl (Surr)	104		70 - 130				04/08/25 10:40	04/11/25 04:26	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solub	le						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	82.7		9.96		mg/Kg			04/08/25 15:57	1
lient Sample ID: CS-2 (0.25	;')						Lab Sam	ple ID: 880-5	6559-2
ate Collected: 04/07/25 00:00 ate Received: 04/07/25 11:17								Matri	ix: Solic
	Ormania Comm	eurode (CC	`						
Method: SW846 8021B - Volatile Analyte		Qualifier) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		04/07/25 16:11	04/08/25 00:41	
Foluene	0.00285		0.00199		mg/Kg		04/07/25 16:11	04/08/25 00:41	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		04/07/25 16:11	04/08/25 00:41	
n,p-Xylenes	<0.00398		0.00398		mg/Kg		04/07/25 16:11	04/08/25 00:41	
o-Xylene	< 0.00199	U	0.00199		mg/Kg		04/07/25 16:11	04/08/25 00:41	1

Eurofins Midland

Page 45 of 114

Job ID: 880-56559-1 SDG: Lea Co, NM

Lab Sample ID: 880-56559-1

Matrix: Solid

5

4/11/2025

Job ID: 880-56559-1 SDG: Lea Co, NM

Lab Sample ID: 880-56559-2

Client Sample ID: CS-2 (0.25')

Project/Site: SD 23 Central Tank Battery-Flare

Date Collected: 04/07/25 00:00 Date Received: 04/07/25 11:17

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			04/08/25 00:41	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			04/11/25 04:44	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		04/08/25 10:40	04/11/25 04:44	·
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		04/08/25 10:40	04/11/25 04:44	
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		04/08/25 10:40	04/11/25 04:44	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane (Surr)	113		70 - 130				04/08/25 10:40	04/11/25 04:44	
o-Terphenyl (Surr)	103		70 - 130				04/08/25 10:40	04/11/25 04:44	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	102		9.98		mg/Kg			04/08/25 16:05	

Client Sample ID: CS-3 (0.25')

Date Collected: 04/07/25 00:00 Date Received: 04/07/25 11:17

Lab Sample ID: 880-56559-3 Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		04/07/25 16:11	04/08/25 01:02	1
Toluene	<0.00200	U	0.00200		mg/Kg		04/07/25 16:11	04/08/25 01:02	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/07/25 16:11	04/08/25 01:02	1
m,p-Xylenes	<0.00399	U	0.00399		mg/Kg		04/07/25 16:11	04/08/25 01:02	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/07/25 16:11	04/08/25 01:02	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		04/07/25 16:11	04/08/25 01:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				04/07/25 16:11	04/08/25 01:02	1
1,4-Difluorobenzene (Surr)	87		70 - 130				04/07/25 16:11	04/08/25 01:02	1

Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL MDL Unit Dil Fac D Prepared Analyzed Total BTEX <0.00399 U 0.00399 04/08/25 01:02 mg/Kg 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Method: 500846 8015 NW - Diese	e Range Organ	ICS (DRU) (G	6)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	62.6		50.4		mg/Kg			04/11/25 04:59	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.4	U	50.4		mg/Kg		04/08/25 10:40	04/11/25 04:59	1
							04/08/25 10:40	04/11/25 04:59	

Eurofins Midland

Matrix: Solid

Job ID: 880-56559-1 SDG: Lea Co, NM

Matrix: Solid

5

12 13

Lab Sample ID: 880-56559-3

Client Sample ID: CS-3 (0.25')

Project/Site: SD 23 Central Tank Battery-Flare

Date Collected: 04/07/25 00:00 Date Received: 04/07/25 11:17

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<50.4	U	50.4		mg/Kg		04/08/25 10:40	04/11/25 04:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	126		70 - 130				04/08/25 10:40	04/11/25 04:59	1
o-Terphenyl (Surr)	112		70 - 130				04/08/25 10:40	04/11/25 04:59	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	101		10.0		mg/Kg			04/08/25 16:12	1
Client Sample ID: CS-4 (0.25	')						Lab Sam	ple ID: 880-5	6559-4
ate Collected: 04/07/25 00:00							'		x: Solid

Date Received: 04/07/25 11:17

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		04/07/25 13:49	04/07/25 20:01	1
Toluene	<0.00200	U	0.00200		mg/Kg		04/07/25 13:49	04/07/25 20:01	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/07/25 13:49	04/07/25 20:01	1
m,p-Xylenes	<0.00399	U	0.00399		mg/Kg		04/07/25 13:49	04/07/25 20:01	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/07/25 13:49	04/07/25 20:01	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		04/07/25 13:49	04/07/25 20:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				04/07/25 13:49	04/07/25 20:01	1
1,4-Difluorobenzene (Surr)	90		70 - 130				04/07/25 13:49	04/07/25 20:01	1

Method: TAL SOP To	tal BTEX - Total BTE	X Calculation
--------------------	----------------------	---------------

Analyte	Result	Qualifier	RL	MDL	Unit	0)	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg		_		04/07/25 20:01	1

Method: SW846 8015 NM - Diesel R	Range Organ	ics (DRO) (O	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			04/11/25 05:15	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		04/08/25 10:40	04/11/25 05:15	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.6	U	49.6		mg/Kg		04/08/25 10:40	04/11/25 05:15	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		04/08/25 10:40	04/11/25 05:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	125		70 - 130				04/08/25 10:40	04/11/25 05:15	1
o-Terphenyl (Surr)	110		70 - 130				04/08/25 10:40	04/11/25 05:15	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	128		9.98		mg/Kg			04/08/25 16:19	1

Surrogate Summary

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-56533-A-16-C MS	Matrix Spike	101	92	
880-56533-A-16-D MSD	Matrix Spike Duplicate	110	92	
880-56558-A-1-A MS	Matrix Spike	104	115	
880-56558-A-1-B MSD	Matrix Spike Duplicate	95	109	
880-56559-1	CS-1 (0.25')	105	90	
880-56559-2	CS-2 (0.25')	99	87	
880-56559-3	CS-3 (0.25')	104	87	
880-56559-4	CS-4 (0.25')	94	90	
LCS 880-106997/1-A	Lab Control Sample	104	97	
LCS 880-107047/1-A	Lab Control Sample	100	106	
LCSD 880-106997/2-A	Lab Control Sample Dup	101	101	
LCSD 880-107047/2-A	Lab Control Sample Dup	95	109	
MB 880-106996/5-A	Method Blank	91	74	
MB 880-106997/5-A	Method Blank	96	89	
MB 880-107047/5-A	Method Blank	99	76	
Surrogate Legend				
BFB = 4-Bromofluoroben				
DFBZ = 1,4-Difluorobenz	ene (Surr)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 (70-130) (70-130) Lab Sample ID **Client Sample ID** 880-56558-A-1-F MS Matrix Spike 112 117 880-56558-A-1-G MSD Matrix Spike Duplicate 106 111 880-56559-1 CS-1 (0.25') 111 104 880-56559-2 CS-2 (0.25') 113 103 880-56559-3 CS-3 (0.25') 126 112 880-56559-4 CS-4 (0.25') 125 110 LCS 880-107111/2-A Lab Control Sample 151 S1+ 140 S1+ LCSD 880-107111/3-A Lab Control Sample Dup 152 S1+ 142 S1+ MB 880-107111/1-A Method Blank 111 116

Surrogate Legend

1CO = 1-Chlorooctane (Surr)

OTPH = o-Terphenyl (Surr)

Job ID: 880-56559-1

SDG: Lea Co, NM

Page 48 of 114

6

Prep Type: Total/NA

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-106996 Matrix: Solid	/5-A									Client Sa	mple ID: M		
Analysis Batch: 106991											Prep T		106996
Analysis Batch. 100391	мв	МВ									Fieh L	aton.	100330
Analyte		Qualifier	RL		MDL	Unit		D	Р	repared	Analyze	ed	Dil Fac
Benzene	<0.00200		0.00200			mg/Kg		—		7/25 08:45	04/07/25 1		1
Toluene	<0.00200	U	0.00200			mg/Kg			04/0	7/25 08:45	04/07/25 1	1:41	1
Ethylbenzene	<0.00200	U	0.00200			mg/Kg			04/0	7/25 08:45	04/07/25 1	1:41	1
m,p-Xylenes	<0.00399	U	0.00399			mg/Kg			04/0	7/25 08:45	04/07/25 1	1:41	1
o-Xylene	<0.00200	U	0.00200			mg/Kg			04/0	7/25 08:45	04/07/25 1	1:41	1
Xylenes, Total	<0.00399	U	0.00399			mg/Kg			04/0	7/25 08:45	04/07/25 1	1:41	1
	МВ	MB											
Surrogate	%Recovery	Qualifier	Limits						P	repared	Analyz	ed	Dil Fac
4-Bromofluorobenzene (Surr)		· · · · · · · · · · · · · · · · · · ·	70 - 130							7/25 08:45	04/07/25		1
1,4-Difluorobenzene (Surr)	74		70 - 130						04/0	7/25 08:45	04/07/25	11:41	1
Lab Sample ID: MB 880-106997	/5-A									Client Sa	mple ID: I	Nethod	Blank
Matrix: Solid											Prep T	ype: To	otal/NA
Analysis Batch: 106998											Prep E	Batch:	106997
	МВ	MB											
Analyte	Result	Qualifier	RL		MDL	Unit		D	Р	repared	Analyze	ed	Dil Fac
Benzene	<0.00200	U	0.00200			mg/Kg			04/0	7/25 08:49	04/07/25 1	1:42	1
Toluene	<0.00200	U	0.00200			mg/Kg			04/0	7/25 08:49	04/07/25 1	1:42	1
Ethylbenzene	<0.00200	U	0.00200			mg/Kg			04/0	7/25 08:49	04/07/25 1	1:42	1
m,p-Xylenes	<0.00399	U	0.00399			mg/Kg			04/0	7/25 08:49	04/07/25 1	1:42	1
o-Xylene	<0.00200	U	0.00200			mg/Kg			04/0	7/25 08:49	04/07/25 1	1:42	1
Xylenes, Total	<0.00399	U	0.00399			mg/Kg			04/0	7/25 08:49	04/07/25 1	1:42	1
	МВ	МВ											
Surrogate	%Recovery	Qualifier	Limits						P	repared	Analyz	ed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130						04/0	7/25 08:49	04/07/25	11:42	1
1,4-Difluorobenzene (Surr)	89		70 - 130						04/0	7/25 08:49	04/07/25	11:42	1
Lab Sample ID: LCS 880-10699	7/1 -A							С	lient	Sample	ID: Lab Co	ontrol S	ample
Matrix: Solid											Prep T	ype: To	otal/NA
Analysis Batch: 106998											Prep E	Batch:	106997
			Spike	LCS	LCS						%Rec		
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Benzene			0.100	0.09234			mg/Kg			92	70 - 130		
Toluene			0.100	0.09665			mg/Kg			97	70 - 130		
Ethylbenzene			0.100	0.09917			mg/Kg			99	70 - 130		
m,p-Xylenes			0.200	0.1980			mg/Kg			99	70 - 130		
o-Xylene			0.100	0.09457			mg/Kg			95	70 - 130		
	LCS LCS												
Surrogate	%Recovery Qua	lifier	Limits										
4-Bromofluorobenzene (Surr)	104		70 - 130										
1,4-Difluorobenzene (Surr)	97		70 - 130										
Lab Sample ID: LCSD 990 1069	97/2 4						CII	ont	Sam		ah Control	Same	
Lab Sample ID: LCSD 880-1069 Matrix: Solid	3112-A							ent	Jail	ipie iD. Li	ab Control		
											Prep T		
Analysis Batch: 106998			Spike	LCSD	1.06	n					Prep E %Rec	oaten:	RPD
Analyte			Added	Result			Unit		D	%Rec	%Rec	RPD	Limit
Analyte			Added	0.1008	Qua	mei				101	ZIMITS		

9 Eurofins Midland

Page 49 of 114

5

7

Job ID: 880-56559-1 SDG: Lea Co, NM

0.1008

mg/Kg

101

70 - 130

0.100

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare Job ID: 880-56559-1 SDG: Lea Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-1 Matrix: Solid	0033112-A					Cilei	in Jali	ipie ID. I	Lab Contro Prep T	ype: To	
Analysis Batch: 106998										Batch: 1	
-			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene			0.100	0.09546		mg/Kg		95	70 _ 130	1	35
Ethylbenzene			0.100	0.09180		mg/Kg		92	70 - 130	8	35
m,p-Xylenes			0.200	0.1873		mg/Kg		94	70 - 130	6	35
o-Xylene			0.100	0.09013		mg/Kg		90	70 - 130	5	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	101		70 - 130								
1,4-Difluorobenzene (Surr)	101		70 - 130								
- Lab Sample ID: 880-56533-A Matrix: Solid	A-16-C MS							Client	Sample ID Prep T	: Matrix ype: To	

Matrix: Solid Analysis Batch: 106008

Analysis Batch: 106998									Prep Ba
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	< 0.00202	U	0.100	0.09785		mg/Kg		98	70 - 130
Toluene	<0.00202	U	0.100	0.09240		mg/Kg		92	70 - 130
Ethylbenzene	<0.00202	U	0.100	0.08423		mg/Kg		84	70 - 130
m,p-Xylenes	<0.00404	U	0.200	0.1677		mg/Kg		84	70 - 130
o-Xylene	<0.00202	U	0.100	0.07864		mg/Kg		79	70 - 130

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		70 - 130
1,4-Difluorobenzene (Surr)	92		70 - 130

Lab Sample ID: 880-56533-A-16-D MSD Matrix: Solid Analysis Batch: 106998

		Prep	Batch: 1	06997
		%Rec		RPD
er Unit	D %Rec	Limits	RPD	Limit
mg/Kg	96	70 - 130	2	35
mg/Kg	95	70 - 130	2	35
mg/Kg	93	70 - 130	10	35
mg/Kg	92	70 - 130	9	35
mg/Kg	88	70 - 130	11	35
	mg/Kg mg/Kg mg/Kg mg/Kg	mg/Kg 96 mg/Kg 95 mg/Kg 93 mg/Kg 92	Unit D %Rec Limits mg/Kg 96 70 - 130 70 - 130 mg/Kg 93 70 - 130 70 - 130 mg/Kg 93 70 - 130 70 - 130 mg/Kg 93 70 - 130 70 - 130	ver Unit D %Rec Limits RPD mg/Kg 96 70 - 130 2 mg/Kg 95 70 - 130 2 mg/Kg 93 70 - 130 10 mg/Kg 92 70 - 130 9

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	110		70 - 130
1,4-Difluorobenzene (Surr)	92		70 - 130

Lab Sample ID: MB 880-107047/5-A Matrix: Solid Analysis Batch: 106991

MB MB Analyte Result Qualifier MDL Unit D Prepared Dil Fac RL Analyzed Benzene <0.00200 U 0.00200 04/07/25 16:11 04/07/25 22:37 mg/Kg 1 Toluene <0.00200 U 0.00200 mg/Kg 04/07/25 16:11 04/07/25 22:37 1 Ethylbenzene <0.00200 U 0.00200 mg/Kg 04/07/25 16:11 04/07/25 22:37 1 <0.00400 U 0.00400 04/07/25 16:11 04/07/25 22:37 m,p-Xylenes mg/Kg 1

Eurofins Midland

7

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 107047

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Released to Imaging: 6/9/2025 3:43:26 PM

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare Job ID: 880-56559-1 SDG: Lea Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-107047/5-A										Client Sa	mple ID: Metho	d Blank
Matrix: Solid											Prep Type: [•]	Total/NA
Analysis Batch: 106991											Prep Batch	107047
	MB	MB										
Analyte	Result	Qualifier	RL	I	MDL	Unit		D	P	repared	Analyzed	Dil Fac
o-Xylene	<0.00200	U	0.00200			mg/Kg		_	04/0	07/25 16:11	04/07/25 22:37	1
Xylenes, Total	<0.00400	U	0.00400			mg/Kg			04/0	07/25 16:11	04/07/25 22:37	1
	МВ	МВ										
Surrogate	%Recovery	Qualifier	Limits						P	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130						04/0	07/25 16:11	04/07/25 22:37	1
1,4-Difluorobenzene (Surr)	76		70 - 130						04/0	07/25 16:11	04/07/25 22:37	1
	4							С	lient	t Sample	ID: Lab Control	Sample
Matrix: Solid											Prep Type: ⁻	Total/NA
Analysis Batch: 106991											Prep Batch:	107047
			Spike	LCS	LCS						%Rec	
Analyte			Added	Result	Qual	ifier	Unit		D	%Rec	Limits	
Benzene			0.100	0.1167			mg/Kg			117	70 - 130	
Toluene			0.100	0.1131			mg/Kg			113	70 - 130	

o-Xylene			0.100
	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		70 _ 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Lab Sample ID: LCSD 880-107047/2-A

Matrix: Solid Analysis Batch: 106991

Ethylbenzene

m,p-Xylenes

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 106991							Prep E	Batch: 1	07047
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1032		mg/Kg		103	70 - 130	12	35
Toluene	0.100	0.1002		mg/Kg		100	70 - 130	12	35
Ethylbenzene	0.100	0.1029		mg/Kg		103	70 - 130	14	35
m,p-Xylenes	0.200	0.1943		mg/Kg		97	70 - 130	15	35
o-Xylene	0.100	0.09484		mg/Kg		95	70 - 130	14	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	95		70 - 130
1,4-Difluorobenzene (Surr)	109		70 - 130

Lab Sample ID: 880-56558-A-1-A MS Matrix: Solid

Analysis Batch: 106991									Prep I	Batch: 107047
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.0992	0.1261		mg/Kg		127	70 - 130	
Toluene	<0.00199	U	0.0992	0.1217		mg/Kg		123	70 - 130	
Ethylbenzene	<0.00199	U	0.0992	0.1245		mg/Kg		124	70 - 130	
m,p-Xylenes	<0.00398	U	0.198	0.2396		mg/Kg		121	70 - 130	
o-Xylene	<0.00199	U	0.0992	0.1150		mg/Kg		116	70 - 130	

Eurofins Midland

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Page 51 of 114

5

4						Client	Sample	e ID: Lab C Prep Prep
		Spike	LCS	LCS				%Rec
		Added	Result	Qualifier	Unit	D	%Rec	Limits
		0.100	0.1167		mg/Kg		117	70 - 130
		0.100	0.1131		mg/Kg		113	70 - 130
		0.100	0.1179		mg/Kg		118	70 - 130
		0.200	0.2260		mg/Kg		113	70 - 130
		0.100	0.1092		mg/Kg		109	70 - 130
LCS	LCS							
Recovery	Qualifier	Limits						
100		70 - 130						
106		70 - 130						

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-56558-A-1-A MS Matrix: Solid

Analysis Batch: 106991

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		70 - 130
1,4-Difluorobenzene (Surr)	115		70 - 130

Lab Sample ID: 880-56558-A-1-B MSD Matrix: Solid

Analysis	Batch:	106991

Analysis Batch: 106991									Prep I	Batch: 1	07047
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	< 0.00199	U	0.101	0.1172		mg/Kg		117	70 - 130	7	35
Toluene	<0.00199	U	0.101	0.1138		mg/Kg		113	70 - 130	7	35
Ethylbenzene	<0.00199	U	0.101	0.1196		mg/Kg		117	70 - 130	4	35
m,p-Xylenes	<0.00398	U	0.201	0.2297		mg/Kg		114	70 - 130	4	35
o-Xylene	<0.00199	U	0.101	0.1098		mg/Kg		109	70 - 130	5	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	95		70 - 130								
1,4-Difluorobenzene (Surr)	109		70 - 130								

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-107111/1-/	4								С	lient Sa	mple ID: Me	thod Blank
Matrix: Solid											Ргер Тур	e: Total/N/
Analysis Batch: 107306											Prep Bat	ch: 10711 [,]
	MB	MB										
Analyte	Result	Qualifier	RL	r	MDL	Unit		D	Pre	pared	Analyzed	Dil Fa
Gasoline Range Organics	<50.0	U	50.0			mg/Kg		04	1/08/2	25 10:40	04/11/25 02:0	0
(GRO)-C6-C10												
Diesel Range Organics (Over	<50.0	U	50.0			mg/Kg		04	4/08/2	25 10:40	04/11/25 02:0	0 1
C10-C28)												
Oil Range Organics (Over C28-C36)	<50.0	U	50.0			mg/Kg		04	4/08/2	25 10:40	04/11/25 02:0	0
	МВ	МВ										
Surrogate	%Recovery	Qualifier	Limits						Pre	pared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	111		70 _ 130					04	4/08/	25 10:40	04/11/25 02:0	0
o-Terphenyl (Surr)	116		70 - 130					04	4/08/2	25 10:40	04/11/25 02:0	0 1
- Lab Sample ID: LCS 880-107111/2	A							Clie	nt S	Sample I	D: Lab Cont	rol Sample
Matrix: Solid												e: Total/NA
Analysis Batch: 107306												ch: 107111
			Spike	LCS	LCS						%Rec	
Analyte			Added	Result	Qual	ifier	Unit		י כ	%Rec	Limits	
Gasoline Range Organics			1000	1029			mg/Kg			103	70 - 130	
(GRO)-C6-C10												
Diesel Range Organics (Over			1000	1133			mg/Kg			113	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane (Surr)	151	S1+	70 - 130
o-Terphenyl (Surr)	140	S1+	70 - 130

C10-C28)

Prep Batch: 107047

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare Job ID: 880-56559-1 SDG: Lea Co, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-10	J/111/3-A					Clier	nt Sam	pie iD: I	Lab Contro		
Matrix: Solid										ype: Tot	
Analysis Batch: 107306										Batch: 1	
			Spike		LCSD				%Rec		RPI
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics			1000	1080		mg/Kg		108	70 - 130	5	2
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	1124		mg/Kg		112	70 - 130	1	2
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane (Surr)	152	S1+	70 - 130								
o-Terphenyl (Surr)	142	S1+	70 - 130								
Lab Sample ID: 880-56558-A	-1-F MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid									Prep 1	ype: Tot	tal/N/
Analysis Batch: 107306									Prep	Batch: 1	0711
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.7	U	998	756.3		mg/Kg		76	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.7	U	998	942.9		mg/Kg		94	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane (Surr)			70 - 130								
o-Terphenyl (Surr)	117		70 - 130								
Lab Sample ID: 880-56558-A	-1-G MSD					CI	ient Sa	imple IC): Matrix Sp	oike Dup	licat
Matrix: Solid									Prep 1	ype: Tot	tal/N/
Analysis Batch: 107306									Prep	Batch: 1	0711 [.]
	Sample	Sample	Spike	MSD	MSD				%Rec		RPI
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics	<49.7	U	998	719.8		mg/Kg		72	70 - 130	5	2
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.7	U	998	918.6		mg/Kg		92	70 - 130	3	2
C10-C28)											
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane (Surr)	106		70 - 130								

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-107079/1-A Matrix: Solid Analysis Batch: 107110							Client S	ample ID: Metho Prep Type:	
-	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<10.0	U	10.0		mg/Kg			04/08/25 13:57	1

Eurofins Midland

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare Job ID: 880-56559-1 SDG: Lea Co, NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 88 Matrix: Solid	0-107079/2-A						Client	Sample	ID: Lab Co Prep	ontrol Sa Type: S	
Analysis Batch: 107110)									.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride			250	244.8		mg/Kg		98	90 - 110		
Lab Sample ID: LCSD 8	380-107079/3-A					Clier	nt Sam	ple ID: I	Lab Contro	ol Sampl	e Dup
Matrix: Solid								· · · ·		Type: S	
Analysis Batch: 107110)										
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	243.0		mg/Kg		97	90 - 110	1	20
Lab Sample ID: 880-56	557-A-5-D MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid										Type: S	- C
Analysis Batch: 107110)										
		Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	91.4		250	342.7		mg/Kg		101	90 _ 110		
Lab Sample ID: 880-56	557-A-5-E MSD					Cli	ient Sa	ample ID): Matrix Sp	oike Dup	olicate
Matrix: Solid										Type: S	
Analysis Batch: 107110)										
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	91.4		250	340.5		mg/Kg		100	90 - 110	1	20

QC Association Summary

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare

Job ID: 880-56559-1 SDG: Lea Co, NM

GC VOA

Analysis Batch: 106991

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-56559-1	CS-1 (0.25')	Total/NA	Solid	8021B	107047	
880-56559-2	CS-2 (0.25')	Total/NA	Solid	8021B	107047	
880-56559-3	CS-3 (0.25')	Total/NA	Solid	8021B	107047	
MB 880-106996/5-A	Method Blank	Total/NA	Solid	8021B	106996	
MB 880-107047/5-A	Method Blank	Total/NA	Solid	8021B	107047	
LCS 880-107047/1-A	Lab Control Sample	Total/NA	Solid	8021B	107047	
LCSD 880-107047/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	107047	
880-56558-A-1-A MS	Matrix Spike	Total/NA	Solid	8021B	107047	
880-56558-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	107047	
Prep Batch: 106996						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	

		гер туре	Widthix	wethod	Ргер Баксп
MB 880-106996/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 106997

	Lab Control Sample Dup	Total/NA	Solid	8021B	107047	
880-56558-A-1-A MS	Matrix Spike	Total/NA	Solid	8021B	107047	3
880-56558-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	107047	
Prep Batch: 106996					9)
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	0
MB 880-106996/5-A	Method Blank	Total/NA	Solid	5035		
Prep Batch: 106997						1
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	2
Lab Sample ID 880-56559-4	Client Sample ID CS-4 (0.25')	Total/NA	Matrix Solid	Method 5035	Prep Batch	2
·					_ Prep Batch	2
880-56559-4	CS-4 (0.25')	Total/NA	Solid	5035	_ Prep Batch 1	2 3
880-56559-4 MB 880-106997/5-A	CS-4 (0.25') Method Blank	Total/NA Total/NA	Solid Solid	5035 5035	_ Prep Batch 1	2
880-56559-4 MB 880-106997/5-A LCS 880-106997/1-A	CS-4 (0.25') Method Blank Lab Control Sample	Total/NA Total/NA Total/NA	Solid Solid Solid	5035 5035 5035	Prep Batch 1	2 3 4
880-56559-4 MB 880-106997/5-A LCS 880-106997/1-A LCSD 880-106997/2-A	CS-4 (0.25) Method Blank Lab Control Sample Lab Control Sample Dup	Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid	5035 5035 5035 5035 5035	Prep Batch 1	2 3 4

Analysis Batch: 106998

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56559-4	CS-4 (0.25')	Total/NA	Solid	8021B	106997
MB 880-106997/5-A	Method Blank	Total/NA	Solid	8021B	106997
LCS 880-106997/1-A	Lab Control Sample	Total/NA	Solid	8021B	106997
LCSD 880-106997/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	106997
880-56533-A-16-C MS	Matrix Spike	Total/NA	Solid	8021B	106997
880-56533-A-16-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	106997

Prep Batch: 107047

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56559-1	CS-1 (0.25')	Total/NA	Solid	5035	
880-56559-2	CS-2 (0.25')	Total/NA	Solid	5035	
880-56559-3	CS-3 (0.25')	Total/NA	Solid	5035	
MB 880-107047/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-107047/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-107047/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-56558-A-1-A MS	Matrix Spike	Total/NA	Solid	5035	
880-56558-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 107209

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
880-56559-1	CS-1 (0.25')	Total/NA	Solid	Total BTEX
880-56559-2	CS-2 (0.25')	Total/NA	Solid	Total BTEX
880-56559-3	CS-3 (0.25')	Total/NA	Solid	Total BTEX
880-56559-4	CS-4 (0.25')	Total/NA	Solid	Total BTEX

QC Association Summary

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare

Job ID: 880-56559-1 SDG: Lea Co, NM

GC Semi VOA

Prep	Batch:	107111
------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56559-1	CS-1 (0.25')	Total/NA	Solid	8015NM Prep	
380-56559-2	CS-2 (0.25')	Total/NA	Solid	8015NM Prep	
380-56559-3	CS-3 (0.25')	Total/NA	Solid	8015NM Prep	
380-56559-4	CS-4 (0.25')	Total/NA	Solid	8015NM Prep	
//B 880-107111/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
CS 880-107111/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
CSD 880-107111/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-56558-A-1-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
380-56558-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 107306

LCSD 880-107111/3-A	Lab Control Sample Dup	Iotal/NA	Solid	8015NM Prep		
880-56558-A-1-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep		8
880-56558-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep		
Analysis Batch: 107306						9
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	10
880-56559-1	CS-1 (0.25')	Total/NA	Solid	8015B NM	107111	
880-56559-2	CS-2 (0.25')	Total/NA	Solid	8015B NM	107111	111
880-56559-3	CS-3 (0.25')	Total/NA	Solid	8015B NM	107111	
880-56559-4	CS-4 (0.25')	Total/NA	Solid	8015B NM	107111	12
MB 880-107111/1-A	Method Blank	Total/NA	Solid	8015B NM	107111	
LCS 880-107111/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	107111	4.0
LCSD 880-107111/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	107111	13
880-56558-A-1-F MS	Matrix Spike	Total/NA	Solid	8015B NM	107111	
880-56558-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	107111	14

Analysis Batch: 107450

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
880-56559-1	CS-1 (0.25')	Total/NA	Solid	8015 NM
880-56559-2	CS-2 (0.25')	Total/NA	Solid	8015 NM
880-56559-3	CS-3 (0.25')	Total/NA	Solid	8015 NM
880-56559-4	CS-4 (0.25')	Total/NA	Solid	8015 NM

HPLC/IC

Leach Batch: 107079

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56559-1	CS-1 (0.25')	Soluble	Solid	DI Leach	
880-56559-2	CS-2 (0.25')	Soluble	Solid	DI Leach	
880-56559-3	CS-3 (0.25')	Soluble	Solid	DI Leach	
880-56559-4	CS-4 (0.25')	Soluble	Solid	DI Leach	
MB 880-107079/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-107079/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-107079/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-56557-A-5-D MS	Matrix Spike	Soluble	Solid	DI Leach	
880-56557-A-5-E MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 107110

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56559-1	CS-1 (0.25')	Soluble	Solid	300.0	107079
880-56559-2	CS-2 (0.25')	Soluble	Solid	300.0	107079
880-56559-3	CS-3 (0.25')	Soluble	Solid	300.0	107079
880-56559-4	CS-4 (0.25')	Soluble	Solid	300.0	107079
MB 880-107079/1-A	Method Blank	Soluble	Solid	300.0	107079
LCS 880-107079/2-A	Lab Control Sample	Soluble	Solid	300.0	107079

Eurofins Midland

Page 56 of 114

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare

HPLC/IC (Continued)

Analysis Batch: 107110 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-107079/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	107079
880-56557-A-5-D MS	Matrix Spike	Soluble	Solid	300.0	107079
880-56557-A-5-E MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	107079

Eurofins Midland

Page 57 of 114

Client Sample ID: CS-1 (0.25')

Date Collected: 04/07/25 00:00

Date Received: 04/07/25 11:17

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Project/Site: SD 23 Central Tank Battery-Flare

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client: Carmona Resources

Initial

Amount

4.99 g

5 mL

10.09 g

1 uL

5.02 g

50 mL

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

50 mL

Batch

Number

107047

106991

107209

107450

107111

107306

107079

107110

Dil

1

1

1

1

1

Factor

Run

Job ID: 880-56559-1 SDG: Lea Co, NM

Lab Sample ID: 880-56559-1

Analyst

EL

EL

AJ

TKC

FC

TKC

СН

СН

Lab Sample ID: 880-56559-2

Lab Sample ID: 880-56559-3

Lab Sample ID: 880-56559-4

Prepared

or Analyzed

04/07/25 16:11

04/08/25 00:21

04/08/25 00:21

04/11/25 04:26

04/08/25 10:40

04/11/25 04:26

04/08/25 08:37

04/08/25 15:57

Matrix: Solid

Lab

EET MID

Matrix: Solid

Matrix: Solid

Client Sample ID: CS-2 (0.25') Date Collected: 04/07/25 00:00

Date Received: 04/07/25 11:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	107047	04/07/25 16:11	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106991	04/08/25 00:41	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107209	04/08/25 00:41	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107450	04/11/25 04:44	ткс	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	107111	04/08/25 10:40	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107306	04/11/25 04:44	TKC	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	107079	04/08/25 08:37	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107110	04/08/25 16:05	СН	EET MID

Client Sample ID: CS-3 (0.25') Date Collected: 04/07/25 00:00

Date Received: 04/07/25 11:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	107047	04/07/25 16:11	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106991	04/08/25 01:02	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107209	04/08/25 01:02	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107450	04/11/25 04:59	ТКС	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	107111	04/08/25 10:40	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107306	04/11/25 04:59	TKC	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	107079	04/08/25 08:37	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107110	04/08/25 16:12	СН	EET MID

Client Sample ID: CS-4 (0.25') Date Collected: 04/07/25 00:00 Date Received: 04/07/25 11:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	106997	04/07/25 13:49	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106998	04/07/25 20:01	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107209	04/07/25 20:01	AJ	EET MID

Eurofins Midland

Matrix: Solid

Released to Imaging: 6/9/2025 3:43:26 PM

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			107450	04/11/25 05:15	TKC	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	107111	04/08/25 10:40	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107306	04/11/25 05:15	TKC	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	107079	04/08/25 08:37	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107110	04/08/25 16:19	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-56559-1 SDG: Lea Co, NM

Lab Sample ID: 880-56559-4

Matrix: Solid

9

Eurofins Midland

Page 59 of 114

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare Job ID: 880-56559-1 SDG: Lea Co, NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	am	Identification Number	Expiration Date
exas	NELAF	כ	T104704400	06-30-25
The fall states are shoted				
• ,	are included in this report, bu loes not offer certification.	t the laboratory is not certif	ied by the governing authority. This lis	t may include analytes
• ,		t the laboratory is not certif Matrix	Analyte	t may include analytes
for which the agency of	oes not offer certification.	-		t may include analytes

Eurofins Midland

Page 60 of 114

Method Summary

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare

Job ID: 880-56559-1 SDG: Lea Co, NM

Page 61 of 114

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	rences:		
ASTM = A	STM International		
EPA = US	Environmental Protection Agency		
SW846 = "	Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition	on, November 1986 And Its Updates.	
TAL SOP =	 TestAmerica Laboratories, Standard Operating Procedure 		
Laboratory Re	ferences:		
EET MID =	Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Laboratory References:

Eurofins Midland

Job ID: 880-56559-1 SDG: Lea Co, NM

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-56559-1	CS-1 (0.25')	Solid	04/07/25 00:00	04/07/25 11:17
880-56559-2	CS-2 (0.25')	Solid	04/07/25 00:00	04/07/25 11:17
880-56559-3	CS-3 (0.25')	Solid	04/07/25 00:00	04/07/25 11:17
880-56559-4	CS-4 (0.25')	Solid	04/07/25 00:00	04/07/25 11:17

		ds		r DrRP D Level IV D	Other.	Preservative Codes	None: NO DI Water: H ₂ O		H ₂ S04: H ₂ NaOH: Na	NaHSO4: NABIS	Na ₂ S ₂ O ₃ : NaSO ₃	Zn Acetate+NaOH: Zn NaOH+Ascorbic Acid: SAPC	Sample Comments									Date/Time	
880-56559 Chain of Custody	Work Order Comments	Program: UST/PST DRP Brownfields DRC	Project:	Reporting:Level II Cevel III CST/UST	Deliverables: EDD Deliverables		Non	HCL	H ₂ S(HO Na ₂ S	ZnA									s.com	Received by: (Signature)	
		Program	State of Project:	Reportin	Deliverat	ANALYSIS REQUEST															Please send results to cmoehring@carmonaresources.com and mcarmona@carmonaresources.com	Relinquished by: (Signature)	
	Carmona Resources				ources, com			(OBN	1 + 08	16 300 0 + DI) อษอ	Maros	нат	× × ×	×	X X X	× × ×			_	aresources.com and	Date/Time F	9
	Bill to: (if different)	Company Name:	Address:	City, State ZIP:	Email: ThielkeA@Carmonaresources com	Turn Around	Rush Code	Due Date: Normal TAT starts the day received by the	-	Lame	Ed .	(. 3	Water Grab/ # of Comp Cont	Comp 1	Comp 1	Comp 1	Comp 1				o cmoehring@carmon	4/2/	
		0	A	c	Email: T		J Routi	Due Date: TAT starts the da		Thermometer ID:	Correction Factor:	Temperature Reading: Corrected Temperature:		×	×	×	×				ase send results to	Received by: (Signature)	
	a	sources	all Ste. 500	9701	~	SD 23 Central Tank Battery - Flare	2686	Lea Co, NM GPJ		Ves No Then	to Alla	No N/A	Date Time	4/7/2025	4/7/2025	4/7/2025	4/7/2025				Ple	Rec	
	Project Manager: Ashton Thielke	Company Name: Carmona Resources	Address: 310 West Wall Ste.	City, State ZIP: Midland, TX 79701		Project Name: SD 23 Cent		Project Location Sampler's Name:		Received Intact	Seals:	Sample Custody Seals: Yes Total Containers:	Sample Identification	CS-1 (0.25')	CS-2 (0.25')	CS-3 (0.25')	CS-4 (0.25')					Relinquished by: (Signature)	

4/11/2025

Page 63 of 114

14

Job Number: 880-56559-1 SDG Number: Lea Co, NM

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 56559 List Number: 1

Creator: Vasquez, Julisa

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 5/13/2025 8:28:45 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ashton Thielke Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 4/16/2025 2:44:28 PM

JOB DESCRIPTION

SD 23 Central Tank Battery-Flare Lea Co, NM

JOB NUMBER

880-56863-1

 Image: Control of the set of the se

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notes and contact information

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 4/16/2025 2:44:28 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-56863-1 SDG: Lea Co, NM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
	6
Surrogate Summary	9
	10
	14
Lab Chronicle	16
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
-	22

Released to Imaging: 6/9/2025 3:43:26 PM

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare

Job ID: 880-56863-1
SDG: Lea Co, NM

0

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		5
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	8
U	Indicates the analyte was analyzed for but not detected.	
Glossary		9
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	12
Dil Fac	Dilution Factor	13
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
	Minimum Datastable Astivity (Dadisabamistry)	

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

- MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number
- Method Quantitation Limit MQL NC Not Calculated
- ND Not Detected at the reporting limit (or MDL or EDL if shown)
- NEG Negative / Absent
- POS Positive / Present
- Practical Quantitation Limit PQL
- PRES Presumptive
- QC Quality Control
- Relative Error Ratio (Radiochemistry) RER
- RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources Project: SD 23 Central Tank Battery-Flare Job ID: 880-56863-1

Job ID: 880-56863-1

Eurofins Midland

Job Narrative

880-56863-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 4/14/2025 9:22 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.5°C.

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: H-1 (0-0.5') (880-56863-1), H-2 (0-0.5') (880-56863-2), H-3 (0-0.5') (880-56863-3) and H-4 (0-0.5') (880-56863-4).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (LCS 880-107636/2-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D - Soluble: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-107582 and analytical batch 880-107626 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

Page 70 of 114

Matrix: Solid

5

Job ID: 880-56863-1 SDG: Lea Co, NM

Lab Sample ID: 880-56863-1

Client Sample ID: H-1 (0-0.5') Date Collected: 04/07/25 00:00

Project/Site: SD 23 Central Tank Battery-Flare

Date Received: 04/14/25 09:22

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00285		0.00202		mg/Kg		04/14/25 10:03	04/14/25 11:58	1
Toluene	0.0501		0.00202		mg/Kg		04/14/25 10:03	04/14/25 11:58	1
Ethylbenzene	0.0152		0.00202		mg/Kg		04/14/25 10:03	04/14/25 11:58	1
m,p-Xylenes	0.0479		0.00403		mg/Kg		04/14/25 10:03	04/14/25 11:58	1
o-Xylene	0.0164		0.00202		mg/Kg		04/14/25 10:03	04/14/25 11:58	1
Xylenes, Total	0.0643		0.00403		mg/Kg		04/14/25 10:03	04/14/25 11:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130				04/14/25 10:03	04/14/25 11:58	1
1,4-Difluorobenzene (Surr)	98		70 - 130				04/14/25 10:03	04/14/25 11:58	1
- Method: TAL SOP Total BTEX - Tot	al BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.132		0.00403		mg/Kg			04/14/25 11:58	1
_ Method: SW846 8015 NM - Diesel F	Range Organ	ics (DRO) ((GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	-	49.8		mg/Kg			04/15/25 16:43	1
- Method: CM046 2045D NM - Discol	Denne Orac								
Method: SW846 8015B NM - Diesel Analyte	• •	Qualifier	(GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8		49.8		mg/Kg		04/14/25 14:36	04/15/25 16:43	1
(GRO)-C6-C10					5 5				
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		04/14/25 14:36	04/15/25 16:43	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		04/14/25 14:36	04/15/25 16:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	119		70 - 130				04/14/25 14:36	04/15/25 16:43	1
o-Terphenyl (Surr)	117		70 - 130				04/14/25 14:36	04/15/25 16:43	1
Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	55.6		9.94		mg/Kg			04/15/25 21:09	1
Client Sample ID: H-2 (0-0.5')							Lab Sam	ple ID: 880-5	6863-2
Date Collected: 04/07/25 00:00								Matri	ix: Solid
Date Received: 04/14/25 09:22									
- Method: SW846 8021B - Volatile O	rganic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00321		0.00200		mg/Kg		04/14/25 10:03	04/14/25 12:18	1
Toluene	0.0603		0.00200		mg/Kg		04/14/25 10:03	04/14/25 12:18	1
Ethylbenzene	0.0186		0.00200		mg/Kg		04/14/25 10:03	04/14/25 12:18	1
m,p-Xylenes	0.0600		0.00399		mg/Kg		04/14/25 10:03	04/14/25 12:18	1
o-Xylene	0.0216		0.00200		mg/Kg		04/14/25 10:03	04/14/25 12:18	1
Xylenes, Total	0.0816		0.00399		mg/Kg		04/14/25 10:03	04/14/25 12:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	,								

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

112

Job ID: 880-56863-1 SDG: Lea Co, NM

Lab Sample ID: 880-56863-2

Client Sample ID: H-2 (0-0.5')

Project/Site: SD 23 Central Tank Battery-Flare

Date Collected: 04/07/25 00:00 Date Received: 04/14/25 09:22

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.164		0.00399		mg/Kg			04/14/25 12:18	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			04/15/25 16:58	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		04/14/25 14:36	04/15/25 16:58	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		04/14/25 14:36	04/15/25 16:58	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		04/14/25 14:36	04/15/25 16:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	110		70 - 130				04/14/25 14:36	04/15/25 16:58	1
o-Terphenyl (Surr)	108		70 - 130				04/14/25 14:36	04/15/25 16:58	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	118		9.98		mg/Kg			04/15/25 21:26	1

Client Sample ID: H-3 (0-0.5')

Date Collected: 04/07/25 00:00

Lab Sample ID: 880-56863-3 Matrix: Solid

—					
Method: SW846	8021B - V	olatile Org	anic Com	pounds (GC

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00278		0.00199		mg/Kg		04/14/25 10:03	04/14/25 12:39	1
Toluene	0.0483		0.00199		mg/Kg		04/14/25 10:03	04/14/25 12:39	1
Ethylbenzene	0.0154		0.00199		mg/Kg		04/14/25 10:03	04/14/25 12:39	1
m,p-Xylenes	0.0468		0.00398		mg/Kg		04/14/25 10:03	04/14/25 12:39	1
o-Xylene	0.0149		0.00199		mg/Kg		04/14/25 10:03	04/14/25 12:39	1
Xylenes, Total	0.0617		0.00398		mg/Kg		04/14/25 10:03	04/14/25 12:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130				04/14/25 10:03	04/14/25 12:39	1
1,4-Difluorobenzene (Surr)	99		70 - 130				04/14/25 10:03	04/14/25 12:39	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.128		0.00398		mg/Kg	<u>-</u>		04/14/25 12:39	1
- Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (C	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			04/15/25 17:13	1
- Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		04/14/25 14:36	04/15/25 17:13	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		04/14/25 14:36	04/15/25 17:13	1
C10-C28)									

Eurofins Midland

Matrix: Solid

5

Date Received: 04/14/25 09:22 C)

Project/Site: SD 23 Central Tank Battery-Flare

Client Sample Results

Job ID: 880-56863-1 SDG: Lea Co, NM

Matrix: Solid

Lab Sample ID: 880-56863-3

Client Sample ID: H-3 (0-0.5') Date Collected: 04/07/25 00:00

Date Received: 04/14/25 09:22

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		04/14/25 14:36	04/15/25 17:13	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane (Surr)			70 - 130				04/14/25 14:36	04/15/25 17:13	
o-Terphenyl (Surr)	108		70 _ 130				04/14/25 14:36	04/15/25 17:13	;
Oblastala	92.2		9.96		mg/Kg			04/15/25 21:32	
	02.2		9.96		mg/Kg			04/15/25 21:32	
Chloride	-		0.00						
-	-						Lab Sam	ple ID: 880-5	6863-4
Client Sample ID: H-4 (0-0.5 Date Collected: 04/07/25 00:00	-						Lab Sam	•	6863-4 x: Solic
Client Sample ID: H-4 (0-0.5 Date Collected: 04/07/25 00:00	-						Lab Sam	•	
Client Sample ID: H-4 (0-0.5	")	ounds (GC)					Lab Sam	•	
- Client Sample ID: H-4 (0-0.5 Date Collected: 04/07/25 00:00 Date Received: 04/14/25 09:22	') Organic Comp	ounds (GC) Qualifier		MDL	Unit	D	Lab Sam	•	

1,4-Difluorobenzene (Surr)	98		70 - 130		04/14/25 10:03	04/14/25 12:59	1
4-Bromofluorobenzene (Surr)	102		70 - 130		04/14/25 10:03	04/14/25 12:59	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Xylenes, Total	0.0436		0.00396	mg/Kg	04/14/25 10:03	04/14/25 12:59	1
o-Xylene	0.0113		0.00198	mg/Kg	04/14/25 10:03	04/14/25 12:59	1
m,p-Xylenes	0.0323		0.00396	mg/Kg	04/14/25 10:03	04/14/25 12:59	1
Ethylbenzene	0.0103		0.00198	mg/Kg	04/14/25 10:03	04/14/25 12:59	1
Toluene	0.0346		0.00198	mg/Kg	04/14/25 10:03	04/14/25 12:59	1
Benzene	0.00214		0.00198	mg/Kg	04/14/25 10:03	04/14/25 12:59	- T

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0906		0.00396		mg/Kg			04/14/25 12:59	1
_									

Method: SW846 8015 NM - Diesel R	ange Organ	ics (DRO) (G	C)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			04/15/25 17:28	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		04/14/25 14:36	04/15/25 17:28	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.6	U	49.6		mg/Kg		04/14/25 14:36	04/15/25 17:28	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		04/14/25 14:36	04/15/25 17:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	113		70 - 130				04/14/25 14:36	04/15/25 17:28	1
o-Terphenyl (Surr)	111		70 - 130				04/14/25 14:36	04/15/25 17:28	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	78.4		10.0		mg/Kg			04/15/25 21:38	1

Eurofins Midland
Surrogate Summary

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) BFB1 DFBZ1 **Client Sample ID** (70-130) (70-130) Lab Sample ID 98 880-56863-1 H-1 (0-0.5') 110 880-56863-1 MS H-1 (0-0.5') 104 101 880-56863-1 MSD H-1 (0-0.5') 106 100 880-56863-2 H-2 (0-0.5') 112 99 880-56863-3 H-3 (0-0.5') 110 99 880-56863-4 H-4 (0-0.5') 102 98 LCS 880-107566/1-A Lab Control Sample 98 101 LCSD 880-107566/2-A Lab Control Sample Dup 99 104 MB 880-107566/5-A Method Blank 100 90

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

-				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-56800-A-5-D MS	Matrix Spike	127	121	
880-56800-A-5-E MSD	Matrix Spike Duplicate	125	119	
880-56863-1	H-1 (0-0.5')	119	117	
880-56863-2	H-2 (0-0.5')	110	108	
880-56863-3	H-3 (0-0.5')	110	108	
880-56863-4	H-4 (0-0.5')	113	111	
LCS 880-107636/2-A	Lab Control Sample	132 S1+	129	
LCSD 880-107636/3-A	Lab Control Sample Dup	114	109	
MB 880-107636/1-A	Method Blank	107	113	

Surrogate Legend

1CO = 1-Chlorooctane (Surr)

OTPH = o-Terphenyl (Surr)

Page 73 of 114

6

Job ID: 880-56863-1 SDG: Lea Co, NM

Prep Type: Total/NA

Eurofins Midland

Lab Sample ID: MB 880-107566/5-A

QC Sample Results

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid								Prep Type: 1	Total/NA
Analysis Batch: 107516								Prep Batch:	107566
	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		04/14/25 10:03	04/14/25 11:37	1
Toluene	<0.00200	U	0.00200		mg/Kg		04/14/25 10:03	04/14/25 11:37	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/14/25 10:03	04/14/25 11:37	1
m,p-Xylenes	<0.00400	U	0.00400		mg/Kg		04/14/25 10:03	04/14/25 11:37	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/14/25 10:03	04/14/25 11:37	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		04/14/25 10:03	04/14/25 11:37	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				04/14/25 10:03	04/14/25 11:37	1
1,4-Difluorobenzene (Surr)	90		70 - 130				04/14/25 10:03	04/14/25 11:37	1

Lab Sample ID: LCS 880-107566/1-A Matrix: Solid

Analysis Batch: 107516

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08882		mg/Kg		89	70 - 130	
Toluene	0.100	0.08642		mg/Kg		86	70 - 130	
Ethylbenzene	0.100	0.08213		mg/Kg		82	70 - 130	
m,p-Xylenes	0.200	0.1635		mg/Kg		82	70 - 130	
o-Xylene	0.100	0.08303		mg/Kg		83	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: LCSD 880-107566/2-A

Matrix: Solid

Analysis Batch: 107516							Prep	Batch: 1	07566
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1126		mg/Kg		113	70 - 130	24	35
Toluene	0.100	0.1105		mg/Kg		110	70 - 130	24	35
Ethylbenzene	0.100	0.1052		mg/Kg		105	70 - 130	25	35
m,p-Xylenes	0.200	0.2099		mg/Kg		105	70 - 130	25	35
o-Xylene	0.100	0.1043		mg/Kg		104	70 - 130	23	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Lab Sample ID: 880-56863-1 MS Matrix: Solid

Analysis Potoby 107516

Analysis Batch: 107516									Prep	Batch: 107566
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.00285		0.100	0.1024		mg/Kg		100	70 - 130	
Toluene	0.0501		0.100	0.1418		mg/Kg		92	70 - 130	

Eurofins Midland

Client Sample ID: H-1 (0-0.5')

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

QC Sample Results

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare Job ID: 880-56863-1 SDG: Lea Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid Analysis Batch: 107516										Type: To Batch: 1	
Analysis Datch. 107510	Sample	Sample	Spike	MS	MS				%Rec	Daten. I	07500
Analyte		Qualifier	Added			Unit	D	%Rec	Limits		
Ethylbenzene	0.0152		0.100	0.1043	quantor	mg/Kg		89	70 - 130		
m,p-Xylenes	0.0479		0.200	0.2237		mg/Kg		88	70 - 130		
o-Xylene	0.0164		0.100	0.1047		mg/Kg		88	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)			70 - 130								
1,4-Difluorobenzene (Surr)	101		70 - 130								
Matrix: Solid								Cliei	Prep	Type: To Batch: 1	tal/N 0756
Lab Sample ID: 880-56863-1 Matrix: Solid Analysis Batch: 107516		Sample	Snike	MSD	MSD			Cliei	Prep 1 Prep I	Гуре: То	tal/N/ 0756
Matrix: Solid Analysis Batch: 107516	Sample	Sample Qualifier	Spike Added	MSD Result	MSD Qualifier	Unit	D	%Rec	Prep 1	Гуре: То	tal/N/ 07560 RPI
Matrix: Solid Analysis Batch: 107516 Analyte	Sample	•	•			_ <mark>Unit</mark> mg/Kg	<u>D</u>		Prep Prep %Rec	Type: To Batch: 1	tal/N/ 07566 RPC Limi
Matrix: Solid Analysis Batch: 107516 Analyte Benzene	Sample Result	•	Added	Result			<u>D</u>	%Rec	Prep Prep %Rec Limits	Type: To Batch: 1 	tal/N/ 07566 RPI Limi
Matrix: Solid	Sample 	•	Added	Result 0.1000		mg/Kg	<u>D</u>	%Rec 97	Prep 1 Prep 1 %Rec Limits 70 - 130	Type: To Batch: 1 RPD 2	tal/NA
Matrix: Solid Analysis Batch: 107516 Analyte Benzene Toluene	Sample 	•	Added 0.100 0.100	Result 0.1000 0.1447		mg/Kg mg/Kg	<u>D</u>	%Rec 97 95	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130	Type: To Batch: 1 	tal/N/ 07566 RPI Limi 38
Matrix: Solid Analysis Batch: 107516 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes	Sample Result 0.00285 0.0501 0.0152	•	Added 0.100 0.100 0.100	Result 0.1000 0.1447 0.1017		mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 97 95 86	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch: 1	tal/N/ 07560 RPI Limi 38 38 38
Matrix: Solid Analysis Batch: 107516 Analyte Benzene Toluene Ethylbenzene	Sample Result 0.00285 0.0501 0.0152 0.0479 0.0164	Qualifier	Added 0.100 0.100 0.100 0.200	Result 0.1000 0.1447 0.1017 0.2197		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 97 95 86 86	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: 1 2 2 3 2	tal/N/ 07560 RPI Limi 39 39 39 39 39
Matrix: Solid Analysis Batch: 107516 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes p-Xylene	Sample Result 0.00285 0.0501 0.0152 0.0479 0.0164	Qualifier MSD	Added 0.100 0.100 0.100 0.200	Result 0.1000 0.1447 0.1017 0.2197		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 97 95 86 86	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: 1 2 2 3 2	tal/N/ 07560 RPI Limi 33 33 33 33
Matrix: Solid Analysis Batch: 107516 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes	Sample Result 0.00285 0.0501 0.0152 0.0479 0.0164 <i>MSD</i>	Qualifier MSD	Added 0.100 0.100 0.100 0.200 0.100	Result 0.1000 0.1447 0.1017 0.2197		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 97 95 86 86	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: 1 2 2 3 2	tal/N/ 07560 RPI Limi 33 33 33 33

Lab Sample ID: MB 880-107636/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 107753 Prep Batch: 107636 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac <50.0 U 50.0 04/14/25 14:36 04/15/25 08:36 Gasoline Range Organics mg/Kg 1 (GRO)-C6-C10 Diesel Range Organics (Over 50.0 04/14/25 14:36 04/15/25 08:36 <50.0 U mg/Kg 1 C10-C28) Oil Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 04/14/25 14:36 04/15/25 08:36 1 MB MB %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 70 - 130 04/14/25 14:36 1-Chlorooctane (Surr) 107 04/15/25 08:36 1 70 - 130 04/14/25 14:36 04/15/25 08:36 o-Terphenyl (Surr) 113 1

Lab Sample ID: LCS 880-107636/2-A Matrix: Solid Analysis Batch: 107753

Analysis Batch: 107753							Prep E	Batch: 107636
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1009		mg/Kg		101	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1077		mg/Kg		108	70 - 130	
C10-C28)								

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 75 of 114

5

7

QC Sample Results

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Job ID: 880-56863-1 SDG: Lea Co, NM

Lab Sample ID: LCS 880-10	7636/2-4						Client	Sample	D: Lab Co	ontrol S	ample
Matrix: Solid	1030/2-A						Cheff	Sample		Sintrol Sa Type: To	
Analysis Batch: 107753										Batch: 1	
Analysis Datch. 107755									Пері	Daten. 1	07030
	LCS	LCS									
Surrogate	%Recovery		Limits								
1-Chlorooctane (Surr)	132	S1+	70 - 130								
o-Terphenyl (Surr)	129		70 - 130								
Lab Sample ID: LCSD 880-1	07636/3-4					Clier	nt San	nle ID:	Lab Contro	l Samol	e Dun
Matrix: Solid						•				Гуре: То	
Analysis Batch: 107753										Batch: 1	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	902.0		mg/Kg		90	70 - 130	11	20
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	898.9		mg/Kg		90	70 - 130	18	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane (Surr)			70 - 130								
o-Terphenyl (Surr)	109		70 - 130								
Matrix: Solid Analysis Batch: 107753	Sample	Sample	Spike	MS	MS					Type: To Batch: 1	
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<49.8		999	1036		mg/Kg		104	70 - 130		
Diesel Range Organics (Over C10-C28)	<49.8	U	999	909.8		mg/Kg		89	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane (Surr)	127		70 - 130								
o-Terphenyl (Surr)	121		70 - 130								
Lab Sample ID: 880-56800-A	A-5-E MSD					Cli	ient S	ample IC): Matrix Sp	oike Dup	olicate
Matrix: Solid										Гуре: То	
Analysis Batch: 107753									Prep I	Batch: 1	07636
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	999	1024		mg/Kg		102	70 - 130	1	20
Diesel Range Organics (Over C10-C28)	<49.8	U	999	890.0		mg/Kg		87	70 - 130	2	20
	MSD	MSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane (Surr)	125		70 - 130								

Eurofins Midland

119

70 - 130

QC Sample Results

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare Job ID: 880-56863-1 SDG: Lea Co, NM

Method: 300.0 - Anions, Ion Chromatography

	2/1-A										Cli	ent S	ample ID:	Method	Blank
Matrix: Solid													Prep	Type: S	oluble
Analysis Batch: 107626															
		MB M	IB												
Analyte	Re	esult Q	ualifier		RL		MDL	Unit		D	Prepa	red	Analyz	zed	Dil Fac
Chloride	<	:10.0 U	I		10.0			mg/Kg	J				04/15/25	20:17	1
Lab Sample ID: LCS 880-1075	82/2-A									Clie	nt Sa	mple	ID: Lab C	ontrol S	ample
Matrix: Solid													Prep	Type: S	oluble
Analysis Batch: 107626															
				Spike		LCS	LCS						%Rec		
Analyte				Added		Result	Qual	ifier	Unit			Rec	Limits		
Chloride				250		272.6			mg/Kg			109	90 - 110		
Lab Sample ID: LCSD 880-107	582/3-A								Cli	ent Sa	mple	ID: I	_ab Contro	ol Sampl	le Dup
Matrix: Solid													Prep	Type: S	oluble
Analysis Batch: 107626															
				Spike		LCSD	LCSI	D					%Rec		RPD
Analyte				Added		Result	Qual	ifier	Unit) %	Rec	Limits	RPD	Limit
Chloride				250		272.2			mg/Kg			109	90 - 110	0	20
Lab Sample ID: 880-56864-A-3	B-B MS										С	lient	Sample ID	: Matrix	Spike
Matrix: Solid													Prep	Type: S	oluble
Analysis Batch: 107626															
	Sample	Sample	e	Spike		MS	MS						%Rec		
Analyte	Result	Qualifie	er	Added		Result	Qual	ifier	Unit	0) %	Rec	Limits		
Chloride	132	F1		251		413.9	F1		mg/Kg		_	113	90 - 110		
- Lab Sample ID: 880-56864-A-3	-C MSD								(Client	Sam	ole ID	: Matrix S	oike Dur	olicate
Matrix: Solid														Type: S	
Analysis Batch: 107626														2.	
-	Sample	Sample	e	Spike		MSD	MSD						%Rec		RPD
Analyte	Result	Qualifie	er	Added		Result	Qual	ifier	Unit) %	Rec	Limits	RPD	Limit
		F1													

Eurofins Midland

Released to Imaging: 6/9/2025 3:43:26 PM

QC Association Summary

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare

Job ID: 880-56863-1 SDG: Lea Co, NM

GC VOA

Analysis Batch: 107516

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56863-1	H-1 (0-0.5')	Total/NA	Solid	8021B	107566
880-56863-2	H-2 (0-0.5')	Total/NA	Solid	8021B	107566
380-56863-3	H-3 (0-0.5')	Total/NA	Solid	8021B	107566
880-56863-4	H-4 (0-0.5')	Total/NA	Solid	8021B	107566
/IB 880-107566/5-A	Method Blank	Total/NA	Solid	8021B	107566
.CS 880-107566/1-A	Lab Control Sample	Total/NA	Solid	8021B	107566
_CSD 880-107566/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	107566
380-56863-1 MS	H-1 (0-0.5')	Total/NA	Solid	8021B	107566
380-56863-1 MSD	H-1 (0-0.5')	Total/NA	Solid	8021B	107566

Prep Batch: 107566

LCSD 880-107566/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	107566	
880-56863-1 MS	H-1 (0-0.5')	Total/NA	Solid	8021B	107566	8
880-56863-1 MSD	H-1 (0-0.5')	Total/NA	Solid	8021B	107566	
Prep Batch: 107566						9
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	10
880-56863-1	H-1 (0-0.5')	Total/NA	Solid	5035		
880-56863-2	H-2 (0-0.5')	Total/NA	Solid	5035		11
880-56863-3	H-3 (0-0.5')	Total/NA	Solid	5035		
880-56863-4	H-4 (0-0.5')	Total/NA	Solid	5035		12
MB 880-107566/5-A	Method Blank	Total/NA	Solid	5035		
LCS 880-107566/1-A	Lab Control Sample	Total/NA	Solid	5035		4.9
LCSD 880-107566/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		13
880-56863-1 MS	H-1 (0-0.5')	Total/NA	Solid	5035		
880-56863-1 MSD	H-1 (0-0.5')	Total/NA	Solid	5035		14

Analysis Batch: 107775

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batc
880-56863-1	H-1 (0-0.5')	Total/NA	Solid	Total BTEX	
880-56863-2	H-2 (0-0.5')	Total/NA	Solid	Total BTEX	
880-56863-3	H-3 (0-0.5')	Total/NA	Solid	Total BTEX	
880-56863-4	H-4 (0-0.5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 107636

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56863-1	H-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-56863-2	H-2 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-56863-3	H-3 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-56863-4	H-4 (0-0.5')	Total/NA	Solid	8015NM Prep	
MB 880-107636/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-107636/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-107636/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-56800-A-5-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-56800-A-5-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 107753

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56863-1	H-1 (0-0.5')	Total/NA	Solid	8015B NM	107636
880-56863-2	H-2 (0-0.5')	Total/NA	Solid	8015B NM	107636
880-56863-3	H-3 (0-0.5')	Total/NA	Solid	8015B NM	107636
880-56863-4	H-4 (0-0.5')	Total/NA	Solid	8015B NM	107636
MB 880-107636/1-A	Method Blank	Total/NA	Solid	8015B NM	107636
LCS 880-107636/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	107636

Eurofins Midland

QC Association Summary

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare

GC Semi VOA (Continued)

Analysis Batch: 107753 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-107636/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	107636
880-56800-A-5-D MS	Matrix Spike	Total/NA	Solid	8015B NM	107636
880-56800-A-5-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	107636

Analysis Batch: 107873

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batcl
880-56863-1	H-1 (0-0.5')	Total/NA	Solid	8015 NM	
880-56863-2	H-2 (0-0.5')	Total/NA	Solid	8015 NM	
880-56863-3	H-3 (0-0.5')	Total/NA	Solid	8015 NM	
880-56863-4	H-4 (0-0.5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 107582

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56863-1	H-1 (0-0.5')	Soluble	Solid	DI Leach	
880-56863-2	H-2 (0-0.5')	Soluble	Solid	DI Leach	
880-56863-3	H-3 (0-0.5')	Soluble	Solid	DI Leach	
880-56863-4	H-4 (0-0.5')	Soluble	Solid	DI Leach	
MB 880-107582/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-107582/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-107582/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-56864-A-3-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-56864-A-3-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 107626

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56863-1	H-1 (0-0.5')	Soluble	Solid	300.0	107582
880-56863-2	H-2 (0-0.5')	Soluble	Solid	300.0	107582
880-56863-3	H-3 (0-0.5')	Soluble	Solid	300.0	107582
880-56863-4	H-4 (0-0.5')	Soluble	Solid	300.0	107582
MB 880-107582/1-A	Method Blank	Soluble	Solid	300.0	107582
LCS 880-107582/2-A	Lab Control Sample	Soluble	Solid	300.0	107582
LCSD 880-107582/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	107582
880-56864-A-3-B MS	Matrix Spike	Soluble	Solid	300.0	107582
880-56864-A-3-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	107582

Job ID: 880-56863-1 SDG: Lea Co, NM

Client Sample ID: H-1 (0-0.5')

Date Collected: 04/07/25 00:00

Date Received: 04/14/25 09:22

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Total/NA

Project/Site: SD 23 Central Tank Battery-Flare

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Client Sample ID: H-2 (0-0.5')

Date Collected: 04/07/25 00:00

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8021B

8015 NM

Client: Carmona Resources

Initial

Amount

4.96 g

5 mL

10.04 g

1 uL

5.03 g

5 mL

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

5 mL

Batch

Number

107566

107516

107775

107873

107636

107753

107582

107626

Batch

Number

107566

107516

Dil

1

1

1

1

1

1

Factor

Job ID: 880-56863-1 SDG: Lea Co, NM

Lab Sample ID: 880-56863-1

Analyst

MNR

MNR

AJ

AJ

FC

TKC

SA

СН

Prepared

or Analyzed

04/14/25 10:03

04/14/25 11:58

04/14/25 11:58

04/15/25 16:43

04/14/25 14:36

04/15/25 16:43

04/14/25 11:12

04/15/25 21:09

Prepared

or Analyzed

04/14/25 10:03

04/14/25 12:18

04/14/25 12:18

04/15/25 16:58

04/14/25 14:36

04/15/25 16:58

04/14/25 11:12

04/15/25 21:26

Matrix: Solid

Lab

EET MID

EET MID

EET MID

EET MID

EET MID

EET MID

FFT MID

EET MID

Lab

EET MID

Lab Sample ID: 880-56863-2 Matrix: Solid

Analyst

MNR

MNR

A.I

AJ

FC

TKC

SA

СН

Date Received	: 04/14/25 09:2	22				
	Batch	Batch		Dil	Initial	Final
Prep Type	Туре	Method	Run	Factor	Amount	Amount
Total/NA	Prep	5035			5.01 g	5 mL

Run

Total/NA	Analysis	Total BTEX	1			107775
Total/NA	Analysis	8015 NM	1			107873
Total/NA	Prep	8015NM Prep		10.01 g	10 mL	107636
Total/NA	Analysis	8015B NM	1	1 uL	1 uL	107753
Soluble	Leach	DI Leach		5.01 g	50 mL	107582
Soluble	Analysis	300.0	1			107626

Client Sample ID: H-3 (0-0.5') Date Collected: 04/07/25 00:00 Date Received: 04/14/25 09:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	107566	04/14/25 10:03	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107516	04/14/25 12:39	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107775	04/14/25 12:39	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107873	04/15/25 17:13	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	107636	04/14/25 14:36	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107753	04/15/25 17:13	ТКС	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	107582	04/14/25 11:12	SA	EET MID
Soluble	Analysis	300.0		1			107626	04/15/25 21:32	СН	EET MID

Client Sample ID: H-4 (0-0.5') Date Collected: 04/07/25 00:00 Date Received: 04/14/25 09:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	107566	04/14/25 10:03	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107516	04/14/25 12:59	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107775	04/14/25 12:59	AJ	EET MID

Eurofins Midland

Matrix: Solid

Lab Sample ID: 880-56863-3

Lab Sample ID: 880-56863-4

Matrix: Solid

Project/Site: SD 23 Central Tank Battery-Flare

Client Sample ID: H-4 (0-0.5') Date Collected: 04/07/25 00:00 Date Received: 04/14/25 09:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			107873	04/15/25 17:28	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.09 g	10 mL	107636	04/14/25 14:36	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107753	04/15/25 17:28	TKC	EET MID
Soluble	Leach	DI Leach			5.00 g	50 mL	107582	04/14/25 11:12	SA	EET MID
Soluble	Analysis	300.0		1			107626	04/15/25 21:38	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-56863-1 SDG: Lea Co, NM

Lab Sample ID: 880-56863-4

Matrix: Solid

Page 81 of 114

Eurofins Midland

Released to Imaging: 6/9/2025 3:43:26 PM

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare Job ID: 880-56863-1 SDG: Lea Co, NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	m	Identification Number	Expiration Date
exas	NELAF)	T104704400	06-30-25
			· · · · · · · · · · · · · · · · · · ·	
for which the agency	does not offer certification.		ied by the governing authority. This list	may include analytes
for which the agency Analysis Method		Matrix	Analyte	may include analytes
for which the agency	does not offer certification.			may include analytes

Eurofins Midland

Page 82 of 114

10

Method Summary

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare

Job ID: 880-56863-1 SDG: Lea Co, NM

8021B Volatile Organic Compounds (GC) SW846 EET MID Total BTEX Total BTEX Calculation TAL SOP EET MID 8015B NM Diesel Range Organics (DRO) (GC) SW846 EET MID 8015B NM Diesel Range Organics (DRO) (GC) SW846 EET MID 8015B NM Diesel Range Organics (DRO) (GC) SW846 EET MID 800.0 Anions, Ion Chromatography EPA EET MID 8015NM Prep Microextraction SW846 EET MID 801E Leach Deionized Water Leaching Procedure ASTM EET MID Protocol References: ASTM = ASTM International EPA = US Environmental Protection Agency SW846 "Test America Laboratories, Standard Operating Procedure Laboratory References: EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440 EET MID	Method	Method Description	Protocol	Laboratory
8015 NMDiesel Range Organics (DRO) (GC)SW846EET MID8015B NMDiesel Range Organics (DRO) (GC)SW846EET MID300.0Anions, Ion ChromatographyEPAEET MID5035Closed System Purge and TrapSW846EET MID8015NM PrepMicroextractionSW846EET MIDDI LeachDeionized Water Leaching ProcedureASTMEET MIDProtocol Refereres:ASTM = ASTM International EPA = US Environmental Protection Agency SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating ProcedureStandard Operating Procedure	3021B	Volatile Organic Compounds (GC)	SW846	EET MID
8015B NM Diesel Range Organics (DRO) (GC) SW846 EET MID 800.0 Anions, Ion Chromatography EPA EET MID 5035 Closed System Purge and Trap SW846 EET MID 8015B NM Prep Microextraction SW846 EET MID 8015N Prep Microextraction SW846 EET MID DI Leach Deionized Water Leaching Procedure ASTM EET MID Protocol References: ASTM = ASTM International EPA = US Environmental Protection Agency SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure Laboratory References: Laboratory References: Kastoria Astra Procedure Kastoria Astra Procedure	lotal BTEX	Total BTEX Calculation	TAL SOP	EET MID
300.0Anions, Ion ChromatographyEPAEET MID5035Closed System Purge and TrapSW846EET MID8015NM PrepMicroextractionSW846EET MIDDI LeachDeionized Water Leaching ProcedureASTMEET MIDProtocol References:ASTM = ASTM InternationalEPA = US Environmental Protection AgencySW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.TAL SOP = TestAmerica Laboratories, Standard Operating Procedure	3015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
5035 Closed System Purge and Trap SW846 EET MID 8015NM Prep Microextraction SW846 EET MID DI Leach Deionized Water Leaching Procedure ASTM EET MID Protocol References: ASTM = ASTM International EPA = US Environmental Protection Agency SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure Laboratory References: Laboratory References: Kasta Asta Asta Asta Asta Asta Asta Asta	3015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015NM Prep Microextraction SW846 EET MID DI Leach Deionized Water Leaching Procedure ASTM EET MID Protocol References: ASTM = ASTM International EPA = US Environmental Protection Agency SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure Laboratory References: Laboratory References: Kerences	300.0	Anions, Ion Chromatography	EPA	EET MID
DI Leach Deionized Water Leaching Procedure ASTM EET MID Protocol References: ASTM = ASTM International EPA = US Environmental Protection Agency SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure Laboratory References: Laboratory References: ASTM ASTM	5035	Closed System Purge and Trap	SW846	EET MID
Protocol References: ASTM = ASTM International EPA = US Environmental Protection Agency SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure Laboratory References:	3015NM Prep	Microextraction	SW846	EET MID
ASTM = ASTM International EPA = US Environmental Protection Agency SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure Laboratory References:	OI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Laboratory References:		5 ,	dition, November 1986 And Its Updates.	
-				
	-		0	
			-	

Laboratory References:

Page 83 of 114

Eurofins Midland

Client: Carmona Resources Project/Site: SD 23 Central Tank Battery-Flare Job ID: 880-56863-1 SDG: Lea Co, NM

ab Sample ID.	Client Sample ID	Matrix	Collected	Received	
80-56863-1	H-1 (0-0.5')	Solid	04/07/25 00:00	04/14/25 09:22	
80-56863-2	H-2 (0-0.5')	Solid	04/07/25 00:00	04/14/25 09:22	
80-56863-3	H-3 (0-0.5')	Solid	04/07/25 00:00	04/14/25 09:22	
80-56863-4	H-4 (0-0.5')	Solid	04/07/25 00:00	04/14/25 09:22	
					· · · · · · · · · · · · · · · · · · ·

5	1 Mar	Relinquished b					H-4 (0-0.5')	H-3 (0-0.5')	H-2 (0-0.5')	H-1 (0-0.5')	Sample Identification	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO井	Sampler's Name:	Project Location	Project Number:	Project Name:	Phone:	City, State ZIP:	Address:	Company Name:	Project Manager:	
		Inquished by: (Signature)					-0.5')	-0.5')	-0.5')	-0.5')	ntification	1	als: Yes	lls: Yes	\cap						SD 23 Cent	432-813-8988	Midland, TX 79701	310 West Wall Ste.	Carmona Resources	Ashton Thielke	
							4/7/2025	4/7/2025	4/7/2025	4/7/2025	Date	(NO NIA	NO NIA	Yes No	Lemp Blank:		GPJ	Lea Co. NM	2686	SD 23 Central Tank Battery - Flare		79701	II Ste. 500	sources	e	
	1	Received	Please s								Time	Corrected	Temperatu	Correction Factor:		Yes No	2				y - Flare						
4	1	Received by: (Signature)	send results				×	×	×	х	Soil	Corrected Temperature:	Temperature Reading:	Factor:	ster ID:	Wet Ice:	lab, if recei	TAT starts the day received by the	Due Date:	Routine	Turn	Email:					
		ire)	to cmoeh								Water	Q.	2.6		XL	(Yes)	lab, if received by 4:30pm	day received	Normal	Rush	Turn Around	ThielkeA@Carmonaresources.com	City, State ZIP:	Address:	Company Name	Bill to: (if different)	
	4		ring@car				Grab/	Grab/	Grab/	Grab/	Grab/ #	U	r S	-	8	No	1	by the		0.1		Carmona	ZIP:		lame:	erent)	
	4114/25	Da	monare		_		-			-1	# of Cont			2	aran		rs		1	Pres. Code		aresour	ALC: NO			C:	
	8:1	Date/Time	sourc			$\left \right $	×	××	××	××	TPI	H 80		-	802 RO +	_) + M	RO)				ces.cor				armona	
	0		es.com		-		×		×	×			c	hlo	ide 3	800						B				Carmona Resources	
6	4 N	Relinquished by: (Signature)	Please send results to cmoehring@carmonaresources.com and mcarmona@carmonaresources.com																		ANALYSIS					S	
		Signature)	monaresour																		LYSIS REQUEST	Deliver	Reporti	State o	Progra		
		Receive	ces.com																			Deliverables: EDD	Reporting:Level II Level III PST/UST	State of Project:	Program: UST/PST PRP	A State of	880-56863
		Received by: (Signature)			+			\vdash					-					-					Level III			Work O	33 Chain
		ignature									1000	Z		_		н	Ţ	Ŧ	0	z		ADaPT	LPST/U]	Brownfi	rder Co	Chain of Custody
	-)									Sample	aOH+Ascorbi	Zn Acetate+NaOH: Zn	Na2S2O3: NaSO3	NaHSO4: NABIS	H ₃ PO ₄ : HP	H ₂ S0 ₄ : H ₂	HCL: HC	Cool: Cool	None: NO	Preserva	Other:	JST TRRP		Brownfields RRC	Work Order Comments	ydy
		Date/Time									Sample Comments	NaOH+Ascorbic Acid: SAPC	OH: Zn	0 ₃	IS		NaOH: Na	HNO3: HN	MeOH: Me	DI Water: H ₂ O	Preservative Codes	1.1					

Received by OCD: 5/13/2025 8:28:45 AM

Page 21 of 22

5 6

13

Chain of Custody

14

Job Number: 880-56863-1 SDG Number: Lea Co, NM

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 56863 List Number: 1

Creator: Vasquez, Julisa

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ashton Thielke Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 3/27/2025 4:28:44 PM

JOB DESCRIPTION

Salado Draw 23 CTB (12.03.2023) Lea Co, NM

JOB NUMBER

880-55873-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notes and contact information

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 3/27/2025 4:28:44 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-55873-1 SDG: Lea Co, NM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
-	
Client Sample Results	
Surrogate Summary	
-	8
	12
	14
Certification Summary	15
Method Summary	16
Sample Summary	17
	18
Receipt Checklists	19

Eurofins Midland 3/27/2025 Qualifier F1

υ

U

F1

U

Ŭ

DL

	Demitions/Glossary		
	ona Resources Salado Draw 23 CTB (12.03.2023)	Job ID: 880-55873-1 SDG: Lea Co, NM	2
Qualifiers			3
GC VOA Qualifier	Qualifier Description		4

MS and/or MSD recovery exceeds control limits. Indicates the analyte was analyzed for but not detected. GC Semi VOA Qualifier **Qualifier Description** S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected. HPLC/IC Qualifier **Qualifier Description** MS and/or MSD recovery exceeds control limits. Indicates the analyte was analyzed for but not detected. Glossary Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DFR Duplicate Error Ratio (normalized absolute difference) Dil Fac **Dilution Factor** Detection Limit (DoD/DOE)

DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"

MDA	Minimum	Dete	ctable	Activity	' (F	Radic	oche	mis	try)	
				-			·			

MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit

Minimum Level (Dioxin) ML MPN Most Probable Number MQL Method Quantitation Limit NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit Presumptive PRES QC **Quality Control**

- RER Relative Error Ratio (Radiochemistry) Reporting Limit or Requested Limit (Radiochemistry) RL
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- Toxicity Equivalent Quotient (Dioxin) TEQ
- TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources Project: Salado Draw 23 CTB (12.03.2023) Job ID: 880-55873-1

Eurofins Midland

Job ID: 880-55873-1

Job Narrative 880-55873-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 3/20/2025 4:23 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -9.3°C.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (LCS 880-105765/2-A), (LCSD 880-105765/3-A), (880-55872-A-14-C MS) and (880-55872-A-14-D MSD). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D - Soluble: The Chloride matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-105780 and analytical batch 880-105791 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

The associated samples are: Rattlesnake Pit- Backfill Samples (880-55873-1), (880-55872-A-26-C), (880-55872-A-26-D MS) and (880-55872-A-26-E MSD).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

Analyte

Client Sample Results

RL

MDL Unit

D

Prepared

Client: Carmona Resources Project/Site: Salado Draw 23 CTB (12.03.2023)

Client Sample ID: Rattlesnake Pit- Backfill Samples Date Collected: 03/19/25 00:00 Date Received: 03/20/25 16:23

Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

Benzene	<0.00200	U	0.00200		mg/Kg		03/21/25 12:41	03/21/25 17:57	1
Toluene	<0.00200	U	0.00200		mg/Kg		03/21/25 12:41	03/21/25 17:57	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		03/21/25 12:41	03/21/25 17:57	1
m,p-Xylenes	<0.00401	U	0.00401		mg/Kg		03/21/25 12:41	03/21/25 17:57	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		03/21/25 12:41	03/21/25 17:57	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		03/21/25 12:41	03/21/25 17:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130				03/21/25 12:41	03/21/25 17:57	1
1,4-Difluorobenzene (Surr)	100		70 - 130				03/21/25 12:41	03/21/25 17:57	1
- Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			03/21/25 17:57	1
Total BTEX Method: SW846 8015 NM - Diese Analyte	l Range Organ			MDL		D	Prepared	03/21/25 17:57 Analyzed	1 Dil Fac
_ Method: SW846 8015 NM - Diese	l Range Organ	<mark>ics (DRO) (</mark> Qualifier	GC)	MDL		<u>D</u>	Prepared		1 Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH	I Range Organ Result <49.7	<mark>ics (DRO) ((</mark> Qualifier ∪	GC) <u>RL</u> 49.7	MDL	Unit	<u>D</u>	Prepared	Analyzed	1 1
Method: SW846 8015 NM - Diese	I Range Organ - Result <49.7 sel Range Orga	<mark>ics (DRO) ((</mark> Qualifier ∪	GC) <u>RL</u> 49.7	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed	1 Dil Fac 1 Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	I Range Organ - Result <49.7 sel Range Orga	ics (DRO) (Qualifier U nics (DRO) Qualifier	GC) <u>RL</u> 49.7 —		Unit mg/Kg			Analyzed 03/22/25 06:14	1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	I Range Organ Result <49.7 sel Range Orga Result	ics (DRO) ((Qualifier U nics (DRO) Qualifier U	GC) <u>RL</u> 49.7 (GC) <u>RL</u>		Unit mg/Kg Unit		Prepared	Analyzed 03/22/25 06:14 Analyzed	1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	I Range Organ Result <49.7 Sel Range Orga Result <49.7	ics (DRO) ((Qualifier U nics (DRO) Qualifier U U	GC) <u>RL</u> 49.7 (GC) <u>RL</u> 49.7		Unit mg/Kg Unit mg/Kg		Prepared 03/21/25 11:44	Analyzed 03/22/25 06:14 Analyzed 03/22/25 06:14	1 Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	I Range Organ Result <49.7 Sel Range Orga Result <49.7 <49.7	ics (DRO) ((Qualifier U nics (DRO) Qualifier U U U	GC) <u>RL</u> 49.7 (GC) <u>RL</u> 49.7 49.7		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 03/21/25 11:44 03/21/25 11:44	Analyzed 03/22/25 06:14 Analyzed 03/22/25 06:14 03/22/25 06:14	1 Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	I Range Organ Result <49.7 Sel Range Orga Result <49.7 <49.7 <49.7	ics (DRO) ((Qualifier U nics (DRO) Qualifier U U U	GC) <u>RL</u> 49.7 (GC) <u>RL</u> 49.7 49.7 49.7		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 03/21/25 11:44 03/21/25 11:44 03/21/25 11:44	Analyzed 03/22/25 06:14 Analyzed 03/22/25 06:14 03/22/25 06:14	1 Dil Fac 1 1

Matrix: Solid

Dil Fac

5

Job ID: 880-55873-1 SDG: Lea Co, NM

Lab Sample ID: 880-55873-1

Analyzed

Eurofins Midland

Released to Imaging: 6/9/2025 3:43:26 PM

1

Surrogate Summary

Client: Carmona Resources Project/Site: Salado Draw 23 CTB (12.03.2023)

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

_				Percent Surrogate Recovery (Acceptance Limits)	
	Client Comple ID	BFB1 (70-130)	DFBZ1 (70-130)		Ę
Lab Sample ID 880-55863-A-1-D MS	Client Sample ID Matrix Spike	105	102	·	
880-55863-A-1-E MSD	Matrix Spike Duplicate	98	101		6
880-55873-1	Rattlesnake Pit- Backfill	107	100		
	Samples				
LCS 880-105749/1-A	Lab Control Sample	93	100		
LCSD 880-105749/2-A	Lab Control Sample Dup	101	102		0
MB 880-105749/5-A	Method Blank	104	97		Ö
Surrogate Legend					9

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
imple ID	Client Sample ID	(70-130)	(70-130)	
-A-14-C MS	Matrix Spike	133 S1+	134 S1+	
-A-14-D MSD	Matrix Spike Duplicate	132 S1+	133 S1+	
3-1	Rattlesnake Pit- Backfill	129	115	
	Samples			
5765/2-A	Lab Control Sample	136 S1+	143 S1+	
)-105765/3-A	Lab Control Sample Dup	158 S1+	140 S1+	
0-105765/1-A	Method Blank	120	118	

Surrogate Legend

1CO = 1-Chlorooctane (Surr)

OTPH = o-Terphenyl (Surr)

Page 93 of 114

Job ID: 880-55873-1 SDG: Lea Co, NM

Prep Type: Total/NA

Lab Sample ID: MB 880-105749/5-A

QC Sample Results

Client: Carmona Resources Project/Site: Salado Draw 23 CTB (12.03.2023)

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Analysis Batch: 105721								Prep Type: 1 Prep Batch:	
	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		03/21/25 09:56	03/21/25 12:27	1
Toluene	<0.00200	U	0.00200		mg/Kg		03/21/25 09:56	03/21/25 12:27	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		03/21/25 09:56	03/21/25 12:27	1
m,p-Xylenes	<0.00399	U	0.00399		mg/Kg		03/21/25 09:56	03/21/25 12:27	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		03/21/25 09:56	03/21/25 12:27	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		03/21/25 09:56	03/21/25 12:27	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				03/21/25 09:56	03/21/25 12:27	1
1,4-Difluorobenzene (Surr)	97		70 - 130				03/21/25 09:56	03/21/25 12:27	1

Lab Sample ID: LCS 880-105749/1-A Matrix: Solid

Analysis Batch: 105721

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09519		mg/Kg		95	70 - 130	
Toluene	0.100	0.09579		mg/Kg		96	70 - 130	
Ethylbenzene	0.100	0.08643		mg/Kg		86	70 - 130	
m,p-Xylenes	0.200	0.1751		mg/Kg		88	70 - 130	
o-Xylene	0.100	0.08776		mg/Kg		88	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: LCSD 880-105749/2-A

Matrix: Solid

Analysis Batch: 105721							Prep I	Batch: 1	05749
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1010		mg/Kg		101	70 - 130	6	35
Toluene	0.100	0.1019		mg/Kg		102	70 - 130	6	35
Ethylbenzene	0.100	0.09175		mg/Kg		92	70 - 130	6	35
m,p-Xylenes	0.200	0.1862		mg/Kg		93	70 - 130	6	35
o-Xylene	0.100	0.09378		mg/Kg		94	70 - 130	7	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Lab Sample ID: 880-55863-A-1-D MS

Matrix: Solid

Analysis Batch: 105721									Prep	Batch: 105749
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U	0.100	0.1009		mg/Kg		101	70 - 130	
Toluene	0.0884	F1	0.100	0.1652		mg/Kg		77	70 - 130	

Eurofins Midland

Prep Type: Total/NA

Client Sample ID: Matrix Spike

SDG: Lea Co, NM

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 105749

Prep Type: Total/NA

Released to Imaging: 6/9/2025 3:43:26 PM

QC Sample Results

Client: Carmona Resources Project/Site: Salado Draw 23 CTB (12.03.2023) Job ID: 880-55873-1 SDG: Lea Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-55863-/ Matrix: Solid								onent	Sample ID Prep 1	Type: To	
Analysis Batch: 105721										Batch: 1	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ethylbenzene	0.00488		0.100	0.09153		mg/Kg		87	70 - 130		
n,p-Xylenes	0.0229		0.200	0.1979		mg/Kg		88	70 - 130		
o-Xylene	0.00771		0.100	0.09433		mg/Kg		87	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	105		70 - 130								
1,4-Difluorobenzene (Surr)	102		70 - 130								
Lab Sample ID: 880-55863-4	A-1-F MSD					Cli	ient S	ample II): Matrix Sp	oike Dur	olicat
Matrix: Solid										Type: To	
Analysis Batch: 105721										Batch: 1	
,, ,	Sample	Sample	Spike	MSD	MSD				%Rec		RPI
Analyte	•	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Benzene	<0.00202	U	0.100	0.09402		mg/Kg		94	70 - 130	7	3
Toluene	0.0884	F1	0.100	0.1346	F1	mg/Kg		46	70 - 130	20	3
Ethylbenzene	0.00488		0.100	0.08369		mg/Kg		79	70 - 130	9	3
m,p-Xylenes	0.0229		0.200	0.1782		mg/Kg		78	70 - 130	11	3
o-Xylene	0.00771		0.100	0.08640		mg/Kg		79	70 - 130	9	3
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	98		70 - 130								
1,4-Difluorobenzene (Surr)	101		70 - 130								
lethod: 8015B NM - Die	sel Range O	rganics (E	DRO) (GC)								
		<u> </u>	-/(-/								
	765/1-4							Client S	Sample ID:	Method	Blan
Lab Sample ID: MB 880-105 Matrix: Solid										Type: To	

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac <50.0 U 50.0 03/21/25 11:44 03/22/25 01:07 Gasoline Range Organics mg/Kg 1 (GRO)-C6-C10 Diesel Range Organics (Over 50.0 03/21/25 11:44 03/22/25 01:07 <50.0 U mg/Kg 1 C10-C28) Oil Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 03/21/25 11:44 03/22/25 01:07 1 MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac

70 - 130

70 - 130

120

o-Terphenyl (Surr)	118
Lab Sample ID: LCS 880-105765/2-A	

Matrix: Solid Analysis Batch: 105740

1-Chlorooctane (Surr)

Analysis Batch: 105740							Prep Batch: 105765		
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	1000	1179		mg/Kg		118	70 - 130	· ·	
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	1234		mg/Kg		123	70 - 130		
C10-C28)									

03/21/25 11:44

03/21/25 11:44

03/22/25 01:07

03/22/25 01:07

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

5

7

Released to Imaging: 6/9/2025 3:43:26 PM

1

1

QC Sample Results

Client: Carmona Resources Project/Site: Salado Draw 23 CTB (12.03.2023)

Method: 801

4 5 6

7

Method: 8015B NM - Dies	sel Range O	rganics (I	DRO) (GC) (0	Continue	ed)						
Lab Sample ID: LCS 880-105	5765/2-A						Client	t Sample	D: Lab C	ontrol Sa	ample
Matrix: Solid										Type: To	
Analysis Batch: 105740										Batch: 1	
	1.00	LCS									
Surrogate	%Recovery		Limits								
1-Chlorooctane (Surr)		S1+	70 - 130								
o-Terphenyl (Surr)		S1+	70 - 130								
-											
Lab Sample ID: LCSD 880-1	05765/3-A					Clier	nt San	nple ID:	Lab Contro		
Matrix: Solid										Гуре: То	
Analysis Batch: 105740									Prep	Batch: 1	05765
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	1179		mg/Kg		118	70 - 130	0	20
(GRO)-C6-C10			1000	4400		m m/14			70 400	0	00
Diesel Range Organics (Over C10-C28)			1000	1139		mg/Kg		114	70 - 130	8	20
010-020)											
		LCSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane (Surr)		S1+	70 - 130								
o-Terphenyl (Surr)	140	S1+	70 - 130								
Lab Sample ID: 880-55872-A	-14-C MS							Client	Sample ID	· Matrix	Snike
Matrix: Solid								onom		Type: To	
Analysis Batch: 105740										Batch: 1	
	Sample	Sample	Spike	MS	MS				%Rec	batom. I	
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.8		999	1087		mg/Kg		109	70 - 130		
(GRO)-C6-C10						5. 5					
Diesel Range Organics (Over	<49.8	U	999	1200		mg/Kg		120	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane (Surr)	133	S1+	70 - 130								
o-Terphenyl (Surr)	134	S1+	70 - 130								
-											
Lab Sample ID: 880-55872-A	-14-D MSD					Cli	ient S	ample IE): Matrix S		
Matrix: Solid										Type: To	
Analysis Batch: 105740										Batch: 1	
		Sample	Spike		MSD				%Rec		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.8	U	999	1017		mg/Kg		102	70 - 130	7	20
(GRO)-C6-C10 Diesel Range Organics (Over	<49.8	П	999	1163		mg/Kg		116	70 - 130	3	20
C10-C28)	~43.0	0	555	1103		mg/rxg		110	10 - 150	5	20
· · · /											
Sumerate		MSD	1 :								
Surrogate	%Recovery	Qualifier	Limits								

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane (Surr)	132	S1+	70 - 130
o-Terphenyl (Surr)	133	S1+	70 - 130

QC Sample Results

Client: Carmona Resources Project/Site: Salado Draw 23 CTB (12.03.2023) Job ID: 880-55873-1 SDG: Lea Co, NM

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-105780)/1-A							Client S	Sample ID:	Method	Blank
Matrix: Solid									Prep	Type: So	oluble
Analysis Batch: 105791											
-		MB MB									
Analyte	Re	esult Qualifier		RL	MDL U	Jnit	D	Prepared	Analyz	ed	Dil Fac
Chloride	<	:10.0 U		10.0	r	ng/Kg			03/21/25	20:01	1
Lab Sample ID: LCS 880-10578	0/2-A						Clier	t Sample	e ID: Lab C	ontrol Sa	ample
Matrix: Solid									Prep	Type: So	oluble
Analysis Batch: 105791											
-			Spike	LC	S LCS				%Rec		
Analyte			Added	Resu	lt Qualifi	ier Unit	D	%Rec	Limits		
Chloride			250	248	2	mg/Kg		99	90 - 110		
Lab Sample ID: LCSD 880-1057	780/3-A					Cli	ient Sa	mple ID:	Lab Contro	Sampl	e Dup
Matrix: Solid										Type: So	
Analysis Batch: 105791										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			Spike	LCS	D LCSD				%Rec		RPD
Analyte			Added	Resu	lt Qualifi	ier Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	248	2	mg/Kg		99	90 - 110	0	20
Lab Sample ID: 880-55872-A-20	6-D MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid										Type: So	
Analysis Batch: 105791										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Sample	Sample	Spike	N	S MS				%Rec		
Analyte	Result	Qualifier	Added	Resu	lt Qualifi	ier Unit	D	%Rec	Limits		
Chloride	216	F1	250	516	9 F1	mg/Kg		120	90 - 110		
Lab Sample ID: 880-55872-A-20	6-E MSD						Client S	Sample II	D: Matrix S	nike Dun	licate
Matrix: Solid										Type: So	
Analysis Batch: 105791									ep		
	Sample	Sample	Spike	мз	D MSD				%Rec		RPD
Analyte	•	Qualifier	Added		lt Qualifi	ier Unit	D	%Rec	Limits	RPD	Limit
Chloride	216		250		1 F1	mg/Kg		120	90 - 110	0	20
	2.0			011						5	

Eurofins Midland

QC Association Summary

Client: Carmona Resources Project/Site: Salado Draw 23 CTB (12.03.2023)

Job ID: 880-55873-1

SDG: Lea Co, NM

GC VOA

Analysis Batch: 105721

alysis Batch: 105721					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55873-1	Rattlesnake Pit- Backfill Samples	Total/NA	Solid	8021B	105749
MB 880-105749/5-A	Method Blank	Total/NA	Solid	8021B	105749
LCS 880-105749/1-A	Lab Control Sample	Total/NA	Solid	8021B	105749
LCSD 880-105749/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	105749
880-55863-A-1-D MS	Matrix Spike	Total/NA	Solid	8021B	105749
880-55863-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	105749
rep Batch: 105749					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55873-1	Rattlesnake Pit- Backfill Samples	Total/NA	Solid	5035	
MB 880-105749/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-105749/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-105749/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-55863-A-1-D MS	Matrix Spike	Total/NA	Solid	5035	
880-55863-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
analysis Batch: 105928	l -				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55873-1	Rattlesnake Pit- Backfill Samples	Total/NA	Solid	Total BTEX	

Analysis Batch: 105740

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55873-1	Rattlesnake Pit- Backfill Samples	Total/NA	Solid	8015B NM	105765
MB 880-105765/1-A	Method Blank	Total/NA	Solid	8015B NM	105765
LCS 880-105765/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	105765
LCSD 880-105765/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	105765
880-55872-A-14-C MS	Matrix Spike	Total/NA	Solid	8015B NM	105765
880-55872-A-14-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	105765

Prep Batch: 105765

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55873-1	Rattlesnake Pit- Backfill Samples	Total/NA	Solid	8015NM Prep	
MB 880-105765/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-105765/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-105765/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-55872-A-14-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-55872-A-14-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	
Analysis Batch: 106014					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-55873-1	Rattlesnake Pit- Backfill Samples	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 105780

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch	
880-55873-1	Rattlesnake Pit- Backfill Samples	Soluble	Solid	DI Leach	
MB 880-105780/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-105780/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-105780/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Eurofins Midland

QC Association Summary

Client: Carmona Resources Project/Site: Salado Draw 23 CTB (12.03.2023)

HPLC/IC (Continued)

Leach Batch: 105780 (Continued)

Lab Sample ID 880-55872-A-26-D MS	Client Sample ID Matrix Spike	Prep Type Soluble	Matrix Solid	Method DI Leach	Prep Batch
880-55872-A-26-E MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
Analysis Batch: 105791					

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-55873-1	Rattlesnake Pit- Backfill Samples	Soluble	Solid	300.0	105780	
MB 880-105780/1-A	Method Blank	Soluble	Solid	300.0	105780	
LCS 880-105780/2-A	Lab Control Sample	Soluble	Solid	300.0	105780	8
LCSD 880-105780/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	105780	
880-55872-A-26-D MS	Matrix Spike	Soluble	Solid	300.0	105780	9
880-55872-A-26-E MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	105780	
					1	

5 6

Job ID: 880-55873-1

SDG: Lea Co, NM

Client: Carmona Resources Project/Site: Salado Draw 23 CTB (12.03.2023)

Client Sample ID: Rattlesnake Pit- Backfill Samples Date Collected: 03/19/25 00:00 Date Received: 03/20/25 16:23

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	105749	03/21/25 12:41	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	105721	03/21/25 17:57	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			105928	03/21/25 17:57	AJ	EET MID
Total/NA	Analysis	8015 NM		1			106014	03/22/25 06:14	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.07 g	10 mL	105765	03/21/25 11:44	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	105740	03/22/25 06:14	ткс	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	105780	03/21/25 13:48	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	105791	03/21/25 21:58	SMC	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-55873-1 SDG: Lea Co, NM

Page 100 of 114

Lab Sample ID: 880-55873-1

Matrix: Solid

Eurofins Midland

Released to Imaging: 6/9/2025 3:43:26 PM

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Salado Draw 23 CTB (12.03.2023) Job ID: 880-55873-1 SDG: Lea Co, NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Program	n	Identification Number	Expiration Date
exas	NELAP		T104704400	06-30-25
The following enalyte	are included in this report but	the leberatory is not cortif	ied by the governing authority. This lis	may include analyter
for which the agency	does not offer certification.	-		
for which the agency Analysis Method		Matrix	Analyte	may include analytes
for which the agency	does not offer certification.	-		

Eurofins Midland

Page 101 of 114

10

Method Summary

Client: Carmona Resources Project/Site: Salado Draw 23 CTB (12.03.2023) Job ID: 880-55873-1 SDG: Lea Co, NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
EPA = US	STM International Environmental Protection Agency 'Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Editi	on November 1986 And Its Lindstee	
	= TestAmerica Laboratories, Standard Operating Procedure	on, november 1900 And its opdates.	
Laboratory Re	e ferences: = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Eurofins Midland

Sample Summary

Client: Carmona Resources Project/Site: Salado Draw 23 CTB (12.03.2023) Job ID: 880-55873-1 SDG: Lea Co, NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-55873-1	Rattlesnake Pit- Backfill Samples	Solid	03/19/25 00:00	03/20/25 16:23

880-55873 Chain of Custody	Page _1_ of _1_ Work Order Comments	Program: UST/PST DRP Brownfields DRC Uperfund			Deliverables: EDD 🗌 ADaPT 🔲 Other:	Preservative Codes	None: NO DI Water: H ₂ O	-	HCL: HC HNO3; HN H-SO: H2 NaOH: Na	•	D NaHSO4: NABIS	_	Zn Acetate+NaOH: Zn	NaOH+Ascorbic Acid: SAPC	Sample Comments					Irces.com	Received by: (Signature) Date/Time		
		Progra	State	Report	Deliver	ANALYSIS REQUEST														hring@carmonaresources.com and mcarmona@carmonaresources.com	Relinquished by: (Signature)		
	lices					ANA				0:0						×				om and mcarmon	Relinquished	\$ 2	
	Carmona Resources				ces.com			(0	NRG	• ୦୪୦	1+0	Iorid (GR	Mer	08 H	qT	× × ×				esources.co	Date/Time	1007	
	Ö				@Carmonaresources.com		Pres. Code			eters					# of Cont	1				carmonard	Da	selor	
	Bill to: (if different)	Company Name:	Address:	City, State ZIP:	iielkeA@Carr	puno	🗌 Rush	Normal	received by the 1 by 4:30pm	Yes No	0	1.0	6.1.	4.7	Water Comp	Comp			_	cmoehring@			
	Bil	S	Ad	CH	Email: ThielkeA	Turn Around	✓ Routine	Due Date:	TAT starts the day received by the lab, if received by 4:30pm	1/	leter ID:	n Factor:	Temperature Reading:	Corrected Temperature:	Soil	×				Please send results to cmoe	Received by: (Signature)	Λ	
			0			(12.03.2023)		M		Yes			5	Correcter	te Time	2025				Please	Receive		F
	Ashton Thielke	Carmona Resources	310 West Wall Ste. 500	Midland, TX 79701	432-813-8988	Salado Draw 23 CTB (12.03.2023)	2387	Lea Co, NM	R	Temp Blank:	C		Yes No NIA		ication Date	ckfill Sample 3/19/2025					Signature)		
	Project Manager. Asl			te ZIP:		Project Name: S		Project Location	Sampler's Name:	SAMPLE RECEIPT	Received Intact:	Cooler Custody Seals:	Sample Custody Seals:	Total Containers:	Sample Identification	Rattlesnake Pit - Backfill Sample					Relinquished by: (Signature)		

Released to Imaging: 6/9/2025 3:43:26 PM

Page 18 of 19

3/27/2025

Page 104 of 114

14

Job Number: 880-55873-1 SDG Number: Lea Co, NM

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 55873 List Number: 1

<6mm (1/4").

Creator: Vasquez, Julisa

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

General Information Phone: (505) 629-6116

Operator

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

CHEVRON U S A INC

6301 Deauville Blvd

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

OGRID:

4323

Page	106	of	114
rage	100	<i>oj</i>	114

QUESTIONS

Action 461254

6301 Deauville Blvd Midland, TX 79706	Action Number: 461254					
	Action Type: [C-141] Reclamation Report C-141 (C-141-v-Reclamation)					
QUESTIONS						
Prerequisites						
Incident ID (n#)	nAPP2508551061					
Incident Name	NAPP2508551061 SALADO DRAW 23 CENTRAL TANK BATTERY @ 0					
Incident Type	Fire					
Incident Status	Reclamation Report Received					
Incident Facility	[fAPP2134340195] Salado Draw 23 Central Tank Battery					
Location of Release Source						
Please answer all the questions in this group.						
Site Name	Salado Draw 23 Central Tank Battery					
Date Release Discovered	03/26/2025					
Surface Owner	Federal					
Incident Details						
Please answer all the questions in this group.						
Incident Type Did this release result in a fire or is the result of a fire	Fire					
	Yes					
Did this release result in any injuries	No					
Has this release reached or does it have a reasonable probability of reaching a watercourse	No					
Has this release endangered or does it have a reasonable probability of endangering public health	No					
Has this release substantially damaged or will it substantially damage property or the environment	No					

Nature and Volume of Release

detrimental to fresh water

Is this release of a volume that is or may with reasonable probability be

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.				
Crude Oil Released (bbls) Details	Not answered.			
Produced Water Released (bbls) Details	Not answered.			
Is the concentration of chloride in the produced water >10,000 mg/l	No			
Condensate Released (bbls) Details	Cause: Equipment Failure Other (Specify) Condensate Released: 0 BBL Recovered: 0 BBL Lost: 0 BBL.			
Natural Gas Vented (Mcf) Details	Not answered.			
Natural Gas Flared (Mcf) Details	Not answered.			
Other Released Details	Not answered.			
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Released from flare stack.			

No

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 107 of 114

QUESTIONS, Page 2

Action 461254

QUESTIONS (continued)				
Operator:	OGRID:			
CHEVRON U S A INC	4323			
6301 Deauville Blvd	Action Number:			
Midland, TX 79706	461254			
	Action Type:			
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)			

QUESTIONS

Nature and Volume of Release (continued)				
Is this a gas only submission (i.e. only significant Mcf values reported)	More info needed to determine if this will be treated as a "gas only" report.			
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes			
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (2) an unauthorized release of a volume that: (a) results in a fire or is the result of a fire.			

Initial Response					
The responsible party must undertake the following actions immediately unless they could create a se	afety hazard that would result in injury.				
The source of the release has been stopped	True				
The impacted area has been secured to protect human health and the environment	True				
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True				
All free liquids and recoverable materials have been removed and managed appropriately	True				
If all the actions described above have not been undertaken, explain why	Not answered.				
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of raluation in the follow-up C-141 submission.				
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	nowledge and understand that pursuant to OCD rules and regulations all operators are required ses which may endanger public health or the environment. The acceptance of a C-141 report by idequately investigate and remediate contamination that pose a threat to groundwater, surface does not relieve the operator of responsibility for compliance with any other federal, state, or				
I hereby agree and sign off to the above statement	Name: Amy Barnhill Title: Waste & Water Specialist Email: ABarnhill@chevron.com Date: 05/13/2025				

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Page 108 of 114

Action 461254

QUESTIONS (continued)					
Operator:	OGRID:				
CHEVRON U S A INC	4323				
6301 Deauville Blvd	Action Number:				
Midland, TX 79706	461254				
	Action Type:				
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)				

QUESTIONS

Site Characterization
Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)
What method was used to determine the depth to ground water	Direct Measurement
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release ar	nd the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Between 1 and 5 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1 and 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)
Any other fresh water well or spring	Between 1 and 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between 1 and 5 (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Between 1 and 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Medium
A 100-year floodplain	Between 1 and 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	Yes

Remediation Plan

Please answer all the questions	that apply or are indicated. This information must be provided to	o the appropriate district office no later than 90 days after the release discovery date.			
Requesting a remediation	n plan approval with this submission	Yes			
Attach a comprehensive report d	lemonstrating the lateral and vertical extents of soil contamination	associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.			
Have the lateral and vertic	cal extents of contamination been fully delineated	Yes			
Was this release entirely	contained within a lined containment area	No			
Soil Contamination Samplin	ig: (Provide the highest observable value for each, in m	nilligrams per kilograms.)			
Chloride	(EPA 300.0 or SM4500 CI B)	128			
TPH (GRO+DRO+MRO)	(EPA SW-846 Method 8015M)	62			
GRO+DRO	(EPA SW-846 Method 8015M)	62			
BTEX	(EPA SW-846 Method 8021B or 8260B)	0			
Benzene	(EPA SW-846 Method 8021B or 8260B)	0			
	NMAC unless the site characterization report includes complete melines for beginning and completing the remediation.	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,			
On what estimated date v	vill the remediation commence	04/06/2025			
On what date will (or did)	the final sampling or liner inspection occur	04/07/2025			
On what date will (or was) the remediation complete(d)	04/07/2025			
What is the estimated sur	face area (in square feet) that will be reclaimed	441			
What is the estimated volu	ume (in cubic yards) that will be reclaimed	10			
What is the estimated sur	face area (in square feet) that will be remediated	441			
What is the estimated volu	ume (in cubic yards) that will be remediated	10			
These estimated dates and meas	surements are recognized to be the best guess or calculation at t	he time of submission and may (be) change(d) over time as more remediation efforts are completed.			

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTI	ONS (continued)	
Operator:	OGRID:	
CHEVRON U S A INC	4323	
6301 Deauville Blvd	Action Number:	
Midland, TX 79706	461254	
	Action Type:	
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)	
QUESTIONS		
Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the		
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:	
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes	
Which OCD approved facility will be used for off-site disposal	LEA LAND LANDFILL [fEEM0112342028]	
OR which OCD approved well (API) will be used for off-site disposal	Not answered.	
OR is the off-site disposal site, to be used, out-of-state	Not answered.	
OR is the off-site disposal site, to be used, an NMED facility	Not answered.	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.	
(In Situ) Soil Vapor Extraction	Not answered.	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.	
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.	
OTHER (Non-listed remedial process)	Not answered.	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed ef which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC	
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or	
I hereby agree and sign off to the above statement	Name: Amy Barnhill Title: Waste & Water Specialist Email: ABarnhill@chevron.com	

Date: 05/13/2025

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

QUESTIONS, Page 4

Action 461254

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page	110	of 114

QUESTIONS, Page 5

Action 461254

QUESTIONS (continued)		
Operator: CHEVRON U S A INC	OGRID: 4323	
6301 Deauville Blvd Midland, TX 79706	Action Number: 461254	
	Action Type: [C-141] Reclamation Report C-141 (C-141-v-Reclamation)	
QUESTIONS		

Def		Dee	uests	Ombu
Der	errai	Rec	iuests	Univ

Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.		
Requesting a deferral of the remediation closure due date with the approval of this submission	No	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Page 111 of 114

Action 461254

QUESTIONS (continued)		
Operator: OGRID:		
CHEVRON U S A INC	4323	
6301 Deauville Blvd	Action Number:	
Midland, TX 79706	461254	
	Action Type:	
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)	

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	448517
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	04/07/2025
What was the (estimated) number of samples that were to be gathered	4
What was the sampling surface area in square feet	440

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	441	
What was the total volume (cubic yards) remediated	10	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	441	
What was the total volume (in cubic yards) reclaimed	10	
Summarize any additional remediation activities not included by answers (above)	"Area was excavated (scraped) to a depth of 0.25' to remove all discolored soil. Following the surface scrape composite confirmation floor samples and horizontal delineation samples were collected to ensure all impact was removed. The area was backfilled with clean material and reseeded with BLM #2 seed mix."	
	closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of	
to report and/or file certain release notifications and perform corrective actions for releas the OCD does not relieve the operator of liability should their operations have failed to a water, human health or the environment. In addition, OCD acceptance of a C-141 repor	knowledge and understand that pursuant to OCD rules and regulations all operators are required ses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or ally restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ng notification to the OCD when reclamation and re-vegetation are complete.	
	Name: Amy Barnhill	

I hereby agree and sign off to the above statement	Title: Waste & Water Specialist Email: ABarnhill@chevron.com Date: 05/13/2025
--	---

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page	112	of 114

QUESTIONS, Page 7

Action 461254

QUESTIONS (continued)		
Operator:	OGRID:	
CHEVRON U S A INC	4323	
6301 Deauville Blvd	Action Number:	
Midland, TX 79706	461254	
	Action Type:	
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)	

QUESTIONS

Reclamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	
Requesting a reclamation approval with this submission	Yes
What was the total reclamation surface area (in square feet) for this site	441
What was the total volume of replacement material (in cubic yards) for this site	10
	four feet of non-waste containing, uncontaminated, earthen material with chloride concentrations less than 600 over must include a top layer, which is either the background thickness of topsoil or one foot of suitable material
Is the soil top layer complete and is it suitable material to establish vegetation	Yes
On what (estimated) date will (or was) the reseeding commence(d)	04/28/2025
Summarize any additional reclamation activities not included by answers (above)	"Area was excavated (scraped) to a depth of 0.25' to remove all discolored soil. Following the surface scrape composite confirmation floor samples and horizontal delineation samples were collected to ensure all impact was removed. The area was backfilled with clean material and reseeded with BLM #2 seed mix."
	reclamation requirements and any conditions or directives of the OCD. This demonstration should be in the form t field notes, photographs of reclaimed area, and a narrative of the reclamation activities. Refer to 19.15.29.13
to report and/or file certain release notifications and perform corrective actions for release the OCD does not relieve the operator of liability should their operations have failed to water, human health or the environment. In addition, OCD acceptance of a C-141 report	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface rt does not relieve the operator of responsibility for compliance with any other federal, state, or ially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ing notification to the OCD when reclamation and re-vegetation are complete.
I hereby agree and sign off to the above statement	Name: Amy Barnhill Title: Waste & Water Specialist Email: ABarnhill@chevron.com Date: 05/13/2025

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	461254
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Revegetation Report

Only answer the questions in this group if all surface restoration, reclamation and re-vegetation obligations have been satisfied

Requesting a restoration complete approval with this submission

No Per Paragraph (4) of Subsection (D) of 19.15.29.13 NMAC for any major or minor release containing liquids, the responsible party must notify the division when reclamation and re-vegetation are complete

Page 113 of 114

Action 461254

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 461254

CONDITIONS		
Operator:	OGRID:	
CHEVRON U S A INC	4323	
6301 Deauville Blvd	Action Number:	
Midland, TX 79706	461254	
	Action Type:	
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)	

CONDITIONS

Created By	Condition	Condition Date
rhamlet	We have received your Reclamation Report for Incident #NAPP2508551061 SALADO DRAW 23 CENTRAL TANK BATTERY, thank you. This Reclamation Report is approved.	6/9/2025