

CLOSURE REPORT

Property:

San Juan 28-6 #22A (10/01/24) Unit Letter O, S08 T27N R06W Rio Arriba County, New Mexico

New Mexico EMNRD OCD Incident ID No. NAPP2427549504

March 10, 2025

Ensolum Project No. 05A1226347

Prepared for:

Enterprise Field Services, LLC 614 Reilly Avenue Farmington, NM 87401 Attn: Mr. Thomas Long

Prepared by:

ZN

Landon Daniell Project Geologist

Kyle Summers Senior Managing Geologist

Ensolum, LLC | Environmental, Engineering & Hydrogeologic Consultants

606 South Rio Grande, Suite A | Aztec, NM 87410 | ensolum.com

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	.1
	1.1	Site Description & Background	.1
	1.2	Project Objective	.1
2.0	CLOS		.1
3.0	SOIL	REMEDIATION ACTIVITIES	3
4.0	SOIL	SAMPLING PROGRAM	3
5.0	SOIL	LABORATORY ANALYTICAL METHODS	4
6.0	SOIL	DATA EVALUATION	4
7.0	RECL	AMATION	4
8.0	REVE	GETATION	5
9.0	FINDI	NGS AND RECOMMENDATION	5
10.0	STAN	DARDS OF CARE, LIMITATIONS, AND RELIANCE	5
	10.1	Standard of Care	
	10.2	Limitations	5
	10.3	Reliance	5

LIST OF APPENDICES

Appendix A – Figures Figure 1: Topographic Map Figure 2: Site Vicinity Map Figure 3: Site Map with Soil Analytical Results

Appendix B – Siting Figures and Documentation

- Figure A: 1.0 Mile Radius Water Well/POD Location Map Figure B: Cathodic Protection Well Recorded Depth to Water Figure C: 300 Foot Radius Watercourse and Drainage Identification Figure D: 300 Foot Radius Occupied Structure Identification Figure E: Water Well and Natural Spring Location Figure F: Wetlands Figure G: Mines, Mills, and Quarries Figure H: 100-Year Flood Plain Map
- Appendix C Executed C-138 Solid Waste Acceptance Form
- Appendix D Photographic Documentation
- Appendix E Regulatory Correspondence
- Appendix F Table 1 Soil Analytical Summary
- Appendix G Laboratory Data Sheets & Chain of Custody Documentation

1.1 Site Description & Background

Operator:	Enterprise Field Services, LLC / Enterprise Products Operating LLC (Enterprise)
Site Name:	San Juan 28-6 #22A (10/01/24) (Site)
NM EMNRD OCD Incident ID No.	NAPP2427549504
Location:	36.583896° North, 107.486155° West Unit Letter O, Section 08, Township 27 North, Range 06 West Rio Arriba County, New Mexico
Property:	Bureau of Land Management (BLM)
Regulatory:	New Mexico (NM) Energy, Minerals and Natural Resources Department (EMNRD) Oil Conservation Division (OCD)

On September 26, 2024, a potential release of natural gas was identified from the San Juan 28-6 #22A pipeline. Enterprise subsequently isolated and locked the pipeline out of service. On October 1, 2024, Enterprise initiated activities to evaluate the pipeline. Additionally, Enterprise determined the release was "reportable" due to the potential volume of impacted soil. The NM EMNRD OCD was subsequently notified.

A **Topographic Map** depicting the location of the Site is included as **Figure 1**, and a **Site Vicinity Map** is included as **Figure 2** in **Appendix A**.

1.2 **Project Objective**

The primary objective of the closure activities was to reduce constituent of concern (COC) concentrations in the on-site soils to below the applicable NM EMNRD OCD closure criteria.

2.0 CLOSURE CRITERIA

The Site is subject to regulatory oversight by the NM EMNRD OCD. During the evaluation and remediation of the Site, Ensolum, LLC (Ensolum) referenced New Mexico Administrative Code (NMAC) 19.15.29 *Releases*, which establishes investigation and abatement action requirements for oil and gas release sites that are subject to reporting and/or corrective action. The appropriate closure criteria for sites are determined using the siting requirements outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC. Ensolum utilized the general site characteristics and information available from NM state agency databases and federal agency geospatial databases to determine the appropriate closure criteria for the Site. Supporting figures and documentation associated with the following Siting bullets are provided in **Appendix B**.

The NM Office of the State Engineer (OSE) tracks the usage and assignment of water rights and water well installations and records this information in the Water Rights Reporting System (WRRS) database. Water wells and other points of diversion (PODs) are each assigned POD numbers in the database (which is searchable and includes an interactive map). No PODs were identified in the same Public Land Survey System (PLSS) section as the Site. Two PODs were identified in the adjacent PLSS sections. The documentation for POD SJ-03001 (POD1 and POD2) indicates an average depth to water of 43 feet below grade surface (bgs). These PODs are approximately 1.15 miles northwest of the Site and 318 feet lower in elevation than the Site (Figure A, Appendix B).

- Numerous cathodic protection wells (CPWs) were identified in the NM EMNRD OCD imaging database in the same or adjacent PLSS sections (Figure B, Appendix B). Documentation for the cathodic protection well located near the San Juan 28-6 Unit #22 A production pad indicates a depth to water of 300' feet bgs. This cathodic protection well is located approximately 0.05 miles southwest of the Site and is approximately 6 feet lower in elevation than the Site. Documentation for the cathodic protection well located near the San Juan 28-6 Unit #23, #96, and #112 production pads indicates a depth to water of approximately 100 feet bgs. This cathodic protection well is located approximately 14 feet lower in elevation than the Site. Documentation for the San Juan 28-6 Unit #53 and #104 production pads indicates a depth to water of approximately 0.48 miles west of the Site and is approximately 269 feet lower in elevation than the Site.
- The Site is located within 300 feet of a NM EMNRD OCD-defined continuously flowing watercourse or significant watercourse (Figure C, Appendix B). The Site is 20 feet from a "blue line", ephemeral wash.
- The Site is not located within 200 feet of a lakebed, sinkhole, or playa lake.
- The Site is not located within 300 feet of a permanent residence, school, hospital, institution, or church (Figure D, Appendix B).
- No springs, or private domestic freshwater wells used by less than five households for domestic or stock watering purposes were identified within 500 feet of the Site (Figure E, Appendix B).
- No freshwater wells or springs were identified within 1,000 feet of the Site (Figure E, Appendix B).
- The Site is not located within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to New Mexico Statutes Annotated (NMSA) 1978, Section 3-27-3.
- Based on information identified in the U.S. Fish & Wildlife Service National Wetlands Inventory Wetlands Mapper, the Site is not within 300 feet of a wetland (Figure F, Appendix B). The Site is located within 300 feet of an 'Intermittently Flooded' (J) riverine, which are not generally designated as wetlands in this region.
- Based on information identified in the NM Mining and Minerals Division's Geographic Information System (GIS) Maps and Mine Data database, the Site is not within an area overlying a subsurface mine (**Figure G**, **Appendix B**).
- The Site is not located within an unstable area per Paragraph (6) of Subsection U of 19.15.2.7 NMAC.
- Based on information provided by the Federal Emergency Management Agency (FEMA) National Flood Hazard Layer (NFHL) geospatial database, the Site is not within a 100-year floodplain (**Figure H**, **Appendix B**).

Based on available information the Site is located within 300 feet of a NM EMNRD OCD-defined continuously flowing watercourse or significant watercourse, resulting in a Tier I ranking. The closure criteria for soils remaining in place at the Site include:

E N S O L U M

Tier I Clo	sure Criteria for Soils Impacted by a	Release
Constituent ¹	Method	Limit
Chloride	EPA 300.0 or SM4500 CI B	600 mg/kg
TPH (GRO+DRO+MRO) ²	EPA SW-846 Method 8015	100 mg/kg
BTEX ³	EPA SW-846 Method 8021 or 8260	50 mg/kg
Benzene	EPA SW-846 Method 8021 or 8260	10 mg/kg

¹ – Constituent concentrations are in milligrams per kilogram (mg/kg).

² – Total Petroleum Hydrocarbons (TPH). Gasoline Range Organics (GRO). Diesel Range Organics (DRO). Motor Oil/Lube Oil Range Organics (MRO).

³ – Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX).

3.0 SOIL REMEDIATION ACTIVITIES

On October 1, 2024, Enterprise initiated activities to evaluate the pipeline. Additionally, Enterprise determined the release was "reportable" due to the potential volume of impacted soil. During the remediation and corrective action activities, West States Energy Contractors, Inc. provided heavy equipment and labor support, while Ensolum provided environmental consulting support.

The final excavation measured approximately 24 feet long and 12 feet wide at the maximum extents. The average maximum depth of the excavation measured approximately 10 feet bgs, with a footprint of approximately 288 ft². The lithology encountered during the completion of remediation activities consisted primarily of silty sandy clay.

Approximately 150 cubic yards (yd³) of petroleum hydrocarbon-affected soils and 10 barrels (bbls) of water and hydro-excavated soil cuttings were transported to the Envirotech, Inc., (Envirotech) landfarm in San Juan County, NM for disposal/remediation. The executed C-138 solid waste acceptance form is provided in **Appendix C**. The excavation was backfilled with imported fill and then contoured to the surrounding grade.

Figure 3 is a map that identifies approximate soil sample locations and depicts the approximate dimensions of the excavation with respect to the pipeline (**Appendix A**). Photographic documentation of the field activities is included in **Appendix D**.

4.0 SOIL SAMPLING PROGRAM

Ensolum field screened the soil samples from the excavation utilizing a calibrated Dexsil PetroFLAG[®] hydrocarbon analyzer system and a photoionization detector (PID) fitted with a 10.6 eV lamp to guide excavation extents.

Ensolum's soil sampling program included the collection of eight composite soil samples (S-1 through S-8) from the excavation and one composite sample (BF-1) from the backfill for laboratory analysis. The composite samples were comprised of five aliquots each and represent an estimated 200 square foot (ft²) or less sample area per guidelines outlined in Section D of 19.15.29.12 NMAC. The excavator bucket and/or hand tools were utilized to obtain fresh aliquots from the excavation and backfill. Regulatory correspondence is provided in **Appendix E**.

First Sampling Event

On October 3, 2024, sampling was performed at the Site. The NM EMNRD OCD was notified of the sampling event although no representative was present during sampling activities. Composite soil samples S-1 (10') and S-2 (10') were collected from the floor of the excavation. Composite soil samples S-3 (0' to 10'), S-4 (0' to 10'), S-5 (0' to 10'), S-6 (0' to 10'), S-7 (0' to 10'), and S-8 (0' to 10') were collected from walls of the excavation.

Second Sampling Event

On January 21, 2025, sampling was performed at the Site. The NM EMNRD OCD was notified of the sampling event although no representative was present during sampling activities. Composite soil sample BF-1 was collected from the imported fill.

All soil samples were collected and placed in laboratory-prepared glassware. The containers were labeled and sealed using the laboratory-supplied labels and custody seals and were stored on ice in a cooler. The samples were relinquished to the courier for Eurofins Environment Testing South Central, LLC (Eurofins) of Albuquerque, NM, under proper chain-of-custody procedures.

5.0 SOIL LABORATORY ANALYTICAL METHODS

The composite soil samples were analyzed for BTEX using Environmental Protection Agency (EPA) SW-846 Method 8021; TPH GRO/DRO/MRO using EPA SW-846 Method 8015; and chlorides using EPA Method 300.0.

The laboratory analytical results are summarized in **Table 1** (**Appendix F**). The laboratory data sheets and executed chain-of-custody forms are provided in **Appendix G**.

6.0 SOIL DATA EVALUATION

Ensolum compared the benzene, BTEX, TPH, and chloride laboratory analytical results or laboratory practical quantitation limits (PQLs) / reporting limits (RLs) associated with the composite soil samples (S-1 through S-8 and BF-1) to the applicable NM EMNRD OCD closure criteria. Due to the high PQLs/RLs associated with TPH MRO results when using EPA SW-846 Method 8015, Ensolum only compared the quantified TPH results to the New Mexico EMNRD OCD closure criteria. The laboratory analytical results are summarized in **Table 1 (Appendix F)**.

- The laboratory analytical results for the composite soil samples indicate that benzene is not present in soils remaining at the Site at concentrations greater than the laboratory PQLs/RLs, which are less than the NM EMNRD OCD closure criteria of 10 mg/kg.
- The laboratory analytical results for the composite soil samples indicate total BTEX is not present in soils remaining at the Site at concentrations greater than the laboratory PQLs/RLs, which are less than the NM EMNRD OCD closure criteria of 50 mg/kg.
- The laboratory analytical results for the composite soil samples indicate total combined TPH GRO/DRO/MRO is not present in soils remaining at the Site at concentrations greater than the laboratory PQLs/RLs, which are less than the NM EMNRD OCD closure criteria of 100 mg/kg.
- The laboratory analytical results for the composite soil samples indicate that chloride is not present in soils remaining at the Site at concentrations greater than the laboratory PQLs/RLs, which are less than the NM EMNRD OCD closure criteria of 600 mg/kg.

7.0 RECLAMATION

The excavation was backfilled with imported fill and then contoured to the surrounding grade. The backfill and upper four feet of the excavation have been analytically verified to be below the Tier

ENSOLUM

I soil standards of 50 mg/kg BTEX, 10 mg/kg benzene, 100 mg/kg total combined TPH, and 600 mg/kg Chloride. See **APPENDIX D** and **APPENDIX F** for further documentation.

8.0 **REVEGETATION**

Revegetation will be addressed in accordance with 19.15.29.13 NMAC utilizing the recommended seed mix as described in the Vegetation Community Descriptions and Seed Mixes provided by the BLM Farmington Field Office. In this case the surrounding flood-plain/wash vegetation appears to be predominantly of the Grassland Vegetation Community. Enterprise will reseed the area with the appropriate seed mix during the next favorable growing season. Enterprise will provide revegetation documentation under separate cover.

9.0 FINDINGS AND RECOMMENDATION

• Nine composite soil samples were collected from the Site and imported backfill. Based on laboratory analytical results, no benzene, BTEX, chloride, or total combined TPH GRO/DRO/MRO exceedances were identified in the soils remaining at the Site.

Approximately 150 yd³ of petroleum hydrocarbon-affected soils and 10 bbls of water and hydro-excavated soil cuttings were transported to the Envirotech landfarm for disposal/remediation.

Based on field observations and laboratory analytical results, no additional investigation or corrective action appears warranted at this time.

10.0 STANDARDS OF CARE, LIMITATIONS, AND RELIANCE

10.1 Standard of Care

Ensolum's services were performed in accordance with standards customarily provided by a firm rendering the same or similar services in the area during the same time period. Ensolum makes no warranties, express or implied, as to the services performed hereunder. Additionally, Ensolum does not warrant the work of third parties supplying information used in the report (e.g., laboratories, regulatory agencies, or other third parties).

10.2 Limitations

Findings, conclusions, and recommendations resulting from these services are based upon information derived from the on-Site activities and other services performed under this scope of work, and it should be noted that this information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, or not present during these services, and Ensolum cannot represent that the Site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during the investigation. Environmental conditions at other areas or portions of the Site may vary from those encountered at actual sample locations. Ensolum's findings and recommendation are based solely upon data available to Ensolum at the time of these services.

10.3 Reliance

Enterprise Field Services, LLC San Juan 28-6 #22A (10/01/24)

Page 6

This report has been prepared for the exclusive use of Enterprise, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the Site) is prohibited without the express written authorization of Enterprise and Ensolum. Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions, and limitations stated in this report and Ensolum's Master Services Agreement. The limitation of liability defined in the agreement is the aggregate limit of Ensolum's liability to the client.

APPENDIX A

Figures

Released to Imaging: 6/11/2025 7:34:55 AM

Received by OCD: 3/14/2025 7:56:51 AM

Received by OCD: 3/14/2025 7:56:51 AM

APPENDIX B

Siting Figures and Documentation

Released to Imaging: 6/11/2025 7:34:55 AM

Released to Imaging: 6/11/2025 7:34:55 AM

Released to Imaging: 6/11/2025 7:34:55 AM

Received by OCD: 3/14/2025 7:56:51 AM

36.583896, -107.486155

Released to Imaging: 6/11/2025 7:34:55 AM

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced, O=orphaned, C=the file is closed)			(quarte to large	rs are sn est)	nallest								(In feet)	
POD Number	Code	Sub basin	County	Q64	Q16	Q4	Sec	Tws	Range	x	Y	Мар	Well Depth	Depth Water	Water Column
<u>SJ 03001 POD1</u>	R	SJ	RA	NW	NE	NE	07	27N	06W	276165.0	4052831.0 *	•	141	41	100
<u>SJ 03001 POD2</u>		SJ	RA	NW	NE	NE	07	27N	06W	276177.7	4052801.0	•	140	45	95

Average Depth to Water: 43 feet

Minimum Depth: 41 feet

Maximum Depth: 45 feet

Record Count: 2

Basin/County Search: Basin: SJ

PLSS Search: Range: 06W **Township:** 27N **Section:** 4,5,6,7,8,9,16,17,18

* UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

0CD: 3/14/2025 7:: 1015	56:51 AM 40- 30-03	9-07189		Pagę
	40-30-03 133-30-03	39-20584		
DA		GROUND BED CA THWESTERN NEW COPIES tO OCD	MEXICO	FION WELLS
OperatorM	ERIDIAN OIL	Loca	tion: Unit_ ^{NE} S	ec4Twp27_Rn
Name of Wel	l/Wells or Pipeli	ne Serviced	SAN JUAN 28-6	UNIT #40, #133
<u></u>				cps
Elevation <u>6</u>	278'Completion Dat	.e <u>9/14/78</u> Tota	al Depth <u>340'</u>	Land Type* N
Casing, Siz	es, Types & Depth	S	N/A	
	s cemented, show			
If Cement o	s cemented, show r Bentonite Plugs			
If Cement o	r Bentonite Plugs	have been pla	aced, show dep	ths & amounts
If Cement o N Depths & th	or Bentonite Plugs N/A	have been pla zones with des	aced, show depresented of water	ths & amounts
If Cement o N Depths & th	or Bentonite Plugs N/A ickness of water	have been pla zones with des	aced, show depresented of water	ths & amounts
If Cement o N Depths & th Fresh, Clea	or Bentonite Plugs N/A ickness of water	have been pla zones with des , Etc. <u>55</u>	aced, show depresented of water	ths & amounts
If Cement o N Depths & th Fresh, Clea Depths gas	or Bentonite Plugs N/A ickness of water r, Salty, Sulphur	have been pla zones with des , Etc. <u>55</u> N/A	aced, show depresented, show depresented and the show depresented at the show	ths & amounts
If Cement o N Depths & th Fresh, Clea Depths gas Type & amou	or Bentonite Plugs N/A ickness of water r, Salty, Sulphur encountered:	have been pla zones with des , Etc. <u>55</u> N/A used:	Aced, show dep scription of wa ' & 90' 42 SACKS 245', 230', 215',	ths & amounts ater when poss 2001, 1851, 170
If Cement o N Depths & th Fresh, Clea Depths gas Type & amou Depths anod	or Bentonite Plugs N/A ickness of water r, Salty, Sulphur encountered: nt of coke breeze	have been pla zones with des , Etc. <u>55</u> <u>N/A</u> used: <u>0', 270', 260',</u>	aced, show depresentation of water secret and the s	ths & amounts ater when poss 2001, 1851, 170
If Cement o N Depths & th Fresh, Clea Depths gas Type & amou Depths anod Depths vent	or Bentonite Plugs N/A Nickness of water r, Salty, Sulphur encountered: nt of coke breeze es placed: 290', 28	have been pla zones with des , Etc. <u>55</u> <u>N/A</u> used: <u>0', 270', 260',</u>	Aced, show dep scription of wa ' & 90' 42 SACKS 245', 230', 215',	ths & amounts ater when poss 2001, 1851, 170

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

Released to Imaging: 6/11/2025 7:34:55 AM

Received by OGD: 73	/14/2025 7:56:51 AM	El Paso Natural Gas Company ENGINEERING CALCULATIO	DN $ \begin{array}{c} Page 25 \text{ of } 136\\ Sheet: \underline{q - ju - 7};\\ By \underline{RJ}B\\ File: \underline{128(\omega)} \end{array} $
	1281W 5528-6#40 5528-6#133	Ne 4-28-6	52632.19
MW gals/mol	· · · · ·		Driller SAID WATER AT 55' + Big WATER AT 90' DRILLED 340' Logged 325' 327'TD
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50 250 1.9 .3 60 6 260 1.9	2707999 80200 - 4424664 442 2424 451 448 74697866 47 - 476 05-4762082640768766964420448564886 7 7 7	TNSTALLED 300' OF VENT PIPE - PERFORATED 260' WATER APPROX 35 GPM HoLE - 500'= 327'= 173'ER GOUJAA RECT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70 5 270 . .5 .80 .7 280 . .6 1.	5 	STUB POLE
	90 1.0 290 1. 8 1.0 100 ,6 300 1. 5 1. 110 .5 310 1.0	2	$\begin{array}{r} 1 - 290 - 18 - 2.6 \\ 2 - 280 - 18 - 2.7 \\ 3 - 276 - 1.7 - 2.5 \\ 4 - 260 - 2.2 - 3.3 \end{array}$
	·7 120 1.0 320 . ·7 130 .7 330	8 	5 - 245 - 2.1 - 3.2 $6 - 236 - 2.3 - 3.5$ $7 - 215 - 1.9 - 3.0$ $8 - 200 - 2.1 - 3.2$ $9 - 185 - 2.3 - 3.5$
MISC. MW gals/mol 32.00 O2 3.37 28.01 CO 4.19 44.01 CO2 6.38	140 6 340 8 150 1.2 .7	антарактик мененика и такана мекатак актар катар какат на к ак каратаран тактара.	10-170-1.9-3.2 tetAL 15.4A @ 11.9V
44.01 502 0.53 64.06 SO2 5.50 34.08 H2S 5.17 28.01 N2 4.16 2.02 H2 3.38	160 .7 1.1 1.20 1.8- 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	ייייייייייייייייייייייייייייייייייייי	•77 ohms
	2.0- 190 2.2 1.9 200 1.9-		
ì	19 21 C 17 19 - 220 17		
	9 23 02.1 - 6 240 2.1 2,0 -		
	<i>I</i> ,U	7	

× 14

EL PASO NATURAL GAS COMPANY SAN JUAN DIVISION FARMINGTON, NEW MEXICO PRODUCTION DEPARTMENT WATER ANALYSIS

1. 2. A 2 17						
	Analysis No	1-9352	Date_	11-8-	-78	
	Operator		Well Name_	San Juan	28-6 #40	0 & 133
	Location	<u>NE 4-28-6</u> Cour	nty <u>Rio</u>	Arriba	_State	NM
	Field		Formation_			
	Sampled From	C.P.S. 1281	W.			
	Date Sampled		By			
	Tbg. Press	Csg. Pres _epm	s•	St	urface Cs ppm	g. Press epm
	Sodium 447	<u>19</u>	•	Chloride		0.5
	Calcium 24	1		Bicarbonat	e_527	9
	Magnesium 1	0.1		Sulfate	560	12
	Iron PRESENT			Carbonate_	0	0
	H2S_ABSENT			Hydroxide_	0	0
	cc: D.C.Adams			Total Soli	ds Dissol	Lved_1542
	R.A.Ullrich E.R.Paulek	•		p <u>H 8.5</u>		
	J.W.McCarth A.M.Smith	y		Sp. Gr1	<u>,0020</u>	at60 ⁰ F
	W.B.Shropsh: File	ire		Resistivit	y 640 ol	hm-cm at 71 °F
					Bar	
					Chemi	st
20	25 20 D Na <u> </u>	15 10	5 0	5 10) 15	20 25 C1 10
-	Ca					HCO3 10
	Mg					so ₄ 10
21 21	Fe					co ₃ 4
		1 1	Scale:	، epm	· ·	• •
	-			-	-	
					,	ده الاستنجاب الم

.

.

.

•

EL PASO NATURAL GAS COMPANY

Page 27 of 136

DRILLING DEPARTMENT

							• ^			1, /			-		RILLING R		
_EASE	1281		WELL NO.	281W CON			in#]	silling R	RIG NO.		REP(JRT ŅO	^{D.} 12		Sept	14	<u>19</u> 2
		MUR					DATLIG						t	VENING			
ller FROM	то		Total Mer In FORMATION	WT-BIT R.P.M.	Driller FROM	то		Total Men In FORMATION	Crew WT-BIT	R.P.M.	Driller FROM		то	50.014	Total Men In ATION	Crew WT-BIT	
			PORMATION	WI-BIT KIEW						1			10	FORM	ATION		T R.P.I
											<u> </u>						+
										-							
											<u> </u>						
		.						NO. DCSIZE_									
۲۰۰۰ (NO. DCSIZE		BIT NO.						BIT NO.				DCSIZE	1 .	
I _ NO.			NO, DC SIZE	LENG	SERIAL NO			NO. DC SIZE	LEM	۱G،	SERIAL NO.		-	NO.	DCSIZE		EN G
E	•		SINGLES		SIZE	•		SINGLES			SIZE	·			SINGLES	A State	
PE			DOWN ON KELLY		TYPE			DOWN ON KELLY			TYPE		-	DOW	N ON KELLY		No.
								TOTAL DEPTH			MAKE				TAL DEPTH	· · ·	
AKE MUD	RECORD	1	TOTAL DEPTH MUD, ADDITIVES USED	AND RECEIVED	MAKE	RECORD	 	D, ADDITIVES USED	AND RECEI	VED		RECORD			TIVES USED	AND RECE	IVED
Time		/15.		·····	Time	Wt. Vi					Time	₩t.	Vis.				1
															- `		
					·····												
					[
FROM	то	1	TIME BREAKDO	ŴN	FROM	то		TIME BREAKDO	WN		FROM	, TO	·	 T 1 N	AE BREAKDON	WN	
Ð	5		Inface		115	130	81	ale.			-	I					
5	60		andstone			135	ha	totore we	the st	l						.'	
2	45	1	V.I.		135	165	Ja								<u> </u>		
	90	5	Star (4)	(atu)	165	255	S	10.									
	95		Store (n.		255		Mal	with 55									
75	115	5	ndstone		320		la	Iston		•							
EMARK				·····	REMARK	•					REMARK	s	l			3	
				an ann an						**	A	7.11	11	13/1 0	1. t.	240	
					<u> </u>							na		ory no	a 18_	270	
			· · · · · · · · · · · · · · · · · · ·									p_{-}	17	5 200			···· ;
· · · ·				······································				<u>`</u>			J	ogge	9 N	634 he 5 327			<u></u>
											n	· ·	26	GP.M.			
								· · · · · · · · · · · · · · · · · · ·	······		1	Here -	000		· · · · · · · · · · · · · · · · · · ·		
						· · · · · · · · · · · · · · · · · · ·				-		·				<u> </u>	
				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			۱					<u></u>			· · · · ·		
				· · · · · · · · · · · · · · · · · · ·	I		7 LA	0.0		·	L						<u> </u>
				SIGN	ED: Toolpus	her	Sutch	Benoit			Company Super	V1 SOF					
							. –				1						
												•					

Rocetved by OCD: 3/14/2025 3:56:51 4 8- 30-039-25455 Pag	ge 28 _. of 136
Received by OCD: 3/14/2025 3:56:51 468- 30-039-25455 Page 133-30-039-20584 DATA SHEET FOR DEEP GROUND BED CATHODIC. PROTECTION WELLS NORTHWESTERN NEW MEXICO	Ţ
Operator Meridian Oil Location: Unit B Sec. 4 Twp27 Rng	-
Name of Well/Wells or Pipeline Serviced SAN JUAN 28-6#4	68
+#B3	'·,
ElevationCompletion DateTotal DepthLand Type	
Casing Strings, Sizes, Types & Depths 100'of 8" P/C Surt	ACE
CASING	•
If Casing Strings are cemented, show amounts & types used $\frac{\sqrt{ES}\omega}{190AGS}$	+ k
If Cement or Bentonite Plugs have been placed, show depths & amounts a	used
Depths & thickness of water zones with description of water: Fresh, C. Salty, Sulphur, Etc. DAmp $130'$ WATER 290'	lear,
Depths_gas_encountered:No	
Ground bed depth with type & amount of coke breeze used: <u>464' dee</u> , with 6100 /bs of Asbury FLO Coke	
Depths anodes placed: $445,435,425,415,405,395,385,375,365,355,34$ Depths vent pipes placed: $464'$	<u>5,33</u> 5
Depths vent pipes placed: 464 237,3	128,219
Vent pipe perforations:	<u>) </u>
Remarks:	<u>y</u>
ONL CONL DIV	
DIST. 3	5 - 11

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

-

• .

Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

Hy OCD: 3/14/2025 7		*	
9158 CO DAT	TA SHEET FOR DEEP GROUN NORTHWEST	ND BED CATHODIC.PROTE FERN NEW MEXICO	CTION WELLS
Operator By	ilington Resources	Location: Unit	Sec. <u>4</u> Twp <u>27</u> Rng
Name of Well/	/Walls.or Pipeline Serv	viced 55 28-6# 1	67M
	33636A; 33695A	- 30-039-25	574
	Completion Date <u>4-2-</u> gs, Sizes, Types & Dep		
·····			
	•	ow amounts & types us	/
	Bentonite Plugs have		,
None	Bentonite Plugs have	been placed, show de	pths & amounts w
<u>None</u> Depths & thic		been placed, show de	pths & amounts w
<u>None</u> Depths & thic Salty, Sulphy	Bentonite Plugs have ckness of water zones	been placed, show de	pths & amounts w
<u>None</u> Depths & thic Salty, Sulphy Depths gas es	Bentonite Plugs have ckness of water zones ur, Etc. <u>60', $\mp(vsh$</u>	been placed, show dep with description of	pths & amounts water: Fresh, C
<u>Nome</u> Depths & thic Salty, Sulphy Depths gas es Ground bed do	Bentonite Plugs have ckness of water zones ur, Etc. <u>60', Firsh</u> ncountered: <u>nome</u>	been placed, show dep with description of	pths & amounts water: Fresh, C
<u>None</u> Depths & thic Salty, Sulphy Depths gas en Ground bed do <u>Lorvsco</u> So	Bentonite Plugs have ckness of water zones ur, Etc. <u>60</u> , $\frac{1}{2}(y \le h)$ ncountered: <u>None</u> epth with type & amoun	been placed, show dep with description of nt of coke breeze use	pths & amounts water: Fresh, C ed: <u>300' = 1500</u>
<u>None</u> Depths & thic Salty, Sulphy Depths gas en Ground bed do <u>Loresco</u> So Depths anode	Bentonite Plugs have ckness of water zones ur, Etc. <u>60</u> , $F(rsh$ ncountered: <u>None</u> epth with type & amoun W(rskr brevze	been placed, show de	pths & amounts water: Fresh, C ed: <u>300' = 1500</u>
<u>None</u> Depths & thic Salty, Sulphy Depths gas en Ground bed do <u>Lorvsio So</u> Depths anode Depths vent	Bentonite Plugs have ckness of water zones ur, Etc. <u>60</u> , $\overline{+(r+sh-1)}$ ncountered: <u>None</u> epth with type & amoun ω (okr breeze s placed: <u>290, 280, 20</u>	been placed, show dep with description of nt of coke breeze use (5,255,245,235,23 (0) (5)	pths & amounts water: Fresh, C ed: $300' = 1500$ RS, 215
<u>None</u> Depths & thic Salty, Sulphy Depths gas en Ground bed do <u>Lorvsio So</u> Depths anode Depths vent	Bentonite Plugs have ckness of water zones ur, Etc. <u>60</u> , <u>Firsh</u> ncountered: <u>None</u> epth with type & amoun ω (okr breeze s placed: <u>290, 280, 20</u> pipes placed: <u>300</u>	been placed, show dep with description of t of coke breeze use (3,255,245,235,23) (50)	pths & amounts water: Fresh, C ed: $300' = 1500$ RS, 215

. •

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included

۰. ۰

Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

æ

.

	NY NAME				<u> </u>							
VELL N		: 55	28.6	0 # 1k	7M							
EGAL	LOCATIO	N: 4-	27-1	e			COUNT	Y: Rit	AIL.	ba		
		0.4	·									
	-1-2						TYPE O	F COKE:	Lorese	o Sw		
DEPTH:	200						VENT P		ACKFILL:	1500	165	
		Jac.K	1.16.	4.6					00' Hom 15		<u> </u>	
	D TYPE	OF CASIN	G OI	DUL V	20'			AMT & T	VPE A	D	Duricon	
			<u>. x </u>	-VC ~			BOULD	ER DRILLI	NG:	0722 - 4	JUNION	
DEPTH	T	T	DEPTH			DEPTH				TION INF	ORMATIO	N:
т.	LOG	ANODE	FT.	LOG	ANODE	FT.	LOG				40'10	
									ISOLATIC			
00			265	25	3	430	Ĩ					
05			270	1.6:		435					OUTPUT	OUTP
10			275	2.0		440			ANODE#	DEPTH	NO COK	
15	<u> </u>	 	280	23	2	445			1	290	2.6	3,6
20	40	ļ	285	21	<u> </u>	450	<u> </u>		2	280	23	3,2
25 30	1.5	 	290 295	2.6		455	<u> </u>	<u> </u>	3	245	2.3	3,4
35	1/5	 	295	2.0		460	ļ	<u> </u>	4	235	2.4	31-
40	17-		305	T.D.		465 470			5	245	48	3.0
45	1-3-	·	310			475	1	∔	6 7	235	21	4.4
50	1,10		315			480			8	225	1.9	3,4
55	1.4	1	320			485	<u> </u>	+	9	215	1.6	3,0
60	1.2	1	325	·		490	<u> </u>	+	10			<u> </u>
65	1.3		330			495		1	11			
170	1.5		335			500	1		12			
175	1.8		340			505			13			
80	1.7		345			510			14			
85	1.5		350			515			15			
90	1.3	L	355			520			16			
95	1.8		360			525	<u> </u>		17			
200 205	1,3		365			530	ļ	<u> </u>	18			
210	1.2	<u> </u>	370 375	 		535 540	┣───	·}	19	ļ		<u> </u>
215	1.4	Ø	375			540 545	┣───	┥────	20 21			
220	1.5	8	385			545 550	<u> </u>		21 22		┣	
225	1.9		390		· · · · ·	555	 	+	22			
230	2.1	<u> - </u>	395			560	 	┼────	23			├───
35	2.5	6	400			565	 		25			
240	1.8		405			570	<u> </u>	1	26		<u> </u>	<u>}</u>
45	2.3	5	410			575	— —	1	27			<u> </u>
50	2,4		415			580			28			<u> </u>
55	2.4	4	420			585		İ	29			<u> </u>
60	2.4		425			590			30			
	VOLTS:	//.98			VOLTAG	595						

REMARKS:

Page 30 of 136

•

JCD: 5/14/2925	5 7:56:51 AM			Page
	39-,30-0	039-07156		
	134-30-6	039-07156 039-20581		
		DEEP GROUND BED CATH NORTHWESTERN NEW ME t 3 copies to OCD Az	CXICO	LLS
Operator_	MERIDIAN OIL	Locatio	on: Unit_ ^{SW} Sec. ⁵ _T	wp_ ²⁷ Rng
Name of N	Vell/Wells or Pi;	peline Serviced	SAN JUAN 28-6 UNIT #39	<i>,</i> #134
				cps 12
Elevatio	1_6499'Completion	Date <u>9/27/78</u> Total	Depth 500' Land T	ype*_N/A
Casing, {	Jizes, Types & D	epthsl	J/A	
		how amounts & types		
	t or Bentonite Pi	lugs have been place	d, show depths & a	mounts u
If Cement	t or Bentonite Pi N/A		d, show depths & a	
If Cement Depths &	t or Bentonite P N/A thickness of wat	lugs have been place	d, show depths & an iption of water who	
If Cement Depths & Fresh, Cl	t or Bentonite Pi N/A thickness of wat Lear, Salty, Sulp	lugs have been place ter zones with descr phur, Etc	d, show depths & an iption of water who	
If Cement Depths & Fresh, Cl Depths ga	t or Bentonite P N/A thickness of wat lear, Salty, Sulp as encountered:	lugs have been place ter zones with descr phur, Etc	d, show depths & an iption of water whom 320'	
If Cement Depths & Fresh, Cl Depths ga Type & an	t or Bentonite P N/A thickness of wat lear, Salty, Sulp as encountered: mount of coke bre	lugs have been place ter zones with descr phur, Etc N/A	d, show depths & an iption of water who 320' 57 SACKS	en possi
If Cement Depths & Fresh, Cl Depths ga Type & an Depths ar	t or Bentonite P N/A thickness of wat lear, Salty, Sulp as encountered: mount of coke bre	lugs have been place ter zones with descr phur, Etc N/A eeze used: , 445', 435', 420', 410	d, show depths & an iption of water who 320' 57 SACKS ', 400', 2655 (), 3	en possi
If Cement Depths & Fresh, Cl Depths ga Type & an Depths ar Depths ve	t or Bentonite Pi N/A thickness of wat lear, Salty, Sulp as encountered: mount of coke bre nodes placed: 455'	lugs have been place ter zones with descr phur, Etc 	d, show depths & an iption of water who 320' 57 SACKS ', 400', 365 (), 3	en possi
If Cement Depths & Fresh, CJ Depths ga Type & an Depths ar Depths ve Vent pipe	thickness of wat <u>N/A</u> thickness of wat lear, Salty, Sulp as encountered: nount of coke bre nodes placed: <u>455'</u> ent pipes placed:	lugs have been place ter zones with descr phur, Etc 	d, show depths & an iption of water who 320' 57 SACKS	

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number. e' El Paso Natural Gas Company

Form 7-238 (Rev. 11-71)

WELL CASING CATHODIC PROTECTION CONSTRUCTION REPORT DAILY LOG

Completion Date <u>9-27-48</u> Drilling Log (Attach Hereto). Well Name CPS No #39 Location 1284W S.J. -SW 5-27-6 124 Type & Şize Bit Used Work Order No #39-52716-19 #2 ContRACT # 134= 20662-19 Anode Hole Depth 10550 Total Lbs. Coke Used Lost Circulation Mat'l Used No. Sacks Mud Used Total Drilling Rig Time .500-500 Anode Depth *1455 |*2445 # 3H35 = 4 H20 = 5 H10 # 7 365 # 8 355 # 9 345 # 10 335 = 6 400 Anode Output (Amps) # 1**2.9** # 3 3,3 #-7-3.6 1= 8 3.0 # 2 **3,4** # 4 2.9 # 6 **.3, /** #93.4 # 10 3 4 = 53.4 Anode Depth # 11 # 17 # 12 # 13 # 14 # 15 # 16 # 18 # 19 # 20 Anode Output (Amps) # 11 # 12 # 13 # 14 # 15 # 16 # 17 = 18 # 19 # 20 Total Circuit Resistance No. 8 C.P. Cable Used No. 2 C.P. Cable Used Ohms 0. 78 Volts 11.7 Amps 1.5,0 Remarks: Static #39 600 W=0.78 Static #134 600 E=0.77. DRilled to 320 WAIted 20 Min. Blew WATER. 3 to 6 GAIS. POR Min. PERSORA ted 280' 041" PUC VENT Pipe. INSTAILED 500' of 1"PVC VENT Pipe. SlurRyud 57 11/2 ×60" Duriron SACKS OF COKC. Hole Depth= 0 60 V 30 A Rectifier Pitch & ICAble = 495 20' Meter Pole ExtRA CALLE: 621 All Construction Completed 22 Signature GROUND BED LAYOUT SKETCH 156 DISTRIBUTION: WHITE - Division Corrosion Office 19.8 YELLOW - Area Corrosion Office PINK - Originator File AND AN ANTANA

Released to Imaging: 6/11/2025 7:34:55 AM

Received by 9. 9. 344 4/2025 7:56:51 AM

El Paso Natural Gas Company

Received by 9. 9. 34	14/2025 7:56:51 AM	El Paso Natu ENGINEERINO	iral Gas Company G CALCULATIO	N)	t	Page 33 of 136 heet:
					F	File
	S.J. 28-6 #39				52 5	50° 116-19 28
4 1	S.J. 28-6# 134	SW5-27- ContRACt		284W		62-19
	Static # 39 600 W=0.78		DRilled to			
	Static #134 600' E=0.77		Blew water			
MW gais/mol	·····		PERforAted tistAlled	100 0 + 1 1 P.V.	CVONT PIN CVONT PIN	e
16.04 C1 64 30.07 C2 10 12			S/uRRyed!	57 SAULS	of coke	
44 10 C3 10 42 58.12 IC4 12.38	3 00 .7	2 •				
58.12 nC4 11.93 72.15 iC5 13.85	· 7. 	* * *		· · · · · ·		
72.15 nC5 13.71 86.18 iC6 15 50		·				
86.18 C6 15.57 100.21 IC7 17.2	20).4					· · · · · · · · · · · · · · · · · · ·
100.21 C7 17.46 114.23 C8 19.39			an a		and the Case of th	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 1.7	· 				
42.00 03 907	1.5 10		· ·			·
	1.4 0				۰ •	
	12 - mainterneralaire data managementeralment or a consequence and		generalise an and a second			
	1.9 0					·····
	10 1.7 1.7					
	1.5 B				601 30 A Re	ctific.R
	1.2 80 J.O	n og ander som en	DE ELLER DE LA COMPANY DE L	20-1412/04-1424-02-1424-04-04-04-04-04-04-04-04-04-04-04-04-04	20'Meter	
	<i>\$</i> ⁰ 1.0	3			tok Dept	h= 0
	9	· · · · · ·			DitchEI CAL	
	<i>41.2</i>		* 		EX +RA CAble	- 001
MISC MW gals/mol	4011.7 (D	na letti waratarikana ka kativana kativa. M		455 1.9	2.9	
32.00 O2 3.37 28.01 CO 4.19	1.8	۰۰۰۰۰ 	Ø	445 2.0	3, 4 3. 3	
44.01 CO2 6 38 64 06 SO2 5 50	1 <u>0</u> 1.7 (5).	1		435 1.9 420 1.9	محمور و از	
<u>34 08 H2S 5.17</u> 28.01 N2 4 16	1.4	···· · · · · · · · · · · · · · · · · ·	\$ 6	420 1.9 HIO 2.2	3.4	
2.02 H ₂ 3 38		ar e construiñadad en ara este en ante br>A	6	400 2.2	3.1	
				365 2.2	3.6	
	1.4 3	2 2 2 2 2 2	8 9	355 1.9 345 2.1	3.0	
	40:1.8 1.6 Q		ତ ଜ	3 35 2.3	3.4 3.4	
Ŧ	50 1. 7	an fan de fan de fan sensen en de fan de F		aniskastala Dolasi os tambio sinte sisterio, mažistraja esta		an and a second construction of the second se
	1.50			volts = 11.7		1
	1.1		· -··· · · · · · · · ·	AMPS= 15.0	(,	· · · · · · · · · · · · · · · · · · ·
	701.2			Ohms= .78		······
Ϋ́,	1.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	YOTTOC MARTING PARAMINAL PROPERTY OF THE PROPERTY OF T	dan menantahangka kananan menangkan ang dipension	- 	ananananan kasa kasararan kanyar kadan da a
*	1.2 80.9				· · · · · · · · · · · · · · · · · · ·	·····
. 55	.8	· · · · · · · · · · · · · · · · · · ·				·
5 1500	90,8					· · · · · · ·
45 50	500.6 +D& DRilled	4				the second second
and a second second second					4.2	

-

-

L PASO NATURAL GAS COMPANY SAN JUAN DIVISION FARMINGTON, NEW MEXICO PRODUCTION DEPARTMENT WATER ANALYSIS

			-	,
	Analysis No. 1-936	4	Date11-8-78	
	Operator EPNG	Well	Name SAN JUAN 28-6 #39 & 1	.34
	Location SW 5-27-	6County_	RIO ARRIBA State NM	
	Field	Form	ation	· · · · · · · · · · · · · · · · · · ·
	Sampled From C.	P. S. 1284 W	320' 3-66PM	
	Date Sampled		By	
	Tbg. Press	Csg. Press.	Surface Csg.	Press
	ppm.	epm	ppm	epm
	Sodium 725	32	Chloride 18	.5
	Calcium 197	10	Bicarbonate 298	5
	Magnesium 30	3	Sulfate 1875	39
	Iron PRESENT		Carbonate 0	0
Ì.	H ₂ SABSENT		Hydroxide	0
	cc: D.C.Adams		Total Solids Dissolved	
	R.A.Ullrich E.R.Paulek		PH <u>7.5</u>	
	J.W.McCarthy A.M.Smith			73 60 ⁰ F
•	W.B.Shropshire File		Resistivity 320 ohn-c	
	r 11e			ant and
			<u> </u>	W RZE
2	25 20 15 0 Na <u> </u>	10 5		20 25 C1 10
	Ca			HCO3 10
	Kg		N	50 ₄ 10
	••6			
\rangle	Fe			co ₃ 4 🐣
	 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ale: epm	
· •				•
	e			، م ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب
	· · ·		х. Х	

	ACTOR Q.7 C	X	REPORT NO.	DATE 2. 2 10 10
MORNING	12.70	LIGHT		and as
Total Men In Crew	Driller	Told Men In Crew	Driller	Total Men In Crew
FORMATION WT-BIT R.P.M.	FROM TO	FORMATION WT-BIT R.P.M.	FROM TO	FORMATION WT-BIT R.P.M.
NO. DC SIZE LENG.		NO. DC SIZE LENG.		NO. DC SIZE - ENG
SIZE LENG.	BIT NO.	Sł Z E	BIT NO.	
STANDS	SERIAL NO.	STANDS	SERIAL NO.	STANDS
SINGLES	Ш	SINGLES	SI ZE	SINGLES
DOWN ON KELLY	ΣΕ	DOWN ON KELLY	ТҮРЕ	DOWN ON KELLY
TOTAL DEPTH MAKE	се	TOTAL DEPTH	MAKE	TOTAL DEPTH
MUD, ADDITIVES USED AND RECEIVED	MUD RECORD	MUD, ADDI LIVES USED AND RECEIVED	MUD RECORD	MUD, ADDITIVES USED AND RECEIVED
	Time WL. VIS.		inne Wi. Vis.	
TIME BREAKDOWN	FROM TO	TIME BREAKDOWN	FROM TO	TIME BREAKDOWN
ind Store	20 240 2	ander Shale	420 4 60 -	Jords Shalo
indy The le Cango	80 300 d	gody Shall a	480 500 4	Sandy Shalo
even store	00 540 00	that (wither)		0
tacky chall 34	40 5 40 420	the stat	· ·	
æ	REMARKS –		REMARKS -	¥ / 2/01
			- Capel	500
			tex 32	+ 6 gin water
		· · · · · · · · · · · · · · · · · · ·		2
SIGNED: Toolpusher	Toolpushei, T	The Jorde	Company Supervisor	

eived by OCD: 3/14/2025 7:56:51 AM	3,803	Page 36 of 1
38 -> 30-039-07197 70-> 30 DATA SHEET FOR DEEP GROUN NORTHWEST	ND BED CATHODIC PROTECTION WELLS	۲. ۲
Operator Meridian Oil Co.	Location: Unit <u>A</u> _Sec. <u>05</u> Twp <u>27</u>	Rng 06
Name of Well/Wells or Pipeline Serv	viced	
SAN JUAN 28-6 UNITS #38,	AND #170	·
Elevation 67/6 Completion Date	Total DepthLand Type	<u></u>
Casing Strings, Sizes, Types & Dept		
NO GAS, WATER, OF BOULdets We	•	
If Casing Strings are cemented, she WITH 22 SACK5.	ow amounts & types used <u>Cement</u>	ed
If Cement or Bentonite Plugs have $\mathcal{N}_{\mathcal{O}}$	been placed, show depths & amoun	ts used
Depths & thickness of water zones Salty, Sulphur, Etc. <u>200</u> '	with description of water: Fresh	, Clear,
Depths gas encountered: N_O		
Ground bed depth with type ε amoun $140'$ bass of Asbury #	2181 (50/bs) COKE breeze	
Depths anodes placed: $448, 440, 424, 4$	14,404,394,375,365,280,270,24	245 23
Depths vent pipes placed: 463		3, 213
Vent pipe perforations: $bc \tau \tau c$	M 300' MEGEUVE	
Remarks:	JAN 3 1 1994	
	CIL CON. DIV.I	
		, ,

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

.

Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.
Received by OCD: 3/14/2025 7:56:51 AM

505/327-3311

New Mexico

87401

Farmington

TECH, Inc.

Released to Imaging: 6/11/2025 7:34:55 AM

Page 37 of 136

d by OCD: 3/14/2025 7:56:	51 AM		a)17	Page 3
	C^{2}	· · ·	C .	
	HEET FOR DEEP GROUND NORTHWESTE) BED CATHODIC.P RN NEW MEXICO	ROTECTION W	ELLS
2ps <u>9151 20</u>				
	ington Resources			
	lls or Pipeline Servi			
	699A; 33638A		9-25751	
÷ •	pmpletion Date 4-1-9			ype <u>5+</u>
Casing Strings,	Sizes, Types & Depth	ns <u>8" PVC X</u>	20	
		<u> </u>		· · ·
If Casing String	gs are cemented, show	w amounts & type	s used <u>-/-</u>	Bags Ce
<u></u>				
If Cement or Ber	ntonite Plugs have be	een placed, show	depths & a	amounts u
none		•		
Depths & thickne	ess of water zones w	ith description	of water:	Fresh, Cl
Salty, Sulphur,	Etc. <u>70' Seep</u>			
•	•			
Depths gas enco	untered: <u>None</u>			·
Ground bed dept	h with type & amount	of coke breeze	used: <u>300</u>	= 2000
Loresco SW	10Ke breeze		· · · · · · · · · · · · · · · · · · ·	
Depths anodes p	laced: 285, 278, 271	1,265, 223, 21	e, 209, 20	2,195,18
Depths vent pip				•••
	es placed: <u>300'</u>	· · · · · · · · · · · · · · · · · · ·		
Vent pipe perfo	es placed: <u>300'</u> rations: <u>Bottom 150</u>	,		EIWE
Vent pipe perfo Remarks:	prations: <u>Bottom 150</u>	,		Ξ ₩ Ξ - 9 1999
		,		<u>EIIWEI</u> <u>- 9 1999</u> DNL: DIV STL 3

logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included

•

1

.

Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

a).

•

Received by OCD: 3/14/2025 7:56:51 AM

•

-

COMPA	NY NAME	: Burl	ington	Rosow	les			·			07905 14.669	
NELL N	AME	: 55.	28-6	# 134							21001	f
EGAL L	OCATIO	N: 5-2	7-6	ana atau kan Kilon kata			COUNT	Y: Ri	AIL	ha		
				<u>الفاطية وتعارفة المتصامعة ال</u>								
	9-1-9	98					TYPE C	F COKE:	Loris	10 5	W	
DEPTH:	300	r					AMT. O	F COKE B	ACKFILL:	2000	lbs	ور کارتی بر معالم بر
BIT SIZE	63						VENT P	IPE: 3	00'	a de la constante de la constan La constante de la constante de		
ORILLEF	R NAME:	Jack	Lee	lbetter			PERF.	PIPE: AA	ttom /	'50'		
SIZE AN	D TYPE (OF CASIN	G: 2"	PUC X	20'		ANODE	AMT. & T	YPE: A	ratec	Ducic	on
							BOULD	ER DRILLI	NG:			
DEPTH			DEPTH			DEPTH			-		ORMATIO	
FT.	LOG	ANODE	FT.	LOG	ANODE	FT.	LOG	ANODE	WATER D	DEPTHS:	70 5.	ep D
									ISOLATIO	ON PLUG	S:	
100			265	2.0		430						1
105	L		270	1,3		435					OUTPUT	
110	ļ		275	1.00		440			ANODE#	DEPTH	NO COK	COKEL
115	Į	L	280	1.0		445			1	285	1.0	3,6
120		L	285	1.0		450			2	278	1.4	4,7
125	L		290	.8	ļ	455			3	271	1.8	5.2
130	Ļ	L	295	T.D,		460			4	265	2,0	5,9
135	ļ		300	<u> </u>		465			5	223	1,8	6,2
140	ļ	L	305	<u> </u>		470			6	216	2.1	6.3
145		L	310		Ļ	475			7	209	22	5,9
150	<u> </u>	<u> </u>	315			480			8	202	lila	4.7
155	<u> </u>		320			485			9	195	1.0	4.7
160	· /		325	<u> </u>		490	I		10	188	1.0	1.9
165	16		330	<u> </u>	ļ	495	Į		11			
170	19		335		ļ	500	ļ		12			
175 180	14_		340	+		505	 		13			
			345	ļ	ļ	510	 	-l	14			
185 190	15		350 355	<u> </u>	ļ	515	ļ		15			L
195	44	·	360	<u> </u>	 	520	ļ		16			ļ
200	23		365			525 520			17			ļ
200	2,2		305	+		530 535	 		18	L	ļ	
210		·	375	+		535 540	<u> </u>		19		 	 -
215	1.9		380		<u> </u>	540 545	ļ		20		ļ	
220	1.8		385	+	 	550	<u> </u>	· 	21 22	<u> </u>	<u> </u>	<u> </u>
225	1.3		390	+	<u> </u>	555	┢	+	22			
230	1.0		395	1		560	 	+	23		<u> </u>	╆
235	1.7		400	† – –	t	565	 	+	25	<u> </u>	<u> </u>	
240	15		405	1	<u> </u>	570	<u> </u>	+	26			
245	14		410	1	h	575		+	27			 -
250	12	————	415	1	1	580		+	28			<u> </u>
255	12		420	1	1	585	†	+	29			 -
260	1.0		425	1		590	t	+	30			<u>├</u>
				1		595	†	†				†
	VOLTS:	11.12		.	VOLTAC	E SOURC		to	L	L	1	

				Page -
	$\left(\begin{array}{c} \\ \\ \\ \end{array} \right)$		C_{1}	•
aile TW DA	TA SHEET FOR DEEP Nort	GROUND BED CATHO HWESTERN NEW MEX		WELLS
Operator	Builington Resou	Location:	Unit I Sec. 5	Twp 27 Rng
	./Wells or Pipeline			
	37A; 33696A		30-039-25772	
	Completion Date_	4-14-98 Total De	epth 300' Land	d Type <i>A M</i>
	ngs, Sizes, Types a			
Casing Strip	igs, Sizes, Types a	Deptns <u>X P</u>		
	<u> </u>	• 	· · · · · · · · · · · · · · · · · · ·	·····
If Casing St	trings are cemented	l, show amounts	s types used 🖂	1 Bags Cem
		•		•
ومحمولا والمراجعة المستخلة بمتناك والمترك والمتعاوي				
IE Coment of	Postosito Diugo	have been placed	show depths	
	r Bentonite Plugs	have been placed	, show depths	& amounts v
If Cement of <u>None</u>	r Bentonite Plugs	have been placed	, show depths	& amounts u
none	r Bentonite Plugs ickness of water z		•••	
<u>Mone</u> Depths & th:	ickness of water z	ones with descri	•••	
<u>Mone</u> Depths & th:	<u></u>	ones with descri	•••	
Mone Depths & th: Salty, Sulph	ickness of water z hur, Etc. <u>/00 </u> ≺	ones with descri	•••	
Mone Depths & th: Salty, Sulph Depths gas	ickness of water z hur, Etc. <u>/00 <</u> encountered: <u>/00</u>	ones with descri	ption of water	: Fresh, C
Mone Depths & th: Salty, Sulph Depths gas	ickness of water z hur, Etc. <u>/00 </u> ≺	ones with descri	ption of water	: Fresh, C
Mone Depths & th: Salty, Sulph Depths gas	ickness of water z hur, Etc. <u>/00</u> encountered: <u>/004</u> depth with type &	ones with descri	ption of water	: Fresh, C
None Depths & th: Salty, Sulph Depths gas Ground bed Lorrsro	ickness of water z hur, Etc. <u>/00</u> encountered: <u>/004</u> depth with type &	ones with descri	ption of water preeze used: <u>30</u>	: Fresh, C
None Depths & th: Salty, Sulph Depths gas of Ground bed Loirsio Depths anod	ickness of water z hur, Etc. <u>100</u> \leq encountered: <u>1004</u> depth with type & $\leq (1)$ es placed: <u>290, 28</u>	amount of coke b	ption of water preeze used: <u>30</u>	:: Fresh, C:
<i>None</i> Depths & th: Salty, Sulph Depths gas Ground bed <u>Loirsio</u> Depths anod Depths vent	ickness of water z hur, Etc. <u>100</u> \leq encountered: <u>100</u> depth with type & $\leq (1)$ es placed: <u>290</u> , <u>28</u> pipes placed: <u>30</u>	ones with descri	ption of water preeze used: <u>30</u>	: Fresh, C: o', /600
None Depths & th: Salty, Sulph Depths gas Ground bed <u>Loirsio</u> Depths anod Depths vent	ickness of water z hur, Etc. <u>100</u> \leq encountered: <u>1004</u> depth with type & $\leq (1)$ es placed: <u>290, 28</u>	ones with descri	ption of water preeze used: <u>30</u> wo, 234, 228, 2 DECE	: Fresh, C: o', <u>/600</u> O', <u>/600</u> 9 1999

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included

> --

.

.

.

COMPAN	NY NAME	: Bur	lington	Rey	JULES					1	F 0790	
VELL N			81,#					.				
EGAL L	OCATIO		27-6				COUNT	Y: D	0 Arri	ha		
فالمستقل المستخر بيهنيه						ويستغيثون ويستكر مسرقة		<u> </u>	VAIN	KJ4		
ATE:	2-14-	98	ر بر میرون افت رو				TYPE C	F COKE:	10415	10 51		
DEPTH:			بنديب باريد بالمريح كالمت				AMT. O	F COKE B	ACKFILL:	1/200	The	
BIT SIZE							VENT P	IPE: 30	20'	1000	102	
DRILLEF	R NAME:	Jack	Ledber	yer				PIPE: BO		601	<u>;</u>	
SIZE AN	D TYPE (OF CASIN	G: 81	N/X	20'		ANODE	AMT. & T	YPE: A	intr.	Durin	
							BOULD	ER DRILLI	NG:		<u>KJUI II</u>	24
DEPTH		I	DEPTH	<u> </u>	1	DEPTH		1		TION INF	ORMATIO	N:
- Т.	LOG	ANODE	IFT.	LOG	ANODE	FT.	LOG	ANODE			100 S	
		1	<u> </u>		1		1		ISOLATIC	N PLUG	<u>5.</u> S.	rep 1
100	17	î —	265	.4		430	— —				<u> </u>	<u> </u>
105	1.5	<u> </u>	270	13	<u>†</u>	435	<u> </u>	+			OUTPUT	
110	1.4	1	275	.5		440	 	+		ОЕРТН	NOCOK	
115	1.9	l	280	17	2	445	 	+	1	290	9	1,5
120	16	í	285	18	<u>†~~</u>	450	<u> </u>	4	2	280		
125	15	t	290	1.0	,	455	<u> </u>	+	3			a.c
130	14		295	.9		460	<u> </u>	+	3 4	260	1.2	<u>रि</u>
135	13		300	7.2.	<u> </u>	465	<u> </u>	+	5	234	1.8	5.0
40	2.0		305	/ <i>-</i>		470	<u> </u>		6	248	1:8	5.0
45	2,1		310		<u> </u>	475	<u> </u>		o 7	240	1.8	5.8
150	<u>e</u>		315			480	<u> </u>		-	234	1,9.	5.
155			320		<u> </u>	485	 		8	228	15	5.0
160	1.6		325		<u> </u>	490	<u> </u>		9	222	119	4,2
165	1,5	<u> </u>	330		}	495	┣───		10	216	47	4.
170	1.0		335		 	500	<u> </u>		11	210	1.2	3,4
175	_		340			505	┣┈───		12		:	
180	16		345		╂	505 510	ļ		13			
85	10		345		<u> </u>			4	14		*	<u> </u>
90	14		355			515	Į		15			
95	1.0		360			520	Ļ		16		:	<u> </u>
200					 	525			17			
205	1.4		365		 	530	Ļ		18		:	
210	1.8	/	370		 	535	 		19		(
215	1.6	10	375 380		 	540	 	<u> </u>	20			
20	1.5	9			ļ	545	 		21		<u> </u>	
20	2,1		385			550	 	<u> </u>	22			
230			390	ļ	ļ	555	ļ	<u> </u>	23			
230	1.6	8	395		 	560	 		24			
40	1.2		400	<u> </u>		565	L	<u> </u>	25			
	1.0	6	405	ļ	ļ	570	L	<u> </u>	26			
45	18		410		Į	575	L	1	27			
50	1.4	5	415			580	L	1	28			
55	1,4	4	420			585			29			
60	1.4		425			590			30		1	
001110					-	595						
UGING	VOLTS:	11.10			VOLTAG	E SOUR	CE: A	uto			:	

;

Page 41 of 136

•

OCD: 3/14/2025 7:56:51 29447 53		- 07118		Page 42 of 130
104	3 - 30-039. - 30-039-	20 840		
DATA		GROUND BED CA IWESTERN NEW opies to OCD	MEXICO	
Operator MERID	IAN OIL	Locat	ion: Unit	Sec. <u>8</u> Twp_27Rng_6
	ells or Pipeline	e Serviced	SAN JUAN 28-6	UNIT #53, #104
				cps 1289w
Elevation 6203	Completion Date	9/7/78Tota	1 Depti <u>160'</u>	Land Type*N/A
Casing, Sizes,	Types & Depths	·	N/A	
	·			
If Casing is c	emented, show an	nounts & type	s used	N/A
If Cement or Bo N/A	entonite Plugs H	nave been pla	c e d, show de	pths & am ounts used
Depths & thick	ness of water zo	ones with des	cription of	water when p ossible
Fresh, Clear,	Salty, Sulphur,	Etc	80'	
		·		
Depths gas enco	ountered:	N/A		
	ountered:		25 SACKS	
Type & amount of		ised:	25 SACKS	
Type & amount o	of coke breeze u placed: <u>120', 90'</u> ,	ised:	25 SACKS	EINER
Type & amount of Depths anodes p	of coke breeze u placed: <u>120', 90',</u> pes placed:	15ed:	(1 14 1 15 1 15	EIVED
Type & amount of Depths anodes p Depths vent pip	of coke breeze u placed: <u>120', 90',</u> pes placed: orations:	1sed:	(1 14 1 15 1 15	EIVED 31-9/D 21/1991/

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

.

Page 43 of 136

53-30-039-07118 104-30-039-20840

DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO (Submit 3 copies to OCD Aztec Office)

Operator MERIDIAN OIL	ocation: Unit ^{SW} Sec. ⁸ Twp ²⁷ Rng ⁶
Name of Well/Wells or Pipeline Service	edSAN JUAN 28-6 UNIT #53, #104
	cps 1289w
Elevation_6203'Completion Date_9/7/78	Total Depth 320' Land Type* N/A
Casing, Sizes, Types & Depths	N/A
If Casing is cemented, show amounts &	types usedN/A
If Cement or Bentonite Plugs have been N/A	placed, show depths & amounts used
Depths & thickness of water zones with Fresh, Clear, Salty, Sulphur, Etc	- •
Depths gas encountered: N/A	
Type & amount of coke breeze used:	61 SACKS
Depths anodes placed: 290', 280', 270', 26	0', 195', D 5 E G E , 1 10 E N 85'
Depths vent pipes placed: 300'	JUN21-1991
Vent pipe perforations: 260'	OIL.CON. DIV
	#4 ANODE. #1 & #2 DID NOT GET COKE
AROUND THEM.	

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

OCD: 3/4/2025 7:56:51 AM	#22 30-039-07127
	#204 30-039-20846
NORTHWESTER	BED CATHODIC PROTECTION WELLS RN NEW MEXICO to OCD Aztec Office)
Operator <u>MERIDIAN OIL</u>	Location: Unit_NE_Sec. 8 Twp_27 Rng_6
Name of Well/Wells or Pipeline Servi	.ced
	cps 1288w
Elevation_6481'Completion Date_8/28/78	Total Depth ⁵⁰⁰ ' Land Type* N/A
Casing, Sizes, Types & Depths	N/A
If Casing is cemented, show amounts	& types used <u>N/A</u>
If Cement or Bentonite Plugs have be	en placed, show depths & amounts used
Depths & thickness of water zones wi	th description of water when possible
Fresh, Clear, Salty, Sulphur, Etc	
	DAMP AT TIU WALER AT 470
Depths gas encountered: <u>N/A</u>	DAMP AT TIU' WATER AT 270
Depths gas encountered:N/A Type & amount of coke breeze used:	
Type & amount of coke breeze used:	64 SACKS
Type & amount of coke breeze used: Depths anodes placed: <u>370', 360', 350'</u> ,	64 SACKS 340', 330', 320', 310', 300', 280', 15
Type & amount of coke breeze used: Depths anodes placed: <u>370', 360', 350'</u> ,	64_SACKS 340', 330', 320', 310', 300', 280', 15
Type & amount of coke breeze used: Depths anodes placed: <u>370', 360', 350',</u>	64 SACKS 340', 330', 320', 310', 300', 280', 15

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

Received by OCD: 3/14/2025 7:56:51 AM Page 45 of 136 WELL CASING Form 7-238 (Rev. 11-71) CATHODIC PROTECTION CONSTRUCTION REPORT Drilling Log (Attach Hereto). Well Name Location S.J. 28-6 NES-27-6 128 Type & Size Bit Used Work Order No 63ji 52626-Anode Hole Depth Logsed Total Drilling Rig Time Total Lbs. Coke Used Lost Circulation Mat'l Used No. Sacks Mud Used 500- 460 Anode Depth # 4 3 40 + 5 3 30 # 6 3 20 # 7 310 # 8 300 370 # 5 3.6 # 4 2.8 Anode Depth ; #111.55 # 14 # 15 Anode Output (Amps) #16 14.153 134 15 16. Ohms -Remarks: StAtic 600'SE-0.81. DRiller SAId DAMP & 110 STARtad MAKING WATER @ 270'. PERSORATEd 260'05 1" PUGVENT Pipe. Installed 380' of 1" PUC VENT Pipe, Slurged 64 SACKS of Coke BREEZE 0 Hole BRidged Above #10 Anode. Installed #11 Anode 1/2" ×60" Duriron HOV 16 A. Rectifica stub Pole Hole Depth = - 40 The safe is the safe is a All Construction Comple Ditche ICAble= 389 ExtRA CAble: 264 (Signature) GROUND BED LAYOUT SKETCH N 3.5-51 5. 5. 28-6 NE 8-28-1 NE 8-28-1 Not completed DISTRIBUTION: WHITE - Division Corrosion Office YELLOW - Area Corrosion Office 6481. PINK - Originator File

nggann Angar Angar Angar Angar Angar Angar Angar Ang Angar Angar Ang		ENGINEE	so Natural Gas Company RING CALCULATION	and a second	وها الاستعمادة المعرو المعاد والمستر الدار الفر المراجع المراجع الم	Date:
						File:
		···· /				
Δ	5. J. 28-6 # 22	NE8-2	7-6 128.	841	52626-	19
normaliy bur sult i sult i	" " " " " " " " " " " " " " " " " " "	·		and the state of the second	مىنى بىلىغى ئىلىغى بىلىغى . مۇرىغ	
	Static 600 SE=	1 81 i	PRiller SAIL	Dana A 11A	1 140 112 11	حرم ملم
			10 GALS	POR Min	MARINE M	ALL SERVICE
-			PERFORAted 26		Vent Pie	· Augustine
gals/mol			InstAlled 380	1 of 1" PUG	Vest Pip	
4 C1 6.4 7. * C2 10.12			Slupered 64	SACKSON	- Cote	
0° C3 10.42 2° IC4 12.38	250	30 , 9 1. 0	Bridged Betw	een#93#10	t-stAlle	K
2 nC4 11.93 5 iC5 13.85			#11 Anodes			
5 nC5 13.71	60	40: 1.6				
8 iC6 15.50 8 C6 15.57		1.6 60 .8			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 - IC7 -17.2 1% - C7 - 17.46 %		8		Hader and		
3 C8 19.39 5 C7 9.64	80 1.1 60	60 .8 TD				
B C3 9.67	1.1			Pro Maria		
	90 1.6 9	70				
	25日 1.7					
	300 1.7-8	60		· · · · · · · · · · · · · · · · · · ·		
	1.8					<u>CERTIFICATION OF THE PARTY OF </u>
	10 1 7 6	90				
	20 1. 8-6 5	DRiller	· · · · · · · · · · · · · · · · · · ·	54	46 1010	
	1.8		In the second			- 40
	30 1.5-5	·· · · · · · · · · · · · · · · · · ·			e Depth = h 51 cAbles	
	1.7	······ · · · · · · · · · · · · · · · ·			tRA CALLE	
	40 1.4-0					
MISC.	1.2	And the second				
gals/mol O2 3.37	50 1.3-3)	· · · · · · · · · · · · · · · · · · ·		70 1.6	3.1	
CO 4.19 CO2 6.38	1.1	• • • • • • • • • • • • • • • • • • •		60 1.5 50 1.3	2,8	
SO2 5 50	60 1.1-0		3		2,8	
H ₂ S 5.17 N ₂ 4 16	50 1.4-0		⊕ }3 ⑤ 3	40 1.5 30 2.2	2.8 3,6	\$ <u>}</u>
H ₂ 3 38	- 400 100 - 100 100 - 10	anightair fair an faitheacht an gur an - aile is mó mharacha faitheacht an tarach	- consult view blocks Bible - b bir XIII verball Bible biller bill viel 🗰 Arrille viel 🗸 👘	20 2.1	and and a firm contractions	чүүх:Ланын жаймаан жайжаасын тараттар 1
	80 . 5		Ó j	2.1	3.7	né na anara a 27 a
	. 8		Î Ž	15 2.1 00 2.1 90 1. 5	3.4	
	90: . 9				2,6	• • •
		బుహులు కళ్లి, 5 నిహారణం జాత్ 5 లో సాతర్భావు ఇంటి) హారెస		80 1.4	an	5. 10.2002/10020000000000000000000000000000
	4 20 · 7			55 1.5	2.4	
	12 4					<u>,</u>
	10.7		Volts= 1	14		
	20 , 7		AMP 5-1			· · · · · ·
	- wante water water the between the company and	n ann tha na shear a' shear an	OHUSE OF MERCHANNER		*******	2 ⁻¹¹⁰⁹ 35503491396992 Westong mes 2
		-				· · · · · · · · · · · · · · · · · · ·
			••		-	2 . 1

.

* -)		
	···	S FARM	AN JUAN DIV INGTON, NE		ísis [.]	 توجه المعالي الم	
	Analysis No	1-9325	Date	9-15-78			
	Operator EH	NG	Well Name	San Ju	an 28-6 #2	22	
	Location 8-27-6	Co	unty		State	NM	
	Field					لېرې . دې چې د د .	
	Sampled From		WTR 0				
•	Date Sampled		By			۰۰۰ ۲۰۰۰ ۱۹۹۳ - ۲۰۰۰ ۱۹۹۳ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲	
	Tbg. Press.	Csg. Pre	SS•	Şı			CONTRACTOR OF A
	ppm [*] Sodium <u>437</u>	epm 19	 -	Chloride	ppm ::: 16	epm 0.4	
	Calcium 42	2		Bicarbonate	278	5	
	Magnesium_5	0.4		Sulfate	750	16	
	Iron PRESENT	· ·····		Carbonate_	0	0	
	H2SABSENT). 		Hydroxide_	0	0	
•	cc: D.C. Adams			Total Solid	is Dissolv	ed1216	ager of the Bar of the second se
	R.A. Ullrich E.R.Paulek			pH 8.2		n en en frisk N	
	J.W. McCarth	у	·	Sp. Gr. 1.(0026 at		_60 ⁰ F
	A.M. Smith W.B. Shropsh	ire		Resistivity	y <u>680</u> ohr	-cm at 7	2 °F
	File			R	Z. El Chemist		1
20	25 20	15 10	5 0	5 10	15	20	2 ⁵ c1 10
20) Na						
	Ca						HC03 10
	Mg						
	Fe						co ₃ 4
	- 1 1		Scale:	ерт	ł	i	i

.

• •

						REMARKS -	155-165-52	170 103 54	25 m 00	10 :05 -55	0 10 50	FROM TO			Time Wt. Vis.	MID RECORD	· TYPE	SIZE	SERI NO.	- alt No		;			FROM TO		LEASE	Form 22-2 (Rev. 1-61)
SIG							end stone	the second second	ale the second	and methy	-tace,	TIME BREAKDOWN		~		MUD. ADDITIVES USED AND RECEIVED	DOWN ON KELLY	SINGLES	STANDS	NO. DC SIZE LENG.	NO. DC SIZE LENG.			¢	FORMATION WT-BIT R.P.M.	1	WELL NO. /2890	
SIGNED: Toolpusher	2.4	; 			「御御御かたこと」	REMARKS +	375380 540	365 375 Sz.	2/10 2/10 2 hr	12 210 San	165 175 Ska	FROM TO			Wt. V1s.	MAKE STOR RECORD	TYPE	SIZE (SERIAL NO.	BIT NO.		n i i i Good i i Statu			R ROM TO	- 「 「 に が に が に か こ - DAYLIGHT	ONTRACTOR OSMAN	EL PASO NA DRILL
Ognort								d'atom	12-51-0	listave water	1 Los	TIME BREAKDOWN				MUD. ADDITIVES USED AND BECEIVED	DOWN ON KELLY	SINGLES		NO. DC SIZE LENG.	NO. DC SIZE LENG.		,		FORMATION WT-BIT R.P.M.		T RIG NO. /	EL PASO NATURAL GAS COMPANY DRILLING DEPARTMENT
Communy Supervisor	Waler @	ls/ yalu	1	there is to	ed !	REMARKS -		460 500 St	400 700 Co	-		FROM TO			Tune At. Vis.	MAKE	TYPE	SIZE	SERIAL NO.	BIT NO.					FROM TO		REPORT NO.	
	270 overall	Fridson (m)		460 1	AC9/10 029	× ×		mels love	halo love	aly 1	and store	TIME BREAKDOWN				TOTAL DEPTH	DOWN ON KELLY	SINGLES	ST ANDS	3ZIS	NO. DC SIZE LENG.				TOPMATION WT.BIT D.D.M.		DATE Aug 28 197	DAILY DRILLING REPORT

1.2

Released to Imaging: 6/11/2025 7:34:55 AM

.

)CD: #14/2025 7:5		•		Pa
		8- 49- 	30-039-22299	
DA	NORT	THWESTERN NE	CATHODIC PROTECTION W MEXICO D Aztec Office)	WELLS
Operator_ME	RIDIAN OIL	Loc	ation: Unit SE_Sec.8_	
Name of Wel	l/Wells or Pipelir	ne Serviced_	SAN JUAN 28-6 UNIT #	22A
				cps 160
Elevation_64	<u>.80'</u> Completion Date	<u>7/21/81</u> To	tal Depth <u>500'</u> Land	d Type*_1
Casing, Siz	es, Types & Depths	5	N/A	
			pes used N,	
If Cement o	r Bentonite Plugs	have been p		
If Cement o	r Bentonite Plugs A	have been p	laced, show depths a	& amounts
If Cement o <u>N/</u> Depths & th	r Bentonite Plugs A	have been p	laced, show depths a	& amounts
If Cement o N Depths & th Fresh, Clea	r Bentonite Plugs <u>'A</u> ickness of water z	have been p cones with d Etc	laced, show depths a	& amounts
If Cement o <u>N/</u> Depths & th Fresh, Clea Depths gas o	r Bentonite Plugs A ickness of water z r, Salty, Sulphur,	have been p cones with d Etc N/A	laced, show depths a	& amounts
If Cement o <u>N/</u> Depths & th Fresh, Clea Depths gas Type & amour	r Bentonite Plugs A ickness of water z r, Salty, Sulphur, encountered: nt of coke breeze	have been p cones with d Etc N/A used:	laced, show depths a escription of water 300' NO SAMPLE	& amounts when pos
If Cement o N/ Depths & th Fresh, Clear Depths gas Type & amound Depths anode	r Bentonite Plugs A ickness of water z r, Salty, Sulphur, encountered: nt of coke breeze	have been p cones with d Etc N/A used:	laced, show depths a escription of water 300' NO SAMPLE 6200 lbs.	& amounts when pos
If Cement o <u>N/</u> Depths & th Fresh, Clear Depths gas Type & amound Depths anode Depths vent	r Bentonite Plugs <u>A</u> ickness of water z r, Salty, Sulphur, encountered: nt of coke breeze es placed: <u>470', 460'</u>	have been p cones with d Etc N/A used: ', 425', 415', 495'	laced, show depths a escription of water 300' NO SAMPLE 6200 lbs. 405', 395', 355', 345'	& amounts when pos
If Cement o <u>N/</u> Depths & th Fresh, Clear Depths gas Type & amoun Depths anode Depths vent	r Bentonite Plugs <u>A</u> ickness of water z r, Salty, Sulphur, encountered: nt of coke breeze es placed: <u>470', 460'</u> pipes placed: pipes placed: erforations:	have been p cones with d Etc N/A used: ', 425', 415', 495'	laced, show depths a escription of water 300' NO SAMPLE 6200 lbs.	& amounts when pos , 320', 310

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

.

Received by OCD: 3/14/2025 7:56:51 AM

Page 50 of 136

N

El Paso Natural Gas Company Form 7-238 (Rev. 11-71)

	28-6 U	NIT #2	2 <i>A</i>	ation SEY.	- 27. 6			1608 w	/
Type & Size Bit	G 3/4	Le Contraction de la contracti					Work Order	No. 63-21-	50-20
Anode Hole Dep	oth	Total Drilling =	lig Time 'fe	otal Lbs. Coke U	Jsed Lost Cr	culation Mat'l U			
500' T.D. Anode Depth '	495	1				1	1		
470	# 2 460	* 3 425	-4415	· 5 405	395	7 355	× 8 345	:9 320	# 10 3/0
Anode Output (Å		# 3 7 /	= 4 2.6	· 5 2.9	≈6 2,5	1.7 79	1× 8 2.7	# 9 1.8	# 10 2.3
Anode Depth	<u> </u>	1	1	· · · /		1	1		
11 Anode Output (A	≠ 12 Amps)	≈ 13	z 14	≈ 15	# 16	# 17	* 18	# 19	# 20 ·
	≠ 12	± 13	a 14	¦≈ 15	<i>4</i> 16	¦≑ 17	¦≈ 18	# 19	# 20
Total Circuit Re Volts 12.3		ps 13.74	, Ohms	.9	No. 8 C.P. Ca	ble Used		No. 2 C.P. C	able Used.
emarks: <u>57</u> Drilled Jo Min.	ATIC To 26 BLew 1	ON S.J. O'. Hol NATEX 4 M	28-6 44 e w As ud To To	17 22A GO Dry Next Drop of Hol	r A.m. F e, woul	H.T WAT	sette a	oo'shu out For	r WATe
emarks: <u>\$7</u> Drifted Jo Min. SAMpte	BLew D FST.	ол <u>S.J.</u> 50'. Hol х Атек 4 л ² д Аl./л	28-6 44 e w As ud To To	it 22A GO Dry Next pp of Hol Drilled	r A.m. F e, woul	H.T WAT	sette a	oo'shu out For	+95'0+
emarks: <u>\$7</u> Drilled Jomin. SAMple 1"P.V.	ATIC To 26 BLew 1 EST. C. Vent	ON S.J. To'. Hol ATEX 4 M ¹ 2 g Al. /M Pije, 1	28-6 44 e w As ud To To nim. M PerferaTo	it 22A GO Dry Next pp of Hol Drilled	F A.M. F e, WOUL To 500'	HT WAT D NOT Logged	er AT S Settle 6 495, JNS	oo'shu out For	+95'0+
emarks: <u>\$7</u> Driffed Jomin. SAMpte 1"P.V. Coke B	FATIC To 26 BLew 1 EST. C. Vent Heeze	ON S.J. To'. Hol ATEX 4 M ¹ 2 g Al. /M Pije, 1	28-6 44 e w As ud To To nim. Perferate Led in B	ii7 22A GO Dry NexT pp of Hol Drilled d 300'.	F A.M. F e, WOUL To 500'	HT WAT D NOT Logged	er AT 3 Settle 6 H95, JNS Hole	oo'shu out For	+95'0+
emarks: <u>S7</u> Driffed Jo Min. SAMple 1" P.V. Coke B DiTch	FATIC To 26 BLEW EST C. VENT C. VENT C. VENT C. VENT C. VENT	ON S.J. O'. Hol VATEK 4M ¹ 2 GAL./M ¹ 2 GAL./M ¹ 2 Pije, 1 WAS AHAUL	28-6 44 e w As ud To To rin. Derferate Led in B	ii7 22A GO Dry NexT pp of Hol Drilled d 300'.	F A.M. F e, WOUL To 500'	HT WAT D NOT Logged	er AT 3 Settle 6 H95, JNS Hole	oo' Shu ou T I=0, TALLed	+95'0+
emarks: <u>S7</u> Driffed Jomin. SAMple 1" P.V. Coke B DiTch	ATIC To 26 BLEW EST. C. VENT C. VE	0 N S.J. 50' Hol XATEK 4 M 2 GAL./M F Pije, 1 WAS HAUL = 295 = 200'	28-6 44 e w As ud To To rin. Derferate Led in B	ii7 22A GO Dry NexT pp of Hol Drilled d 300'.	F A.M. F e, WOUL To 500'	HT WAT D NOT Logged	Er AT S SETLE O H95' TNS Hole All Constru VE	oo' Shu ou T I=0, TALLed	+95'0+
emarks: <u>S7</u> Driffed Jomin. SAMple 1"PV. Coke B DiTch exTrA 40V 16	ATIC To 26 BLEW EST. C. VENT C. VE	0 N S.J. 10'. Hol XATEK 4 M 2 gAl./M F Pipe, M WAS AHAUL 2 295 = 200' T. M	28-6 UL e w As ud To To rin. Derferate	ii7 22A GO Dry NexT pp of Hol Drilled d 300'.	Г. А.М. А е, WOul То 500', Т. 6200	HT WAT	Er AT S SETLE O H95' TNS Hole All Constru VE	ction Complet	+95'0f
emarks: <u>S7</u> Drilled Jomin. SAMple 1" P.V. Coke B DiTch EXTrA 40V 16 STub P	TATIC To 26 BLEW W EST. C. VENT C.	0 N S.J. 10'. Hol XATEK 4 M 2 gAl./M F Pipe, M WAS AHAUL 2 295 = 200' T. M	28-6 UL e w As ud To To rin. Derferate	it 22A GO Dry Next op of Hol Drilled ed 300'. Rulk. ES	Г. А.М. А е, WOul То 500', Т. 6200	HT WAT	Er AT S SETLE O H95' TNS Hole All Constru VE	ction Complet	+95'0f
emarks: <u>S7</u> Drilled Jomin. SAMple 1" RV. Coke B DiTch ExTrA 40V 16 STub P	TATIC To 26 BLEW W EST. C. VENT C.	0 N S. J. 50'. Hol XATEK & A. ¹ 2 GAL. / M T Pipe, H WAS AHAUL = 295 = 200' T. (28-6 UL e w As ud To To rin. Derferate	it 22A GO Dry Next op of Hol Drilled ed 300'. Rulk. ES	<u>F A.m.</u> <u>e, woul</u> <u>7</u> 5 <u>500</u> <u>7</u> 7. <u>6200</u> LAYOUT SKE ⁻¹	HT WAT	Er AT S SETLE O H95' TNS Hole All Constru VE	ction Complet	+95'0f

1.80

Leyso

0.T. 3 Nr.

DISTRIBUTION: WHITE – Division Corrosion Office YELLOW – Area Corrosion Office FINK – Originator File

EL PASO NATURAL GAS COMPANY

Sheet Page 51 of 136

					Вуна
.		e P.S.	- 1608 W		
		41. T- 22-A	SE 8-27-6		57563-21-50-2
	3007	470-1.2	0	Drilled To 2 Next A.M. Hi	60, Hole was Di t watter AT 300
IW ^{™™} gals/mol 16.04 [™] C1 - 6.4 [™] 30.07 [™] C2 10.12	10-1.4-7	9 80 - 1.2			For 30 Million Ble u
4.10 C3 10 42 8.12 IC4 12.38 8.12 nC4 12.38	1.0	A MARY CALLER OF MARY CONTRACTOR CONTRACTOR	8	WATER + Mud	To Top of Ho
2.15 IC5 13.85 2.15 nC5 13.71	20-10-		·····································	的上下,当然后的 的 ,你还没有这些事情。""你们是是是	с. FsT 2914 Лан
16.18 IC6 15.50 16.18 C6 15.67 10.21 IC7 17.2	3.0-1.7		<u>95 T.D</u>	主要"金山"的"金山"的"金田"的"金田"的"金田"的"金田"的"金田"的"金田"的"金田"的"金田	HASTOF MENSING
0.21 C7. 17.48 A 23 C8 19.39 8.05 C2 9.64				p.p. Perser	
2/08 C 3 9.67	40-16			<u>D/1108 500</u>	Logged 495.
	*0-1.6		12.3	V-137A = 90	<u>.</u>
	<u>/3</u> – (2		12/8/	
	60 = .9			<u>y</u>	
	20-10				
	8:0 - : 4				
	1.5 90-1.2				
16 No. 9	1,2 - (0			
MISC /W gals/mol 2.00 02: 3.37	400-1.3			1-470-1.4	- 2,4
8.01*****CO7***4.19 4.01****CO2***6.38 4.06***SO2**5.50	10-11			2+460-1.7	3.3
4 08 · H2S 5 17 B 01 N2 4 16	1.1 -(Ð		4-415-1.5	- 2.6
2.02 H ₂ 3 38	20 - 1.3			5-405-1.9	- 2.9
	30 - 9	· · · · · · · · · · · · · · · · · · ·		2-30-17	- 2.5
			η Γ - Υ - ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	8-345-1.6	- 2.7
	40 8	1	· · · · · · · · · · · · · · · · · · ·	9-220-1.1	- 1.8
	50 _ 9	• • • • • • • • • • • • • • • • • • •		10-310-1.8	- 2:5
	1.5	· · · · · · · · · · · · · · · · · · ·	6 2 3 10000 10000000 , , , , , , , , , , , , , , , , , , ,		
	60-1,5-2	2			
-		سهسته سب ب ب ب ب . ۲ و	aana uuun aadaa kanna a yeeruun a 1 1 1 C	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·		·	· · · · · · · · · · · · · · · · · · ·	
	Ann 1987 - 19			<u> </u>	

Released to Imaging: 6/11/2025 7:34:55 AM

LEASE		فيتحدث البلاب والمراقع التراثي المتكر المستعم وعربي	IGHT RIGNO. 2	REPORT NO.	DATE 2/
Driller	Total Men In Crew	Driller	Total Men In Crew	Driller	Total Men In Crew
FROM TO	FORMATION WT-BIT R.P.M		FORMATION WT-BIT R.P.M	· · · · · · · · · · · · · · · · · · ·	FORMATION WT-BIT
	NO. DCSIZELENG		NO. DCSIZELENG		NO. DCLEN
BIT NO.	NO. DC SIZELENG	BIT NO.	NO. DC SIZE LENG	BIT NO.	NO. DCSIZELEN
S AL NO.	STANDS	SERIAL NO.	STANDS	SERIAL NO.	STANDS
SIZE	SINGLES	SIZE	SINGLES	SIZE	SINGLES
ТҮРЕ	DOWN ON KELLY	TYPE	DOWN ON KELLY	TYPE	DOWN ON KELLY
MAKE MUD RECORD M	TOTAL DEPTH AUD, ADDITIVES USED AND RECEIVED	MAKE MUD RECORD	MUD, ADDITIVES USED AND RECEIVED	MAKE MUD RECORD	TOTAL DEPTH MUD, ADDITIVES USED AND RECEIV
Time Wt. Vis.		Time Wi. Vis.		Time Vit, Vis.	·····
	· · · · · · · · · · · · · · · · · · ·				
FROM TO	TIME BREAKDOWN	FROM TO	TIME BREAKDOWN	FROM TO	TIME BREAKDOWN
C 100 dans		320 350 Danie			
100 190 Jant	y shale	350 390 Shal	· · · · · · · · · · · · · · · · · · ·		
190 230 Juni	1	390 400 Jand 1200 430 Shol			
2°C 243 Anald			\sim		
		430 460 June 460 500 June	Ange		
		REMARKS-	- Ahale	REMARKS –	
Uator 290-30	0				
Phillied 500	TN-495				
		· · · · · · · · · · · · · · · · · · ·			

-.

-	25 7:56:51 AM	•	30-039	- 25629 Page 53 0
e de la companya de			ENTER	FM Mont
	DATA SHEET FOR DEI NO	ODTUWECTEDN NEW	MEYICO ·	WELLS 30
Operator 3	Bur Lington Re	Sources_ Locat	<i>مب: 3364/A</i> ion: Unit <u>24</u> Se	009 0317 0E NW C
Name of We	11/Wells.or Pipel	ine Serviced	San Juan S	28-6-104M
	· . ·			
	Completion Da	. '		• • • •
	ings, Sizes, Type		•	• • • • • • • • • • • • • • • • • • • •
no basy	rater or Bould	ers were e	incounterel	During Casi
If Casing a	Strings are cemen	ted, show amoun	ts & types use	a cemented
with 8	Bages of	Lement_		
If Cement	or Bentonite Plug	s have been pla	ced, show dept	hs & amounts us
h	one	<u> </u>		
Depths & t	hickness of water	zones with des	cription of wa	ter: Fresh, Cle
	phur. Etc. 1114	- A Frz = A	water	500 07 130
Salty, Sul				
\ 	encountered:	nnne		
Depths gas	encountered: depth with type	& amount of col		
Depths gas	encountered: depth with type	& amount of col		
Depths gas Ground bed usar 19	encountered: depth with type	& amount of col	54 (180)	2 [#])
Depths gas Ground bed <u>usar</u> 19 Depths ano	encountered: depth with type 5mcks of	E amount of col <u>Loresco</u> 9,363,357,35	5 m (180) 1.345,339,333, 0 4001	2 ^{7≠}) 305,290,284,245,25
Depths gas Ground bed <u>ugar</u> / 19 Depths ano Depths ven	encountered: depth with type <u>5acks</u> <u>54</u> des placed: <u>375,36</u>	E amount of col Loresco 9,363,357,35 Surface 4	<u>5 m (1800</u> 1.345,339,333, 0 4001	2 [#])
Depths gas Ground bed <u>user</u> 19 Depths and Depths ven	encountered: depth with type <u>5 sacks of</u> des placed: <u>375,36</u> it pipes placed:	E amount of col Loresco 9,363,357,35 Surface 4	<u>5 m (1800</u> 1.345,339,333, 0 4001	2 ^{7≠}) 305,290,284,245,25

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

• • •

Received by OCD: 3/14/2025 7:56:51 AM

Neeks CKS Fage 54 of 136

•

.

	NY NAME		ur Lin	aton	6	Resou	rios					
WELL N	AME 5/2	1,28	-61	\$ 100	M			_				-
LEGAL L	OCATIO	N:					COUNT	Y: 7	an J	uan		
			من _و				3					
DATE:	_7/15	197					TYPE C	F COKE:	Lori	2500	SW	_
DEPTH:		001					AMŤ. O	F COKE B		191		
BIT SIZE	6	3/4					VENT F	IPE:	400			
DRILLEF		Bug		erce	r		PERF.	PIPE:	150	,		
SIZE AN	D TYPE (OF CASIN	G: 存 '	PVC	-		ANODE	AMT. & T		ANO	tec	
							BOULD	ER DRILLI	NG:	none	~	
DEPTH			DEPTH			DEPTH		T			ORMATIO	
FT.	LOG	ANODE	FT.	LØG	ANODE	FT.	LOG	ANODE	WATER I	DEPTHS:	130 0	an
									ISOLATIO	ON PLUG	S:	Ē
100	1.6		265	1.0		430						T
105	1.8		270	.8		435					OUTPUT	
110	1.3		275	.7		440			ANODE#	DEPTH	NO COK	CC
115	_1.3		280	.7		445			1	375	0.1	Π.
120	1.4		285	.8		450			2	369		
125	1.6		290	1.2		455			3	363	1.6	
130	1.8		295	,9		460			4	357	1.9	
135	1.7		300	.8		465			5	3.51	1.2	
140	$-\lambda T$		305	.7		470	[1	6	345	1.7	
145	1.8		310			475			7	339	1.7	17
150	1.8		315	,7		480			8	333	1.8	
155	1.3		320	.8		485			9	305	.9	
160	1.0		325	.1		490			10	290	1.2	
165	.8		330	2.0		495			11	2.84	.7	
170	18		335	1.9		500			12	265	1.0	Г
175			340	1.7		505			13	250	10	
180	,8		345			510			14	233	1.3	2
185	.4		350	1.2		515			15			Γ
190	.8		355	1.9		520			16			Γ
195	┠─┤┤	ļ	360	7.9		525	[17			
200	1.8	 	365	7.4	ļ	530			18			
205	-i-	 	370	1.1	 	535			19			
210	- 8	ļ	375	1.0		540			20			
215	<u> </u>	 	380	-8		545	ļ		21			
220	<u>- 'k</u>	┝	385	TD		550	L	<u> </u>	22		ļ	
225 230		 	390	<u> </u>	╄━━━━	555			23	 	ļ	
	1.2	 	395			560	 	<u> </u>	24	L		
235 240	1.5	 	400	h	╉╼╼╼╼	565	├ ────	┫────	25		ļ	╞
240	1.3	}	405		∤	570	<u> </u>	╄────	26		 	↓
245	1.0		410			575	ļ	┫━━━━━	27		├ ────	┡
250	.0 -0	├	415 420		┟────	580			28		┝────	⊢
260	.9	 	420		<u> </u>	585 590	┝	╉────	29		┣━━━━	┡
	<u> </u>		42J			590 595		╋╼╼┉	30		<u> </u>	┡
LOGING	VOLTE	12	<u> </u>	L		E SOUR	L		L	L	L	L
TOTAL A			0			B/B RESIS			01		<u></u>	
REMARK		12	.4				TANCE).96	<u>OH</u>	(V)	

y OCD: 3/14/2025	7:56:51 AM			#23	30-02	Page 55 0 39-07104
				#96	30-03	39-07108
D.		NORTHWE	UND BED CATHOI STERN NEW MEXI es to OCD Azte	DIC PROT LCO	ECTION	39-07099 Wells
Operator	MERIDIAN O	IL	Location	: Unit_SV	<u>_</u> Sec9	_Twp_27_Rng_
Name of We	ll/Wells or	Pipeline S	erviced <u>SAN</u>	JAUN 28-6	5 UNIT #2	3, #96, #112
						cps 681w
Elevation_	<u>6478'</u> Completi	on Date 11/	<u>15/77</u> Total De	epth <u>420</u>	Land	Type*_N/A_
Casing, Si	zes, Types &	Depths	N/A			
If Casing	is cemented,	show amound	nts & types us	sedN	/A	····
			nts & types us e been placed,			amounts us
If Cement N/A Depths & t	or Bentonite hickness of	e Plugs have water zone:	e been placed, s with descrip	, show d	epths &	
If Cement N/A Depths & t	or Bentonite	e Plugs have water zone:	e been placed, s with descrip	, show d	epths &	
If Cement <u>N/A</u> Depths & t Fresh, Clea	or Bentonite hickness of	e Plugs have water zones Sulphur, Etc	e been placed, s with descrip c100'	, show d	epths & water	when possib
If Cement <u>N/A</u> Depths & t Fresh, Cle Depths gas	or Bentonite hickness of ar, Salty, S encountered	e Plugs have water zone: Sulphur, Etc	e been placed, s with descrip c100'	, show d	epths & water	when possib
If Cement <u>N/A</u> Depths & t Fresh, Cle Depths gas Type & amor	or Bentonite hickness of ar, Salty, S encountered unt of coke	e Plugs have water zone: Sulphur, Etc :N/A breeze usec	e been placed, s with descrip c	, show d	epths & water	when possib
If Cement <u>N/A</u> Depths & t Fresh, Clea Depths gas Type & amon Depths anon	or Bentonite hickness of ar, Salty, S encountered unt of coke des placed:_	e Plugs have water zones Sulphur, Etc l: <u>N/A</u> breeze usec 385', 375',	e been placed, s with descrip c100' d:49 SACKS	, show d	epths &	when possib
If Cement <u>N/A</u> Depths & t Fresh, Clea Depths gas Type & amon Depths anon Depths vent	or Bentonite hickness of ar, Salty, S encountered unt of coke des placed:_	e Plugs have water zone: Sulphur, Etc :N/A breeze usec 385', 375', ecd:400'	e been placed, s with descrip c d: d: 365', 355', 345 OF 1" PVC VENT F	, show d	epths & water	when possib
If Cement <u>N/A</u> Depths & t Fresh, Clea Depths gas Type & amon Depths anon Depths vent	or Bentonite hickness of ar, Salty, S encountered unt of coke des placed:_ t pipes plac perforations	e Plugs have water zone: Sulphur, Etc :N/A breeze usec 385', 375', ecd:400'	e been placed, s with descrip c d: d: 365', 355', 345 OF 1" PVC VENT F	, show d	epths & water 325', 315 ECE	when possib

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number. 1

,

The second se

Released to Imaging: 6/11/2025 7:34:55 AM

.....

DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO (Submit 3 copies to OCD Aztec Office)
Operator <u>MERIDIAN OIL</u> Location: Unit <u>SW</u> Sec.9 Twp 27 Rng 6
Name of Well/Wells or Pipeline Serviced <u>SAN JUAN 28-6 UNIT #23. #96. #112</u>
cps_681w
Elevation <u>6478'</u> Completion Date <u>12/29/65</u> Total Depth <u>420'</u> Land Typ e* N/A
Casing, Sizes, Types & DepthsN/A
If Casing is cemented, show amounts & types used <u>N/A</u>
If Cement or Bentonite Plugs have been placed, show depths & amounts used
N/A
Depths & thickness of water zones with description of water when possible: Fresh, Clear, Salty, Sulphur, Etc. N/A
MAY 3 1 1991
OU CON DIV
Depths gas encountered: N/A VIL CON. LIVE
Type & amount of coke breeze used:4400 lbs.
Depths anodes placed: <u>362', 356', 350', 344', 338', 332', 326', 320', 314', 308'</u>
Depths vent pipes placed:
Vent pipe perforations: BOTTOM 100', 1' INTERVALS
Remarks:gb #1

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

OCD: 3/14/2025 7:56:51 AM	Page
ger -	30-039-07137
NORTI	GROUND BED CATHODIC PROTECTION WELLS HWESTERN NEW MEXICO opies to OCD Aztec Office)
Operator <u>MERIDIAN OIL</u>	Location: Unit <u>NE</u> Sec.9_Twp_27_B
Name of Well/Wells or Pipeline	e Serviced SAN JUAN 28-6 UNIT #11
	cps 129
Elevation 6272' Completion Date	9/5/78 Total Depth 320' Land Type*
Casing, Sizes, Types & Depths	
If Cement or Bentonite Plugs B N/A	have been placed, show depths & amounts
N/A	ones with description of water when pos
N/A Depths & thickness of water zo	ones with description of water when pos Etc. 62' SAMPLE TAKEN
N/A Depths & thickness of water zo Fresh, Clear, Salty, Sulphur,	ones with description of water when pos Etc. <u>62' SAMPLE TAKEN</u> N/A
N/A Depths & thickness of water zo Fresh, Clear, Salty, Sulphur, Depths gas encountered: Type & amount of coke breeze u	ones with description of water when pos Etc. 62' SAMPLE TAKEN N/A nsed: N/A
N/A Depths & thickness of water zo Fresh, Clear, Salty, Sulphur, Depths gas encountered: Type & amount of coke breeze u	ones with description of water when pos Etc. 62' SAMPLE TAKEN N/A nsed:N/A
N/A Depths & thickness of water zo Fresh, Clear, Salty, Sulphur, Depths gas encountered: Type & amount of coke breeze u Depths anodes placed: 295', 285'	Dones with description of water when pos Etc. 62' SAMPLE TAKEN N/A N/A nsed: N/A , 275', 265', 255', 245', 235', 190', 150', 14
N/A Depths & thickness of water zo Fresh, Clear, Salty, Sulphur, Depths gas encountered: Type & amount of coke breeze u Depths anodes placed:295', 285' Depths vent pipes placed:	ones with description of water when pos Etc. 62' SAMPLE TAKEN N/A nsed: N/A , 275', 265', 255', 245', 235', 190', 150', 14 300' DECEIVEN

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

.

eived by OCD: 3/14/2025_7:56:51_AA 205-30-039-20850 476-30-039-25052 DATA SHEET FOR DEEP GROUND BED CATHODIC. PROTECTION WELLS NORTHWESTERN NEW MEXICO Vinn Di Location: Unit/J Sec.9 Operator Name of Well/Wells or Pipeline Serviced Sugar 28-6 JJ 54-W Elevation 6490 Completion Date 9-3-91 Total Depth 465 Land Type Casing Strings, Sizes, Types & Depths If Casing Strings are cemented, show amounts & types used 405 If Cement or Bentonite Plugs have been placed, show depths & amounts used Alone Depths & thickness of water zones with description of water: Fresh; Clear; Salty, Sulphur, Etc. Depths gas encountered: None Ground bed depth with type & amount of coke breeze used: - 142 Bag \$5-405 Depths anodes placed: #7-385 Hom Depths vent pipes placed: Face to 463 Vent pipe perforations: Tom 50 Remarks: 1002 CON DIV $\gamma_{\rm II}$ DIST. 3 If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included. Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number. and the second of the second states and the second States and the second second Released to Imaging: 6/11/2025 7:34:55 AM

					••• 54	in Juan	28-6	#205	t.#47	6		
wo *	5 <u>4-1</u>) 580	TOTAL	VOLTS	12,5	22.			5 9-	2-91	Dav		1
REMARK		t = = : f a	r const	eruet 1	on log					Pay	1-12- [75]	70
									•	<u> </u>	<u> </u>	بسعد
							<u></u>	<u>-</u>		•		
		<u>Hz</u>	0-110						· ·	· ·		સુરાત્ - 7
	· · ·						:				ای بلاد وی این این این این این این این این این ای	ar i Fritar
DEPTH		ANODE	DEPTH	LOG	ANODE	DEPTH		ANDDE	DEPTH		ANODE	
100			- 295	1.2		-490			685	ANDDE	and a second se	┼╼
105		2	300	1,0		-495-			690	· · · ·		1-
110			305	.7		500		· ·	695		· · · · · ·	I
115			310	<u> </u>		505		·	700			1-
<u>120</u> 125		}	<u>315</u> 320			<u>510</u> 515			ANODE:	DEPTH	COKE	
130			325			520			1	450	ZZ	
135			330	10		525			2	440	2.3	T
140			335	$\frac{1.7}{1.5}$		530			3	425	20	
145	77		340	$\frac{1.5}{1.6}$		535			<u>- 4</u> 24 572	415	2.4	
155	2,3	12	350	$\frac{110}{1.7}$		545			<u> </u>	405	2,3	
160	2.5		355	1.9	10	550			. 7	385	2.1	Τ
165	1.9		360	2.5		555			8	375	2.4-	
<u>170</u> 175	1,0		<u>365</u> 370	7.3 2.0	9	<u>560</u> 565			9.	365	2.3	•
180	1.2		375	2.4	\$	570			<u> 10 </u>	355	1.8	
185	1.7		380	2.4		575			12	155-	-2.6	
190	18	<u> </u>	385	21	7	580			13			+-
<u>195</u> 200	1.7	}	<u>390</u> 395	$\frac{2.0}{2.3}$	6	<u>-585-</u> 590			<u>14</u> 15	}	·]	-∤-
205	1,7		400	2.0		595			16	ł		
210	1.4		405	2,5	5	600			17			
215	47-		410	2,3 2,0	4	<u>~605</u> ~			<u> 18 </u>			-
220	1.4		415	<u>2,0</u> <u>2,2</u>	_7	<u>- 610</u> - 615			<u>19</u> 20	·		
230	,5		425	2,0	3	<u>**620</u>			20	ł		
235	.5		430	1,6		625			22			T
240	_4_		435	1,5		<u>-630</u>			23	l		-
245	-4-		440	2,4	2	<u>635</u> 640			<u>24</u> 25			-
255	. 8		450	2,3	_/	645			25	· /	· [-
260	73		455	ZIH		#650			27			_
265	14		460	ZZ		<u>~655</u>			28			
270	<u>9</u>		<u>465</u> 470	TD-465		<u> 660 </u>			<u>- 29</u> - 30	·		
<u>275</u> <u>80</u>		į	475		· · · · · · · · · · · · · · · · · · ·	670			<u></u>		125 -	
285	LI		480			675				(2) ¹		
290	51.3		485		, * 1	680	ر فی تخدو					

.

ι

Laboratory No.25910 Company ME41 Field	909-1E DIAN OIL Legal Descriptic		Date Sampled 9 - 3 - 9/ State	
Lease or Unit Type of Water (Produced, S	Well 5J 28-6#	Depth Formation 205 110' Water Tab.		TECH, Inc.
Type of Water (Produced, S		mpling Point EEPWELL GR, BED FOR C.	P. D. ASHWARTH	333 East Main Farmington
DISSOLVED SOLIDS	ĩ	OTHER PROPERTIES		New Mexico 87401
<i>CATIONS</i> Sodium, Na (calc.) Calcium, Ca Magnesium, Mg Barium, Ba	mg/1 me/1 450 20 200 10 2,4 0,2	Resistivity (ohm-meters) 72 F.	7.8 1.00.36 4.85	505/327-3311
ANIONS		Total Dissolved	Solids (calc.)	
Chloride, Cl Sulfate, So₄ ·Carbonate, CO₃	10 3.0 1200 24 0 0	Sulfide, as H ₂ S		
Bicarbonate, HCO₃ 		REMARKS & RECOMMENDATIONS	:	
<u>на</u> 25 20	15 10 5			
Co			нсоз То 104	
Date Received	Preserved	Date Analyzed 9/9-12/91	Apelyzed By	

Received by OCD: 3/14/2025 7:56:51 AM Page 61 of 136 DATA SHEET FOR DEEP GROUND BED CATHODIC. PROTECTION WELLS NORTHWESTERN NEW MEXICO Mprillion Oi Operator. Location: Unit/j Sec.9 Name of Well/Wells or Pipeline Serviced $\sum_{n=0}^{\infty}$ 2254-W Elevation 6490 Completion Date 9-3-91 Total Depth 465 Land. Type Casing Strings, Sizes, Types & Depths If Casing Strings are cemented, show amounts & types used \mathcal{U}_{PS} -If Cement or Bentonite Plugs have been placed, show depths & amounts used Alme Depths & thickness of water zones with description of water: Fresh; Clear, Salty, Sülphur, Etc. //0 -Depths gas encountered: None Ground bed depth with type & amount of coke breeze used: #5-405. # 3- 425 #6- 395 Depths anodes placed: #7-385 Depths vent pipes placed: Kom Jurface to 150 Vent pipe perforations: From FEB2 41992 Remarks: DIV. OIL CON. If any of the above data is unavailable, please indicate so. Copies of all

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

Received by OCD: 3/14/2025 7:56:51 AM

:P=+ 7	254-0	P/L NA	ME'(=) , I	NUMBER	••• 5	so Tino	28-6-	#205	+ #47	6		
4	580	TOTAL	VOLTS	12,5	AMP8 22.		онма,55	5 9-	<u> </u>	NAME	\overline{D}	histor
		tes fa	<u></u>		on 100					1 200	<u>) D_1751</u>	24.01
									· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
			0:11-	i							· · · · · · · · · · · · · · · · · · ·	د. در محرکتر اور
		<u> </u>	0-110		4						ار . برگی بیجی خوری . برگی بیجی خوری	
	<u>``</u>		DEPTH		ANODE				1			
EPTH		ANODE	DEPTH			DEPTH	ANODE	ANODE	DEPTH	ANODE	ANODE	1.1.1
100		-	295	1.2		-490			1 COE			
105		•	300	1,0		495			<u>685</u> 690	· [
110			305			-500		· 	695			
115			310	.7		505		·	700	1		1
120			315			510		-	ANODE	DEPTH	NO.A	FUL
125		•	320		.	515		<i>.</i>	+• sinss	<u> </u>	COKE	COH
130		·	325	7	.	520			<u>∥́⊥</u>	450	ZZ	4
135			330	1.0	·	525		·	2	440	2.3	2
<u>140</u> 145		-	335	1,5	·]	530			<u>····3···</u>	425	2.0	5
145	7.7	•	340	1.6	·	540			<u>₽ 4</u> m ∲ 5%	415	2.4	5
155	2,3	12	350	1.7	1	545			6	405	$\frac{-2.4}{2.3}$	5
160	2.5		355	1.9	10	550		-1	7	385	2,1	5
165	1.9		360	2.5		555			× 8 × ·	375	2.4	5.
170	41		365	2.3	9	560			2. 9.4	365	2:3	5
175	1.0	č.,	370	2.0		565			- 10	355	Z.,/	5
180	1.2		375	2.4	\$	570	<u>ا ـــــا</u>		-11	1901	1.8	5.
185	47	·	380	<u>Z.4</u>	<u> </u>	575	}{		12	155	2.6	6.
190	18	11	385	21	7	580	———		13	· [·		
195 200	1.7	·	<u>390</u> 395	2.3	6	<u>585</u> 590	∮{		14	•		
200	1.7	•{	400	2.0	- <u>v</u>	595	¦ ──── {		*15 *16	·	<u> </u>	
210	1.4		405	2,5	5	600			2.17	· ·		1.
215	1.7		410	2.3		605			18-	·		1
220	1.4		415	2,0	4	610			-19	1		1.2 p. 1.
225	8		-420	2.2		615			20		-74 - <u>11</u>	and a
230		·	425	2,0	3	<u>* 620</u>			21			
235	.5	· [·	430	1,5		625	·	·	<u>~22</u>	·	<u> </u>	1.
240	.4	·	435	24		630	<u> </u> ·}		23	·	· · · · · · · · · · · · · · · · · · ·	2010 2010 2010
<u>245</u> 250	15	·	440	2,4	Z	<u>635</u> 640			24	·		·
255	.8	·	450	2,3	1 -7 -1	645			25	·		
260	7.3	· []	455	<u>Z,4</u>	1	#650			20	·1		1
265	1,4		460	2.2		655		-	28			1
270	, 9		465	TD-465		660		÷	29	•	2.181.1	
275	.7		470		•.	<u>°665</u>		• P	* 30		1	
80			475	. <u></u>	<u> </u>	670		* . * 	12 -	viž i		and the second
285	_41_	·	480		╎╧╼╼╼┥	675			╢ <u>ॅ</u>	<u>-</u>	,	
290	d1,3	人 是主	485			680	:47		\$ · · ·	1		

Copy Division Corrosion Supervisor Copy - Region Corrosion Becialist DIGTRIBUTION

Laboratory No. 2591090	API WATER AN	ALYSIS REPOR	225412	Page 63 of 136
Company MELIOI		Sample No.	Date Sampled 9 - 3 - 91	
Field	Legal Description	27-6 County or Parish RIO ARI		
Lease or Unit	Well 5J 28-6#2.	Depth Formation	Water, B/D	TECH, Inc.
Type of Water (Produced, Suppl	y, etc.) Sam	pling Point EEPWELL GR, BED FOR C. F	Sampled By D. ASHWORTH	333 East Main Farmington
DISSOLVED SOLIDS		OTHER PROPERTIES		New Mexico 87401
CATIONS Sodium, Na (calc.) Calcium, Ca Magnesium, Mg Barium, Ba	mg/l me/l 450 20 200 10 2.4 0.2	pH Specific Gravity, 60/60 F. Resistivity (ohm-meters) 72°F.	7.8 1.0036 4.85	505/327-3311
··· ANIONS		Total Dissolved So	lids (calc.)	
Chloride, Cl Sulfate, So₄ Carbonate, CO₃ Bicarbonate, HCO₃	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Iron, Fe (total) Sulfide, as H ₂ S REMARKS & RECOMMENDATIONS:		
^{Ng} 25 20 20 c₀			20 25 10 10 10 10	
Mg		\mathbb{N}	594	
F • • • • • • • • • • • • • • • • • • •				· · · · · ·
Date Received	Preserved	Date Analyzed	Apalyzed By	

.

Released to Imaging: 6/11/2025 7:34:55 AM

DCD: 372472025 7:56:51 AM	# 11A 30-039-22203
	#11A 30-039-22203 #89 30-039-82367
NORTHWES	ND BED CATHODIC PROTECTION WELLS TERN NEW MEXICO s to OCD Aztec Office)
Operator MERIDIAN OIL	Location: Unit_SE_Sec. 9_Twp_27 Rn
Name of Well/Wells or Pipeline Se	rviced SAN JUAN 28-6 UNIT #11A, #89
	cps 1
Elevation 6448 Completion Date 7/20)/81 Total Depth 500' Land Type* N/
Casing, Sizes, Types & Depths	
Casing, Sizes, Types & Depths If Casing is cemented, show amoun	ts & types usedN/A
Casing, Sizes, Types & Depths If Casing is cemented, show amoun If Cement or Bentonite Plugs have N/A	ts & types used <u>N/A</u> been placed, show depths & amounts with description of water when poss
Casing, Sizes, Types & Depths If Casing is cemented, show amoun If Cement or Bentonite Plugs have N/A Depths & thickness of water zones	ts & types usedN/A been placed, show depths & amounts with description of water when poss 160' SAMPLE TAKEN
Casing, Sizes, Types & Depths If Casing is cemented, show amoun If Cement or Bentonite Plugs have N/A Depths & thickness of water zones Fresh, Clear, Salty, Sulphur, Etc	ts & types used <u>N/A</u> been placed, show depths & amounts with description of water when poss . <u>160' SAMPLE TAKEN</u>
Casing, Sizes, Types & Depths If Casing is cemented, show amoun If Cement or Bentonite Plugs have N/A Depths & thickness of water zones Fresh, Clear, Salty, Sulphur, Etc Depths gas encountered:N/A	ts & types usedN/A been placed, show depths & amounts with description of water when poss
Casing, Sizes, Types & Depths If Casing is cemented, show amoun If Cement or Bentonite Plugs have N/A Depths & thickness of water zones Fresh, Clear, Salty, Sulphur, Etc Depths gas encountered:N/A Type & amount of coke breeze used	ts & types usedN/A been placed, show depths & amounts with description of water when poss 160' SAMPLE TAKEN :
Casing, Sizes, Types & Depths If Casing is cemented, show amoun If Cement or Bentonite Plugs have N/A Depths & thickness of water zones Fresh, Clear, Salty, Sulphur, Etc Depths gas encountered:N/A Type & amount of coke breeze used Depths anodes placed: 470', 460', 450	ts & types used N/A been placed, show depths & amounts with description of water when poss

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available./ Unplugged abandoned wells are to be included.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

.1

.

Received by OCD: 3/14/2025 7:56:51 AM

El Paso Natural Gas Company Form 7-238 (Rev. 11-71)

.

WELL CASTING CATHODIC PROTECTION CONSTRUCTION REPORT DAILY LOG

Drilling Log (Attach Heret	рљ 🔲	G	×60"	DUFION) c	ompletion Da	ite_ 7/20	181
Well Mame S. J. 28-6 * 1		Loo	men			CPS Mp.		
S. J. 28-6 * 8 Type & Size Bit Used 3	.17		SE 9-	27-6			607 W	21-50-20
614							-	1-50-20
Anode Hole Depth 500 7. D. 495	Total Drilling R:	ig Tune 🖓	ntal LLs. Coke U	ifed Lost ()	culation Hat'l U	sed No. Sacks	Mud Used	
Anode Depth		<u></u>		1				
# 1 470 # 2 460	450	6 4 370	255	6 345	7 215	· 8 205	9 180	# 10 170
# 1 3.9 # 2 3.6	- 3 3.3	# 4 2.2	- 2.6	= 6 2.5	· 7 3. 7	83.7	· 9 4,5	# 10 4.7
Anode Depth	1			1	1	 18	~ 10	# 20
4 11 4 12 Anode Output (Amps)	2 13		<u>√ 15</u>	<u>+ 16</u>		172 18	# 19	+# 20
# 11 # 12	¦≈ 13	12 [4	r 15	÷ 16 No. 8 C P. Co	: 17	: 18	# 19 No. 2 C.P. C	# 20
Total Circuit Resistance Volts 12, / Am	ps 16.6	Ohms .	73	No. 8 C P. Co	ible Used		No. 2 C.P. C	able Used
1				·······		·····		
Remarks: <u>STATIC 04</u>	5.1. 28-6	11 A 600 1	V, =.95V .	STATIC ON	5.1. 28-6	89 600	E. = .90 V	/
UNIONS Checker	OK) A	iller sai	& WATer	AT 160.	Aporox 12	gAL Inin	Drilled	ל בן גד
	-	•						
ON Friday WATE		•		,			•	
prilled To 500	Logged	495.	TALLed	1 495 0	5 1"P.V.	C. Vent	Pipa Pe	+ferATes
360								
		···· • •						
Haufed doke Brea	20 10 1	ANLK, EST	T. 6200	28. 05 C	oke in	Hole		
						All Constru	ction Complet	ed
Ditch +1 CA	b/e = 33	0 /				6	<u> </u>	
EXTHA CABL	e = 270	0				NA LA	th-	
600 30A R.						(Si	gnature)	······································
-		G	ROUND BED	LAYOUT SKE	тсн 🗸			
Stub Pole					6	4		
Hoha Depth	-5'~				۲ ۲	×		
				0.4	(130			
			* IA	PIT				
			Ъ					N
			·//	75				/ •
		.25 ///	•					
						-		
						Reg.	J. T.	
		-			ر ۱-۱	k 8	14	
DISTRIBUTION:						/	1 '	Y .
WHITE - Division Cor YELLOW - Area Corrosi				6448				•
FILK - Originator Fi				6.				
	Ŧ							

Released to Imaging: 6/11/2025 7:34:55 AM

۱

.

•

Ву: __

45-

, , , ,	SJ, 28-6 -11		V 17. 5 57. 73 - 21-50-20
		1 <u>7 9-27-</u>	(- :
	160 - 1,4	330 - ,4	Driller SAid WATER AT 160.
MW gals/mol	1.3	. 4	Approx 1/29 AL/Min. Drilled To 170
16 04 C1 6 4 30 07 C2 10 12	70-1.6-0	40 - 4	ON Friday, WATEr STAND, Mg in Hole
44 10 C3 10 42 58 12 IC4 12 38	1.9	1.2-0	ON MON. HOWT AT 150. TOOK WATER
58.12 nC4 11 93 72 15 +C5 13 85	80-1.6-9	50-1.2 8	SAMPLE, Drilled To soo
72 15 nC5 13 71 86 18 (C6 15 50	1.0	1.0-0	Logged 495. INSTALLED 495 of
86 18 C6 15 57 100 21 1C7 17 2	90-,8	60- ,9	P.U.C. VENT Pipe PerserATed
100 21 C7 17 46 114 23 C8 19 39	8	1.0	360,
28 05 C2 ² 9 64 42 08 C3 ² 9 67	200 - 1.0	70-10-0	
	1.5-0	1.0	
	10 - 1.27	809	12.1 V, 16.6A. =.73 1
	15-0	,8	7/20/81
	20 - 7	907	ft
	.6	.8	
	30: -, 4	400-,8	· · · · · · · · · · · · · · · · · · ·
	,3	.8	· · · · · · · · · · · · · · · · · · ·
	+0-,3	. 10 - 1.0	
	,_2	,7.	
	503	207	
MISC	15	. 4	
MW gals/mol 32.00 O2 3.37	60-3	30-,6	1-476-17-3.7
28 01 CO 4 19 44 01 CO2 6 38	.4	, 6	2 - 460 - 1.9 - 3.6
64 06 SO2 5 50 34 08 H2S 5 17	704	40- ,5	3-450-1.7 -3.3
28 01 N2 4 16 2 02 H2 3 38	80 - 4	1.0	4-370-1.3 -2.2
	,4	51-1.0 - 3	5-355-1.7 - 2.6
	90 - 4	1.2	6-345-1.6 -2.5
		60-1.1 - 2	7-215-17 -3.7.
			8-125-1.7 -3.7
		70-1.2-1)	7-180-1.8 -4.5
	, 4	/.2	10-170-1.8 - 4.7
	104	80- 1.1	
	.5 20 ← ,4	1.3 90- 1.3	
	, '4	495 T.D	
		500 - Driftero To	
	L	······································	

Page 67 of 136

Received by OCD: 3/14/2025 7:56:51 AM EL PASO NATURAL GAS COMPANY SAN JUAN DIVISION FARMINGTON NEW WENTCO FARMINGTON, NEW MEXICO PRODUCTION DEPARTMENT WATER ANALYSIS

•						
Analysis No.1-10277		Date	7-28-81			
Operator El Paso Natura	l Gas	Well Names	.J. 28-6 #11A	CPS 1607 W	. <u></u>	•
Location SE 9-27-6		County Rio	Arriba .	State <u>New Mexi</u>		
Field Blanco		Formation_		·		
Sampled From 160'						
Date Sampled 7-20-81		Ву	J. E. Sto	tts .		
Tbg. Press.	C.sg		Surface Csg.			-
ppm Sodium 191	epm 8.3	Chloride	ррш	ерт .4		
C alcium	11	Bicarbonat	e266	4.4		
49 Magnesium	4	Sulfate	890	18.5	· · · · · · · · · · · · · · · · · · ·	
Iron Absent		Carbonate_	00	0		
H2SAbsent		Eydroxide_	0	Ó		
cc: R. A. Ullrich E. R. Paulek J: W. McCarthy		Total Soli pH7.	ds Dissolved	1,678		
J. D. Evans W. B. Shropshire		Sp. Gr1.	0035 At_	·	60°F	
D. C. Adams File		Resistivit	y <u>444</u> ol	hm-cm at	75 ° F	
		Dibl	<u>uic Denet</u> Chemi		RZE	
		· · ·	~			
25 20 15 20 Na	10 5		5 10	15 20	25 C1	10
					¥60	10
					HC03	
Kg					so _l	
Fe -					<u> </u>	ц
•		Scale : epm				

Released to Imaging: 6/11/2025 7:34:55 AM

SJ2 LEASE	<u>C-6</u>	l	<u>, ') (</u>	<u>J 28-6</u> WELL NO.			ITRÁČTO	D 77	51	2	N CP.5	<u>60/</u> g NO.	<u>ル'</u> フ	RFP	ORT NO		DAT	DRILLING RE		1
		M	ORNING	WELL NO.				r xI/a		<u>نہ /</u> AYLIG	a work						EVENING	- perior	0	
Driller				Total Men In	Crew		Driller		Ŷ		Tiptal Men In	Crew		Driller				Total Men In Cr	ew	
FROM	т	·0	FOF	MATION	WT-BIT	R.P.M.	FROM		то		FORMATION	WT-BIT	R.P.M.	FROM		то	FOI	RMATION	WT-ВІТ	\mp
							·													\downarrow
				,			·					_								-
							[-								+
		·····				I				<u> </u>										
BIT NO.				DCSIZE		NG	BIT NO.	····			NO. DCSIZE_			BIT NO.				D. DCSIZE		
			NO.	DC SIZE STANDS	LE	NG	SERIAL N	 o.			NO. DC SIZE	LEN	1G	SERIAL NO	•		NC	D. DCSIZE STANDS	LE	NG
<u>s al no.</u> size				SINGLES			SIZE	_,			SINGLES		· · · ·	SIZE				SINGLES		
TYPE	<u>.</u> .		DOV	NON KELLY			TYPE		<u></u>		DOWN ON KELLY			TYPE			DC	WN ON KELLY		
MAKE			т	OTAL DEPTH			MAKE				TOTAL DEPTH			MAKE				TOTAL DEPTH		
MUD RE			MUD, AD	DITIVES USED	AND REC	EIVED		D RECORD		мu	D, ADDITIVES USED	ND RECEI	VED		RECORD		MUD, AD	DITIVES USED AN	DRECE	VE
Time	Wt.	Vis.					Time	Wt.	Vis.					'Eime	Wt.	Vis.				
			<u></u>	4:51							u					· · ·				
	·····						1		11							<u> </u>		<u> </u>		
					•			_							-					
FROM	то		1 11	IMEBREAKD) WN		FROM	то		Á	TIME BREAKDO	NN N		FROM	то			TIME BREAKDOWN		
0 /	D C	ilan	der th	alc-			400	440	Ja	nd										
100 1	60	Ust	Ind				440	500	J.L	ste	/									
	90	Sha		j i)	· · · ·-··	······														
· · · · · · · · · · · · · · · · · · ·	40	Aan	J.J.A.	ule	·····			<u> </u>												
350 4	50	Lin	A. 01						_											
+	<u> </u>	1) an	Ly Al	~ <u>L</u>	. <u> </u>														· · · ·	
REMARKS -	1	(.		li M	M	•	REMAR	KS-			· · ·			REMARK	5 -					
l'ile		60	<u></u>	Lallo-	n 111.	hm.														
. n f	\		<u>_</u>																	
Dall.	5	0 0	·-T	D49.	5		1											· · · · · · · · · · · · · · · · · · ·		
++++++++++++++++++++++++++++++++++++++		<u></u>	k		4															
				· · · · · · · · · · · · · · · · · · ·																
								6						1						

۹

į

by ОСD: 3/14/2025 #5Ф	= 30-039-07/01		4802	Page 69 of
#103=	- 30-039-07101 - 30-039-0712	0	·	
	DATA SHEET FOR DEEP GROU NORTHWES (Submit 3 copie	TERN NEW MEXIC	:0	ELLS
Operator_	MERIDIAN OIL	Location:	Unit_N_Sec7_7	1.00 Twp 27 Rng 6
Name of We	ell/Wells or Pipeline Se	rviced <u>SAN JU</u>	AN 28-6 UNIT #54,	#103
	······································			cps 680w
Elevation	6563'_Completion Date 9/9/	88Total Dep	th <u>460'</u> Land 7	Type*_N/A
	lzes, Types & Depths		<u></u>	
	F ~			
- <u></u>				
If Casing	is cemented, show amoun	ts & types use	d <u>N/A</u>	
	is cemented, show amoun or Bentonite Plugs have			amounts us
If Cement N/A		been placed,	show depths & a	
If Cement <u>N/A</u> Depths & 1	or Bentonite Plugs have	been placed, with descript	show depths & a ion of water wh	
If Cement N/A Depths & f Fresh, Cle	or Bentonite Plugs have chickness of water zones	been placed, with descript	show depths & a ion of water wh RECEN MAY31 19	nen possib VED
If Cement <u>N/A</u> Depths & 1 Fresh, Cla Depths gas	or Bentonite Plugs have chickness of water zones ear, Salty, Sulphur, Etc	been placed, with descript	show depths & a ion of water wh RECE	nen possib VED 91 DIV
If Cement <u>N/A</u> Depths & f Fresh, Cle Depths gas Type & amo	or Bentonite Plugs have chickness of water zones ear, Salty, Sulphur, Etc s encountered: <u>N/A</u>	been placed, with descript 140' :N/A	show depths & a tion of water wh DECEI MAY31 19 OIL CON. DIST. 3	nen possib VED 91 DIV
If Cement <u>N/A</u> Depths & f Fresh, Cle Depths gas Type & amo Depths and	or Bentonite Plugs have chickness of water zones ear, Salty, Sulphur, Etc s encountered: <u>N/A</u> ount of coke breeze used	been placed, with descript 	show depths & a ion of water wh DECEI MAY31 19 OIL CON. DIST. 3 346', 339', 332',	nen possib VED 91 DIV
If Cement <u>N/A</u> Depths & f Fresh, Cla Depths gas Type & amo Depths and Depths ver	or Bentonite Plugs have chickness of water zones ear, Salty, Sulphur, Etc s encountered: <u>N/A</u> ount of coke breeze used odes placed: <u>380', 374', 3</u>	been placed, with descript 	show depths & a ion of water wh DECEI MAY31 19 OIL CON. DIST. 3 346', 339', 332',	nen possib VED 91 DIV

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

. . .

Received by OCD: 3/14/2025 7:56:51 AM Page 70 of 136 WELL CASING FM-07-0238 (Pex: 10-82) CATHODIC PROTECTION CONSTRUCTION REPORT DAILY LOG Completion Date 9-9-88 Drilling Log (Attach Hereto) X CP5 # Well Name, Line of Plant: Work Order Ins. Unice Oech -54 49604 <u>S.J. 28-6</u> Cond : 0 103 . 50502A V 580 / J Angae Sure. Anoce Type: Size Bic 1"xbC 34 N7-27-6 urun Depth Logged Deutore kie Time Total Lin. Celle Used Circulation Mar I Used No. Socks Mud Used 450' Arese Des-<u>= 3 367</u> == 346 = 7 . 239 == 8. 222 ::353 <u>= 1380</u> · · 360 = 2. 27 * • ??< Andre Cutzut (Ampa) 1= 3 2.9 = 5 **3.3** 12533 1=73.0 i= 2 3 1 2.6 1= 9 9 9 1= 1395 = 3.0 Ancae Depth 5 13 👘 ¦∋ 12 = 14 ¦≈ 15 ≥ 16 17 = 11 a 19 Anone Curpus (Amps. 54 - 18 - 13 = 14 != 15 = 11 ¦e (12 2 17 Lia. 8 C.P. Caple Used Total Circuit Resistance io: 2:Cir 86 14.0 10 mm Valts Amps mas at 140; sample mas Remarks: went side, bottom. 300therel & dull bib cones in lale # ٩ 46944620 00 -275-3-13-05800 <u>AB 4094.00</u> V Rectifier Size:__ All Construction Completed 175.00 1 Addn'l Depth_ Depth Credit: 60' @ 3.50 40.80 Extra Cable: 170'@.24 1 hrm 227.501 Ditch & I Cable 325 @ orma .70 *****/03 25' Meter Pole: 201 Heter Pole: 10' Stub Pole: 225.00 225.00 Junctics Box: I@ F=== act 4392.30 *∎*2 ⊗==tax 219.62 4611.92 150 pipe line N 175 10 + 54

Receive	d by OCD): 3/14/2025 7:56:51 AM	ne in that get in the device of the second		Page 71 of 136
necare	_	CPC 680W			1 uge /1 0j 150
	D . C	DRILLING C.	-		
	Drill N	03			
	,				
	مرجعه ا	DRILLER'S WELL LOG			
	• • • •	10 28-6 #34 Date 9-9 88			
		a) Oil Co. Prospect			
County	Rio A	state Her Mer.			
If hole is a	a redrill or	if moved from original staked position show distance			· · .
and direc	tion move	d:			
FROM	TO	FORMATION - COLOR - HARDNESS			
		1 /			
0	30_	Sandstone.		•	
<u>_22</u> _	45	Shales			
45	80	Sandstone			
<u>- 780</u>	90	Shale			
<u>405</u>	130	SANdstone			
130	140			andrea an tha an tao br>Tao an tao an	
140	150	ShA/C			
150	555				
340		Sha/c			
395	450	Saudstone			
		El minimi de la construcción de la const			
Mud	over je st	BronLime			
Rock Bit	Number	Mate			
Remarks:	and the second	6 e 140			
		and a second			
1 2000 - 2000 1 - 2000 - 2000 2000 - 2000 - 2000 2000 - 2000 - 2000		D • D			
	D	Hiller Connie Brown			
	1997 - 1997 -		in a francessa and a star and a star and a special star and a special special special special special special s An an	مر باری از دانهای دو در در کار بود. 	tale ta altri le desiri e altri a. Ang
ter ist. Statistics					· ·
		an a			
	-	A CALLER AND A CALL	1.2 Mar 19 19 19 19 19 19 19 19 19 19 19 19 19	A Sector	an a
يە بەيلەر بەر بەر ئەرىپە بەر بەر بەر		n na standar a stand Standar a standar a st	nynen yfel, rynnesti gan yn mynest far far fel yn far yn far yn far yn far yn far yn far yn gan yn far yn gan y Rynen yfel yn gan yn		an a

Page 72 of 136

.

Received	by	OCD:	3/14/20	25	7:56:51 AM	
	١	· /C	800			

...

-

ų,

	36-039-07/49 IND BED CATHODIC PROTECTION WELLS
NORTHWES	STERN NEW MEXICO es to OCD Aztec Office)
	-
Operator <u>MERIDIAN OIL</u>	Location: Unit <u>NE Sec.7</u> Twp <u>27 Rng 6</u>
Name of Well/Wells or Pipeline Se	erviced SAN JUAN 28-6 UNIT #43
	cps 1287wj
Slevation_6174'Completion Date_9/8,	/78Total Depth 198'Land Type*N/A
Casing, Sizes, Types & Depths	20' OF 8" PVC SURFACE CASING
If Casing is cemented, show amoun	uts & types used N/A
	e been placed, show depths & amounts used
N/A	
Depths & thickness of water zones	with description of water when possible
Fresh, Clear, Salty, Sulphur, Etc	- 35' SAMPLE TAKEN
epths gas encountered:	N/A
Depths gas encountered:	26 SACKS
Type & amount of coke breeze used	:26 SACKS
Type & amount of coke breeze used Depths anodes placed: 155', 115', 10	26 SACKS 5', 95', 85', 75', 65', 55', 45', 35'
Type & amount of coke breeze used Depths anodes placed: 155', 115', 10 Depths vent pipes placed: 180	26 SACKS 5', 95', 85', 75', 65', 55', 45', 35'
Sype & amount of coke breeze usedDepths anodes placed: 155', 115', 10Depths vent pipes placed:180Vent pipe perforations:160	26 SACKS 5', 95', 85', 75', 65', 55', 45', 35'
Type & amount of coke breeze used Depths anodes placed: 155', 115', 10 Depths vent pipes placed: 180 Vent pipe perforations: 160 Remarks: gb #1	26 SACKS 5', 95', 85', 75', 65', 55', 45', 35'
Type & amount of coke breeze used Depths anodes placed: 155', 115', 10 Depths vent pipes placed: 180 Vent pipe perforations: 160 Remarks: gb #1	26 SACKS 5', 95', 85', 75', 65', 55', 45', 35'
ed by OCD: 3/14/2025 7:56:51 AM WELLCASING orm 7-238 (Rev: 11-71) CATHODIC PROTECTION CONSTRUCTION REPORT Drilling Log (Attach Hereto). * Completion Date and the water the state of the second Vell'Name CPS No. Location 5.1. 28-NE 7-27-6 1287 Type & Size Bit Used Work Order No. 52717-Total Lbs. Coke Used inode Hold Depth " Total Drilling Rug Time Lost Circulation Mat'l Used No. Sacks Mud Used 26 Inode Depth White State 46. 5 ~...たけ # 6 155 105 # 5 # 7 65 #8 5 5 # 9 4 5 THATO GA inode;Output (Amps); 5. 1 2. 1 #-2 '*#* 9 1.8 # 3 # 5 anode Dêpth and the state of the . # ·17 # 18 # 14 # 15 .node Output (Amps) #15 # 16= 3 11 45 Total Circuit Resista No. 8, C.P. Cable Used /olts 2 12.1 Ohms WATCH AT 35 APPLOX. 65 gAL /Min. DAVELES Driller SAId emarks: 198 SHL- ACE USEING. Logged 14STALLED P.V.C. 200 Pipe PerferATel To 160 1 ASTALLES VENT P.V.C 600 W. = . 89 V. TATIC λı. 57. 55 · DITCL al CABLE = 407 All Construction Complete extra cable = 2+0 to meter Loop pole + 40 V 16A Rect. (Signature) GROUND BED LAYOUT SKETCH Hole Depth - 302 Rec T. 167 N And. Bed. CJ. 28-6 'STRIBUTION: MHITE - Division Corrosion Office YELLOW - Area Corrosion Office 12174 ⊇INK - Originator File

Released to Imaging: 6/11/2025 7:34:55 AM

eived by OCD: 3/14/2025 7:56:	,	El Paso Nati	ural Gas Company G CALCULATIO) N		Page 74 of Sheet:
· · ·				, · / -,		By. File
		. 8	· · · · · · · · · · · · · · · · · · ·	-		
)		CPs -	1287	***		
	-6 43	NE	7-27-6	ilianse name produktionaatse i produktionaatse hateren	5.2	717-19
			ļ	Dritter	SAId WA	Ter AT
- 35 - 1.1	0			35', Appl Drilled		AL/Mile. aged 198
Www.gals/mol 40-11			· · · · · · · · · · · · · · · · · · ·		ed 1805	
16.04 6. 6.4 30.07 CP 10.12		or the Residence Processing and the	er weiter and er or four nice we		pe Perfe	
44.10 C3 10.42 50-/./ 58.12 IC4. 12.38	- @-	1			l 20' of	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				SUFFAC	CASE	19:1 - T
16.18 IC6 15.50				1. 30 J		
<u>8.18 C6 15.57</u> 0.21 IC7 17.2 70-24			C. S.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0	·				
8.05 C2 9.64 6 2.0 2.08 C3 9.67	- 0		ALL			
90-1.4						
21						
106-2.0	(P	- 4844	· · · · · · · · · · · · · · · · · · ·			
101:2						
1.2	-0					
20-9		and the state and the state of the				
30 - 7			2=110-	1.1 - 2.1		
.6			3 = 105 =	1.6-2.5		
40-6		i	4- 95-	2.4-3.6		
MISC. Ngals/mol9	i i i i i i i i i i i i i i i i i i i		5-853	1.6.2.7		
W gals/mol 00 O2 3.37 01 CO 4.19	- 0		7= 65=	2.9 - 4.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			8- 55-2	3-,3.4		
08 H ₂ S 5 17 8	.		9=45=1	2 1.8		
$\frac{1}{02}$ H ₂ 338 205	antiski sessen mat pulitikus u destruktur ille use utuu an a yuu u	a na an an ann aitheac a	10= 35 7 /	2	a a a a a a a a a a a a a a a a a a a	(Forder: Hermore (or to Call Meaning years
806						
1.1		12.	1 V. 12.11	<i>A</i> ,	1.0_2	·····
90 -10	8. T.D.					
200 -	Same san (it Die su an and	· · · · · · · · · · · · · · · · · · ·	aggunan manasar kenangkadagia uka si a	n nangat angta t	1 1.0 654.000 or 16.1	
"" [*]						· · · · · · · · · · · · · · · · · · ·
		, 1947) 1947) 1947)	9/8/7	8		;
			9/8/7	18		e e e e e e e e e e e e e e e e e e e
المركز	ೆಗೆಗೆಡಿಕೆ25ಕೇಡಿಗೆರೆಗೆ ವಿಜಾಕಿಕ್ಕಾರಿಸುತ್ತಾರೆ. ಕೇಂಗ್ ಕೇಂದ್ರ ಮ	urun - makeraziesu dates	1 ENA SOMA (ADEMANY) TO A HAVING AND 1. (2013)		n tarense , on or in institutioniquester	
			\mathcal{O}			
<u> </u>	, · - · · ·					•
	-					

Released to Imaging: 6/11/2025 7:34:55 AM

•

eceived by OCI	D: 3/14/2025 7:56:51 AM).	· · · · ·		Page 75 of 13
ra () ()		FAR	O NATURAL GAS C SAN JUAN DIVISI MINGTON, NEW ME DEPARTMENT WAT	ON XICO ER ANALYSIS	
, and a second a	Analysis No	1-9337	Date	SEPTEMBER 19,	1978
-	Operator	EPNG	Well Name-	CPS 41287W	SJ 28-6"43
-	Location: 7-27	'-6 C	ountyRIO	ARRIBA State	NM
	Pield		Formation		
	Sampled From	35'	65. ga	1/m	
	Date Sampled		By		
	Tbg.: Press.	Csg. Pr		Surface: Csg	
	Sodium 547	_epm		oride 14	
	Calcium 446	23.8		arbonate 320	52
•	Nagnesium 108	<u> </u>		fate 237.5	
				bonate 0	
· · .	H ₂ S <u>ABSENT</u>	·			0
•	· •	• • • • • • • • • • • • • • • • • • •		lroxide 0	
· .	cc: D.C.Adams R.A.Ullrich			al Solids Dissolv	ed <u>1715</u>
	E.R.Paulek J.W.McCarthy		PH_		
•	A.M.Smith W.B.Shropshir	e		Gr. 1.0038 at	
	File		Rea	sistivity 270 ohr	-cm at 71 °F
		· · ·		Chemist	inter.
2	25 20 Na <u>- </u>			5 10 15	20 25 C1 10
	Ca	+++++++++++++++++++++++++++++++++++++++			HC03 10
	Mg				so ₄ 10
					CO ₂ 4

7 Scale: epm

.

.

		REMARKS -	1014	10	250	20	FROM	·	;	-	Time WL	MUD RECORD	MAKE	TYPE		SERIAL NO.	BIT N			· · ·	FROM	Driller		LEASE	
		0	10 Serch	in allow			10				ι. Vıs.	MUD,	-	00			NO.	NO.					MORNING		
Ω		ſ	. Shel	e Shale		Level)	TIME BREAK DOWN					ADDITIVES USED AND RECEIVED	TOTAL DEPTH	DOWN ON KELLY	SINGLES	STANDS	SIZE	DC SIZE LENG			 FORMATION	Total Men In Crewins 1		WELL NO. 1287 K	
SIGNED: Toolpusher		REMARKS -				140 160	FROM				And Hand Time? Wt. Vis.	A A A A A A A A A A A A A A A A A A A	MAKE	WE	SIZE SALL	SERIAL NO.	BIT NOT		Contraction of the second s		M: FROM NI H TO			ONTRACTOR	
The Dorald					Shall Shark	Kale DO L	TIME BREAKDOWN					MUD, ADDITIVES USED AND RECEIVED	TOTAL DEPTH	DOWN ON KELLY	SINGLES	ST AN DS	NO. DC SIZE LENG.	NO. DCSIZELENG.			FORMA	Total Men In-Crew	DAY LIGHT WAR	TY CAL RIG NO. 2	
Contraction of the solution of	the	REMARKS -					FROM TO				Lime Wi, Vis,	JO RECORD	MAKE	TYPE	SI ZE	SERIAL NO.	BIT NO.				FROM TO	'XrtHet		REPORT NO.	
0 6 of S" de to	ad 29 800						TIME BREAK DOWN					MUD, ADDITIVES USED AND RECEIVED	TOTAL DEPTH	DOWN ON KELLY	SINGLES	STANDS		NO. DC SIZE LENG.			FORMATION WT-BIT R.P.M.	Total Men In Crew		DATE Sep & 19 %	DAILY DRILLING REPORT

Received by OCD: 3/14/2025 7:56:51 AM

•	-		(*	
	- <u>-</u> -1	•		

#203M 30-039-25451

DATA SHEET FOR DEEP GROUND BED CATHODIC. PROTECTION WELLS NORTHWESTERN NEW MEXICO

ODERATOR Meridian Dil INC. LOCATION: Unit O Sec. 7 TWD 27 Rng 06 Name of Well/Wells.or Pipeline Serviced JAN JUAN 28-6#203M Elevation 6538 Completion Date 5/24/95 Total Depth 485 Land Type F Casing Strings, Sizes, Types & Depths 3/28 Set 99 Of 8 NC Casing. NO GAS, WATER OF Boulders Were ENCOUNTERed DURING CASING. If Casing Strings are cemented, show amounts & types used CemenTed WITH 20 SACKS. If Cement or Bentonite Plugs have been placed, show depths & amounts used NONE Depths & thickness of water zones with description of water: Fresh, Clear, Salty, Sulphur, Etc. HIT Fresh WATER AT 135. Depths gas encountered: NONe Ground bed depth with type & amount of coke breeze used: 485 DepTH. 15ed 128 SACKS OF ASbury 218R (6400#) Depths anodes placed: 465, 458, 451, 444, 437, 430, 423, 416, 409, 375, 365, 355, 170, 160 + 150 -Depths vent pipes placed: Surface To 485. Vent pipe perforations: Bottom 360 Remarks: IAN 1 1 1996 ര്തമ DIST. 3

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore-Schematics should be submitted when available. Unplugged abandoned wells are to be included.

Land Type may be shown: F-Federal: I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

APPENDIX C

Executed C-138 Solid Waste Acceptance Form Regented by OCD: 3/14/2025 7:56:51 AM

1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico **Energy Minerals and Natural Resources Oil Conservation Division** 1220 South St. Francis Dr. Santa Fe, NM 87505

*Surface Waste Management Facility Operator and Generator shall maintain and make this documentation available for Division inspection.

Page 79 of 136 Form C-138

Revised 08/01/11

REQUEST FOR APPROVAL TO ACCEPT SOLID WASTE

1. Generator Name and Address:	
Enterprise Field Services, LLC, 614 Reilly Ave, Farmington NM 87401	PayKey:AM14058 PM: Dwayne Dixon
	AFE: N74996
2. Originating Site: SJ 28-6 #22A	
3. Location of Material (Street Address, City, State or ULSTR): UL O Section 8 T27N R6W 36.583896, -107.486155	
 Source and Description of Waste: Source: Remediation activities associated with a natural gas pipeline leak. Description: Hydrocarbon/Condensate impacted soil associated natural gas pipeline release. Estimated Volume 50 yd³ / bbls Known Volume (to be entered by the operator at the end of the hadronal solution). 	aul) <u>150/10</u> yd ³ /bbls
5. GENERATOR CERTIFICATION STATEMENT OF WASTE STA	ATUS
I, Thomas Long, representative or authorized agent for Enterprise Products Operating do her Generator Signature certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environme regulatory determination, the above described waste is: (Check the appropriate classification)	
RCRA Exempt: Oil field wastes generated from oil and gas exploration and production opera exempt waste. <i>Operator Use Only: Waste Acceptance Frequency</i> Monthly Weekly	tions and are not mixed with non-
RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimuc characteristics established in RCRA regulations, 40 CFR 261.21-261.24, or listed hazardous waste subpart D, as amended. The following documentation is attached to demonstrate the above-descritthe appropriate items)	as defined in 40 CFR, part 261,
□ MSDS Information □ RCRA Hazardous Waste Analysis □ Process Knowledge □ Other (Provide description in Box 4)
GENERATOR 19.15.36.15 WASTE TESTING CERTIFICATION STATEMENT FO	R LANDFARMS
I, Thomas Long IO-1-2024, representative for Enterprise Products Operating authorizes <u>En</u> Generator Signature the required testing/sign the Generator Waste Testing Certification.	virotech, Inc. to complete
I, <u>Greg</u> <u>Crubbus</u> , representative for <u>Envirotech, Inc.</u> representative samples of the oil field waste have been subjected to the paint filter test and tested for ch have been found to conform to the specific requirements applicable to landfarms pursuant to Section 12 of the representative samples are attached to demonstrate the above-described waste conform to the rec 19.15.36 NMAC.	5 of 19.15.36 NMAC. The results
5. Transporter: TBD OCD Permitted Surface Waste Management Facility	
Name and Facility Permit #: Envirotech Inc. Soil Remediation Facility * Permit #: NM 01-001 Address of Facility: Hilltop, NM Method of Treatment and/or Disposal: Image: Disposal image: Dispo	D Other
Waste Acceptance Status:	Maintained As Permanent Record)
PRINT NAME: Greg Chather TITLE: Envirotech Manager SIGNATURE: Surface Waste Management Facility Authorized Agent TELEPHONE NO.: 505-632-0615	C20 4

APPENDIX D

Photographic Documentation

Released to Imaging: 6/11/2025 7:34:55 AM

SITE PHOTOGRAPHS

Closure Report Enterprise Field Services, LLC San Juan 28-6 #22A (10/01/24) Ensolum Project No. 05A1226347

Photograph 1 Photograph Description: View of the inprocess excavation activities.

Photograph 2

Photograph Description: View of the inprocess excavation activities.

Photograph 3

Photograph Description: View of final excavation.

Closure Report Enterprise Field Services, LLC San Juan 28-6 #22A (10/01/24) Ensolum Project No. 05A1226347

ENSOLUM

Photograph 4

Photograph Description: View of the excavation final restoration.

APPENDIX E

Regulatory Correspondence

Released to Imaging: 6/11/2025 7:34:55 AM

From:	OCDOnline@state.nm.us
To:	Long, Thomas
Subject:	[EXTERNAL] The Oil Conservation Division (OCD) has accepted the application, Application ID: 388893
Date:	Tuesday, October 1, 2024 1:59:38 PM

[Use caution with links/attachments]

To whom it may concern (c/o Thomas Long for Enterprise Field Services, LLC),

The OCD has received the submitted *Notification for (Final) Sampling of a Release* (C-141N), for incident ID (n#) nAPP2427549504.

The sampling event is expected to take place:

When: 10/03/2024 @ 10:00 **Where:** O-08-27N-06W 0 FNL 0 FEL (36.583896,-107.486155)

Additional Information: Ensoum, LLC

Additional Instructions: 36.583896,-107.486155

An OCD representative may be available onsite at the date and time reported. In the absence or presence of an OCD representative, sampling pursuant to 19.15.29.12.D NMAC is required. Sampling must be performed following an approved sampling plan or pursuant to 19.15.29.12.D.(1).(c) NMAC. Should there be a change in the scheduled date and time of the sampling event, then another notification should be resubmitted through OCD permitting as soon as possible.

• Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.

If you have any questions regarding this application, or don't know why you have received this email, please contact us.

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505 Received by OCD: 3/14/2025 7:56:51 AM

From: OCDOnline@state.nm.us <OCDOnline@state.nm.us>

Sent: Thursday, January 16, 2025 1:48 PM

To: Long, Thomas <<u>tjlong@eprod.com</u>>

Subject: [EXTERNAL] The Oil Conservation Division (OCD) has accepted the application, Application ID: 421737

[Use caution with links/attachments]

To whom it may concern (c/o Thomas Long for Enterprise Field Services, LLC),

The OCD has received the submitted *Notification for (Final) Sampling of a Release* (C-141N), for incident ID (n#) nAPP2427549504.

The sampling event is expected to take place:

When: 01/21/2025 @ 12:00 **Where:** O-08-27N-06W 0 FNL 0 FEL (36.583896,-107.486155)

Additional Information: Ensolum LLC

Additional Instructions: 36.583896,-107.486155

An OCD representative may be available onsite at the date and time reported. In the absence or presence of an OCD representative, sampling pursuant to 19.15.29.12.D NMAC is required. Sampling must be performed following an approved sampling plan or pursuant to 19.15.29.12.D.(1).(c) NMAC. Should there be a change in the scheduled date and time of the sampling event, then another notification should be resubmitted through OCD permitting as soon as possible.

• Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.

If you have any questions regarding this application, or don't know why you have received this email, please contact us.

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

This message (including any attachments) is confidential and intended for a specific individual and purpose. If you are not the intended recipient, please notify the sender immediately and delete this message.

APPENDIX F

Table 1 – Soil Analytical Summary

Released to Imaging: 6/11/2025 7:34:55 AM

ENSOLUM

						San Juan	TABLE 1 28-6 #22A (10 ALYTICAL SUM						
Sample I.D.	Date	Sample Type C- Composite G - Grab	Sample Depth (feet)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Total BTEX ¹ (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH MRO (mg/kg)	Total Combined TPH (GRO/DRO/MRO) ¹ (mg/kg)	Chloride (mg/kg)
	Depa Depa	neral & Natural F Irtment <i>v</i> ision Closure C ier I)		10	NE	NE	NE	50	NE	NE	NE	100	600
						Excavation 0	Composite Soi	l Samples					
S-1	10.03.24	С	10	<0.018	<0.035	<0.035	<0.070	ND	<3.5	<9.6	<48	ND	66
S-2	10.03.24	С	10	<0.019	<0.038	<0.038	<0.077	ND	<3.8	<9.1	<46	ND	67
S-3	10.03.24	С	0 to 10	<0.021	<0.042	<0.042	<0.083	ND	<4.2	<9.5	<47	ND	<59
S-4	10.03.24	С	0 to 10	<0.020	<0.039	<0.039	<0.079	ND	<3.9	<9.5	<47	ND	<60
S-5	10.03.24	С	0 to 10	<0.019	<0.039	<0.039	<0.078	ND	<3.9	<9.4	<47	ND	<60
S-6	10.03.24	С	0 to 10	<0.021	<0.042	<0.042	<0.085	ND	<4.2	<9.4	<47	ND	<60
S-7	10.03.24	С	0 to 10	<0.021	<0.042	<0.042	<0.085	ND	<4.2	<9.5	<47	ND	<59
S-8	10.03.24	С	0 to 10	<0.019	<0.037	<0.037	<0.075	ND	<3.7	<9.3	<46	ND	<60
						Backfill Co	omposite Soil	Sample					
BF-1	1.21.25	С	BF	<0.025	<0.049	<0.049	<0.098	ND	<4.9	<9.4	<47	ND	<61

Note: Concentrations in **bold** and yellow exceed the applicable NM EMNRD Closure Criteria

¹ = Total combined concentrations are rounded to two (2) significant figures to match the laboratory resolution of the individual constituents.

ND = Not Detected above the Practical Quantitation Limits (PQLs) or Reporting Limits (RLs)

NE = Not established

mg/kg = milligrams per kilogram

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes

TPH = Total Petroleum Hydrocarbons

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

MRO = Motor Oil/Lube Oil Range Organics

BF =Backfill sample

APPENDIX G

Laboratory Data Sheets & Chain of Custody Documentation

Received by OCD: 3/14/2025 7:56:51 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Kyle Summers Ensolum 606 S Rio Grande Suite A Aztec, New Mexico 87410 Generated 10/10/2024 1:21:24 PM

JOB DESCRIPTION

SJ 28-6 #22 A

JOB NUMBER

885-13160-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

See page two for job notes and contact information

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 10/10/2024 1:21:24 PM

Authorized for release by John Caldwell, Project Manager john.caldwell@et.eurofinsus.com (505)345-3975

Laboratory Job ID: 885-13160-1

2 3

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	14
QC Association Summary	17
Lab Chronicle	20
Certification Summary	23
Chain of Custody	24
Receipt Checklists	25

Definitions/Glossary

Client: Ensolum Project/Site: SJ 28-6 #22 A Job ID: 885-13160-1

Glossary		 3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¢	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	4
CFL	Contains Free Liquid	5
CFU	Colony Forming Unit	J
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Eurofins Albuquerque

Case Narrative

Job Narrative

885-13160-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any

Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise

Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed

Job ID: 885-13160-1

Client: Ensolum Project: SJ 28-6 #22 A

exceptions, if applicable.

specified in the method.

unless attributed to a dilution or otherwise noted in the narrative.

Job ID: 885-13160-1

Eurofins Albuquerque

4 5 6 7 8 9

Page 94 of 136

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

The samples were received on 10/4/2024 7:50 AM. Unless otherwise noted below, the samples arrived in good condition, and,

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.9°C.

GC VOA

Receipt

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

5

Job ID: 885-13160-1

Lab Sample ID: 885-13160-1 Matrix: Solid

Date Collected: 10/03/24 10:00 Date Received: 10/04/24 07:50

Project/Site: SJ 28-6 #22 A

Client Sample ID: S-1

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		3.5	mg/Kg		10/04/24 09:10	10/04/24 11:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	111		35 - 166			10/04/24 09:10	10/04/24 11:33	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.018	mg/Kg		10/04/24 09:10	10/04/24 11:33	1
Ethylbenzene	ND		0.035	mg/Kg		10/04/24 09:10	10/04/24 11:33	1
Toluene	ND		0.035	mg/Kg		10/04/24 09:10	10/04/24 11:33	1
Xylenes, Total	ND		0.070	mg/Kg		10/04/24 09:10	10/04/24 11:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		48 - 145			10/04/24 09:10	10/04/24 11:33	1
Method: SW846 8015M/D - Diese	Range Organ	ics (DRO) (GC)					
	•••	<mark>ics (DRO) ((</mark> Qualifier	GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	•••			Unit mg/Kg	D	Prepared 10/04/24 08:55	Analyzed	Dil Fac
Analyte Diesel Range Organics [C10-C28]	Result				<u> </u>	· · ·		Dil Fac
Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40]	_ ResultND	Qualifier		mg/Kg	<u> </u>	10/04/24 08:55	10/04/24 11:02	1
Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate	Result	Qualifier	RL 9.6 48	mg/Kg	<u> </u>	10/04/24 08:55 10/04/24 08:55	10/04/24 11:02 10/04/24 11:02	1
Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr)	Result ND ND %Recovery 91	Qualifier	RL 9.6 48 Limits	mg/Kg	<u> </u>	10/04/24 08:55 10/04/24 08:55 Prepared	10/04/24 11:02 10/04/24 11:02 Analyzed	1 1 Dil Fac
Method: SW846 8015M/D - Diese Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr) Method: EPA 300.0 - Anions, Ion Analyte	Result ND ND %Recovery 91 Chromatograp	Qualifier	RL 9.6 48 Limits	mg/Kg	<u>D</u>	10/04/24 08:55 10/04/24 08:55 Prepared	10/04/24 11:02 10/04/24 11:02 Analyzed	1 1 Dil Fac

2 490 7

Job ID: 885-13160-1

Lab Sample ID: 885-13160-2 Matrix: Solid

Date Collected: 10/03/24 10:05 Date Received: 10/04/24 07:50

Project/Site: SJ 28-6 #22 A
Client Sample ID: S-2

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		3.8	mg/Kg		10/04/24 09:10	10/04/24 11:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		35 - 166			10/04/24 09:10	10/04/24 11:54	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.019	mg/Kg		10/04/24 09:10	10/04/24 11:54	1
Ethylbenzene	ND		0.038	mg/Kg		10/04/24 09:10	10/04/24 11:54	1
Toluene	ND		0.038	mg/Kg		10/04/24 09:10	10/04/24 11:54	1
Xylenes, Total	ND		0.077	mg/Kg		10/04/24 09:10	10/04/24 11:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		48 - 145			10/04/24 09:10	10/04/24 11:54	1
Method: SW846 8015M/D - Diese	I Range Organ	ics (DRO) (0	GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.1	mg/Kg		10/04/24 08:55	10/04/24 11:14	1
Motor Oil Range Organics [C28-C40]	ND		46	mg/Kg		10/04/24 08:55	10/04/24 11:14	1
			Limits			Prepared	Analyzed	Dil Fac
Surrogate	%Recovery	Qualifier	Lining					
•	% Recovery 106	Qualifier	62 - 134			10/04/24 08:55	10/04/24 11:14	1
Di-n-octyl phthalate (Surr)	106					10/04/24 08:55	10/04/24 11:14	1
Surrogate Di-n-octyl phthalate (Surr) Method: EPA 300.0 - Anions, Ion Analyte	106 Chromatograp			Unit	D	10/04/24 08:55 Prepared	10/04/24 11:14 Analyzed	1 Dil Fac

Job ID: 885-13160-1

Lab Sample ID: 885-13160-3 Matrix: Solid

Date Collected: 10/03/24 10:10 Date Received: 10/04/24 07:50

Project/Site: SJ 28-6 #22 A

Client Sample ID: S-3

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		4.2	mg/Kg		10/04/24 09:10	10/04/24 12:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		35 - 166			10/04/24 09:10	10/04/24 12:16	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.021	mg/Kg		10/04/24 09:10	10/04/24 12:16	1
Ethylbenzene	ND		0.042	mg/Kg		10/04/24 09:10	10/04/24 12:16	1
Toluene	ND		0.042	mg/Kg		10/04/24 09:10	10/04/24 12:16	1
Xylenes, Total	ND		0.083	mg/Kg		10/04/24 09:10	10/04/24 12:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		48 - 145			10/04/24 09:10	10/04/24 12:16	1
Method: SW846 8015M/D - Diese	I Range Organ	ics (DRO) (GC)					
	• •	ics (DRO) (Qualifier	GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	• •			Unit mg/Kg	<u>D</u>	Prepared 10/04/24 08:55	Analyzed 10/04/24 11:27	Dil Fac
Analyte Diesel Range Organics [C10-C28]	Result				<u> </u>			Dil Fac
Analyte Diesel Range Organics [C10-C28] Notor Oil Range Organics [C28-C40]	_ ResultND	Qualifier	RL 9.5	mg/Kg	<u>D</u>	10/04/24 08:55	10/04/24 11:27	1
Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate	Result	Qualifier	RL 9.5 47	mg/Kg	<u> </u>	10/04/24 08:55 10/04/24 08:55	10/04/24 11:27 10/04/24 11:27	1
Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr)	Result ND ND %Recovery 91	Qualifier		mg/Kg	<u> </u>	10/04/24 08:55 10/04/24 08:55 Prepared	10/04/24 11:27 10/04/24 11:27 Analyzed	1
Method: SW846 8015M/D - Diese Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr) Method: EPA 300.0 - Anions, Ion Analyte	Result ND ND <u>%Recovery</u> 91 Chromatograp	Qualifier		mg/Kg	D	10/04/24 08:55 10/04/24 08:55 Prepared	10/04/24 11:27 10/04/24 11:27 Analyzed	Dil Fac 1 1 Dil Fac Dil Fac

Job ID: 885-13160-1

Lab Sample ID: 885-13160-4 Matrix: Solid

Date Collected: 10/03/24 10:15 Date Received: 10/04/24 07:50

Project/Site: SJ 28-6 #22 A

Client Sample ID: S-4

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		3.9	mg/Kg		10/04/24 09:10	10/04/24 12:38	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		35 - 166			10/04/24 09:10	10/04/24 12:38	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.020	mg/Kg		10/04/24 09:10	10/04/24 12:38	1
Ethylbenzene	ND		0.039	mg/Kg		10/04/24 09:10	10/04/24 12:38	1
Toluene	ND		0.039	mg/Kg		10/04/24 09:10	10/04/24 12:38	1
Xylenes, Total	ND		0.079	mg/Kg		10/04/24 09:10	10/04/24 12:38	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		48 - 145			10/04/24 09:10	10/04/24 12:38	1
Method: SW846 8015M/D - Diese	I Range Organ	ics (DRO) (0	GC)					
					D	Duenened	A	
Analyte	Result	Qualifier	RL	Unit	U	Prepared	Analyzed	Dil Fac
,	Result	Qualifier		Unit mg/Kg		10/04/24 08:55	10/04/24 11:39	Dil Fac
Diesel Range Organics [C10-C28]		Qualifier						
Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40]	ND		9.5	mg/Kg		10/04/24 08:55	10/04/24 11:39	1
Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40]	ND ND		9.5 47	mg/Kg		10/04/24 08:55 10/04/24 08:55	10/04/24 11:39 10/04/24 11:39	Dil Fac
Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr)	ND ND %Recovery 92	Qualifier	9.5 47 <i>Limits</i>	mg/Kg		10/04/24 08:55 10/04/24 08:55 Prepared	10/04/24 11:39 10/04/24 11:39 Analyzed	1 1 Dil Fac
Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr) Method: EPA 300.0 - Anions, Ion Analyte	ND ND %Recovery 92 Chromatograp	Qualifier	9.5 47 <i>Limits</i>	mg/Kg	D	10/04/24 08:55 10/04/24 08:55 Prepared	10/04/24 11:39 10/04/24 11:39 Analyzed	

5

Job ID: 885-13160-1

Lab Sample ID: 885-13160-5 Matrix: Solid

Date Collected: 10/03/24 10:20 Date Received: 10/04/24 07:50

Project/Site: SJ 28-6 #22 A
Client Sample ID: S-5

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		3.9	mg/Kg		10/04/24 09:10	10/04/24 12:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		35 - 166			10/04/24 09:10	10/04/24 12:59	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.019	mg/Kg		10/04/24 09:10	10/04/24 12:59	1
Ethylbenzene	ND		0.039	mg/Kg		10/04/24 09:10	10/04/24 12:59	1
Toluene	ND		0.039	mg/Kg		10/04/24 09:10	10/04/24 12:59	1
Xylenes, Total	ND		0.078	mg/Kg		10/04/24 09:10	10/04/24 12:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		48 - 145			10/04/24 09:10	10/04/24 12:59	1
Method: SW846 8015M/D - Diese	l Range Organ	ics (DRO) (GC)					
	• •	<mark>ics (DRO) ((</mark> Qualifier	GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	• •		· ·	<mark>Unit</mark> mg/Kg	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Diesel Range Organics [C10-C28]	Result				D	<u> </u>		
Analyte Diesel Range Organics [C10-C28] Notor Oil Range Organics [C28-C40]	_ Result	Qualifier	RL 9.4	mg/Kg	<u>D</u>	10/04/24 08:55	10/04/24 11:52	
Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate	Result	Qualifier	RL 9.4 47	mg/Kg	<u> </u>	10/04/24 08:55 10/04/24 08:55	10/04/24 11:52 10/04/24 11:52	Dil Fa
Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr)	Result ND ND %Recovery 93	Qualifier		mg/Kg	<u> </u>	10/04/24 08:55 10/04/24 08:55 Prepared	10/04/24 11:52 10/04/24 11:52 Analyzed	1 Dil Fac
Method: SW846 8015M/D - Diese Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr) Method: EPA 300.0 - Anions, Ion Analyte	Result ND ND %Recovery 93 Chromatograp	Qualifier		mg/Kg	D	10/04/24 08:55 10/04/24 08:55 Prepared	10/04/24 11:52 10/04/24 11:52 Analyzed	

Job ID: 885-13160-1

Lab Sample ID: 885-13160-6 Matrix: Solid

Date Collected: 10/03/24 10:25 Date Received: 10/04/24 07:50

Project/Site: SJ 28-6 #22 A

Client Sample ID: S-6

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		4.2	mg/Kg		10/04/24 09:10	10/04/24 13:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		35 - 166			10/04/24 09:10	10/04/24 13:21	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.021	mg/Kg		10/04/24 09:10	10/04/24 13:21	1
Ethylbenzene	ND		0.042	mg/Kg		10/04/24 09:10	10/04/24 13:21	1
Toluene	ND		0.042	mg/Kg		10/04/24 09:10	10/04/24 13:21	1
Xylenes, Total	ND		0.085	mg/Kg		10/04/24 09:10	10/04/24 13:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		48 - 145			10/04/24 09:10	10/04/24 13:21	1
Method: SW846 8015M/D - Diese	Bango Organ	ics (DRO) ((GC)					
	a Range Organ							
		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte				Unit mg/Kg	<u> </u>	Prepared 10/04/24 08:55	Analyzed	Dil Fac
Analyte Diesel Range Organics [C10-C28]	Result				D			Dil Fac 1 1
Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40]	ResultND	Qualifier	RL 9.4	mg/Kg	<u> </u>	10/04/24 08:55	10/04/24 12:04	1
Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate	Result ND ND	Qualifier	RL 9.4 47	mg/Kg	<u> </u>	10/04/24 08:55 10/04/24 08:55	10/04/24 12:04 10/04/24 12:04	1
Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr)	Result ND ND %Recovery 89	Qualifier Qualifier	RL 9.4 47 Limits	mg/Kg	<u> </u>	10/04/24 08:55 10/04/24 08:55 Prepared	10/04/24 12:04 10/04/24 12:04 Analyzed	1 1 Dil Fac
Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr) Method: EPA 300.0 - Anions, Ion Analyte	Result ND ND %Recovery 89 Chromatograp	Qualifier Qualifier	RL 9.4 47 Limits	mg/Kg	<u>D</u>	10/04/24 08:55 10/04/24 08:55 Prepared	10/04/24 12:04 10/04/24 12:04 Analyzed	Dil Fac

Job ID: 885-13160-1

Lab Sample ID: 885-13160-7 Matrix: Solid

Date Collected: 10/03/24 10:30 Date Received: 10/04/24 07:50

Project/Site: SJ 28-6 #22 A

Client Sample ID: S-7

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		4.2	mg/Kg		10/04/24 09:10	10/04/24 13:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		35 - 166			10/04/24 09:10	10/04/24 13:43	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.021	mg/Kg		10/04/24 09:10	10/04/24 13:43	1
Ethylbenzene	ND		0.042	mg/Kg		10/04/24 09:10	10/04/24 13:43	1
Toluene	ND		0.042	mg/Kg		10/04/24 09:10	10/04/24 13:43	1
Xylenes, Total	ND		0.085	mg/Kg		10/04/24 09:10	10/04/24 13:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		48 - 145			10/04/24 09:10	10/04/24 13:43	1
Method: SW846 8015M/D - Diese	Range Organ	ics (DRO) (0	GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.5	mg/Kg		10/04/24 08:55	10/04/24 12:16	1
						10/04/24 08:55	10/04/24 12:16	
Motor Oil Range Organics [C28-C40]	ND		47	mg/Kg		10/04/24 00.33	10/04/24 12.10	1
	ND %Recovery	Qualifier	47 Limits	mg/Kg		Prepared	Analyzed	1 Dil Fac
Surrogate		Qualifier		mg/Kg				1
Surrogate Di-n-octyl phthalate (Surr)	%Recovery 98		Limits	mg/Kg		Prepared	Analyzed	
Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr) Method: EPA 300.0 - Anions, Ion Analyte	<u>%Recovery</u> 98 Chromatograp		Limits	mg/Kg Unit	D	Prepared	Analyzed	

Job ID: 885-13160-1

Lab Sample ID: 885-13160-8

Project/Site: SJ 28-6 #22 A

Client: Ensolum

Client Sample ID: S-8

Date Collected: 10/03/24 10:35 Date Received: 10/04/24 07:50

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		3.7	mg/Kg		10/04/24 09:10	10/04/24 14:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		35 - 166			10/04/24 09:10	10/04/24 14:05	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.019	mg/Kg		10/04/24 09:10	10/04/24 14:05	1
Ethylbenzene	ND		0.037	mg/Kg		10/04/24 09:10	10/04/24 14:05	1
Toluene	ND		0.037	mg/Kg		10/04/24 09:10	10/04/24 14:05	1
Xylenes, Total	ND		0.075	mg/Kg		10/04/24 09:10	10/04/24 14:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		48 - 145			10/04/24 09:10	10/04/24 14:05	1
Method: SW846 8015M/D - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.3	mg/Kg		10/04/24 08:55	10/04/24 12:29	1
Motor Oil Range Organics [C28-C40]	ND		46	mg/Kg		10/04/24 08:55	10/04/24 12:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	94		62 - 134			10/04/24 08:55	10/04/24 12:29	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Quaimer		Unit		ricpuicu	/ lang_ou	Diriuc

Matrix: Solid

QC Sample Results

5

6

Job ID: 885-13160-1

Client: Ensolum Project/Site: SJ 28-6 #22 A

Method: 8015M/D - Gasoline Range Organics (GRO) (GC)

Lab Sample ID: MB 885-13665/1	- A										Client Sa	ample ID:	Method	l Blank
Matrix: Solid												Prep 1	Гуре: То	otal/N/
Analysis Batch: 13706												Prep	Batch	1366
		ΜВ	МВ											
Analyte	Re	esult	Qualifier	RL		Ur	nit		D	P	repared	Analyz	zed	Dil Fac
Gasoline Range Organics [C6 - C10]		ND		5.0		m	g/Kg		_	10/0	4/24 09:10	10/04/24	10:49	1
		MD	МВ											
Summa mada	% Daga	MB		Lincita							wa ma wa al	Analu		
Surrogate 4-Bromofluorobenzene (Surr)	%Reco	114	Qualifier	<i>Limits</i> 35 _ 166							repared 4/24 09:10	Analyz 10/04/24		Dil Fac
		114		55 - 700						10/0	4/24 09.10	10/04/24	10.49	
Lab Sample ID: LCS 885-13665/	'2-A								С	lient	Sample	ID: Lab C	ontrol S	Sample
Matrix: Solid													Гуре: То	
Analysis Batch: 13706													Batch	
				Spike	LCS	LCS						%Rec		
Analyte				Added	Result	Qualifie	r	Unit		D	%Rec	Limits		
Gasoline Range Organics [C6 -				25.0	23.2			mg/Kg			93	70 - 130		
C10]														
	LCS	100												
Surrogata		Qua		Limits										
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 211	Qua		35 - 166										
	211			55 - 700										
Lab Sample ID: 885-13160-1 MS												Client S	Sample	ID: S-1
Matrix: Solid													Type: To	
Analysis Batch: 13706													Batch	
	Sample	Sam	ple	Spike	MS	MS						%Rec		
Analyte	Result	Qual	lifier	Added	Result	Qualifie	r	Unit		D	%Rec	Limits		
Gasoline Range Organics [C6 -	ND			17.6	18.4			mg/Kg			105	70 - 130		
C10]														
	MS	мs												
Surrogate	%Recovery	Qual	lifier	Limits										
4-Bromofluorobenzene (Surr)	219			35 - 166										
Lab Sample ID: 885-13160-1 MS	D											Client S	Sample	ID: S-1
Matrix: Solid												Prep 1	Type: To	otal/NA
Analysis Batch: 13706												Prep	Batch	13665
	Sample	Sam	ple	Spike	MSD	MSD						%Rec		RPD
Analyte	Result	Qual	lifier	Added	Result	Qualifie	r	Unit		D	%Rec	Limits	RPD	Limi
Gasoline Range Organics [C6 -	ND			17.6	15.2			mg/Kg			87	70 - 130	19	20
C10]														
	MSD	MSD)											
Surrogate	%Recovery			Limits										
4-Bromofluorobenzene (Surr)	202			35 - 166										
lethod: 8021B - Volatile Or	ganic Cor	npo	ounds (C	SC)										
											0			
Lab Sample ID: MB 885-13665/1	- A										Client Sa	ample ID:		
Matrix: Solid													Type: To	
Analysis Batch: 13707												Prep	Batch:	13665

Prep Batch: 13665 MB MB Dil Fac Result Qualifier RL Unit Analyte D Prepared Analyzed Benzene ND 0.025 mg/Kg 10/04/24 09:10 10/04/24 10:49 1 Ethylbenzene ND 0.050 mg/Kg 10/04/24 09:10 10/04/24 10:49 1 Toluene ND 0.050 10/04/24 09:10 10/04/24 10:49 mg/Kg 1

Eurofins Albuquerque

5 6 7

Job ID: 885-13160-1

Client: Ensolum Project/Site: SJ 28-6 #22 A

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 885-13665/1	I-A								Client Sa	ample ID: Me		
Matrix: Solid										Prep Typ	e: To	tal/NA
Analysis Batch: 13707										Prep B	atch:	1366
		MB MB										
Analyte	Re	sult Quali	fier R	L	Unit		D	Р	repared	Analyzed		Dil Fa
Xylenes, Total		ND	0.1	0	mg/K	٢g	_	10/0	4/24 09:10	10/04/24 10:	49	
0		MB MB						_		A		D# 5-
Surrogate 4-Bromofluorobenzene (Surr)	%Recov		ifier Limits 48 - 145	_					Prepared	Analyzed 10/04/24 10:	40 -	Dil Fa
4-Bromonuorobenzene (Surr)		110	40 - 143					10/0	04/24 09:10	10/04/24 10.	49	
Lab Sample ID: LCS 885-13665/	/ 3-A						С	lient	Sample	ID: Lab Con	trol S	ampl
Matrix: Solid									. oumpro	Prep Typ		
Analysis Batch: 13707										Prep B		
			Spike	LCS	LCS					%Rec		
Analyte			Added		Qualifier	Unit		D	%Rec	Limits		
Benzene			1.00	1.03		mg/Kg			103	70 - 130		
Ethylbenzene			1.00	1.00		mg/Kg			100	70 - 130		
Toluene			1.00	1.04		mg/Kg			104	70 - 130		
Xylenes, Total			3.00	3.09		mg/Kg			103	70 - 130		
·,····												
	LCS	LCS										
Surrogate	%Recovery	Qualifier	Limits									
4-Bromofluorobenzene (Surr)	111		48 - 145									
Matrix: Solid Analysis Batch: 13707										Prep Typ Prep B		
	Sample	-	Spike		MS			_		%Rec		
Analyte		Qualifier	Added		Qualifier	Unit			%Rec	Limits		
Benzene	ND		0.766	0.769		mg/Kg			100	70 - 130		
Ethylbenzene	ND		0.766	0.767		mg/Kg			100	70 - 130		
Toluene	ND		0.766	0.767		mg/Kg			100	70 - 130		
Xylenes, Total	ND		2.30	2.25		mg/Kg			98	70 - 130		
	MS	MS										
Surrogate	%Recovery	Qualifier	Limits									
4-Bromofluorobenzene (Surr)	102		48 - 145									
Lab Sample ID: 885-13160-2 MS	SD									Client San		
Matrix: Solid										Prep Typ	e: To	tal/N
Associate Details 40707										Prep B	atch:	
Analysis Batch: 13/0/	· ·	Sample	Spike		MSD					%Rec		RP
Analysis Batch: 13/0/				Result	Qualifier	Unit		D	%Rec	Limits	RPD	Lim
Analyte	Result	Qualifier	Added								0	2
Analyte	Result ND	Qualifier	0.766	0.751		mg/Kg			98	70 - 130	2	
Analyte Benzene Ethylbenzene	Result ND ND	Qualifier	0.766	0.766		mg/Kg			100	70 - 130	0	2
Analyte Benzene Ethylbenzene Toluene	Result ND ND ND	Qualifier	0.766 0.766 0.766	0.766 0.760		mg/Kg mg/Kg			100 99	70 - 130 70 - 130		2
Analyte Benzene Ethylbenzene Toluene	Result ND ND	Qualifier	0.766	0.766		mg/Kg			100	70 - 130	0	2
Analysis Batch: 13707 Analyte Benzene Ethylbenzene Toluene Xylenes, Total	Result ND ND ND ND		0.766 0.766 0.766	0.766 0.760		mg/Kg mg/Kg			100 99	70 - 130 70 - 130	0 1	20 20 20
Analyte Benzene Ethylbenzene Toluene	Result ND ND ND ND	MSD	0.766 0.766 0.766	0.766 0.760		mg/Kg mg/Kg			100 99	70 - 130 70 - 130	0 1	2

QC Sample Results

Page 105 of 136

Job ID: 885-13160-1

Client: Ensolum Project/Site: SJ 28-6 #22 A

Method: 8015M/D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 885-13657/1-A											Client Sa	imple ID: Me		
Matrix: Solid												Ргер Тур		
Analysis Batch: 13651												Prep B	atch:	1365
		MB	MB											
Analyte	Re	esult	Qualifier		RL		Unit		D	P	repared	Analyzed		Dil Fa
Diesel Range Organics [C10-C28]		ND			10		mg/K	g		10/0	4/24 08:55	10/04/24 10:	38	
Motor Oil Range Organics [C28-C40]		ND			50		mg/K	g		10/04	4/24 08:55	10/04/24 10:	38	
		ΜВ	МВ											
Surrogate	%Reco	very	Qualifier	Limits	s					P	repared	Analyzed		Dil Fa
Di-n-octyl phthalate (Surr)		90		62 - 13	34				-	10/0	4/24 08:55	10/04/24 10:	38	
Lab Sample ID: LCS 885-13657/2-A Matrix: Solid Analysis Batch: 13651									CI	ient	Sample	ID: Lab Con Prep Typ Prep B	e: To	tal/N
·····,····				Spike		LCS	LCS					%Rec		
Analyte				Added		Result		Unit		D	%Rec	Limits		
Diesel Range Organics				50.0		41.3		mg/Kg		-	83	60 - 135		
[C10-C28]				00.0		11.0		ing/itg				001100		
	LCS	LCS												
Surrogate %I	Recovery	Quali	ifier	Limits										
Di-n-octyl phthalate (Surr)	90			62 - 134										
Lab Sample ID: MB 885-13671/1-A Matrix: Solid		<u></u>									Client Sa	ample ID: Me Prep Typ Prep B	e: To	tal/N
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705		МВ	мв		RI		Unit					Prep Typ Prep B	e: To	otal/N 1367
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte		MB			RL		Unit		D	Pi	repared	Prep Typ Prep B Analyzed	e: To atch:	otal/N 1367
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte		МВ	мв		RL 3.0		Unit mg/K	g		Pi		Prep Typ Prep B	e: To atch:	tal/N 1367 Dil Fa
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride	Re	MB	мв					9		P i 10/04	repared 4/24 09:57	Prep Typ Prep B Analyzed	e: To atch:	tal/N 1367 Dil Fa
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: LCS 885-13671/2-A	Re	MB	мв					g		P i 10/04	repared 4/24 09:57	Prep Typ Prep B Analyzed 10/04/24 10:	e: To atch: 56	otal/N. 1367 Dil Fa
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: LCS 885-13671/2-A Matrix: Solid	Re	MB	мв					g		P i 10/04	repared 4/24 09:57	Prep Typ Prep B Analyzed 10/04/24 10: ID: Lab Cont	trol Spe: To	dtal/N 1367 Dil Fa ampl
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: LCS 885-13671/2-A Matrix: Solid	Re	MB	мв			LCS		g		P i 10/04	repared 4/24 09:57	Prep Typ Prep B Analyzed 10/04/24 10: ID: Lab Com Prep Typ	trol Spe: To	otal/N, 1367 Dil Fa ampl otal/N,
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: LCS 885-13671/2-A Matrix: Solid Analysis Batch: 13705	Re	MB	мв	Spike Added			mg/K	g Unit		P i 10/04	repared 4/24 09:57	Prep Typ Prep B Analyzed 10/04/24 10: ID: Lab Com Prep Typ Prep B	trol Spe: To	otal/N, 1367 Dil Fa ampl otal/N,
Aethod: 300.0 - Anions, Ion Ch Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: LCS 885-13671/2-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Analyte Chloride	Re	MB	мв	-			LCS	-		Pi 10/0- ient	repared 4/24 09:57 Sample	Prep Typ Prep B Analyzed 10/04/24 10: ID: Lab Com Prep Typ Prep B %Rec	trol Spe: To	otal/N, 1367 Dil Fa ampl otal/N,
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: LCS 885-13671/2-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride	Re	MB	мв	Added		Result	LCS	Unit		Pi 10/0- ient	repared 4/24 09:57 Sample %Rec	Prep Typ Prep B Analyzed 10/04/24 10: ID: Lab Com Prep Typ Prep B %Rec Limits 90 - 110	trol Societ To	Dil Fa Dil Fa ampl otal/N 1367
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: LCS 885-13671/2-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: 885-13160-1 MS	Re	MB	мв	Added		Result	LCS	Unit		Pi 10/0- ient	repared 4/24 09:57 Sample %Rec	Prep Typ Prep B Analyzed 10/04/24 10: ID: Lab Com Prep Typ Prep B %Rec Limits 90 - 110 Client Sam	nple I	Dil Fa Dil Fa ampl tal/N. 1367
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: LCS 885-13671/2-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: 885-13160-1 MS Matrix: Solid	Re	MB	мв	Added		Result	LCS	Unit		Pi 10/0- ient	repared 4/24 09:57 Sample %Rec	Prep Typ Prep B Analyzed 10/04/24 10: ID: Lab Com Prep Typ Prep B %Rec Limits 90 - 110 Client Sam Prep Typ	be: To atch: 56 trol S be: To atch: nple I be: To	Dil Fa Dil Fa amplotal/N/ 1367
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: LCS 885-13671/2-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: 885-13160-1 MS	Re	MB esult ND	MB Qualifier	Added 30.0		Result 28.3	LCS Qualifier	Unit		Pi 10/0- ient	repared 4/24 09:57 Sample %Rec	Prep Typ Prep B Analyzed 10/04/24 10: ID: Lab Com Prep Typ Prep B %Rec Limits 90 - 110 Client San Prep Typ Prep B	be: To atch: 56 trol S be: To atch: nple I be: To	Dil Fa Dil Fa amplo tal/N/ 1367
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: LCS 885-13671/2-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: 885-13160-1 MS Matrix: Solid Analysis Batch: 13705	Re	MB essuit ND	MB Qualifier	Added 30.0 -		Result 28.3 MS	LCS Qualifier MS	. Unit mg/Kg		Pi 10/0- ient	repared 4/24 09:57 Sample <u>%Rec</u> 94	Prep Typ Prep B Analyzed 10/04/24 10: ID: Lab Com Prep Typ Prep B %Rec Limits 90 - 110 Client San Prep Typ Prep B %Rec	be: To atch: 56 trol S be: To atch: nple I be: To	Dil Fa Dil Fa amplotal/N/ 1367
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: LCS 885-13671/2-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: 885-13160-1 MS Matrix: Solid Analysis Batch: 13705 Analyte	Re Sample Result	MB essuit ND	MB Qualifier	Added 30.0 Spike Added		Result 28.3 MS Result	LCS Qualifier	Unit mg/Kg Unit		Pi 10/0- ient	repared 4/24 09:57 Sample %Rec 94	Prep Typ Prep B Analyzed 10/04/24 10: ID: Lab Com Prep Typ Prep B %Rec Limits 90 - 110 Client San Prep Typ Prep B %Rec Limits	be: To atch: 56 trol S be: To atch: nple I be: To	Dil Fa Dil Fa ampl otal/N 1367
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: LCS 885-13671/2-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: 885-13160-1 MS Matrix: Solid Analysis Batch: 13705 Analyte	Re	MB essuit ND	MB Qualifier	Added 30.0 -		Result 28.3 MS	LCS Qualifier MS	. Unit mg/Kg		Pi 10/0- ient	repared 4/24 09:57 Sample <u>%Rec</u> 94	Prep Typ Prep B Analyzed 10/04/24 10: ID: Lab Com Prep Typ Prep B %Rec Limits 90 - 110 Client San Prep Typ Prep B %Rec	be: To atch: 56 trol S be: To atch: nple I be: To	Dil Fa Dil Fa amplotal/N/ 1367
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: LCS 885-13671/2-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: 885-13160-1 MS Matrix: Solid Analysis Batch: 13705 Analyte Chloride	Re Sample Result	MB essuit ND	MB Qualifier	Added 30.0 Spike Added		Result 28.3 MS Result	LCS Qualifier MS	Unit mg/Kg Unit		Pi 10/0- ient	repared 4/24 09:57 Sample %Rec 94	Prep Typ Prep B Analyzed 10/04/24 10: ID: Lab Com Prep Typ Prep B %Rec Limits 90 - 110 Client San Prep Typ Prep B %Rec Limits	nple I pe: To atch: 56 trol S be: To atch: 56 trol S be: To atch:	Dil Fa Dil Fa amplotal/NJ 1367 Di S- otal/NJ 1367
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: LCS 885-13671/2-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: 885-13160-1 MS Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: 885-13160-1 MSD	Re Sample Result	MB essuit ND	MB Qualifier	Added 30.0 Spike Added		Result 28.3 MS Result	LCS Qualifier MS	Unit mg/Kg Unit		Pi 10/0- ient	repared 4/24 09:57 Sample %Rec 94	Prep Typ Prep B Analyzed 10/04/24 10: ID: Lab Com Prep Typ Prep B %Rec Limits 90 - 110 Client San Prep Typ Prep B %Rec Limits 50 - 150	nple I nple I nple I	Dil Fa Dil Fa ampletal/NJ 1367 D: S- tal/NJ 1367 D: S- tal/NJ
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: LCS 885-13671/2-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: 885-13160-1 MS Matrix: Solid Analyte Chloride Lab Sample ID: 885-13160-1 MSD Matrix: Solid	Re Sample Result	MB essuit ND	MB Qualifier	Added 30.0 Spike Added		Result 28.3 MS Result	LCS Qualifier MS	Unit mg/Kg Unit		Pi 10/0- ient	repared 4/24 09:57 Sample %Rec 94	Prep Typ Prep B Analyzed 10/04/24 10: ID: Lab Com Prep Typ Prep B %Rec Limits 90 - 110 Client San Prep Typ Prep B %Rec Limits 50 - 150 Client San	e: To atch: 56 be: To atch: mple I be: To atch: mple I be: To	Dil Fa Dil Fa ample tal/N/ 1367 D: S- tal/N/ 1367 D: S- tal/N/
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: LCS 885-13671/2-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: 885-13160-1 MS Matrix: Solid	Re Sample Result	MB esult ND	MB Qualifier	Added 30.0 Spike Added		Result 28.3 MS Result	LCS Qualifier MS	Unit mg/Kg Unit		Pi 10/0- ient	repared 4/24 09:57 Sample %Rec 94	Prep Typ Prep B Analyzed 10/04/24 10: ID: Lab Com Prep Typ Prep B %Rec Limits 90 - 110 Client San Prep Typ Prep B %Rec Limits 50 - 150 Client San Prep Typ	e: To atch: 56 be: To atch: mple I be: To atch: mple I be: To	Dil Fai Dil Fai ample tal/N/ 1367' D: S-' tal/N/ 1367' D: S-' tal/N/
Lab Sample ID: MB 885-13671/1-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: LCS 885-13671/2-A Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: 885-13160-1 MS Matrix: Solid Analysis Batch: 13705 Analyte Chloride Lab Sample ID: 885-13160-1 MSD Matrix: Solid	Re Sample Result 66	MB esult ND Samp Quali	MB Qualifier ple ifier	Added 30.0 Spike Added 30.0		Result 28.3 MS Result 92.3	LCS Qualifier MS Qualifier	Unit mg/Kg Unit		Pi 10/0- ient	repared 4/24 09:57 Sample %Rec 94	Prep Typ Prep B Analyzed 10/04/24 10: ID: Lab Com Prep Typ Prep B %Rec Limits 90 - 110 Client San Prep Typ Prep B %Rec Limits 50 - 150 Client San Prep Typ Prep B	e: To atch: 56 be: To atch: mple I be: To atch: mple I be: To	Dil Fa Dil Fa ample tal/N/ 1367 D: S- tal/N/ 1367

Eurofins Albuquerque

QC Association Summary

Client: Ensolum Project/Site: SJ 28-6 #22 A

Prep Batch: 13665

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
885-13160-1	S-1	Total/NA	Solid	5035	
885-13160-2	S-2	Total/NA	Solid	5035	
885-13160-3	S-3	Total/NA	Solid	5035	
885-13160-4	S-4	Total/NA	Solid	5035	
885-13160-5	S-5	Total/NA	Solid	5035	
385-13160-6	S-6	Total/NA	Solid	5035	
385-13160-7	S-7	Total/NA	Solid	5035	
385-13160-8	S-8	Total/NA	Solid	5035	
MB 885-13665/1-A	Method Blank	Total/NA	Solid	5035	
_CS 885-13665/2-A	Lab Control Sample	Total/NA	Solid	5035	
LCS 885-13665/3-A	Lab Control Sample	Total/NA	Solid	5035	
885-13160-1 MS	S-1	Total/NA	Solid	5035	
885-13160-1 MSD	S-1	Total/NA	Solid	5035	
385-13160-2 MS	S-2	Total/NA	Solid	5035	
885-13160-2 MSD	S-2	Total/NA	Solid	5035	

Analysis Batch: 13706

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-13160-1	S-1	Total/NA	Solid	8015M/D	13665
885-13160-2	S-2	Total/NA	Solid	8015M/D	13665
885-13160-3	S-3	Total/NA	Solid	8015M/D	13665
885-13160-4	S-4	Total/NA	Solid	8015M/D	13665
885-13160-5	S-5	Total/NA	Solid	8015M/D	13665
885-13160-6	S-6	Total/NA	Solid	8015M/D	13665
885-13160-7	S-7	Total/NA	Solid	8015M/D	13665
885-13160-8	S-8	Total/NA	Solid	8015M/D	13665
MB 885-13665/1-A	Method Blank	Total/NA	Solid	8015M/D	13665
LCS 885-13665/2-A	Lab Control Sample	Total/NA	Solid	8015M/D	13665
885-13160-1 MS	S-1	Total/NA	Solid	8015M/D	13665
885-13160-1 MSD	S-1	Total/NA	Solid	8015M/D	13665

Analysis Batch: 13707

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-13160-1	S-1	Total/NA	Solid	8021B	13665
885-13160-2	S-2	Total/NA	Solid	8021B	13665
885-13160-3	S-3	Total/NA	Solid	8021B	13665
885-13160-4	S-4	Total/NA	Solid	8021B	13665
885-13160-5	S-5	Total/NA	Solid	8021B	13665
885-13160-6	S-6	Total/NA	Solid	8021B	13665
885-13160-7	S-7	Total/NA	Solid	8021B	13665
885-13160-8	S-8	Total/NA	Solid	8021B	13665
MB 885-13665/1-A	Method Blank	Total/NA	Solid	8021B	13665
LCS 885-13665/3-A	Lab Control Sample	Total/NA	Solid	8021B	13665
885-13160-2 MS	S-2	Total/NA	Solid	8021B	13665
885-13160-2 MSD	S-2	Total/NA	Solid	8021B	13665

GC Semi VOA

Analysis Batch: 13651

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-13160-1	S-1	Total/NA	Solid	8015M/D	13657

Eurofins Albuquerque

Page 106 of 136

Job ID: 885-13160-1

QC Association Summary

Client: Ensolum Project/Site: SJ 28-6 #22 A

GC Semi VOA (Continued)

Analysis Batch: 13651 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-13160-2	S-2	Total/NA	Solid	8015M/D	13657
885-13160-3	S-3	Total/NA	Solid	8015M/D	13657
885-13160-4	S-4	Total/NA	Solid	8015M/D	13657
885-13160-5	S-5	Total/NA	Solid	8015M/D	13657
885-13160-6	S-6	Total/NA	Solid	8015M/D	13657
885-13160-7	S-7	Total/NA	Solid	8015M/D	13657
885-13160-8	S-8	Total/NA	Solid	8015M/D	13657
MB 885-13657/1-A	Method Blank	Total/NA	Solid	8015M/D	13657
LCS 885-13657/2-A	Lab Control Sample	Total/NA	Solid	8015M/D	13657

Prep Batch: 13657

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
885-13160-1	S-1	Total/NA	Solid	SHAKE	
885-13160-2	S-2	Total/NA	Solid	SHAKE	
885-13160-3	S-3	Total/NA	Solid	SHAKE	
885-13160-4	S-4	Total/NA	Solid	SHAKE	
885-13160-5	S-5	Total/NA	Solid	SHAKE	
885-13160-6	S-6	Total/NA	Solid	SHAKE	
885-13160-7	S-7	Total/NA	Solid	SHAKE	
885-13160-8	S-8	Total/NA	Solid	SHAKE	
MB 885-13657/1-A	Method Blank	Total/NA	Solid	SHAKE	
LCS 885-13657/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	

HPLC/IC

Prep Batch: 13671

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-13160-1	S-1	Total/NA	Solid	300_Prep	
885-13160-2	S-2	Total/NA	Solid	300_Prep	
885-13160-3	S-3	Total/NA	Solid	300_Prep	
885-13160-4	S-4	Total/NA	Solid	300_Prep	
885-13160-5	S-5	Total/NA	Solid	300_Prep	
885-13160-6	S-6	Total/NA	Solid	300_Prep	
885-13160-7	S-7	Total/NA	Solid	300_Prep	
885-13160-8	S-8	Total/NA	Solid	300_Prep	
MB 885-13671/1-A	Method Blank	Total/NA	Solid	300_Prep	
LCS 885-13671/2-A	Lab Control Sample	Total/NA	Solid	300_Prep	
885-13160-1 MS	S-1	Total/NA	Solid	300_Prep	
885-13160-1 MSD	S-1	Total/NA	Solid	300_Prep	

Analysis Batch: 13705

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-13160-1	S-1	Total/NA	Solid	300.0	13671
885-13160-2	S-2	Total/NA	Solid	300.0	13671
885-13160-3	S-3	Total/NA	Solid	300.0	13671
885-13160-4	S-4	Total/NA	Solid	300.0	13671
885-13160-5	S-5	Total/NA	Solid	300.0	13671
885-13160-6	S-6	Total/NA	Solid	300.0	13671
885-13160-7	S-7	Total/NA	Solid	300.0	13671
885-13160-8	S-8	Total/NA	Solid	300.0	13671
MB 885-13671/1-A	Method Blank	Total/NA	Solid	300.0	13671

Eurofins Albuquerque

Job ID: 885-13160-1

QC Association Summary

Client: Ensolum Project/Site: SJ 28-6 #22 A Job ID: 885-13160-1

HPLC/IC (Continued)

Analysis Batch: 13705 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 885-13671/2-A	Lab Control Sample	Total/NA	Solid	300.0	13671
885-13160-1 MS	S-1	Total/NA	Solid	300.0	13671
885-13160-1 MSD	S-1	Total/NA	Solid	300.0	13671
Job ID: 885-13160-1

Lab Sample ID: 885-13160-1

Lab Sample ID: 885-13160-2

Lab Sample ID: 885-13160-3

Lab Sample ID: 885-13160-4

Project/Site: SJ 28-6 #22 A

Client: Ensolum

Client Sample ID: S-1 Date Collected: 10/03/24 10:00

Date Received: 10/04/24 07:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			13665	AT	EET ALB	10/04/24 09:10
Total/NA	Analysis	8015M/D		1	13706	AT	EET ALB	10/04/24 11:33
Total/NA	Prep	5035			13665	AT	EET ALB	10/04/24 09:10
Total/NA	Analysis	8021B		1	13707	AT	EET ALB	10/04/24 11:33
Total/NA	Prep	SHAKE			13657	EM	EET ALB	10/04/24 08:55
Total/NA	Analysis	8015M/D		1	13651	EM	EET ALB	10/04/24 11:02
Total/NA	Prep	300_Prep			13671	EH	EET ALB	10/04/24 09:57
Total/NA	Analysis	300.0		20	13705	RC	EET ALB	10/04/24 11:21

Client Sample ID: S-2

Date Collected: 10/03/24 10:05 Date Received: 10/04/24 07:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			13665	AT	EET ALB	10/04/24 09:10
Total/NA	Analysis	8015M/D		1	13706	AT	EET ALB	10/04/24 11:54
Total/NA	Prep	5035			13665	AT	EET ALB	10/04/24 09:10
Total/NA	Analysis	8021B		1	13707	AT	EET ALB	10/04/24 11:54
Total/NA	Prep	SHAKE			13657	EM	EET ALB	10/04/24 08:55
Total/NA	Analysis	8015M/D		1	13651	EM	EET ALB	10/04/24 11:14
Total/NA	Prep	300_Prep			13671	EH	EET ALB	10/04/24 09:57
Total/NA	Analysis	300.0		20	13705	RC	EET ALB	10/04/24 11:58

Client Sample ID: S-3 Date Collected: 10/03/24 10:10 Date Received: 10/04/24 07:50

Batch Batch Dilution Prepared Batch Ргер Туре Туре Method Run Factor Number Analyst Lab or Analyzed Total/NA 5035 EET ALB 10/04/24 09:10 Prep 13665 AT Total/NA Analysis 8015M/D 10/04/24 12:16 1 13706 AT EET ALB Total/NA 5035 EET ALB 10/04/24 09:10 Prep 13665 AT Total/NA 8021B 13707 AT EET ALB 10/04/24 12:16 Analysis 1 EET ALB Total/NA Prep SHAKE 13657 EM 10/04/24 08:55 Total/NA 8015M/D ΕM EET ALB 10/04/24 11:27 Analysis 1 13651 Total/NA 300_Prep EET ALB 10/04/24 09:57 Prep 13671 EH Total/NA 300.0 13705 RC EET ALB 10/04/24 12:10 Analysis 20

Client Sample ID: S-4 Date Collected: 10/03/24 10:15

Date Received: 10/04/24 07:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			13665	AT	EET ALB	10/04/24 09:10
Total/NA	Analysis	8015M/D		1	13706	AT	EET ALB	10/04/24 12:38

Eurofins Albuquerque

Page 109 of 136

Matrix: Solid

Matrix: Solid

Matrix: Solid

Released to Imaging: 6/11/2025 7:34:55 AM

Matrix: Solid

Lab Chronicle

Job ID: 885-13160-1

Lab Sample ID: 885-13160-5

Lab Sample ID: 885-13160-6

Lab Sample ID: 885-13160-7

Lab Sample ID: 885-13160-4

Client Sample ID: S-4 Date Collected: 10/03/24 10:15

Project/Site: SJ 28-6 #22 A

Client: Ensolum

Date Received: 10/04/24 07:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			13665	AT	EET ALB	10/04/24 09:10
Total/NA	Analysis	8021B		1	13707	AT	EET ALB	10/04/24 12:38
Total/NA	Prep	SHAKE			13657	EM	EET ALB	10/04/24 08:55
Total/NA	Analysis	8015M/D		1	13651	EM	EET ALB	10/04/24 11:39
Total/NA	Prep	300_Prep			13671	EH	EET ALB	10/04/24 09:57
Total/NA	Analysis	300.0		20	13705	RC	EET ALB	10/04/24 12:22

Client Sample ID: S-5 Date Collected: 10/03/24 10:20 Date Received: 10/04/24 07:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			13665	AT	EET ALB	10/04/24 09:10
Total/NA	Analysis	8015M/D		1	13706	AT	EET ALB	10/04/24 12:59
Total/NA	Prep	5035			13665	AT	EET ALB	10/04/24 09:10
Total/NA	Analysis	8021B		1	13707	AT	EET ALB	10/04/24 12:59
Total/NA	Prep	SHAKE			13657	EM	EET ALB	10/04/24 08:55
Total/NA	Analysis	8015M/D		1	13651	EM	EET ALB	10/04/24 11:52
Total/NA	Prep	300_Prep			13671	EH	EET ALB	10/04/24 09:57
Total/NA	Analysis	300.0		20	13705	RC	EET ALB	10/04/24 12:35

Client Sample ID: S-6 Date Collected: 10/03/24 10:25 Date Received: 10/04/24 07:50

Batch Dilution Prepared Batch Batch Method Prep Type Туре Run Factor Number Analyst Lab or Analyzed Total/NA 5035 13665 AT EET ALB 10/04/24 09:10 Prep Total/NA 8015M/D 10/04/24 13:21 Analysis 1 13706 AT EET ALB Total/NA 5035 EET ALB 10/04/24 09:10 Prep 13665 AT 8021B Total/NA 13707 AT EET ALB 10/04/24 13:21 Analysis 1 Total/NA SHAKE EET ALB 10/04/24 08:55 Prep 13657 EM 8015M/D Total/NA Analysis 13651 EM EET ALB 10/04/24 12:04 1 EET ALB Total/NA Prep 300 Prep 13671 ΕH 10/04/24 09:57

20

13705 RC

EET ALB

10/04/24 12:47

Client Sample ID: S-7 Date Collected: 10/03/24 10:30 Date Received: 10/04/24 07:50

Analysis

300.0

Total/NA

_	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			13665	AT	EET ALB	10/04/24 09:10
Total/NA	Analysis	8015M/D		1	13706	AT	EET ALB	10/04/24 13:43
Total/NA	Prep	5035			13665	AT	EET ALB	10/04/24 09:10
Total/NA	Analysis	8021B		1	13707	AT	EET ALB	10/04/24 13:43

Eurofins Albuquerque

Matrix: Solid 5 8

Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Chronicle

Job ID: 885-13160-1

Client: Ensolum Project/Site: SJ 28-6 #22 A

Client Sample ID: S-7 Date Collected: 10/03/24 10:30

Date Received: 10/04/24 07:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	SHAKE			13657	EM	EET ALB	10/04/24 08:55
Total/NA	Analysis	8015M/D		1	13651	EM	EET ALB	10/04/24 12:16
Total/NA	Prep	300_Prep			13671	EH	EET ALB	10/04/24 09:57
Total/NA	Analysis	300.0		20	13705	RC	EET ALB	10/04/24 13:24

Client Sample ID: S-8 Date Collected: 10/03/24 10:35 Date Received: 10/04/24 07:50

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			13665	AT	EET ALB	10/04/24 09:10
Total/NA	Analysis	8015M/D		1	13706	AT	EET ALB	10/04/24 14:05
Total/NA	Prep	5035			13665	AT	EET ALB	10/04/24 09:10
Total/NA	Analysis	8021B		1	13707	AT	EET ALB	10/04/24 14:05
Total/NA	Prep	SHAKE			13657	EM	EET ALB	10/04/24 08:55
Total/NA	Analysis	8015M/D		1	13651	EM	EET ALB	10/04/24 12:29
Total/NA	Prep	300_Prep			13671	EH	EET ALB	10/04/24 09:57
Total/NA	Analysis	300.0		20	13705	RC	EET ALB	10/04/24 13:37

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Lab Sample ID: 885-13160-7 Matrix: Solid

Lab Sample ID: 885-13160-8

Matrix: Solid

8)
9	

Job ID: 885-13160-1

Accreditation/Certification Summary

Client: Ensolum
Project/Site: SJ 28-6 #22 A

Laboratory: Eurofins Albuquerque

The accreditations/certifications listed below are applicable to this report.

Authority Program Identification Number Expiration Date Oregon NELAP NM100001 02-26-25

Received by OCD: 3/14/2025		Page 113 of 136
ME DRA 87109 07	(AOV) 0828 (AOV) (AOV) 0828 (AOV) (AOV) 0788 (AOV) (AOV) (BS270 (Semi-VOA)) (Insection (Present/Absent)) (Insection (Present/Absent)) (Insection (Present/Absent)) (Insection (Present/Absent)) (Insection (Present)) (Insection (Present)) (Insection (Present)) (Ins	Date Time Remarks:
HALL ENVIRON ANALYSIS LABC MALYSIS LABC www.hallenvironmental.com www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM Tel. 505-345-3975 Fax 505-345-41 Analysis Request	Image: Section of the section of t	Any sub-contracted data will be de
1 4 90 1 4 90	/ / ЦЬН:8012D(GKO \ DKO \ WKO)	Remarks:
nd Time: 100名 ard 10-4-24 ame: 3 846 422 A	Project Manager: K SWM eVS Sampler: K SWM eVS Sampler: R J Maat On Ice: Ves No May the of Coolers: I No May the of C	
Turn-Around Time: □ Standard Project Name: S	Project Manage Sampler: X On Ice: M # of Coolers: Cooler Temp(met Type and # Tj	Received by Received by outracted to other
tody Record	□ Level 4 (Full Validation) Compliance erSample Name Sample Name S- 2 アーク	1030 2 5-7 5-7 1035 5 5-8 1 1035 5 5 5 1035 5 5 5 114 8 8 8 114 1 8 8 114 1 8 8 114 1 8 1 114 1 8 1 114 1 8 1 114 1 8 1 114 1 8 1 114 1 1 1 114 1 1 1 114 1 1 1 114 1 1 1 114 1 1 1 114 1 1 1 114 1 1 1 114 1 1 1 114 1 1 1 114 1 1 1 114 1 1 1 114 1 1 1 114 1 1 1 114 1 1 114 1
J Chain-of-Cus Client: ビュタッ / ビー Mailing Address: との シッチ A 多ア		(030) (035) (035) (035) (11me: Relin Time: Relin Time: Relin
Client: Client: ろん:よ Phone #:		

-

Job Number: 885-13160-1

List Source: Eurofins Albuquerque

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 13160 List Number: 1 Creator: Casarrubias, Tracy

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

11

Received by OCD: 3/14/2025 7:56:51 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Kyle Summers Ensolum 606 S Rio Grande Suite A Aztec, New Mexico 87410 Generated 1/24/2025 4:28:49 PM

JOB DESCRIPTION

San Juan 28-6 #22A

JOB NUMBER

885-18697-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

See page two for job notes and contact information

EOL

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Authorized for release by John Caldwell, Project Manager john.caldwell@et.eurofinsus.com (505)345-3975 Generated 1/24/2025 4:28:49 PM

Laboratory Job ID: 885-18697-1

2

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	9
Lab Chronicle	10
Certification Summary	11
Chain of Custody	12
Receipt Checklists	13

Definitions/Glossary

Client: Ensolum Project/Site: San Juan 28-6 #22A

Glossary

Job ID: 885-18697-1

3
5
8
9

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Eurofins Albuquerque

Case Narrative

Client: Ensolum Project: San Juan 28-6 #22A

4 5 6 7 8 9 10

Page 119 of 136

Job ID: 885-18697-1

Eurofins Albuquerque

Job Narrative 885-18697-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 1/22/2025 7:45 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.0°C.

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

No additional analytical or guality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

5

Job ID: 885-18697-1

Lab Sample ID: 885-18697-1 Matrix: Solid

Client Sample ID: BF-1 Date Collected: 01/21/25 12:00 Date Received: 01/22/25 07:45

Project/Site: San Juan 28-6 #22A

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C10)	ND		4.9	mg/Kg		01/22/25 14:16	01/23/25 11:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			35 - 166			01/22/25 14:16	01/23/25 11:43	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)	l.					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		01/22/25 14:16	01/23/25 11:43	1
Ethylbenzene	ND		0.049	mg/Kg		01/22/25 14:16	01/23/25 11:43	1
Toluene	ND		0.049	mg/Kg		01/22/25 14:16	01/23/25 11:43	1
Xylenes, Total	ND		0.098	mg/Kg		01/22/25 14:16	01/23/25 11:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			48 - 145			01/22/25 14:16	01/23/25 11:43	1
Method: SW846 8015M/D - Diese	el Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
						01/23/25 08:19	01/23/25 10:16	1
Diesel Range Organics [C10-C28]	ND		9.4	mg/Kg		01/20/20 00.15		1
	ND ND		9.4 47	mg/Kg mg/Kg		01/23/25 08:19	01/23/25 10:16	1
Motor Oil Range Organics [C28-C40]		Qualifier		0 0				
Motor Oil Range Organics [C28-C40] Surrogate	ND	Qualifier	47	0 0		01/23/25 08:19	01/23/25 10:16	1
Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr)	ND <u>%Recovery</u> 97		47 Limits	0 0		01/23/25 08:19 Prepared	01/23/25 10:16 Analyzed	1 Dil Fac
Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr) Method: EPA 300.0 - Anions, Ion Analyte	ND %Recovery 97 • Chromatograp		47 Limits	0 0	D	01/23/25 08:19 Prepared	01/23/25 10:16 Analyzed	1 Dil Fac

QC Sample Results

Project/Site: San Juan 28-6 #22A

Method: 8015M/D - Gasoline Range Organics (GRO) (GC)

Lab Sample ID: MB 885-19692/1-A									Client Sa	mple ID: Metho	d Blank
Matrix: Solid										Prep Type: 1	Total/NA
Analysis Batch: 19723										Prep Batch	n: 19692
	Μ	З МВ									
Analyte	Resu	t Qualifier	RL		Unit		D	Pi	repared	Analyzed	Dil Fac
GRO (C6-C10)	N	5	5.0		mg/K	g	_	01/2	2/25 14:16	01/23/25 11:19	1
	M	B MB									
Surrogate	%Recover	y Qualifier	Limits					Pi	repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	10	4	35 - 166					01/2	2/25 14:16	01/23/25 11:19	1
-											
Lab Sample ID: LCS 885-19692/2-A							С	lient	Sample I	D: Lab Control	Sample
Lab Sample ID: LCS 885-19692/2-A Matrix: Solid	L						С	lient	Sample I	D: Lab Control Prep Type: 1	
-							С	lient	Sample I		Total/NA
Matrix: Solid	L.		Spike	LCS	LCS		С	lient	Sample I	Prep Type:	Total/NA
Matrix: Solid			Spike Added		LCS Qualifier	Unit	С	lient D	Sample I	Prep Type: 1 Prep Batch	Total/NA
Matrix: Solid Analysis Batch: 19723	· 		-		Qualifier	- <mark>Unit</mark> mg/Kg	C			Prep Type: 1 Prep Batch %Rec	Total/NA
Matrix: Solid Analysis Batch: 19723 Analyte			Added	Result	Qualifier		C		%Rec	Prep Type: 7 Prep Batch %Rec Limits	Total/NA
Matrix: Solid Analysis Batch: 19723 Analyte GRO (C6-C10)			Added	Result	Qualifier		С		%Rec	Prep Type: 7 Prep Batch %Rec Limits	Total/NA

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 885-19692/1-A Matrix: Solid								Client Sa	ample ID: Metho Prep Type: ⁻	
Analysis Batch: 19724									Prep Batcl	
	MB	MB								
Analyte	Result	Qualifier	RL		Unit		D P	repared	Analyzed	Dil Fac
Benzene	ND		0.025		mg/K	g	01/2	2/25 14:16	01/23/25 11:19	1
Ethylbenzene	ND		0.050		mg/K	g	01/2	2/25 14:16	01/23/25 11:19	1
Toluene	ND		0.050		mg/K	g	01/2	2/25 14:16	01/23/25 11:19	1
Xylenes, Total	ND		0.10		mg/K	g	01/2	2/25 14:16	01/23/25 11:19	1
	МВ	МВ								
Surrogate	%Recovery	Qualifier	Limits				P	repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	111		48 - 145				01/2	2/25 14:16	01/23/25 11:19	1
Lab Sample ID: LCS 885-19692/3-A							Client	Sample	ID: Lab Control	Sample
Matrix: Solid									Prep Type: [•]	Total/NA
Analysis Batch: 19724									Prep Batcl	n: 19692
-			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene			1.00	1.21		mg/Kg		121	70 - 130	
Ethylbenzene			1.00	1.23		mg/Kg		123	70 - 130	
			4.00	4 00				400	70 400	
Toluene			1.00	1.22		mg/Kg		122	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			48 _ 145

QC Sample Results

Client: Ensolum Project/Site: San Juan 28-6 #22A

Method: 8015M/D - Diesel Range Organics (DRO) (GC)

Page 122 of 136

Lab Sample ID: MB 885-19717/1	- A									Client Sa	mple ID: Metho	d Blank
Matrix: Solid											Prep Type:	Total/NA
Analysis Batch: 19714											Prep Batcl	
		MB I	МВ									
Analyte	Re	sult (Qualifier	RL		Unit		D	Pr	epared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]		ND		10		mg/K	g	_	01/23	3/25 08:19	01/23/25 09:55	1
Motor Oil Range Organics [C28-C40]		ND		50		mg/K	g		01/23	3/25 08:19	01/23/25 09:55	1
		мв і	мв									
Surrogate	%Recov	very (Qualifier	Limits					Pr	repared	Analyzed	Dil Fac
ourrogate												
Di-n-octyl phthalate (Surr) Lab Sample ID: LCS 885-19717/2		93	-	62 - 134				С		3/25 08:19 Sample I	01/23/25 09:55	
Di-n-octyl phthalate (Surr) Lab Sample ID: LCS 885-19717/2 Matrix: Solid		93		62 - 134				С				Total/NA
Di-n-octyl phthalate (Surr) Lab Sample ID: LCS 885-19717/2 Matrix: Solid		93	·	62 - 134	LCS	LCS		С			D: Lab Control Prep Type: ⁻	Total/NA
Di-n-octyl phthalate (Surr) Lab Sample ID: LCS 885-19717/2 Matrix: Solid Analysis Batch: 19714		93	·			LCS Qualifier	Unit	С			D: Lab Control Prep Type: ⁻ Prep Batcl	Total/NA
Di-n-octyl phthalate (Surr) Lab Sample ID: LCS 885-19717/2 Matrix: Solid Analysis Batch: 19714 Analyte Diesel Range Organics [C10-C28]		93		Spike			- <mark>Unit</mark> mg/Kg	С	lient	Sample I	D: Lab Control Prep Type: ⁻ Prep Batcl %Rec	Total/NA
Di-n-octyl phthalate (Surr) Lab Sample ID: LCS 885-19717/2 Matrix: Solid Analysis Batch: 19714 Analyte Diesel Range Organics				Spike Added	Result			С	lient	Sample I	D: Lab Control Prep Type: ⁻ Prep Batcl %Rec Limits	Total/NA
Di-n-octyl phthalate (Surr) Lab Sample ID: LCS 885-19717/2 Matrix: Solid Analysis Batch: 19714 Analyte Diesel Range Organics	2-A	LCS	fier	Spike Added	Result			С	lient	Sample I	D: Lab Control Prep Type: ⁻ Prep Batcl %Rec Limits	Total/NA

Lab Sample ID: MB 885-19720/1-A Matrix: Solid Analysis Batch: 19721	мв	мв							Client Sa	ample ID: Metho Prep Type: Prep Batc	Total/NA
Analyte		Qualifier		RL		Unit		D	Prepared	Analyzed	Dil Fac
Chloride	ND			3.0		mg/Kg	9	0	1/23/25 08:40	01/23/25 10:03	1
Lab Sample ID: LCS 885-19720/2-A								Clie	nt Sample	ID: Lab Control	Sample
Matrix: Solid										Prep Type:	Total/NA
Analysis Batch: 19721										Prep Batc	h: 19720
			Spike		LCS	LCS				%Rec	
Analyte			Added		Result	Qualifier	Unit	I	D %Rec	Limits	
Chloride			30.0		30.3		mg/Kg		101	90 - 110	

Released to Imaging: 6/11/2025 7:34:55 AM

QC Association Summary

Client: Ensolum Project/Site: San Juan 28-6 #22A

GC VOA

Prep Batch: 19692

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-18697-1	BF-1	Total/NA	Solid	5030C	
MB 885-19692/1-A	Method Blank	Total/NA	Solid	5030C	
LCS 885-19692/2-A	Lab Control Sample	Total/NA	Solid	5030C	
LCS 885-19692/3-A	Lab Control Sample	Total/NA	Solid	5030C	
Analysis Batch: 19723	3				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-18697-1	BF-1	Total/NA	Solid	8015M/D	19692
MB 885-19692/1-A	Method Blank	Total/NA	Solid	8015M/D	19692
LCS 885-19692/2-A	Lab Control Sample	Total/NA	Solid	8015M/D	19692
Analysis Batch: 19724	1				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-18697-1	BF-1	Total/NA	Solid	8021B	19692
MB 885-19692/1-A	Method Blank	Total/NA	Solid	8021B	19692
LCS 885-19692/3-A	Lab Control Sample	Total/NA	Solid	8021B	19692

GC Semi VOA

Analysis Batch: 19714

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-18697-1	BF-1	Total/NA	Solid	8015M/D	19717
MB 885-19717/1-A	Method Blank	Total/NA	Solid	8015M/D	19717
LCS 885-19717/2-A	Lab Control Sample	Total/NA	Solid	8015M/D	19717
rep Batch: 19717					
•	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
rep Batch: 19717 Lab Sample ID 885-18697-1	Client Sample ID BF-1	Prep Type Total/NA	Matrix Solid	Method SHAKE	Prep Batch
Lab Sample ID					Prep Batch

HPLC/IC

Prep Batch: 19720

Lab Sample ID 885-18697-1	Client Sample ID BF-1	Prep Type Total/NA	Matrix Solid	Method 300_Prep	Prep Batch
MB 885-19720/1-A	Method Blank	Total/NA	Solid	300_Prep	
LCS 885-19720/2-A	Lab Control Sample	Total/NA	Solid	300_Prep	

Analysis Batch: 19721

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-18697-1	BF-1	Total/NA	Solid	300.0	19720
MB 885-19720/1-A	Method Blank	Total/NA	Solid	300.0	19720
LCS 885-19720/2-A	Lab Control Sample	Total/NA	Solid	300.0	19720

Job ID: 885-18697-1

Eurofins Albuquerque

Job ID: 885-18697-1

Matrix: Solid

Lab Sample ID: 885-18697-1

Client: Ensolum Project/Site: San Juan 28-6 #22A

Client Sample ID: BF-1 Date Collected: 01/21/25 12:00

Date Received: 01/22/25 07:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			19692	JP	EET ALB	01/22/25 14:16
Total/NA	Analysis	8015M/D		1	19723	JP	EET ALB	01/23/25 11:43
Total/NA	Prep	5030C			19692	JP	EET ALB	01/22/25 14:16
Total/NA	Analysis	8021B		1	19724	JP	EET ALB	01/23/25 11:43
Total/NA	Prep	SHAKE			19717	EM	EET ALB	01/23/25 08:19
Total/NA	Analysis	8015M/D		1	19714	EM	EET ALB	01/23/25 10:16
Total/NA	Prep	300_Prep			19720	RC	EET ALB	01/23/25 08:40
Total/NA	Analysis	300.0		20	19721	RC	EET ALB	01/23/25 10:31

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Eurofins Albuquerque

Released to Imaging: 6/11/2025 7:34:55 AM

Job ID: 885-18697-1

Accreditation/Certification Summary

Client: Ensolum	
Project/Site: San Juan	28-6 #22A

Laboratory: Eurofins Albuquerque

The accreditations/certifications listed below are applicable to this report.

AuthorityProgramIdentification NumberExpiration DateOregonNELAPNM10000102-25-25

Eurofins Albuquerque

Received by OCD: 3/14/2025	7:56:51 AM		Page 126 of 136
8			1
8697 COC			2
			al repor
Z 109			nalytice
in 10 BO			on the a
ntal.c ue, N 5-345	otal Coliform (Present/Absent)		2
NVIRONN SIS LABOF vironmental.com buquerque, NM 871 Fax 505-345-4107 ysis Request	(AOV) 082 (AOV-im92) 072		6 Barly no
HALL ENVIRONM ANALYSIS LABOR www.hallenvironmental.com kins NE - Albuquerque, NM 87109 345-3975 Fax 505-345-4107 Analysis Request	1) K-B(, HQ3, HQ2, FQ4, 520,		「のかん」の Am サイン・ しての Any sub-contracted data will be clearly notated on the analytical report の 1 0 6 8 2 9 5 5 8 8 0
	CRA 8 Metals		data w
IAI www ins N	2MI20728 or 8270SIMS		вт Иг N Ц Ки I HOS Ub-contracted data w
1awk 05-34	(1.403 borteM) 8D		1 om lon Am and 1405 Any sub-contracted de
HALL ANAL www.ha 4901 Hawkins NE Tel. 505-345-3975	081 Pesticides/8082 PCB's	08 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	рн:8015D(GKO / DKO / WKO)		ssibility
			this po
A CC B	~2 ~4 ; □ No Yay -0-1= & (°C) HEAL No.		/ \ ⊨
ITime: I Rush e: e.		Type Aur /	T WW
Turn-Around Time: Project Name: Project #:	Project Manager <i>K S</i> Sampler: <i>M</i> On Ice: <i>M</i> # of Coolers: <i>V</i> Cooler Temp(metu	Type and # Hor Sal Repeived by	Received by: poontracted to other
Chain-of-Custody Record Client: ビュシーレー Mailing Address: 606 S A.'e & & & & & & & & & & & & & & & & & & &	□ Az Cor □ Other	Time Matrix Sample Name 1200 5 73 / 5 / 1 1100 3 73 / 5 / 1 1100 3 73 / 5 / 1 1100 3 73 / 5 / 1 1100 3 73 / 5 / 1 1100 3 73 / 5 / 1 1100 3 73 / 5 / 1 1100 3 73 / 5 / 1 1100 3 73 / 5 / 1 1100 3 73 / 5 / 1 1100 3 73 / 5 / 1 1100 3 73 / 5 / 1 1100 3 73 / 5 / 1 1100 3 73 / 5 / 1 1100 3 73 / 5 / 1 1100 3 73 / 5 / 1 1100 3 73 / 5 / 1 1100 3 3 73 / 5 / 1 1100 3 3 73 / 5 / 1 1100 3 3 3 1100 3 3 3 1100 3 3 3 1100 3 3 3	Time Retifiquished by Received by Via. COLMR 1723 UNU ULL Received by Via. COLMR
Client: Client			2 2
Client: Mailing Phone		Page 12 of 13	2/12 1/2/2025

.

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 18697 List Number: 1 Creator: Casarrubias, Tracy

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

11

Job Number: 885-18697-1

List Source: Eurofins Albuquerque

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 442469

QUESTIONS			
Operator:	OGRID:		
Enterprise Field Services, LLC	241602		
PO Box 4324	Action Number:		
Houston, TX 77210	442469		
	Action Type:		
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)		

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2427549504
Incident Name	NAPP2427549504 SAN JUAN 28-6 #22A @ 0
Incident Type	Natural Gas Release
Incident Status	Reclamation Report Received

Location of Release Source

lease answer all the questions in this group.		
Site Name	SAN JUAN 28-6 #22A	
Date Release Discovered	10/01/2024	
Surface Owner	Federal	

Incident Details

lease answer all the questions in this group.		
Incident Type	Natural Gas Release	
Did this release result in a fire or is the result of a fire	No	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	No	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	Νο	

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.

Crude Oil Released (bbls) Details	Not answered.
Produced Water Released (bbls) Details	Not answered.
Is the concentration of chloride in the produced water >10,000 mg/l	No
Condensate Released (bbls) Details	Cause: Corrosion Pipeline (Any) Condensate Released: 5 BBL Recovered: 0 BBL Lost: 5 BBL.
Natural Gas Vented (Mcf) Details	Cause: Corrosion Pipeline (Any) Natural Gas Vented Released: 1 MCF Recovered: 0 MCF Lost: 1 MCF.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

1 uge 147 0/ 150	Page	129	of 136
------------------	------	-----	--------

QUESTIONS, Page 2

Action 442469

QUESTIONS (continued)			
Operator:	OGRID:		
Enterprise Field Services, LLC	241602		
PO Box 4324	Action Number:		
Houston, TX 77210	442469		
	Action Type:		
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)		

Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	Yes, according to supplied volumes this will be treated as a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No
Reasons why this would be considered a submission for a notification of a major release	Unavailable.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.	

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.		
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
If all the actions described above have not been undertaken, explain why	None	
Per Paragraph (4) of Subsection B of 19.15.29.8 NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of actions to date in the follow-up C-141 submission. If remediate efforts have been successfully completed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of Subsection A of 19.15.29.11 NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: Thomas Long Title: Sr Field Environmental Scientist Email: tjlong@eprod.com Date: 10/10/2024	

Enterprise Field Services, LLC

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Operator

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

PO Box 4324

Houston, TX 77210

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

OGRID:

Action Number

Action Type:

241602

442469

[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS, Page 3

Page 130 of 136

.

Action 442469

QUESTIONS	
Site Characterization	
Please answer all the questions in this group (only required when seeking remediation plan approva release discovery date.	I and beyond). This information must be provided to the appropriate district office no later than 90 days after the
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Less than or equal 25 (ft.)
What method was used to determine the depth to ground water	OCD Imaging Records Lookup
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release an	nd the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Between 100 and 200 (ft.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Between 300 and 500 (ft.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)
Any other fresh water well or spring	Greater than 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between 1000 (ft.) and ½ (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Low
A 100-year floodplain	Between 1000 (ft.) and ½ (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	No
Remediation Plan Please answer all the questions that apply or are indicated. This information must be provided to the	
Requesting a remediation plan approval with this submission	
Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination as Have the lateral and vertical extents of contamination been fully delineated	ssociated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Was this release entirely contained within a lined containment area	Yes
Soil Contamination Sampling: (Provide the highest observable value for each, in millig	No
Chloride (EPA 300.0 or SM4500 Cl B)	
Chloride (E1 X 300.0 01 500 01 50) TPH (GR0+DR0+MR0) (EPA SW-846 Method 8015M)	60
GRO+DRO (EPA SW-846 Method 8015M)	0.1
BTEX (EPA SW-846 Method 8021B or 8260B)	0.1
Benzene (EPA SW-846 Method 8021B or 8260B)	0.1
Delizene (EPA Siv-o40 ivietnoù 602 i b 01 6200b)	0.1
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed ef- which includes the anticipated timelines for beginning and completing the remediation.	fforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,
On what estimated date will the remediation commence	10/01/2024
On what date will (or did) the final sampling or liner inspection occur	01/21/2025
On what date will (or was) the remediation complete(d)	01/21/2025
What is the estimated surface area (in square feet) that will be reclaimed	288
What is the estimated volume (in cubic yards) that will be reclaimed	150
What is the estimated surface area (in square feet) that will be remediated	288
What is the estimated volume (in cubic yards) that will be remediated	150

These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed. The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTI	ONS (continued)	
Operator:	OGRID:	
Enterprise Field Services, LLC	241602	
PO Box 4324	Action Number:	
Houston, TX 77210	442469	
	Action Type:	
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)	
QUESTIONS		
Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the		
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:	
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes	
Which OCD approved facility will be used for off-site disposal	ENVIROTECH LANDFARM #1 [fEEM0112334691]	
OR which OCD approved well (API) will be used for off-site disposal	Not answered.	
OR is the off-site disposal site, to be used, out-of-state	Not answered.	
OR is the off-site disposal site, to be used, an NMED facility	Not answered.	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.	
(In Situ) Soil Vapor Extraction	Not answered.	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.	
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.	
OTHER (Non-listed remedial process)	Not answered.	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed ef which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,	
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or	
I hereby agree and sign off to the above statement	Name: Thomas Long Title: Sr Field Environmental Scientist Email: tilong@eprod.com	

Date: 03/14/2025

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

QUESTIONS, Page 4

Action 442469

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 442469

QUESTIONS (continued)	
Operator: Enterprise Field Services, LLC PO Box 4324 Houston, TX 77210	OGRID: 241602
	Action Number: 442469
	Action Type: [C-141] Reclamation Report C-141 (C-141-v-Reclamation)

Deferral Requests Only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of	
Requesting a deferral of the remediation closure due date with the approval of this submission	Νο

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Page 133 of 136

Action 442469

QUESTIONS (continued)		
Operator: OGRID:		
Enterprise Field Services, LLC	241602	
PO Box 4324	Action Number:	
Houston, TX 77210	442469	
	Action Type:	
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)	

Sampling Event Information	
Last sampling notification (C-141N) recorded	421737
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	01/21/2025
What was the (estimated) number of samples that were to be gathered	1
What was the sampling surface area in square feet	200

Remediation	Closure	Request
-------------	---------	---------

Only answer the questions in this group if seeking remediation closure for this release because all r	emediation steps have been completed.
Requesting a remediation closure approval with this submission	Yes
Have the lateral and vertical extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area	No
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes
What was the total surface area (in square feet) remediated	288
What was the total volume (cubic yards) remediated	150
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes
What was the total surface area (in square feet) reclaimed	288
What was the total volume (in cubic yards) reclaimed	150
Summarize any additional remediation activities not included by answers (above)	None.
	closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to water, human health or the environment. In addition, OCD acceptance of a C-141 report	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or ially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ing notification to the OCD when reclamation and re-vegetation are complete.
	Name: Thomas Long

I hereby agree and sign off to the above statement	Title: Sr Field Environmental Scientist Email: tjiong@eprod.com Date: 03/14/2025
--	--

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 134 of 136

QUESTIONS, Page 7

Action 442469

QUESTIONS (continued)		
Operator:	OGRID:	
Enterprise Field Services, LLC	241602	
PO Box 4324	Action Number:	
Houston, TX 77210	442469	
	Action Type:	
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)	

Reclamation Report		
Only answer the questions in this group if all reclamation steps have been completed.		
Requesting a reclamation approval with this submission	Yes	
What was the total reclamation surface area (in square feet) for this site	288	
What was the total volume of replacement material (in cubic yards) for this site	150	
Per Paragraph (1) of Subsection D of 19.15.29.13 NMAC the reclamation must contain a minimum of four feet of non-waste containing, uncontaminated, earthen material with chloride concentrations less than 6 mg/kg as analyzed by EPA Method 300.0, or other test methods approved by the division. The soil cover must include a top layer, which is either the background thickness of topsoil or one foot of suitable mate to establish vegetation at the site, whichever is greater.		
Is the soil top layer complete and is it suitable material to establish vegetation	Yes	
On what (estimated) date will (or was) the reseeding commence(d)	07/01/2025	
Summarize any additional reclamation activities not included by answers (above)	None.	
	reclamation requirements and any conditions or directives of the OCD. This demonstration should be in the form t field notes, photographs of reclaimed area, and a narrative of the reclamation activities. Refer to 19.15.29.13	
to report and/or file certain release notifications and perform corrective actions for release the OCD does not relieve the operator of liability should their operations have failed to water, human health or the environment. In addition, OCD acceptance of a C-141 report	knowledge and understand that pursuant to OCD rules and regulations all operators are required ises which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or ially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ng notification to the OCD when reclamation and re-vegetation are complete.	
I hereby agree and sign off to the above statement	Name: Thomas Long Title: Sr Field Environmental Scientist Email: tjlong@eprod.com Date: 03/14/2025	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
Enterprise Field Services, LLC	241602
PO Box 4324	Action Number:
Houston, TX 77210	442469
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Revegetation Report

Only answer the questions in this group if all surface restoration, reclamation and re-vegetation obligations have been satisfied

Requesting a restoration complete approval with this submission

No Per Paragraph (4) of Subsection (D) of 19.15.29.13 NMAC for any major or minor release containing liquids, the responsible party must notify the division when reclamation and re-vegetation are complete

QUESTIONS, Page 8

Action 442469

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
Enterprise Field Services, LLC	241602
PO Box 4324	Action Number:
Houston, TX 77210	442469
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

CONDITIONS

Created By		Condition Date
nvelez	None	6/11/2025

Page 136 of 136

Action 442469