

June 18, 2025

New Mexico Oil Conservation Division 506 W. Texas Ave Artesia, NM 88210

RE: Seawolf 12 CTB 1 - Closure Request Report Incident Number: nAPP2500624157 GPS: 32.053553°, -103.52788° Lea County, New Mexico ESRR Project No. 2778/ VP-21241

To Whom It May Concern:

Earth Systems Response & Restoration (ESRR), on behalf of Devon Energy (Devon), presents the following Closure Request Report (CRR) detailing excavation activities and subsequent soil sampling events associated with an inadvertent release of produced water at Seawolf 12 CTB 1 (Site). Based on completed remedial actions and laboratory analytical results from recent soil sampling events, Devon is requesting No Further Action (NFA) at the Site.

Site Location & Incident Description

The Site is located in Unit N, Section 12, Township 26 South, Range 33 East, in Lea County, New Mexico (32.053553°, -103.52788°) and is associated with oil and gas exploration and production operations on Federal Land managed by the Bureau of Land Management (BLM) (**Figure 1**).

On December 31, 2024, threads on a piping connection failed, causing the release of approximately 43 barrels (bbl) of produced water within a lined secondary containment, where 1 bbl of produced water was blown out by wind onto the Devon operated production pad. A vacuum truck was immediately dispatched to the Site and recovered 42 bbl of fluids. ESRR conducted initial site assessment activities and mapped the observed release footprint on January 8, 2025, hereafter referred to as the Area of Concern (AOC) (**Figure 2**). Devon gave notice to the New Mexico Oil Conservation Division (NMOCD) on January 6, 2025, by Notification of Release (NOR) and was subsequently assigned Incident Number nAPP2500624157. A Corrective Action Form C-141 (Form C-141) was submitted on January 14, 2025.

On March 29, 2025, Devon requested an extension of the March 31, 2025 deadline, to allow additional time for remediation activities and for ESRR to finalize this CRR. Devon was granted a 90-day extension by the NMOCD for June 30, 2025.

Site Characterization

ESRR characterized the Site according to Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC). The following proximities were estimated:

- o Between 1 and 5 miles of any continuously flowing watercourse or any other significant watercourse;
- o Between 500 and 1,000 feet of any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark);

- o Between ½ and 1 mile of any occupied permanent residence, school, hospital, institution or church;
- Between ½ and 1 mile of any spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes;
- Between ½ and 1 mile of any other freshwater well or spring;
- Greater than 5 miles of any incorporated municipal boundary or a defined municipal fresh water well field covered under a municipal ordinance;
- o Between 500 and 1,000 feet of any wetland;
- Greater than 5 miles of any subsurface mine;
- o Overlying an unstable area (i.e. Critical, High, or Medium Karst Potential); and
- Greater than 5 miles of a 100-year floodplain.

Receptor details used to determine the Site characterization are included in **Figure 1A** and **Figure 1B**. **Referenced Well Record** for the closest depth to water well is attached.

Based on the results from the desktop review, the Site is designated with medium karst potential with no depth to water wells within ½ mile with logged data no greater than 25 years old. The following Closure Criteria was applied:

Constituents of Concern (COCs)	Closure Criteria [‡]
Chloride	. 600 milligram per kilogram (mg/kg)
Total Petroleum Hydrocarbon (TPH)	. 100 mg/kg
Benzene	10 mg/kg
Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)	50 mg/kg
[‡] The reclamation concentration requirements of 600 mg/kg Chloride and 100 m	a/ka TPH apply to the top A feet of areas to be

⁺The reclamation concentration requirements of 600 mg/kg Chloride and 100 mg/kg TPH apply to the top 4 feet of areas to be immediately reclaimed following remediation pursuant to NMAC 19.15.17.13.

Laboratory Analytical Methods used: Environmental Protection Agency (EPA) 300.0, EPA 8015 NM, EPA 8021 B

Delineation Activities

On February 6, 2025, ESRR conducted initial delineation activities to assess the presence or absence of residual soil impacts associated with the AOC. Six delineation boreholes (HA-1 through HA-6) were advanced to 1-foot below grade surface (bgs) via hand auger within and surrounding the AOC. Delineation activities were driven by field screening soil for chloride utilizing QuanTab[®] test strips. A minimum of two soil samples were collected from each delineation borehole, representing the highest observed field screening concentrations and the greatest depth. Delineation soil samples were placed directly into precleaned jars, packed with minimal void space, labeled, and placed on ice. The delineation soil samples were transported under strict chain-of-custody procedures, to Eurofins in Carlsbad, New Mexico, for analysis of the COCs. **Photographic Documentation** of all activities are attached.

Laboratory analytical results for delineation soil samples (HA-3 through HA-6) within and surrounding the AOC were compliant with Site Closure Criteria and/or the reclamation standard defining the horizontal periphery of the AOC.

Laboratory analytical results for delineation soil samples collected within the AOC (HA-1 and HA-2) indicated Chloride was above the Site Closure Criteria and/or the reclamation standard up to 1 feet bgs. Elevated Chloride concentrations were characterized by concentrations ranging from 836 mg/kg to 5,250 mg/kg. Laboratory results are summarized in **Table 1**, included in the attachments. The locations of all delineation soil samples are shown in **Figure 2**.

On April 17, 2025, ESRR conducted additional delineation activities, further advancing delineation soil samples (HA-1 through HA-4) with the addition of delineation soil sample (HA-7) via mechanical Page 2 of 4

TPH= Gasoline Range Organics + Diesel Range Organics + Oil Range Organics

equipment within and surrounding the AOC. The delineation soil samples were field screened, handled, transported, and analyzed as previously described.

Laboratory analytical results for additional delineation soil samples (HA-1 through HA-4, HA-7) within and surrounding the AOC were compliant with Site Closure Criteria and/or the reclamation standard.

Liner Inspection

A 48-hour Notification of Liner Inspection (Form C-141 L) was submitted by Devon, on February 27, 2025.

On March 5, 2025, ESRR conducted a thorough visual inspection of the LSC and found no tears, cracks, cuts, breaks, or other signs of damage within the LSC (**Figure 2**), confirming no evidence of a breach of the LSC. As a result, impacts to the production pad appear to have occurred due to windblown overspray of fluids from the LSC. **Photographic Documentation** of liner inspection activities is attached.

Remediation Activities

During May 30, 2025, ESRR oversaw excavation activities of identified soil impacts performed via mechanical equipment based on laboratory analytical results associated with delineation soil sampling activities and visual observation. The excavation was vertically advanced to a depth of approximately 2-feet bgs.

Following the removal of soil, ESRR collected 5-point composite soil samples at a sampling frequency of 200 square feet from the excavation floor (CS-1 through CS-4) and sidewalls (SW-1 through SW-3). The 5-point composite soil samples were comprised of five equivalent aliquots homogenized in a 1-quart resealable plastic bag. The confirmation soil samples were handled, transported, and analyzed as previously described.

Laboratory analytical results indicated that the concentration of COCs for all final confirmation soil samples were below the applicable Site Closure Criteria and/or reclamation standard. Laboratory results are summarized in **Table 1**, included in the attachments. The locations of all final confirmation soil samples are shown in **Figure 3**.

Approximately 70 cubic yards (CY) of impacted soil was removed from the Site and transported to R360 Antelope Draw in Jal, New Mexico under Devon approved manifests. Upon receipt of the final confirmation soil samples results, the excavation was backfilled with clean, locally sourced soil and the Site was restored to "*as close to its original state*" as possible. The final soil cover was contoured to match the Site's pre-existing grade to prevent ponding of water and erosion.

Closure Request

Based on laboratory analytical results, impacts associated with the inadvertent release have been delineated, excavated, and removed from the Site in accordance with Site Closure Criteria. Devon believes the completed remedial actions meet the requirements set forth in NMAC 19.15.29.13 regulations in order to be protective of human health, the environment, and groundwater. As such, NFA appears warranted at this time, and Devon respectfully requests Closure of this CRR associated with Incident Number nAPP2500624157.

If you have any questions or comments, please do not hesitate to contact Gilbert Moreno at (832) 541-7719 or <u>gmoreno@earthsys.net</u>. Documentation and correspondence notifications and Executed chain-of-custody forms and laboratory analytical reports are attached.

Sincerely,

EARTH SYSTEMS RESPONSE & RESTORATION

Attachments:

Gilbert Moreno Carlsbad Operations Manager/ Project Geologist

cc: Jim Raley, Devon Energy Bureau of Land Management

Kris Williams

Kris Williams, CHMM, REM Principal

Figure 1 - Site Map Figure 1A - Ground Water Figure 1B - Karst Potential Figure 2 - Delineation Soil Sample Locations Figure 3 - Excavation Soil Sample Locations Referenced Well Record Photographic Documentation Table 1 - Soil Sample Analytical Results NMOCD Email Documentation & Correspondence Executed Chain-of-Custody Forms and Laboratory Analytical Reports

Received by OCD: 6/20/2025 11:05:16 AM

134

Received by OCD: 6/20/2025 11:05:16 AM

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

1	WELL OWNER	NAME(S)	1	-	PHONE (OPTI	ONAL)							
E	Devon Energ	y			575-748-1838								
	WELL OWNER 6488 7 Rive		ADDRESS					CITY Artesia			STATE NM	88210	ZIP
WELL		LAT	DI	egrees 32	MINUTES 2	SECONDS 51.06	N	* ACCURACY	REQUIRED	: ONE TENT	'H OF A S	ECOND	
	(FROM GPS)	LON	NGITUDE	103	30	37.08	w	• DATUM REG	QUIRED: WO	3S 84			
			G WELL LOCATION TO 26S R34S NMPM		RESS AND COMMO	N LANDMARK	S – PLS	S (SECTION, TO	WNSHJIP, R.	ANGE) WHE	ERE AVAI	LABLE	
1	LICENSE NO. 1249	2.11	NAME OF LICENSED		Jackie D. Atkin	s			a contration of the	WELL DRI		MPANY Associates, I	nc.
I	DRILLING STA 6/9/202		DRILLING ENDED 6/9/2022	the second se	MPLETED WELL (mporary Well	FT) BO		LE DEPTH (FT) ±55	DEPTH W	VATER FIRS	T ENCOU N/A	NTERED (FT)	-
	COMPLETED V	VELL IS:	ARTESIAN	I DRY HOI	LE 🗌 SHALL	OW (UNCONFI	NED)		WATER LEV PLETED WE		A	ATE STATIC 6/13/2	
I	DRILLING FLUID: AIR MUD ADDITIVES – SPECIFY:												
I	DRILLING METHOD: ROTARY HAMMER CABLE TOOL I OTHER-SPECIFY:								Auger	CHECK I INSTALI	HERE IF F LED	ITLESS ADAI	PTER 1
FROM TO DI		BORE HOLE	CASING MATERIAL AND/OR GRADE (include each casing string, and			ania			CASIN	CASING WALL THICKNESS			
	FROM	10	DIAM	(include)		and	CON	ASING NECTION	INSIDE	DIAM.			SI
			(inches)	note	each casing string sections of screen		CONT	NECTION TYPE ling diameter)	(incl	hes)		nches)	SL (inc
	0	55	1000 1000	note	each casing string		CONT	NECTION TYPE		hes)			SL (inc
			(inches)	note	each casing string sections of screen		CONT	NECTION TYPE ling diameter)	(incl	hes)		nches)	SL (inc
			(inches)	note	each casing string sections of screen		CONT	NECTION TYPE ling diameter)	(incl	hes)		nches)	SL SI (inc
		55	(inches)	note	each casing string sections of screen		CONI T id coup	NECTION TYPE ing diameter)	(incl	hes)		nches)	SI (inc
	0	55	(inches) ±6.5		each casing string sections of screen Boring-HSA	EAL MATEF	CONT T Id coup	NECTION TYPE 	AN	hes) -		nches) 	SI (inc
	0	55 set bgl)	(inches) ±6.5		each casing string sections of screen Boring-HSA	EAL MATEF	CONT T Id coup	NECTION TYPE 		hes) 		METHO PLACEN	SLL (inc

LOCATION 26.34.18.421 WELL T	TAG ID NO.	PAGE 1 OF 2

	DEPTH (feet b	ogl) TO	THICKNESS (feet)	INCLUDE WAT	ND TYPE OF MATER ER-BEARING CAVI	TIES OR FRACTU	RE ZONES	BEA	TER RING? (NO)	ESTIMATEI YIELD FOR WATER- BEARING	
	- 5 A L	(attach supplemental sheets to fully describe all units)								ZONES (gpm	
L	0	4	4	Sand, Fine	Sand, Fine-grained, poorly graded, 2.5 YR 3/6, Dark Red						
	4	9	5	Caliche	e, with Fine-grained sa	nd, 7.5 YR 7/4, Pin	ık	Y	√ N		
L	9	14	5	Calio	che, well consolidated	, 7.5 YR 7/4, Pink		Y	√ N		
L	14	39	25	Sand, Fine-grained, poorly graded, with Caliche, 7.5 YR 7/6, Reddish Yellow					√ N		
L	39	55	16	Sand, Fine-grain	ed, poorly graded, wit	Caliche, 7.5 YR 7	5/6, Brown	Y	√ N		
								Y	N		
								Y	N		
5				· · · · · · · · · · · · · · · · · · ·	_		_	Y	N		
3								Y	N		
				1				Y	N		
								Y	N		
		11						Y	N		
								Y	N		
				1				Y	N		
7								Y	N		
								Y	N	-	
								Y	N		
F								Y	N		
								Y	N		
F							-	Y	N		
				-				Y	N		
h	METHOD USED TO ESTIMATE YIELD OF WATER-BEARING STRATA: TOTAL							OTAL ESTI			
	PUMP			BAILER 0	THER - SPECIFY:			WELL YIEL		0.00	
	WELL TEST			ACH A COPY OF DA ME, AND A TABLE S							
1	MISCELLANEO	US INFC	28	emporary well materi clow ground surface(ghting Okra 18 CTB	ogs), then hydrated	boring backfilled bentonite chips te	en feet bgs to	o surface.		epth to ten fee 22 px3:10	
	PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE:										
I	PRINT NAME(S	,									
	PRINT NAME(S Shane Eldridge,		n Pruitt						_		
s s	Shane Eldridge, THE UNDERSIC	Camero GNED HE ORD OF	REBY CERTIN THE ABOVE I	FIES THAT, TO THE I DESCRIBED HOLE AN 10 DAYS AFTER COM	ND THAT HE OR SH	E WILL FILE THI					
	Shane Eldridge, THE UNDERSIC	Camero GNED HE ORD OF AIT HOLI	REBY CERTIN THE ABOVE I	DESCRIBED HOLE AN 80 DAYS AFTER COM	ND THAT HE OR SH	E WILL FILE THI		CORD WITH			
S	Shane Eldridge, THE UNDERSIC CORRECT RECO AND THE PERM ACK Atkins	Camero GNED HE ORD OF AIT HOL	REBY CERTIH THE ABOVE I DER WITHIN 3	DESCRIBED HOLE AN 80 DAYS AFTER COM	ND THAT HE OR SH IPLETION OF WELI Ickie D. Atkins	E WILL FILE THI		CORD WITH	I THE ST.		
S	Shane Eldridge, THE UNDERSIC CORRECT RECO AND THE PERM ACK Atkins	Camero GNED HE ORD OF AIT HOLI	REBY CERTIH THE ABOVE I DER WITHIN 3	DESCRIBED HOLE AN 30 DAYS AFTER COM Ja	ND THAT HE OR SH IPLETION OF WELI Ickie D. Atkins	E WILL FILE THI DRILLING:	S WELL RE	CORD WITH 6/14	H THE ST. 6/2022 DATE		

Mike A. Hamman, P.E. State Engineer

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr: 726171 File Nbr: C 04626 Well File Nbr: C 04626 POD1

Jun. 16, 2022

DALE WOODALL DEVON ENERGY 6488 7 RIVERS HWY ARTESIA, NM 88210

Greetings:

The above numbered permit was issued in your name on 05/24/2022.

The Well Record was received in this office on 06/16/2022, stating that it had been completed on 06/09/2022, and was a dry well. The well is to be plugged according to 19.27.4.30 NMAC.

Please note that another well can be drilled under this permit if the well is completed and the well log filed on or before 05/24/2023.

If you have any questions, please feel free to contact us.

Sincerely,

Maret Amaral (575)622-6521

drywell

June 8, 2022

2904 W 2nd St. Roswell, NM 88201 voice: 575.624.2420 fax: 575.624.2421 www.atkinseng.com

DII-NMOSE 1900 W 2nd Street Roswell, NM 88201

Hand Delivered to the DII Office of the State Engineer

Re: Well Record C-4626 Pod1at Fighting Okra 18 CTB 4

To whom it may concern:

Attached please find a well log & record and a plugging record, in duplicate, for a one (1) soil borings, C-4626 Pod1.

If you have any questions, please contact me at 575.499.9244 or lucas@atkinseng.com.

Sincerely,

Gran Middle

Lucas Middleton Enclosures: as noted above

DSE DII JUN 16 2022 M3:09

PHOTO 1: Southeastern view during initial site assessment by Devon. 12/31/2024

PHOTO 2: Southwestern view during initial site assessment by Devon. 12/31/2024

PHOTO 4: Northeastern view of delineation borehole during delineation sampling by ESRR. 2/6/2024

PHOTO 6: Northeastern view of delineation borehole during delineation sampling by ESRR. 2/6/2024

Earth Systems

Response & Restoration

Page 17 of 134

PHOTO 7: Southeastern view of delineation borehole during delineation sampling by ESRR. 2/6/2024

PHOTO 8: Northeastern view outside of containment during liner inspection activities. 3/5/2025

PHOTO 9: Southeastern view outside of containment during liner inspection activities. 3/5/2025

PHOTO 10: Southern view outside of containment during liner inspection activities. 3/5/2025

PHOTO 12: Southwestern view outside of containment during liner inspection activities. 3/5/2025

PHOTO 13: Northwestern view outside of containment during liner inspection activities. 3/5/2025

PHOTO 14: Northwestern view outside of containment during liner inspection activities. 3/5/2025

PHOTO 17: Southern view during liner inspection activities. 3/5/2025

PHOTO 18: Southern view during liner inspection activities. 3/5/2025

05 Mar 2025, 10:16:49

PHOTO 20: Northern view during liner inspection activities. 3/5/2025

. 17 Apr 2025, 10:34:20

PHOTO 22: Southeastern view during delineation activities. 4/17/2025

CRUP

PHOTO 24: Southeastern view during delineation activities. 4/17/2025

PHOTO 25: Southwestern view during excavation activities. 5/30/2025

PHOTO 26: Southwestern view of excavation extent. 6/3/2025

PHOTO 27: Northwestern view of excavation extent. 6/3/2025

PHOTO 28: Northeastern view of excavation extent. 6/3/2025

PHOTO 28: Southwestern view following restoration activities 6/16/2025

PHOTO 30: Western view following restoration activities. 6/16/2025

PHOTO 31: Southern view following restoration activities. 6/16/2025

PHOTO 32: Northeastern view of location sign. 6/16/2025

Earth Systems Response & Restoration				Table 1 SOIL SAMPLE ANALYTICAL RESULTS Seawolf 12 CTB 1 Lea County, New Mexico				devon WPXENERGY.			
Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)		
DCD Table I Closu ease (NMAC 19.15.	re Criteria for Soils .29)	s Impacted by a	10	50	NE	NE	NE	100	600		
				Delineation Soil	Samples - nAPP250062	24157					
HA-1	02/06/25	0.5	<0.00200	<0.00401	<49.7	<49.7	<49.7	<49.7	3,200		
HA-1	02/06/25	1	< 0.00199	<0.00398	<49.8	<49.8	<49.8	<49.8	3,070		
HA-1	04/17/25	2	<0.00200	<0.00400	<50.0	<50.0	<50.0	<50.0	192		
HA-2	02/06/25	0.5	< 0.00199	<0.00398	<49.7	<49.7	<49.7	<49.7	5,250		
HA-2	02/06/25	1	<0.00200	<0.00399	<49.7	<49.7	<49.7	<49.7	836		
HA-2	04/17/25	2	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	176		
HA-3	02/06/25	0.5	<0.00199	<0.00398	<49.8	<49.8	<49.8	<49.8	217		
HA-3	02/06/25	1	<0.00199	<0.00398	<49.8	<49.8	<49.8	<49.8	210		
HA-3	04/17/25	2	<0.00200	<0.00399	<50.0	<50.0	<50.0	<50.0	133		
HA-4	02/06/25	0.5	<0.00200	<0.00399	<49.8	<49.8	<49.8	<49.8	31.8		
HA-4	02/06/25	1	<0.00198	<0.00397	<50.0	<50.0	<50.0	<50.0	38.4		
HA-4	04/17/25	2	<0.00199	<0.00398	<49.7	<49.7	<49.7	<49.7	64.1		
HA-5	02/06/25	0.5	<0.00200	<0.00399	<49.8	<49.8	<49.8	<49.8	23.1		
HA-5	02/06/25	1	<0.00200	<0.00401	<49.8	<49.8	<49.8	<49.8	21.0		
HA-6	02/06/25	0.5	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	18.9		
HA-6	02/06/25	1	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	20.7		
HA-7	04/17/25	0.5	<0.00202	<0.00404	<49.8	<49.8	<49.8	<49.8	103		
HA-7	04/17/25	1	<0.00201	<0.00402	<50.0	<50.0	<50.0	<50.0	100		
HA-7	04/17/25	2	<0.00198	<0.00396	<49.7	<49.7	<49.7	<49.7	112		
				Confirmation Soil	Samples - nAPP25006	24157					
CS-1	06/03/25	2	<0.00199	<0.00398	<50.1	<50.1	<50.1	<50.1	156		
CS-2	06/03/25	2	<0.00198	<0.00396	<50.1	<50.1	<50.1	<50.1	80.1		
CS-3	06/03/25	2	<0.00199	<0.00398	<49.7	<49.7	<49.7	<49.7	127		
CS-4	06/03/25	2	<0.00200	<0.00400	<49.8	<49.8	<49.8	<49.8	180		
SW-1	06/03/25	0-2	<0.00198	<0.00397	<50.0	<50.0	<50.0	<50.0	293		
SW-2	06/03/25	0-2	<0.00200	<0.00401	<50.0	<50.0	<50.0	<50.0	212		
SW-3	06/03/25	0-2	<0.00202	<0.00404	<50.1	<50.1	<50.1	<50.1	161		

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics

DRO: Diesel Range Organics

ORO: Oil Range Organics NMOCD: New Mexico Oil Conservation Division NMAC: New Mexico Administrative Code

Text in ""grey"" represents excavated soil samples

Concentrations in **bold and highlighted** exceed the NMOCD Table I Closure Criteria and/or Reclamation Standard[‡] for Soils Impacted by a Release

⁴The reclamation concentration requirements of 600 mg/kg chloride and 100 mg/kg TPH apply to the top 4 feet of areas to be immediately reclaimed following remediation pursuant to NMAC 19.15.17.13.

Page 31 of 134

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 32 of 134

Action 436624

QUESTIONS						
Operator: DEVON ENERGY PRODUCTION COMPANY, LP	OGRID: 6137					
333 West Sheridan Ave. Oklahoma City, OK 73102	Action Number: 436624					
	Action Type: [NOTIFY] Notification Of Liner Inspection (C-141L)					

QUESTIONS

Prerequisites					
Incident ID (n#)	nAPP2500624157				
Incident Name	NAPP2500624157 SEAWOLF 12 CTB 1 @ 0				
Incident Type	Produced Water Release				
Incident Status	Initial C-141 Approved				
Incident Facility	[fAPP2223534335] SEAWOLF 12 CTB 1				

Location of Release Source					
Site Name	SEAWOLF 12 CTB 1				
Date Release Discovered	12/31/2024				
Surface Owner	Federal				

Liner Inspection Event Information Please answer all the questions in this group. What is the liner inspection surface area in square feet 4,858 Have all the impacted materials been removed from the liner Yes Liner inspection date pursuant to Subparagraph (a) of Paragraph (5) of Subsection A of 19.15.29.11 NMAC 03/05/2025 Time liner inspection will commence 08:00 AM Please provide any information necessary for observers to liner inspection Gilbert Moreno (832) 541-7719 Please provide any information necessary for navigation to liner inspection site 32.053656°, -103.528029°

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	436624
	Action Type:
	[NOTIFY] Notification Of Liner Inspection (C-141L)

CONDITIONS							
Created By		Condition Date					
jraley	Failure to notify the OCD of liner inspections including any changes in date/time per the requirements of 19.15.29.11.A(5)(a)(ii) NMAC, may result in the inspection not being accepted.	2/27/2025					

CONDITIONS

Action 436624

RE: [EXTERNAL] Seawolf 12 CTB 1 - Extension Request - nAPP2500624157

From Wells, Shelly, EMNRD <Shelly.Wells@emnrd.nm.gov>

Date Mon 3/31/2025 7:36 AM

- To Gilbert Moreno <gmoreno@earthsys.net>
- Cc Raley, Jim <Jim.Raley@dvn.com>; Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>

Good morning Gilbert,

The extension request for NAPP2500624157 SEAWOLF 12 CTB 1 is approved. The new due date to submit your updated remediation plan or closure report to the OCD is June 30, 2025. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Kind regards,

Shelly

Shelly Wells * Environmental Specialist-Advanced Environmental Bureau EMNRD-Oil Conservation Division 1220 S. St. Francis Drive|Santa Fe, NM 87505 (505)469-7520 <u>Shelly.Wells@emnrd.nm.gov</u> http://www.emnrd.state.nm.us/OCD/

From: Gilbert Moreno <gmoreno@earthsys.net>
Sent: Saturday, March 29, 2025 9:09 AM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Cc: Raley, Jim <Jim.Raley@dvn.com>
Subject: [EXTERNAL] Seawolf 12 CTB 1 - Extension Request - nAPP2500624157

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments. Hello,

Earth Sytems R & R (ESRR) on behalf of Devon Energy (Devon) is requesting an extension to the current deadline for a report required in 19.15.29.12.B(1) NMAC at the Seawolf 12 CTB 1 (Site).

A produced water release was discovered on December 31st, 2024, and was subsequently assigned Incident Number nAPP2500624157. Initial delineation activities and a liner inspection were completed by ESRR during February 2025. Further delineation and remediation activities are anticipated to begin mid April 2025. Devon requests an extension of the March 31st, 2025, deadline for the release associated with Incident Number nAPP2500624157, to allow additional time for scheduling and completion of delineation and remediation activities, and for ESRR to complete a subsequent corrective action closure report.

Thanks,

Gilbert Moreno | Carlsbad Operations Manager- Project Geologist 1910 Resource Ct | Carlsbad NM, 88220 O. 575.323.9034 M. (832) 541-7719 | <u>gmoreno@earthsys.net</u>

Re: Soil Sampling Activities - Seawolf 12 CTB 1 - nAPP2500624157

From Gilbert Moreno <gmoreno@earthsys.net>

Date Tue 5/27/2025 9:17 AM

- To ocd.enviro@emnrd.nm.gov <ocd.enviro@emnrd.nm.gov>
- Cc Raley, Jim <jim.raley@dvn.com>

Good morning,

The soil sampling activities below have been canceled due to delays from the contractor completing the remediation. We will reschedule once a new date has been confirmed.

Regards,

Gilbert Moreno | Carlsbad Operations Manager- Project Geologist 1910 Resource Ct | Carlsbad NM, 88220 O. 575.323.9034 M. (832) 541-7719 | <u>gmoreno@earthsys.net</u>

From: Gilbert Moreno
Sent: Wednesday, May 21, 2025 7:34 AM
To: ocd.enviro@emnrd.nm.gov <ocd.enviro@emnrd.nm.gov>
Cc: Raley, Jim <jim.raley@dvn.com>
Subject: Soil Sampling Activities - Seawolf 12 CTB 1 - nAPP2500624157

Hello,

Earth Systems R & R anticipates conducting soil sampling activities at the Seawolf 12 CTB 1, May 27th and 28th, 2025. This email will be followed up with a Notification of Sampling (C-141N) for the proposed date(s).

Proposed Time:	08:00-17:00 MST				
Site Name:	Seawolf 12 CTB 1				
Incident Number:	nAPP2500624157				
--------------------------	-------------------------------	--	--	--	--
Sampling Surface Area:	1,000 sq. ft.				
Samples to be collected:	8				
Sampling Date(s):	5/27/2025 & 5/28/2025				
Who to Contact:	Gilbert Moreno (832) 541-7719				
Site GPS:	32.053553,-103.52788				

Gilbert Moreno | Carlsbad Operations Manager- Project Geologist 1910 Resource Ct | Carlsbad NM, 88220 O. 575.323.9034 M. (832) 541-7719 | <u>gmoreno@earthsys.net</u>

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Page 38cof 134

Action 468866

(ווכ	FS	TIO	NS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	468866
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

QUESTIONS

Prerequisites			
Incident ID (n#)	nAPP2500624157		
Incident Name	NAPP2500624157 SEAWOLF 12 CTB 1 @ 0		
Incident Type	Produced Water Release		
Incident Status	Initial C-141 Approved		
Incident Facility	[fAPP2223534335] SEAWOLF 12 CTB 1		

Location of Release Source				
Site Name	SEAWOLF 12 CTB 1			
Date Release Discovered	12/31/2024			
Surface Owner	Federal			

Sampling Event General Information Please answer all the questions in this group. What is the sampling surface area in square feet 1,000 What is the estimated number of samples that will be gathered 8 Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC 06/03/2025 Time sampling will commence 08:00 AM Please provide any information necessary for observers to contact samplers Gilbert Moreno (832) 541-7719 Please provide any information necessary for navigation to sampling site 32.053553,-103.52788

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	468866
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

CONDITIONS					
Created By	Condition	Condition Date			
jraley	Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.	5/29/2025			

CONDITIONS

CONDITIONS

Action 468866

Received by OCD: 6/20/2025 11:05:16 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Gilbert Moreno Earth Systems Response and Restoration 4115 South County Road 1297 Odessa, Texas 79765 Generated 2/11/2025 11:36:31 AM

JOB DESCRIPTION

Seawolf 12 CTB 1 Lea County, NM

JOB NUMBER

890-7645-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization	
Brianna Teel, Project Manager General Brianna Teel@et.eurofinsus.com (432)704-5440	ed 5 11:36:31 AM

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-7645-1 SDG: Lea County, NM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	16
QC Sample Results	17
QC Association Summary	20
Lab Chronicle	23
Certification Summary	27
Method Summary	28
Sample Summary	29
Chain of Custody	30

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Detection Limit (DoD/DOE)

Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE)

Limit of Quantitation (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Presumptive

Quality Control

Negative / Absent Positive / Present

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Decision Level Concentration (Radiochemistry)

EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry)

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Job ID: 890-7645-1

SDG: Lea County, NM

Qualifiers

DL

DLC

EDL

LOD

LOQ MCL

MDA

MDC MDL

ML

MPN

MQL

NC

ND

NEG

POS

PQL PRES

QC

RER RL

RPD

TEF

TEQ

TNTC

DL, RA, RE, IN

Qualifiers		3
GC VOA Qualifier	Qualifier Description	4
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VO	Α	5
Qualifier	Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	8
U	Indicates the analyte was analyzed for but not detected.	
Glossary		9
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¢	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	10
Dil Fac	Dilution Factor	13

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Case Narrative

Client: Earth Systems Response and Restoration Project: Seawolf 12 CTB 1

Job ID: 890-7645-1

Job ID: 890-7645-1

Eurofins Carlsbad

Job Narrative 890-7645-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 2/7/2025 11:59 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.6°C.

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: HA-1 (890-7645-1), HA-1 (890-7645-2), HA-2 (890-7645-3), HA-2 (890-7645-4), HA-3 (890-7645-5), HA-3 (890-7645-6), HA-4 (890-7645-7), HA-4 (890-7645-8), HA-5 (890-7645-9), HA-5 (890-7645-10), HA-6 (890-7645-11) and HA-6 (890-7645-12).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: HA-4 (890-7645-8), HA-5 (890-7645-9), HA-6 (890-7645-11), (LCS 880-102351/2-A), (890-7644-A-13-C), (890-7644-A-13-D MS) and (890-7644-A-13-E MSD). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D - Soluble: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-102339 and analytical batch 880-102373 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

RL

0.00200

0.00200

0.00200

0.00401

0.00200

0.00401

Limits

70 - 130

70 - 130

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Method: SW846 8021B - Volatile Organic Compounds (GC)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Dia

Lab Sample ID: 890-7645-1

D

D

Prepared

Prepared

Prepared

02/07/25 15:49 02/10/25 13:26

02/07/25 15:49 02/10/25 13:26

02/07/25 15:49 02/10/25 13:26

02/07/25 15:49 02/10/25 13:26

02/07/25 15:49 02/10/25 13:26

02/07/25 15:49 02/10/25 13:26

02/07/25 15:49 02/10/25 13:26

02/07/25 15:49 02/10/25 13:26

MDL Unit

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Page 45 of 134

Dil Fac

1

1

1

1

1

1

Dil Fac

Dil Fac

Job ID: 890-7645-1 SDG: Lea County, NM

Analyzed

Analyzed

Client Sample ID: HA-1 Date Collected: 02/06/25 09:30 Date Received: 02/07/25 11:59 Sample Depth: 0.5

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Analyte

Total BTEX

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Matrix: Solid

5

Prepared	Analyzed	Dil Fac	11
	02/10/25 13:26	1	12

Analyzed

	Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)									
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Total TPH	<49.7	U	49.7		mg/Kg			02/10/25 14:54	1

RL

0.00401

Method: 500846 8015B NW - DI	iesei Range	Organics ((DRU) (GC)			
Analyte	Result	Qualifier	RL	MDL	Unit	D
Gasoline Range Organics	<49.7	U	49.7		mg/Kg	

al Danga Organiaa (DDO) (C(

Result Qualifier

<0.00200 U

<0.00200 U

<0.00200 U

<0.00401 U

<0.00200 U

<0.00401 U

%Recovery Qualifier

121

98

<0.00401 U

Result Qualifier

o-Terphenyl	73		70 - 130		02/09/25 21:25	02/10/25 14:54	1
1-Chlorooctane	72		70 - 130		02/09/25 21:25	02/10/25 14:54	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.7	U	49.7	mg/Kg	02/09/25 21:25	02/10/25 14:54	1
Diesel Range Organics (Over C10-C28)	<49.7	U	49.7	mg/Kg	02/09/25 21:25	02/10/25 14:54	1
Gasoline Range Organics (GRO)-C6-C10	<49.7	U	49.7	mg/Kg	02/09/25 21:25	02/10/25 14:54	1

Method: EPA 300.0 - Anions, I	on Chromat	tography -	Soluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3200		49.6		mg/Kg			02/10/25 19:30	5

Client Sample ID: HA-1 Date Collected: 02/06/25 09:35 Date Received: 02/07/25 11:59 Sample Depth: 1

A. CINOAC ODAED NIM

La	b Sample	ID: 890	-7645-2
		Mat	rix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		02/07/25 15:49	02/10/25 13:47	1
Toluene	<0.00199	U	0.00199		mg/Kg		02/07/25 15:49	02/10/25 13:47	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		02/07/25 15:49	02/10/25 13:47	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		02/07/25 15:49	02/10/25 13:47	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		02/07/25 15:49	02/10/25 13:47	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		02/07/25 15:49	02/10/25 13:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				02/07/25 15:49	02/10/25 13:47	1

Client Sample Results

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Job ID: 890-7645-1 SDG: Lea County, NM

Client Sample ID: HA-1 Date Collected: 02/06/25 09:35

Date Received: 02/07/25 11:59

Sample Depth: 1

Lab Sample ID: 890-7645-2 Matrix: Solid

Lab Sample ID: 890-7645-3

Matrix: Solid

5

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	98		70 - 130				02/07/25 15:49	02/10/25 13:47	1
Method: TAL SOP Total BTEX	- Total BTE	X Calculat	ion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			02/10/25 13:47	1
_ Method: SW846 8015 NM - Di	esel Range (Organics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			02/10/25 15:15	1
Mathadi SW946 9045D NM - F	Vice of Denne	Organiaa							
Method: SW846 8015B NM - E Analyte		Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8		49.8		mg/Kg		02/09/25 21:25	02/10/25 15:15	1
					• •				
(GRO)-C6-C10									
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		02/09/25 21:25	02/10/25 15:15	1
Diesel Range Organics (Over	<49.8 <49.8		49.8 49.8		mg/Kg mg/Kg			02/10/25 15:15 02/10/25 15:15	1 1
Diesel Range Organics (Over C10-C28)		U			0 0				1 1 Dil Fac
Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	<49.8	U	49.8		0 0		02/09/25 21:25	02/10/25 15:15	
Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) <i>Surrogate</i>	<49.8 %Recovery	U	49.8 <i>Limits</i>		0 0		02/09/25 21:25 <hr/> Prepared <hr/> 02/09/25 21:25	02/10/25 15:15 <u>Analyzed</u> 02/10/25 15:15	
Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<49.8 %Recovery 71 72	U Qualifier	49.8 <u>Limits</u> 70 - 130 70 - 130		0 0		02/09/25 21:25 <hr/> Prepared <hr/> 02/09/25 21:25	02/10/25 15:15 <u>Analyzed</u> 02/10/25 15:15	Dil Fac
Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.8 <u>%Recovery</u> 71 72 Ion Chroma	U Qualifier	49.8 <u>Limits</u> 70 - 130 70 - 130	MDL	0 0	D	02/09/25 21:25 <hr/> Prepared <hr/> 02/09/25 21:25	02/10/25 15:15 <u>Analyzed</u> 02/10/25 15:15	Dil Fac

Client Sample ID: HA-2 Date Collected: 02/06/25 09:40

Date Received: 02/07/25 11:59 Sample Depth: 0.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		02/07/25 15:49	02/10/25 14:07	1
Toluene	<0.00199	U	0.00199		mg/Kg		02/07/25 15:49	02/10/25 14:07	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		02/07/25 15:49	02/10/25 14:07	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		02/07/25 15:49	02/10/25 14:07	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		02/07/25 15:49	02/10/25 14:07	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		02/07/25 15:49	02/10/25 14:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	118		70 - 130				02/07/25 15:49	02/10/25 14:07	1
1,4-Difluorobenzene (Surr)	97		70 - 130				02/07/25 15:49	02/10/25 14:07	1
Method: TAL SOP Total BT	EX - Total BTE	X Calculat	ion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			02/10/25 14:07	1
- Method: SW846 8015 NM -	Diesel Range	Organics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7		49.7		mg/Kg			02/10/25 15:35	

Client Sample Results

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Client Sample ID: HA-2 Date Collected: 02/06/25 09:40 Date Received: 02/07/25 11:59

Sample Depth: 0.5

Total BTEX

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		02/09/25 21:25	02/10/25 15:35	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		02/09/25 21:25	02/10/25 15:35	
C10-C28) Oil Range Organics (Over C28-C36)	<49.7		49.7		malka		02/00/25 21:25	02/10/25 15:35	
Oli Range Organics (Over C28-C36)	\$49.7	0	49.7		mg/Kg		02/09/25 21.25	02/10/25 15.55	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	70		70 - 130				02/09/25 21:25	02/10/25 15:35	
o-Terphenyl	71		70 - 130				02/09/25 21:25	02/10/25 15:35	
Method: EPA 300.0 - Anions,	Ion Chroma	tography -	Soluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	5250		50.4		mg/Kg			02/10/25 19:48	
ate Collected: 02/06/25 09:45 ate Received: 02/07/25 11:59								le ID: 890-7 Matrix	
ate Collected: 02/06/25 09:45 ate Received: 02/07/25 11:59 ample Depth: 1 Method: SW846 8021B - Vola	tile Organic							Matrix	: Solid
ate Collected: 02/06/25 09:45 ate Received: 02/07/25 11:59 ample Depth: 1 Method: SW846 8021B - Vola Analyte	tile Organic Result	Qualifier	RL	MDL	Unit	D	Prepared	Matrix Analyzed	:: Solic
ate Collected: 02/06/25 09:45 ate Received: 02/07/25 11:59 ample Depth: 1 Method: SW846 8021B - Vola Analyte Benzene	tile Organic Result <0.00200	Qualifier	RL 0.00200	MDL	mg/Kg	<u>D</u>	Prepared 02/07/25 15:49	Matrix Analyzed 02/10/25 14:28	:: Solid
ate Collected: 02/06/25 09:45 ate Received: 02/07/25 11:59 ample Depth: 1 Method: SW846 8021B - Vola Analyte Benzene Toluene	tile Organic Result <0.00200 <0.00200	Qualifier U U	RL 0.00200 0.00200	MDL	mg/Kg mg/Kg	D	Prepared 02/07/25 15:49 02/07/25 15:49	Matrix Analyzed 02/10/25 14:28 02/10/25 14:28	Dil Fa
ate Collected: 02/06/25 09:45 ate Received: 02/07/25 11:59 ample Depth: 1 Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene	tile Organic Result <0.00200 <0.00200 <0.00200	Qualifier U U U	RL 0.00200 0.00200 0.00200	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49	Matrix <u>Analyzed</u> 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28	Dil Fa
ate Collected: 02/06/25 09:45 ate Received: 02/07/25 11:59 ample Depth: 1 Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	tile Organic Result <0.00200 <0.00200 <0.00200 <0.00399	Qualifier U U U U	RL 0.00200 0.00200 0.00200 0.00200 0.00399	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49	Matrix <u>Analyzed</u> 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28	Dil Fa
ate Collected: 02/06/25 09:45 ate Received: 02/07/25 11:59 ample Depth: 1 Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	tile Organic Result <0.00200 <0.00200 <0.00200	Qualifier U U U U	RL 0.00200 0.00200 0.00200	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49	Matrix <u>Analyzed</u> 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28	Dil Fa
ate Collected: 02/06/25 09:45 ate Received: 02/07/25 11:59 ample Depth: 1 Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	tile Organic Result <0.00200 <0.00200 <0.00200 <0.00399	Qualifier U U U U U U	RL 0.00200 0.00200 0.00200 0.00200 0.00399	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49	Matrix <u>Analyzed</u> 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28	Dil Fa
ate Collected: 02/06/25 09:45 ate Received: 02/07/25 11:59 ample Depth: 1 Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total	tile Organic Result <0.00200 <0.00200 <0.00200 <0.00399 <0.00200	Qualifier U U U U U U U U	RL 0.00200 0.00200 0.00200 0.00200 0.00399 0.00200	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49	Matrix Analyzed 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28	: Solid
ate Collected: 02/06/25 09:45 ate Received: 02/07/25 11:59 ample Depth: 1 Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	tile Organic Result <0.00200 <0.00200 <0.00200 <0.00399 <0.00200 <0.00399	Qualifier U U U U U U U U	RL 0.00200 0.00200 0.00200 0.00399 0.00200 0.00399 0.00399 0.00399	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49	Matrix Analyzed 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28	Dil Fa
ate Collected: 02/06/25 09:45 ate Received: 02/07/25 11:59 ample Depth: 1 Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	tile Organic Result <0.00200 <0.00200 <0.00200 <0.00399 <0.00200 <0.00399 %Recovery	Qualifier U U U U U U U U	RL 0.00200 0.00200 0.00200 0.00399 0.00200 0.00399 0.00399 0.00399 Limits	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49 Prepared 02/07/25 15:49	Matrix Analyzed 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28	Dil Fa
Client Sample ID: HA-2 bate Collected: 02/06/25 09:45 bate Received: 02/07/25 11:59 bample Depth: 1 Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTE	tile Organic Result <0.00200 <0.00200 <0.00200 <0.00399 <0.00200 <0.00399 %Recovery 127 97	Qualifier U U U U U U Qualifier	RL 0.00200 0.00200 0.00200 0.00399 0.00200 0.00399 0.00399 0.00399 0.00399 0.00399 0.00399 0.00399 0.00399 0.00399 0.00399 0.00399 1.00399	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49 02/07/25 15:49 Prepared 02/07/25 15:49	Matrix <u>Analyzed</u> 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28 02/10/25 14:28 <u>Analyzed</u> 02/10/25 14:28	Dil Fa

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total TPH <49.7 U

49.7

0.00399

mg/Kg

mg/Kg

<0.00399 U

Method: SW846 8015B NM - D	Diesel Range	• Organics	(DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.7	U	49.7		mg/Kg		02/09/25 21:25	02/10/25 15:56	1
Diesel Range Organics (Over C10-C28)	<49.7	U	49.7		mg/Kg		02/09/25 21:25	02/10/25 15:56	1
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		02/09/25 21:25	02/10/25 15:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	76		70 - 130				02/09/25 21:25	02/10/25 15:56	1
o-Terphenyl	77		70 - 130				02/09/25 21:25	02/10/25 15:56	1

Eurofins Carlsbad

02/10/25 14:28

02/10/25 15:56

1

1

Page 47 of 134

Job ID: 890-7645-1 SDG: Lea County, NM

Lab Sample ID: 890-7645-3 Matrix: Solid

Released to Imaging: 6/23/2025 3:33:55 PM

5

Client Sample Results

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-7645-1 SDG: Lea County, NM

Client Sample ID: HA-2 Date Collected: 02/06/25 09:45 Date Received: 02/07/25 11:59 Sample Depth: 1							Lab Samp	le ID: 890-7 Matrix	
Method: EPA 300.0 - Anions, Io						_	_ .		
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	836		9.98		mg/Kg			02/10/25 19:57	
Client Sample ID: HA-3 Date Collected: 02/06/25 09:50 Date Received: 02/07/25 11:59 Sample Depth: 0.5							Lab Samp	le ID: 890-7 Matrix	
Method: SW846 8021B - Volati	le Organic	Compoun	ds (GC)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	< 0.00199	U	0.00199		mg/Kg		02/07/25 15:49	02/10/25 14:48	
Toluene	<0.00199	U	0.00199		mg/Kg		02/07/25 15:49	02/10/25 14:48	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		02/07/25 15:49	02/10/25 14:48	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		02/07/25 15:49	02/10/25 14:48	
o-Xylene	<0.00199		0.00199		mg/Kg			02/10/25 14:48	
Xylenes, Total	<0.00398		0.00398		mg/Kg			02/10/25 14:48	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	121		70 - 130					02/10/25 14:48	
1,4-Difluorobenzene (Surr)	100		70 - 130					02/10/25 14:48	
Method: TAL SOP Total BTEX	- Total BTE	X Calcula	tion						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg		·	02/10/25 14:48	
Method: SW846 8015 NM - Die	sel Range (Organics ((DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8	U	49.8		mg/Kg			02/10/25 16:16	
Method: SW846 8015B NM - D	iesel Range	Organics	s (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	_	mg/Kg	-	02/09/25 21:25	02/10/25 16:16	
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		02/09/25 21:25	02/10/25 16:16	
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		02/09/25 21:25	02/10/25 16:16	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	77		70 - 130				02/09/25 21:25	02/10/25 16:16	
o-Terphenyl	77		70 - 130				02/09/25 21:25	02/10/25 16:16	
Method: EPA 300.0 - Anions, Io	on Chromat	tography -	Soluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	217		9.94		mg/Kg			02/10/25 20:07	

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Client Sample ID: HA-3 Date Collected: 02/06/25 09:55 Date Received: 02/07/25 11:59 Sample Depth: 1

Job ID: 890-764	5-1
SDG: Lea County,	NN

Matrix: Solid

Page 49 of 134

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		02/07/25 15:49	02/10/25 16:11	
Toluene	<0.00199	U	0.00199		mg/Kg		02/07/25 15:49	02/10/25 16:11	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		02/07/25 15:49	02/10/25 16:11	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		02/07/25 15:49	02/10/25 16:11	
o-Xylene	<0.00199	U	0.00199		mg/Kg		02/07/25 15:49	02/10/25 16:11	
Kylenes, Total	<0.00398	U	0.00398		mg/Kg		02/07/25 15:49	02/10/25 16:11	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	121		70 - 130				02/07/25 15:49	02/10/25 16:11	
1,4-Difluorobenzene (Surr)	100		70 - 130				02/07/25 15:49	02/10/25 16:11	
Method: TAL SOP Total BTEX	- Total BTE	X Calculat	ion						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			02/10/25 16:11	
Method: SW846 8015 NM - Die	esel Range	Organics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
otal TPH	<49.8	U	49.8		mg/Kg			02/10/25 16:36	
Method: SW846 8015B NM - D	iesel Range	• Organics	(DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Gasoline Range Organics GRO)-C6-C10	<49.8	U	49.8		mg/Kg		02/09/25 21:25	02/10/25 16:36	
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		02/09/25 21:25	02/10/25 16:36	
Dil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		02/09/25 21:25	02/10/25 16:36	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
I-Chlorooctane	71		70 - 130				02/09/25 21:25	02/10/25 16:36	
p-Terphenyl	71		70 - 130				02/09/25 21:25	02/10/25 16:36	
Method: EPA 300.0 - Anions,	on Chroma	tography -	Soluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Chloride	210		9.94		mg/Kg			02/10/25 20:16	
lient Sample ID: HA-4							Lab Samp	le ID: 890-7	645
ate Collected: 02/06/25 10:00 ate Received: 02/07/25 11:59 ample Depth: 0.5								Matrix	: Sol

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		02/07/25 15:49	02/10/25 16:32	1
Toluene	<0.00200	U	0.00200		mg/Kg		02/07/25 15:49	02/10/25 16:32	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		02/07/25 15:49	02/10/25 16:32	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		02/07/25 15:49	02/10/25 16:32	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		02/07/25 15:49	02/10/25 16:32	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		02/07/25 15:49	02/10/25 16:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				02/07/25 15:49	02/10/25 16:32	1

Client Sample Results

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-7645-1 SDG: Lea County, NM

Lab Sample ID: 890-7645-7

Matrix: Solid

5

Date Received: 02/07/25 11:59 0 mplo Dopth: 0.5

Client Sample ID: HA-4

Date Collected: 02/06/25 10:00

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	<u>%Recovery</u> 97	Quaimer	70 - 130				02/07/25 15:49	02/10/25 16:32	DIIFa
1,4-Dilluorobenzene (Surr)	97		70 - 130				02/07/25 15.49	02/10/25 16.32	
Method: TAL SOP Total BTEX	- Total BTE	X Calculat	tion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399		mg/Kg			02/10/25 16:32	
Method: SW846 8015 NM - Die	esel Range (Organics (DRO) (GC)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8	U	49.8		mg/Kg			02/10/25 16:56	
)iesel Range	Organics							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		02/09/25 21:25	02/10/25 16:56	
(GRO)-C6-C10	. 40.0		10.0		117		00/00/05 04 05	00/40/05 40 50	
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		02/09/25 21:25	02/10/25 16:56	
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		02/09/25 21:25	02/10/25 16:56	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	72		70 - 130				· · · · · · · · · · · · · · · · · · ·	02/10/25 16:56	
o-Terphenyl	72		70 - 130				02/09/25 21:25	02/10/25 16:56	
Method: EPA 300.0 - Anions,	on Chroma	tography -	Soluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	31.8	F1	9.96		mg/Kg			02/10/25 19:45	
Client Sample ID: HA-4							Lab Samp	le ID: 890-7	645-
Date Collected: 02/06/25 10:05								Matrix	
Date Received: 02/07/25 11:59									
Sample Depth: 1									
Method: SW846 8021B - Volat	ile Organic	Compoun	ds (GC)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00198		0.00198		ma/Ka			02/10/25 16:52	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		02/07/25 15:49	02/10/25 16:52	1
Toluene	<0.00198	U	0.00198		mg/Kg		02/07/25 15:49	02/10/25 16:52	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		02/07/25 15:49	02/10/25 16:52	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		02/07/25 15:49	02/10/25 16:52	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		02/07/25 15:49	02/10/25 16:52	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		02/07/25 15:49	02/10/25 16:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130				02/07/25 15:49	02/10/25 16:52	1
1,4-Difluorobenzene (Surr)	99		70 - 130				02/07/25 15:49	02/10/25 16:52	1
- Method: TAL SOP Total BTE	X - Total BTE	X Calculat	tion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00397	U	0.00397		mg/Kg			02/10/25 16:52	1

Method: SW846 8015 NM -	Diesel Range (Drganics (D)RO) (GC)					
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			02/10/25 17:18	1

Client Sample Results

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Client Sample ID: HA-4 Date Collected: 02/06/25 10:05 Date Received: 02/07/25 11:59

Sample Depth: 1

Method: SW846 8015B NM -		e Organics Qualifier			Unit	P	Bronered	Analyzed	
Analyte	Kesult <50.0		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10			50.0		mg/Kg			02/10/25 17:18	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		02/09/25 21:25	02/10/25 17:18	1
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		02/09/25 21:25	02/10/25 17:18	1
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	66	S1-	70 - 130					02/10/25 17:18	1
o-Terphenyl	66	S1-	70 - 130				02/09/25 21:25	02/10/25 17:18	
Method: EPA 300.0 - Anions,						_			
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	38.4		10.1		mg/Kg			02/10/25 20:03	1
Client Sample ID: HA-5							Lab Samp	le ID: 890-7	' <mark>645-</mark> §
Date Collected: 02/06/25 10:10)							Matrix	: Solic
Date Received: 02/07/25 11:59									
Sample Depth: 0.5									
Method: SW846 8021B - Vola	-								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200		0.00200		mg/Kg		02/07/25 15:49	02/10/25 17:13	
Toluene	<0.00200	U	0.00200		mg/Kg		02/07/25 15:49	02/10/25 17:13	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		02/07/25 15:49	02/10/25 17:13	
m-Xylene & p-Xylene	< 0.00399	U	0.00399		mg/Kg		02/07/25 15:49	02/10/25 17:13	
o-Xylene	<0.00200	U	0.00200		mg/Kg		02/07/25 15:49	02/10/25 17:13	
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		02/07/25 15:49	02/10/25 17:13	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	119		70 - 130				02/07/25 15:49	02/10/25 17:13	
1,4-Difluorobenzene (Surr)	98		70 - 130				02/07/25 15:49	02/10/25 17:13	-
Method: TAL SOP Total BTE									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399		mg/Kg			02/10/25 17:13	
Method: SW846 8015 NM - D			(DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8	U	49.8		mg/Kg			02/10/25 17:58	1
Method: SW846 8015B NM -									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	_	mg/Kg	-	02/09/25 21:25	02/10/25 17:58	
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		02/09/25 21:25	02/10/25 17:58	
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		02/09/25 21:25	02/10/25 17:58	
								A	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	DIIFa
Surrogate 1-Chlorooctane		Qualifier S1-	<u>Limits</u> 70 - 130					Analyzed 02/10/25 17:58	Dil Fa

Page 51 of 134

Matrix: Solid

5

Job ID: 890-7645-1 SDG: Lea County, NM

Page 52 of 134

5

Client Sample Results Client: Earth Systems Response and Restoration Job ID: 890-7645-1 Project/Site: Seawolf 12 CTB 1 SDG: Lea County, NM **Client Sample ID: HA-5** Lab Sample ID: 890-7645-9 Date Collected: 02/06/25 10:10 Matrix: Solid Date Received: 02/07/25 11:59 Sample Depth: 0.5 Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier Analyte RL MDL Unit D Prepared Analyzed Dil Fac 10.1 02/10/25 20:09 Chloride 23.1 mg/Kg Client Sample ID: HA-5 Lab Sample ID: 890-7645-10 Date Collected: 02/06/25 10:15 Matrix: Solid Date Received: 02/07/25 11:59 Sample Depth: 1 Method: SW846 8021B - Volatile Organic Compounds (GC) **Result Qualifier** RL MDL Unit Prepared Analyzed Analyte D Dil Fac Benzene <0.00200 U 02/07/25 15:49 02/10/25 17:33 0.00200 mg/Kg 1 Toluene <0.00200 U 0.00200 mg/Kg 02/07/25 15:49 02/10/25 17:33 1 02/07/25 15:49 02/10/25 17:33 Ethylbenzene <0.00200 U 0.00200 mg/Kg 1 m-Xylene & p-Xylene <0.00401 U 0.00401 mg/Kg 02/07/25 15:49 02/10/25 17:33 1 o-Xylene <0.00200 U 0.00200 mg/Kg 02/07/25 15:49 02/10/25 17:33 1 02/07/25 15:49 02/10/25 17:33 Xylenes, Total <0.00401 U 0.00401 mg/Kg 1 Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 4-Bromofluorobenzene (Surr) 119 70 - 130 02/07/25 15:49 02/10/25 17:33 97 1,4-Difluorobenzene (Surr) 70 - 130 02/07/25 15:49 02/10/25 17:33 1 Method: TAL SOP Total BTEX - Total BTEX Calculation MDL Unit Analyte **Result Qualifier** RL D Prepared Analyzed Dil Fac Total BTEX <0.00401 U 0.00401 mg/Kg 02/10/25 17:33 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) **Result Qualifier** MDL Unit Analyte RL D Prepared Analyzed Dil Fac Total TPH <49.8 U 49.8 mg/Kg 02/10/25 18:19 1 Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac <49.8 U Gasoline Range Organics 49.8 02/09/25 21:25 02/10/25 18:19 mg/Kg (GRO)-C6-C10 02/09/25 21:25 02/10/25 18:19 **Diesel Range Organics (Over** <49.8 U 49.8 mg/Kg 1 C10-C28) <49.8 U 02/09/25 21:25 02/10/25 18:19 Oil Range Organics (Over C28-C36) 498 mg/Kg 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 70 - 130 02/09/25 21:25 02/10/25 18:19 74 1 o-Terphenyl 73 70 - 130 02/09/25 21:25 02/10/25 18:19 1 . .

Method: EPA 300.0 - Anions, I	on Chromatography	- Soluble					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	21.0	10.1	mg/Kg			02/10/25 20:15	1

RL

0.00199

0.00199

0.00199

0.00398

0.00199

0.00398

Limits

70 - 130

70 - 130

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Method: SW846 8021B - Volatile Organic Compounds (GC)

Method: TAL SOP Total BTEX - Total BTEX Calculation

.

Result Qualifier

<0.00199 U

<0.00199 U

<0.00199 U

<0.00398 U

<0.00199 U

<0.00398 U

%Recovery Qualifier

117

97

Client Sample ID: HA-6 Date Collected: 02/06/25 10:20 Date Received: 02/07/25 11:59 Sample Depth: 0.5

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Job ID: 890-7645-1 SDG: Lea County, NM

Page 53 of 134

Dil Fac

1

1

1

1

1

1

Dil Fac

Analyzed

Analyzed

Prepared

Prepared

02/07/25 15:49 02/10/25 17:54

02/07/25 15:49 02/10/25 17:54

02/07/25 15:49 02/10/25 17:54

02/07/25 15:49 02/10/25 17:54

02/07/25 15:49 02/10/25 17:54

02/07/25 15:49 02/10/25 17:54

02/07/25 15:49 02/10/25 17:54

02/07/25 15:49 02/10/25 17:54

D

5

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00398	U	0.00398		mg/Kg			02/10/25 17:54	1
sel Range	Organics (DRO) (GC)						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	<0.00398		<0.00398 U 0.00398 sel Range Organics (DRO) (GC)	<pre></pre>	Colored a set Range Organics (DRO) (GC) Colored a set			Image Image <th< td=""></th<>

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total TPH	<49.9	U	49.9		mg/Kg			02/10/25 18:39	1	
	iosol Range	Organice								

Wethou. 344040 0013D NW - L	nesei Kanye	= Organics							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		02/09/25 21:25	02/10/25 18:39	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		02/09/25 21:25	02/10/25 18:39	1
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		02/09/25 21:25	02/10/25 18:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	63	S1-	70 - 130				02/09/25 21:25	02/10/25 18:39	1
o-Terphenyl	62	S1-	70 - 130				02/09/25 21:25	02/10/25 18:39	1

Method: EPA 300.0 - Anions, lo	on Chromat	ography -	Soluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	18.9		10.1		mg/Kg			02/10/25 20:21	1

Client Sample ID: HA-6 Date Collected: 02/06/25 10:25 Date Received: 02/07/25 11:59 Sample Depth: 1

Γ...

Lab Sample ID: 890-7645-12
Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		02/07/25 15:49	02/10/25 18:14	1
Toluene	<0.00199	U	0.00199		mg/Kg		02/07/25 15:49	02/10/25 18:14	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		02/07/25 15:49	02/10/25 18:14	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		02/07/25 15:49	02/10/25 18:14	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		02/07/25 15:49	02/10/25 18:14	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		02/07/25 15:49	02/10/25 18:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	124		70 - 130				02/07/25 15:49	02/10/25 18:14	1

Eurofins Carlsbad

Released to Imaging: 6/23/2025 3:33:55 PM

Client Sample Results

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-7645-1 SDG: Lea County, NM

Client Sample ID: HA-6 Date Collected: 02/06/25 10:25

Date Received: 02/07/25 11:59

Sample Depth: 1

Lab Sample ID: 890-7645-12 Matrix: Solid

5 6

7 8 9

10 11 12

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	96		70 - 130				02/07/25 15:49	02/10/25 18:14	1
Method: TAL SOP Total BTEX	- Total BTE	X Calculat	ion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			02/10/25 18:14	1
Method: SW846 8015 NM - Di	esel Range (Organics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			02/10/25 19:00	1
	Diacol Bong	Organica							
Analyte		Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		02/09/25 21:25	02/10/25 19:00	1
Gasoline Range Organics (GRO)-C6-C10	<50.0	U			mg/Kg		· · · · · · · · · · · · · · · · · · ·		
(GRO)-C6-C10 Diesel Range Organics (Over	<50.0				mg/Kg mg/Kg		02/09/25 21:25		
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		02/09/25 21:25 02/09/25 21:25	02/10/25 19:00 02/10/25 19:00	1
(GRO)-C6-C10 Diesel Range Organics (Over		U	50.0		0 0		02/09/25 21:25 02/09/25 21:25	02/10/25 19:00	1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.0	U U	50.0		mg/Kg		02/09/25 21:25 02/09/25 21:25	02/10/25 19:00 02/10/25 19:00	1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	<50.0 <50.0	U U	50.0 50.0 50.0		mg/Kg		02/09/25 21:25 02/09/25 21:25 02/09/25 21:25	02/10/25 19:00 02/10/25 19:00 02/10/25 19:00	1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	<50.0 <50.0 %Recovery	U U	50.0 50.0 50.0 <i>Limits</i>		mg/Kg		02/09/25 21:25 02/09/25 21:25 02/09/25 21:25 Prepared 02/09/25 21:25	02/10/25 19:00 02/10/25 19:00 02/10/25 19:00 Analyzed	1 1 1 <i>Dil Fac</i>
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<50.0 <50.0 <u>%Recovery</u> 85 86	U U Qualifier	50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130		mg/Kg		02/09/25 21:25 02/09/25 21:25 02/09/25 21:25 Prepared 02/09/25 21:25	02/10/25 19:00 02/10/25 19:00 02/10/25 19:00 <u>Analyzed</u> 02/10/25 19:00	1 1 1 Dil Fac 1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<50.0 <50.0 <u>%Recovery</u> 85 86 Ion Chromat	U U Qualifier	50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130	MDL	mg/Kg		02/09/25 21:25 02/09/25 21:25 02/09/25 21:25 Prepared 02/09/25 21:25	02/10/25 19:00 02/10/25 19:00 02/10/25 19:00 <u>Analyzed</u> 02/10/25 19:00	1 1 1 Dil Fac 1

Surrogate Summary

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1 Job ID: 890-7645-1 SDG: Lea County, NM

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

		BFB1	Perce DFBZ1	ent Surrogate Recovery (Acceptance Limits)	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
890-7645-1	HA-1	121	98		- 2
890-7645-2	HA-1	118	98		
890-7645-3	HA-2	118	97		
890-7645-4	HA-2	127	97		
890-7645-5	HA-3	121	100		
890-7645-6	HA-3	121	100		
890-7645-7	HA-4	115	97		
890-7645-8	HA-4	120	99		
890-7645-9	HA-5	119	98		
890-7645-10	HA-5	119	97		
890-7645-11	HA-6	117	97		
890-7645-12	HA-6	124	96		
LCS 880-102328/1-A	Lab Control Sample	105	121		
LCSD 880-102328/2-A	Lab Control Sample Dup	106	111		
MB 880-102328/5-A	Method Blank	110	90		
Surrogate Legend					

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 (70-130) (70-130) **Client Sample ID** Lab Sample ID 72 890-7645-1 HA-1 73 890-7645-2 HA-1 71 72 HA-2 70 890-7645-3 71 890-7645-4 HA-2 76 77 HA-3 77 77 890-7645-5 71 890-7645-6 HA-3 71 890-7645-7 HA-4 72 72 890-7645-8 HA-4 66 S1-66 S1-HA-5 890-7645-9 65 S1-66 S1-890-7645-10 HA-5 74 73 890-7645-11 HA-6 63 S1-62 S1-890-7645-12 HA-6 85 86 LCS 880-102351/2-A Lab Control Sample 69 S1-66 S1-LCSD 880-102351/3-A Lab Control Sample Dup 77 75 MB 880-102351/1-A Method Blank 75 82

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Carlsbad

Page 55 of 134

_____,....,,,....

Prep Type: Total/NA

Prep Type: Total/NA

QC Sample Results

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-7645-1 SDG: Lea County, NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-102328/5-A Matrix: Solid Analysis Batch: 102361

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		02/07/25 15:49	02/10/25 11:23	1
Toluene	<0.00200	U	0.00200		mg/Kg		02/07/25 15:49	02/10/25 11:23	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		02/07/25 15:49	02/10/25 11:23	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		02/07/25 15:49	02/10/25 11:23	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		02/07/25 15:49	02/10/25 11:23	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		02/07/25 15:49	02/10/25 11:23	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130				02/07/25 15:49	02/10/25 11:23	1
1,4-Difluorobenzene (Surr)	90		70 - 130				02/07/25 15:49	02/10/25 11:23	1

Lab Sample ID: LCS 880-102328/1-A Matrix: Solid Analysis Batch: 102361

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1151		mg/Kg		115	70 - 130	
Toluene	0.100	0.1106		mg/Kg		111	70 - 130	
Ethylbenzene	0.100	0.09741		mg/Kg		97	70 - 130	
m-Xylene & p-Xylene	0.200	0.2058		mg/Kg		103	70 - 130	
o-Xylene	0.100	0.1041		mg/Kg		104	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		70 - 130
1,4-Difluorobenzene (Surr)	121		70 - 130

Lab Sample ID: LCSD 880-102328/2-A Matrix: Solid

Analysis Batch: 102361 Prep Batch: 102328 LCSD LCSD RPD Spike %Rec Added Analyte Result Qualifier Unit D %Rec Limits RPD Limit Benzene 0.100 0.1143 mg/Kg 114 70 - 130 1 35 Toluene 0.100 0.1145 mg/Kg 114 70 - 130 3 35 Ethylbenzene 0.100 0.1007 mg/Kg 101 70 - 130 3 35 0.200 m-Xylene & p-Xylene 0.2131 mg/Kg 107 70 - 130 3 35 o-Xylene 0.100 0.1070 mg/Kg 107 70 - 130 3 35 -----

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		70 - 130
1,4-Difluorobenzene (Surr)	111		70 - 130

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 102328

d	Analyzed	Dil Fac	
5:49	02/10/25 11:23	1	
5:49	02/10/25 11:23	1	
5:49	02/10/25 11:23	1	
5:49	02/10/25 11:23	1	
5:49	02/10/25 11:23	1	
5:49	02/10/25 11:23	1	
d	Analyzed	Dil Fac	

Client Sample ID: Lab Control Sample

ер	Type: Total/NA	
	Detak: 400000	

Pre

Prep Batch: 102328

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Eurofins Carlsbad

5

QC Sample Results

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-7645-1 SDG: Lea County, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-102	351/1-A								Clie	nt Samp	ole ID: M	ethod	Blan
Matrix: Solid											Prep Ty	pe: To	otal/N
Analysis Batch: 102365											Prep Ba	atch: 1	0235
-	Ν	IB MB									- 1		
Analyte	Res	ult Qual	ifier	RL	MDL	Unit		D	Pr	epared	Analyz	zed	Dil Fa
Gasoline Range Organics	<50	.0 U		50.0		mg/Kę]	_	02/09	9/25 21:25	02/10/25	08:48	
(GRO)-C6-C10 Diesel Range Organics (Over	<50	.0 U		50.0		mg/Kg	9		02/09	9/25 21:25	02/10/25	08:48	
C10-C28) Oil Range Organics (Over C28-C36)	<50	.0 U		50.0		mg/Kg	9		02/09	9/25 21:25	02/10/25	08:48	
	л	1B MB											
Surrogate	%Recove	ry Qual	ifier Lim	nits					Pr	epared	Analyz	zed	Dil F
1-Chlorooctane		75	70 -	. 130					02/09	9/25 21:25	02/10/25	08:48	
o-Terphenyl		82	70 -	130					02/09	9/25 21:25	02/10/25	08:48	
Lab Sample ID: LCS 880-10 Matrix: Solid Analysis Batch: 102365	2351/2-A		0				Clie	ent	San	nple ID:	Lab Cor Prep Ty Prep Ba	pe: To	otal/N
			Spike		LCS				_		%Rec		
Analyte			Added	Result		lifier	Unit		D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10			1000	829.2	2		mg/Kg			83	70 - 130		
Diesel Range Organics (Over C10-C28)			1000	824.6	3		mg/Kg			82	70 - 130		
	LCS L	cs											
Surrogate	%Recovery (alifier	Limits										
1-Chlorooctane	69 3		70 - 130	-									
o-Terphenyl	66 5		70 - 130										
Lab Sample ID: LCSD 880-1 Matrix: Solid	02351/3-A					С	lient S	am	ple		Control S Prep Ty		
Analysis Batch: 102365											Prep Ba	atch: 1	023
			Spike	LCSD	LCS	D					%Rec		RF
Analyte			Added	Result	t Qua	lifier	Unit		D	%Rec	Limits	RPD	Lin
							mg/Kg		_	95	70 - 130	13	
			1000	947.0)		ing/itg			00		10	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)			1000 1000	947.0 883.2			mg/Kg			88	70 - 130	7	
GRO)-C6-C10 Diesel Range Organics (Over	LCSD L	CSD											
GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	LCSD L %Recovery (1000 <i>Limits</i>										
GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate			1000										
GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane	%Recovery		1000 <i>Limits</i>										
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl	%Recovery 77 75	Qualifier	1000 										
GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane D-Terphenyl Iethod: 300.0 - Anions, Lab Sample ID: MB 880-102	%Recovery 77 75 Ion Chro	Qualifier	1000 						Clie	88	70 - 130 Die ID: M	7 ethod	Bla
(GRO)-C6-C10	%Recovery 77 75 Ion Chro	Qualifier	1000 						Clie	88	70 - 130	7 ethod	Blar
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Iethod: 300.0 - Anions, Lab Sample ID: MB 880-102 Matrix: Solid	%Recovery 0 77 75 Ion Chron 338/1-A	Qualifier	1000 						Clie	88	70 - 130 Die ID: M	7 ethod	Blar

QC Sample Results

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-102	2338/2-A					Clier	nt Sa	mple ID	: Lab Cor		
Matrix: Solid									Prep Ty	ype: S	oluble
Analysis Batch: 102370			.						~ -		
Amelada			Spike		LCS	11		0/ D = =	%Rec		
Analyte Chloride			Added 250		Qualifier	Unit	D	%Rec 97	Limits		
Chlonde			250	242.7		mg/Kg		97	90 - 110		
Lab Sample ID: LCSD 880-1 Matrix: Solid	02338/3-A	x			(Client Sa	mple	ID: Lab	Control Prep Ty		
Analysis Batch: 102370										,	orabio
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride		·	250	242.5		mg/Kg		97	90 - 110	0	20
_ _											
Lab Sample ID: MB 880-102	339/1-A						Clie	ent Sam	ple ID: M		
Matrix: Solid									Prep Ty	ype: S	oluble
Analysis Batch: 102373											
	_	MB MB				_					
Analyte		esult Qualifier			MDL Unit	<u>_</u>) P	repared	Analyz		Dil Fac
Chloride	<	10.0 U		10.0	mg/K	g			02/10/25	19:26	1
Lab Sample ID: LCS 880-102	2339/2-A					Clier	nt Sa	mple ID	: Lab Cor		
Matrix: Solid									Prep Ty	ype: S	oluble
Analysis Batch: 102373			Calles		1.00				% D ee		
Anglista			Spike Added		LCS	11	_	% D = =	%Rec Limits		
Analyte			250	268.4	Qualifier	Unit mg/Kg	<u>D</u>	%Rec 107	90 - 110		
Chionde			250	200.4		ing/itg		107	30 - 110		
Lab Sample ID: LCSD 880-1	02339/3-A	L .			(Client Sa	mple	ID: Lab			
Matrix: Solid									Prep Ty	ype: 5	oluble
Analysis Batch: 102373			Spike		LCSD				%Rec		RPD
Analyte			Spike Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	268.8		mg/Kg		108	90 - 110	0	
			250	200.0		ing/itg		100	30 - 110	0	20
Lab Sample ID: 890-7645-7	MS							С	lient Sam	ple ID	: HA-4
Matrix: Solid									Prep Ty	-	
Analysis Batch: 102373											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	31.8	F1	249	311.5	F1	mg/Kg		112	90 - 110		
								-			
Lab Sample ID: 890-7645-7	MSD							С	lient Sam	-	
Matrix: Solid									Prep Ty	ype: S	oluble
Analysis Batch: 102373							~ -		
		Sample	Spike		MSD		_	a/ =	%Rec		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	31.8	⊢1	249	312.6	F1	mg/Kg		113	90 - 110	0	20

90-7645-1 ounty, NM

QC Association Summary

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-7645-1 SDG: Lea County, NM

GC VOA

Prep Batch: 102328

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-7645-1	HA-1	Total/NA	Solid	5035	
890-7645-2	HA-1	Total/NA	Solid	5035	
890-7645-3	HA-2	Total/NA	Solid	5035	
890-7645-4	HA-2	Total/NA	Solid	5035	
890-7645-5	HA-3	Total/NA	Solid	5035	
890-7645-6	HA-3	Total/NA	Solid	5035	
890-7645-7	HA-4	Total/NA	Solid	5035	
890-7645-8	HA-4	Total/NA	Solid	5035	
890-7645-9	HA-5	Total/NA	Solid	5035	
890-7645-10	HA-5	Total/NA	Solid	5035	
890-7645-11	HA-6	Total/NA	Solid	5035	
890-7645-12	HA-6	Total/NA	Solid	5035	
MB 880-102328/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-102328/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-102328/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 102361

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-7645-1	HA-1	Total/NA	Solid	8021B	102328
890-7645-2	HA-1	Total/NA	Solid	8021B	102328
890-7645-3	HA-2	Total/NA	Solid	8021B	102328
890-7645-4	HA-2	Total/NA	Solid	8021B	102328
890-7645-5	HA-3	Total/NA	Solid	8021B	102328
890-7645-6	HA-3	Total/NA	Solid	8021B	102328
890-7645-7	HA-4	Total/NA	Solid	8021B	102328
890-7645-8	HA-4	Total/NA	Solid	8021B	102328
890-7645-9	HA-5	Total/NA	Solid	8021B	102328
890-7645-10	HA-5	Total/NA	Solid	8021B	102328
890-7645-11	HA-6	Total/NA	Solid	8021B	102328
890-7645-12	HA-6	Total/NA	Solid	8021B	102328
MB 880-102328/5-A	Method Blank	Total/NA	Solid	8021B	102328
LCS 880-102328/1-A	Lab Control Sample	Total/NA	Solid	8021B	102328
LCSD 880-102328/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	102328

Analysis Batch: 102384

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-7645-1	HA-1	Total/NA	Solid	Total BTEX	- <u></u>
890-7645-2	HA-1	Total/NA	Solid	Total BTEX	
890-7645-3	HA-2	Total/NA	Solid	Total BTEX	
890-7645-4	HA-2	Total/NA	Solid	Total BTEX	
890-7645-5	HA-3	Total/NA	Solid	Total BTEX	
890-7645-6	HA-3	Total/NA	Solid	Total BTEX	
890-7645-7	HA-4	Total/NA	Solid	Total BTEX	
890-7645-8	HA-4	Total/NA	Solid	Total BTEX	
890-7645-9	HA-5	Total/NA	Solid	Total BTEX	
890-7645-10	HA-5	Total/NA	Solid	Total BTEX	
890-7645-11	HA-6	Total/NA	Solid	Total BTEX	
890-7645-12	HA-6	Total/NA	Solid	Total BTEX	

5

QC Association Summary

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-7645-1 SDG: Lea County, NM

GC Semi VOA

Prep Batch: 102351

rep Batch: 102351					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-7645-1	HA-1	Total/NA	Solid	8015NM Prep	
890-7645-2	HA-1	Total/NA	Solid	8015NM Prep	
890-7645-3	HA-2	Total/NA	Solid	8015NM Prep	
890-7645-4	HA-2	Total/NA	Solid	8015NM Prep	
890-7645-5	HA-3	Total/NA	Solid	8015NM Prep	
890-7645-6	HA-3	Total/NA	Solid	8015NM Prep	
890-7645-7	HA-4	Total/NA	Solid	8015NM Prep	
890-7645-8	HA-4	Total/NA	Solid	8015NM Prep	
890-7645-9	HA-5	Total/NA	Solid	8015NM Prep	
890-7645-10	HA-5	Total/NA	Solid	8015NM Prep	
890-7645-11	HA-6	Total/NA	Solid	8015NM Prep	
890-7645-12	HA-6	Total/NA	Solid	8015NM Prep	
MB 880-102351/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-102351/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-102351/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Analysis Batch: 102365

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-7645-1	HA-1	Total/NA	Solid	8015B NM	102351
890-7645-2	HA-1	Total/NA	Solid	8015B NM	102351
890-7645-3	HA-2	Total/NA	Solid	8015B NM	102351
890-7645-4	HA-2	Total/NA	Solid	8015B NM	102351
890-7645-5	HA-3	Total/NA	Solid	8015B NM	102351
890-7645-6	HA-3	Total/NA	Solid	8015B NM	102351
890-7645-7	HA-4	Total/NA	Solid	8015B NM	102351
890-7645-8	HA-4	Total/NA	Solid	8015B NM	102351
890-7645-9	HA-5	Total/NA	Solid	8015B NM	102351
890-7645-10	HA-5	Total/NA	Solid	8015B NM	102351
890-7645-11	HA-6	Total/NA	Solid	8015B NM	102351
890-7645-12	HA-6	Total/NA	Solid	8015B NM	102351
MB 880-102351/1-A	Method Blank	Total/NA	Solid	8015B NM	102351
LCS 880-102351/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	102351
LCSD 880-102351/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	102351

Analysis Batch: 102465

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-7645-1	HA-1	Total/NA	Solid	8015 NM	
890-7645-2	HA-1	Total/NA	Solid	8015 NM	
890-7645-3	HA-2	Total/NA	Solid	8015 NM	
890-7645-4	HA-2	Total/NA	Solid	8015 NM	
890-7645-5	HA-3	Total/NA	Solid	8015 NM	
890-7645-6	HA-3	Total/NA	Solid	8015 NM	
890-7645-7	HA-4	Total/NA	Solid	8015 NM	
890-7645-8	HA-4	Total/NA	Solid	8015 NM	
890-7645-9	HA-5	Total/NA	Solid	8015 NM	
890-7645-10	HA-5	Total/NA	Solid	8015 NM	
890-7645-11	HA-6	Total/NA	Solid	8015 NM	
890-7645-12	HA-6	Total/NA	Solid	8015 NM	

QC Association Summary

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-7645-1 SDG: Lea County, NM

HPLC/IC

Leach Batch: 102338

each Batch: 102338					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-7645-1	HA-1	Soluble	Solid	DI Leach	
890-7645-2	HA-1	Soluble	Solid	DI Leach	
890-7645-3	HA-2	Soluble	Solid	DI Leach	
890-7645-4	HA-2	Soluble	Solid	DI Leach	
890-7645-5	HA-3	Soluble	Solid	DI Leach	
890-7645-6	HA-3	Soluble	Solid	DI Leach	
MB 880-102338/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-102338/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-102338/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Leach Batch: 102339

Blank	Soluble	Solid	DI Leach		
trol Sample	Soluble	Solid	DI Leach		8
trol Sample Dup	Soluble	Solid	DI Leach		
					9
ample ID	Ргер Туре	Matrix	Method	Prep Batch	
	Soluble	Solid	DI Leach		
	Soluble	Solid	DI Leach		
	Soluble	Solid	DI Leach		
	Soluble	Solid	DI Leach		
	Soluble	Solid	DI Leach		
	Soluble	Solid	DI Leach		40
Blank	Soluble	Solid	DI Leach		13
trol Sample	Soluble	Solid	DI Leach		
trol Sample Dup	Soluble	Solid	DI Leach		
	Soluble	Solid	DI Leach		
	Soluble	Solid	DI Leach		
	trol Sample Dup ample ID Blank trol Sample	trol Sample Dup Soluble soluble ample ID Prep Type Soluble	trol Sample Dup Soluble Solid Soluble Solid Prep Type Matrix Soluble Solid Soluble Solid	solubleSolubleSolidDI LeachSolubleSolubleSolidDI Leachample IDPrep TypeMatrixMethodSolubleSolidDI LeachSolubleSolidDI LeachBlankSolubleSolidDI Leachthrol SampleSolubleSolidDI LeachSolubleSolidDI LeachSolubleSolidDI LeachDi LeachSolubleSolidDI LeachBlankSolubleSolidDI LeachSolubleSolidDI LeachDi LeachSolubleSolidDI LeachSolubleSolidDI LeachSolubleSolidDI LeachSolubleSolidDI LeachSolubleSolidDI LeachSolubleSolidDI LeachSolubleSolidDI LeachSolubleSolidDI Leach	solubleSolubleSolidDI LeachSolubleSolubleSolidDI Leachample IDPrep TypeMatrixMethodPrep BatchSolubleSolidDI LeachDI LeachSolubleSolidDI LeachSolubleSolubleSolidDI LeachSolubleSolubleSolidDI LeachSolubleSolubleSolidDI LeachSolubleSolubleSolidDI LeachSolubleSolubleSolidDI LeachSolubleSolubleSolidDI LeachSolubleBlankSolubleSolidDI LeachItrol SampleSolubleSolidDI LeachSolubleSolidDI LeachSolubleSolubleSolidDI LeachInterventionSolubleSolidDI LeachIntervention

Analysis Batch: 102370

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-7645-1	HA-1	Soluble	Solid	300.0	102338
890-7645-2	HA-1	Soluble	Solid	300.0	102338
890-7645-3	HA-2	Soluble	Solid	300.0	102338
890-7645-4	HA-2	Soluble	Solid	300.0	102338
890-7645-5	HA-3	Soluble	Solid	300.0	102338
890-7645-6	HA-3	Soluble	Solid	300.0	102338
MB 880-102338/1-A	Method Blank	Soluble	Solid	300.0	102338
LCS 880-102338/2-A	Lab Control Sample	Soluble	Solid	300.0	102338
LCSD 880-102338/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	102338

Analysis Batch: 102373

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-7645-7	HA-4	Soluble	Solid	300.0	102339
890-7645-8	HA-4	Soluble	Solid	300.0	102339
890-7645-9	HA-5	Soluble	Solid	300.0	102339
890-7645-10	HA-5	Soluble	Solid	300.0	102339
890-7645-11	HA-6	Soluble	Solid	300.0	102339
890-7645-12	HA-6	Soluble	Solid	300.0	102339
MB 880-102339/1-A	Method Blank	Soluble	Solid	300.0	102339
LCS 880-102339/2-A	Lab Control Sample	Soluble	Solid	300.0	102339
LCSD 880-102339/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	102339
890-7645-7 MS	HA-4	Soluble	Solid	300.0	102339
890-7645-7 MSD	HA-4	Soluble	Solid	300.0	102339

Lab Chronicle

Initial

Amount

4.99 g

5 mL

10.06 g

1 uL

5.04 g

50 mL

Dil

1

1

1

1

5

Factor

Run

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

5035

8021B

Total BTEX

8015NM Prep

8015 NM

8015B NM

DI Leach

300.0

Method

Client Sample ID: HA-1 Date Collected: 02/06/25 09:30 Date Received: 02/07/25 11:59

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Job ID: 890-7645-1 SDG: Lea County, NM

Lab Sample ID: 890-7645-1

Analyst

MNR

Prepared

or Analyzed

02/07/25 15:49

02/10/25 13:26 MNR

02/10/25 13:26 AJ

02/10/25 14:54 AJ

02/09/25 21:25 EL

02/10/25 14:54 AJ

02/07/25 18:26 SMC

02/10/25 19:30 CH

Batch

Number

102328

102361

102384

102465

102351

102365

102338

102370

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

50 mL

Matrix: Solid

Lab

EET MID

9

Lab Sample ID: 890-7645-2 Matrix: Solid

Lab Sample ID: 890-7645-3

Lab Sample ID: 890-7645-4

Matrix: Solid

: Solid

Client Sample ID: HA-1 Date Collected: 02/06/25 09:35 Date Received: 02/07/25 11:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	102328	02/07/25 15:49	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	102361	02/10/25 13:47	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			102384	02/10/25 13:47	AJ	EET MID
Total/NA	Analysis	8015 NM		1			102465	02/10/25 15:15	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	102351	02/09/25 21:25	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	102365	02/10/25 15:15	AJ	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	102338	02/07/25 18:26	SMC	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	102370	02/10/25 19:39	СН	EET MID

Client Sample ID: HA-2 Date Collected: 02/06/25 09:40 Date Received: 02/07/25 11:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	102328	02/07/25 15:49	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	102361	02/10/25 14:07	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			102384	02/10/25 14:07	AJ	EET MID
Total/NA	Analysis	8015 NM		1			102465	02/10/25 15:35	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	102351	02/09/25 21:25	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	102365	02/10/25 15:35	AJ	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	102338	02/07/25 18:26	SMC	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	102370	02/10/25 19:48	СН	EET MID

Client Sample ID: HA-2 Date Collected: 02/06/25 09:45 Date Received: 02/07/25 11:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	102328	02/07/25 15:49	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	102361	02/10/25 14:28	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			102384	02/10/25 14:28	AJ	EET MID

Eurofins Carlsbad

Matrix: Solid

.

Lab Chronicle

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Client Sample ID: HA-2 Date Collected: 02/06/25 09:45 Date Received: 02/07/25 11:59

Lab Sample ID:	890-
	Matri

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			102465	02/10/25 15:56	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.07 g	10 mL	102351	02/09/25 21:25	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	102365	02/10/25 15:56	AJ	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	102338	02/07/25 18:26	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	102370	02/10/25 19:57	СН	EET MID

Client Sample ID: HA-3 Date Collected: 02/06/25 09:50 Date Received: 02/07/25 11:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	102328	02/07/25 15:49	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	102361	02/10/25 14:48	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			102384	02/10/25 14:48	AJ	EET MID
Total/NA	Analysis	8015 NM		1			102465	02/10/25 16:16	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	102351	02/09/25 21:25	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	102365	02/10/25 16:16	AJ	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	102338	02/07/25 18:26	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	102370	02/10/25 20:07	СН	EET MID

Client Sample ID: HA-3

Date Collected: 02/06/25 09:55 Date Received: 02/07/25 11:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	102328	02/07/25 15:49	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	102361	02/10/25 16:11	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			102384	02/10/25 16:11	AJ	EET MID
Total/NA	Analysis	8015 NM		1			102465	02/10/25 16:36	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	102351	02/09/25 21:25	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	102365	02/10/25 16:36	AJ	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	102338	02/07/25 18:26	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	102370	02/10/25 20:16	CH	EET MID

Client Sample ID: HA-4 Date Collected: 02/06/25 10:00 Date Received: 02/07/25 11:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	102328	02/07/25 15:49	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	102361	02/10/25 16:32	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			102384	02/10/25 16:32	AJ	EET MID
Total/NA	Analysis	8015 NM		1			102465	02/10/25 16:56	AJ	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.05 g 1 uL	10 mL 1 uL	102351 102365	02/09/25 21:25 02/10/25 16:56		EET MID EET MID

Eurofins Carlsbad

SDG: Lea County, NM Sample ID: 890-7645-4

Lab Sample ID: 890-7645-5

Lab Sample ID: 890-7645-6

Lab Sample ID: 890-7645-7

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Job ID: 890-7645-1

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Client Sample ID: HA-4 Date Collected: 02/06/25 10:00 Date Received: 02/07/25 11:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.02 g	50 mL	102339	02/07/25 18:31	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	102373	02/10/25 19:45	СН	EET MID

Client Sample ID: HA-4 Date Collected: 02/06/25 10:05 Date Received: 02/07/25 11:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	102328	02/07/25 15:49	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	102361	02/10/25 16:52	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			102384	02/10/25 16:52	AJ	EET MID
Total/NA	Analysis	8015 NM		1			102465	02/10/25 17:18	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	102351	02/09/25 21:25	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	102365	02/10/25 17:18	AJ	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	102339	02/07/25 18:31	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	102373	02/10/25 20:03	СН	EET MID

Client Sample ID: HA-5 Date Collected: 02/06/25 10:10 Date Received: 02/07/25 11:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	102328	02/07/25 15:49	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	102361	02/10/25 17:13	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			102384	02/10/25 17:13	AJ	EET MID
Total/NA	Analysis	8015 NM		1			102465	02/10/25 17:58	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	102351	02/09/25 21:25	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	102365	02/10/25 17:58	AJ	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	102339	02/07/25 18:31	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	102373	02/10/25 20:09	CH	EET MID

Dil

1

1

1

1

1

Factor

Run

Initial

Amount

4.99 g

5 mL

10.04 q

1 uL

4.95 g

50 mL

Client Sample ID: HA-5 Date Collected: 02/06/25 10:15 Date Received: 02/07/25 11:59

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

5035

8021B

Total BTEX

8015NM Prep

8015 NM

8015B NM

DI Leach

300.0

Method

Lab Sample ID: 890-7645-10 Matrix: Solid

Final Batch Prepared Amount Number or Analyzed Analyst Lab 102328 02/07/25 15:49 5 mL MNR EET MID 02/10/25 17:33 MNR 5 mL 102361 EET MID

02/10/25 17:33 AJ

02/10/25 18:19 AJ

02/09/25 21:25 EL

02/10/25 18:19 AJ

02/07/25 18:31 SMC

02/10/25 20:15 CH

102384

102465

102351

102365

102339

102373

10 mL

1 uL

50 mL

50 mL

Eurofins	Carlsbad

Page 64 of 134

Job ID: 890-7645-1 SDG: Lea County, NM

Lab Sample ID: 890-7645-7 Matrix: Solid

Lab Sample ID: 890-7645-8

Lab Sample ID: 890-7645-9

Matrix: Solid

Matrix: Solid

9 10 11

EET MID

EET MID

EET MID

EET MID

EET MID

EET MID

Lab Chronicle

Initial

Amount

5.02 g

5 mL

10.03 g

1 uL

4.97 g

50 mL

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

50 mL

Batch

Number

102328

102361

102384

102465

102351

102365

102339

102373

Dil

1

1

1

1

1

Factor

Run

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

5035

8021B

Total BTEX

8015NM Prep

8015 NM

8015B NM

DI Leach

300.0

Method

Client Sample ID: HA-6 Date Collected: 02/06/25 10:20 Date Received: 02/07/25 11:59

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Job ID: 890-7645-1 SDG: Lea County, NM

Lab Sample ID: 890-7645-11

Analyst

MNR

Prepared

or Analyzed

02/07/25 15:49

02/10/25 17:54 MNR

02/10/25 17:54 AJ

02/10/25 18:39 AJ

02/09/25 21:25 EL

02/10/25 18:39 AJ

02/07/25 18:31 SMC

02/10/25 20:21 CH

Matrix: Solid

Lab

EET MID

Lab Sample ID: 890-7645-12 Matrix: Solid

Client Sample ID: HA-6 Date Collected: 02/06/25 10:25 Date Received: 02/07/25 11:59

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	102328	02/07/25 15:49	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	102361	02/10/25 18:14	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			102384	02/10/25 18:14	AJ	EET MID
Total/NA	Analysis	8015 NM		1			102465	02/10/25 19:00	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	102351	02/09/25 21:25	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	102365	02/10/25 19:00	AJ	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	102339	02/07/25 18:31	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	102373	02/10/25 20:40	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-7645-1 SDG: Lea County, NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	m	Identification Number	Expiration Date
exas	NELAP		T104704400	06-30-25
T () () ()				••• T L:- 1:•• ••• ••• ••• •• ••• ••
• •	•		ot certified by the governing authori	ty. This list may include analyte
• •	s are included in this report does not offer certification. Prep Method		ot certified by the governing authori Analyte	ty. This list may include analyte
for which the agency	does not offer certification.	· ·		ty. This list may include analyte

Eurofins Carlsbad

Page 66 of 134

Method Summary

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-7645-1 SDG: Lea County, NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-7645-1 SDG: Lea County, NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
390-7645-1	HA-1	Solid	02/06/25 09:30	02/07/25 11:59	0.5
390-7645-2	HA-1	Solid	02/06/25 09:35	02/07/25 11:59	1
390-7645-3	HA-2	Solid	02/06/25 09:40	02/07/25 11:59	0.5
390-7645-4	HA-2	Solid	02/06/25 09:45	02/07/25 11:59	1
390-7645-5	HA-3	Solid	02/06/25 09:50	02/07/25 11:59	0.5
390-7645-6	HA-3	Solid	02/06/25 09:55	02/07/25 11:59	1
390-7645-7	HA-4	Solid	02/06/25 10:00	02/07/25 11:59	0.5
390-7645-8	HA-4	Solid	02/06/25 10:05	02/07/25 11:59	1
390-7645-9	HA-5	Solid	02/06/25 10:10	02/07/25 11:59	0.5
390-7645-10	HA-5	Solid	02/06/25 10:15	02/07/25 11:59	1
390-7645-11	HA-6	Solid	02/06/25 10:20	02/07/25 11:59	0.5
390-7645-12	HA-6	Solid	02/06/25 10:25	02/07/25 11:59	1

Relinquished by: (Signature)		of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco. its affiliates and subcontractors.	Circle Method(s) and Metal(s) to be analyzed	Total 200.7/6010 200.8/6020:	HA-5	HA-4	HA-4	HA-3	HA-3	HA-2	HA-2	HA-1	HA-1	Sample Identification		Sample Custody Seals: Yes No	Cooler Custody Seals: Yes No	act:	SAMPLE RECEIPT Temp Blank:	PO/WO #: 21	Sampter's Name: Gilbe	Project Location: Lea C	97.	Project Name: Seawc	Phone: 832-541-7719	City, State ZIP: Carlsbad, NM, 88220	Address: 1910 Resource Ct.	Company Name: Earth Systems R&R	Project Manager: Gilbert Moreno	eurofins ×	
	5	for the cost of s .00 will be appli	luishment of sar	e analyzed	;020:	S 2	s 2	S 2	s 2	s 2	S 2	s 2	s 2	s 2	Matrix Sa	Cor	No CMA Ten	E		3lank: Ye	21480109	Gilbert Moreno	_ea County, NM	2778	Seawolf 12 CTB 1		88220	e Ct.	R&R		Environme Xenco	
	Received by: (Signature)	amples and shall no ed to each project ar	nples constitutes a v		8RCRA	2.6.25 10:10	2.6.25 10:05	2.6.25 10:00	2.6.25 9:55	2.6.25 9:50	2.6.25 9:45	2.6.25 9:40	2.6.25 9:35	2.6.25 9:30	Date Time Sampled Sampled	Corrected Temperature:	Temperature Reading:	Correction Factor:	Thermometer ID:	No) Wet Ice:		TAT star	Due Date:	Routine		E					Environment Testing Xenco	
	(Signature)	t assume any responsibil Id a charge of \$5 for each	ralid purchase order from		A 13PPM Texas 11	0.5	1	0.5	-	0.5	-	0.5	_	0.5	ed Depth (feet)		e 2. 2	-0-2	Tamu	e: Yes/ No	received by 4:30pm	TAT starts the day received by the lab,	te: 5 Day HR TAT	ne 🗌 Rush	Turn Around	Email: gmoreno@earthsys	City, State ZIP:	Address:	Company Name:	Bill to: (if different)	т ш 🦉 т	
4		lity for any losse h sample submit	n client company			Grab/ 1	Grab/ 1	Grab/ 1	Grab/ 1	Grab/ 1	Grab/ 1	Grab/ 1	Grab/ 1	Grab/ 1	Comp # of Cont			Ĺ	S	nete	L	he lab, if	TAT	Pres. Code		<u>thsys.net</u>				t)	Ch: Houston, TX (2 Iland, TX (432) L Paso, TX (91 lobbs, NM (575	
17 11	Date/Time	es or expenses incu ted to Eurofins Xen	y to Eurofins Xenco		Al Sb As Ba Be B Cd Ca Cr	XX	××	××	××	××	××	××	××	××	TPH -NM Chloride	_													WPX Energy	Jim Raley	Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 9 Iridland, TX (432) 704-5440, San Antonio, TX (210 EL Paso, TX (915) 585-3443, Lubbock, TX (806) Hobbs, NM (575) 392-7550, Carlsbad, NM (575)	
4 9	Relinquished by: (Signature)	ed by the client if such losses are du , but not analyzed. These terms will	is affiliates and subcontractors. It as			×	×	×	×	×	×	×	×	×	BTEX-NI Hold 24 Hr Ru	•									ANALYSIS REQUEST						Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	
	gnature) Received by: (Signature) Date/Time	due to circumstances beyond the control II be enforced unless previously negotiated.	It assigns standard terms and conditions	Hg: 1631 / 245.1 / 7470 / 7471	Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO, Na Sr TI Sn U V Zn								nAPP2500624157	Incident Number	Sample Comments	NaOH+Ascorbic Acid: SAPC	Zn Acetate+NaOH: Zn		NaHSO4: NABIS	H ₃ PO ₄ : HP	H ₂ S0 ₄ : H ₂ NaOH: Na		Cool: Cool MeOH: Me	None: NO DI Water: H ₂ O	REQUEST Preservative Codes	Deliverables: EDD ADaPT Other:			Program: UST/PST PRP Brownfields RRC Superfund	Work Order Comments	890-7645 Chain of Custody	

2/11/2025

5 6

Page 69 of 134

		Environi Xenco	Environment Testing Xenco	sting		fouston, lland, TX L Paso, 1 L Paso, N	1 X (281 (432) 7(1 X (915) 1 (575) 3	Housson, 1.X (281) 244-4200, Dailas, 1.X (214) 902-9300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs NM (575) 392-7550. Carlsbad, NM (575) 988-3199	San Antc San Antc 3, Lubboo	s, 1 ^ (2) nio, TX (*, TX (8)	210) 508 06) 794- 75) 988-3	+-3334 1296 }199		Work Order No:	د
					т	obbs, NN	л (575) з	Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	Carlsba	d, NM (5	75) 988-:	3199		www.xei	www.xenco.com Page 2 of 2
Project Manager: G	Gilbert Moreno				Bill to: (if different)	-	_	Jim Raley	¥ 					Work	Son
	Earth Systems R&R	&R			Company Name:		-	WPX Energy	lergy					Program: UST/PST 🗌 PRP	☐ PRP Brownfields ☐ RRC ☐ Superfund ☐
	1910 Resource Ct.	운			Address:								0	State of Project:	
e ZIP:	Carlsbad, NM, 88220	8220			City, State ZIP:								7	Reporting: Level II	Reporting: Level II CLevel III PST/UST TRRP Level IV
	832-541-7719			Email:	Email: gmoreno@earthsys.net	thsys.n	et							Deliverables: EDD	ADaPT Other:
Project Name:	Seawolf 12 CTB 1	12 CTB			Turn Around			-				ANALY	ANALYSIS REQUEST	EST	Preservative Codes
Project Number:	27	2778		 Routine 	🗌 Rush		Pres. Code	_	-				_		None: NO DI Water: H ₂ O
Project Location:	Lea County, NM	unty, N		Due Date:	5 Day HR TAT	-A1						_	_		Cool: Cool MeOH: Me
Sampler's Name:	Gilbert	Gilbert Moreno		TAT starts the	TAT starts the day received by the lab, if	ne lab, if									
PO/WO #:	2148	21480109		rece	received by 4:30pm		rs								H ₂ S0 ₄ : H ₂ NaOH: Na
SAMPLE RECEIPT	T Temp Blank:	ank:	Yes No	Wet Ice:	Yes No		nete				ī.	_			H ₃ PO ₄ : HP
Samples Received Intact:	Yes	No	Thermometer ID:	r ID:			aran	_	-						NaHSO4: NABIS
Cooler Custody Seals:	Yes No N/A		Correction Factor:	actor:			Pa					+			Na ₂ S ₂ O ₃ : NaSO ₃
Sample Custody Seals:	Yes No	NIA	Temperature Reading:	Reading:					++-						Zn Acetate I NaOH: Zn
Total Containers:			Corrected Temperature:	emperature:	1		1:	NM	-		sh				NaOH+Ascorbic Acid: SAPC
Sample Identification		Matrix	Date Sampled	Time Sampled	Depth (feet)	Grab/ Comp	# of Cont	TPH -NM Chloride	BTEX-NN	Hold	24 Hr Ru				Sample Comments
HA-5		S	2.6.25	10:15	1	Grab/	-	×							Incident Number
HA-6		s	2.6.25	10:20	0.5	Grab/	1	××	××						nAPP2500624157
HA-6		S	2.6.25	10:25	1	Grab/	-	×	××						
			\square					-	-						
		\square							\vdash	\vdash					
- love	X							_				_			
70								-							
								-	-						
Total 200.7 / 6010) 200.8 / 6020:	20:		8RCRA 13PPM	13PPM Texas 11		Sp /	Al Sb As Ba Be	ω	Cd Ca	Cr Co	Cu Fe	e Pb Mg N	Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO, Na Sr TI Sn U	510, Na Sr TI Sn U V Zn
Circle Method(c) and Metal(s) to be analyzed	Metal(s) to be	analyzi	đ											H	Hg: 1631/245.1/7470/7471
Notice: Signature of this document and reling of service. Eurofins Xenco will be liable only of Eurofins Xenco. A minimum charge of \$85	ument and relinquis will be liable only for um charge of \$85.00	uishment of for the cost .00 will be a	samples cons of samples and pplied to each j	titutes a valid p d shall not assu project and a c	nature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and si Eurofins Xenco will be hable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyze	client co ity for any sample s	mpany to y losses u ubmittec	o Eurofins or expense I to Eurofin	Xenco, it s incurre s Xenco,	s affiliate d by the but not a	s and sub client if su nalyzed.	contracto 	ors. It assigns s is are due to cin ms will be enfo	relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard, terms and conditions - entry for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control - of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated	L
	Signature)	6) Recei	Received by: (Signature)	gnature)			Date/Time	ne	R	elinquis	hed by	Relinquished by: (Signature)	P) Received by: (Signature)	r: (Signature) Date/Time
0				X			10		59	ı.ə					
3 T C D		9	1 AAAA	c						4					
3										σ					

Page 70 of 134

5

Received by OCD: 6/20/2025 11:05:16 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Gilbert Moreno Earth Systems Response and Restoration 4115 South County Road 1297 Odessa, Texas 79765 Generated 4/23/2025 10:08:53 AM

Page 71 of 134

JOB DESCRIPTION

Seawolf 12 CTB 1 Lea County, NM

JOB NUMBER

890-7984-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization		I
Bianna Teel , Project Manager Brianna Teel@et.eurofinsus.com (432)704-5440	Generated 4/23/2025 10:08:53 AM	1 1 1 1

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies
Laboratory Job ID: 890-7984-1 SDG: Lea County, NM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	17
Lab Chronicle	20
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	27

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Limit of Quantitation (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent Positive / Present

Presumptive Quality Control

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

Job ID: 890-7984-1 SDG: Lea County, NM

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		5
Qualifier	Qualifier Description	
*+	LCS and/or LCSD is outside acceptance limits, high biased.	
*1	LCS/LCSD RPD exceeds control limits.	
F1	MS and/or MSD recovery exceeds control limits.	
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	8
HPLC/IC		
Qualifier	Qualifier Description	9
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
ÿ	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	12
CNF	Contains No Free Liquid	13
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	

LOQ

MCL

MDA

MDC

MDL

ML

MPN

MQL

NC

ND

NEG

POS

PQL PRES

QC RER

RL

RPD

TEF

TEQ

TNTC

Case Narrative

Client: Earth Systems Response and Restoration Project: Seawolf 12 CTB 1

Job ID: 890-7984-1

Job ID: 890-7984-1

Eurofins Carlsbad

Job Narrative 890-7984-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 4/17/2025 2:17 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -2.2°C.

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: HA-1 (890-7984-1), HA-2 (890-7984-2), HA-7 (890-7984-3), HA-7 (890-7984-4), HA-7 (890-7984-5), HA-3 (890-7984-6) and HA-4 (890-7984-7).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: HA-1 (890-7984-1), HA-7 (890-7984-5), (CCV 880-108276/30), (CCV 880-108276/73), (LCS 880-108161/2-A), (LCSD 880-108161/3-A), (890-7984-A-1-D MS) and (890-7984-A-1-E MSD). Evidence of matrix interferences is not obvious.

Method 8015MOD NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-108161 and analytical batch 880-108276 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8015MOD NM: The laboratory control sample duplicate (LCSD) for preparation batch 880-108161 and analytical batch 880-108276 recovered outside control limits for the following analytes: Diesel Range Organics (Over C10-C28). Since only an acceptable LCS or LCSD is required per the method, the LCS shows recovery for the batch therefore the data has been qualified and reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

RL

0.00200

0.00200

0.00200

0.00400

0.00200

0.00400

Limits

70 - 130

70 - 130

RL

RL

0.00400

MDL

MDL Unit

MDL Unit

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

D

D

Prepared

04/21/25 09:35

04/21/25 09:35

04/21/25 09:35

04/21/25 09:35

04/21/25 09:35

04/21/25 09:35

Prepared

04/21/25 09:35

04/21/25 09:35

Prepared

Prepared

Method: SW846 8021B - Volatile Organic Compounds (GC)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Result Qualifier

Qualifier

<0.00200 U

<0.00200 U

<0.00200 U

<0.00400 U

<0.00200 U

<0.00400 U

106

101

<0.00400 U

Result Qualifier

Result Qualifier

%Recovery

Page 76 of 134

Job ID: 890-7984-1 SDG: Lea County, NM

Client Sample ID: HA-1

Date Collected: 04/17/25 11:00 Date Received: 04/17/25 14:17

Sample Depth: 2

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Analyte

Analyte

Total BTEX

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Lab Sample ID: 890-7984-1 Matrix: Solid

Analyzed

04/21/25 22:40

04/21/25 22:40

04/21/25 22:40

04/21/25 22:40

04/21/25 22.40

04/21/25 22:40

Analyzed

04/21/25 22:40

04/21/25 22:40

Analyzed

04/21/25 22:40

Analyzed

Dil Fac

Total TPH	<50.0	U	50.0		mg/Kg			04/22/25 20:54	1
	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		04/20/25 19:33	04/22/25 20:54	1
Diesel Range Organics (Over C10-C28)	<50.0	U *+ *1 F1	50.0		mg/Kg		04/20/25 19:33	04/22/25 20:54	1
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		04/20/25 19:33	04/22/25 20:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	61	S1-	70 - 130				04/20/25 19:33	04/22/25 20:54	1
o-Terphenyl	63	S1-	70 - 130				04/20/25 19:33	04/22/25 20:54	1
_ Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	192		10.1		mg/Kg			04/21/25 12:11	1
Client Sample ID: HA-2							Lab Sar	nple ID: 890-	7984-2
Date Collected: 04/17/25 11:05									x: Solid

Date Received: 04/17/25 14:17

Sample Depth: 2

Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		04/21/25 09:35	04/21/25 23:00	1
Toluene	<0.00199	U	0.00199		mg/Kg		04/21/25 09:35	04/21/25 23:00	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		04/21/25 09:35	04/21/25 23:00	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		04/21/25 09:35	04/21/25 23:00	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		04/21/25 09:35	04/21/25 23:00	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		04/21/25 09:35	04/21/25 23:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				04/21/25 09:35	04/21/25 23:00	1

Eurofins Carlsbad

Released to Imaging: 6/23/2025 3:33:55 PM

Job ID: 890-7984-1 SDG: Lea County, NM

Lab Sample ID: 890-7984-2

Lab Sample ID: 890-7984-3

Matrix: Solid

Client Sample ID: HA-2 Date Collected: 04/17/25 11:05

Project/Site: Seawolf 12 CTB 1

Date Received: 04/17/25 14:17

Sample Depth: 2

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	101		70 - 130				04/21/25 09:35	04/21/25 23:00	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			04/21/25 23:00	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
	Posult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	quannor				-			
Total TPH Method: SW846 8015B NM - Dies	<49.9 sel Range Orga	nics (DRO)	49.9 (GC)		mg/Kg		<u>.</u>	04/22/25 21:56	
-								04/22/25 21:56	1
Analyte ^{Total TPH} Method: SW846 8015B NM - Die: Analyte	<49.9 sel Range Orga Result	U nics (DRO) Qualifier	49.9 (GC) RL	MDL	mg/Kg	 D	Prepared	Analyzed	1 Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	<49.9 sel Range Orga Result	nics (DRO)	49.9 (GC)		mg/Kg	 	<u>.</u>		1 Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	sel Range Orga Result <49.9	U nics (DRO) Qualifier U	49.9 (GC) RL 49.9		mg/Kg	<u>D</u>	Prepared 04/20/25 19:33	Analyzed 04/22/25 21:56	1 Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	sel Range Orga Result <49.9	U nics (DRO) Qualifier	49.9 (GC) RL		mg/Kg Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga Result <49.9	U nics (DRO) Qualifier U U *+ *1	(GC) (BC) (49.9		mg/Kg	<u>D</u>	Prepared 04/20/25 19:33	Analyzed 04/22/25 21:56	1 1 1 1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	sel Range Orga Result <49.9 <49.9 <49.9 <49.9 <49.9	U nics (DRO) Qualifier U U *+ *1 U	49.9 (GC) <u>RL</u> 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg	D	Prepared 04/20/25 19:33 04/20/25 19:33 04/20/25 19:33	Analyzed 04/22/25 21:56 04/22/25 21:56 04/22/25 21:56	1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	<49.9 sel Range Orga Result <49.9 <49.9 <49.9 <49.9 %Recovery	U nics (DRO) Qualifier U U *+ *1 U	49.9 (GC) <u>RL</u> 49.9 49.9 49.9 <u>Limits</u>		mg/Kg Unit mg/Kg mg/Kg	D	Prepared 04/20/25 19:33 04/20/25 19:33 04/20/25 19:33 Prepared	Analyzed 04/22/25 21:56 04/22/25 21:56 04/22/25 21:56 Analyzed	1 Dil Fac 1 1 1 Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	sel Range Orga Result <49.9 <49.9 <49.9 <49.9 <49.9	U nics (DRO) Qualifier U U *+ *1 U	49.9 (GC) <u>RL</u> 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg	D	Prepared 04/20/25 19:33 04/20/25 19:33 04/20/25 19:33	Analyzed 04/22/25 21:56 04/22/25 21:56 04/22/25 21:56	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	176		10.0		mg/Kg			04/21/25 12:33	1

Client Sample ID: HA-7

Date Collected: 04/17/25 11:10 Date Received: 04/17/25 14:17 Sample Depth: 0.5

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00202 U 0.00202 mg/Kg 04/21/25 09:35 04/21/25 23:21 Toluene <0.00202 U 0.00202 04/21/25 09:35 04/21/25 23:21 mg/Kg 1 Ethylbenzene <0.00202 U 0.00202 mg/Kg 04/21/25 09:35 04/21/25 23:21 <0.00404 U 0.00404 m-Xylene & p-Xylene mg/Kg 04/21/25 09:35 04/21/25 23:21 1 o-Xylene <0.00202 U 0.00202 mg/Kg 04/21/25 09:35 04/21/25 23:21 1 Xylenes, Total <0.00404 U 0.00404 mg/Kg 04/21/25 09:35 04/21/25 23:21 1 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analvzed 105 70 - 130 04/21/25 09:35 4-Bromofluorobenzene (Surr) 04/21/25 23:21 1 1,4-Difluorobenzene (Surr) 97 70 - 130 04/21/25 09:35 04/21/25 23:21 1 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte **Result Qualifier** RL MDL Unit D Dil Fac Prepared Analyzed Total BTEX < 0.00404 Ū 0.00404 04/21/25 23:21 mg/Kg 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total TPH <49.8 U 49.8 mg/Kg 04/22/25 22:16 1

Eurofins Carlsbad

Matrix: Solid

5

Job ID: 890-7984-1 SDG: Lea County, NM

Lab Sample ID: 890-7984-3

Client Sample ID: HA-7

Project/Site: Seawolf 12 CTB 1

Date Collected: 04/17/25 11:10 Date Received: 04/17/25 14:17

Sample Depth: 0.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		04/20/25 19:33	04/22/25 22:16	1
Diesel Range Organics (Over C10-C28)	<49.8	U *+ *1	49.8		mg/Kg		04/20/25 19:33	04/22/25 22:16	1
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		04/20/25 19:33	04/22/25 22:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	75		70 - 130				04/20/25 19:33	04/22/25 22:16	1
o-Terphenyl	78		70 - 130				04/20/25 19:33	04/22/25 22:16	1

Method: EPA 300.0 - Anions, Ion C	hromatography - Soluble						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	103	10.0	mg/Kg			04/21/25 12:40	1

Client Sample ID: HA-7

Date Collected: 04/17/25 11:15 Date Received: 04/17/25 14:17

	_		
Sample) De	pth:	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		04/21/25 09:35	04/21/25 23:42	1
Toluene	<0.00201	U	0.00201		mg/Kg		04/21/25 09:35	04/21/25 23:42	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		04/21/25 09:35	04/21/25 23:42	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		04/21/25 09:35	04/21/25 23:42	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		04/21/25 09:35	04/21/25 23:42	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		04/21/25 09:35	04/21/25 23:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130				04/21/25 09:35	04/21/25 23:42	1
1,4-Difluorobenzene (Surr)	98		70 - 130				04/21/25 09:35	04/21/25 23:42	1
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte	- Total BTEX Cald	culation Qualifier	70 ₋ 130 RL	MDL	Unit	D	04/21/25 09:35 Prepared	04/21/25 23:42 Analyzed	ז Dil Fac
Method: TAL SOP Total BTEX	- Total BTEX Cald	Qualifier		MDL	Unit mg/Kg	<u>D</u>			1 Dil Fac
Method: TAL SOP Total BTEX Analyte	- Total BTEX Calc Result <0.00402	Qualifier U	RL	MDL		<u>D</u>		Analyzed	1 Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX	- Total BTEX Calo Result <0.00402 sel Range Organ	Qualifier U	RL			<u>D</u>		Analyzed	1
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die	- Total BTEX Calo Result <0.00402 sel Range Organ	Qualifier U ics (DRO) (Qualifier	RL 0.00402		mg/Kg		Prepared	Analyzed 04/21/25 23:42	1
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	- Total BTEX Calc Result <0.00402 sel Range Organ Result <50.0	Qualifier U ics (DRO) (Qualifier U	RL 0.00402 GC) RL 50.0		mg/Kg Unit		Prepared	Analyzed 04/21/25 23:42 Analyzed	1 Dil Fac 1 Dil Fac 1
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH	- Total BTEX Calo Result <0.00402 sel Range Organ Result <50.0	Qualifier U ics (DRO) (Qualifier U	RL 0.00402 GC) RL 50.0	MDL	mg/Kg Unit		Prepared	Analyzed 04/21/25 23:42 Analyzed	1

Į	o-Terphenyl	78		70 - 130		04/20/25 19:33	04/22/25 22:37	1
	1-Chlorooctane	75		70 - 130		04/20/25 19:33	04/22/25 22:37	1
	Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
	Oil Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg	04/20/25 19:33	04/22/25 22:37	1
	Diesel Range Organics (Over C10-C28)	<50.0	U *+ *1	50.0	mg/Kg	04/20/25 19:33	04/22/25 22:37	1

Client Sample Results

Job ID: 890-7984-1 SDG: Lea County, NM

Client Sample ID: HA-7							Lab San	nple ID: 890-	7984-4
- Date Collected: 04/17/25 11:15									x: Solid
Date Received: 04/17/25 14:17									
Sample Depth: 1									
Method: EPA 300.0 - Anions, Ion	Chromatograr	ohy - Solubi	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	100		9.94		mg/Kg			04/21/25 12:48	1
Client Sample ID: HA-7							Lab San	nple ID: 890-	7984-5
ate Collected: 04/17/25 11:20								-	x: Solic
Date Received: 04/17/25 14:17									
ample Depth: 2									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg	_	04/21/25 09:35	04/22/25 00:02	
Toluene	<0.00198	U	0.00198		mg/Kg		04/21/25 09:35	04/22/25 00:02	
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		04/21/25 09:35	04/22/25 00:02	
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		04/21/25 09:35	04/22/25 00:02	
o-Xylene	<0.00198	U	0.00198		mg/Kg		04/21/25 09:35	04/22/25 00:02	
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		04/21/25 09:35	04/22/25 00:02	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	103		70 - 130				04/21/25 09:35	04/22/25 00:02	
1,4-Difluorobenzene (Surr)	103		70 - 130				04/21/25 09:35	04/22/25 00:02	1
- Method: TAL SOP Total BTEX - To	otal BTEX Cal	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			04/22/25 00:02	1
Method: SW846 8015 NM - Diese	I Range Organ	ICS (DRO) (GC)						
		Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fa
Method: SW846 8015 NM - Diese Analyte Total TPH		Qualifier	GC) <u>RL</u> 49.7	MDL	Unit mg/Kg	D	Prepared	Analyzed 04/22/25 22:57	Dil Fac
Analyte Total TPH	Result <49.7	Qualifier U	RL 49.7	MDL		<u>D</u>	Prepared		Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies	Result <49.7	Qualifier	(GC)		mg/Kg			04/22/25 22:57	
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte	Result <49.7 sel Range Orga Result	Qualifier U nics (DRO) Qualifier	(GC)	MDL	mg/Kg Unit	<u>D</u>	Prepared	04/22/25 22:57 Analyzed	
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	Result <49.7	Qualifier U nics (DRO) Qualifier	(GC)		mg/Kg			04/22/25 22:57	
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.7 sel Range Orga Result <49.7	Qualifier U nics (DRO) Qualifier	(GC)		mg/Kg Unit		Prepared	04/22/25 22:57 Analyzed	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.7 sel Range Orga Result <49.7	Qualifier U nics (DRO) Qualifier U U *+ *1	(GC) (BC) (49.7 (49.7)		mg/Kg		Prepared 04/20/25 19:33	04/22/25 22:57 Analyzed 04/22/25 22:57	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	Result <49.7	Qualifier U nics (DRO) Qualifier U U *+ *1 U	RL 49.7 (GC) RL 49.7 49.7 49.7 49.7		mg/Kg Unit mg/Kg mg/Kg		Prepared 04/20/25 19:33 04/20/25 19:33 04/20/25 19:33	04/22/25 22:57 Analyzed 04/22/25 22:57 04/22/25 22:57 04/22/25 22:57	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	Result <49.7	Qualifier U nics (DRO) Qualifier U U *+ *1 U Qualifier	RL 49.7 (GC) RL 49.7 49.7 49.7 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 04/20/25 19:33 04/20/25 19:33 04/20/25 19:33 Prepared	04/22/25 22:57 Analyzed 04/22/25 22:57 04/22/25 22:57 04/22/25 22:57 04/22/25 22:57 Analyzed	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	Result <49.7	Qualifier U nics (DRO) Qualifier U U *+ *1 U	RL 49.7 (GC) RL 49.7 49.7 49.7 49.7		mg/Kg Unit mg/Kg mg/Kg		Prepared 04/20/25 19:33 04/20/25 19:33 04/20/25 19:33	04/22/25 22:57 Analyzed 04/22/25 22:57 04/22/25 22:57 04/22/25 22:57	Dil Fa Dil Fa
Analyte Total TPH Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.7	Qualifier U Qualifier U U *+ *1 U Qualifier S1- S1-	RL 49.7 (GC) RL 49.7 49.7 49.7 49.7 0.7 1.00 70 - 130 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 04/20/25 19:33 04/20/25 19:33 04/20/25 19:33 Prepared 04/20/25 19:33	O4/22/25 22:57 Analyzed 04/22/25 22:57 04/22/25 22:57 04/22/25 22:57 04/22/25 22:57 04/22/25 22:57	Dil Fa
Analyte Total TPH Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.7 sel Range Orga Result <49.7 <49.7 <49.7 <49.7 <i>%Recovery</i> 66 69 Chromatograp	Qualifier U Qualifier U U *+ *1 U Qualifier S1- S1-	RL 49.7 (GC) RL 49.7 49.7 49.7 49.7 0.7 1.00 70 - 130 70 - 130		mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 04/20/25 19:33 04/20/25 19:33 04/20/25 19:33 Prepared 04/20/25 19:33	O4/22/25 22:57 Analyzed 04/22/25 22:57 04/22/25 22:57 04/22/25 22:57 04/22/25 22:57 04/22/25 22:57	Dil Fac

RL

0.00200

0.00200

0.00200

0.00399

0.00200

0.00399

Limits

70 - 130 70 - 130

RL

RL

50.0

0.00399

MDL

MDL Unit

MDL Unit

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

D

D

Prepared

04/21/25 09:35

04/21/25 09:35

04/21/25 09:35

04/21/25 09:35

04/21/25 09:35

04/21/25 09:35

Prepared

04/21/25 09:35

04/21/25 09:35

Prepared

Prepared

Job ID: 890-7984-1 SDG: Lea County, NM

Client Sample ID: HA-3

Result Qualifier

Qualifier

<0.00200 U

<0.00200 U

<0.00200 U

<0.00399 U

<0.00200 U

<0.00399 U

113

102

Result Qualifier

U

Result Qualifier

<50.0 U

%Recovery

< 0.00399

Method: SW846 8021B - Volatile Organic Compounds (GC)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Date Collected: 04/17/25 11:25 Date Received: 04/17/25 14:17

Sample Depth: 2

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Analyte

Analyte

Total TPH

Total BTEX

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Lab Sample ID: 890-7984-6 Matrix: Solid

Analyzed

04/22/25 00:22

04/22/25 00:22

04/22/25 00:22

04/22/25 00:22

04/22/25 00:22

04/22/25 00:22

Analyzed

04/22/25 00:22

04/22/25 00:22

Analyzed

04/22/25 00:22

Analyzed

04/22/25 23:18

Lab Sample ID: 890-7984-7

Matrix: Solid

5 Dil Fac 1

1	
1 1	8
Dil Fac	9
1 1	
Dil Fac	
1	
Dil Fac	

1	
ac 1	
ac	
1	

Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		04/20/25 19:33	04/22/25 23:18	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U *+ *1	50.0		mg/Kg		04/20/25 19:33	04/22/25 23:18	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		04/20/25 19:33	04/22/25 23:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate 1-Chlorooctane	%Recovery 73	Qualifier	Limits 70 - 130				Prepared 04/20/25 19:33	Analyzed 04/22/25 23:18	Dil Fac
T		Qualifier							Dil Fac 1 1
1-Chlorooctane	73	Qualifier	70 - 130				04/20/25 19:33	04/22/25 23:18	Dil Fac 1 1
1-Chlorooctane	73 74		70 - 130 70 - 130				04/20/25 19:33	04/22/25 23:18	Dil Fac 1 1
1-Chlorooctane o-Terphenyl	73 74 Chromatograp		70 - 130 70 - 130	MDL	Unit	D	04/20/25 19:33	04/22/25 23:18	Dil Fac

Client Sample ID: HA-4 Date Collected: 04/17/25 11:30 Date Received: 04/17/25 14:17

Sample Depth: 2

Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		04/21/25 09:35	04/22/25 00:43	1
Toluene	<0.00199	U	0.00199		mg/Kg		04/21/25 09:35	04/22/25 00:43	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		04/21/25 09:35	04/22/25 00:43	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		04/21/25 09:35	04/22/25 00:43	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		04/21/25 09:35	04/22/25 00:43	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		04/21/25 09:35	04/22/25 00:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				04/21/25 09:35	04/22/25 00:43	1

Eurofins Carlsbad

Released to Imaging: 6/23/2025 3:33:55 PM

Matrix: Solid

5

Client Sample Results

Job ID: 890-7984-1 SDG: Lea County, NM

Lab Sample ID: 890-7984-7

Client Sample ID: HA-4

Project/Site: Seawolf 12 CTB 1

Date Collected: 04/17/25 11:30 Date Received: 04/17/25 14:17

Sample Depth: 2

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	98		70 - 130				04/21/25 09:35	04/22/25 00:43	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			04/22/25 00:43	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			04/22/25 23:38	1
Method: SW846 8015B NM - Dies	ol Pango Orga		(60)						
Analyte		Qualifier	(GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7		49.7		mg/Kg		04/20/25 19:33	04/22/25 23:38	
(GRO)-C6-C10					5 5				
Diesel Range Organics (Over	<49.7	U *+ *1	49.7		mg/Kg		04/20/25 19:33	04/22/25 23:38	
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		04/20/25 19:33	04/22/25 23:38	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	79		70 - 130				04/20/25 19:33	04/22/25 23:38	1
o-Terphenyl	80		70 - 130				04/20/25 19:33	04/22/25 23:38	1
Method: EPA 300.0 - Anions, Ion	Chromatogran	hy - Solubl	۵						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	64.1		9.96		mg/Kg			04/21/25 13:10	

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-7984-1	HA-1	106	101	
890-7984-1 MS	HA-1	103	100	
890-7984-1 MSD	HA-1	105	101	
890-7984-2	HA-2	99	101	
890-7984-3	HA-7	105	97	
890-7984-4	HA-7	103	98	
890-7984-5	HA-7	103	103	
890-7984-6	HA-3	113	102	
890-7984-7	HA-4	100	98	
LCS 880-108198/1-A	Lab Control Sample	97	100	
LCSD 880-108198/2-A	Lab Control Sample Dup	99	99	
MB 880-108140/5-A	Method Blank	98	93	
MB 880-108198/5-A	Method Blank	102	94	
Surrogate Legend				
BFB = 4-Bromofluorober	nzene (Surr)			
DFBZ = 1,4-Difluorobenz	zene (Surr)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-7984-1	HA-1	61 S1-	63 S1-
890-7984-1 MS	HA-1	69 S1-	65 S1-
890-7984-1 MSD	HA-1	73	68 S1-
890-7984-2	HA-2	72	74
890-7984-3	HA-7	75	78
890-7984-4	HA-7	75	78
890-7984-5	HA-7	66 S1-	69 S1-
890-7984-6	HA-3	73	74
890-7984-7	HA-4	79	80
LCS 880-108161/2-A	Lab Control Sample	18 S1-	14 S1-
LCSD 880-108161/3-A	Lab Control Sample Dup	25 S1-	19 S1-
MB 880-108161/1-A	Method Blank	79	80

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 82 of 134

Job ID: 890-7984-1 SDG: Lea County, NM

Prep Type: Total/NA

Prep Type: Total/NA

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-1081	140/5-A								Client	Sample ID: Meth	od Blank
Matrix: Solid										Prep Type:	Total/NA
Analysis Batch: 108167										Prep Batch	า: 108140
	MB	MB									
Analyte		Qualifier	RL	·	MDL	Unit	D		Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200)		mg/Kg		0	4/18/25 16:1	9 04/21/25 11:42	1
Toluene	<0.00200	U	0.00200)		mg/Kg		0	4/18/25 16:1	9 04/21/25 11:42	1
Ethylbenzene	<0.00200	U	0.00200)		mg/Kg		0	4/18/25 16:1	9 04/21/25 11:42	1
m-Xylene & p-Xylene	<0.00400	U	0.00400)		mg/Kg		0	4/18/25 16:1	9 04/21/25 11:42	1
o-Xylene	<0.00200	U	0.00200)		mg/Kg		0	4/18/25 16:1	9 04/21/25 11:42	1
Xylenes, Total	<0.00400	U	0.00400)		mg/Kg		0	4/18/25 16:1	9 04/21/25 11:42	1
	МВ	МВ									
Surrogate	%Recovery		Limits						Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130	-				0	4/18/25 16:1		1
1,4-Difluorobenzene (Surr)	93		70 - 130						4/18/25 16:1		1
-											
Lab Sample ID: MB 880-1081	198/5-A								Client	Sample ID: Meth	
Matrix: Solid										Prep Type:	
Analysis Batch: 108167										Prep Batch	າ: 108198
	MB	MB									
Analyte	Result	-	RL	•	MDL	Unit	D		Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200)		mg/Kg		0	4/21/25 09:3	5 04/21/25 22:18	1
Toluene	<0.00200	U	0.00200)		mg/Kg		0	4/21/25 09:3	5 04/21/25 22:18	1
Ethylbenzene	<0.00200	U	0.00200)		mg/Kg		0	4/21/25 09:3	5 04/21/25 22:18	1
m-Xylene & p-Xylene	<0.00399	U	0.00399)		mg/Kg		0	4/21/25 09:3	5 04/21/25 22:18	1
o-Xylene	<0.00200	U	0.00200)		mg/Kg		0	4/21/25 09:3	5 04/21/25 22:18	1
Xylenes, Total	<0.00399	U	0.00399)		mg/Kg		0	4/21/25 09:3	5 04/21/25 22:18	1
	MB	МВ									
Surrogate	%Recovery		Limits						Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130	-				0	4/21/25 09:3		1
1,4-Difluorobenzene (Surr)	94		70 - 130					0	4/21/25 09:3	85 04/21/25 22:18	1
											
Lab Sample ID: LCS 880-108	5198/1-A							Cile	ent Sampi	e ID: Lab Contro	
Matrix: Solid										Prep Type:	
Analysis Batch: 108167										Prep Batch	1: 108198
			Spike		LCS					%Rec	
Analyte			Added	Result	Qua		nit		D %Rec	Limits	
Benzene			0.100	0.09254			g/Kg		93	70 - 130	
Toluene			0.100	0.08198		m	g/Kg		82	70 - 130	
Ethylbenzene			0.100	0.08655		m	g/Kg		87	70 - 130	
m-Xylene & p-Xylene			0.200	0.1744		m	g/Kg		87	70 - 130	
o-Xylene			0.100	0.09113		m	g/Kg		91	70 - 130	
	LCS LCS	;									
Surrogate	%Recovery Qua	lifier	Limits								
4-Bromofluorobenzene (Surr)	97		70 - 130								
1,4-Difluorobenzene (Surr)	100		70 - 130								
 Lab Sample ID: LCSD 880-10	19409/2-1						Clier	+ 0	ample ID:	Lab Control Sar	
	JU 1 30/2-M						Ciler	11 31	ampie ID:		
Matrix: Solid										Prep Type:	
Analysis Batch: 108167			o "			_				Prep Batch	
• • •			Spike	LCSD					n	%Rec	RPD
Analyte			Added	Result	Qua	lifter U	nit		D %Rec	Limits RF	PD Limit

Released to Imaging: 6/23/2025 3:33:55 PM

Benzene

0.09238

mg/Kg

92

70 - 130

0.100

0

Eurofins Carlsbad

35

Job ID: 890-7984-1 SDG: Lea County, NM

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1 Job ID: 890-7984-1 SDG: Lea County, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-108	198/2-A					Clier	nt Sam	iple ID:	Lab Contro		
Matrix: Solid										Type: To	
Analysis Batch: 108167			Califo	1.000	1.000					Batch: 1	
Analyte			Spike Added		LCSD Qualifier	Unit	D	%Rec	%Rec Limits	RPD	RPI Limi
Toluene			0.100	0.08327	Quaimer	mg/Kg		83	70 - 130	2	3
Ethylbenzene			0.100	0.08822		mg/Kg		88	70 - 130 70 - 130	2	3
n-Xylene & p-Xylene			0.100	0.08822		mg/Kg		90	70 - 130	3	3
p-Xylene			0.200	0.09354		mg/Kg		90 94	70 - 130 70 - 130	3	3
			0.100	0.00001		mg/rtg		01	101100	Ũ	0
		LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	99		70 - 130								
1,4-Difluorobenzene (Surr)	99		70 - 130								
Lab Sample ID: 890-7984-1 MS	5								Client Sa	mple ID:	: HA-
Matrix: Solid										Type: To	
Analysis Batch: 108167									Prep I	Batch: 1	0819
-	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	< 0.00200	U	0.100	0.08775		mg/Kg		88	70 - 130		
Toluene	<0.00200	U	0.100	0.07913		mg/Kg		79	70 - 130		
Ethylbenzene	<0.00200	U	0.100	0.08328		mg/Kg		83	70 - 130		
m-Xylene & p-Xylene	<0.00400	U	0.200	0.1683		mg/Kg		84	70 - 130		
o-Xylene	<0.00200	U	0.100	0.08670		mg/Kg		87	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	103		70 - 130								
1,4-Difluorobenzene (Surr)	100		70 - 130								
Lab Sample ID: 890-7984-1 MS	n.								Client Sa	mnle ID [.]	• на
Matrix: Solid	-									ype: To	
Analysis Batch: 108167										Batch: 1	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPI
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Benzene	<0.00200		0.100	0.08724		mg/Kg		87	70 - 130	1	3
Toluene	<0.00200	U	0.100	0.07794		mg/Kg		78	70 - 130	2	3
Ethylbenzene	<0.00200	U	0.100	0.08196		mg/Kg		82	70 - 130	2	3
m-Xylene & p-Xylene	<0.00400	U	0.200	0.1657		mg/Kg		83	70 - 130	2	3
p-Xylene	<0.00200	U	0.100	0.08571		mg/Kg		86	70 - 130	1	3
Surrogate	MSD %Recovery	MSD Qualifier	Limits								
4-Bromofluorobenzene (Surr)		quanner	70 - 130								
			70 - 130 70 - 130								
1,4-Difluorobenzene (Surr)	101										

Matrix: Solid Prep Type: Total/NA Prep Batch: 108161 Analysis Batch: 108276 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Gasoline Range Organics <50.0 U 50.0 mg/Kg 04/20/25 19:33 04/22/25 19:52 1 (GRO)-C6-C10

Page 84 of 134

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-10816	1/ 1 -A										Chefit Sa	ample ID:		
Matrix: Solid														otal/N/
Analysis Batch: 108276												Prep	Batch:	108161
Analyte	Re	MB	MB Qualifier	RL		мпі	Unit		D	Р	repared	Analy	zed	Dil Fa
Diesel Range Organics (Over		50.0					mg/K		-		20/25 19:33	04/22/25		
C10-C28)		00.0	0	00.0				9		0.72		0 1/22/20	10.02	
Dil Range Organics (Over C28-C36)	<	50.0	U	50.0			mg/K	9		04/2	20/25 19:33	04/22/25	19:52	
		ΜВ	МВ											
Surrogate	%Reco	very	Qualifier	Limits						P	repared	Analy	zed	Dil Fa
1-Chlorooctane		79		70 - 130						04/2	20/25 19:33	04/22/25	19:52	
p-Terphenyl		80		70 - 130						04/2	20/25 19:33	04/22/25	19:52	
Lab Sample ID: LCS 880-10810	61/2-A								С	lient	Sample	ID: Lab C	ontrol	Sample
Matrix: Solid											. oumpro		Type: 1	
Analysis Batch: 108276													Batch:	
				Spike	LCS	LCS	i					%Rec		
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Gasoline Range Organics				1000	1053			mg/Kg		_	105	70 - 130		
(GRO)-C6-C10														
Diesel Range Organics (Over C10-C28)				1000	1070			mg/Kg			107	70 - 130		
	LCS	LCS												
Surrogate				Limits										
1-Chlorooctane		S1-		70 - 130										
o-Terphenyl	14	S1-		70 - 130										
Matrix: Solid Analysis Batch: 108276				Spike	LCSD	LCS	D						Type: T Batch:	
Analyte				Added	Result			Unit		D	%Rec	Limits	RPD	
Gasoline Range Organics				1000	1291			mg/Kg		_	129	70 - 130	20	
(GRO)-C6-C10														
Diesel Range Organics (Over C10-C28)				1000	1448	*+ *1	1	mg/Kg			145	70 - 130	30	2
	LCSD	109	D											
Surrogate	%Recovery			Limits										
1-Chlorooctane		S1-		70 - 130										
o-Terphenyl	19	S1-		70 - 130										
Lab Sample ID: 890-7984-1 MS												Client Sa	imple I	D: HA-
Matrix: Solid													Type: 1	
Analysis Batch: 108276													Batch:	
	Sample	Sam	ple	Spike	MS	MS						%Rec		
Analyte	Result		-	Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Gasoline Range Organics	<50.0	U		999	984.9			mg/Kg		_	99	70 - 130		·
(GRO)-C6-C10														
Diesel Range Organics (Over C10-C28)	<50.0	U *+	*1 F1	999	615.8	F1		mg/Kg			62	70 - 130		
,	MS	MS												
Surrogate	%Recovery		lifier	Limits										
1-Chlorooctane		S1-		70 - 130										

o-Terphenyl

70 - 130

65 S1-

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1 Job ID: 890-7984-1 SDG: Lea County, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-7984-1 MSI	D									mple ID:	
Matrix: Solid	_									Type: To	
Analysis Batch: 108276										Batch: 1	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	999	871.5		mg/Kg		87	70 - 130	12	20
Diesel Range Organics (Over C10-C28)	<50.0	U *+ *1 F1	999	660.0	F1	mg/Kg		66	70 - 130	7	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	73		70 - 130	-							
o-Terphenyl	68	S1-	70 - 130								
Lab Sample ID: MB 880-108136	5/1-A							Client S	Sample ID:	Method	Blank
Lab Sample ID: MB 880-108136 Matrix: Solid Analysis Batch: 108141		МВ МВ								Type: S	oluble
Matrix: Solid Analysis Batch: 108141 ^{Analyte}	R	esult Qualifier		RL	MDL Unit		<u>D</u>	Client S	Prep Analyz	Type: S	oluble
Matrix: Solid Analysis Batch: 108141 Analyte Chloride Lab Sample ID: LCS 880-10813 Matrix: Solid	R			RL 10.0	MDL Unit mg/K	g		Prepared	Prep 	Type: S	Dil Fac
Matrix: Solid Analysis Batch: 108141 Analyte Chloride Lab Sample ID: LCS 880-10813	R	esult Qualifier		10.0	mg/K	<u>g</u>		Prepared	Prep Analyz 04/21/25 e ID: Lab Co Prep	Type: S red 09:33 – ontrol S	Dil Fac
Matrix: Solid Analysis Batch: 108141 Analyte Chloride Lab Sample ID: LCS 880-10813 Matrix: Solid Analysis Batch: 108141	R	esult Qualifier	Spike	10.0 LCS	LCS	-	Clien	Prepared	Prep Analyz 04/21/25 e ID: Lab Co Prep %Rec	Type: S red 09:33 – ontrol S	Dil Fac
Matrix: Solid Analysis Batch: 108141 Analyte Chloride Lab Sample ID: LCS 880-10813 Matrix: Solid	R	esult Qualifier	Spike Added 250	10.0 LCS	mg/K	g Unit mg/Kg		Prepared	Prep Analyz 04/21/25 e ID: Lab Co Prep	Type: S red 09:33 – ontrol S	Dil Fac
Matrix: Solid Analysis Batch: 108141 Analyte Chloride Lab Sample ID: LCS 880-108134 Matrix: Solid Analysis Batch: 108141 Analyte Chloride Lab Sample ID: LCSD 880-1081 Matrix: Solid	Ri 6/2-A	esult Qualifier	Added	10.0 LCS Result	LCS	Unit mg/Kg	Clien	Prepared at Sample <u>%Rec</u> 108	Prep Analyz 04/21/25 e ID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro	Type: S and 09:33	Dil Fac
Matrix: Solid Analysis Batch: 108141 Analyte Chloride Lab Sample ID: LCS 880-108134 Matrix: Solid Analysis Batch: 108141 Analyte Chloride Lab Sample ID: LCSD 880-1081	Ri 6/2-A	esult Qualifier	Added 250	10.0 LCS Result 269.5	LCS	Unit mg/Kg	Clien	Prepared at Sample <u>%Rec</u> 108	Prep Analyz 04/21/25 e ID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro	Type: S 2ed 09:33 - ontrol S Type: S 	Dil Fac 1 ample oluble
Matrix: Solid Analysis Batch: 108141 Analyte Chloride Lab Sample ID: LCS 880-108134 Matrix: Solid Analysis Batch: 108141 Analyte Chloride Lab Sample ID: LCSD 880-1081 Matrix: Solid	Ri 6/2-A	esult Qualifier	Added	10.0 LCS Result 269.5	LCS Qualifier	Unit mg/Kg	Clien	Prepared at Sample <u>%Rec</u> 108	Prep Analyz 04/21/25 e ID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro Prep	Type: S 2ed 09:33 - ontrol S Type: S 	oluble <u>Dil Fac</u> 1 ample oluble le Dup

QC Association Summary

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-7984-1 SDG: Lea County, NM

GC VOA

Prep Batch: 108140

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-108140/5-A	Method Blank	Total/NA	Solid	5035	
Analysia Databy 40044	7				

Analysis Batch: 108167

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-108140/5-A	Method Blank	Total/NA	Solid	5035	
nalysis Batch: 108167	7				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-7984-1	HA-1	Total/NA	Solid	8021B	108198
890-7984-2	HA-2	Total/NA	Solid	8021B	108198
890-7984-3	HA-7	Total/NA	Solid	8021B	108198
890-7984-4	HA-7	Total/NA	Solid	8021B	108198
890-7984-5	HA-7	Total/NA	Solid	8021B	108198
890-7984-6	HA-3	Total/NA	Solid	8021B	108198
890-7984-7	HA-4	Total/NA	Solid	8021B	108198
MB 880-108140/5-A	Method Blank	Total/NA	Solid	8021B	108140
MB 880-108198/5-A	Method Blank	Total/NA	Solid	8021B	108198
LCS 880-108198/1-A	Lab Control Sample	Total/NA	Solid	8021B	108198
LCSD 880-108198/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	108198
890-7984-1 MS	HA-1	Total/NA	Solid	8021B	108198
890-7984-1 MSD	HA-1	Total/NA	Solid	8021B	108198
rep Batch: 108198					
l ah Sample ID	Client Sample ID	Pren Type	Matrix	Method	Pron Batch

Prep Batch: 108198

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-7984-1	HA-1	Total/NA	Solid	5035	
890-7984-2	HA-2	Total/NA	Solid	5035	
890-7984-3	HA-7	Total/NA	Solid	5035	
890-7984-4	HA-7	Total/NA	Solid	5035	
890-7984-5	HA-7	Total/NA	Solid	5035	
890-7984-6	HA-3	Total/NA	Solid	5035	
890-7984-7	HA-4	Total/NA	Solid	5035	
MB 880-108198/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-108198/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-108198/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-7984-1 MS	HA-1	Total/NA	Solid	5035	
890-7984-1 MSD	HA-1	Total/NA	Solid	5035	

Analysis Batch: 108331

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-7984-1	HA-1	Total/NA	Solid	Total BTEX	
890-7984-2	HA-2	Total/NA	Solid	Total BTEX	
890-7984-3	HA-7	Total/NA	Solid	Total BTEX	
890-7984-4	HA-7	Total/NA	Solid	Total BTEX	
890-7984-5	HA-7	Total/NA	Solid	Total BTEX	
890-7984-6	HA-3	Total/NA	Solid	Total BTEX	
890-7984-7	HA-4	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 108161

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-7984-1	HA-1	Total/NA	Solid	8015NM Prep	
890-7984-2	HA-2	Total/NA	Solid	8015NM Prep	
890-7984-3	HA-7	Total/NA	Solid	8015NM Prep	
890-7984-4	HA-7	Total/NA	Solid	8015NM Prep	

QC Association Summary

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

GC Semi VOA (Continued)

Prep Batch: 108161 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-7984-5	HA-7	Total/NA	Solid	8015NM Prep	
890-7984-6	HA-3	Total/NA	Solid	8015NM Prep	
890-7984-7	HA-4	Total/NA	Solid	8015NM Prep	
MB 880-108161/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-108161/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-108161/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-7984-1 MS	HA-1	Total/NA	Solid	8015NM Prep	
890-7984-1 MSD	HA-1	Total/NA	Solid	8015NM Prep	

Analysis Batch: 108276

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-7984-1	HA-1	Total/NA	Solid	8015B NM	108161	
890-7984-2	HA-2	Total/NA	Solid	8015B NM	108161	
890-7984-3	HA-7	Total/NA	Solid	8015B NM	108161	
890-7984-4	HA-7	Total/NA	Solid	8015B NM	108161	
890-7984-5	HA-7	Total/NA	Solid	8015B NM	108161	
890-7984-6	HA-3	Total/NA	Solid	8015B NM	108161	
890-7984-7	HA-4	Total/NA	Solid	8015B NM	108161	
MB 880-108161/1-A	Method Blank	Total/NA	Solid	8015B NM	108161	
LCS 880-108161/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	108161	
LCSD 880-108161/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	108161	
890-7984-1 MS	HA-1	Total/NA	Solid	8015B NM	108161	
890-7984-1 MSD	HA-1	Total/NA	Solid	8015B NM	108161	

Analysis Batch: 108411

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-7984-1	HA-1	Total/NA	Solid	8015 NM	
890-7984-2	HA-2	Total/NA	Solid	8015 NM	
890-7984-3	HA-7	Total/NA	Solid	8015 NM	
890-7984-4	HA-7	Total/NA	Solid	8015 NM	
890-7984-5	HA-7	Total/NA	Solid	8015 NM	
890-7984-6	HA-3	Total/NA	Solid	8015 NM	
890-7984-7	HA-4	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 108136

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-7984-1	HA-1	Soluble	Solid	DI Leach	
890-7984-2	HA-2	Soluble	Solid	DI Leach	
890-7984-3	HA-7	Soluble	Solid	DI Leach	
890-7984-4	HA-7	Soluble	Solid	DI Leach	
890-7984-5	HA-7	Soluble	Solid	DI Leach	
890-7984-6	HA-3	Soluble	Solid	DI Leach	
890-7984-7	HA-4	Soluble	Solid	DI Leach	
MB 880-108136/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-108136/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-108136/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Job ID: 890-7984-1 SDG: Lea County, NM

Page 88 of 134

QC Association Summary

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-7984-1 SDG: Lea County, NM

HPLC/IC

Analysis Batch: 108141

ab Sample ID 90-7984-1 90-7984-2	Client Sample ID	Prep Type			
			Matrix	Method	Prep Batch
90-7984-2	HA-I	Soluble	Solid	300.0	108136
	HA-2	Soluble	Solid	300.0	108136
90-7984-3	HA-7	Soluble	Solid	300.0	108136
90-7984-4	HA-7	Soluble	Solid	300.0	108136
90-7984-5	HA-7	Soluble	Solid	300.0	108136
90-7984-6	HA-3	Soluble	Solid	300.0	108136
0-7984-7	HA-4	Soluble	Solid	300.0	108136
3 880-108136/1-A	Method Blank	Soluble	Solid	300.0	108136
CS 880-108136/2-A	Lab Control Sample	Soluble	Solid	300.0	108136
CSD 880-108136/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	108136

Initial

Amount

5.00 g

5 mL

10.00 g

1 uL

4.96 g

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

Batch

Number

108198

108167

108331

108411

108161

108276

108136

108141

Dil

1

1

1

1

1

Factor

Run

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client Sample ID: HA-1 Date Collected: 04/17/25 11:00 Date Received: 04/17/25 14:17

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Prepared

or Analyzed

04/21/25 09:35

04/21/25 22:40

04/21/25 22:40

04/22/25 20:54

04/20/25 19:33

04/22/25 20:54

04/18/25 15:49

04/21/25 12:11

Job ID: 890-7984-1 SDG: Lea County, NM

Lab

EET MID

Page 90 of 134

Lab Sample ID: 890-7984-1 Matrix: Solid

Analyst

AA

MNR

SM

SM

FI

AJ

SA

SMC

Lab Sample ID: 890-7984-2 Matrix: Solid

Lab Sample ID: 890-7984-3

Lab Sample ID: 890-7984-4

Matrix: Solid

rix: Solid

Client Sample ID: HA-2 Date Collected: 04/17/25 11:05 Date Received: 04/17/25 14:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	108198	04/21/25 09:35	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	108167	04/21/25 23:00	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			108331	04/21/25 23:00	SM	EET MID
Total/NA	Analysis	8015 NM		1			108411	04/22/25 21:56	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	108161	04/20/25 19:33	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	108276	04/22/25 21:56	AJ	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	108136	04/18/25 15:49	SA	EET MID
Soluble	Analysis	300.0		1			108141	04/21/25 12:33	SMC	EET MID

Client Sample ID: HA-7 Date Collected: 04/17/25 11:10

Date Received: 04/17/25 14:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	108198	04/21/25 09:35	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	108167	04/21/25 23:21	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			108331	04/21/25 23:21	SM	EET MID
Total/NA	Analysis	8015 NM		1			108411	04/22/25 22:16	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	108161	04/20/25 19:33	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	108276	04/22/25 22:16	AJ	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	108136	04/18/25 15:49	SA	EET MID
Soluble	Analysis	300.0		1			108141	04/21/25 12:40	SMC	EET MID

Client Sample ID: HA-7 Date Collected: 04/17/25 11:15 Date Received: 04/17/25 14:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	108198	04/21/25 09:35	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	108167	04/21/25 23:42	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			108331	04/21/25 23:42	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

Released to Imaging: 6/23/2025 3:33:55 PM

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Client Sample ID: HA-7 Date Collected: 04/17/25 11:15 Date Received: 04/17/25 14:17

Prep Type Total/NA	Batch Type Analysis	Batch Method 8015 NM	Run	Dil Factor	Initial Amount	Final Amount	Batch 	Prepared or Analyzed 04/22/25 22:37	Analyst SM	_ Lab EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	108161	04/20/25 19:33	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	108276	04/22/25 22:37	AJ	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	108136	04/18/25 15:49	SA	EET MID
Soluble	Analysis	300.0		1			108141	04/21/25 12:48	SMC	EET MID

Client Sample ID: HA-7 Date Collected: 04/17/25 11:20 Date Received: 04/17/25 14:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	108198	04/21/25 09:35	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	108167	04/22/25 00:02	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			108331	04/22/25 00:02	SM	EET MID
Total/NA	Analysis	8015 NM		1			108411	04/22/25 22:57	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	108161	04/20/25 19:33	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	108276	04/22/25 22:57	AJ	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	108136	04/18/25 15:49	SA	EET MID
Soluble	Analysis	300.0		1			108141	04/21/25 12:55	SMC	EET MID

Client Sample ID: HA-3

Date Collected: 04/17/25 11:25 Date Received: 04/17/25 14:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	108198	04/21/25 09:35	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	108167	04/22/25 00:22	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			108331	04/22/25 00:22	SM	EET MID
Total/NA	Analysis	8015 NM		1			108411	04/22/25 23:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	108161	04/20/25 19:33	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	108276	04/22/25 23:18	AJ	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	108136	04/18/25 15:49	SA	EET MID
Soluble	Analysis	300.0		1			108141	04/21/25 13:03	SMC	EET MID

Client Sample ID: HA-4 Date Collected: 04/17/25 11:30 Date Received: 04/17/25 14:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	108198	04/21/25 09:35	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	108167	04/22/25 00:43	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			108331	04/22/25 00:43	SM	EET MID
Total/NA	Analysis	8015 NM		1			108411	04/22/25 23:38	SM	EET MID
Total/NA	Prep	8015NM Prep			10.07 g	10 mL	108161	04/20/25 19:33	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	108276	04/22/25 23:38	AJ	EET MID

Eurofins Carlsbad

Job ID: 890-7984-1 SDG: Lea County, NM

Lab Sample ID: 890-7984-4 Matrix: Solid

Lab Sample ID: 890-7984-5

Lab Sample ID: 890-7984-6

Lab Sample ID: 890-7984-7

Matrix: Solid

Matrix: Solid

Matrix: Solid

> 11 12 13

Lab Chronicle

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1 Job ID: 890-7984-1 SDG: Lea County, NM

Client Sample ID: HA-4 Date Collected: 04/17/25 11:30 Date Received: 04/17/25 14:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Soluble	Leach	DI Leach			5.02 g	50 mL	108136	04/18/25 15:49	SA	EET MID	
Soluble	Analysis	300.0		1			108141	04/21/25 13:10	SMC	EET MID	

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

 Lab Sample ID: 890-7984-7 Matrix: Solid
 3

 Prepared
 4

 or Analyzed
 Analyst
 Lab
 5

 18/25 15:49
 SA
 EET MID
 6

 21/25 13:10
 SMC
 EET MID
 6

 7
 8
 9
 10

 11
 12
 13
 13

Accreditation/Certification Summary

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1 Job ID: 890-7984-1 SDG: Lea County, NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	m	Identification Number	Expiration Date
exas	NELAP)	T104704400	06-30-25
T () () ()				
for which the agency of	loes not offer certification.		ied by the governing authority. This lis	t may include analytes
for which the agency of Analysis Method		Matrix	Analyte	t may include analytes
for which the agency of	loes not offer certification.			t may include analytes

Eurofins Carlsbad

Page 93 of 134

10

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-7984-1 SDG: Lea County, NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1 Job ID: 890-7984-1 SDG: Lea County, NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-7984-1	HA-1	Solid	04/17/25 11:00	04/17/25 14:17	2	-
890-7984-2	HA-2	Solid	04/17/25 11:05	04/17/25 14:17	2	
890-7984-3	HA-7	Solid	04/17/25 11:10	04/17/25 14:17	0.5	5
890-7984-4	HA-7	Solid	04/17/25 11:15	04/17/25 14:17	1	J
890-7984-5	HA-7	Solid	04/17/25 11:20	04/17/25 14:17	2	
890-7984-6	HA-3	Solid	04/17/25 11:25	04/17/25 14:17	2	
890-7984-7	HA-4	Solid	04/17/25 11:30	04/17/25 14:17	2	
						8
						9
						12
						13
						14

Received by OCD: 6/20/2025 11:05:16 AM

Released to Imaging: 6/23/2025 3:33:55 PM

4/23/2025

Page 96 of 134

14

Job Number: 890-7984-1 SDG Number: Lea County, NM

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Earth Systems Response and Restoration

Login Number: 7984 List Number: 1 Creator: Lopez, Abraham

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 890-7984-1 SDG Number: Lea County, NM

List Source: Eurofins Midland

List Creation: 04/17/25 08:56 PM

Login Sample Receipt Checklist

Client: Earth Systems Response and Restoration

Login Number: 7984 List Number: 2 Creator: Laing, Edmundo

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 6/20/2025 11:05:16 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Gilbert Moreno Earth Systems Response and Restoration 4115 South County Road 1297 Odessa, Texas 79765 Generated 6/6/2025 2:44:37 PM

Page 99 of 134

JOB DESCRIPTION

Seawolf 12 CTB 1 Lea County, NM

JOB NUMBER

890-8263-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Author	ization	
Author	Authorized for release by Brianna Teel, Project Manager Brianna.Teel@et.eurofinsus.com (432)704-5440	Generated 6/6/2025 2:44:37 PM

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-8263-1

SDG: Lea County, NM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	17
Lab Chronicle	20
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	27

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Page 102 of 134

035al y	
Job ID: 890-8263-1 SDG: Lea County, NM	

Qualifiers

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	4
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VO	A	5
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	8
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	9
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
\$	Listed under the "D" column to designate that the result is reported on a dry weight basis	1.
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	

Reporting Limit or Requested Limit (Radiochemistry) Relative Percent Difference, a measure of the relative difference between two points

RPDRelative Percent Difference, a measureTEFToxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

Relative Error Ratio (Radiochemistry)

TNTC Too Numerous To Count

RER

RL

Case Narrative

Client: Earth Systems Response and Restoration Project: Seawolf 12 CTB 1

Job ID: 890-8263-1

Job ID: 890-8263-1

Eurofins Carlsbad

Job Narrative 890-8263-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 6/3/2025 11:48 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -3.0°C.

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: CS-1 (890-8263-1), CS-2 (890-8263-2), CS-3 (890-8263-3), CS-4 (890-8263-4), SW-1 (890-8263-5), SW-2 (890-8263-6) and SW-3 (890-8263-7).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-111501 and analytical batch 880-111564 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: SW-3 (890-8263-7). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D - Soluble: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-111509 and analytical batch 880-111525 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Client Sample ID: CS-1 Date Collected: 06/03/25 08:25 Date Received: 06/03/25 11:48 Sample Depth: 2

Job ID: 890-8263-1
SDG: Lea County, NM

Lab Sample ID: 890-8263-1

Matrix: Solid

Page 104 of 134

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		06/04/25 09:42	06/04/25 13:31	
Toluene	<0.00199	U	0.00199		mg/Kg		06/04/25 09:42	06/04/25 13:31	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/04/25 09:42	06/04/25 13:31	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/04/25 09:42	06/04/25 13:31	
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/04/25 09:42	06/04/25 13:31	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/04/25 09:42	06/04/25 13:31	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	117		70 - 130				06/04/25 09:42	06/04/25 13:31	
1,4-Difluorobenzene (Surr)	102		70 - 130				06/04/25 09:42	06/04/25 13:31	
Method: TAL SOP Total BTEX	- Total BTE	X Calculat	ion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/04/25 13:31	
Method: SW846 8015 NM - Die	esel Range	Organics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.1	U	50.1		mg/Kg			06/05/25 09:34	
Method: SW846 8015B NM - D	Diesel Range	• Organics	(DRO) (GC)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.1	U F1	50.1		mg/Kg		06/04/25 12:24	06/05/25 09:34	
Diesel Range Organics (Over	<50.1	U	50.1		mg/Kg		06/04/25 12:24	06/05/25 09:34	
C10-C28) Oil Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		06/04/25 12:24	06/05/25 09:34	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	124		70 - 130				06/04/25 12:24	06/05/25 09:34	
o-Terphenyl	121		70 - 130				06/04/25 12:24	06/05/25 09:34	
Method: EPA 300.0 - Anions,	Ion Chroma	tography -	Soluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	156	F1	9.90		mg/Kg			06/04/25 22:37	
Client Sample ID: CS-2							Lab Samp	le ID: 890-8	263-2
ate Collected: 06/03/25 08:35								Matrix	: Solid
Date Received: 06/03/25 11:48									
ample Depth: 2									
Method: SW846 8021B - Volat	tile Organic	Compoun	ds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00198	U	0.00198		mg/Kg		06/04/25 09:42	06/04/25 13:52	
Toluene	<0.00198	U	0.00198		mg/Kg		06/04/25 09:42	06/04/25 13:52	
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		06/04/25 09:42	06/04/25 13:52	

Surrogate 4-Bromofluorobenzene (Surr)	<u>%Recovery</u> Qu 86	Limits70 - 130		Prepared 06/04/25 09:42	Analyzed 06/04/25 13:52	Dil Fac
	~~~		3. 3			
Xylenes, Total	<0.00396 U	0.00396	mg/Kg	06/04/25 09:42	06/04/25 13:52	1
o-Xylene	<0.00198 U	0.00198	mg/Kg	06/04/25 09:42	06/04/25 13:52	1
m-Xylene & p-Xylene	<0.00396 U	0.00396	mg/Kg	06/04/25 09:42	06/04/25 13:52	1
Ethylbenzene	<0.00198 U	0.00198	mg/Kg	06/04/25 09:42	06/04/25 13:52	1
Toluene	<0.00198 U	0.00198	mg/Kg	06/04/25 09:42	06/04/25 13:52	1

**Eurofins Carlsbad** 

Page 6 of 28

Released to Imaging: 6/23/2025 3:33:55 PM

Client Sample ID: CS-2

Sample Depth: 2

1,4-Difluorobenzene (Surr)

Surrogate

Analyte

Analyte

Total TPH

Total BTEX

Date Collected: 06/03/25 08:35

Date Received: 06/03/25 11:48

# **Client Sample Results**

Limits

70 - 130

RL

RL

50.1

0.00396

MDL Unit

MDL Unit

mg/Kg

mg/Kg

Unit

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-8263-1 SDG: Lea County, NM

## Lab Sample ID: 890-8263-2 Matrix: Solid

Analyzed

Analyzed

06/04/25 13:52

Dil Fac

Dil Fac

Dil Fac

1

Method: SW846 8015B NN	I - Diesel Range Organics (DRO) (C	iC)
Analyta	Posult Qualifier Pl	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

%Recovery Qualifier

**Result Qualifier** 

**Result Qualifier** 

<50.1 U

97

<0.00396 U

Analyte	Result	Qualifier	RL	MDL	Unit	U	Prepared	Analyzed	DII Fac
Gasoline Range Organics (GRO)-C6-C10	<50.1	U	50.1		mg/Kg		06/04/25 12:24	06/05/25 10:55	1
Diesel Range Organics (Over C10-C28)	<50.1	U	50.1		mg/Kg		06/04/25 12:24	06/05/25 10:55	1
Oil Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		06/04/25 12:24	06/05/25 10:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	121		70 - 130				06/04/25 12:24	06/05/25 10:55	1
o-Terphenyl	116		70 - 130				06/04/25 12.24	06/05/25 10:55	1

Method: E	PA 300.0 - Anions, Ion Chroma	tography - Soluble						
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	80.1	10.0		mg/Kg			06/04/25 22:59	1

### **Client Sample ID: CS-3** Date Collected: 06/03/25 08:45 Date Received: 06/03/25 11:48

Sample Depth: 2 Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RI MDL Unit D Prepared Analyzed Dil Fac Benzene < 0.00199 Ū 0.00199 mg/Kg 06/04/25 09:42 06/04/25 14:12 Toluene <0.00199 U 0.00199 mg/Kg 06/04/25 09:42 06/04/25 14:12 Ethylbenzene <0.00199 U 0.00199 mg/Kg 06/04/25 09:42 06/04/25 14:12 m-Xylene & p-Xylene <0.00398 U 0.00398 mg/Kg 06/04/25 09:42 06/04/25 14:12 o-Xylene <0.00199 U 0.00199 mg/Kg 06/04/25 09:42 06/04/25 14:12 Xylenes, Total <0.00398 U 0.00398 mg/Kg 06/04/25 09:42 06/04/25 14:12 Surrogate %Recovery Qualifier Limits Prepared Analvzed Dil Fac 91 70 - 130 06/04/25 09:42 06/04/25 14:12 4-Bromofluorobenzene (Surr) 97 1,4-Difluorobenzene (Surr) 70 - 130 06/04/25 09:42 06/04/25 14:12 Method: TAL SOP Total BTEX - Total BTEX Calculation Analvte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Total BTEX <0.00398 U 0.00398 mg/Kg 06/04/25 14:12

_ Method: SW846 8015 NM - Die	sel Range (	Organics (	DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			06/05/25 11:10	1

**Eurofins Carlsbad** 

Prepared Analyzed 06/05/25 10:55

Lab Sample ID: 890-8263-3

Matrix: Solid

1

1

1

1

1

1

1

1

06/04/25 09:42 06/04/25 13:52

Prepared

Prepared

D

D

**Released to Imaging: 6/23/2025 3:33:55 PM** 

RL

49.7

497

49.7

RL

9.98

Limits

70 - 130

70 - 130

MDL Unit

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

D

Prepared

Prepared

06/04/25 12:24

Prepared

06/04/25 12:24 06/05/25 11:10

06/04/25 12:24 06/05/25 11:10

06/04/25 12:24 06/05/25 11:10

06/04/25 12:24 06/05/25 11:10

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

**Result Qualifier** 

Qualifier

<49.7 U

<49.7 U

<49.7 U

123

118

127

**Result Qualifier** 

%Recoverv

Date Received: 06/03/25 11:48

Sample Depth: 2

Gasoline Range Organics

Diesel Range Organics (Over

Oil Range Organics (Over C28-C36)

Client Sample ID: CS-4

Date Collected: 06/03/25 08:55

Date Received: 06/03/25 11:48

Analyte

C10-C28)

Surrogate

o-Terphenyl

Analvte

Chloride

Sample Depth: 2

1-Chlorooctane

(GRO)-C6-C10

Page 106 of 134

### Lab Sample ID: 890-8263-3 Matrix: Solid

Analyzed

Analvzed

06/05/25 11:10

Analyzed

06/04/25 23:06

Lab Sample ID: 890-8263-4

Dil Fac

1

1

1

Dil Fac

Dil Fac

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte **Result Qualifier** RI MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 06/04/25 09:42 06/04/25 14:33 mg/Kg Toluene <0.00200 U 0.00200 mg/Kg 06/04/25 09:42 06/04/25 14:33 Ethylbenzene <0.00200 U 0.00200 mg/Kg 06/04/25 09:42 06/04/25 14:33 m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 06/04/25 09:42 06/04/25 14:33 06/04/25 09:42 06/04/25 14:33 o-Xylene <0.00200 U 0 00200 mg/Kg 1 Xylenes, Total <0.00400 U 0.00400 mg/Kg 06/04/25 09:42 06/04/25 14:33 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 95 70 - 130 06/04/25 09:42 06/04/25 14:33 06/04/25 09:42 06/04/25 14:33 96 70 - 130 1,4-Difluorobenzene (Surr) 1 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Total BTEX <0.00400 U 0.00400 06/04/25 14:33 mg/Kg Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte **Result Qualifier** MDL Unit D RL Prepared Analyzed Dil Fac Total TPH <49.8 U 49.8 06/05/25 11:26 mg/Kg Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac <49.8 U 06/04/25 12:24 06/05/25 11:26 **Gasoline Range Organics** 49.8 mg/Kg (GRO)-C6-C10 06/04/25 12:24 06/05/25 11:26 **Diesel Range Organics (Over** <49.8 U 49.8 mg/Kg 1 C10-C28) Oil Range Organics (Over C28-C36) <49.8 U 49.8 06/04/25 12:24 06/05/25 11:26 mg/Kg 1 Qualifier Limits Prepared Analvzed Dil Fac Surrogate %Recovery

# **Client Sample Results**

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-8263-1 SDG: Lea County, NM

Client Sample ID: CS-4							Lab Samp	le ID: 890-8	8263-4
Date Collected: 06/03/25 08:55								Matrix	c: Solie
ate Received: 06/03/25 11:48									
Sample Depth: 2									
Method: EPA 300.0 - Anions, I	on Chroma	tography -	Soluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	180		10.0		mg/Kg			06/04/25 23:28	
Client Sample ID: SW-1							Lah Samn	le ID: 890-8	263-
Date Collected: 06/03/25 09:05 Date Received: 06/03/25 11:48 Sample Depth: 0-2								Matrix	
Method: SW846 8021B - Volati									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00198	U	0.00198		mg/Kg		06/04/25 09:42	06/04/25 14:53	
Toluene	<0.00198	U	0.00198		mg/Kg		06/04/25 09:42	06/04/25 14:53	
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		06/04/25 09:42	06/04/25 14:53	
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		06/04/25 09:42	06/04/25 14:53	
o-Xylene	<0.00198	U	0.00198		mg/Kg		06/04/25 09:42	06/04/25 14:53	
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		06/04/25 09:42	06/04/25 14:53	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	94		70 - 130				06/04/25 09:42	06/04/25 14:53	
1,4-Difluorobenzene (Surr)	81		70 - 130				06/04/25 09:42	06/04/25 14:53	
Method: TAL SOP Total BTEX	- Total BTE	X Calculat	tion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00397	U	0.00397		mg/Kg			06/04/25 14:53	
Method: SW846 8015 NM - Die	sel Range	Organics (	(DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg			06/05/25 11:43	
Method: SW846 8015B NM - D	iesel Range	• Organics	6 (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		06/04/25 12:24	06/05/25 11:43	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		06/04/25 12:24	06/05/25 11:43	
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/04/25 12:24	06/05/25 11:43	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	121		70 - 130				06/04/25 12:24	06/05/25 11:43	
o-Terphenyl	114		70 - 130				06/04/25 12:24	06/05/25 11:43	
Method: EPA 300.0 - Anions, I	on Chroma	tography -	- Soluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	293		10.1		mg/Kg			06/04/25 23:35	

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

#### **Client Sample ID: SW-2** Date Collected: 06/03/25 09:15 Date Received: 06/03/25 11:48 Sample Depth: 0-2

# Lab Sample ID: 890-8263-6

Matrix: Solid

Page 108 of 134

Method: SW846 8021B - Volat Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200		0.00200		mg/Kg		·	06/04/25 16:17	
Toluene	<0.00200		0.00200		mg/Kg			06/04/25 16:17	
Ethylbenzene	<0.00200		0.00200		mg/Kg			06/04/25 16:17	
m-Xylene & p-Xylene	< 0.00401		0.00401		mg/Kg			06/04/25 16:17	
o-Xylene	<0.00200		0.00200		mg/Kg			06/04/25 16:17	
Xylenes, Total	< 0.00401		0.00401		mg/Kg			06/04/25 16:17	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	98		70 - 130				06/04/25 09:42	06/04/25 16:17	
1,4-Difluorobenzene (Surr)	84		70 - 130				06/04/25 09:42	06/04/25 16:17	
Method: TAL SOP Total BTEX	- Total BTE	X Calculat	tion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401		mg/Kg			06/04/25 16:17	
Method: SW846 8015 NM - Die			DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg			06/05/25 11:59	
Method: SW846 8015B NM - D									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		06/04/25 12:24	06/05/25 11:59	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		06/04/25 12:24	06/05/25 11:59	
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/04/25 12:24	06/05/25 11:59	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	124		70 - 130				06/04/25 12:24	06/05/25 11:59	
o-Terphenyl	118		70 - 130				06/04/25 12:24	06/05/25 11:59	
Method: EPA 300.0 - Anions,			Soluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	212		10.0		mg/Kg			06/04/25 23:42	
lient Sample ID: SW-3							Lab Samp	le ID: 890-8	
ate Collected: 06/03/25 09:25								Matrix	: Soli
ate Received: 06/03/25 11:48 ample Depth: 0-2									
Method: SW846 8021B - Volat	ile Organic	Compour	ds (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202	U	0.00202		mg/Kg		06/04/25 09:42	06/04/25 16:38	
Toluene	<0.00202		0.00202		mg/Kg			06/04/25 16:38	
Ethylbenzene	<0.00202		0.00202		mg/Kg			06/04/25 16:38	
m-Xylene & p-Xylene	< 0.00404		0.00404		mg/Kg			06/04/25 16:38	
	5.00104	-	0.00101				20,00,20,00.42	10.00	

#### o-Xylene <0.00202 U 0.00202 06/04/25 09:42 06/04/25 16:38 mg/Kg Xylenes, Total <0.00404 U 0.00404 mg/Kg 06/04/25 09:42 06/04/25 16:38 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 92 70 - 130 06/04/25 09:42 06/04/25 16:38

**Eurofins Carlsbad** 

1

1

1
# **Client Sample Results**

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-8263-1 SDG: Lea County, NM

# Lab Sample ID: 890-8263-7

Matrix: Solid

5

Date Collected: 06/03/25 09:25 Date Received: 06/03/25 11:48 Sample Depth: 0-2

**Client Sample ID: SW-3** 

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	95		70 - 130				06/04/25 09:42	06/04/25 16:38	
Method: TAL SOP Total BTEX	- Total BTE	X Calculat	ion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00404	U	0.00404		mg/Kg			06/04/25 16:38	
Method: SW846 8015 NM - Di	esel Range (	Organics (	DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.1	U	50.1		mg/Kg			06/05/25 12:15	
	-	Qualifier	(DRO) (GC) RL	MDL	Unit	D	Prepared	Analvzed	Dil Fa
Analyte Gasoline Range Organics	-	Qualifier		MDL	<b>Unit</b> mg/Kg	D	Prepared 06/04/25 12:24	Analyzed 06/05/25 12:15	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U	RL	MDL		D	06/04/25 12:24		Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<b>Result</b> <50.1	Qualifier U U	<b>RL</b> 50.1	MDL	mg/Kg	<u>D</u>	06/04/25 12:24 06/04/25 12:24	06/05/25 12:15	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	<b>Result</b> <50.1 <50.1	Qualifier U U U	RL       50.1       50.1	MDL	mg/Kg mg/Kg	<u>D</u>	06/04/25 12:24 06/04/25 12:24	06/05/25 12:15 06/05/25 12:15	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	<b>Result</b> <50.1 <50.1 <50.1	Qualifier U U U	RL       50.1       50.1       50.1	MDL	mg/Kg mg/Kg	<u>D</u>	06/04/25 12:24 06/04/25 12:24 06/04/25 12:24	06/05/25 12:15 06/05/25 12:15 06/05/25 12:15 <b>Analyzed</b>	
Method: SW846 8015B NM - C Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result       <50.1	Qualifier U U Qualifier	RL       50.1       50.1       50.1       Limits	MDL	mg/Kg mg/Kg	<u>D</u>	06/04/25 12:24 06/04/25 12:24 06/04/25 12:24 <b>Prepared</b> 06/04/25 12:24	06/05/25 12:15 06/05/25 12:15 06/05/25 12:15 <b>Analyzed</b>	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result       <50.1	Qualifier U U Qualifier S1+ S1+ tography -	RL       50.1       50.1       50.1       50.1       70.1       70.130       70.130		mg/Kg mg/Kg mg/Kg	<u>D</u>	06/04/25 12:24 06/04/25 12:24 06/04/25 12:24 <b>Prepared</b> 06/04/25 12:24	06/05/25 12:15 06/05/25 12:15 06/05/25 12:15 <b>Analyzed</b> 06/05/25 12:15	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result       <50.1	Qualifier U U Qualifier S1+ S1+	RL       50.1       50.1       50.1       50.1       70.1       70.130       70.130		mg/Kg mg/Kg	D	06/04/25 12:24 06/04/25 12:24 06/04/25 12:24 <b>Prepared</b> 06/04/25 12:24	06/05/25 12:15 06/05/25 12:15 06/05/25 12:15 <b>Analyzed</b> 06/05/25 12:15	

## **Surrogate Summary**

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

## Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

			Percen	t Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-8263-1	CS-1	117	102	
890-8263-2	CS-2	86	97	
890-8263-3	CS-3	91	97	
890-8263-4	CS-4	95	96	
890-8263-5	SW-1	94	81	
890-8263-6	SW-2	98	84	
890-8263-7	SW-3	92	95	
LCS 880-111474/1-A	Lab Control Sample	97	97	
LCSD 880-111474/2-A	Lab Control Sample Dup	94	102	
MB 880-111474/5-A	Method Blank	92	100	

#### Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

## Method: 8015B NM - Diesel Range Organics (DRO) (GC) **Matrix: Solid**

_			Per
		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-8263-1	CS-1	124	121
890-8263-1 MS	CS-1	120	121
890-8263-1 MSD	CS-1	122	109
890-8263-2	CS-2	121	116
890-8263-3	CS-3	123	118
890-8263-4	CS-4	124	119
890-8263-5	SW-1	121	114
890-8263-6	SW-2	124	118
890-8263-7	SW-3	141 S1+	133 S1+
LCS 880-111501/2-A	Lab Control Sample	87	90
LCSD 880-111501/3-A	Lab Control Sample Dup	90	92
MB 880-111501/1-A	Method Blank	128	122

#### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 890-8263-1 SDG: Lea County, NM

Prep Type: Total/NA

Prep Type: Total/NA

Page 110 of 134

6

# **QC Sample Results**

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Method: 8021B - Volatile Organic Compounds (GC)

#### Lab Sample ID: MB 880-111474/5-A Matrix: Solid Analysis Batch: 111458

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		06/04/25 09:42	06/04/25 11:27	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/04/25 09:42	06/04/25 11:27	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/04/25 09:42	06/04/25 11:27	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		06/04/25 09:42	06/04/25 11:27	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/04/25 09:42	06/04/25 11:27	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		06/04/25 09:42	06/04/25 11:27	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130				06/04/25 09:42	06/04/25 11:27	1
1,4-Difluorobenzene (Surr)	100		70 - 130				06/04/25 09:42	06/04/25 11:27	1

#### Lab Sample ID: LCS 880-111474/1-A Matrix: Solid Analysis Batch: 111458

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1120		mg/Kg		112	70 - 130	
Toluene	0.100	0.1030		mg/Kg		103	70 - 130	
Ethylbenzene	0.100	0.1058		mg/Kg		106	70 - 130	
m-Xylene & p-Xylene	0.200	0.2026		mg/Kg		101	70 - 130	
o-Xylene	0.100	0.09716		mg/Kg		97	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		70 - 130
1,4-Difluorobenzene (Surr)	97		70 - 130

#### Lab Sample ID: LCSD 880-111474/2-A **Matrix: Solid**

#### Analysis Batch: 111458 Prep Batch: 111474 LCSD LCSD RPD Spike %Rec Added Analyte Result Qualifier Unit D %Rec Limits RPD Limit Benzene 0.100 0.1035 mg/Kg 104 70 - 130 8 35 Toluene 0.100 0.09473 mg/Kg 95 70 - 130 8 35 Ethylbenzene 0.100 0.09471 mg/Kg 95 70 - 130 11 35 0.200 m-Xylene & p-Xylene 0.1811 mg/Kg 91 70 - 130 35 11 o-Xylene 0.100 0.08724 mg/Kg 87 70 - 130 11 35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	94		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Job ID: 890-8263-1 SDG: Lea County, NM

## **Client Sample ID: Method Blank** Prep Type: Total/NA Prep Batch: 111474

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA Prep Batch: 111474** 

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

# **QC Sample Results**

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-8263-1 SDG: Lea County, NM

## Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-1115 Matrix: Solid	601/1-A									Clie		Prep Type	: To	tal/N/
Analysis Batch: 111564		мв	MB									Prep Bate	an: 1	1150
Analyte	Pa		MB Qualifier	RL	i	וחא	Unit		D	D.	repared	Δnalvzor	4	Dil Fa
Gasoline Range Organics		50.0				AIDL	mg/Kg		_		4/25 12:24	Analyzed		DII Fa
(GRO)-C6-C10	<	50.0	0	50.0			my/κ(	ł		00/0	4/20 12.24	00/03/23 04	.09	
Diesel Range Organics (Over C10-C28)	<	50.0	U	50.0			mg/Kថ្	9		06/0	4/25 12:24	06/05/25 04	:09	
Oil Range Organics (Over C28-C36)	</td <td>50.0</td> <td>U</td> <td>50.0</td> <td></td> <td></td> <td>mg/Kg</td> <td>)</td> <td></td> <td>06/0</td> <td>4/25 12:24</td> <td>06/05/25 04</td> <td>:09</td> <td></td>	50.0	U	50.0			mg/Kg	)		06/0	4/25 12:24	06/05/25 04	:09	
		MB	MB											
Surrogate	%Recov	very	Qualifier	Limits						P	repared	Analyzed	1	Dil Fa
1-Chlorooctane		128		70 - 130						06/0	4/25 12:24	06/05/25 04	:09	
o-Terphenyl		122		70 - 130						06/0	4/25 12:24	06/05/25 04	:09	
Lab Sample ID: LCS 880-111 Matrix: Solid Analysis Batch: 111564	501/2-A			Queilles	1.00	1.00		Clie	ənt	Sar		Lab Contr Prep Type Prep Bate	: To	tal/N/
Analyta				Spike Addod	LCS			Unit		•	% Bee	%Rec		
Analyte Gasoline Range Organics				Added	Result 811.2	Qua	anner	Unit mg/Kg		D	81	Limits		
(GRO)-C6-C10 Diesel Range Organics (Over				1000	875.0			mg/Kg			88	70 - 130		
C10-C28)														
	LCS			,										
	%Recovery	Qua	lifier	Limits										
1-Chlorooctane o-Terphenyl	87 90			70 - 130 70 - 130										
Lab Sample ID: LCSD 880-11 Matrix: Solid	I1501/3-A						С	lient S	am	ple		Control Sa Prep Type		
Analysis Batch: 111564												Prep Bate	ch: 1	1150
-				Spike	LCSD	LCS	SD					%Rec		RP
Analyte				Added	Result	Qua	alifier	Unit		D	%Rec	Limits	RPD	Lim
Gasoline Range Organics (GRO)-C6-C10				1000	831.5			mg/Kg			83	70 - 130	2	2
Diesel Range Organics (Over C10-C28)				1000	906.0			mg/Kg			91	70 - 130	3	2
	LCSD	LCS	D											
Surrogate	%Recovery			Limits										
1-Chlorooctane	90			70 - 130										
o-Terphenyl	92			70 - 130										
Lab Sample ID: 890-8263-1 M Matrix: Solid Analysis Batch: 111564												ent Sampl Prep Type Prep Bate	: To	tal/N
	Sample	Sam	ple	Spike	MS	MS						%Rec		
Analyte	Result		-	Added	Result		alifier	Unit		D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<50.1			999	765.8			mg/Kg			77	70 - 130		
Diesel Range Organics (Over C10-C28)	<50.1	U		999	888.1			mg/Kg			87	70 - 130		

Lab Sample ID: 890-8263-1 MS

Lab Sample ID: 890-8263-1 MSD

Analysis Batch: 111564

Analysis Batch: 111564

Matrix: Solid

Surrogate

o-Terphenyl

1-Chlorooctane

Matrix: Solid

## **QC Sample Results**

Limits

70 - 130

70 - 130

Spike

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

## Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

MS MS %Recovery Qualifier

Sample Sample

120

121

	Oampie	Oam	pie	Opine		NIOD	MOD				/01100		
Analyte	Result	Qua	lifier	Added		Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<50.1	U F1		999		673.7	F1	mg/Kg		67	70 - 130	13	20
Diesel Range Organics (Over C10-C28)	<50.1	U		999		737.8		mg/Kg		72	70 - 130	18	20
	MSD	MSD	)										
Surrogate	%Recovery	Qua	lifier	Limits									
1-Chlorooctane	122			70 - 130	-								
o-Terphenyl	109			70 - 130									
lethod: 300.0 - Anion	s, Ion Chr	oma	tograp	hy									
Lab Sample ID: MB 880-1	11509/1-A								Cli	ient San	nple ID: M		
Matrix: Solid											Prep T	ype: So	oluble
Analysis Batch: 111525													
	_	MB							_				
Analyte Chloride		<b>esult</b>	Qualifier		RL 10.0		MDL Unit	-	D	Prepared	Analy: 06/04/25		Dil Fa
Lab Sample ID: LCS 880- Matrix: Solid	111509/2-A							Cli	ent Sa	ample IC	: Lab Cor Prep T		
Analysis Batch: 111525													
				Spike		LCS	LCS				%Rec		
Analyte				Added			Qualifier	Unit	D	%Rec	Limits		
Chloride				250		268.7		mg/Kg		107	90 - 110		
Lab Sample ID: LCSD 880	0-111509/3-A							Client S	ample	e ID: Lal	o Control	Sampl	e Dup
Matrix: Solid											Prep T	ype: So	oluble
Analysis Batch: 111525													
				Spike		LCSD	LCSD				%Rec		RPD
Analyte				Added		Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Chloride				250		254.4		mg/Kg		102	90 - 110	5	20
Lab Sample ID: 890-8263	-1 MS									C	lient Sam		
Matrix: Solid											Prep T	ype: Se	oluble
Analysis Batch: 111525													

MSD MSD

Analysis Daton. 111325										
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	156	F1	248	483.1	F1	mg/Kg	_	132	90 - 110	

**Eurofins Carlsbad** 

RPD

Job ID: 890-8263-1

SDG: Lea County, NM

**Client Sample ID: CS-1** 

**Client Sample ID: CS-1** 

%Rec

Prep Type: Total/NA

Prep Batch: 111501

Prep Type: Total/NA

Prep Batch: 111501

Released to Imaging: 6/23/2025 3:33:55 PM

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-8263-1 SDG: Lea County, NM

## Method: 300.0 - Anions, Ion Chromatography (Continued)

lethod: 300.0 - Anions	, ion chro	omatogra	apny (Con	itinued)								
Lab Sample ID: 890-8263-1 Matrix: Solid Analysis Batch: 111525	MSD							С	lient Sam Prep Ty			4
Analyte		Sample Qualifier	Spike Added		MSD Qualifier	Unit	D	%Rec	%Rec Limits	RPD	RPD Limit	
Chloride	156		248	482.0	F1	mg/Kg		132	90 - 110	0	20	

# **QC Association Summary**

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-8263-1 SDG: Lea County, NM

## GC VOA

#### Analysis Batch: 111458

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-8263-1	CS-1	Total/NA	Solid	8021B	111474
890-8263-2	CS-2	Total/NA	Solid	8021B	111474
890-8263-3	CS-3	Total/NA	Solid	8021B	111474
890-8263-4	CS-4	Total/NA	Solid	8021B	111474
890-8263-5	SW-1	Total/NA	Solid	8021B	111474
890-8263-6	SW-2	Total/NA	Solid	8021B	111474
890-8263-7	SW-3	Total/NA	Solid	8021B	111474
MB 880-111474/5-A	Method Blank	Total/NA	Solid	8021B	111474
LCS 880-111474/1-A	Lab Control Sample	Total/NA	Solid	8021B	111474
LCSD 880-111474/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	111474

#### Prep Batch: 111474

090-0203-7	300-3	IUlai/NA	Solid	00210	111474	
MB 880-111474/5-A	Method Blank	Total/NA	Solid	8021B	111474	8
LCS 880-111474/1-A	Lab Control Sample	Total/NA	Solid	8021B	111474	
LCSD 880-111474/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	111474	9
Prep Batch: 111474						40
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-8263-1	CS-1	Total/NA	Solid	5035		44
890-8263-2	CS-2	Total/NA	Solid	5035		
890-8263-3	CS-3	Total/NA	Solid	5035		10
890-8263-4	CS-4	Total/NA	Solid	5035		
890-8263-5	SW-1	Total/NA	Solid	5035		40
890-8263-6	SW-2	Total/NA	Solid	5035		13
890-8263-7	SW-3	Total/NA	Solid	5035		
MB 880-111474/5-A	Method Blank	Total/NA	Solid	5035		14
LCS 880-111474/1-A	Lab Control Sample	Total/NA	Solid	5035		
LCSD 880-111474/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		

#### Analysis Batch: 111537

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-8263-1	CS-1	Total/NA	Solid	Total BTEX	
890-8263-2	CS-2	Total/NA	Solid	Total BTEX	
890-8263-3	CS-3	Total/NA	Solid	Total BTEX	
890-8263-4	CS-4	Total/NA	Solid	Total BTEX	
890-8263-5	SW-1	Total/NA	Solid	Total BTEX	
890-8263-6	SW-2	Total/NA	Solid	Total BTEX	
890-8263-7	SW-3	Total/NA	Solid	Total BTEX	

## GC Semi VOA

### Prep Batch: 111501

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-8263-1	CS-1	Total/NA	Solid	8015NM Prep	·
890-8263-2	CS-2	Total/NA	Solid	8015NM Prep	
890-8263-3	CS-3	Total/NA	Solid	8015NM Prep	
890-8263-4	CS-4	Total/NA	Solid	8015NM Prep	
890-8263-5	SW-1	Total/NA	Solid	8015NM Prep	
890-8263-6	SW-2	Total/NA	Solid	8015NM Prep	
890-8263-7	SW-3	Total/NA	Solid	8015NM Prep	
MB 880-111501/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-111501/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-111501/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-8263-1 MS	CS-1	Total/NA	Solid	8015NM Prep	
890-8263-1 MSD	CS-1	Total/NA	Solid	8015NM Prep	

**Eurofins Carlsbad** 

# **QC** Association Summary

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-8263-1 SDG: Lea County, NM

# GC Semi VOA

### Analysis Batch: 111564

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-8263-1	CS-1	Total/NA	Solid	8015B NM	111501
890-8263-2	CS-2	Total/NA	Solid	8015B NM	111501
890-8263-3	CS-3	Total/NA	Solid	8015B NM	111501
390-8263-4	CS-4	Total/NA	Solid	8015B NM	111501
90-8263-5	SW-1	Total/NA	Solid	8015B NM	111501
90-8263-6	SW-2	Total/NA	Solid	8015B NM	111501
390-8263-7	SW-3	Total/NA	Solid	8015B NM	111501
MB 880-111501/1-A	Method Blank	Total/NA	Solid	8015B NM	111501
_CS 880-111501/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	111501
_CSD 880-111501/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	111501
390-8263-1 MS	CS-1	Total/NA	Solid	8015B NM	111501
890-8263-1 MSD	CS-1	Total/NA	Solid	8015B NM	111501

#### Analysis Batch: 111617

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-8263-1	CS-1	Total/NA	Solid	8015 NM	
890-8263-2	CS-2	Total/NA	Solid	8015 NM	
890-8263-3	CS-3	Total/NA	Solid	8015 NM	
890-8263-4	CS-4	Total/NA	Solid	8015 NM	
890-8263-5	SW-1	Total/NA	Solid	8015 NM	
890-8263-6	SW-2	Total/NA	Solid	8015 NM	
890-8263-7	SW-3	Total/NA	Solid	8015 NM	

## HPLC/IC

## Leach Batch: 111509

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-8263-1	CS-1	Soluble	Solid	DI Leach	
890-8263-2	CS-2	Soluble	Solid	DI Leach	
890-8263-3	CS-3	Soluble	Solid	DI Leach	
890-8263-4	CS-4	Soluble	Solid	DI Leach	
890-8263-5	SW-1	Soluble	Solid	DI Leach	
890-8263-6	SW-2	Soluble	Solid	DI Leach	
890-8263-7	SW-3	Soluble	Solid	DI Leach	
MB 880-111509/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-111509/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-111509/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-8263-1 MS	CS-1	Soluble	Solid	DI Leach	
890-8263-1 MSD	CS-1	Soluble	Solid	DI Leach	

### Analysis Batch: 111525

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-8263-1	CS-1	Soluble	Solid	300.0	111509
890-8263-2	CS-2	Soluble	Solid	300.0	111509
890-8263-3	CS-3	Soluble	Solid	300.0	111509
890-8263-4	CS-4	Soluble	Solid	300.0	111509
890-8263-5	SW-1	Soluble	Solid	300.0	111509
890-8263-6	SW-2	Soluble	Solid	300.0	111509
890-8263-7	SW-3	Soluble	Solid	300.0	111509
MB 880-111509/1-A	Method Blank	Soluble	Solid	300.0	111509
LCS 880-111509/2-A	Lab Control Sample	Soluble	Solid	300.0	111509

**Eurofins Carlsbad** 

# **QC Association Summary**

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

## HPLC/IC (Continued)

## Analysis Batch: 111525 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-111509/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	111509
890-8263-1 MS	CS-1	Soluble	Solid	300.0	111509
890-8263-1 MSD	CS-1	Soluble	Solid	300.0	111509

**Eurofins Carlsbad** 

Page 117 of 134

Job ID: 890-8263-1 SDG: Lea County, NM

## Lab Chronicle

Initial

Amount

5.03 g

5 mL

9.99 g

1 uL

5.05 g

Dil

1

1

1

1

1

Factor

Run

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Leach

Analysis

Prep

Batch

5035

8021B

Total BTEX

8015NM Prep

8015 NM

8015B NM

DI Leach

300.0

Method

## Client Sample ID: CS-1 Date Collected: 06/03/25 08:25 Date Received: 06/03/25 11:48

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Job ID: 890-8263-1 SDG: Lea County, NM

Lab

EET MID

## Lab Sample ID: 890-8263-1 Matrix: Solid

Analyst

MNR

Prepared

or Analyzed

06/04/25 09:42

06/04/25 13:31 MNR

06/04/25 13:31 SM

06/05/25 09:34 AJ

06/04/25 12:24 FC

06/04/25 13:05 SI

06/04/25 22:37 CH

06/05/25 09:34 TKC

Batch

Number

111474

111458

111537

111617

111501

111564

111509

111525

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

# 9 10

Lab Sample ID: 890-8263-2 Matrix: Solid

Lab Sample ID: 890-8263-3

Lab Sample ID: 890-8263-4

Matrix: Solid

Client Sample ID: CS-2 Date Collected: 06/03/25 08:35 Date Received: 06/03/25 11:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	111474	06/04/25 09:42	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	111458	06/04/25 13:52	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			111537	06/04/25 13:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			111617	06/05/25 10:55	AJ	EET MID
Total/NA	Prep	8015NM Prep			9.98 g	10 mL	111501	06/04/25 12:24	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	111564	06/05/25 10:55	TKC	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	111509	06/04/25 13:05	SI	EET MID
Soluble	Analysis	300.0		1			111525	06/04/25 22:59	СН	EET MID

### Client Sample ID: CS-3 Date Collected: 06/03/25 08:45 Date Received: 06/03/25 11:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	111474	06/04/25 09:42	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	111458	06/04/25 14:12	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			111537	06/04/25 14:12	SM	EET MID
Total/NA	Analysis	8015 NM		1			111617	06/05/25 11:10	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	111501	06/04/25 12:24	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	111564	06/05/25 11:10	TKC	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	111509	06/04/25 13:05	SI	EET MID
Soluble	Analysis	300.0		1			111525	06/04/25 23:06	СН	EET MID

#### Client Sample ID: CS-4 Date Collected: 06/03/25 08:55 Date Received: 06/03/25 11:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	111474	06/04/25 09:42	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	111458	06/04/25 14:33	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			111537	06/04/25 14:33	SM	EET MID

**Eurofins Carlsbad** 

Matrix: Solid

263-1 /, NM

## Lab Chronicle

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

300.0

### **Client Sample ID: CS-4** Date Collected: 06/03/25 08:55 Date Received: 06/03/25 11:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared	
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst
Total/NA	Analysis	8015 NM		1			111617	06/05/25 11:26	AJ
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	111501	06/04/25 12:24	FC
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	111564	06/05/25 11:26	TKC
Soluble	Leach	DI Leach			4.99 g	50 mL	111509	06/04/25 13:05	SI

1

#### Client Sample ID: SW-1 Date Collected: 06/03/25 09:05 Date Received: 06/03/25 11:48

Analysis

Soluble

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	111474	06/04/25 09:42	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	111458	06/04/25 14:53	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			111537	06/04/25 14:53	SM	EET MID
Total/NA	Analysis	8015 NM		1			111617	06/05/25 11:43	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	111501	06/04/25 12:24	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	111564	06/05/25 11:43	TKC	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	111509	06/04/25 13:05	SI	EET MID
Soluble	Analysis	300.0		1			111525	06/04/25 23:35	CH	EET MID

#### **Client Sample ID: SW-2** Date Collected: 06/03/25 09:15

Date Received: 06/03/25 11:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	111474	06/04/25 09:42	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	111458	06/04/25 16:17	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			111537	06/04/25 16:17	SM	EET MID
Total/NA	Analysis	8015 NM		1			111617	06/05/25 11:59	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	111501	06/04/25 12:24	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	111564	06/05/25 11:59	TKC	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	111509	06/04/25 13:05	SI	EET MID
Soluble	Analysis	300.0		1			111525	06/04/25 23:42	СН	EET MID

#### **Client Sample ID: SW-3** Date Collected: 06/03/25 09:25 Date Received: 06/03/25 11:48

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	111474	06/04/25 09:42	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	111458	06/04/25 16:38	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			111537	06/04/25 16:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			111617	06/05/25 12:15	AJ	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	9.98 g 1 uL	10 mL 1 uL	111501 111564	06/04/25 12:24 06/05/25 12:15		EET MID EET MID

**Eurofins Carlsbad** 

Page 119 of 134

Job ID: 890-8263-1 SDG: Lea County, NM

## Lab Sample ID: 890-8263-4 Matrix: Solid

Lab Sample ID: 890-8263-5

Lab Sample ID: 890-8263-6

Lab Sample ID: 890-8263-7

06/04/25 23:28 CH

111525

Lab

EET MID

EET MID

EET MID

EET MID

EET MID

Matrix: Solid

Matrix: Solid

Matrix: Solid

## Lab Chronicle

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-8263-1 SDG: Lea County, NM

## **Client Sample ID: SW-3** Date Collected: 06/03/25 09:25 Date Received: 06/03/25 11:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	5
Soluble	Leach	DI Leach			5.01 g	50 mL	111509	06/04/25 13:05	SI	EET MID	
Soluble	Analysis	300.0		1			111525	06/04/25 23:49	СН	EET MID	

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

## Lab Sample ID: 890-8263-7 Matrix: Solid

## **Accreditation/Certification Summary**

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-8263-1 SDG: Lea County, NM

## Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	m	Identification Number	Expiration Date	
exas	NELAP T104704400		T104704400	06-30-25	
The following analytes are included in this report, but for which the agency does not offer certification.				rity. This list may include analyte	
• •		•	ot certified by the governing author	ty. This list may include analyte	
• •		•	ot certified by the governing author Analyte	ty. This list may include analyte	
for which the agency	does not offer certification.		, , , ,	ty. This list may include analyte	

Page 121 of 134

10

## **Method Summary**

# Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-8263-1 SDG: Lea County, NM

Method	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
3015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
3015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
3015NM Prep	Microextraction	SW846	EET MID
OI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

#### Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

## **Sample Summary**

Client: Earth Systems Response and Restoration Project/Site: Seawolf 12 CTB 1

Job ID: 890-8263-1 SDG: Lea County, NM

.ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
390-8263-1	CS-1	Solid	06/03/25 08:25	06/03/25 11:48	2	
390-8263-2	CS-2	Solid	06/03/25 08:35	06/03/25 11:48	2	
390-8263-3	CS-3	Solid	06/03/25 08:45	06/03/25 11:48	2	5
390-8263-4	CS-4	Solid	06/03/25 08:55	06/03/25 11:48	2	
390-8263-5	SW-1	Solid	06/03/25 09:05	06/03/25 11:48	0-2	
390-8263-6	SW-2	Solid	06/03/25 09:15	06/03/25 11:48	0-2	
390-8263-7	SW-3	Solid	06/03/25 09:25	06/03/25 11:48	0-2	
						8
						9
						1
						1

Sample Identification   Matrix   Sampled   Depth (feet)   Open   % O   2   6   2   6   2   6   2   6   2   6   2   6   2   6   2   6   2   6   2   6   2   6   2   6   2   6   2   6   2   6   2   6   2   2   6   2   2   6   1   X   X   X   1   1   X   X   X   1   1   X   X   X   1   1   X   X   X   1   1   X   X   2   2   2   2   2   2   2   2   2   2   2   2   1   X   X   X   1   1   X   X   X   1   1   X   X   X   1   1   X   X   X   1   1   X   X   1   1   X   X   X   1   1   X   X   X   1   1   X   X	Temperature Reading: -3.2     Orrected Time   Depth (feet)   Gr     Date   Time   Depth (feet)   Gr     Sampled   Sampled   Depth (feet)   Gr   Gr     6.3.25   8:35   2   Gr   G.3.25   8:45   2   Gr     6.3.25   8:45   2   Gr   G.3.25   9:05   0-2   Gr     6.3.25   9:15   0-2   Gr   G.3.25   9:25   0-2   Gr     6.3.25   9:25   0-2   Gr   Gr<	o (N) Temperatu Corrected Matrix Sampled S 6.3.25 S 6.3.25 Reduition of samples of the	Cooler Custody Seals:   Yes   No   (N/)   Term     Sample Custody Seals:   Yes   No   (N/)   Term     Total Containers:   Co   Co   Co     Sample Identification   Matrix   Si   Co     CS-1   S   Co   Si   Co     CS-2   S   Si   Co   Si   Co     CS-3   S   Si   Si   Co   Si   Co     SW-1   S   Si   Si   Si   Co   Si   Co
Na Sr TI	atture Reading:   ~ \$.2     ad Temperature:   ~ \$.2     5   8:25   2     5   9:05   0-2     5   9:15   0-2     5   9:25   0-2     5   9:25   0-2     8RCRA   13PPM   Texas     8 constitutes a valid purchase order from texas   sconstitutes a valid purchase order from texas     esch project and a charge of \$5 for each sech sech sech sech sech sech sech se	Matrix Correct Matrix Correct Samp S 6.3.2 S 6	Yes No     I Containers:   Yes No     I Containers:   CS-1     CS-1   CS-2     CS-2   CS-3     CS-4   SW-1     SW-1   SW-2     SW-2   SW-3     SW-3   SW-3     SW-4   SW-3     SW-5   SW-3     SW-6   A method (s) and Metal (s) to t     I:e Method (s) A minimum charge of \$86   SW-3
ab   1   ×   ×   A     ab   1   ×   ×   ×   Chlor     ab   1   ×   ×   ×   ×   K     ab   1   ×   ×   ×   ×   ×   K     ab   1   ×   ×   ×   ×   ×   ×   K     ab   1   ×   ×   ×   ×   ×   ×   K   K     ab   1   ×   ×   ×   ×   ×   ×   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K   K </th <th>Depth (feet)   2   2   2   2   2   2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-3   0-4   0-5   0-5   0-7</th> <th>Matrix Correct Matrix Samp S 6.3.2 S 6</th> <th>Yes No     I Containers:   Yes No     I Containers:   CS-1     CS-1   CS-2     CS-2   CS-3     CS-4   SW-1     SW-2   SW-2     SW-3   SW-3     Veral 200.7 / 6010   200.8 / 1     Wethod(s) and Metal(s) to to</th>	Depth (feet)   2   2   2   2   2   2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-2   0-3   0-4   0-5   0-5   0-7	Matrix Correct Matrix Samp S 6.3.2 S 6	Yes No     I Containers:   Yes No     I Containers:   CS-1     CS-1   CS-2     CS-2   CS-3     CS-4   SW-1     SW-2   SW-2     SW-3   SW-3     Veral 200.7 / 6010   200.8 / 1     Wethod(s) and Metal(s) to
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Depth (feet)   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   0-2   0-2   0-2	S S S S S S S Matrix	fication Yes
-   -   -   -   -   -   # 0   Cor     ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   × </td <td>Depth (feet) 2 2 2 2 2 2 2 0-2 0-2 0-2</td> <td>S S S S S S S Matrix</td> <td>fication Yes</td>	Depth (feet) 2 2 2 2 2 2 2 0-2 0-2 0-2	S S S S S S S Matrix	fication Yes
-   -   -   -   -   -   Cor     ×   ×   ×   ×   ×   ×   TPH -     ×   ×   ×   ×   ×   ×   Chlor     ×   ×   ×   ×   ×   ×   Chlor     ×   ×   ×   ×   ×   ×   BTEX     Hold   Image: State sta	Depth (feet)   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2	S S S S S Matrix	fication Yes
-   -   -   -   # 0   Cor     ×   ×   ×   ×   ×   ×   TPH -     ×   ×   ×   ×   ×   ×   Chlor     ×   ×   ×   ×   ×   K   BTEX     -   -   -   -   -   Hold     -   -   -   -   -   -     -   -   -   -   -   -     -   -   -   -   -   -     -   -   -   -   -   -     -   -   -   -   -   -     -   -   -   -   -   -     -   -   -   -   -   -     -   -   -   -   -   -     -   -   -   -   -   -     -   -   -   -   -   -     -   -   -   -   -   -     -	Depth (feet)	S S S S Matrix	Fication
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	) <u>3</u> , 2 1 <u>3</u> , 0 Depth (feet) 2 2 2 2 2 2 2	S S S S S S S S S S S S S S S S S S S	fication
⊥   ⊥   ⊥   # 0     ×   ×   ×   TPH -     ×   ×   ×   Chlor     ×   ×   ×   BTEX     Hold   24 Hr     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I   I     I </td <td>2 2 2 2 2</td> <td>Matrix S</td> <td>Fication Yes</td>	2 2 2 2 2	Matrix S	Fication Yes
Image: state of the state o	) 3. 2 1 3. 0 Depth (feet) 2	Matrix S	Yes Fication
# 0 Cor TPH - Chlor BTEX Hold 24 Hr	- 3.0 Depth (feet)	Matrix S	rication
# 0 Cor TPH - Chior BTEX Hold 24 Hr	- 3. 2 - 3. 0 Depth (feet)	N/A Matrix	: Yes
nt NIV ide Ru		NA	Yes
-NM		NA	Yes
		NIA	Yes
P	Correction Factor: 1 - rs. 7.		
		S	act: Ye
	No Wet Ice: Yes No	(Yes	SAMPLE RECEIPT Temp Blank:
ters	received by	20	
	TAT starts the day received by the lab,	Santiago Giron	Name:
	Due Date: Standard TAT	Lea County, NM	
Code None: NO DI Water: H20	A Routine Rush	2778	Project Number:
ervativ	T	Seawolf 12 CTB 1	
	Email: gmoreno@earthsys.net		Phone: 832-541-7719
	City, State 21P:	07788	ate ZIP:
	Address:	e Ct.	
	Company Name:	RAR	y Name:
Devon Energy	Company Namo:	000	
Jim Raley Work Order Con	Bill to: (if different)	3	Project Manager: Gilbert Moreno
Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 www.xenco.com Page	Но		
		Xenco	X
Midand TX /432) 704-5440 San Antonio TX /210) 509-3334 Work (		Environment Testing	CHICITIS
Chain of Custody			Aurofine

Released to Imaging: 6/23/2025 3:33:55 PM

4 5 6

## Login Sample Receipt Checklist

Client: Earth Systems Response and Restoration

Login Number: 8263 List Number: 1 Creator: Lopez, Abraham

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 890-8263-1

SDG Number: Lea County, NM

List Source: Eurofins Carlsbad

Job Number: 890-8263-1 SDG Number: Lea County, NM

List Source: Eurofins Midland

List Creation: 06/04/25 10:16 AM

## Login Sample Receipt Checklist

Client: Earth Systems Response and Restoration

Login Number: 8263 List Number: 2 Creator: Rios, Minerva

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 127 of 134

QUESTIONS

Action 476725

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	476725
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

#### QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2500624157
Incident Name	NAPP2500624157 SEAWOLF 12 CTB 1 @ 0
Incident Type	Produced Water Release
Incident Status	Remediation Closure Report Received
Incident Facility	[fAPP2223534335] SEAWOLF 12 CTB 1

#### Location of Release Source

Site Name	SEAWOLF 12 CTB 1
Date Release Discovered	12/31/2024
Surface Owner	Federal

#### Incident Details

Please answer all the questions in this group.	
Incident Type	Produced Water Release
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	No
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

#### Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.	
Crude Oil Released (bbls) Details	Not answered.
Produced Water Released (bbls) Details	Cause: Equipment Failure   Flow Line - Production   Produced Water   Released: 43 BBL   Recovered: 42 BBL   Lost: 1 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Threads broke on piping connection. This allowed approx 42 bbls produced water to be released to lined secondary containment. Approx. 1 bbl of produced water was blown over containment wall due to high winds that day, impacting pad surface. Major release notification made via email.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 128 of 134

QUESTIONS, Page 2

Action 476725

QUESTIONS (continued)	

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	476725
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.	

Initial Response	
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.	
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
	Not answered. ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.	
I hereby agree and sign off to the above statement	Name: James Raley Title: EHS Professional Email: jim.raley@dvn.com Date: 06/20/2025

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

**QUESTIONS** (continued)

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	476725
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

#### QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 51 and 75 (ft.)
What method was used to determine the depth to ground water	NM OSE iWaters Database Search
Did this release impact groundwater or surface water	Νο
What is the minimum distance, between the closest lateral extents of the release an	id the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Between 1 and 5 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 500 and 1000 (ft.)
An occupied permanent residence, school, hospital, institution, or church	Between ½ and 1 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between ½ and 1 (mi.)
Any other fresh water well or spring	Between ½ and 1 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between 500 and 1000 (ft.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Between 1 and 100 (ft.)
Categorize the risk of this well / site being in a karst geology	Medium
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	No

#### Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the	e appropriate district office no later than 90 days after the release discovery date.	
Requesting a remediation plan approval with this submission	Yes	
Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination a	ssociated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.)		
Chloride (EPA 300.0 or SM4500 Cl B)	5250	
TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M)	0	
GRO+DRO (EPA SW-846 Method 8015M)	0	
BTEX (EPA SW-846 Method 8021B or 8260B)	0	
Benzene (EPA SW-846 Method 8021B or 8260B)	0	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed e which includes the anticipated timelines for beginning and completing the remediation.	fforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,	
On what estimated date will the remediation commence	05/30/2025	
On what date will (or did) the final sampling or liner inspection occur	06/03/2025	
On what date will (or was) the remediation complete(d)	06/16/2025	
What is the estimated surface area (in square feet) that will be reclaimed	800	
What is the estimated volume (in cubic yards) that will be reclaimed	70	
What is the estimated surface area (in square feet) that will be remediated	800	
What is the estimated volume (in cubic yards) that will be remediated	70	
These estimated dates and measurements are recognized to be the best guess or calculation at the to		

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Action 476725

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 130 of 134

QUESTIONS, Page 4

Action 476725

QUESTIONS (continued)	
Operator: DEVON ENERGY PRODUCTION COMPANY, LP 333 West Sheridan Ave.	OGRID: 6137
Oklahoma City, OK 73102	Action Number: 476725
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

#### QUESTIONS

Remediation Plan (continued)

Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.	
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:	
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes	
Which OCD approved facility will be used for off-site disposal	HALFWAY DISPOSAL AND LANDFILL [FEEM0112334510]	
<b>OR</b> which OCD approved well (API) will be used for <b>off-site</b> disposal	Not answered.	
OR is the off-site disposal site, to be used, out-of-state	Not answered.	
<b>OR</b> is the <b>off-site</b> disposal site, to be used, an NMED facility	Not answered.	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.	
(In Situ) Soil Vapor Extraction	Not answered.	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.	
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.	
OTHER (Non-listed remedial process)	Not answered.	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: James Raley Title: EHS Professional Email: iim raley@dvn.com	

Email: jim.raley@dvn.com Date: 06/20/2025

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)
-----------------------

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	476725
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

#### QUESTIONS

Deferral Requests Only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of	the following items must be confirmed as part of any request for deferral of remediation.
Requesting a deferral of the remediation closure due date with the approval of this submission	Νο

Page 131 of 134

Action 476725

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Page 132 of 134

Action 476725

**QUESTIONS** (continued)

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	476725
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	468866
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	06/03/2025
What was the (estimated) number of samples that were to be gathered	8
What was the sampling surface area in square feet	1000

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	800	
What was the total volume (cubic yards) remediated	70	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	800	
What was the total volume (in cubic yards) reclaimed	70	
Summarize any additional remediation activities not included by answers (above)	The Site was remediated according to Site Closure Criteria and has been backfilled with clean, locally sourced material.	
The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.		
I berefy agree and sign off to the above statement	Name: James Raley Title: EHS Professional	

	Name: James Raley
I hereby agree and sign off to the above statement	Title: EHS Professional
Thereby agree and sign on to the above statement	Email: jim.raley@dvn.com
	Date: 06/20/2025

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# **State of New Mexico** Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

**QUESTIONS** (continued)

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	476725
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	

Reclamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	
Requesting a reclamation approval with this submission	No

Action 476725

Page 133 of 134

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	476725
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

#### CONDITIONS

Created By	Condition	Condition Date
scwells	None	6/23/2025

CONDITIONS

Page 134 of 134

Action 476725