E N S O L U M

June 17, 2025

New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: 2025 Closure Request Addendum James Ranch Unit #017 Incident Number NAB1627451198 Eddy County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of XTO Energy, Inc. (XTO), has prepared the following 2025 Closure Request Addendum (2025 Addendum) to accompany the Closure Request dated February 5, 2019 and Closure Reqest Addendum dated November 30, 2023 (2023 Addendum). This 2025 Addendum summarizes additional delineation activities at the James Ranch Unit #017 (Site) in response to the denial of the 2023 Addendum by the New Mexico Oil Conservation Division (NMOCD). In the denial, NMOCD indicated that additional horizontal delineation of waste-containing soil was required. Based on the additional delineation activities described below, XTO is submitting this 2025 Addendum and again requesting closure for Incident Number NAB1627451198.

RELEASE BACKGROUND

The Site is located in Unit F, Section 6, Township 23 South, Range 31 East, in Eddy County, New Mexico (32.33518°, -103.81928°) and is associated with oil and gas exploration and production operations on Federal land managed by the Bureau of Land Management (BLM).

On September 19, 2016, a buried water dump line from the heater-treater to a produced water tank developed a hole due to corrosion. Approximately 22 barrels (bbls) of produced water were released onto the well pad and into the pasture west of the tank battery. The buried water dump line was isolated and clamped until repairs could be made. Approximately 15 bbls of produced water were recovered with a vacuum truck. The release affected approximately 50 square feet of pasture west of the tank battery and 2,600 square feet of the caliche well pad. XTO reported the release to the NMOCD on a Release Notification and Corrective Action Form C-141 (Form C-141) on September 28, 2016. The release was assigned Remediation Permit Number 2RP-3919 and Incident Number NAB1627451198.

Between October and November 2018, assessment and delineation activities were conducted at the Site to assess for the presence or absence of impacts to soil resulting from the September 19, 2016, produced water release. Delineation soil samples were collected from sampling locations SS01 through SS05, PH01, and PH02 at depths ranging from 1 foot to 3 feet below ground surface (bgs). Laboratory analytical results for the delineation soil samples reported chemicals of concern (COC) concentrations were compliant with Closure Criteria so closure was requested for Incident Number NAB1627451198. Additional details regarding the delineation soil sampling activities can be referenced in the original February 5, 2019 *Closure Request*.

XTO Energy, Inc. Closure Request Addendum James Ranch Unit 17

On February 24, 2023, NMOCD denied the *Closure Request* for Incident Number NAB1627451198 for the following reasons:

- Depth to water determination inadequate. If nearby wells are used, it is preferable if they are situated within ½-mile of the release, the water level information is no more than 25 years old, and well construction information is provided.
- Delineation at SS05 is incomplete. Chloride concentrations increase with depth. This area will need to be delineated to 600 mg/kg or a soil boring will need to be completed in order to determine depth to groundwater.

New depth to groundwater data became available following the submittal of the original 2019 *Closure Request.* A borehole was drilled approximately 0.48 miles west of the Site in May 2019. The borehole was advanced to a depth of 150 feet bgs via sonic drilling rig and permitted as New Mexico Office of the State Engineer (NMOSE) well C-04325. The borehole was left open for over 72 hours to allow for potential slow infill of groundwater. After the 72-hour waiting period without observing groundwater, it was confirmed that groundwater was greater than 150 feet bgs. Based on confirmed depth to groundwater greater than 100 feet bgs within 0.5 miles of the Site, the Table I Closure Criteria identified in the original *Closure Request* were applicable and appropriate for protection of groundwater at this Site. This new depth to groundwater was summarized and closure was requested in the *2023 Addendum* dated November 30, 2023. The *2023 Addendum*, including the original *Closure Request*, is attached to this letter as Appendix A.

NMOCD denied the 2023 Addendum for Incident Number NAB1627451198 on January 18, 2024 for the following reason:

• Horizontal delineation must meet the requirements of the reclamation standards 19.15.29.13 NMAC (600 mg/kg Cl, 100 mg/kg TPH, 50 mg/kg BTEX, 10 mg/kg benzene) or OCD approved "background" values for the upper 4 feet of the impacted area.

CLOSURE CRITERIA

The Site is in a medium potential karst designation area; however, the release and remedial activities occurred prior to December 1, 2024, the effective date of the NMOCD published *Karst Potential Occurrence Zones Public Notice* and depth to groundwater has been confirmed to be greater than 100 feet below the surface. Based on the results of the Site Characterization presented in the *2023 Addendum*, the following NMOCD Table I Closure Criteria were applied:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 20,000 mg/kg

A reclamation requirement of 600 mg/kg chloride and 100 mg/kg TPH applies to the top 4 feet of areas to be immediately reclaimed. Additionally, impacts on-pad must be delineated to the reclamation

XTO Energy, Inc. Closure Request Addendum James Ranch Unit 17

requirement, per 19.15.29.13.D (1) NMAC for the top 4 feet of areas that will be reclaimed following Site decommissioning.

ADDITIONAL DELINEATION ACTIVITIES

In response to NMOCD's denial of the *2023 Addendum*, Ensolum personnel arrived onsite on January 22, 2024, to laterally delineate chloride impacted soil reported at sampling location SS05 to the reclamation requirement of 600 mg/kg. One additional soil sample (SS06) was collected at a depth of 0.5 feet bgs north of SS05. On January 31, 2024, two additional soil samples were collected from SS06 at depths of 2 feet and 3 feet bgs using a Hydro-vac. Soil was field screened for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride using Hach® chloride QuanTab® test strips. The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of the following COCs: BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH- GRO, TPH- DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

The soil sample location was mapped utilizing a handheld Global Positioning System (GPS) unit. The delineation soil sampling locations are depicted on Figure 2. A boring log describing lithology and field screening results reported from SS06 is attached in Appendix B. A photographic log of sampling activities is included as Appendix C.

LABORATORY ANALYTICAL RESULTS

Following soil sampling activities, laboratory analytical results confirmed that waste-containing soil was defined to the reclamation requirement as requested by NMOCD in the denial responses. Soil analytical results are below the appropriate Closure Criteria on-pad and in the pasture west of the release. The current and historical laboratory analytical results are summarized on Table 1, and the 2024 laboratory analytical reports are included in Appendix D.

CLOSURE REQUEST

Soil sampling activities were completed at the Site to assess for the presence or absence of impacts to soil resulting from the September 19, 2016, produced water release. Based on soil sample laboratory analytical results compliant with the Closure Criteria on-pad and the reclamation requirement in samples collected from the top four feet of the pasture area, no further remediation was required. Following the soil sampling activities conducted in 2024, approximately 750 square feet of waste-containing soil was delineated within the top 4 feet of soil and present at sample location SS05. Following Site decommissioning, an estimated 110 cubic yards of waste-containing soil will be reclaimed. The presence of the waste-containing soil present on-pad does not cause an imminent risk to human health, the environment, or groundwater. XTO will reclaim this soil reporting COC concentrations exceeding reclamation requirement but below Closure Criteria during final Site reclamation.

Initial response efforts and natural attenuation have mitigated impacts at this Site. Depth to groundwater has been confirmed to be greater than 100 feet bgs within 0.5 miles of the Site and no other sensitive receptors were identified near the release extent. XTO has met all conditions requested by the NMOCD and believes the remedial actions completed are protective of human health, the environment, and groundwater. As such, XTO respectfully requests closure for Incident Number NAB1627451198.

XTO Energy, Inc. Closure Request Addendum James Ranch Unit 17

If you have any questions or comments, please contact Ms. Tacoma Morrissey at (337) 257-8307 or tmorrissey@ensolum.com.

Sincerely, Ensolum, LLC

hat hat

Katherine Kahn, P.G. Senior Managing Geologist

Mouissey

Tacoma Morrissey, MS Associate Principal

cc: Colton Brown, XTO Kaylan Dirkx, XTO Bureau of Land Management

Appendices:

- Figure 1 Site Receptor Map
- Figure 2 Delineation Soil Sample Locations
- Table 1Soil Sample Analytical Results
- Appendix A November 30, 2023 Closure Request Addendum
- Appendix B Lithologic/Soil Sampling Log (2024)
- Appendix C Photographic Log (2024)
- Appendix D Laboratory Analytical Reports (2024)

.

FIGURES

Released to Imaging: 6/24/2025 3:22:25 PM

Received by OCD: 6/18/2025 9:49:30 AM

Page 6 of 178

Received by OCD: 6/18/2025 9:49:30 AM

Released to Imaging: 6/24/2025 3:22:25 PM

TABLE

.

ENSOLUM

				SOIL SAMPLE James XTC	TABLE 1 ANALYTICAL s Ranch Unit 1) Energy, Inc. unty, New Me:	7				
Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I C	losure Criteria (NMAC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	20,000
				Delinea	tion Soil Sampl	es		•		
SS01	10/05/2018	2	<0.00200	<0.00200	<14.9	<14.9	<14.9	<14.9	<14.9	88.6
SS01A	10/05/2018	3	<0.00201	<0.00201	<15.0	<15.0	<15.0	<15.0	<15.0	208
SS02	10/05/2018	1	<0.00202	<0.00202	<15.0	<15.0	<15.0	<15.0	<15.0	<4.97
SS02A	10/05/2018	3	<0.00200	<0.00200	<15.0	<15.0	<15.0	<15.0	<15.0	249
SS03	10/05/2018	1	<0.00199	<0.00199	<15.0	<15.0	<15.0	<15.0	<15.0	423
SS03A	10/05/2018	3	<0.00198	<0.00198	<15.0	<15.0	<15.0	<15.0	<15.0	508
SS04	10/05/2018	2	<0.00201	<0.00201	<15.0	<15.0	<15.0	<15.0	<15.0	311
SS04A	10/05/2018	3	<0.00201	<0.00201	<15.0	<15.0	<15.0	<15.0	<15.0	587
SS05	10/08/2018	2	<0.00201	<0.00201	<15.0	<15.0	<15.0	<15.0	<15.0	1,070
SS05A	10/08/2018	3	<0.00202	<0.00202	<14.9	<14.9	<14.9	<14.9	<14.9	2,050
SS06	01/22/2024	0.5	<0.00199	<0.00398	<50.4	79.0	<50.4	79.0	79.0	52.7
SS06A	01/31/2024	2	<0.00201	<0.00402	<49.5	<49.5	<49.5	<49.5	<49.5	218
SS06B	01/31/2024	3	<0.00200	<0.00401	<50.5	<50.5	<50.5	<50.5	<50.5	334
PH01	11/01/2018	1	<0.00202	<0.00202	<15.0	<15.0	<15.0	<15.0	<15.0	206
PH01A	11/01/2018	3	<0.00201	<0.00201	<15.0	<15.0	<15.0	<15.0	<15.0	21.1
PH02	11/01/2018	1	<0.00199	<0.00199	<15.0	<15.0	<15.0	<15.0	<15.0	<5.00
PH02A	11/01/2018	3	<0.00198	<0.00198	<15.0	<15.0	<15.0	<15.0	<15.0	<4.99

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

Concentrations in **bold** exceed the NMOCD Table I Closure Criteria or reclamation requirement where applicable.

GRO: Gasoline Range Organics DRO: Diesel Range Organics ORO: Oil Range Organics TPH: Total Petroleum Hydrocarbon NMAC: New Mexico Administrative Code

APPENDIX A

November 30, 2023 Closure Request Addendum

ENSOLUM

November 30, 2023

New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Closure Request Addendum James Ranch Unit 17 Battery Incident Number NAB1627451198 Eddy County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of XTO Energy, Inc. (XTO), has prepared the following addendum to the original *Closure Request* dated February 5, 2019. This addendum provides an update to the depth to groundwater determination activities at the James Ranch Unit 17 Battery (Site) in response to the denial of the February 5, 2019 *Closure Request* by the New Mexico Oil Conservation Division (NMOCD). In the denial, NMOCD indicated that the depth to groundwater assessment was not sufficient. Based on the additional depth to groundwater determination activities described below, XTO is submitting this *Closure Request Addendum* and requesting closure for Incident Number NAB1627451198.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit F, Section 6, Township 23 South, Range 31 East, in Eddy County, New Mexico (32.235007°, -103.819183°) and is associated with oil and gas exploration and production operations on Federal land managed by the Bureau of Land Management (BLM).

On September 19, 2016, a buried water dump line from the heater-treater to a produced water tank developed a hole due to corrosion. Approximately 22 barrels (bbls) of produced water were released onto the well pad and into the pasture west of the tank battery. The buried water dump line was isolated and clamped until repairs could be made. Approximately 15 bbls of produced water were recovered with a vacuum truck. The release affected approximately 50 square feet of pasture west of the tank battery and 2,600 square feet of the caliche well pad. XTO reported the release to the NMOCD on a Release Notification and Corrective Action Form C-141 (Form C-141) on September 28, 2016. The release was assigned Remediation Permit Number 2RP-3919 and Incident Number NAB1627451198.

BACKGROUND

The original *Closure Request* detailed site characterization according to Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC). Results from the site characterization are presented on page 3 of the Form C-141, Site Assessment/Characterization. Potential site receptors are identified on Figure 1. Based on the results of the Site Characterization, the following NMOCD Table I Closure Criteria (Closure Criteria) were applied:

• Benzene: 10 milligrams per kilogram (mg/kg)

Ensolum, LLC | Environmental, Engineering & Hydrogeologic Consultants 3122 National Parks Highway | Carlsbad, New Mexico 88220 | ensolum.com XTO Energy, Inc. Closure Request Addendum James Ranch Unit 17 Battery

- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 20,000 mg/kg

During October and November 2018, Site assessment and delineation activities were conducted at the Site to assess for the presence or absence of impacts to soil resulting from the September 19, 2016, produced water release. Closure was requested on February 5, 2019, based on laboratory analytical results for the delineation soil samples indicating benzene, BTEX, GRO/DRO, TPH, and chloride concentrations were compliant with the Site Closure Criteria. Additional details regarding the delineation soil sampling activities can be referenced in the original February 5, 2019 *Closure Request*.

On February 24, 2023, NMOCD denied the *Closure Request* for Incident Number NAB1627451198 for the following reasons:

- Depth to water determination inadequate. If nearby wells are used, it is preferable if they are situated within ½-mile of the release, the water level information is no more than 25 years old, and well construction information is provided.
- Delineation at SS05 is incomplete. Chloride concentrations increase with depth. This area will need to be delineated to 600 mg/kg or a soil boring will need to be completed in order to determine depth to groundwater.

The NMOCD preference for wells used for depth to groundwater determination to be no further than 0.5 miles away from the site with data less than 25 years old was not in place at the time of the original soil sampling and reporting activities. The original *Closure Request* was submitted on February 5, 2019, prior to the September 6, 2019, publication of the *Procedures for Implementation of the Spill Rule* guidance document that clarified the depth to groundwater determination preferences (Section IX.a.).

ADDITIONAL DEPTH TO GROUNDWATER DETERMINATION

New depth to groundwater data became available since the submittal of the original 2019 *Closure Request.* A borehole was drilled approximately 0.48 miles west of the Site during May 2019. The borehole was advanced to a depth of 150 feet below ground surface (bgs) via sonic drilling rig and was permitted as New Mexico Office of the State Engineer (NMOSE) well C-04325. The location of the borehole is presented on Figure 1. A field geologist logged and described soils continuously. The borehole lithologic/soil sampling log is included in Appendix A. The borehole was left open for over 72 hours to allow for potential slow infill of groundwater. After the 72-hour waiting period without observing groundwater, it was confirmed that groundwater was greater than 150 feet bgs. The borehole was properly abandoned using drill cuttings and hydrated bentonite chips. All wells used for depth to groundwater determination are depicted on Figure 1 and the referenced well record is included in Appendix A.

Based on confirmed depth to groundwater greater than 100 feet bgs within 0.5 miles of the Site, the Table I Closure Criteria identified in the original *Closure Request* are applicable and appropriate for protection of groundwater at this Site. Soil samples SS05@2' and SS05@3' are located on the active well pad and chloride concentrations of 1,070 mg/kg and 2,050 mg/kg, respectively, are well below the confirmed Site Closure Criteria for chloride of 20,000 mg/kg. Based on the confirmed depth to groundwater, no further delineation is warranted at the SS05 sample location.

XTO Energy, Inc. Closure Request Addendum James Ranch Unit 17 Battery

CLOSURE REQUEST

Soil sampling activities were completed at the Site to assess for the presence or absence of impacts to soil resulting from the September 19, 2016, produced water release. Based on soil sample laboratory analytical results compliant with the Site Closure Criteria and the reclamation requirement in samples collected from the top four feet of the pasture area, no further remediation was required. Initial response efforts and natural attenuation have mitigated impacts at this Site. Depth to groundwater has been confirmed to be greater than 100 feet bgs within 0.5 miles of the Site and no other sensitive receptors were identified near the release extent. XTO believes the remedial actions completed are protective of human health, the environment, and groundwater and respectfully requests closure for Incident Number NAB1627451198.

If you have any questions or comments, please contact Ms. Tacoma Morrissey at (337) 257-8307 or tmorrissey@ensolum.com.

Sincerely, Ensolum, LLC

Aimee Cole Senior Managing Scientist

cc: Garrett Green, XTO Tommee Lambert, XTO Bureau of Land Management

Appendices:

Figure 1Site Receptor MapAppendix AReferenced Well RecordsAppendix BClosure Request, February 5, 2019

Ushley L. ager

Ashley Ager, P.G. Program Director

FIGURES

.

Received by OCD: 6/18/2025 9:49:30 AM

Page 15 of 178

APPENDIX A

Referenced Well Records

			Ca	508 West risbad, N	onmenta Stevens ew Mexic ngineering	Street co 88220		Identifier MWOI Date 5/22/19 Project Name: RP Number: 2RP-3404, 2RP-3464, 2RP-3179 2RP-3179
		LITHO	LOGIC		SAMPL			Logged By: BEN BELILL Method San'c.
LatLong.	3353	39-103	827	697	GRO, DRO			PH, BTEX. Hole Diameter: 6.15" Total Depth: 150'
				0% error fa	ictor			
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type	Lithology/Remarks
D	<112	0.5	N	hwol		1 - - - 1'	(SP-SM)	Silty SAND, dry, brained, poorly graded, to -m., some vegeterion
D	2112	0.4	۲	niwo1.4	2	2'		
A	(u2	۱. خ	Ч	Antis	3	3'		
D	6112	0,3	٨	MUDIC		9-	CALICHE	CALICHE W/ Sund, day, It bon/ ton, pily carla, some A. red sond, roodor
P	Ku2	0.1	(V	AUID	5	5'		
0	4.2	0.5	۲	MWDIE	6	<u> </u> 6'		
0	1.12	0.4	Ч	MUDI F	7	7'		
Ø	لار	0.3	۲	MWIG	8	ç/		
0	423	0.[٢	MYDIH		5	SP	SAND #/ Calithe, dry, It bra/bin, fm, poroy graded, no olor
D	345	0.g	N	Mrci I	10	17'		SATA
D	345	3.1	N	MAC (J	11		SP-SM,	Silty Stud , Sme find silty priggedel, f m., no oder

Released to Imaging: 6/24/2025 3:22:25 PM

				Ca	508 Wes rlsbad, N	ronmenta t Stevens lew Mexic ingineering	co 88220			Identifier A	NWOl		e 5/22/19 Number 2RP-3464, 2RP-3
l			LITH	OLOG	IC / SO	IL BOR	2. A 10 March 10 M			Logged By: I	BEN BELILL	Me	thod
L	.at/Long					Field Scree GRO, MRO		ORIDES, TPH	I, BTEX,	Hole Diamete	er.	Tot	al Depth:
C	Comment	t All Chlo	oride test in	iclude a 6	0% error f	actor.							
	Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type			Litholog	gy/Remark	s
ŀ	D	4112	1,6	N	MWDIK	12	12'	SP-SM)	SA	ł			
	0					-	+		1				
	V	2112	2.8	M	MOLL	13	13'						
							ŧ.						
	D	112	4.9	N	multin	14 -	191						
			. 11			-							
	D	C112	4.8	N	MWOIN	15	15'						
	0	KUZ	1.1	N	MWOID	16	16						
	10						+						
	0	2112	0	N	Muolip	17	17'						
								V		1			
	P	an	4,1	N	muoj G	18	IS'	ML	SILT	r, dim,	benlind,	non pi	lestic, no
	0	lin	6.5	N	MUGR	19	-		t	do r			
	U		015				-						
	0	(150)	1.3	N	MWDIS	20	20'						
	~		,	10			+						
	Q	(150	9.2	N	MWOT	21	21'						
		-			-		1						
	P	(112	7.4	N	MUGU	22	n'						
		1000					†I						
	0	412	5,1	N	Muldiv	23	23						
						-				1			
1					t	_ 24	24	V		V			

Page 19 of 178

11 1	ironmental, Inc.		(ronment st Stevens New Mexi	s Street	0		Identifier MWD Project Name	Date: 5/22/9 RP Number 2RP-3464, 2RP-317
	25		Con	npliance · E	ingineering	g · Remed	liation		JRU 10	2RP-3243
		LITH	IOLO	GIC / SO					Logged By: BEN BELILL	Method
Lat/Lo	ong.				Field Scree GRO, MRO			PH, BTEX,	Hole Diameter	Total Depth
Comm	ent All Chl	loride test	include a	a 60% error f	actor					
Moisture	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)		Soil/Rock Type		Lithology	Remarks
D	KIIZ	6.5	N	MWSI M	24	24	ML	544		
Ð	Cur	4.6	N	Mwoi X	25	251				
ρ	Kin	5.1	N	muci ¥	26	26'				
D	Lin	9.4	N	MWOI Z	27	27'				
0	e li t	0.8	N	onue 1 9A	28	er				
D	6112	1.2	N	mual AB	29	29				
٥	5112	39	N	mwo lAc	30	70				
D	<112	0.6	N	MUDIAC	31	31				
Þ	<112	30	N	MUSI, AE	32	32				
P	411Z	3.3	N	MWOIAF	33	33				
D	(112	0.0	N	MW014G	34	34				
	21120	.0	\sim	mwoi Att	35	35				
					36	₿¥.			1	

LT Environ	Properties, Inc.		Ca	508 Wes rlsbad, N	r onmenta t Stevens lew Mexic ingineering	Street to 88220		Identifier: MWD Project Name: JRU 10	Date 5/22/4 - 5/23/4 RP Number 2RP-3464, 2RP-317 2RP-3243
		LITH	DLOG		IL BORI			Logged By: BEN BELILL	Method.
Lat/Long				C. 44	GRO, MRC			Hole Diameter 6.15"	Total Depth:
Commen	t All Chic	oride test in	clude a 6	50% error f	actor.				
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type	Litholog	y/Remarks
0	(172	1.0	M	Muel A	F 36]	36	CL 5.144	CLAY, dry, red	1 bra, low plasticity
D	4112	0.0	N	MWDI A	5 ^{,37}	37	19	odor.	
Ø	012	1.5	N	Mawal A	<i>(</i> ⊯ 38	38			
D	6/12	6.0	N	mwol A	LL 39	38			
D	2112	0.0	N	MWOIA	fm 40 _	40			
a	KIIZ	0-0	N	Mwold	¥1	41			
Ø	6112	1.4	N	mwol /	40 42	42			
9	(IIZ	2.8	V	mulai A	¢ 43	43			
۵	KII Z	1.8	N	MUDI	AQ 44	44			
P	KIIZ	2.5	N	Mub()	4R 45	43			
٥	e] 2	1.9	N	Musli	9 5 46	46			
9	5112	2.0	N	muel +	T 47	47			

			Ca	508 Wes Irlsbad, I	ronmenta st Stevens New Mexic Engineering	Street 88220		Identifier MW 2 Project Name: JRU 10	Date: 5/2 3/14 RP Number: 2RP-3464, 2RP-3 2RP-3243
-		LITHO	DLOG	IC / SO	IL BORI	NG LOO	3	Logged By: BEN BELILL	Method:
Lat/Long	5				A STATE OF A STATE		ORIDES, TPH, BTH	X, Hole Diameter	Total Depth.
Commen	All Chlo	ride test in	clude a 6	50% error 1	GRO, MRC), and DRO		6.15"	
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type	Litholog	gy/Remarks
0	Linz	0.3	N	MW0 (A	48 1	248	CL Sil	ty CUPIY, dry, in	ed /bin, low plasticity
D	(112	1.3	N	MWO! A	✓ 49 _	44	5.7	by CLAY W/ Call	me, dry, red/brn, lo
D	<112	1.2	N	Mus (A	₩ 50	50	\$7	grand, is dor ty CLAY dry, N	prly ensid ton calline ad/bra, low plastic. A
0	lin	1.2	N	MUDIA	× 51	51		1. edsr	
P					× 52				
P	4112	1.5	۲	musli	4 2 53	53			
					SA 54				
Q	lin	0.3	N	Muol	0 55	55			
0	(117	2,0	N	muol i	BC 56	Sb			
þ	kur	2.9	Ņ	MWOI	5 57	57			
					SE 58				
Q	4112	2.3	N	mys) (F 59	54			
					60	+			

	U Environ			Ca	508 Wes rlsbad, N	ronmenta It Stevens New Mexic Engineering	Street		Identifier: MUDOL Project Name: JRU 10	Date: 5/23/19 RP Number: 2RP-3179, 2RP-3464, 2RP-5243
			LITHO	DLOG	IC / SO	IL BORI	NG LOO	3	Logged By: BEN BELILL	Method
	Lat/Long					Field Scree GRO, MRC		DRIDES, TPH, BTEX,	Hole Diameter:	Total Depth:
	Comment	All Chlo	ride test in	clude a 6	60% error f		, una Dico		1	
	Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type	Lithology	/Remarks
1	P	4112	28	N	mwold	G 60]	60	CL sil	ty CLAY, day, b astrictly, ro ad	inland, low
	0	K112	2.9	٢	MWD1 6	H 61	61		esticity, road	er.
545	P	<112	2.8	N	MURI (1 62	62			
	D	2112	3.4	N	Wm316	563	63			
	D	LUZ		N	WM01 1		iy			
	p	UIZ	4.7	N	mwal G	5 L 65	65			
	P	2112	4.5	Ν	mwol 3	▲ 66	66			
00	\$	KINZ	3.7	Ч	mus) i	×67	1.7			
	P	< 112	1.9	N	MHOIG	2 68	65			
	P	Zuz	1.)	N	purolo	P 69	69			
	0	cuz	2.3	λ	mublB	 ▲ 66 ▲ 66 ▲ 66 ▲ 67 ▲ 67 ▲ 68 <l< td=""><td>70</td><td></td><td></td><td></td></l<>	70			
	Ø	< 1.2	1.7	٨	multip	g 71	71			
						72	-			

LT Environ			Ca	508 Wes arlsbad, N	ronmenta It Stevens New Mexic Engineering	Street			Identifier MW ? Project Name: JRU 10	RP Number 2RP-3179, 2R	23/19 P-3464, 2RP-524
		LITH	OLOG	IC / SO	IL BOR				Logged By. BEN BELILL	Method	
Lat/Long					Field Scree GRO, MRO			H, BTEX,	Hole Diameter	Total Depth	
Commen	All Chic	oride test in	clude a d	50% error f		, and DRC					
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)		Soil/Rock Type		Lithole	ogy/Remarks	
ę	2112	3.(ч	Muo) (5 72	72	LL	Sih	A		
þ	Khz	1.0	N	MUOJ 1	773	73					
D	KIIZ	Id	2	prwo1 6	v 74	74					
D	2112	60	N	mwoll	₩75	75					
D	<112	5.6	N	uno l i	€₩76	76					
D	2112	3.4	1	mboll	\$ ¥ 77	- - -					
9	5112	1.1	M	mwol (3 Y 78	8-					
Ρ	243	1.2	N	mwolf	579	74					
						80					
					6 81						
Ð	<112	3.7	N	MHIC	C 82	28					
P	4112	37	N	muas (C	0 83	83					
					84	Ŧ	•		J		

			Ca	508 Wes Insbad, N	ronmenta It Stevens New Mexic Ingineering	Street			Identifier: Project Nam JRU 10	wo \ •	Date: 5/23/19 2RP-3179, 2RP-3464, 2RP-5	243
		LITHO	DLOG	IC / SO	IL BORI	NG LOO	G		Logged By:	BEN BELILL	Method:	-
at/Long:					Field Scree GRO, MRO			PH, BTEX,			Total Depth:	-
omment	All Chlo	ride test in	clude a 6	50% error f	actor.	D, and DRC		_				
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type			Lithology	y/Remarks	
0	6112	4.9	N	MWO 1 C	E 🛤 84/	84	LL	SAV	A			-
0	2112	1.5	N	MWOI L	F M 85	85				Q^{\prime}		
D	<112	J.)	N	Mw01C	G 🖿 84	84						
Ð	112	7.4	N	MWOLD	H 4 97	87						
)	<112	1,6	N	NW310	1 🗬 89	88						
Ø	6112	1.1	N	mro la	J 🖤 85							
					K @ 10	Ц						
	1.1	1	1.0		Loni	Į	CL	CLA S	silty Sa	LAY, dry,	It bin fredy low	
					M €92	11		pras	111191	no od or		
р	5112	1.4	N	mwo1 C	N 🗬 93	17						
					0 8 64	Ц						
P	412	0.8	N	Mwo) C	P 🖛95_	45			1			
						-	V			V		

Released to Imaging: 6/24/2025 3:22:25 PM

LT Environ	P unental, inc.			508 Wes	ronment st Steven	s Street			Identifier. MWb	Date: 5/23/19
2	51				Vew Mexi				Project Name: JRU 10	RP Number. 2RP-3179, 2RP-3464, 2RP-52
9	and the second se	2 0 mm			ngineerin					210 5179, 210 5104, 210 52
Lat/Long	2	LITHO	OLOG	SIC / SO	Field Scree			H. BTEX	Logged By: BEN BELILL Hole Diameter:	Method Total Depth:
	_	and the second in	dist.	con/	GRO, MR	O, and DRO			risie Blancier.	Total Depth.
Commen	at All Chlo	oride test in	clude a	60% error	factor.					
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type		Litholog	y/Remarks
P	Luz	1-4	Ν	MWOL C	Q 🏚 96]	96	CL	silty	CLAY Brala	ed, low plasticky,
0	Luz	4.2	N	mwold	R 19 97	47'		A *	PADT.	
0	2112	2.2	v	MWOIC	5 248	48				
٥	4117	1.8	N	mwdlo	1 D 12	f 12				
Q	Luz	1,1	N	unwol (0 • 10	2 100'				
0	<112	1,5	N	mwold	V 🌒 10	101				
D	¢17	0.4	N	MWDIC	⊆w ® 10 <u>9</u>	107				
Ø	112	1,4	N	Mwolc	ו(2)	173				
D	<112	1.6	N	mwalc	Y • 101	1.54				
ρ	6112	7,0	N	MNULC	Z O 105	105				
	<112	1.3	N	Mwolf	A 8106	106				
	112	0.6	ų	mule 10	56107	107				
				6	00101	-	X.			

			Ca	508 Wes rlsbad, N		al, Inc. 5 Street co 88220 g · Remedi			Identifier Identi	Date: 5 /23 / 9/5/ RP Number 2RP-3179, 2RP-3464, 2RP-524:
Lat/Long:	-	LITHO	DLOG	IC / SO	Field Scree	ING LOC ening: CHLC O, and DRC	ORIDES, T	PH, BTEX,	Logged By: BEN BELILL Hole Diameter	Method Total Depth:
Comment	All Chlo	ride test ind	clude a 6	0% error f		O, and DRC		3		
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)		Soil/Rock Type		Litholog	y/Remarks
D	2112	1.3	N	mutit	C 72108	168	LL	SAA		
D	くいて	D.3	Ν	MuelD	டு 73 (அ	101				
D	5112	0,6	~	nwal () E74 lio	110	20			
Ø	<)\1	0.6	N	Mubli) F 75 II,	- m				
D	2117	0.5	N	MWOI ()6 76 (1	2 112				
Ø	KIIZ	3.5	N		14 77 (1	+				
9	KIIZ	5.7	N	muoik	丁78 119	114				
D	K112	1.3	N	mwol (5 79	115				
0	<112	3.3	N	mweif	₹ 80	116				
D	<112	2.9	N	mwe(D	L 81	117				
D	(1) Z	3,3	N	MV01 ()*1 82	118				
9	Luc	4.8	٢	MUGI D	N 83	119				
					84	+	2			

5/0

LT Environ				508 Wes	ronment st Stevens New Mexi	s Street)			Date 5/29/14 - 6/3/1 RP Number 2RP-3404, 2RP-34
2	54		Comp	oliance · E	ngineering	g Remed	iation		RU 10	2RP-3179
	8	LITHO	LOGI	C / SOI	LSAMP				ogged By BEN BELILL	Method
Lat/Long	ŧ					ening: CHL	ORIDES, TPH		lole Diameter 15"	Total Depth
Commen	All Chlo	ride test in	clude a 6	50% error f		, unu mit.				
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type		Lithology	/Remarks
D	Luz	3.8	M	Mubi Do	120	120	42	SAA		
P	<112	3.1	N	MAN OF	121	121				
D	5112	12	~	Amos DO	122	222				
Ø	<112	0.4	N	Mins 1 Of	123	3				
0	KIIS	0.5	N	MW0 135	124	124				
- 0	5.2	0.6	Ν	prus 1	T125	175				
D	<112	0.8	δ	MY01 D	V 126	176				
0	5112	07	Ч	mwol i	√127	- 177				
D	5112	1.0	N	nwoi D	₩128	128				
9	KNZ	0.4	N	MUO D	x 129	125				
D	2112	0.5	N	WYOID	Y130	- 130				
D	5112	L.	N	muəld	₹ 131	131				
					132	-				

	LT Environ	mental, Inc.		Ca	508 Wes Insbad, M				Identifier MVD Project Name JRU 10	Date: 6/3/19 - 6/4/19 RP Number: 2RP-3404, 2RP-3464 2RP-3179
		3	LITHO	LOGI	C / SOI		LING LO	Carl Contractor of Carl II	Logged By: BEN BELILL	
	Lat/Long	2					o, and MRC		FEX, Hole Diameter: 6.15"	Total Depth:
	Commen	All Chlo	ride test in	clude a (50% error f					
	Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type	Lithole	ogy/Remarks
	0	(112	0.4	N	WHOI E	A 132	132	4	SUAVA	
	Ø	4112	٦.0	N	WWOI E	\$133 _	133			
	0	くいて	0,4	N	MWOIE	C134	134			
	D	Luc	0.9	Ŋ	MWO I E	0135	135			
	D	112	0.6	N	WADI	E136	136			
,	0	5112	0.7	μ	MUDIE	F 137	1,37			
00	D	612	1.D	Ν	MU0)E	6138	138		LAY WI gravel, o plasticity, no oc	dry, It bra/red, low
5	D	(112	0.1	N	MWOIE	H139	134			
Ð	D	5112	3.8	N	mrole	- 1140	140	ČL G	ABO silty CLAY plasticity, no	brown /red, low
5	D	112	3.5	N	MWOLE	J141	141			
D	Ø	LIIZ	3.1	N	MWDI E	¥ 142	142			
.5	D	5112	1.8	N	MNOIE	L143	143			
						-	Ħ		1	

Released to Imaging: 6/24/2025 3:22:25 PM

Ľ

LTEN	LT Environmental Inc.			Ca	508 Wes arlsbad, I	i ronment a st Stevens New Mexi Engineering	s Street co 88220	0	Identifier MWDL Project Name JRU 10	Date 6 / / 9 RP Number 2RP-3404, 2RP-346 2RP-3179
		1	LITHO	LOGI	C / SOI	LSAMP	LING LO	DG	Logged By: BEN BELILL	Method
Lat/L	.ong:	-				Field Scree	ning: CHL	ORIDES, TPH, BTEX,	Hole Diameter: 6.15"	Total Depth:
Com	ment	All Chlor	ride test in	clude a 6	50% error f	GRO, DRO), and MR	0	0.15	
Moisture	Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type	Litholog	y/Remarks
9		2112	3.5	N	WANE	m 🛛 🗌	144	CL S	NA	
t	0	<112	3,2	μ	mudoi E	N • _	145			
D		<112	2.7	N	WW01 E	0.	146			
D		<1172	3.1	N	WWOI E	80	- IN7			
1		(112	3.0	Ν	WNOIE	Q • _	ાપજ			
P		<11Z	1.8	μ	WA01 E	R• _	149			
D		(112	1.5	λ	MNOIE	50	150	1	-	
						7 7 8 9 10			Fore	e150
						11	-			

 \mathbf{k}_{i}

APPENDIX B

Closure Request, February 5, 2019

Released to Imaging: 6/24/2025 3:22:25 PM

LT Environmental, Inc.

3300 North "A" Street Building 1, Unit 103 Midland, Texas 79705 432.704.5178

February 5, 2019

Mr. Bradford Billings New Mexico Oil Conservation Division 1220 South St. Francis Drive, #3 Santa Fe, New Mexico 87505

RE: Closure Request James Ranch Unit 17 Battery Remediation Permit Number 2RP-3919 Eddy County, New Mexico

Dear Mr. Billings:

LT Environmental, Inc. (LTE), on behalf of XTO Energy, Inc. (XTO), presents the following report detailing delineation soil sampling activities at the James Ranch Unit 17 Battery (Site) in Unit F, Section 6, Township 23 South, Range 31 East, in Eddy County, New Mexico (Figure 1). The purpose of the soil sampling was to confirm impacted soil had been remediated after produced water was released into the area surrounding the processing equipment on the west side of the well pad.

On September 19, 2016, a buried water dump line from the heater treater to a produced water tank developed a hole due to corrosion. This caused 22 barrels (bbls) of produced water to be released onto the well pad and into the pasture west of the tank battery. The buried water dump line was isolated and clamped until repairs could be made, and the free-standing fluid was recovered with a vacuum truck. Approximately 15 bbls of produced water was recovered. The leak affected approximately 50 square feet of the pasture west of the tank battery and 2,600 square feet of the caliche well pad on location. XTO reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification and Corrective Action Form C-141 on September 28, 2016, and was assigned Remediation Permit (RP) Number 2RP-3919 (Attachment 1). The original C-141 incorrectly listed the latitude and longitude of the Site; it has been corrected to latitude 32.335180 and longitude -103.819280 on the final C-141, included as Attachment 1.

BACKGROUND

The release is included in the Compliance Agreement for Remediation for Historical Releases (Compliance Agreement) between XTO and the NMOCD effective November 13, 2018. The purpose of the Compliance Agreement is to ensure that reportable releases that occurred prior to August 14, 2018, where XTO is responsible for the corrective action, comply with Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC) as amended on

Billings, B. Page 2

August 14, 2018. The release is categorized as a Tier II site in the Compliance Agreement, meaning remediation of the release prior to August 14, 2018, the effective date of 19.15.29 NMAC. Based on the results of the confirmation soil sampling conducted, XTO is submitting this closure report and requesting no further action for this release event.

According to Section 12 of 19.15.29 NMAC, LTE applied Table 1, the *Closure Criteria for Soils Impacted by a Release*. Depth to groundwater at the Site is estimated to be greater than 100 feet below ground surface (bgs) based on the nearest water well data and known aquifer properties. The nearest permitted water well with depth to groundwater data is C02492, located about 0.86 miles southeast of the Site, with a depth to groundwater of 125 feet bgs and a total depth of 400 feet bgs. The elevation of the water well is 17 feet lower than the Site. The Site is greater than 1,000 feet from a water source and greater than 200 feet from a private domestic water source. The closest surface water to the Site is a dry wash located approximately 0.94 miles southwest. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine.

Based on these criteria, the following remediation action levels apply: 10 milligrams per kilogram (mg/kg) benzene; 50 mg/kg total benzene, toluene, ethylbenzene, and total xylenes (BTEX); 2,500 mg/kg total petroleum hydrocarbons (TPH); 1,000 mg/kg TPH-gasoline range organics (GRO) and TPH-diesel range organics (DRO); and 20,000 mg/kg chloride.

DELINEATION ACTIVITIES

On October 5 through October 8, 2018, LTE personnel were on site to analyze the lateral and vertical extent of impacted soil on the caliche pad in the release area via potholing using a hand auger (Figure 2). Soil sample locations were selected based on information provided on the initial Form C-141 and field observations. To direct delineation activities, the soil samples were screened for volatile aromatic hydrocarbons and chlorides using a photo-ionization detector (PID) and Hach[®] chloride QuanTab[®] test strips. Two delineation soil samples were collected from each sample location (SS01 through SS05) between 1 foot bgs and 3 feet bgs. The soil samples were placed directly into pre-cleaned glass jars, labeled with the sample location, date, time, sampler, method of analysis, and immediately placed on ice. The soil samples were shipped at 4 degrees Celsius (°C) under strict chain-of-custody procedures to Xenco Laboratories, Inc. (Xenco) in Midland, Texas, for analysis of BTEX by United States Environmental Protection Agency (USEPA) Method 8021B, TPH-GRO, TPH-DRO, and TPH-oil range organics (ORO) by USEPA Method 8015M/D, and chloride by USEPA Method 300.0.

On November 1, 2018, LTE personnel returned to the Site to further investigate vertical and horizontal impacts to soil in the pasture northwest of the well pad via potholing using a hand auger. LTE screened soil samples from two potholes using a PID and Hach[®] chloride QuanTab[®]

Billings, B. Page 3

test strips. Soil samples were collected from potholes PH01 and PH02 at both 1 foot bgs and 3 feet bgs (Figure 2). Laboratory analytical results indicated pothole soil samples from the well pad and surrounding pasture were compliant with the NMOCD benzene, BTEX, GRO/DRO, TPH, and chloride remediation action levels. Results are presented on Figure 2, and summarized in Table 1, and the complete laboratory analytical reports are included as Attachment 2.

ANALYTICAL RESULTS

Laboratory analytical results indicated all soil samples were compliant with the NMOCD sitespecific remediation action level for benzene, total BTEX, TPH, GRO/DRO, and chloride. There were no detectable concentrations of BTEX or TPH in any of the soil samples. Chloride ranged from below the detection limit to 2,050 mg/kg in soil samples collected on the well pad and from below the detection limit to 206 mg/kg in soil samples collected in the pasture.

CONCLUSIONS

Laboratory analytical results for final confirmation soil samples indicate that BTEX, TPH, and chloride concentrations are compliant with NMOCD remediation action levels. XTO requests no further action for release number 2RP-3919. An updated NMOCD Form C-141 is included in Attachment 1. A photographic log of the Site is included as Attachment 3 and soil sampling logs are included as Attachment 4.

If you have any questions or comments, please do not hesitate to contact Adrian Baker at (432) 887-1255 or <u>abaker@ltenv.com</u>.

Sincerely,

LT ENVIRONMENTAL, INC.

Iduin Baker

Adrian Baker Project Geologist

Kyle Littrell, XTO

Jim Amos, BLM

Mike Bratcher, NMOCD

Ashley L. ager

Ashley L. Ager, P.G. Senior Geologist

Attachments:

cc:

Billings, B. Page 4

Figure 1 Site Location Map

Figure 2 Soil Sample Locations

Table 1Soil Analytical Results

Attachment 1 Initial/Final NMOCD Form C-141 (2RP-3919)

Attachment 2 Laboratory Analytical Reports

Attachment 3 Photographic Log

Attachment 4 Soil Sample Logs

FIGURES

LT?

Released to Imaging: 6/24/2025 3:22:25 PM

Released to Imaging: 6/24/2025 3:22:25 PM

Received by OCD: 6/18/2025 9:49:30 AM

TABLES

TABLE 1 SOIL ANALYTICAL RESULTS

JAMES RANCH UNIT 17 BATTERY REMEDIATION PERMIT NUMBER 2RP-3919 EDDY COUNTY, NEW MEXICO XTO ENERGY, INC.

Sample Name	Sample Depth (feet bgs)	Sample Date	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	C6-C10 GRO (mg/kg)	C10-C28 DRO (mg/kg)		GRO and DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
SS01	2	10/05/2018	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<14.9	<14.9	<14.9	<14.9	<14.9	88.6
SS01A	3	10/05/2018	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<15.0	<15.0	<15.0	<15.0	<15.0	208
SS02	1	10/05/2018	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	<15.0	<15.0	<15.0	<15.0	<15.0	<4.97
SS02A	3	10/05/2018	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<15.0	<15.0	<15.0	<15.0	<15.0	249
SS03	1	10/05/2018	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<15.0	<15.0	<15.0	<15.0	<15.0	423
SS03A	3	10/05/2018	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	<15.0	<15.0	<15.0	<15.0	<15.0	508
SS04	2	10/05/2018	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<15.0	<15.0	<15.0	<15.0	<15.0	311
SS04A	3	10/05/2018	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<15.0	<15.0	<15.0	<15.0	<15.0	587
SS05	2	10/08/2018	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<15.0	<15.0	<15.0	<15.0	<15.0	1,070
SS05A	3	10/08/2018	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	<14.9	<14.9	<14.9	<14.9	<14.9	2,050
PH01	1	11/01/2018	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	<15.0	<15.0	<15.0	<15.0	<15.0	206*
PH01A	3	11/01/2018	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<15.0	<15.0	<15.0	<15.0	<15.0	21.1*
PH02	1	11/01/2018	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<15.0	<15.0	<15.0	<15.0	<15.0	<5.00*
PH02A	3	11/01/2018	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	<15.0	<15.0	<15.0	<15.0	<15.0	<4.99*
NMOCD Table 1 Closure Cri	teria		10	NE	NE	NE	50	NE	NE	NE	1,000	2,500	20,000

Notes:

bgs - below ground surface BTEX - benzene, toluene, ethylbenzene, and total xylenes mg/kg - milligrams per kilogram NE - not established NMOCD - New Mexico Oil Conservation Division DRO - diesel range organics GRO - gasoline range organics ORO - oil range organics

TPH - total petroleum hydrocarbons

< - indicates result is below laboratory reporting limits

Bold - indicates result exceeds the applicable regulatory standard

* - indicates sample was collected in area to be reclaimed after remediation is complete; closure criteria for chloride concentrations in the top 4 feet of soil is 600 mg/kg Table 1 - closure criteria for soils impacted by a release per NMAC 19.15.29 August 2018 NMAC - New Mexico Administrative Code

Received by OCD: 6/18/2025 9:49:30 AM

and the second					IL CON ARTESIA (Page 41
District I 625 N. French Dr., Hobbs, NM 88240			New Mex		SEP 2	8 2016		Form C-141
istrict II 11 S. First St., Artesia, NM 88210	Energy Mir	nerals	and Natura	l Resources				Revised August 8, 201
istrict III 00 Rio Brazos Road, Aztec, NM 87410	Oil C	onser	servation Division Submit 1 Copy to appropriate District Office in RECEIVED accordance with 19.15.29 NMAC.					
istrict IV	1220	South	St. Franc	is Dr.	NELE	TAED a	ceordance	with 13.15.29 NWAC
220 S. St. Francis Dr., Santa Fe, NM 87505	Sa	nta Fe	e, NM 875	05				
A . A	ase Notific	ation	n and Co	orrective .	Action			
11AB1627451198	ar and		OPERA	FOR		🛛 Initi	al Report	Final Repo
Name of Company: BOPCO, L.P.	KUD' 13'1		Contact: An		200			
Address: 522 W. Mermod, Suite 704 Carlsba Facility Name: James Ranch Unit 17 Batter				No. 575-887-7 be: Exploration		duction	_	
		- units		c. Exploration	and 110	**		00004
Surface Owner: Federal	Mineral O	wner:	Federal			APIN	o. 30-015	5-27784
			N OF RE		1-2			
Unit Letter Section Township Range F 6 23S 31E		North/ North	South Line	Feet from the 1930	East/V West	Vest Line	County Eddy	
	28 ac 1.1		f	Contraction of the			[Body	
Lati	itude_ <u>32.2350</u>			- <u>-103.81911</u>	55			
Type of Release Produced Water	NAT	URE	OF REL	Release 22 bl	ols	Volume	Recovered	15 bbls
Source of Release Heater Treater water li	ine		Date and L	lour of Occurre	nce	Date and	Hour of L	licover
	ine		9/19/2016	time unknown			6 approx	
Was Immediate Notice Given?	No 🛛 Not Red	quired	lf YES, To N/A	Whom?				
By Whom? N/A			Date and I			1		
Was a Watercourse Reached?	No		If YES, Vo N/A	olume Impacting	g the Wate	rcourse.		
			1					
f a Watercourse was Impacted, Describe Fully.*								
f a Watercourse was Impacted, Describe Fully.* $\sqrt{\Lambda}$								
V/A Describe Cause of Problem and Remedial Action								
V/A Describe Cause of Problem and Remedial Action Buried water dump line from heater treater to pro-		develo	ped hole due	to corrosion. L	ine was is	olated and	clamped	until repairs can be
V/A Describe Cause of Problem and Remedial Action		develo	ped hole due	to corrosion. L	ine was is	olated and	clamped	until repairs can be
WA Describe Cause of Problem and Remedial Action Buried water dump line from heater treater to pro- nade.	duced water tank	develo	ped hole due	to corrosion. L	ine was is	olated and	clamped	until repairs can be
WA Describe Cause of Problem and Remedial Action Buried water dump line from heater treater to pro- nade. Describe Area Affected and Cleanup Action Take The leak affected approximately 50 square feet of	duced water tank en.* f pasture west of t	the batte	ery location a					
WA Describe Cause of Problem and Remedial Action Buried water dump line from heater treater to pro- nade.	duced water tank en.* f pasture west of t	the batte	ery location a					
WA Describe Cause of Problem and Remedial Action Buried water dump line from heater treater to pro- nade. Describe Area Affected and Cleanup Action Take The leak affected approximately 50 square feet of	duced water tank en.* f pasture west of t	the batte	ery location a					
WA Describe Cause of Problem and Remedial Action Buried water dump line from heater treater to pro- nade. Describe Area Affected and Cleanup Action Take The leak affected approximately 50 square feet of were removed and impacted surface soils have be hereby certify that the information given above i	en.* f pasture west of t is true and comple	the batte emoved	ery location a to disposal. ne best of my	nd 2,600 square knowledge and	e feet of ca	liche pad	on locatio	n. Standing fluids MOCD rules and
WA Describe Cause of Problem and Remedial Action Buried water dump line from heater treater to pro- nade. Describe Area Affected and Cleanup Action Take The leak affected approximately 50 square feet of were removed and impacted surface soils have be hereby certify that the information given above i egulations all operators are required to report and	en.* f pasture west of t is true and compl d/or file certain re	the batte emoved lete to the	ery location a to disposal. ne best of my otifications a	nd 2,600 square knowledge and nd perform corr	e fect of ca l understar ective acti	liche pad nd that pur ons for re	on locatio suant to N leases whi	n. Standing fluids MOCD rules and ch may endanger
WA Describe Cause of Problem and Remedial Action Buried water dump line from heater treater to pro- nade. Describe Area Affected and Cleanup Action Take The leak affected approximately 50 square feet of were removed and impacted surface soils have be hereby certify that the information given above i	en.* f pasture west of t is true and comple d/or file certain re e of a C-141 repor	the battle emoved lete to the clease not rt by the	ery location a to disposal. te best of my otifications a b MOCD m	nd 2,600 square knowledge and nd perform corr arked as "Final	e feet of ca l understar rective acti Report" d	liche pad nd that pur ons for re oes not rel	on locatio suant to N leases whi lieve the o	n. Standing fluids MOCD rules and ch may endanger perator of liability
WA Describe Cause of Problem and Remedial Action Buried water dump line from heater treater to pro- nade. Describe Area Affected and Cleanup Action Take The leak affected approximately 50 square feet of were removed and impacted surface soils have be hereby certify that the information given above is egulations all operators are required to report and public health or the environment. The acceptance should their operations have failed to adequately is the environment. Imaddition, NMOCD ascepta	en.* f pasture west of t is true and comple d/or file certain re e of a C-141 repor investigate and re	the batte emoved lete to the clease nor rt by the emediate	ery location a to disposal. te best of my otifications a e NMOCD m e contaminati	nd 2,600 square knowledge and nd perform corr arked as "Final on that pose a t	e feet of ca l understar rective acti Report" d hreat to gr	liche pad ad that pur ons for re oes not re ound wate	on locatio rsuant to N leases whi lieve the o or, surface	n. Standing fluids MOCD rules and ch may endanger perator of liability water, human health
WA Describe Cause of Problem and Remedial Action Buried water dump line from heater treater to pro- nade. Describe Area Affected and Cleanup Action Take The leak affected approximately 50 square feet of were removed and impacted surface soils have be hereby certify that the information given above i egulations all operators are required to report and public health or the environment. The acceptance should their operations have failed to adequately i	en.* f pasture west of t is true and comple d/or file certain re e of a C-141 repor investigate and re	the batte emoved lete to the clease nor rt by the emediate	ery location a to disposal. te best of my otifications a e NMOCD m e contaminati	nd 2,600 square knowledge and nd perform corr arked as "Final on that pose a t e the operator o	e fect of ca l understar rective acti Report" d hreat to gr of responsi	liche pad nd that pur ons for re oes not rel ound wate bility for o	on locatio rsuant to N leases whi lieve the o cr, surface compliance	n. Standing fluids MOCD rules and ch may endanger perator of liability water, human health e with any other
WA Describe Cause of Problem and Remedial Action Buried water dump line from heater treater to pro- nade. Describe Area Affected and Cleanup Action Take The leak affected approximately 50 square feet of were removed and impacted surface soils have be hereby certify that the information given above is egulations all operators are required to report and bublic health or the environment. The acceptance should their operations have failed to adequately is or the environment. Imaddition, NMOCD acceptate deral, state, or local laws and/on regulations.	en.* f pasture west of t is true and comple d/or file certain re e of a C-141 repor investigate and re	the batte emoved lete to the clease nor rt by the emediate	ery location a to disposal. te best of my otifications a e NMOCD m e contaminati	nd 2,600 square knowledge and nd perform corr arked as "Final on that pose a t	e fect of ca l understar rective acti Report" d hreat to gr of responsi	liche pad nd that pur ons for re oes not rel ound wate bility for o	on locatio rsuant to N leases whi lieve the o cr, surface compliance	n. Standing fluids MOCD rules and ch may endanger perator of liability water, human health e with any other
WA Describe Cause of Problem and Remedial Action Buried water dump line from heater treater to pro- nade. Describe Area Affected and Cleanup Action Take The leak affected approximately 50 square feet of were removed and impacted surface soils have be hereby certify that the information given above is egulations all operators are required to report and public health or the environment. The acceptance should their operations have failed to adequately is the environment. Imaddition, NMOCD ascepta	en.* f pasture west of t is true and comple d/or file certain re e of a C-141 repor investigate and re	the battle emoved lete to the clease no rt by the emediate report do	ery location a to disposal. ne best of my otifications a NMOCD m e contaminations not reliev	nd 2,600 square knowledge and nd perform corr arked as "Final on that pose a t e the operator of <u>OIL COI</u>	e feet of ca l understar rective acti Report" d hreat to gr of responsi <u>NSERV</u>	d that pur ons for re ound wate bility for o	on locatio rsuant to N leases whi lieve the o cr, surface compliance	n. Standing fluids MOCD rules and ch may endanger perator of liability water, human health e with any other
VA Describe Cause of Problem and Remedial Action Buried water dump line from heater treater to pro- nade. Describe Area Affected and Cleanup Action Take The leak affected approximately 50 square feet of were removed and impacted surface soils have be hereby certify that the information given above i egulations all operators are required to report and bublic health or the environment. The acceptance hould their operations have failed to adequately is or the environment. In addition, NMOCD accepta ederal, state, or local laws and/or regulations.	en.* f pasture west of t is true and comple d/or file certain re e of a C-141 repor investigate and re	the battle emoved lete to the clease no rt by the emediate report do	ery location a to disposal. ne best of my otifications a NMOCD m e contaminations not reliev	nd 2,600 square knowledge and nd perform corr arked as "Final on that pose a t e the operator o	e feet of ca l understar rective acti Report" d hreat to gr of responsi <u>NSERV</u>	d that pur ons for re ound wate bility for o	on locatio rsuant to N leases whi lieve the o cr, surface compliance	n. Standing fluids MOCD rules and ch may endanger perator of liability water, human health e with any other
WA Describe Cause of Problem and Remedial Action Buried water dump line from heater treater to pro- made. Describe Area Affected and Cleanup Action Take The leak affected approximately 50 square feet of were removed and impacted surface soils have be hereby certify that the information given above is egulations all operators are required to report and bublic health or the environment. The acceptance should their operations have failed to adequately is or the environment. Imaddition, NMOCD accepta ederal, state, or local laws and/on regulations.	en.* f pasture west of t is true and comple d/or file certain re e of a C-141 repor investigate and re	the battle emoved lete to the clease ner the by the emodiate report do	ery location a to disposal. ne best of my otifications a NMOCD m e contaminations not reliev	nd 2,600 square knowledge and nd perform corr arked as "Final on that pose a t e the operator of <u>OIL COI</u> Environmisignt	e feet of ca l understar rective acti Report" d hreat to gr of responsi <u>NSERV</u>	d that pur ons for re ound wate bility for o	on locatio rsuant to N leases whi lieve the o or, surface compliance	n. Standing fluids MOCD rules and ch may endanger perator of liability water, human health e with any other
VA Describe Cause of Problem and Remedial Action Buried water dump line from heater treater to pro- made. Describe Area Affected and Cleanup Action Take The leak affected approximately 50 square feet of were removed and impacted surface soils have be hereby certify that the information given above is egulations all operators are required to report and bublic health or the environment. The acceptance hould their operations have failed to adequately is of the environment. In addition, NMOCD accepts ederal, state, or local laws and/on regulations. Signature: AmyC. Ruth Title: EHS Remediation Specialist	en.* f pasture west of t is true and comple d/or file certain re e of a C-141 repor investigate and re	the battle emoved	ery location a to disposal. te best of my otifications a NMOCD m contaminations not reliev Approved by	nd 2,600 square knowledge and nd perform corr arked as "Final on that pose a t e the operator of <u>OIL COI</u> Environr fagrat te: <u>OIL201</u>	e feet of ca l understar rective acti Report" d hreat to gr of responsi NSERV	diche pad ad that pur ons for re oes not rel ound wate bility for o ATION ATION ATION Expiration	on locatio rsuant to N leases whi lieve the o or, surface compliance DIVIS	n. Standing fluids MOCD rules and ch may endanger perator of liability water, human health with any other ION
V/A Describe Cause of Problem and Remedial Action Buried water dump line from heater treater to pro- made. Describe Area Affected and Cleanup Action Take The leak affected approximately 50 square feet of were removed and impacted surface soils have be hereby certify that the information given above is egulations all operators are required to report and bublic health or the environment. The acceptance should their operations have failed to adequately is or the environment. In addition, NMOCD accepta ederal, state, or local laws and/on regulations. Signature: Printed Name: AmyC. Ruth	en.* f pasture west of t is true and comple d/or file certain re e of a C-141 repor investigate and re	the battle emoved lete to the clease nort by the mediate eport do	ery location a to disposal. ne best of my otifications a NMOCD m contaminations not reliev Approved by Approval Date Conditions of	nd 2,600 square knowledge and nd perform corr arked as "Final on that pose a t e the operator of <u>OIL COI</u> Environmisignt	e fect of ca l understar ective acti Report" d hreat to gr of responsi NSERV	diche pad ad that pur ons for re oes not rel ound wate bility for o ATION ATION Expiration es & Gu	on locatio suant to N leases whi lieve the o or, surface compliance DIVIS	n. Standing fluids MOCD rules and ch may endanger perator of liability water, human health with any other ION

٠

Received by OCD: 6/18/2025 9:49:30 AM

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Page 42 of 178

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	2RP-3919
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party XTO Energy, Inc.	OGRID 5380
Contact Name Kyle Littrell	Contact Telephone 432-221-7331
Contact email Kyle_Littrell@xtoenergy.com	Incident # (assigned by OCD)
Contact mailing address 522 W. Mermod St Suite 704 Carlsbad, NM 8820	1

Location of Release Source

Latitude	32.335180	Longitude -103.819280
	(NAD 83 in dec	vimal degrees to 5 decimal places)
Site Name	James Ranch Unit 17 Battery	Site Type Exploration and Production
Date Release I	Discovered 9/19/2016	API# (if applicable) 30-015-27784

Unit Letter	Section	Township	Range	County
F	6	235	31E	Eddy

Surface Owner: State Federal Tribal Private (Name: BLM

Nature and Volume of Release

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls) 22	Volume Recovered (bbls) 15
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
🗌 Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

A buried water dump line from heater treater to produced water tank developed a hole due to corrosion. The line was isolated and clamped until repairs can be made. The leak affected approximately 50 square feet of pasture west of the battery location and 2,600 square feet of caliche pad on location. Standing fluids were removed and impacted surface soils have been scraped and removed to disposal.

2	Oil Concernation Division	Incident ID	
ge 2	Oil Conservation Division	District RP	2RP-3919
		Facility ID	
		Application ID	
19.15.29.7(A) NMAC?			
19.15.29.7(A) NMAC? □ Yes ⊠ No			

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \boxtimes The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Kyle Littrell	Title: SH&E Coordinator
Signature:	Date:02/05/2019
email: Kyle Littrell@xtoenergy.com	Telephone:432-221-7331
OCD Only	
Received by:	Date:

Recorded Hy40CD: 6/18/2025 9:49:30 ANState of New Mexico Page 3 Oil Conservation Division

Incident ID	Page 44 of 17
District RP	2RP-3919
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗋 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗋 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🛛 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.

Field data

Data table of soil contaminant concentration data

Depth to water determination

- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs

Photographs including date and GIS information

- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

covined-by4OCD: 6/18/20	25 9:49:30 And tate of New Mexico		Incident ID	Page 45 of 1
age 4	Oil Conservation Divisio	n	District RP	2RP-3919
			Facility ID	
			Application ID	
regulations all operators ar public health or the enviro failed to adequately invest addition, OCD acceptance and/or regulations. Printed Name: <u>Kyle</u> Signature:	Formation given above is true and complete to the required to report and/or file certain release moment. The acceptance of a C-141 report by the gate and remediate contamination that pose a the of a C-141 report does not relieve the operator Littrell Littrell Li	otifications and perform c e OCD does not relieve th hreat to groundwater, surf of responsibility for comp 	orrective actions for rele e operator of liability sho ace water, human health	ases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only				
Received by:		Date:	?	

Received by OCD: 6/18/2025 9:49:30 And tate of New Mexico Page 6 Oil Conservation Division

Incident ID	Page 46 of 17
District RP	2RP-3919
Facility ID	
Application ID	1

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

X A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

x Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

X Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Kyle Littrell	Title: SH&E Coordinator
Signature:	Date:02/05/2019
email:Kyle_Littrell@xtoenergy.com	Telephone: 432-221-7331
5	
OCD Only	
Received by:	Date:
Closure approval by the OCD does not relieve the responsible party of l remediate contamination that poses a threat to groundwater, surface wate party of compliance with any other federal, state, or local laws and/or re	r, human health, or the environment nor does not relieve the responsible
Closure Approved by:	Date:
Printed Name:	Title:

Received by OCD: 6/18/2025 9:49:30 AM

for LT Environmental, Inc.

Project Manager: Adrian Baker

JRU-17

17-OCT-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-27), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-18-17), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-13) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-18-17) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

17-OCT-18

Project Manager: **Adrian Baker LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: XENCO Report No(s): 601914 JRU-17 Project Address: Delaware Basin

Adrian Baker:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 601914. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 601914 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession Vermer

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 601914

LT Environmental, Inc., Arvada, CO

JRU-17

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SS01	S	10-05-18 09:20	2 ft	601914-001
SS01A	S	10-05-18 09:25	3 ft	601914-002
SS02	S	10-05-18 09:35	1 ft	601914-003
SS02A	S	10-05-18 09:45	3 ft	601914-004
SS03	S	10-05-18 09:50	1 ft	601914-005
SS03A	S	10-05-18 10:00	3 ft	601914-006
SS04	S	10-05-18 12:00	2 ft	601914-007
SS04A	S	10-05-18 12:05	3 ft	601914-008

.

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: JRU-17

Project ID: Work Order Number(s): 601914

TORIES

Report Date: *17-OCT-18* Date Received: *10/10/2018*

Sample receipt non conformances and comments: PER CLIENTS EMAIL REQUEST CORRECTED SAMPLE NAMES. JKR 10/15/18

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3066628 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Project Id:Contact:Adrian BakerProject Location:Delaware Basin

LT Environmental, Inc., Arvada, CO Project Name: JRU-17

Date Received in Lab:Wed Oct-10-18 10:45 amReport Date:17-OCT-18Project Manager:Jessica Kramer

	Lab Id:	601914-0	001	601914-0	002	601914-0	003	601914-	004	601914-	005	601914-0	006
	Field Id:	SS01	,01	SS01A		SS02	,05	SS02/		SS03		SS034	
Analysis Requested				3- ft									
	Depth:		2- ft			1- ft		3- ft		1- ft		3- ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-05-18 (09:20	Oct-05-18	09:25	Oct-05-18	09:35	Oct-05-18	09:45	Oct-05-18	09:50	Oct-05-18	10:00
BTEX by EPA 8021B	Extracted:	Oct-15-18	16:45	Oct-15-18	16:45	Oct-15-18	16:45	Oct-15-18	16:45	Oct-15-18	16:45	Oct-15-18	16:45
	Analyzed:	Oct-15-18	22:43	Oct-15-18	23:05	Oct-15-182	23:26	Oct-15-18	23:48	Oct-16-18	00:09	Oct-16-18	01:12
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00200	0.00200	< 0.00201	0.00201	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00198	0.00198
Toluene		< 0.00200	0.00200	< 0.00201	0.00201	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00198	0.00198
Ethylbenzene		< 0.00200	0.00200	< 0.00201	0.00201	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00198	0.00198
m,p-Xylenes		< 0.00399	0.00399	< 0.00402	0.00402	< 0.00403	0.00403	< 0.00401	0.00401	< 0.00398	0.00398	< 0.00397	0.00397
o-Xylene		< 0.00200	0.00200	< 0.00201	0.00201	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00198	0.00198
Total Xylenes		< 0.00200	0.00200	< 0.00201	0.00201	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00198	0.00198
Total BTEX		< 0.00200	0.00200	< 0.00201	0.00201	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00198	0.00198
Inorganic Anions by EPA 300	Extracted:	Oct-15-18 (09:15	Oct-15-18	09:15	Oct-15-18 ()9:15	Oct-15-18	09:15	Oct-15-18	09:15	Oct-15-18	09:15
	Analyzed:	Oct-15-18	17:05	Oct-15-18	17:10	Oct-15-18	17:16	Oct-15-18	17:39	Oct-15-18	17:22	Oct-15-18	17:44
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		88.6	4.96	208	4.95	<4.97	4.97	249	24.8	423	4.95	508	5.00
TPH by SW8015 Mod	Extracted:	Oct-12-18	17:00	Oct-12-18	17:00	Oct-12-18	17:00	Oct-12-18	17:00	Oct-12-18	17:00	Oct-12-18	17:00
	Analyzed:	Oct-14-18	00:31	Oct-14-18	00:49	Oct-14-18 (01:08	Oct-14-18	01:27	Oct-14-18	01:45	Oct-14-18	02:04
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<14.9	14.9	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0
Diesel Range Organics (DRO)		<14.9	14.9	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0
Motor Oil Range Hydrocarbons (MRO)		<14.9	14.9	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0
Total TPH		<14.9	14.9	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

fession kramer

Jessica Kramer Project Assistant

Page 5 of 27

Project Id:Contact:Adrian BakerProject Location:Delaware Basin

LT Environmental, Inc., Arvada, CO Project Name: JRU-17

Date Received in Lab:Wed Oct-10-18 10:45 amReport Date:17-OCT-18Project Manager:Jessica Kramer

						1		
	Lab Id:	601914-0	007	601914-0	08			
Analysis Requested	Field Id:	SS04		SS04A				
Analysis Requested	Depth:	2- ft		3- ft				
	Matrix:	SOIL	,	SOIL				
	Sampled:	Oct-05-18	12:00	Oct-05-18 1	2:05			
BTEX by EPA 8021B	Extracted:	<i>cted:</i> Oct-15-18 16:4		Oct-15-18 1	6:45			
	Analyzed:	Oct-16-18 (01:55	Oct-16-18 0	1:34			
	Units/RL:	mg/kg	RL	mg/kg	RL			
Benzene		< 0.00201	0.00201	< 0.00201	0.00201			
Toluene		< 0.00201	0.00201	< 0.00201	0.00201			
Ethylbenzene		< 0.00201	0.00201	< 0.00201	0.00201			
m,p-Xylenes		< 0.00402	0.00402	< 0.00402	0.00402			
o-Xylene		< 0.00201	0.00201		0.00201			
Total Xylenes		< 0.00201	0.00201		0.00201			
Total BTEX		<0.00201 0.00201		< 0.00201	0.00201			
Inorganic Anions by EPA 300	Extracted:	Oct-15-18 (09:15	Oct-15-18 0	9:15			
	Analyzed:	Oct-15-18	18:01	Oct-15-18 1	8:07			
	Units/RL:	mg/kg	RL	mg/kg	RL			
Chloride		311	5.00	587	4.98			
TPH by SW8015 Mod	Extracted:	Oct-12-18	17:00	Oct-12-18 1	7:00			
	Analyzed:	Oct-14-18 (02:23	Oct-14-18 0	2:42			
	Units/RL:	mg/kg	RL	mg/kg	RL			
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<15.0	15.0			
Diesel Range Organics (DRO)		<15.0	15.0	<15.0	15.0			
Motor Oil Range Hydrocarbons (MRO)		<15.0	15.0	<15.0	15.0			
Total TPH		<15.0	15.0	<15.0	15.0			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

fession kenner

Jessica Kramer Project Assistant

Page 6 of 27

LT Environmental, Inc., Arvada, CO

JRU-17

Sample Id: SS01 Lab Sample Id: 601914-001		Matrix: Date Colle	Soil ected: 10.05	.18 09.20		Date Received:10.10.18 10.4 Sample Depth: 2 ft			
Analytical Method: Inorganic Anion Tech: CHE	s by EPA 300					Prep Method: E3	00P		
Analyst: CHE Seq Number: 3066429		Date Prep:	10.15	.18 09.15	E	Basis: We	et Weight		
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	88.6	4.96		mg/kg	10.15.18 17.05		1	
Analytical Method: TPH by SW801: Tech: ARM Analyst: ARM Seq Number: 3066398	5 Mod	Date Prep:	10.12	.18 17.00	9	Prep Method: TX % Moisture: 3asis: We	1005P et Weight		
Tech: ARM Analyst: ARM	5 Mod Cas Number	Date Prep: Result	10.12 RL	.18 17.00	9	% Moisture:		Dil	
Tech:ARMAnalyst:ARMSeq Number:3066398		-		.18 17.00	9 E	Moisture: Basis: We	et Weight	Dil	
Tech: ARM Analyst: ARM Seq Number: 3066398 Parameter	Cas Number	Result	RL	.18 17.00	9 E Units	Moisture: Basis: We Analysis Date	et Weight Flag		
Tech: ARM Analyst: ARM Seq Number: 3066398 Parameter Gasoline Range Hydrocarbons (GRO)	Cas Number PHC610	Result <14.9	RL 14.9	.18 17.00	9 E Units mg/kg	Moisture: Basis: We Analysis Date 10.14.18 00.31	et Weight Flag U	1	
Tech: ARM Analyst: ARM Seq Number: 3066398 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO)	Cas Number PHC610 C10C28DRO	Result <14.9 <14.9	RL 14.9 14.9	.18 17.00	9 E Units mg/kg mg/kg	 Moisture: Basis: We Analysis Date 10.14.18 00.31 10.14.18 00.31 	et Weight Flag U U	1	

88

%

70-135

10.14.18 00.31

84-15-1

o-Terphenyl

LT Environmental, Inc., Arvada, CO

Sample Id:SS01Lab Sample Id:601914-001	Matrix: Soil Date Collected: 10.05.18 09.20	Date Received:10.10.18 10.45 Sample Depth: 2 ft
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3066628	Date Prep: 10.15.18 16.45	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	10.15.18 22.43	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	10.15.18 22.43	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	10.15.18 22.43	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	10.15.18 22.43	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	10.15.18 22.43	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	10.15.18 22.43	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	10.15.18 22.43	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	97	%	70-130	10.15.18 22.43		
1,4-Difluorobenzene		540-36-3	90	%	70-130	10.15.18 22.43		

LT Environmental, Inc., Arvada, CO

JRU-17

Sample Id:SS01ALab Sample Id:601914-002		Matrix: Date Colle	Soil ected: 10.05	.18 09.25		Date Received:10.10.18 10.4 Sample Depth: 3 ft			
Analytical Method: Inorganic Anio Tech: CHE	ns by EPA 300					Prep Method: E3 6 Moisture:	00P		
Analyst: CHE Seq Number: 3066429		Date Prep	: 10.15	.18 09.15	E	Basis: We	et Weight		
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	208	4.95		mg/kg	10.15.18 17.10		1	
Analytical Method: TPH by SW801 Tech: ARM Analyst: ARM Seq Number: 3066398	15 Mod	Date Prep	: 10.12	.18 17.00	9	Prep Method: TX 6 Moisture: Basis: We	C1005P et Weight		
Tech: ARM Analyst: ARM	15 Mod Cas Number	Date Prep Result	: 10.12 RL	.18 17.00	9	6 Moisture:		Dil	
Tech:ARMAnalyst:ARMSeq Number:3066398				.18 17.00	9 E	6 Moisture: Basis: We	et Weight	Dil 1	
Tech: ARM Analyst: ARM Seq Number: 3066398 Parameter	Cas Number	Result	RL	.18 17.00	9 E Units	6 Moisture: Basis: We Analysis Date	et Weight Flag		
Tech: ARM Analyst: ARM Seq Number: 3066398 Parameter Gasoline Range Hydrocarbons (GRO)	Cas Number PHC610	Result <15.0	RL 15.0	.18 17.00	9 E Units mg/kg	6 Moisture: Basis: We Analysis Date 10.14.18 00.49	et Weight Flag U	1	
Tech: ARM Analyst: ARM Seq Number: 3066398 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO)	Cas Number PHC610 C10C28DRO	Result <15.0 <15.0	RL 15.0 15.0	.18 17.00	9 E Units mg/kg mg/kg	6 Moisture: Basis: We Analysis Date 10.14.18 00.49 10.14.18 00.49	et Weight Flag U U	1	

90

84-15-1

%

70-135

10.14.18 00.49

o-Terphenyl

LT Environmental, Inc., Arvada, CO

Sample Id:SS01ALab Sample Id:601914-002	Matrix: Soil Date Collected: 10.05.18 09.25	Date Received:10.10.18 10.45 Sample Depth: 3 ft
Analytical Method: BTEX by EPA 8021B Tech: ALJ		Prep Method: SW5030B % Moisture:
Analyst: ALJ Seq Number: 3066628	Date Prep: 10.15.18 16.45	Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	10.15.18 23.05	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	10.15.18 23.05	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	10.15.18 23.05	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	10.15.18 23.05	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	10.15.18 23.05	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	10.15.18 23.05	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	10.15.18 23.05	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	104	%	70-130	10.15.18 23.05		
1,4-Difluorobenzene		540-36-3	92	%	70-130	10.15.18 23.05		

LT Environmental, Inc., Arvada, CO

Sample Id: SS02		Matrix:	Soil]	Date Received:10.10.18 10.45				
Lab Sample Id: 601914-003		Date Collec	ted: 10.05.18 09.35	:					
Analytical Method: Inorganic	Anions by EPA 300				Prep Method: E30	0P			
Tech: CHE				(% Moisture:				
Analyst: CHE		Date Prep:	10.15.18 09.15]	Basis: We	t Weight			
Seq Number: 3066429									
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil		
Chloride	16887-00-6	<4.97	4.97	mg/kg	10.15.18 17.16	U	1		
Analytical Method: TPH by SV	W8015 Mod]	Prep Method: TX	1005P			

Tech: ARM					%	6 Moisture:		
Analyst: ARM		Date Pre	p: 10.12	.18 17.00	В	asis: We	et Weight	
Seq Number: 3066398								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	10.14.18 01.08	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	10.14.18 01.08	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	15.0		mg/kg	10.14.18 01.08	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	10.14.18 01.08	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	95	%	70-135	10.14.18 01.08		
o-Terphenyl		84-15-1	95	%	70-135	10.14.18 01.08		

LT Environmental, Inc., Arvada, CO

Sample Id:SS02Lab Sample Id:601914-003	Matrix: Soil Date Collected: 10.05.18 09.35	Date Received:10.10.18 10.45 Sample Depth: 1 ft
Analytical Method: BTEX by EPA 8021B Tech: ALJ Analyst: ALJ	Date Prep: 10.15.18 16.45	Prep Method: SW5030B % Moisture: Basis: Wet Weight
Seq Number: 3066628	Date Prep: 10.13.18 10.45	Dasis. Wet weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	10.15.18 23.26	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	10.15.18 23.26	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	10.15.18 23.26	U	1
m,p-Xylenes	179601-23-1	< 0.00403	0.00403		mg/kg	10.15.18 23.26	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	10.15.18 23.26	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	10.15.18 23.26	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	10.15.18 23.26	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	94	%	70-130	10.15.18 23.26		
4-Bromofluorobenzene		460-00-4	103	%	70-130	10.15.18 23.26		

LT Environmental, Inc., Arvada, CO

Sample Id: SS02A		Matrix:	Soil]	Date Received:10.	10.18 10.45	5
Lab Sample Id: 601914-004		Date Collec	ted: 10.05.18 09.45	2	Sample Depth: 3 ft		
Analytical Method: Inorganic An	ions by EPA 300]	Prep Method: E30)0P	
Tech: CHE				Q	% Moisture:		
Analyst: CHE		Date Prep:	10.15.18 09.15]	Basis: We	t Weight	
Seq Number: 3066429							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	249	24.8	mg/kg	10.15.18 17.39		5
Analytical Method: TPH by SW8	015 Mod]	Prep Method: TX	1005P	
Tech: ARM				Q	% Moisture:		
Analyst: ARM		Date Prep:	10.12.18 17.00]	Basis: We	t Weight	
Seq Number: 3066398		1				0	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil

						-		
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	10.14.18 01.27	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	10.14.18 01.27	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	15.0		mg/kg	10.14.18 01.27	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	10.14.18 01.27	U	1
		~ •• •	%					
Surrogate		Cas Number	Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	90	%	70-135	10.14.18 01.27		
o-Terphenyl		84-15-1	93	%	70-135	10.14.18 01.27		

LT Environmental, Inc., Arvada, CO

Sample Id:SS02ALab Sample Id:601914-004	Matrix: Soil Date Collected: 10.05.18 09.45	Date Received:10.10.18 10.45 Sample Depth: 3 ft
Analytical Method: BTEX by EPA 8021B Tech: ALJ		Prep Method: SW5030B % Moisture:
Analyst: ALJ Seq Number: 3066628	Date Prep: 10.15.18 16.45	Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	10.15.18 23.48	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	10.15.18 23.48	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	10.15.18 23.48	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	10.15.18 23.48	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	10.15.18 23.48	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	10.15.18 23.48	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	10.15.18 23.48	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	98	%	70-130	10.15.18 23.48		
4-Bromofluorobenzene		460-00-4	108	%	70-130	10.15.18 23.48		

LT Environmental, Inc., Arvada, CO

Sample Id: SS03		Matrix:	Soil		Date Received:10.	10.18 10.4	5
Lab Sample Id: 601914-005		Date Collec	cted: 10.05.18 09.50		Sample Depth: 1 ft	t	
Analytical Method: Inorganic Anior	ns by EPA 300				Prep Method: E30	00P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	10.15.18 09.15		Basis: We	t Weight	
Seq Number: 3066429							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	423	4.95	mg/kg	10.15.18 17.22		1
Analytical Method: TPH by SW801 Tech: ARM Analyst: ARM	5 Mod	Date Prep:	10.12.18 17.00		Prep Method: TX % Moisture: Basis: We	1005P et Weight	
Tech: ARM	5 Mod	Date Prep:	10.12.18 17.00		% Moisture:		
Tech: ARM Analyst: ARM	5 Mod Cas Number	Date Prep: Result	10.12.18 17.00 RL		% Moisture:		Dil
Tech:ARMAnalyst:ARMSeq Number:3066398		-			% Moisture: Basis: We	et Weight	Dil
Tech: ARM Analyst: ARM Seq Number: 3066398 Parameter	Cas Number	Result	RL	Units	% Moisture: Basis: We Analysis Date	t Weight Flag	
Tech: ARM Analyst: ARM Seq Number: 3066398 Parameter Gasoline Range Hydrocarbons (GRO)	Cas Number PHC610	Result <15.0	RL 15.0	Units mg/kg	% Moisture: Basis: We Analysis Date 10.14.18 01.45	et Weight Flag U	1

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
1-Chlorooctane	111-85-3	88	%	70-135	10.14.18 01.45	
o-Terphenyl	84-15-1	84	%	70-135	10.14.18 01.45	

LT Environmental, Inc., Arvada, CO

Sample Id:SS03Lab Sample Id:601914-005	Matrix: Soil Date Collected: 10.05.18 09.50	Date Received:10.10.18 10.45 Sample Depth: 1 ft
Analytical Method: BTEX by EPA 8021B Tech: ALJ		Prep Method: SW5030B % Moisture:
Analyst: ALJ Seq Number: 3066628	Date Prep: 10.15.18 16.45	Basis: Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	10.16.18 00.09	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	10.16.18 00.09	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	10.16.18 00.09	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	10.16.18 00.09	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	10.16.18 00.09	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	10.16.18 00.09	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	10.16.18 00.09	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	96	%	70-130	10.16.18 00.09		
4-Bromofluorobenzene		460-00-4	104	%	70-130	10.16.18 00.09		

LT Environmental, Inc., Arvada, CO

Sample Id: SS03A		Matrix:	Soil		Date Received:10	.10.18 10.4	5
Lab Sample Id: 601914-006		Date Collec	cted: 10.05.18 10.00		Sample Depth: 3 f	t	
Analytical Method: Inorganic Anio	ns by EPA 300				Prep Method: E3	00P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	10.15.18 09.15		Basis: We	et Weight	
Seq Number: 3066429							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	508	5.00	mg/kg	10.15.18 17.44		1
Analytical Method: TPH by SW801 Tech: ARM	15 Mod	Data Deserv	10 12 18 17 00		Prep Method: TX % Moisture:		
Tech: ARM Analyst: ARM	15 Mod	Date Prep:	10.12.18 17.00		% Moisture:	11005P et Weight	
Tech: ARM	15 Mod	Date Prep:	10.12.18 17.00		% Moisture:		
Tech: ARM Analyst: ARM	15 Mod Cas Number	Date Prep: Result	10.12.18 17.00 RL		% Moisture:		Dil
Tech:ARMAnalyst:ARMSeq Number:3066398		-			% Moisture: Basis: We	et Weight	Dil
Tech: ARM Analyst: ARM Seq Number: 3066398 Parameter	Cas Number	Result	RL	Units	Moisture: Basis: We Analysis Date	et Weight Flag	
Tech: ARM Analyst: ARM Seq Number: 3066398 Parameter Gasoline Range Hydrocarbons (GRO)	Cas Number PHC610	Result <15.0	RL 15.0	Units mg/kg	 Moisture: Basis: We Analysis Date 10.14.18 02.04 	et Weight Flag U	1

		%				
Surrogate	Cas Number	Recovery	Units	Limits	Analysis Date	Flag
1-Chlorooctane	111-85-3	89	%	70-135	10.14.18 02.04	
o-Terphenyl	84-15-1	87	%	70-135	10.14.18 02.04	

LT Environmental, Inc., Arvada, CO

Sample Id:SS03ALab Sample Id:601914-006	Matrix: Soil Date Collected: 10.05.18 10.00	Date Received:10.10.18 10.45 Sample Depth: 3 ft
Analytical Method: BTEX by EPA 8021B Tech: ALJ Analyst: ALJ	Date Prep: 10.15.18 16.45	Prep Method: SW5030B % Moisture: Basis: Wet Weight
Seq Number: 3066628		

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00198	0.00198		mg/kg	10.16.18 01.12	U	1
Toluene	108-88-3	< 0.00198	0.00198		mg/kg	10.16.18 01.12	U	1
Ethylbenzene	100-41-4	< 0.00198	0.00198		mg/kg	10.16.18 01.12	U	1
m,p-Xylenes	179601-23-1	< 0.00397	0.00397		mg/kg	10.16.18 01.12	U	1
o-Xylene	95-47-6	< 0.00198	0.00198		mg/kg	10.16.18 01.12	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198		mg/kg	10.16.18 01.12	U	1
Total BTEX		< 0.00198	0.00198		mg/kg	10.16.18 01.12	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	105	%	70-130	10.16.18 01.12		
1,4-Difluorobenzene		540-36-3	96	%	70-130	10.16.18 01.12		

LT Environmental, Inc., Arvada, CO

Sample Id: Lab Sample Id	SS04 1: 601914-007		Matrix: Date Collec	Soil ted: 10.05.18 12.00		Date Received Sample Depth		5
Analytical Me Tech: Analyst: Seq Number:	thod: Inorganic Anions CHE CHE 3066429	by EPA 300	Date Prep:	10.15.18 09.15		Prep Method: % Moisture: Basis:	E300P Wet Weight	
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil
Chloride		16887-00-6	311	5.00	mg/kg	10.15.18 18.	01	1
Analytical Me Tech: Analyst: Seq Number:	thod: TPH by SW8015 ARM ARM 3066398	Mod	Date Prep:	10.12.18 17.00		Prep Method: % Moisture: Basis:	TX1005P Wet Weight	

Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
PHC610	<15.0	15.0		mg/kg	10.14.18 02.23	U	1
C10C28DRO	<15.0	15.0		mg/kg	10.14.18 02.23	U	1
PHCG2835	<15.0	15.0		mg/kg	10.14.18 02.23	U	1
PHC635	<15.0	15.0		mg/kg	10.14.18 02.23	U	1
	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
	111-85-3	90	%	70-135	10.14.18 02.23		
	84-15-1	87	%	70-135	10.14.18 02.23		
	PHC610 C10C28DRO PHCG2835	PHC610 <15.0	PHC610 <15.0 15.0 C10C28DRO <15.0	PHC610 <15.0 15.0 C10C28DRO <15.0	PHC610 <15.0 15.0 mg/kg C10C28DRO <15.0	PHC610 <15.0 15.0 mg/kg 10.14.18 02.23 C10C28DRO <15.0	PHC610 <15.0 15.0 mg/kg 10.14.18 02.23 U C10C28DRO <15.0

LT Environmental, Inc., Arvada, CO

Sample Id:SS04Lab Sample Id:601914-007	Matrix: Soil Date Collected: 10.05.18 12.00	Date Received:10.10.18 10.45 Sample Depth: 2 ft
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3066628	Date Prep: 10.15.18 16.45	Prep Method:SW5030B% Moisture:Basis:Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	10.16.18 01.55	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	10.16.18 01.55	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	10.16.18 01.55	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	10.16.18 01.55	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	10.16.18 01.55	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	10.16.18 01.55	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	10.16.18 01.55	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	102	%	70-130	10.16.18 01.55		
1,4-Difluorobenzene		540-36-3	89	%	70-130	10.16.18 01.55		

LT Environmental, Inc., Arvada, CO

Sample Id:SS04ALab Sample Id:601914-008		Matrix: Date Collec	Soil ted: 10.05.18 12.05		Date Received: Sample Depth:		i
Analytical Method: Inorganic Anior	ns by EPA 300				Prep Method:	E300P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	10.15.18 09.15		Basis:	Wet Weight	
Seq Number: 3066429							
Parameter	Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Chloride	16887-00-6	587	4.98	mg/kg	10.15.18 18.0)7	1
Analytical Method: TPH by SW801	.5 Mod				Prep Method:	TX1005P	
Tech: ARM					% Moisture:		
		Date Prep:	10.12.18 17.00		Basis:	Wet Weight	
Analyst: ARM		Dute Hep.					
Analyst:ARMSeq Number:3066398		Dute Hep.					

1-Chlorooctane o-Terphenyl		111-85-3 84-15-1	101 100	% %	70-135 70-135	10.14.18 02.42 10.14.18 02.42		
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
Total TPH	PHC635	<15.0	15.0		mg/kg	10.14.18 02.42	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	15.0		mg/kg	10.14.18 02.42	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	10.14.18 02.42	U	1
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	10.14.18 02.42	U	1

LT Environmental, Inc., Arvada, CO

Sample Id:SS04ALab Sample Id:601914-008	Matrix: Soil Date Collected: 10.05.18 12.05	Date Received:10.10.18 10.45 Sample Depth: 3 ft
Analytical Method: BTEX by EPA 8021B Tech: ALJ Analyst: ALJ	D (D 10 15 19 16 45	Prep Method: SW5030B % Moisture: Basis: Wet Weight
Analyst: ALJ Seq Number: 3066628	Date Prep: 10.15.18 16.45	Basis: wet weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	10.16.18 01.34	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	10.16.18 01.34	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	10.16.18 01.34	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	10.16.18 01.34	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	10.16.18 01.34	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	10.16.18 01.34	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	10.16.18 01.34	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	95	%	70-130	10.16.18 01.34		
4-Bromofluorobenzene		460-00-4	103	%	70-130	10.16.18 01.34		

LABORATORIES

Flagging Criteria

Page 70 of 178

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	S Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Received by OCD: 6/18/2025 9:49:30 AM

QC Summary 601914

LT Environmental, Inc.

JRU-17

Analytical Method:	Inorganic Anions b	y EPA 300						Prep	p Method	: E3	800P	
Seq Number:	3066429			Matrix:	Solid	Date Prep: 10.15.18						
MB Sample Id:	7664172-1-BLK		LCS Sample Id: 7664172-1-BKS			LCSD Sample Id: 7664172-1-BSI				64172-1-BSD		
D	MB	Spike	LCS	LCS	LCCD	LCCD	Limits		PD Limit	Unite	Analysis	
Parameter	Result	Amount	Result	%Rec	LCSD Result	LCSD %Rec	Linits	70KID KI	I D Linnt	Omts	Date	Flag

Analytical Method:	Inorganic Anions b	y EPA 300						Pre	p Method	l: E300)P	
Seq Number:	3066429		Matrix: Soil					Date Prep: 10.15.18				
Parent Sample Id:	601913-007		MS Sample Id: 601913-007 S			MSD Sample Id: 6019				13-007 SD		
Parameter	Parent	Spike	MS	MS	MSD	MSD	Limits	%RPD R	PD Limit	Units	Analysis	Flag
	Result	Amount	Result	%Rec	Result	%Rec					Date	

Analytical Method:	Inorganic Anions b	y EPA 300						P	ep Metho	od: E30	0P	
Seq Number:	3066429			Matrix: Soil					Date Prep: 10.15.18			
Parent Sample Id:	601914-005		MS Sar	MS Sample Id: 601914-005 S				MS	D Sample	e Id: 601	914-005 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	423	248	684	105	661	96	90-110	3	20	mg/kg	10.15.18 17:27	

Analytical Method:	TPH by SV	W8015 M	od]	Prep Method	l: TX1	005P	
Seq Number:	3066398				Solid	Date Prep: 10.12.18							
MB Sample Id:	7664105-1-	-BLK		LCS Sample Id: 7664105-1-BKS			1-BKS	LCSD Sample Id: 7664105-1-BSD					
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPE	ORPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbo	ons (GRO)	<8.00	1000	1010	101	1060	106	70-135	5	20	mg/kg	10.13.18 19:33	
Diesel Range Organics ((DRO)	<8.13	1000	1030	103	1080	108	70-135	5	20	mg/kg	10.13.18 19:33	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			Limits	Units	Analysis Date	
1-Chlorooctane		91		1	15		122		7	70-135	%	10.13.18 19:33	
o-Terphenyl		95		1	06		104		7	70-135	%	10.13.18 19:33	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Received by OCD: 6/18/2025 9:49:30 AM

QC Summary 601914

LT Environmental, Inc.

JRU-17

Analytical Method:					Pre	p Method	l: TX1	.005P					
Seq Number:	Matrix: Soil					Date Prep: 10.12.18							
Parent Sample Id:	Parent Sample Id: 601912-001					601912-001 S			MSD Sample Id: 601912-001 SD				
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD R	PD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	13.8	999	913	90	916	90	70-135	0	20	mg/kg	10.13.18 20:29	
Diesel Range Organics	(DRO)	<8.12	999	927	93	928	93	70-135	0	20	mg/kg	10.13.18 20:29	
Surrogate					AS Rec	MS Flag	MSE %Re			nits	Units	Analysis Date	
1-Chlorooctane				1	07		109		70-1	35	%	10.13.18 20:29	
o-Terphenyl	97			95	95 70-135 % 10.13.1				10.13.18 20:29				

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 802 3066628 7664298-1-BLK	1B	LCS San	Solid 7664298-	Prep Method: Date Prep: LCSD Sample Id:				10.15.18			
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPE) RPD Limi	t Units	Analysis Date	Flag
Benzene	< 0.00201	0.100	0.0925	93	0.114	113	70-130	21	35	mg/kg	10.15.18 18:49	
Toluene	< 0.00201	0.100	0.0798	80	0.102	101	70-130	24	35	mg/kg	10.15.18 18:49	
Ethylbenzene	< 0.00201	0.100	0.0929	93	0.108	107	70-130	15	35	mg/kg	10.15.18 18:49	
m,p-Xylenes	< 0.00402	0.201	0.189	94	0.232	115	70-130	20	35	mg/kg	10.15.18 18:49	
o-Xylene	< 0.00201	0.100	0.0926	93	0.120	119	70-130	26	35	mg/kg	10.15.18 18:49	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Ree			Limits	Units	Analysis Date	
1,4-Difluorobenzene	93		7	73		88		7	70-130	%	10.15.18 18:49	
4-Bromofluorobenzene	98		8	34		112		7	70-130	%	10.15.18 18:49	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 802 3066628 601915-005	1B	Matrix: Soil MS Sample Id: 601915-005 S				Prep Method: SW5030B Date Prep: 10.15.18 MSD Sample Id: 601915-005 SD					
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPI	ORPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00201	0.100	0.104	104	0.0976	98	70-130	6	35	mg/kg	10.15.18 19:32	
Toluene	< 0.00201	0.100	0.0883	88	0.0765	77	70-130	14	35	mg/kg	10.15.18 19:32	
Ethylbenzene	< 0.00201	0.100	0.0954	95	0.0828	83	70-130	14	35	mg/kg	10.15.18 19:32	
m,p-Xylenes	< 0.00402	0.201	0.190	95	0.162	81	70-130	16	35	mg/kg	10.15.18 19:32	
o-Xylene	< 0.00201	0.100	0.0925	93	0.0798	80	70-130	15	35	mg/kg	10.15.18 19:32	
Surrogate				1S Rec	MS Flag	MSD %Re			Limits	Units	Analysis Date	
1,4-Difluorobenzene			8	37		86			70-130	%	10.15.18 19:32	
4-Bromofluorobenzene			1	00		103		,	70-130	%	10.15.18 19:32	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.
	σ ω	"Inthis and	Relinquished by: (Signature) F	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed		~	~	502A 5 10	1 S 85055	4 5 VG055	~	5501A 5 10	Sample Identification Matrix S	: Yes No (Seals: Yes No	Received Intact: (Yes) No	2	CEIPT Temp Blank:	Sampler's Name: Fabran UNban	P.O. Number: 229-3919	Project Number:	Project Name: JRu - 17	Phone: (432) 704-5178	City, State ZIP: Kirdland, TX 78705	Address: 3300 'A' stret Bui	n sang	Project Manager: Adirtan Baltur	LABORATORIES	XENCO
		> Putos	Received by: (Signature)	mples constitutes a valid purchase order fror and shall not assume any responsibility for ar ch project and a charge of \$5 for each sample	8RCRA 13PPM Texas 11 TCLP / SPLP 6010: 8RC		10/5/18 1205 3'	1200 2'	 _		10(5/18 0935 1'	10/5/18 0925 3'	10/5/18 09 20 2'	Date Time Depth		Correction Factor: ()- ()		Thermometer ID	Ves No Wet les No	Due Date:	Rush:	Routine	Turn Around	Email: ABalaer Q 1	City, State ZIP:	Building 1, 4(03 Address:	Company Name:	Bill to: (it different)	Houston,TX (281) 240-4200 [Midland,TX (432-704-5440) Hobbs,NM (575-392-7550) Phoenix,AZ (⁄	0
-	0 4	10/5/18 1710 2 Mas 1.	Date/Time Relinquished by: (Signature)	m client company to Xenco, its affiliates and subcom my losses or expenses incurred by the client if such submitted to Xenco, but not analyzed. These terms	3 Cd Ca Cr Cc Cd Cr Co Cu		- * * K		- × ×	- x x				Number BTI TPH Chi	Ex , 4 (1	(0)R	0) (j [Gk	STE 28) . Oc	(1 (1)) 1.R.C	2)	ANALYSIS	ltenV, com			272	Kyle Litten	Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296 Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (81	Chain of Custody
n ticte	la agai		r: (Signature) Received by: (Signature)	tractors. It assigns standard terms and conditions losses are due to circumstances beyond the control will be enforced unless previously negotiated.	Pb Mg Mn Mo Ni K Se Ag Si Mo Ni Se Ag Tl U	AL 10/4/18																	'SIS REQUEST	Deliverables: EDD ADaPT D	Reporting:Level II Level III PST/UST TRRP Level IV	State of Project:	Program: UST/PST PRP Brownfields RRC Superfund		3-620-2000)	Work Order No: $\left(\int O \setminus Q \right)$
+724747A 147A Prevised Date QS1418 Rev. 2018.1		Chu shurta	re) Date/Time		D2 Na Sr TI Sn U V Zn 1631/245.1/7470 /7471 : Hg									Sample Comments	TAT starts the day recevied by the lab, if received by 4:30pm								Work Order Notes	Other:			fields RRC Superfund		Page of	:001914

Page 73 of 178

#14 Sample container(s) intact?

#17 Subcontract of sample(s)?

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc. Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 10/10/2018 10:45:00 AM Temperature Measuring device used : R8 Work Order #: 601914 Comments Sample Receipt Checklist 3.1 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

#15 Sufficient sample amount for indicated test(s)?

#18 Water VOC samples have zero headspace?

#16 All samples received within hold time?

Katie Lowe

Date: 10/10/2018

Yes

Yes

Yes

No

N/A

Checklist reviewed by:

Jessiga VRAMER

Jessica Kramer

Date: 10/10/2018

for LT Environmental, Inc.

Project Manager: Adrian Baker

JRU-17

17-OCT-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-27), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-18-17), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-13) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-18-17) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

17-OCT-18

Project Manager: **Adrian Baker LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: XENCO Report No(s): 601912 JRU-17 Project Address: Delaware Basin

Adrian Baker:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 601912. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 601912 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession Vermer

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 601912

LT Environmental, Inc., Arvada, CO

JRU-17

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SS05	S	10-08-18 09:00	2 ft	601912-001
SS05A	S	10-08-18 09:05	3 ft	601912-002

Version: 1.%

.

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: JRU-17

Project ID: Work Order Number(s): 601912

TORIES

Report Date: *17-OCT-18* Date Received: *10/10/2018*

Sample receipt non conformances and comments: PER CLIENTS EMAIL REQUEST CORRECTED SAMPLE NAMES. JKR 10/15/18

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3066385 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Project Id:Contact:Adrian BakerProject Location:Delaware Basin

LT Environmental, Inc., Arvada, CO Project Name: JRU-17

Date Received in Lab:Wed Oct-10-18 10:45 amReport Date:17-OCT-18Project Manager:Jessica Kramer

	Lab Id:	601912-0	001	601912-0	02			
	Field Id:	SS05		SS05A				
Analysis Requested	Depth:	2- ft		3- ft				
	Matrix:	SOIL		SOIL				
	Sampled:	Oct-08-18 (09:00	Oct-08-18 (9:05			
BTEX by EPA 8021B	Extracted:	Oct-15-18 (08:00	Oct-15-18 (8:00			
	Analyzed:	Oct-15-18	15:09	Oct-15-18 1	4:48			
	Units/RL:	mg/kg	RL	mg/kg	RL			
Benzene		< 0.00201	0.00201	< 0.00202	0.00202			
Toluene		< 0.00201	0.00201	< 0.00202	0.00202			
Ethylbenzene		< 0.00201	0.00201	< 0.00202	0.00202			
m,p-Xylenes		< 0.00402	0.00402	< 0.00403	0.00403			
o-Xylene		< 0.00201	0.00201	< 0.00202	0.00202			
Total Xylenes		< 0.00201	0.00201	< 0.00202	0.00202			
Total BTEX		< 0.00201	0.00201	< 0.00202	0.00202			
Inorganic Anions by EPA 300	Extracted:	Oct-15-18 (08:30	Oct-15-18 (8:30			
	Analyzed:	Oct-15-18	15:16	Oct-15-18 1	5:22			
	Units/RL:	mg/kg	RL	mg/kg	RL			
Chloride		1070	24.9	2050	24.8			
TPH by SW8015 Mod	Extracted:	Oct-12-18	17:00	Oct-12-18 1	7:00			
	Analyzed:	Oct-13-18 2	20:10	Oct-13-18 2	1:06			
	Units/RL:	mg/kg	RL	mg/kg	RL			
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<14.9	14.9			
Diesel Range Organics (DRO)		<15.0	15.0	<14.9	14.9			
Motor Oil Range Hydrocarbons (MRO)		<15.0	15.0	<14.9	14.9			
Total TPH		<15.0	15.0	<14.9	14.9			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

fession kramer

Jessica Kramer Project Assistant

LT Environmental, Inc., Arvada, CO

Sample Id: SS05 Lab Sample Id: 601912-001		Matrix: Date Collec	Soil ted: 10.08.18 09.00		Date Received Sample Depth	l:10.10.18 10.4 : 2 ft	5
Analytical Method:Inorganic ATech:CHEAnalyst:CHESeq Number:3066404	nions by EPA 300	Date Prep:	10.15.18 08.30		Prep Method: % Moisture: Basis:	E300P Wet Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil
Chloride	16887-00-6	1070	24.9	mg/kg	10.15.18 15.	16	5
Analytical Method: TPH by SW Tech: ARM Analyst: ARM	78015 Mod				Prep Method: % Moisture: Basis:	TX1005P Wet Weight	

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	10.13.18 20.10	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	10.13.18 20.10	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	15.0		mg/kg	10.13.18 20.10	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	10.13.18 20.10	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	98	%	70-135	10.13.18 20.10		
o-Terphenyl		84-15-1	101	%	70-135	10.13.18 20.10		

LT Environmental, Inc., Arvada, CO

Sample Id:SS05Lab Sample Id:601912-001	Matrix: Soil Date Collected: 10.08.18 09.00	Date Received:10.10.18 10.45 Sample Depth: 2 ft
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3066385	Date Prep: 10.15.18 08.00	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	10.15.18 15.09	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	10.15.18 15.09	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	10.15.18 15.09	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	10.15.18 15.09	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	10.15.18 15.09	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	10.15.18 15.09	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	10.15.18 15.09	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	100	%	70-130	10.15.18 15.09		
1,4-Difluorobenzene		540-36-3	92	%	70-130	10.15.18 15.09		

Seq Number: 3066398

Certificate of Analytical Results 601912

LT Environmental, Inc., Arvada, CO

Sample Id:SS05ALab Sample Id:601912-002		Matrix: Date Collec	Soil ted: 10.08.18 09.05		Date Received:10.10.18 10.45 Sample Depth: 3 ft					
Analytical M Tech: Analyst: Seq Number:	lethod: Inorganic Anion CHE CHE : 3066404	is by EPA 300	Date Prep:	10.15.18 08.30		Prep Method: E30 % Moisture: Basis: Wet	0P Weight			
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil		
Chloride		16887-00-6	2050	24.8	mg/kg	10.15.18 15.22		5		
Analytical M Tech:	lethod: TPH by SW801	5 Mod				Prep Method: TX1 % Moisture:	.005P			
Analyst:	ARM		Date Prep:	10.12.18 17.00		Basis: Wet	Weight			

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<14.9	14.9		mg/kg	10.13.18 21.06	U	1
Diesel Range Organics (DRO)	C10C28DRO	<14.9	14.9		mg/kg	10.13.18 21.06	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<14.9	14.9		mg/kg	10.13.18 21.06	U	1
Total TPH	PHC635	<14.9	14.9		mg/kg	10.13.18 21.06	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	92	%	70-135	10.13.18 21.06		
o-Terphenyl		84-15-1	95	%	70-135	10.13.18 21.06		

LT Environmental, Inc., Arvada, CO

Sample Id:SS05ALab Sample Id:601912-002	Matrix: Soil Date Collected: 10.08.18 09.05	Date Received:10.10.18 10.45 Sample Depth: 3 ft
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3066385	Date Prep: 10.15.18 08.00	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	10.15.18 14.48	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	10.15.18 14.48	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	10.15.18 14.48	U	1
m,p-Xylenes	179601-23-1	< 0.00403	0.00403		mg/kg	10.15.18 14.48	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	10.15.18 14.48	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	10.15.18 14.48	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	10.15.18 14.48	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	93	%	70-130	10.15.18 14.48		
4-Bromofluorobenzene		460-00-4	88	%	70-130	10.15.18 14.48		

LABORATORIES

Flagging Criteria

Page 84 of 178

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	S Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

QC Summary 601912

LT Environmental, Inc.

JRU-17

Analytical Method:	Inorganic Anions b	y EPA 300						Pro	ep Metho	d: E30	0P	
Seq Number:	3066404			Matrix:	Solid				Date Pre	p: 10.1	5.18	
MB Sample Id:	7664168-1-BLK		LCS San	nple Id:	7664168-1	-BKS		LCSI	Sample	Id: 766	4168-1-BSD	
Parameter	MB	Spike	LCS		LCSD	LCSD	Limits	%RPD I	RPD Limit	Units	Analysis	Flag
	Result	Amount	Result	%Rec	Result	%Rec					Date	

Analytical Method:	Inorganic Anions b	y EPA 300						Pro	ep Method	d: E30	OP	
Seq Number:	3066404			Matrix:	Soil				Date Prep	p: 10.1	15.18	
Parent Sample Id:	601605-018		MS San	nple Id:	601605-0	18 S		MSE	Sample	Id: 601	605-018 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD I	RPD Limit	Units	Analysis Date	Flag

Analytical Method:	Inorganic Anions b	y EPA 300						Pr	ep Metho	od: E30	OP 90	
Seq Number:	3066404			Matrix:	Soil				Date Pre	ep: 10.1	5.18	
Parent Sample Id:	601606-006		MS Sar	nple Id:	601606-00)6 S		MS	D Sample	e Id: 6016	506-006 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	553	248	796	98	777	90	90-110	2	20	mg/kg	10.15.18 14:20	

Analytical Method:	TPH by S	W8015 M	od						I	Prep Method	i: TX1	005P	
Seq Number:	3066398				Matrix:	Solid				Date Prep	p: 10.1	2.18	
MB Sample Id:	7664105-1	-BLK		LCS Sar	nple Id:	7664105-	1-BKS		LCS	SD Sample	Id: 7664	4105-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbo	ons (GRO)	<8.00	1000	1010	101	1060	106	70-135	5	20	mg/kg	10.13.18 19:33	
Diesel Range Organics ((DRO)	<8.13	1000	1030	103	1080	108	70-135	5	20	mg/kg	10.13.18 19:33	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			Limits	Units	Analysis Date	
1-Chlorooctane		91		1	15		122		7	70-135	%	10.13.18 19:33	
o-Terphenyl		95		1	06		104		7	70-135	%	10.13.18 19:33	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

QC Summary 601912

LT Environmental, Inc. JRU-17

Analytical Method: Tl	PH by SW8015 M	lod						Prep Meth	od: TX1	1005P	
Seq Number: 30	66398			Matrix:	Soil			Date P	rep: 10.1	2.18	
Parent Sample Id: 60	1912-001		MS Sar	nple Id:	601912-0	01 S		MSD Samp	e Id: 601	912-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD RPD Lin	nit Units	Analysis Date	Flag
Gasoline Range Hydrocarbons (GRO) 13.8	999	913	90	916	90	70-135	0 20	mg/kg	10.13.18 20:29	
Diesel Range Organics (DR	0) <8.12	999	927	93	928	93	70-135	0 20	mg/kg	10.13.18 20:29	
Surrogate				/IS Rec	MS Flag	MSE %Re			Units	Analysis Date	
1-Chlorooctane			1	07		109		70-135	%	10.13.18 20:29	
o-Terphenyl			9	€7		95		70-135	%	10.13.18 20:29	

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 802 3066385 7664177-1-BLK	1B	LCS San	Matrix: nple Id:	Solid 7664177-	1-BKS			Prep Metho Date Pre SD Sample	p: 10.1	5030B 5.18 4177-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPI	D RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.0998	0.125	125	0.116	116	70-130	7	35	mg/kg	10.15.18 07:53	
Toluene	< 0.00200	0.0998	0.108	108	0.103	103	70-130	5	35	mg/kg	10.15.18 07:53	
Ethylbenzene	< 0.00200	0.0998	0.123	123	0.115	115	70-130	7	35	mg/kg	10.15.18 07:53	
m,p-Xylenes	< 0.00399	0.200	0.231	116	0.236	117	70-130	2	35	mg/kg	10.15.18 07:53	
o-Xylene	< 0.00200	0.0998	0.122	122	0.114	114	70-130	7	35	mg/kg	10.15.18 07:53	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSD %Rec			Limits	Units	Analysis Date	
1,4-Difluorobenzene	99		ç	93		84			70-130	%	10.15.18 07:53	
4-Bromofluorobenzene	101		1	09		94			70-130	%	10.15.18 07:53	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 802 3066385 601718-001	1B	MS San	Matrix: nple Id:		01 S			Prep Method Date Prep SD Sample	p: 10.1	5030B 5.18 718-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPI	D RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.0931	93	0.101	100	70-130	8	35	mg/kg	10.15.18 08:35	
Toluene	< 0.00200	0.100	0.0958	96	0.0912	90	70-130	5	35	mg/kg	10.15.18 08:35	
Ethylbenzene	< 0.00200	0.100	0.112	112	0.102	101	70-130	9	35	mg/kg	10.15.18 08:35	
m,p-Xylenes	< 0.00401	0.200	0.236	118	0.207	103	70-130	13	35	mg/kg	10.15.18 08:35	
o-Xylene	< 0.00200	0.100	0.109	109	0.0995	99	70-130	9	35	mg/kg	10.15.18 08:35	
Surrogate				AS Rec	MS Flag	MSD %Re			Limits	Units	Analysis Date	
1,4-Difluorobenzene			1	20		81			70-130	%	10.15.18 08:35	
4-Bromofluorobenzene			ç	96		97			70-130	%	10.15.18 08:35	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control SampleA = Parent Result C = MS/LCS Result E = MSD/LCSD Result

MS = Matrix Spike B = Spike AddedD = MSD/LCSD % Rec

.

	Heinquished by: (Signature)	rouce: orginaure or uns document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xanco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the contro of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	Iotal 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010: 1			2 00%0 818101 C 10CC	Matrix Date Sampled	Cooler Custody Seals: Yes No N/A Correction Factor: Sample Custody Seals: Yes No N/A Total Containers:	Thermometer II	SAMPLE RECEIPT Temp Blank: Yes No Wet Ice: Yes	ne: Fabian Unibarri	Project Number: Routine N P.O. Number: $2 R P - 3 q 1 q$ Rush:	JRU-17 Tum Ar	Phone: (432)704-5178 Email: 4 8	15	Suilding 1, 4203		Project Manager: Adrin Saker	Hobbs, NM (5	LABORATORIES Houston, TX (281)
	Date/Time Relivinguished by: (Signature) {0{8}18 1513 2 1	e order from client company to Xenco, its affiliates and subcontractors. It bility for any losses or expenses incurred by the client if such losses are lohi sample submitted to Xenco, but not analyzed. These terms will be enf	as 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb 0: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo		<u>ا</u>	 	Numb	er of Con EX (Ou L (DR orides	Itainers	₹ <u> </u> <u> </u>)(1)(1))(0)	(00)	und ANALYSIS REQUEST	A Baker Elrenu, com	City, State ZIP:	SS:	e OXTO	Bill to: (it different) Cyte Lifted		Chain of Custody Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio TX (210) 509-3334
7-7-34,2430,1590	Heceive	ubcontractors. It assigns standard terms and conditions fsuch losses are due to circumstances beyond the control terms will be enforced unless previously negotiated.	b Mg Mn Mo Ni K Se Ag SiO2 Na Sr Ti Sn U V Zn b Ni Se Ag Ti U 1631/245.1/7470 / 7471 : Hg	10/8/18			Sample Comments	TAT starts the day received by the lab, if received by 4:30pm					JEST Work Order Notes	Deliverables: EDD ADaPT Other:	Reporting:Level II Level III PST/UST TRRP Level IV	State of Project:	Program: UST/PST PRP Brownfields BBC Superfund	Comments	3-620-2000)	Work Order No: (00)912

Released to Imaging: 6/24/2025 3:22:25 PM

Page 87 of 178

Page 13 of 14

Final 1.000

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc. Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 10/10/2018 10:45:00 AM Temperature Measuring device used : R8 Work Order #: 601912 Sample Receipt Checklist #1 *Temperature of cooler(s)? 3.1 #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No

#9 Chain of Custody signed when relinquished/ received?	Yes
#10 Chain of Custody agrees with sample labels/matrix?	Yes
#11 Container label(s) legible and intact?	Yes
#12 Samples in proper container/ bottle?	Yes
#13 Samples properly preserved?	Yes
#14 Sample container(s) intact?	Yes
#15 Sufficient sample amount for indicated test(s)?	Yes
#16 All samples received within hold time?	Yes
#17 Subcontract of sample(s)?	No
#18 Water VOC samples have zero headspace?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Katie Lowe

Date: 10/10/2018

Comments

Checklist reviewed by:

fession KRAMER

Jessica Kramer

Date: 10/10/2018

Analytical Report 604417

for LT Environmental, Inc.

Project Manager: Adrian Baker

JRU 17 Battery

12-NOV-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-28), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-18-17), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-14) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-18-18) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

12-NOV-18

Project Manager: **Adrian Baker LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: XENCO Report No(s): 604417 JRU 17 Battery Project Address: Carlsbad, NM

Adrian Baker:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 604417. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 604417 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession Vermer

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 604417

LT Environmental, Inc., Arvada, CO

JRU 17 Battery

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
PH01	S	11-01-18 11:30	1 ft	604417-001
PH01A	S	11-01-18 11:35	3 ft	604417-002
PH02	S	11-01-18 12:10	1 ft	604417-003
PH02A	S	11-01-18 12:20	3 ft	604417-004

Version: 1.%

.

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: JRU 17 Battery

Project ID: Work Order Number(s): 604417

TORIES

Report Date: 12-NOV-18 Date Received: 11/05/2018

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3069313 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Project Id:Contact:Adrian BakerProject Location:Carlsbad, NM

Certificate of Analysis Summary 604417

LT Environmental, Inc., Arvada, CO Project Name: JRU 17 Battery

Date Received in Lab:Mon Nov-05-18 09:00 amReport Date:12-NOV-18Project Manager:Jessica Kramer

	T-LTJ.	604417-0	0.1	604417-0	000	604417-0	0.2	604417-	004		
	Lab Id:		101								
Analysis Requested	Field Id:	PH01		PH01A	A	PH02		PH02.	4		
Thurysis Requesieu	Depth:	1- ft		3- ft		1- ft		3- ft			
	Matrix:	SOIL		SOIL		SOIL		SOIL	,		
	Sampled:	Nov-01-18	11:30	Nov-01-18	11:35	Nov-01-18	12:10	Nov-01-18	12:20		
BTEX by EPA 8021B	Extracted:	Nov-09-18	16:30	Nov-09-18	16:30	Nov-09-18	16:30	Nov-09-18	16:30		
	Analyzed:	Nov-09-18	21:57	Nov-10-18	02:37	Nov-10-18	02:58	Nov-10-18	03:19		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene		< 0.00202	0.00202	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00198	0.00198		
Toluene		< 0.00202	0.00202	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00198	0.00198		
Ethylbenzene		< 0.00202	0.00202	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00198	0.00198		
m,p-Xylenes		< 0.00403	0.00403	< 0.00402	0.00402	< 0.00398	0.00398	< 0.00397	0.00397		
o-Xylene		< 0.00202	0.00202	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00198	0.00198		
Total Xylenes		< 0.00202	0.00202	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00198	0.00198		
Total BTEX		< 0.00202	0.00202	< 0.00201	0.00201	< 0.00199	0.00199	< 0.00198	0.00198		
Inorganic Anions by EPA 300	Extracted:	Nov-06-18	16:30	Nov-06-18	16:30	Nov-06-18	16:30	Nov-06-18	16:30		
	Analyzed:	Nov-06-18	23:18	Nov-06-18	23:39	Nov-06-18	23:55	Nov-06-18	23:33		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		206	5.00	21.1	4.95	< 5.00	5.00	<4.99	4.99		
TPH by SW8015 Mod	Extracted:	Nov-05-18	14:00	Nov-05-18	14:00	Nov-05-18	14:00	Nov-05-18	14:00		
	Analyzed:	Nov-05-18	23:09	Nov-06-18	00:04	Nov-06-18	10:56	Nov-06-18	00:41		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0		
Diesel Range Organics (DRO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0		
Motor Oil Range Hydrocarbons (MRO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0		
Total TPH		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

fession kramer

Jessica Kramer Project Assistant

Page 5 of 18

LT Environmental, Inc., Arvada, CO

Sample Id: PH01		Matrix:	Soil	Γ	Date Received:11.	05.18 09.00	
Lab Sample Id: 604417-001		Date Collecte	ed: 11.01.18 11.30	S	ample Depth: 1 ft		
Analytical Method: Inorganic An	ions by EPA 300			P	Prep Method: E30	90P	
Tech: CHE				9	6 Moisture:		
Analyst: CHE		Date Prep:	11.06.18 16.30	E	Basis: We	t Weight	
Seq Number: 3068881							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Parameter Chloride	Cas Number 16887-00-6	Result J 206	RL 5.00	Units mg/kg	Analysis Date 11.06.18 23.18	Flag	Dil
					•	Flag	Dil 1
					•	Flag	Dil 1
	16887-00-6			mg/kg	•		Dil

Analyst: ARM Seq Number: 3068702		Date Prep	p: 11.05	.18 14.00	В	Basis: We	t Weight	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	11.05.18 23.09	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	11.05.18 23.09	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	15.0		mg/kg	11.05.18 23.09	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	11.05.18 23.09	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	89	%	70-135	11.05.18 23.09		
o-Terphenyl		84-15-1	91	%	70-135	11.05.18 23.09		

LT Environmental, Inc., Arvada, CO

Sample Id:PH01Lab Sample Id:604417-001	Matrix: Soil Date Collected: 11.01.18 11.30	Date Received:11.05.18 09.00 Sample Depth: 1 ft
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3069313	Date Prep: 11.09.18 16.30	Prep Method:SW5030B% Moisture:Basis:Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	11.09.18 21.57	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	11.09.18 21.57	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	11.09.18 21.57	U	1
m,p-Xylenes	179601-23-1	< 0.00403	0.00403		mg/kg	11.09.18 21.57	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	11.09.18 21.57	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	11.09.18 21.57	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	11.09.18 21.57	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	95	%	70-130	11.09.18 21.57		
4-Bromofluorobenzene		460-00-4	70	%	70-130	11.09.18 21.57		

LT Environmental, Inc., Arvada, CO

PH01A		Matrix:	Soil	J	Date Received:11.	.05.18 09.0	0
d: 604417-002		Date Collec	cted: 11.01.18 11.35	2	Sample Depth: 3 f	t	
ethod: Inorganic Anioi	ns by EPA 300			I	Prep Method: E3	00P	
CHE				Ģ	% Moisture:		
CHE		Date Prep:	11.06.18 16.30	J	Basis: We	et Weight	
3068881							
	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
	16887-00-6	21.1	4.95	mg/kg	11.06.18 23.39		1
E	d: 604417-002 ethod: Inorganic Anior CHE CHE	d: 604417-002 ethod: Inorganic Anions by EPA 300 CHE CHE 3068881 Cas Number	d: 604417-002 Date Collect ethod: Inorganic Anions by EPA 300 CHE CHE Date Prep: 3068881 Cas Number Result	d: 604417-002 Date Collected: 11.01.18 11.35 ethod: Inorganic Anions by EPA 300 CHE CHE Date Prep: 11.06.18 16.30 3068881 Cas Number Result RL	d: 604417-002 Date Collected: 11.01.18 11.35 S ethod: Inorganic Anions by EPA 300 I CHE Date Prep: 11.06.18 16.30 3068881 Cas Number Result RL	d: 604417-002 Date Collected: 11.01.18 11.35 Sample Depth: 3 ft ethod: Inorganic Anions by EPA 300 Prep Method: E30 CHE Moisture: CHE Date Prep: 11.06.18 16.30 Basis: We 3068881 Cas Number Result RL Units Analysis Date	d: 604417-002 Date Collected: 11.01.18 11.35 Sample Depth: 3 ft ethod: Inorganic Anions by EPA 300 Prep Method: E300P CHE % Moisture: CHE Date Prep: 11.06.18 16.30 3068881 Kesult Result Cas Number Result RL Units Analysis Date Flag

Analytical Method: TPH by SW801	5 Mod				Р	rep Method: TX	1005P	
Tech: ARM					%	6 Moisture:		
Analyst: ARM		Date Pre	p: 11.05	.18 14.00	В	asis: We	t Weight	
Seq Number: 3068702								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	11.06.18 00.04	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	11.06.18 00.04	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	15.0		mg/kg	11.06.18 00.04	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	11.06.18 00.04	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	89	%	70-135	11.06.18 00.04		
o-Terphenyl		84-15-1	89	%	70-135	11.06.18 00.04		

LT Environmental, Inc., Arvada, CO

Sample Id:PH01ALab Sample Id:604417-002	Matrix: Soil Date Collected: 11.01.18 11.35	Date Received:11.05.18 09.00 Sample Depth: 3 ft
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3069313	Date Prep: 11.09.18 16.30	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	11.10.18 02.37	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	11.10.18 02.37	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	11.10.18 02.37	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	11.10.18 02.37	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	11.10.18 02.37	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	11.10.18 02.37	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	11.10.18 02.37	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	72	%	70-130	11.10.18 02.37		
1,4-Difluorobenzene		540-36-3	120	%	70-130	11.10.18 02.37		

LT Environmental, Inc., Arvada, CO

Sample Id:	PH02		Matrix:	Soil]	Date Received:11.	05.18 09.0)	
Lab Sample I	d: 604417-003		Date Colle	cted: 11.01.18 12.10	Sample Depth: 1 ft				
Analytical Me	ethod: Inorganic Anior	is by EPA 300]	Prep Method: E30)0P		
Tech:	CHE				(% Moisture:			
Analyst:	CHE		Date Prep:	11.06.18 16.30]	Basis: We	t Weight		
Seq Number:	3068881								
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride		16887-00-6	< 5.00	5.00	mg/kg	11.06.18 23.55	U	1	

Analytical Method: TPH by SW8015	5 Mod				Р	rep Method: TX	1005P	
Tech: ARM					%	6 Moisture:		
Analyst: ARM		Date Pre	p: 11.05.	18 14.00	В	asis: We	t Weight	
Seq Number: 3068702								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	11.06.18 10.56	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	11.06.18 10.56	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	15.0		mg/kg	11.06.18 10.56	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	11.06.18 10.56	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	83	%	70-135	11.06.18 10.56		
o-Terphenyl		84-15-1	88	%	70-135	11.06.18 10.56		

LT Environmental, Inc., Arvada, CO

Sample Id:PH02Lab Sample Id:604417-003	Matrix: S Date Collected: 1	Goil 1.01.18 12.10	Date Received Sample Depth	:11.05.18 09.00 :1 ft
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3069313	Date Prep: 1	1.09.18 16.30	Prep Method: % Moisture: Basis:	SW5030B Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	11.10.18 02.58	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	11.10.18 02.58	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	11.10.18 02.58	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	11.10.18 02.58	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	11.10.18 02.58	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	11.10.18 02.58	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	11.10.18 02.58	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	70	%	70-130	11.10.18 02.58		
1,4-Difluorobenzene		540-36-3	104	%	70-130	11.10.18 02.58		

LT Environmental, Inc., Arvada, CO

Sample Id:	Sample Id: PH02A			Soil	Date Received:11.05.18 09.00					
Lab Sample Id	d: 604417-004		Date Colle	ected: 11.01.18 12.20						
Analytical Me	ethod: Inorganic Anions	by EPA 300				Prep Method: E30)0P			
Tech:	CHE					% Moisture:				
Analyst:	CHE		Date Prep	: 11.06.18 16.30		Basis: We	t Weight			
Seq Number:	3068881									
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil		
Chloride		16887-00-6	<4.99	4.99	mg/kg	11.06.18 23.33	U	1		

Analytical Method: TPH by SW801	5 Mod				Р	rep Method: TX	(1005P	
Tech: ARM					%	6 Moisture:		
Analyst: ARM		Date Pre	p: 11.05	.18 14.00	В	Basis: We	et Weight	
Seq Number: 3068702								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	11.06.18 00.41	U	1
Diesel Range Organics (DRO)	C10C28DRO	<15.0	15.0		mg/kg	11.06.18 00.41	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	15.0		mg/kg	11.06.18 00.41	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	11.06.18 00.41	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	88	%	70-135	11.06.18 00.41		
o-Terphenyl		84-15-1	93	%	70-135	11.06.18 00.41		

LT Environmental, Inc., Arvada, CO

Sample Id:PH02ALab Sample Id:604417-004	Matrix: Soil Date Collected: 11.01.18 12.20	Date Received:11.05.18 09.00 Sample Depth: 3 ft
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3069313	Date Prep: 11.09.18 16.30	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00198	0.00198		mg/kg	11.10.18 03.19	U	1
Toluene	108-88-3	< 0.00198	0.00198		mg/kg	11.10.18 03.19	U	1
Ethylbenzene	100-41-4	< 0.00198	0.00198		mg/kg	11.10.18 03.19	U	1
m,p-Xylenes	179601-23-1	< 0.00397	0.00397		mg/kg	11.10.18 03.19	U	1
o-Xylene	95-47-6	< 0.00198	0.00198		mg/kg	11.10.18 03.19	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198		mg/kg	11.10.18 03.19	U	1
Total BTEX		< 0.00198	0.00198		mg/kg	11.10.18 03.19	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	74	%	70-130	11.10.18 03.19		
1,4-Difluorobenzene		540-36-3	107	%	70-130	11.10.18 03.19		

LABORATORIES

Flagging Criteria

Page 102 of 178

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	S Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

LT Environmental, Inc.

JRU 17 Battery

Analytical Method:	Inorganic Anions b	y EPA 300						Pre	p Method	1: E30	00P	
Seq Number:	3068881			Matrix:	Solid				Date Prep	p: 11.0	06.18	
MB Sample Id:	7665613-1-BLK		LCS San	nple Id:	7665613-1	I-BKS		LCSD	Sample	Id: 766	5613-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD R	RPD Limit	Units	Analysis Date	Flag

Analytical Method:	Inorganic Anions b	y EPA 300						Pre	ep Metho	d: E30	0P	
Seq Number:	3068881			Matrix:	Soil				Date Pre	p: 11.0	06.18	
Parent Sample Id:	604417-001		MS Sar	nple Id:	604417-00	01 S		MSE	Sample	Id: 604	417-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD F	RPD Limit	Units	Analysis Date	Flag

Analytical Method:	Inorganic Anions b	y EPA 300						Pi	rep Metho	od: E30	OP	
Seq Number:	3068881			Matrix:	Soil				Date Pr	ep: 11.0)6.18	
Parent Sample Id:	604540-013		MS San	nple Id:	604540-01	3 S		MS	D Sample	e Id: 604	540-013 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	< 0.852	248	240	97	245	99	90-110	2	20	mg/kg	11.06.18 22:09	

Analytical Method:	TPH by S	W8015 M	od						Р	rep Method	i: TX1	005P	
Seq Number:	3068702				Matrix:	Solid				Date Prep	p: 11.0	5.18	
MB Sample Id:	7665528-1	-BLK		LCS Sar	nple Id:	7665528-	1-BKS		LCS	D Sample	Id: 766	5528-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<8.00	1000	1070	107	1080	108	70-135	1	20	mg/kg	11.05.18 20:23	
Diesel Range Organics	(DRO)	<8.13	1000	1050	105	1050	105	70-135	0	20	mg/kg	11.05.18 20:23	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1-Chlorooctane		96		1	28		129		70	0-135	%	11.05.18 20:23	
o-Terphenyl		101		1	03		101		70	0-135	%	11.05.18 20:23	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

QC Summary 604417

LT Environmental, Inc.

JRU 17 Battery

Analytical Method:TPH bySeq Number:3068702Parent Sample Id:604416-0		od		Matrix: nple Id:		21 S		Prep Meth Date Pr MSD Sample	ep: 11.0	1005P)5.18 416-021 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD RPD Lim	it Units	Analysis Date	Flag
Gasoline Range Hydrocarbons (GRO)	1680	999	899	0	933	0	70-135	4 20	mg/kg	11.05.18 21:18	Х
Diesel Range Organics (DRO)	31000	999	993	0	1040	0	70-135	5 20	mg/kg	11.05.18 21:18	Х
Surrogate				/IS Rec	MS Flag	MSD %Ree			Units	Analysis Date	
1-Chlorooctane			1	15		117		70-135	%	11.05.18 21:18	
o-Terphenyl			9	99		97		70-135	%	11.05.18 21:18	

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 802 3069313 7665977-1-BLK	1B	LCS San	Matrix: nple Id:	Solid 7665977-	1-BKS			Prep Method Date Prep SD Sample	p: 11.0	5030B 9.18 5977-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPI	D RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.102	102	0.104	103	70-130	2	35	mg/kg	11.09.18 19:47	
Toluene	< 0.00200	0.100	0.0854	85	0.0877	87	70-130	3	35	mg/kg	11.09.18 19:47	
Ethylbenzene	< 0.00200	0.100	0.107	107	0.109	108	70-130	2	35	mg/kg	11.09.18 19:47	
m,p-Xylenes	< 0.00102	0.200	0.223	112	0.225	112	70-130	1	35	mg/kg	11.09.18 19:47	
o-Xylene	< 0.00200	0.100	0.118	118	0.120	119	70-130	2	35	mg/kg	11.09.18 19:47	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSE %Rec			Limits	Units	Analysis Date	
1,4-Difluorobenzene	108		1	03		101			70-130	%	11.09.18 19:47	
4-Bromofluorobenzene	70		8	39		87			70-130	%	11.09.18 19:47	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 802 3069313 604417-001	1B	MS San	Matrix: nple Id:	Soil 604417-00	01 S			Prep Methoo Date Prej SD Sample	p: 11.0	5030B 9.18 417-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPE	ORPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00198	0.0992	0.0945	95	0.0858	85	70-130	10	35	mg/kg	11.09.18 20:30	
Toluene	< 0.00198	0.0992	0.0779	79	0.0716	71	70-130	8	35	mg/kg	11.09.18 20:30	
Ethylbenzene	< 0.00198	0.0992	0.0917	92	0.0824	82	70-130	11	35	mg/kg	11.09.18 20:30	
m,p-Xylenes	< 0.00101	0.198	0.183	92	0.164	81	70-130	11	35	mg/kg	11.09.18 20:30	
o-Xylene	< 0.00198	0.0992	0.0958	97	0.0851	84	70-130	12	35	mg/kg	11.09.18 20:30	
Surrogate				1S Rec	MS Flag	MSD %Rec			Limits	Units	Analysis Date	
1,4-Difluorobenzene			1	09		106		7	70-130	%	11.09.18 20:30	
4-Bromofluorobenzene			8	31		76		7	70-130	%	11.09.18 20:30	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Setting the Sampler since rised Frequencies Sam Antonio, Trans (21:000, 000, 000, 000, 000, 000, 000, 000	Indiand, Torase (210-039-333) Midland, Torase (210-039-334) Midland, Torase (210-03-334) Midland, Torase (210-03-34) Midland, Torase	San Antonio, Towar (20.000,333) Fight, Curr, Towar (20.000,334) Fight, Curr, Towar (20.000,334) n Provint, Antonio, Towar (20.000,334) Fight, Curr, Towar (20.000,334) n Provint, Antonio, Towar (20.000,334) Fight, Curr, Towar (20.000,334) n Provint, Antonio, Towar (20.000,334) Fight, Curr, Towar (20.000,334) n Provint, Antonio, Towar (20.000,334) Fight, Curr, Towar (20.000,334) n Provint, Antonio, Towar (20.000,334) Fight, Curr, Towar (20.000,334) n Provint, Antonio, Towar (20.000,334) Fight, Curr, Towar (20.000,334) n Provint, Antonio, Towar (20.000,334) Fight, Curr, Towar (20.000,334) n Provint, Antonio, Towar (20.000,334) Fight, Curr, Towar (20.000,334) n Provint, Antonio, Towar (20.000,334) Fight, Curr, Towar (20.000,334) n Provint, Towar (20.000,334) Fi	Bits Antonio, Tame (20100333) Bits Antonio, Tame (20100333) Phoenk, Antonio, Tame (20100333) Bits Antonio, Tame (20100334) Bits Antonio, Tame (20100334) Phoenk, Antonio, Tame (20100334) Image:
San Antonio, Texas (210-509-3334) Midland, Texas (210-509-3334) INVIVE State Project NameNumber: Project Location: Project Location: Projec	Sam Antonio, Tease (210-509, 334) Midland, Toxas (432-704-326) WWW.VERICO.COM Project Information Project Location: Project Location: WTC - EAUSY KYTC - EAUSY Name Data	San Antonio, Texas (210-009.334) Phone, Atzona (480-386.400) Walking, Texas (210-009.334) Walking, Texas (210-009.334) Phone, Atzona (480-386.400) Walking, Texas (210-009.334) Walking, Texas (210-009.334) Walking, Texas (210-009.340) Proper, Landon Proper, Landon Walking, Texas (210-009.340) Proper, Landon Walking, Texas (210-009.340) Walking, Texas (210-009.340) WTC - E-ArLy K. K. L. 1, H. K. (1 Walking, Texas (210-009.340) Male Control (210-009.340) WTC - E-ArLy K. K. L. 1, H. K. (1 Walking, Texas (210-009.340) Male Control (210-009.340) WTC - E-ArLy K. K. L. 1, H. K. (1 Walking, Texas (210-009.340) Male Control (210-009.340) WTC - E-ArLy K. K. (100-000.340) Walking, Walk	Sharkonic, Trans (2000833) Bulland, Trans (2000833) Bulland, Trans (2000833) Bulland, Trans (2000834) Bulland, Trans (2000834) Bu
	ANGE POSSESSION, NCLUDING COURLER Information Interval to Anthropy I a series of a Bit of the Anthropy I a series of a Bit of the Anthropy I a series of a Bit of the Anthropy I a series of a Bit of the Anthropy I a series of a Bit of the Anthropy I a series of a Bit of the Anthropy I a series of a Bit of the Anthropy I a series of a Bit of the Anthropy I a series of a Bit of the Anthropy I a series of a Bit of the Anthropy I a series of a Bit of the Anthropy I a series of a Bit of the Anthropy I a series of the Anthropy I a ser	ODD New Outers	Image: Second

Released to Imaging: 6/24/2025 3:22:25 PM

Page 17 of 18

Final 1.000

Page 105 of 178

CHAIN OF C STODY

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

.3

Client: LT Environmental, Inc. Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 11/05/2018 09:00:00 AM Temperature Measuring device used : R8 Work Order #: 604417 Sample Receipt Checklist #1 *Temperature of cooler(s)? #2 *Shipping container in good condition?

Yes
Yes
N/A
N/A
N/A
Yes
No
Yes
N/A
N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Brianna Teel

Date: 11/05/2018

Comments

Checklist reviewed by: Jession Vramer

Jessica Kramer

Date: 11/05/2018

LT Z

Released to Imaging: 6/24/2025 3:22:25 PM

	TP mmental, inc. 55		Ca	508 Wes rlsbad, N	ronment It Stevens Iew Mexi Ingineering	s Street co 88220			Identifier: SSO (Project Name: JRU 17	Date: 10/4/18 RP Number: 2RP-1657
		LITHO	LOGIO	C / SOII	SAMP	LING LO	DG		Logged By: FABIAN URIBARRI	Method: HAND AUGER
Lat/Lon	g: 32.33532						ORIDE, TP	H, BTEX,	Hole Diameter: 3 1/4"	Total Do-th
	-	-), and MR(. ,		Total Depth: Z
Comme	nts: CH	1 51		innes			20/	r facto	_	
					7/11/40		10 Erre	r facto		
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type	, an	Lithology/Re	marks
n	4112	5.પ	Y	5501 9.5'	0	•.5'	6P- G I	lls" pea grayis moist	gravel, Bern Fill, Zi h Brown, Medium odd	0% sand m F. grain, Dr, storning visible
M	2.12	62.3		55014 91.5'		1.5'	1		ANP	
M	412	3.4	NY	SSOIB		2'	SF-SM	Morst	readish Brown / gray, poory	graded sound M F. grain, miny visible. (trace silf
			₹u	@ Z !					1 stan	miny visible. (made silf
					-	H		{		
					3.	ŧI			20002	
						Ħ		T	La Dolla 2'rol	P
						Ц		10	FOBEZ ' Her Defth; Z'Feer	bgs,
					4.	+I				
					4 -	H				
						<u>†</u>]				
						Π				
					5 -	H				
					· ·	ŧI		۰		
						Ħ				
					6	Ц				
	1					4 1				
					-	H				
					7	1				
					.	41				
					-	H				
					8	tl				
						Ħ				
					-	H				
					9	+				
					´ -	Ħ				
						Į				
					10	ŦĮ				
					10	H				
						1				
1						1]				
					11 -	H				
						†				
						T				
					12					

LT Environmental, Inc. 255 Lat/Long: 32.3353 Comments:	LITHOL 2, -103.81943	508 We. Carlsbad, I Compliance · I OGIC / SOI	Engineering L SAMPI Field Screen GRO, DRO	Street Street Remed LING LO ning: CHL , and MR	liation DG ORIDE, TP O.	2'
A.	ll chi	lorite to	ISTR	Sm Its	inch	ide a 60% error factor.
Moisture Content Chloride (ppm)	1 1	Staining Sample #		Sample Depth	8	
M LIIZ M LIIZ		Y 5502 Q:5' Y 5502A Q 1'		0.51	GP- en	Lithology/Remarks GAAVACIGA) 1/811 pea grave 1, Berm Fill, 20% Sand MF. grain, gragisk /Brown color, Heavy odor, E staining Uisible Moist SAND
M \$112	4.7)	Y SSEB	2	2'	sp .	Moist redaish Brown poorly graded sand, M Fgrain, Heavy odo
		şu 21				Total Depth : 2 Feet Bgs.

LT Environmental, Inc.	Ca Comp	508 Wes arlsbad, N pliance · E	ronmenta st Stevens New Mexic Engineering	Street co 88220 · Remed	iation	Identifier: SS03 Date: D 10/4/18 Project Name: JRU 17 RP Number: 2RP-1657
Lat/Long: 32.3353	LITHOLOGI					Logged By: FABIAN URIBARRI Method: HAND AUGER PH, BTEX, Hole Diameter: 3 1/4" Total Depth; • (
			GRO, DRC			PH, BTEX, Hole Diameter: 3 1/4" Total Depth:
Comments: Al	(chlorid	h to	STA	sults	incl	hade a 60% error factor.
Moisture Content Chloride (ppm)		ple #		Sample	Soil/Rock Type	Lithology/Remarks
m Cuz m Cuz	4.7 Y 3.6 Y	5503 @•5' S503A @1'		0.5'	(P- 38 7	18" pen gravel; Bern Fill, Moist, 20% sand M F grain, grazish Brown color, Anedrum odor, light Storning SAND
m 5112	1.5 N	SSBB	2	2'	SP-SM	(Moist, reddish Brann, O. T.
	F					Total Deth: 2 feet Bys

Г

potec	P inental, Inc.		Ca	rlsbad, N	t Stever New Me	ns Śtreet kico 8822			Identifier: 5 Project Name:	`5<i>д</i>Ц JRU 17	Date:	1
						ng · Reme						
Lat/Long	: 32.33532			C / SOI		PLING L eening: CHI	OG .ORIDE, TF	PH. BTEX.	Logged By: FA Hole Diameter	ABIAN URIBARRI	Method: HAN	
Comment					GRO, DR	O, and MF	RO			1.42.4	Total Depth:	
Commen	Al	1 ch	lorial	e t	est	result	5 ho	have .	a 60	to enor	facto-	-
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	ple #	Depth (ft. bgs.	Sample	ll/Rock Type			Lithology/Re	marks	
M	<112			5504 e.5'	0	₩ + - - - - -	(GP-GM	Ygu pea gray is Anist	gravel, Br Sh Brosen, Wet	PGA) ermfill, 20% Heaving uisible, He	6 sont M r, Stoinning awy odor	Fgrain, Visible
\sim	2112	860.1	Y	55044		1.5		SAL SAL	storning		g - co.	
M	(112	845,3	У	SICIB 2 Z'	2	2'	SP-SM	juet, BI	ack grey	poorly graded so	und, trace g	
			C ⁴		3 4 5 6 7 8 9 10 11 11	╺ ┾ ┾ ┽ ┥ ┥ ┥ ┥ ┥ ┥ ┥ ┥ ┥ ┥ ┥ ┥ ┥ ┥ ┥ ┥ ┥			Tota	B & Z' DeP HL : Z	Fee+ Bgs	Hengestarr

LT Environmental, Inc. 255 Lat/Long: 32.3353	Ca LITHOLOG	508 Wes Carlsbad, I ompliance · E GIC / SOI	ngineering	Street Street Remed ING LO ing: CHLO	iation DG ORIDE, TP	Identifier: SSO 5 Date: IO /4/18 Project Name: JRU 17 RP Number: 2RP-1657 Logged By: FABIAN URIBARRI Method: HAND AUGER H, BTEX, Hole Diameter: 3 1/4" Total Depth:
Comments:	11 chi	lorida				nchde a 60% error factor
Moisture Content Chloride (ppm)	Vapor (ppm) Staining		Depth (ft. bgs.)	Sample	kock pe	
n K112 n K112		5505 2.51 55054 21		0.5'	GP-GA	Dark gran starning visible
m 5112		ez'	2	21	SP-SM	Anoist, grayish Brown, Poorly graded sond, M. F. grown, trace light Standay, henry odor Silt
		τι.				Total Derth. : Z Feet Bgs.

100 C	P nunental, Inc.			508 We arlsbad,	ironment st Steven Ne w Mex Engineerin	s Street ico 8822			Identifier: SSO3 Project Name: JRU 17	Date:-11/1/18 LO(512018 RP Number: 2RP-3919
Lat/Long		4, -103.81	9734	-		ening: CHL O, and MR	ORIDE, TP O.		Logged By: DEN BELIE	Total Depth: 31
Moisture Content	Chloride (ppm)		_	ple #		Sample	×	erol	Fector	Remarks
D	51Z	22.5	λ	5503 A 0 1'	0	5 ⁵⁴	CALICHE		, Dry, light brown,- , Fill, Dense stain [No odor	- Coarse grand Sand and
ч	620.8	016.1		5503 8	2	- 3'	SP- SA		ose, Broumishled, fine ; O Starin (No ada	grained i trace clay (19
				@ 3'				To	tal Depth: 3f	eet Bgs

LT Environ	P nental, Inc.		Cá	508 Wes	i ronment st Stevens New Mexi	s Street)		Identifier: SSOL Project Name: JRU 17	Date: -11/1718 +01512018 RP Number: 2RP-3919
2			Com	liance · E	ngineering	g · Remed	iation			Number, 2NF-5919
				C / SOI	LSAMP	LING LO)G		Logged By: BEN BELILL	Method: HAND AUGER
.at/Long:	32.33534	, -1 03.819	9734		Field Scree GRO, DRO	ening: CHLO D, and MRO		H, BTEX,	Hole Diameter: 3 1/4"	Total Depth: 3'
Comment	s: A	u c	HL	resr H	s raili	ide a	60%	error F	eutor	
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	ple #		Sample	ĸ			gy/Remarks
D	414 	٨١٣	N		0		FU CAl·de SP-SM	Senc A	Dry, Brownishlied, Stain (No Odor	Fine gramed, trace silt
M M	<112 162	5.Z 9.7	ע ע	5501 @ 2 ' 5501 B	2	Z' 3'	Sesc	Sand frace No	Morst, light brow Futt (104/5%) Stern / No odo	mish (red, frine ground, r
				e 3'				Tot	al Depth; 3 F	eet Bgs.

$\begin{array}{c c} \hline \begin{array}{ c c c c c c c c c c c c c c c c c c c$	r										
LITHOLOGIC / SOIL SAMPLING LOG LalLarg 323334,-103 81974 Red Sectoring CHLORDE, TP4L BTEX GRO, DRO, and MRO. Comments All CHL results rullate LG07. crof Feeter $\frac{1}{100} \frac{1}{100} \frac$	LT Environm	Pentai, Inc.		´ Ca	508 Wes Irlsbad, I	st Steven: Vew Mexi	s Street ico 88220			Identifier: SSOZ Project Name: JRU 17	10/512018
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							_				
Comments All CHL results reclude UOT croc Fector $\frac{1}{99} \frac{1}{99} \frac{1}{99} \frac{1}{98} \frac{1}{98} \frac{1}{99} \frac{1}{10} \frac{1}{99} \frac{1}{99} \frac{1}{10} \frac{1}{99} \frac{1}{99} \frac{1}{10} \frac{1}{99} \frac{1}{99} \frac{1}{10} \frac{1}{99} \frac{1}{10} \frac{1}{99} \frac{1}{10} 1$	Lat/Long:								HBTEY	Logged By: BEN BELILL Fabren	
All CHL reality relies 260% error Fretor $\frac{100}{100} \frac{100}{100} \frac{100}{1$						GRO, DRO	O, and MR	Э.			Total Depth: 31
$\frac{\operatorname{and}}{\operatorname{Ho}} \underbrace{\operatorname{poly}}{\operatorname{PO}} \operatorname{poly} \operatorname{PO}} \underbrace{\operatorname{poly}}{\operatorname{PO}} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \underbrace{\operatorname{poly}}{\operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \underbrace{\operatorname{poly}}{\operatorname{PO}} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{PO}} \operatorname{poly} \operatorname{PO}} \operatorname{PO} \operatorname{PO}} \operatorname{PO} \operatorname{PO}} \operatorname{PO}} \operatorname{PO}} \operatorname{PO} \operatorname{PO} \operatorname{PO}} \operatorname{PO}} \operatorname{PO} \operatorname{PO}} \operatorname{PO}} \operatorname{PO} $	Comments	Au	CHL	resu	its rac	luse	1607	, erre	or Fect	~~ ~~	
$\frac{2}{12} \frac{1}{12} \frac$	Moisture Content				1	Depth	Sample				narks
M M/A M/A /U 2 Losse Song Minist, redukte lenour, fire grained, M 332.8 27.2 N 5502 3 31 M 332.8 27.2 N 5502 3 31 B 31 A 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10	M	2112	17.8	N		0		Cande	loose sa	Ney light reddish Brown, fr Stain / No odor	ne gromed, trace Silt (5%)
$\frac{2}{10} = \frac{2}{10} $	м	AIA	ALA	N		1	5	SP-SM			
8 3 ¹ 5 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5			•			2	+ +- +-	SP-sc	Loose :	City 5%	un, fine grouned,
Tetal OepH.: 3 Feet Bys	M	332.8	27.2	N	SSOZ	3	3'		N	0 Storn the back	
					Q 31	4			T	tal Oeptl: 3 Feet B	js

r

2	5 : 32.33534		Comp	508 Wes arlsbad, N pliance · E C / SOII	ronment t Stevens lew Mexic ingineering SAMPI Field Scree GRO, DRC	Street co 88220 y · Remed LING LO	iation DG DRIDE, TP	Identifier: Date: -11/1/18 101512018 Project Name: JRU 17 RP Number: 2RP-3919 Logged By: -BEN BELIL: Logged By: -BEN BELIL: Wethod: HAND AUGER PH, BTEX, Hole Diameter: 3 1/4"
Commen	<u>~</u> A1	((He	result.	s milud	e n l	0%	error fector
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining		Depth (ft. bgs.)		Soil/I Ty	1 COUCHE
D	A) U	N A	N		0		CALICHE	Dense, compact, Dry light Brown, - course granned
Μ	263	4.5	N	5504A @ z '	2	z' 3'	SP-3	loose Sentin Brownish red, fine grained, trace Clay (5%) No Stain / No odor
	285	9.1	N	S204B	3 4 5 6 7 8 9 10 11			Total Depth: 3 Feet Bgs.

r

LT Environmental, Inc.		Ca Comp DLOGIC	508 Wes rlsbad, N liance · E C / SOII	ronmenta It Stevens Iew Mexi Ingineering L SAMP	Street co 88220 g · Remed	iation DG	H, BTEX,	Identifier: SSOS Project Name: JRU 17 Logged By: BEN BELILL LANDAR Hole Diameter: 3 1/4"	
Comments:				GRO, DRO					Total Depth: 3
comments.	Au	CHL	re	sults	racha	ke a	60%.	error Fector	
Moisture Content Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Ty Ty	CAL	Lithology/Re	
D NIA	A NA	N		0	-	Chicke		ICHE nse, confact, Dry, light and sand and cobbies No stan (to odor	
M 1376			\$\$05A @ Z ′	2	- 21	5P- 3 04	sand,1	No stoin IND odor	
<u>A</u> 3392	2.8		SS05B 0 31	3 4 5 6 7 8 9 10 11 12	- 3 ⁷			Totar Depth:	3 reet Bgs.

	benta/, inc.		Ca	rlsbad, N	t Stevens lew Mexic ingineering	:0 88220			Project Name: JRU 17	RP Number: 2RP-3919
					L SAMPI				Logged By: Ben Belill	Method: HAND AUGER
	32.33534	, -103.819	734		Field Screet GRO, DRO			H, BTEX,	Hole Diameter: 4"	Total Depth: 3'
Commen	ts:									
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type		Litholog	y/Remarks
M	<11Z	0,1	N	PH01		- - - - - -	(SP-SM)	Mai grad tr	it, brown-red, ted SAND trac the routs.	mf. poorly c sitt, no odor,
	5112	0,4	N	PHOLA	2	- - - 3'		1		
					4	-		(I	EOB @ 3'	
					5 -	-				
					7	-				
					8	-				
					9	-				
					10 11	-				
					12					

			Ca	irlsbad, N	t Stevens lew Mexic ngineering	co 88220			Project Name: JR	40Z RU 17	RP Number: 2RP-3919
Lat/Long:	32.33534	- 1.6.1	LOGI		Field Scree	LING LO	DG ORIDE, TPH,	BTEX,	Logged By: Ben I Hole Diameter: 4		Method: HAND AUGER Total Depth: 3'
Comment	IS:				GRO, DRC	, and MR			1		
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type			Lithology/H	Remarks
м	くいこ	0.2	N	PHOZ		- - - -	(SP - Sm) *	Moist SAN	, brown -), trace	red, m, silt, tra	-t. poorly gade
	SUZ	0.0	N	РногА	3	3'		1	-		
					4	- - -		(Ec	B & 3'		
					5	+ + + +					
					7	-					
					8	-					
					9 -	-					
					10	-					
					12	-					

APPENDIX B

Lithologic/Soil Sampling Log (2024)

•

i i								Sample Name: SS06	Date: 1/31/2024				
			N	>	ΟΙ			Incident Number: nAB1627451198	3				
								Job Number: 03C1558226					
		LITHO	OGI		SAMPLING	G LOG		Logged By: Connor Whitman	Method: Hydro-vac				
Coord	inates:							Hole Diameter: 10"	Total Depth: 3' bgs.				
Comments: Field screening conducted with HACH Chloride Test Strips and performed with 1:4 dilution factor of soil to distilled water. +40% correct													
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Des	scriptions				
D	<168	0.0	N	SS06	0.5	0 	CCHE	CALICHE, pad material, tan.					
					-	1	SP	SAND, red, very fine, with si plasticity clay. No HC stain or odor.	lt, some low				
Μ	<168	0.0	N	SS06	2	2							
М	<168	0.0	Ν	SS06	3	3							
						Total De	pth @ 3	feet bgs.					

Photographic Log (2024)

APPENDIX C

APPENDIX D

Laboratory Analytical Reports and Chain of Custody Documentation (2024)

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Tacoma Morrissey Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 2/6/2024 2:48:11 PM

JOB DESCRIPTION

JRU 17 BATTERY 03C1558226

JOB NUMBER

890-6013-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 2/6/2024 2:48:11 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

2

Laboratory Job ID: 890-6013-1 SDG: 03C1558226

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	20

	Definitions/Glossary	
Client: Ensolu Project/Site: Jl	-	Job ID: 890-6013-1 SDG: 03C1558226
Qualifiers		
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	
S1+ U	Surrogate recovery exceeds control limits, high biased.	
	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA	N	
Qualifier	Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEO	Toxicity Equivalent Quotient (Dioxin)	

TEQToxicity Equivalent Quotient (Dioxin)TNTCToo Numerous To Count

Case Narrative

Job ID: 890-6013-1

Client: Ensolum Project: JRU 17 BATTERY

Job ID: 890-6013-1

Job Narrative 890-6013-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 1/22/2024 1:46 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.0°C

Receipt Exceptions

The following sample was received and analyzed from an unpreserved bulk soil jar: SS06 (890-6013-1).

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-72060 and analytical batch 880-72197 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-72197 recovered under the lower control limit for Benzene, m-Xylene & p-Xylene and o-Xylene. The samples associated with this CCV were ran within 12 hours of passing CCV; therefore, the data have been reported.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (880-38486-A-2-D MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: SS06 (890-6013-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Job ID: 890-6013-1 SDG: 03C1558226

Client Sample ID: SS06

Project/Site: JRU 17 BATTERY

Date Collected: 01/22/24 12:15 Date Received: 01/22/24 13:46

Client: Ensolum

1-Chlorooctane

Lab Sample ID: 890-6013-1

01/29/24 11:41

02/02/24 01:47

1

Dil Fac 1

Matrix: Solid

Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/31/24 14:09	02/03/24 00:25	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/31/24 14:09	02/03/24 00:25	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/31/24 14:09	02/03/24 00:25	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		01/31/24 14:09	02/03/24 00:25	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/31/24 14:09	02/03/24 00:25	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		01/31/24 14:09	02/03/24 00:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			01/31/24 14:09	02/03/24 00:25	1
1,4-Difluorobenzene (Surr)	101		70 - 130			01/31/24 14:09	02/03/24 00:25	1
Analyte Total BTEX	Result <0.00398	Qualifier	0.00398	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 02/03/24 00:25	Dil Fac
	<u>\0.00590</u>	U	0.00390	iiig/rxy			02/03/24 00.23	I
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	79.0		50.4	mg/Kg			02/02/24 01:47	1
Method: SW846 8015B NM - Die Analyte		Qualifier	(GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
			50.4	mg/Kg		01/29/24 11:41	02/02/24 01:47	1
Gasoline Range Organics (GRO)	<50.4	0						
0 0 ()	<50.4 79.0	0	50.4	mg/Kg		01/29/24 11:41	02/02/24 01:47	1
Diesel Range Organics (Over		0		mg/Kg		01/29/24 11:41	02/02/24 01:47	1
Gasoline Range Organics (GRO) Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)				mg/Kg mg/Kg		01/29/24 11:41 01/29/24 11:41	02/02/24 01:47 02/02/24 01:47	1
Diesel Range Organics (Over C10-C28)	79.0	U	50.4					

Ì								
	Method: EPA 300.0 - Anions, Ion C	hromatography - Soluble	e					
	Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	[
	Chloride	52.7	4.99	mg/Kg			01/29/24 04:12	

70 - 130

54 S1-

Eurofins Carlsbad

Released to Imaging: 6/24/2025 3:22:25 PM

Job ID: 890-6013-1 SDG: 03C1558226

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

_				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		Ē
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-38486-A-2-C MS	Matrix Spike	115	93		
880-38486-A-2-D MSD	Matrix Spike Duplicate	233 S1+	129		
890-6013-1	SS06	110	101		2
LCS 880-72060/1-A	Lab Control Sample	112	94		
LCSD 880-72060/2-A	Lab Control Sample Dup	114	93		
MB 880-72060/5-A	Method Blank	110	108		
.					
Surrogate Legend					
BFB = 4-Bromofluorober	izene (Surr)				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) OTPH1 1CO1 (70-130) Lab Sample ID **Client Sample ID** (70-130) 880-38487-A-1-I MS Matrix Spike 99 101 880-38487-A-1-J MSD Matrix Spike Duplicate 108 109 890-6013-1 SS06 54 S1-57 S1-LCS 870-17629/1-A Lab Control Sample 94 99 LCSD 870-17629/2-A Lab Control Sample Dup 90 96 MB 870-17629/3-A 92 Method Blank 96

Surrogate Legend

OTPH = o-Terphenyl

1CO = 1-Chlorooctane

Project/Site: JRU 17 BATTERY

Client: Ensolum

Job ID: 890-6013-1 SDG: 03C1558226

Mathadu 2021 P. Valatila O ~

Lab Sample ID: MB 880-7206	60/5-A							Client Sa	ample ID: Me	thod	Blank
Matrix: Solid									Prep Typ		
Analysis Batch: 72197									Prep Ba		
,,	M	з мв									
Analyte		t Qualifier	RL	-	Unit		DF	Prepared	Analyzed		Dil Fac
Benzene	<0.0020	D U	0.00200)	mg/Kg	g	01/3	31/24 14:09	02/02/24 16:4	10 0	1
Toluene	< 0.0020	D U	0.00200)	mg/Kg	g	01/3	31/24 14:09	02/02/24 16:4	10	1
Ethylbenzene	< 0.0020	D U	0.00200)	mg/Kg		01/3	31/24 14:09	02/02/24 16:4	10	1
m-Xylene & p-Xylene	<0.0040) U	0.00400)	mg/Kg	g	01/3	31/24 14:09	02/02/24 16:4	10	1
o-Xylene	<0.0020	D U	0.00200)	mg/Kg	g	01/3	31/24 14:09	02/02/24 16:4	10	1
Xylenes, Total	< 0.0040	D U	0.00400)	mg/Kg	g	01/3	31/24 14:09	02/02/24 16:4	10	1
		3 <i>MB</i>									
Surrogate		y Qualifier	Limits	-				Prepared	Analyzed		Dil Fac
4-Bromofluorobenzene (Surr)	11		70 - 130					31/24 14:09	02/02/24 16:		1
1,4-Difluorobenzene (Surr)	10	8	70 - 130				01/	31/24 14:09	02/02/24 16:	40	1
Lab Sample ID: LCS 880-720	060/1-A						Clien	t Sample	ID: Lab Cont	rol Sa	amnle
Matrix: Solid							onon	Coumpio	Prep Typ		
Analysis Batch: 72197									Prep Ba		
Analysis Baton. 72101			Spike	LCS	LCS				%Rec		. 2000
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene			0.100	0.08384		mg/Kg		84	70 - 130		
Toluene			0.100	0.08772		mg/Kg		88	70 - 130		
Ethylbenzene			0.100	0.09472		mg/Kg		95	70 - 130		
m-Xylene & p-Xylene			0.200	0.1609		mg/Kg		80	70 - 130		
o-Xylene			0.100	0.08406		mg/Kg		84	70 - 130		
		_									
	LCS LC										
Surrogate	%Recovery Qu	alifier	Limits								
4-Bromofluorobenzene (Surr)	112		70 - 130								
1,4-Difluorobenzene (Surr)	94		70 - 130								
Lab Sample ID: LCSD 880-72	2060/2-A					Cli	ient Sar	nple ID: I	ab Control S	ample	e Dur
Matrix: Solid									Prep Typ		
Analysis Batch: 72197									Prep Ba		
,			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.100	0.08735		mg/Kg		87	70 - 130	4	35
Toluene			0.100	0.09318		mg/Kg		93	70 - 130	6	35
Ethylbenzene			0.100	0.1149		mg/Kg		115	70 - 130	19	35
			0.200	0.1856		mg/Kg		93	70 - 130	14	35
m-Xylene & p-Xylene			0.100	0.08348		mg/Kg		83	70 - 130	1	35
m-Xylene & p-Xylene p-Xylene											
o-Xylene	LCSD LC										
	LCSD LC %Recovery Qu 		Limits 70 - 130								

Lab Sample ID: 880-38486-A-2-C MS Matrix: Solid

Matrix: Solid										Type: Total/I	
Analysis Batch: 72197									Prep	Batch: 720)60
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	< 0.00199	U F1 F2	0.0996	0.06222	F1	mg/Kg		62	70 - 130		
Toluene	<0.00199	U F1	0.0996	0.06767	F1	mg/Kg		68	70 - 130		

Eurofins Carlsbad

Client Sample ID: Matrix Spike

Lab Sample ID: 880-38486-A-2-C MS

QC Sample Results

MS MS

0.08010

0.1506

0.07395

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

Spike

Added

0.0996

0.199

0.0996

Limits 70 - 130

70 - 130

Client: Ensolum Project/Site: JRU 17 BATTERY

Matrix: Solid

Analyte

o-Xylene

Surrogate

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 72197

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

<0.00199

%Recovery

Result Qualifier

U

<0.00398 U F1 F2

<0.00199 U F1 F2

MS MS

115

93

Qualifier

92

Prep Batch: 72060

7

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Client Sample ID: Method Blank

02/01/24 17:50

Client Sample ID: Lab Control Sample

01/29/24 11:41

Prep Type: Total/NA

Prep Batch: 17629

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

80

76

74

D

Matrix: Solid Analysis Batch: 72197

Lab Sample ID: 880-38486-A-2-D MSD

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Analysis Batch: 72197									Prep	Batch:	72060	
_	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	< 0.00199	U F1 F2	0.0990	0.1140	F2	mg/Kg		115	70 - 130	59	35	
Toluene	<0.00199	U F1	0.0990	0.07298		mg/Kg		74	70 - 130	8	35	ī
Ethylbenzene	<0.00199	U	0.0990	0.09438		mg/Kg		95	70 - 130	16	35	
m-Xylene & p-Xylene	<0.00398	U F1 F2	0.198	0.3115	F1 F2	mg/Kg		157	70 - 130	70	35	ĩ
o-Xylene	<0.00199	U F1 F2	0.0990	0.1636	F1 F2	mg/Kg		165	70 - 130	75	35	
	MSD	MSD										

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	233	S1+	70 - 130
1,4-Difluorobenzene (Surr)	129		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 870-17629/3-A Matrix: Solid Analysis Batch: 17633

	МВ	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	<49.6	U	49.6	mg/Kg		01/29/24 11:41	02/01/24 17:50	1
Diesel Range Organics (Over C10-C28)	<49.6	U	49.6	mg/Kg		01/29/24 11:41	02/01/24 17:50	1
Oll Range Organics (Over C28-C36)	<49.6	U	49.6	mg/Kg		01/29/24 11:41	02/01/24 17:50	1
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	96		70 _ 130			01/29/24 11:41	02/01/24 17:50	1

70 - 130

Lab Sample ID: LCS 870-17629/1-A

1-Chlorooctane

Matrix: Solid							Prep Ty	pe: Tota	al/NA
Analysis Batch: 17633							Prep E	Batch: 1	7629
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)	1010	711.5		mg/Kg		71	70 - 130		
Diesel Range Organics (Over	1000	782.9		mg/Kg		78	70 - 130		
C10-C28)									

Eurofins Carlsbad

1

Lab Sample ID: LCS 870-17629/1-A

Lab Sample ID: LCSD 870-17629/2-A

QC Sample Results

Client: Ensolum Project/Site: JRU 17 BATTERY

Matrix: Solid

Surrogate o-Terphenyl

1-Chlorooctane

Matrix: Solid

Analyte

C10-C28)

Surrogate

o-Terphenyl

o-Terphenyl

1-Chlorooctane

1-Chlorooctane

Analysis Batch: 17633

Analysis Batch: 17633

Gasoline Range Organics (GRO) Diesel Range Organics (Over

Method: 8015B NM - Diesel Range Organie

108

109

								SDG	: 03C15	58226	2
Range Or	ganics (D	DRO) (GC) (0	Continue	ed)							3
1-A						Client	Sample	D: Lab Co			
									Type: Tot Batch:		4
LCS	LCS										5
%Recovery	Qualifier	Limits									
94		70 - 130									0
99		70 - 130									7
9/2-A					Clier	nt Sam	ible ID: I	Lab Contro	ol Sampl	e Dup	
								Prep 1	Type: Tot Batch:	tal/NA	8
		Spike	LCSD	LCSD				%Rec		RPD	
		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	9
		1020	763.5		mg/Kg		75	70 - 130	7	20	
		1010	768.4		mg/Kg		76	70 - 130	2	20	
LCSD	LCSD										
%Recovery	Qualifier	Limits									
90		70 - 130									
96		70 - 130									13
MS							Client	Sample ID	: Matrix	Spike	

Lab Sample ID: 880-38487-A-1-I MS Matrix: Solid

Analysis Batch: 17633									Prep	Batch: 176	;29
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)	<49.9	U	1010	780.9		mg/Kg		77	70 - 130		
Diesel Range Organics (Over C10-C28)	<49.9	U	1000	876.3		mg/Kg		87	70 - 130		

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	99		70 - 130
1-Chlorooctane	101		70 - 130

Lab Sample ID: 880-38487-A-1-J MSD Matrix: Solid

Analysis Batch: 17633									Prep	Batch:	17629
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	<49.9	U	1010	813.2		mg/Kg		80	70 - 130	4	20
Diesel Range Organics (Over C10-C28)	<49.9	U	1000	961.4		mg/Kg		96	70 - 130	9	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

70 - 130

70 - 130

Page	137	of	1	78

Job ID: 890-6013-1

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

Eurofins Carlsbad

Project/Site: JRU 17 BATTERY

Client: Ensolum

QC Sample Results

Job ID: 890-6013-1 SDG: 03C1558226

Method: 300.0 - Anions, Ion Chromatography

· · · · · · · · · · · · · · · · · · ·														
_ Lab Sample ID: MB 880-71577/1-A Matrix: Solid										C	Client S	ample ID:	Method Type: S	
Analysis Batch: 71737												Fieh	Type. 5	oluble
Analysis Datch. 71757		мв	MB											
Analyte	R		Qualifier		RL		Ur	it	D	Pre	epared	Analyz	red	Dil Fac
Chloride		<5.00			5.00			g/Kg				01/29/24		1
_ Lab Sample ID: LCS 880-71577/2-/									Cli	ont s	Samnlo	ID: Lab C	ontrol S	ample
Matrix: Solid									0.1		oampic		Type: S	
Analysis Batch: 71737												Trop	Type. O	orubic
Analysis Baton. Ther				Spike		LCS	LCS					%Rec		
Analyte				Added		Result	Qualifie	r Unit		D	%Rec	Limits		
Chloride				250		273.5		mg/Kg			109	90 - 110		
 Lab Sample ID: LCSD 880-71577/3	_^							CI	iont 9	amr	alo ID: I	_ab Contro	d Samol	o Dur
Matrix: Solid	~							01		ann			Type: S	
Analysis Batch: 71737												Trop	Type. O	orubic
				Spike		LCSD	LCSD					%Rec		RPD
Analyte				Added		Result	Qualifie	r Unit		D	%Rec	Limits	RPD	Limit
Chloride				250		272.7		mg/Kg			109	90 - 110	0	20
_ Lab Sample ID: 890-6008-A-2-B M	s										Client	Sample ID	: Matrix	Spike
Matrix: Solid													Type: S	
Analysis Batch: 71737												•		
-	Sample	Sam	ple	Spike		MS	MS					%Rec		
Analyte	Result	Qual	lifier	Added		Result	Qualifie	r Unit		D	%Rec	Limits		
Chloride	328			251		577.2		mg/Kg			100	90 - 110		
- Lab Sample ID: 890-6008-A-2-C M	SD								Clien	t Sai	mple ID	: Matrix S	oike Dur	olicate
Matrix: Solid	-												Type: S	
Matrix. Soliu														
Analysis Batch: 71737	Sample	Sam	ple	Spike		MSD	MSD					%Rec		RPD
	Sample Result		•	Spike Added			MSD Qualifie	r Unit		D	%Rec	%Rec Limits	RPD	RPD Limit

QC Association Summary

Client: Ensolum Project/Site: JRU 17 BATTERY

Job ID: 890-6013-1 SDG: 03C1558226

GC VOA

Prep Batch: 72060

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
390-6013-1	SS06	Total/NA	Solid	5035	
MB 880-72060/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-72060/1-A	Lab Control Sample	Total/NA	Solid	5035	
_CSD 880-72060/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
380-38486-A-2-C MS	Matrix Spike	Total/NA	Solid	5035	
380-38486-A-2-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
nalysis Batch: 72197					
_ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
390-6013-1	SS06	Total/NA	Solid	8021B	7206
MB 880-72060/5-A	Method Blank	Total/NA	Solid	8021B	7206
_CS 880-72060/1-A	Lab Control Sample	Total/NA	Solid	8021B	7206
_CSD 880-72060/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	7206
380-38486-A-2-C MS	Matrix Spike	Total/NA	Solid	8021B	7206
380-38486-A-2-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	7206
nalysis Batch: 72416					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Bato
890-6013-1	SS06	Total/NA	Solid	Total BTEX	

Prep Batch: 17629

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6013-1	SS06	Total/NA	Solid	8015NM Prep	
MB 870-17629/3-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 870-17629/1-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 870-17629/2-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-38487-A-1-I MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-38487-A-1-J MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 17633

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6013-1	SS06	Total/NA	Solid	8015B NM	17629
MB 870-17629/3-A	Method Blank	Total/NA	Solid	8015B NM	17629
LCS 870-17629/1-A	Lab Control Sample	Total/NA	Solid	8015B NM	17629
LCSD 870-17629/2-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	17629
880-38487-A-1-I MS	Matrix Spike	Total/NA	Solid	8015B NM	17629
880-38487-A-1-J MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	17629
Analysis Batch: 17757					
- Loh Sample ID	Client Sample ID	Bron Tuno	Motrix	Mathad	Bron Botob

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6013-1	SS06	Total/NA	Solid	8015 NM	
—					

HPLC/IC

Leach Batch: 71577

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-6013-1	SS06	Soluble	Solid	DI Leach	
MB 880-71577/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-71577/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-71577/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Eurofins Carlsbad

HPLC/IC (Continued)

Leach Batch: 71577 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6008-A-2-B	MS Matrix Spike	Soluble	Solid	DI Leach	
890-6008-A-2-C	MSD Matrix Spike Duplicate	Soluble	Solid	DI Leach	
Analysis Batc	h: 71737				

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6013-1	SS06	Soluble	Solid	300.0	71577
MB 880-71577/1-A	Method Blank	Soluble	Solid	300.0	71577
LCS 880-71577/2-A	Lab Control Sample	Soluble	Solid	300.0	71577
LCSD 880-71577/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	71577
890-6008-A-2-B MS	Matrix Spike	Soluble	Solid	300.0	71577
890-6008-A-2-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	71577

Eurofins Carlsbad

Job ID: 890-6013-1 SDG: 03C1558226

Lab Sample ID: 890-6013-1 Matrix: Solid

Date Collected: 01/22/24 12:15 Date Received: 01/22/24 13:46

Client Sample ID: SS06

Project/Site: JRU 17 BATTERY

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	72060	01/31/24 14:09	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	72197	02/03/24 00:25	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			72416	02/03/24 00:25	SM	EET MID
Total/NA	Analysis	8015 NM		1			17757	02/02/24 01:47	CC	EET DAL
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	17629	01/29/24 11:41	WP	EET DAL
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	17633	02/02/24 01:47	WP	EET DAL
Soluble	Leach	DI Leach			5.01 g	50 mL	71577	01/25/24 10:14	SA	EET MID
Soluble	Analysis	300.0		1			71737	01/29/24 04:12	СН	EET MID

Laboratory References:

EET DAL = Eurofins Dallas, 9701 Harry Hines Blvd, Dallas, TX 75220, TEL (214)902-0300 EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 6/24/2025 3:22:25 PM

Accreditation/Certification Summary

Client: Ensolum
Project/Site: JRU 17 BATTERY

Job ID: 890-6013-1 SDG: 03C1558226

Laboratory: Eurofins Dallas

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

		m	Identification Number	Expiration Date	
Texas	NELAP		T104704295-23-34	06-30-24	
aboratory: Eurofins I	Midland				
iless otherwise noted, all analyte		wered under each accredit	tation/certification below		
Authority	Program	m	Identification Number	Expiration Date	
lexas 🛛	NELAP		T104704400-23-26	06-30-24	
The following analytes at	re included in this report but	the laboratory is not certifi	ied by the governing authority. This lis	t may include analytes	
for which the agency doe	•	the laboratory is not certain	ed by the governing autionty. This is	t may include analytes	
Analysis Method	Prep Method	Matrix	Analyte		
Total BTEX	·	Solid	Total BTEX		

Laboratory: Eurofins Midland

uthority	Program		Identification Number	Expiration Date
exas	NELAP		T104704400-23-26	06-30-24
The following analyte	are included in this report, but the l	aboratory is not certifi	ied by the governing authority. This lis	t may include analyte
• •	are included in this report, but the l loes not offer certification .	aboratory is not certifi	ied by the governing authority. This lis	t may include analyte
• •	•	aboratory is not certifi Matrix	ied by the governing authority. This lis Analyte	t may include analyte

Eurofins Carlsbad

Method Summary

Client: Ensolum Project/Site: JRU 17 BATTERY Job ID: 890-6013-1 SDG: 03C1558226

Method	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	EET MID
lotal BTEX	Total BTEX Calculation	TAL SOP	EET MID
3015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET DAL
3015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET DAL
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
3015NM Prep	Microextraction	SW846	EET DAL
OI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
	Environmental Protection Agency "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edi	ion, November 1986 And Its Updates.	
TAL SOP	= TestAmerica Laboratories, Standard Operating Procedure		
Laboratory R	eferences:		
EET DAL	= Eurofins Dallas, 9701 Harry Hines Blvd, Dallas, TX 75220, TEL (214)902-0300		
EET MID	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Eurofins Carlsbad

Released to Imaging: 6/24/2025 3:22:25 PM

Sample Summary

Client: Ensolum Project/Site: JRU 17 BATTERY Job ID: 890-6013-1 SDG: 03C1558226

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth									
890-6013-1	SS06	Solid	01/22/24 12:15	01/22/24 13:46	0.5	4								
						5								
						8								
						9								
						12								
						13								
r Tacona Montsely Bill to: if afferenti creeduum Company Name: creeduum XTO Energy Montsely Montsely Montsely 3122 National Parks Hwy Company Name: creeduum XTO Energy Montsely Montsely Montsely 3122 National Parks Hwy Company Name: creeduum XTO Energy Store E Green St Montsely Montsely 3122 National Parks Hwy Company Name: contrast Company Name: 30387-200 Company Name: Company Name: Company Name Store E Commonsistion Popering: Name Montsely 30367-5205 Enerth Carrent Company Name: 30367582265 Enerth Carrent Company Name Montsely Montsely 30367-5205 Enerth Carrent Company Name Natury Stick Rev Not Name Montsely Montsely 30367-5205 Enerth Carrent Company Name Natury Stick Rev Not Nature Level II Montsely 30367-5205 Enerth Carrent Company Name Natury Stick Rev Not Nature Level II Natury Stick Rev Not Nature Level II 201562205 Enerth Carrent Company Name Natury Stick Rev Not Nature Level II Natury Stick Rev Not Nature Level II 2017 Stick Rev Not Nature Level II Natury Stick Rev Not Nature Level II Natury Stick Rev Not Nature Level II 2017 Stick Rev Not Nature Level II Natury Stick Rev Nature Level II Natury Stick Rev Nature Rev Nature Rev Nature Rev	m Page I r Comments RRC I Pristrust TRRP I I Pinetrust TRRP I I Pristrust I Rectified I Protection Nome: NO I I Nome: NO I Cool: Cool N Hick: HC H N N NaHSO4, NABIS NaS2503, NaSO5 NaSO5 NaSO5 NaSO4, H2 NaOH+Ascorbic A NaOH+Ascorbic A NaOH+Ascorbic A NaOH+Ascorbic A Sample Cor NaOH+Ascorbic A NaOH+Ascorbic A NaOH+Ascorbic A Sample Cor NaOH+Ascorbic A NaOH+Ascorbic A NaOH+Ascorbic A Sample Cor NaOH+Ascorbic A NaOH+Ascorbic A AFE: Incident ID: Incident ID: Incident ID: I AFE: EVV.2019.03168. EVV.2019.03168. I I		🐝 eurofins		Environment Testing Xenco	ating.	원 Wild E E	CL ouston, TX and, TX (43 Paso, TX (4 bbs, NM (5	ain of 281) 240-4200, 2) 704-5440, Sa 115) 585-5443, I 5) 392-7550, C	Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 802-0300 Midland, TX (432) 744-5440, San Antonio, TX (214) 802-0300 EL Paso, TX (4315) 585-3443, Lubbook, TX (800) 794-1288 Hobbs, NM (575) 392-7550, Carlsbard, NM (575) 988-3199	88.83	890-5013 Chain of Custody	ain of Custody	-
--	---	---	-----------------------	------------------	------------------------------	----------------------------------	---------------------	--	--	--	-------------	---------------------------	--------------------	---------------------
c Ereolum Company Name YTO Energy 3122 National Parks Hwy Jourses: 310.6 E. Green SI. 3122 National Parks Hwy Jourses: 310.6 E. Green SI. 3122 National Parks Hwy Jourses: 310.6 E. Green SI. 3122 National Parks Hwy Jourses: 310.6 E. Green SI. 3122 National Parks Hwy Jourses: 310.6 E. Green SI. 3123 National Parks Hwy Jourses: Jourses: 3123 SI State Errent Garek State Zire Jourses: 3123 SI Size National Errent Garek State Zire Jourses: 312 SI Size National Mark National Mark Yolds Recourded. Anal. Yolds Recourded. 312 Size National Notation Jour Administry Anal. Yolds Recourded. Preservativ 312 Size National Notation Notation Notation Anal. Yolds Recourded. Preservativ 312 Size National Na	wnfields TRRP "ST/UST TRRP PT Other. None: NO Dther. None: NO Cool: Cool H3S04. H2 NaSS, 03, Sample Cor Incident ID: nADH-Ascorbic A Sample Cor Cost Center: AFE: EW.2019.03168. EW.2019.03168. EW.2019.03168.	Wnfields RRC Wnfields RRC Wnfields RRC Wnfields RRC Wnfields RRC Wnfields None: No coll cool h HsPo4; HP NaHSO4; HP NaHSO4; HP NaHSO4; HP NaHSO4; HP NaHSO4; Na2,S,O4; NaSIS, O4, NaOH+Ascorbic Age Sample Cor Sample Cor Cost Center: 1080921 AFE: EW 2019:03168. EW 20190. EW 2019. EW 2019:03168. EW 2019:03168. EW 2019. EW 2	Project Manager: Ta	acoma Morrisse)			Bill to: (if differ		Samett Green			NWW P	which ordian Comme	-
3122 Netional Parks Hww Address: Job constrained Job constrained Address: Carefaced, NM 68220 Same of Project: Carefaced, NM 68220 Carefaced, NM 68220 Email Carrent (Carebac), NM 68220 Email Carrent (Carebac), NM 68220 Email Carrent (Carebac), NM 68220 Demonstrained Reporting: Level III Personalty 303-687-2946 Email Carrent (Carebac), NM 68220 Email Carrent (Carebac), NM 68220 Demonstrained ANALYSIS REQUEST Reporting: Level III Personalty 030-687-2946 Email Carrent (Carebac), NM 68220 Demonstrained ANALYSIS REQUEST Reporting: Level III Personalty 030-687-2946 Email Carrent (Carebac) Demonstrained ANALYSIS REQUEST Reporting: Level III Personalty 0401 Demonstraine Reacting: Level II ANALYSIS REQUEST ANALYSIS REQUEST Reporting: Level III Personalty 0401 Demonstraine Reacting: Level II Reporting: Level III Reporting: Level III Reporting: Level III Personalty 0401 Corrected Target Actobacity Demonstraine Reporting: Level III Reporting: Level III Reporting: Level III Reporting: Le	"ST/UST TRRP PT Other. Preservativ Nome: NO Nome: NO H-5P04; HP NaHSO4; NaBIS NaHSO4; NaBIS NaHSO4; NaBIS NaHSO4; NaBIS NaSS503; NaSO3 Zn Acetater NaOH NaOH+Ascorbic At NaOH+Ascorbic At NaOH+Ascorbic At Cost Center ID: Incident ID: AFE: EW.2019.03168. EW.2019.03168. AST I Sn U V AST I Sn U V AST I Sn U V	"ST/UST TRRP PT Coher. Preservativ Nome: NO Nome: NO NaHSO4, NABIS NaHSO4, NaBIS NaSS203, NaSO3 Sample Cor Ractate+NaOH NaOH+Ascorbic At NaOH+Asco	Company Name: Er	nsolum			Company Na		CTO Energy		Pro	aram: UST/PST 🗆 PF	RP[] Brownfields	T RRC Superfun
Cartisback NM 68:20 Constituent (NM 68:20) Constituent (Samethall: NM 68:20) Constituent (Samethall: NM 68:20) Constituent (Samethall: NM 68:20) Reporting (Level III PSTrUGT TRR PSTRG PSTRG PSTRG PSTRG PSTRG PSTRG PSTRG PSTRG PST	ST/UST TRRP Dither. PT D Other. None: NO DI V Cool: Cool Med H ₅ PO4; HP NaHSO4; NABIS Na2,S203; NASO3, Zh Acetate+NaOH; Zn NaOH+Ascorbic Acid: Sample Comm Incident ID: nAB162745115 Cost Center: Cost Center: Cost Center: Cost Center: AFE: EW.2019.03168.EX EW.2019.03168.EX	STrUST TRRP Dither PT D Other. None: NO DI V Cool: Cool MeC H ₅ PO4: HP NayS204: NABIS NayS205, NASO5 Zh Acetate+NaOH: Zh NaOH+Ascorbic Acid: Sample Comm Incident ID: naBi62745115 Cost Center: Cost Center: AFE: EW.2019.03168.EX EW.2019.03168.EX AFE: AFE: Baterff	Address: 31	122 National Par	ks Hwy		Address:		104 E. Green	St	Sta	te of Project:		
303-3877 2946 Emeral Carrent Green (Green (Gre	PT Other Preservati Preservati None: NO Cool: Cool H ₃ S0,: H ₅ H ₃ S0,: H ₆ NaHS0,: NaSO ₃ NaSO ₃ NaHS0,: NaSO ₃ Za Acetate+NaOH NaOH+Ascorbic A Sample Co Sample Co Sample Co Incident ID: nAB16274 AFE: 108092 AFE: EW.2019.03166 AFE: 135.013.03166 AFE: AFE:	PT D other Preservati None: NO Cool: Cool H ₃ S04; H ₆ H ₃ S04; H ₈ NaHS04; NABIS Na2S ₃ 03; NaS03, Zn Acetate+NaOH NaOH+Ascorbic A Sample Co Sample Co Incident ID: AFE:	City, State ZIP: Ca	arisbad, NM 882	20		City, State ZII		arlsbad, NM 8	58220	Rep	oorting: Level II 🗌 Leve		
JRU 17 Battery Turn Around AMALYSIS REQUEST Freservation 03021558226 Exotrine Turn Around None NO None NO 03021558226 Exotrine Turn Around None NO None NO 03021558226 Exotrine Turn Around None NO None NO 101 Due Date. None NO None NO None NO 101 Intervented in the Networkstoch None NO None NO None NO 101 Intervented in the Networkstoch None NO None NO None NO 2EIFT Zeren Bank Vec NO None NO None NO None NO 201 Cornor Whitman Intervented in the Networkstoch None NO None NO 201 None NO Intervented in the Networkstoch None NO None NO 201 None NO Intervented in the Networkstoch None NO None NO 201 None NO Intervented in the Networkstoch None NO None NO 201 None NO Intervented in the No None NO None NO<	Preservati Nome: NO Cool: Cool H-5PO4: HF H-5PO4: HF H-5PO4: HF NaHSO4: NaSIS NaSS204: NASIS Sample Co Sample Co Cost Center: Incident ID: AFE: AFE: EW.2019.03:168 EW.2019.03:168 AST TI Sn U V V 245.1 / 7470 / 74	Preservati Nome: NO Cool: Cool HCE: HC H,500; Hs H,500; Hs NaHSO4, NABIS NaS,5,03, NASO3, Zn Acetate+NaOH, NaOH+Ascorbic A Sample Co Sample Co Cost Center: Incident ID: AFE: EW.2019.03166 EW.2019.03166 arre) Da	Phone: 30	33-887-2946		Email	Garrett.Gree	an@Exxo	1Mobil.com		Dell	iverables: EDD	ADaPT	Other.
O3C1558236 ⊡Routine Turn Due Date: Nome: NO Connor Writimen Turr attent and by estimating Turr attent and by estimating Nome: NO Connor Writimen Nome: NO Turn attent and by estimating Turr attent and by estimating Turr attent and by estimating Nome: NO Connor Writimen Nome: NO Turr attent and by estimating Turr attent and by estimating Turr attent attentattent attent attent attent attent attent attent attent attent at	None: NO Cool: Cool H ₅ S04: H ₅ H ₅ S04: H ₆ Na ₂ S ₂ 05: NaSO ₅ Zn Acetate+NaOH NaOH+Ascorbic A Sample Co Sample Co Incident ID: AFE: Cost Center: 108092 AFE: EW.2019:03:166	None: NO cool: Cool HcL: HC H ₃ S04: H ₅ Na ₂ S ₂ 04: NaSO ₅ Na ₂ S ₂ 05: NaSO ₅ Zn Acetate+NaOH NaOH+Ascorbic A Sample Co Sample Co Incident ID: AFE: Cost Center: 108092 AFE: EW.2019:03:166 EW.2019:03:166	Project Name:	JRU 17	Sattery	Tun	n Around			ANAL	YSIS REQUES	51	Pr	eservative Codes
Due Date: Due Date: Connor Writiman IVI stants the day received by 430pm ZEIPT Teamo Blank (ves. ho Wet los. Yes. No Her. Ho All material transmeters Met los. Yes. No Wet los. Yes. No Her. Ho All material transmeters Met los. Yes. No Tuty and control transmeters Her. Ho Ad Indiact: Yes. No Met los. Yes. No Met los. Yes. No Reside: Yes. No Met los. Postameters Postameters Postameters Saalis: Yes. No Min Accordition Met los. Postameters Postameters Saanple Co Saanple Co Sample Co Sample Co Sample Co Sample Co Sample Co Sample Co Sample Co Sample Co Sample Co Sample Co	Cool: Cool HEL: HC H ₃ PO ₄ : HP NaHSO ₄ : NABIS Na ₂ S ₂ O ₃ : NASO ₅ Zn Acetate+NaOH NaOH+Ascorbic A Sample Co Sample Co Incident ID: nAB18274 AB18274 Cost Center: 108092 AFE: EW.2019.03166 EW.2019.03166	Cool: Cool HCL: HC H2, S04: H6 NaHS04: NaS05 Na2,504: NaS05 Zn Acetate+NaOH NaOH+Ascorbic A Sample Co Bample Co Cost Center: 108092 AFE: EW.2019.03166 EW.2019.03166 EW.2019.03166 EW.2019.03166 AFE: Da Sr TI Sn U V	Project Number:	03C155	8226	J Routine	-	Pres. Code					None: N	
Comor Whitman Txt status received by the tab, if received by 4:00m TELPT Femp glank: TelePt Perence glank: TelePt Perence glank: TelePt Perence TelePt TelePt			ect Location:			Due Date:		T					Cool: C	
CELIPT Teeno Blank: Ves No Wet los: Ves Ves No	u u		npler's Name: #	Connor V	/hitman	TAT starts ft the lab. if ree	te day received b	A					HCL:H	
diffication dentific	g (MPLE RECEIPT	F	F	Wat Ica.	Vac No.	sters	(_		H2S04: 1	
Yes No NIA Natrix Date Pate Anticled Depth Control S 1/12/2/y Yes No No No No No No No No No No No No	g (Trendion Factor. -O3 Ration Ratin Ratin Ration Ration	nples Received Intact	Y		D.	Televine.	eme 1 C	0.000				PO46H	NAPIS
Seals: Yes No Minimorature Reading: O Gentification Matrix Date Time Corrected Temperature: - O. A Admittration Matrix Date Time Corrected Temperature: - O. A Admittration Matrix Date Time Corrected Temperature: - O. A Corrected Temperature: - O. A Corrected Temperature: - O. A E E Corrected Temperature: - O. A Corrected Temperature: - O. A E E E E Corrected Temperature: - O. A Corrected Temperature: - O. A E			ler Gustody Seals:	Yes	2	ctor.	6.0-	bat	0E :A		_		O.S.S.O	, NaSO-
Corrected Temperature: -O.3 dentification Matrix Date Time Depth 6780 0 Concected Temperature: -O.3 E Concected Temperature: -O.3 E<			ple Custody Seals:	No /	A Temperature	Reading:	0				_		Zn Acet	ate+NaOH: Zn
cation Matrix Date Time Depth Grate # of Grate # of Grate Completed Sampled Sampled Sampled Sampled Comp Cont CHLORI (60 CHLORI 12:1/5 5 G J 1 1 1 1 1 1 1 1 1			I Containers;		Corrected Te	mperature:	-0.0		(91	11-5	-		NaOH+	Ascorbic Acid: SAPC
S 1/12/24/3 1/2.1/5 .5 G 1 <td>da Series 124</td> <td>AF CC III</td> <td>Sample Identific</td> <td></td> <td>-</td> <td>Time</td> <td>_</td> <td># of Cont</td> <td>08) HAI</td> <td></td> <td></td> <td></td> <td>Sa</td> <td>mple Comments</td>	da Series 124	AF CC III	Sample Identific		-	Time	_	# of Cont	08) HAI				Sa	mple Comments
	AF AF	4a 0 / 24 / 0	Scol	S	-	12:15		1	-				Inciden	t ID:
	AF AF	AF CC	1											nAB1627451198
	Va Se AP	AF Ar Co	/	1					-					
	AF AF	AF AF		A	1								Cost Ce	anter:
	124 S	AF Aa S Aa			1				-					1080921001
	48 0					1							AFE:	
	4a Sr TI Sn U V / 245.1 / 7470 / 74	4a Sr Tl Sn U /245.1/7470 -					1						EW.2	019.03168.EXP.01
	la Sr Ti Sn U V 1245.1/7470 /74	la Sr TI Sn U /245.1/7470 . //ere)					/	1	·					
	 a Sr Tl Sn U V 245.1/7470 /74	L 4a Sr Ti Sn U /245.1/7470 , ure)						4	3/		-			
	4a Sr TI Sn U V /245.1/7470 /74	4a Sr TI Sn U 1245.1/7470 . ure)							4		-			
		DULT & 1346 2	elinquished by: (Sig	gnature)	Received	by: (Signatu	lie)	ğ	terTime	Relinquished by:	(Signature)	Received by:	(Signature)	Date/Time
re)	are)	4	Cotto	0	Jun	×		34	1346	N				
ure)	ure)									4				

4 5 6

12 13 14

Received by OCD: 6/18/2025 9:49:30 AM

Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing South Central, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody, the laboratory does not currently maintain accreditation in the State of Orgin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central, LLC. State, Zip: TX, 75220 Custody Seals Intact: Empty Kit Relinquished by: Possible Hazard Identification Sample Identification - Client ID (Lab ID) Deliverable Requested: I, II, III, IV, Other (specify) SS06 (890-6013-1) Dallas telinquished by Relinquished by telinquished by: Project Name: JRU 17 BATTERY ma 214-902-0300(Tel) 9701 Harry Hines Blvd, Eurofins Environment Testing South Centr Shipping/Receiving **Client Information** Phone: 432-704-5440 Midland, TX 79701 1211 W. Florida Ave **Eurofins Midland** none nconfirmed ent Contact: mpany (Sub Contract Lab) Custody Seal No. D' AF Pater Project #: 89000093 Sampler Date/Time Primary Deliverable Rank: 2 Phone: Date/Time NO # PO # TAT Requested (days) #NOSS Due Date Requested: Sample Date 1/26/2024 H2/1/24 1/22/24 Chain of Custody Record Date: Mountain Sample Time 12:15 G=grab) (C=comp, Sample Preservation Code Type 5 Company Company Company (W=water, S=solid, O=waste/oll, BT=Tissue, Solid matri A=Air) Kramer, Jessica Lab PM Jessica.Kramer@et.eurofinsus.com -Mail l ime: Field Filtered Sample (Yes or No) NELAP - Texas Perform MS/MSD (Yes or No) Special Instructions/QC Requirements Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) editations Required (See note): Return To Client 8015MOD_Calc Cooler Temperature(s) °C and Other Remarks Received by Received by Received by: × × 8015MOD_NM/8015NM_S_Prep P Analysis Requested Disposal By Lab State of Origin: New Mexico arrier Tracking No(s) Method of Shipment Date/Imer/JY Date/Time: Archive For Total Number of containers ----eurofins A - HCL B - NaOH C - 2 n Acetate D - Nitric Acid E - NaHSO4 F - MeOH G - Amchlor H - Ascorbic Acid I - Ice J - DI Water K - EDTA COC No: 880-9074.1 Page: Page 1 of 1 Other: L - EDA Preservation Codes: 890-6013-1 H GOC ΌΩ, Special Instructions/Note: 12p O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 V - MCAA W - pH 4-5 N - None Z - other (specify) U - Acetone S - H2SO4 Y - Trizma T - TSP Dodecahydrate Company Company **Environment** Testing Company Hexane Months UTUDIDUD! Aŋy

Ver

Page 146 of 178

5

13 14

14

Job Number: 890-6013-1 SDG Number: 03C1558226

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 6013 List Number: 1 Creator: Lopez, Abraham

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 6013 List Number: 3 Creator: Dabinett, lan

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 890-6013-1 SDG Number: 03C1558226

List Source: Eurofins Dallas

List Creation: 02/01/24 12:48 PM

14

Job Number: 890-6013-1 SDG Number: 03C1558226

List Source: Eurofins Midland

List Creation: 01/23/24 12:33 PM

Login Sample Receipt Checklist

Client: Ensolum

<6mm (1/4").

Login Number: 6013 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Received by OCD: 6/18/2025 9:49:30 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Tacoma Morrissey Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 2/13/2024 12:21:41 PM

JOB DESCRIPTION

JRU 17 BATTERY 03C1558226

JOB NUMBER

890-6080-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 2/13/2024 12:21:41 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

SDG: 03C1558226

Laboratory Job ID: 890-6080-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	13
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

Page 153 of 178

Definitions/Glossary		
	Job ID: 890-6080-1 SDG: 03C1558226	2
		3
		5
on		
exceeds control limits, high biased.		
e was analyzed for but not detected.		5
on		
exceeds control limits, low biased.		
exceeds control limits, high biased.		
te was analyzed for but not detected.		
		8
on		
te was analyzed for but not detected.		9
used abbreviations may or may not be present in this report.		
" column to designate that the result is reported on a dry weight basis		
id		
it		
iquid		
io (normalized absolute difference)		
D/DOE)		
, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
centration (Radiochemistry)		
n Limit (Dioxin)		
DoD/DOE)		
n (DoD/DOE)		
"Maximum Contaminant Level"		
e Activity (Radiochemistry)		
e Concentration (Radiochemistry)		
imit		
pxin)		
nber		
n Limit		
reporting limit (or MDL or EDL if shown)		
on Limit		
Factor (Dioxin)		
Quotient (Dioxin)		
Requ ffere Fac	tient (Dioxin)	uested Limit (Radiochemistry) ence, a measure of the relative difference between two points tor (Dioxin) etient (Dioxin)

.

Case Narrative

Job ID: 890-6080-1

Page 154 of 178

Client: Ensolum Project: JRU 17 BATTERY

Job ID: 890-6080-1

Eurofins Carlsbad

Job Narrative 890-6080-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 1/31/2024 1:15 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.6°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SS 06 A (890-6080-1) and SS 06 B (890-6080-2).

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: SS 06 A (890-6080-1) and (890-6078-A-1-F). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (890-6078-A-1-E MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-72465 and analytical batch 880-72794 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (890-6080-A-1-C MS). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

218

Job ID: 890-6080-1 SDG: 03C1558226

Client Sample ID: SS 06 A

Project/Site: JRU 17 BATTERY

Chloride

Client: Ensolum

Lab Sample ID: 890-6080-1

Date Collected: 01/31/24 09:15							Matri	ix: Solid	
Date Received: 01/31/24 13:15 Sample Depth: 2'									
Method: SW846 8021B - Volatile O Analyte	• •	ounds (GC) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	Ę
Benzene			0.00201	mg/Kg	— -	02/11/24 13:26	02/12/24 21:37	1	
Toluene	< 0.00201		0.00201	mg/Kg		02/11/24 13:26	02/12/24 21:37	1	
Ethylbenzene	< 0.00201		0.00201	mg/Kg		02/11/24 13:26	02/12/24 21:37	1	
m-Xylene & p-Xylene	< 0.00402		0.00402	mg/Kg		02/11/24 13:26	02/12/24 21:37	1	
o-Xylene	< 0.00201		0.00201	mg/Kg		02/11/24 13:26	02/12/24 21:37	1	
Xylenes, Total	<0.00402		0.00402	mg/Kg		02/11/24 13:26	02/12/24 21:37	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	148		70 - 130			02/11/24 13:26	02/12/24 21:37	1	
1,4-Difluorobenzene (Surr)	104		70 - 130			02/11/24 13:26	02/12/24 21:37	1	
-									
Method: TAL SOP Total BTEX - To			-		_	<u> </u>			
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Total BTEX	<0.00402	U	0.00402	mg/Kg			02/12/24 21:37	1	
- Method: SW846 8015 NM - Diesel ∣	Pange Organ	vice (DRO) (G	(C)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Total TPH	<49.5		49.5	mg/Kg	— -		02/10/24 19:55	1	
-		-		5.5					
Method: SW846 8015B NM - Diese	al Range Orga	inics (DRO) ((GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics (GRO)-C6-C10	<49.5	U	49.5	mg/Kg		02/06/24 10:41	02/10/24 19:55	1	
Diesel Range Organics (Over C10-C28)	<49.5	U	49.5	mg/Kg		02/06/24 10:41	02/10/24 19:55	1	
Oll Range Organics (Over C28-C36)	<49.5	U	49.5	mg/Kg		02/06/24 10:41	02/10/24 19:55	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
1-Chlorooctane	90		70 - 130			02/06/24 10:41	02/10/24 19:55	1	
o-Terphenyl	76		70 - 130			02/06/24 10:41	02/10/24 19:55	1	
		ahaa Colubio							
Method: EPA 300.0 - Anions, Ion C	· · ·	Qualifier		Unit	Б	Branarad	Analyzad	Dil Fac	
Analyte	Result	Quaimer	RL	Unit	D	Prepared	Analyzed	Direc	

Client Sample ID: SS 06 B
Date Collected: 01/31/24 09:20
Date Received: 01/31/24 13:15
Sample Depth: 3'

Lab Sample ID:	890-6080-2
	Matrix: Solid

02/05/24 13:55

1

	no organio oomp							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 22:03	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 22:03	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 22:03	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		02/11/24 13:26	02/12/24 22:03	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 22:03	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		02/11/24 13:26	02/12/24 22:03	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			02/11/24 13:26	02/12/24 22:03	1

4.95

mg/Kg

Eurofins Carlsbad

Released to Imaging: 6/24/2025 3:22:25 PM

Dil Fac

Dil Fac

Dil Fac

1

1

1

Client Sample Results

Limits

70 - 130

RL

RL

50.5

0.00401

Unit

Unit

mg/Kg

mg/Kg

Job ID: 890-6080-1 SDG: 03C1558226

Client Sample ID: SS 06 B

Date Collected: 01/31/24 09:20

Project/Site: JRU 17 BATTERY

Date Received: 01/31/24 13:15 Sample Depth: 3'

1,4-Difluorobenzene (Surr)

Client: Ensolum

Surrogate

Analyte

Analyte

Total TPH

Total BTEX

Lab Sample	ID:	890-6080-2
		Matrix: Solid

Analyzed

02/12/24 22:03

Analyzed

02/12/24 22:03

Analyzed

02/10/24 21:02

Prepared

02/11/24 13:26

Prepared

Prepared

D

D

4 5

5
6
8
9

Method: SW846 8015B NM - Dies	sel Range Organics (DRO) (GC)
Analyta	Result Qualifier

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

%Recovery Qualifier

Result Qualifier

Result Qualifier

<50.5 U

101

<0.00401 U

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.5	U	50.5	mg/Kg		02/06/24 10:41	02/10/24 21:02	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.5	U	50.5	mg/Kg		02/06/24 10:41	02/10/24 21:02	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg		02/06/24 10:41	02/10/24 21:02	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130			02/06/24 10:41	02/10/24 21:02	1
o-Terphenyl	83		70 - 130			02/06/24 10:41	02/10/24 21:02	1
- Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	334		4.95	mg/Kg			02/05/24 14:02	1

Job ID: 890-6080-1 SDG: 03C1558226

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		ï
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
890-6078-A-1-D MS	Matrix Spike	107	79		- 5
890-6078-A-1-E MSD	Matrix Spike Duplicate	132 S1+	105		
890-6080-1	SS 06 A	148 S1+	104		- 2
890-6080-2	SS 06 B	112	101		
LCS 880-72819/1-A	Lab Control Sample	124	82		
LCSD 880-72819/2-A	Lab Control Sample Dup	128	77		
MB 880-72819/5-A	Method Blank	84	109		
Surrogate Legend					
BFB = 4-Bromofluorobe	nzene (Surr)				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
o Sample ID	Client Sample ID	(70-130)	(70-130)	
80-1	SS 06 A	90	76	
80-1 MS	SS 06 A	93	69 S1-	
080-1 MSD	SS 06 A	103	72	
30-2	SS 06 B	102	83	
0-72465/2-A	Lab Control Sample	106	103	
880-72465/3-A	Lab Control Sample Dup	105	105	
80-72465/1-A	Method Blank	156 S1+	129	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Project/Site: JRU 17 BATTERY

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 72819

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-72819/5-A	

Matrix: Solid Analysis Batch: 72833

Client: Ensolum

Analysis Batch: 72833							Prep Batch	n: 72819
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 11:49	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 11:49	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 11:49	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/11/24 13:26	02/12/24 11:49	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 11:49	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		02/11/24 13:26	02/12/24 11:49	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84		70 - 130			02/11/24 13:26	02/12/24 11:49	1
1,4-Difluorobenzene (Surr)	109		70 - 130			02/11/24 13:26	02/12/24 11:49	1

Lab Sample ID: LCS 880-72819/1-A Matrix: Solid

Analysis Batch: 72833

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09323		mg/Kg		93	70 - 130	
Toluene	0.100	0.1125		mg/Kg		113	70 - 130	
Ethylbenzene	0.100	0.1134		mg/Kg		113	70 - 130	
m-Xylene & p-Xylene	0.200	0.2559		mg/Kg		128	70 - 130	
o-Xylene	0.100	0.1187		mg/Kg		119	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	124		70 - 130
1,4-Difluorobenzene (Surr)	82		70 - 130

Lab Sample ID: LCSD 880-72819/2-A

Matrix: Solid

Analysis Batch: 72833							Prep	Batch:	72819
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08552		mg/Kg		86	70 - 130	9	35
Toluene	0.100	0.09515		mg/Kg		95	70 - 130	17	35
Ethylbenzene	0.100	0.1075		mg/Kg		108	70 - 130	5	35
m-Xylene & p-Xylene	0.200	0.2537		mg/Kg		127	70 - 130	1	35
o-Xylene	0.100	0.1023		mg/Kg		102	70 - 130	15	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	128		70 - 130
1,4-Difluorobenzene (Surr)	77		70 - 130

Lab Sample ID: 890-6078-A-1-D MS

Matrix: Solid

Analysis Batch: 72833									Prep	Batch:	72819)
	Sample	Sample	Spike	MS	MS				%Rec			
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits			
Benzene	<0.00200	U	0.0996	0.09774		mg/Kg		98	70 - 130			
Toluene	<0.00200	U	0.0996	0.09090		mg/Kg		91	70 - 130			

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Released to Imaging: 6/24/2025 3:22:25 PM

Lab Sample ID: 890-6078-A-1-D MS

QC Sample Results

MS MS

0.08805

0.2238

0.09037

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

Spike

Added

0.0996

0.199

0.0996

Limits

70 - 130

70 - 130

Client: Ensolum Project/Site: JRU 17 BATTERY

Matrix: Solid

Analyte

o-Xylene

Surrogate

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 72833

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

<0.00401 U F2 F1

MS MS

Qualifier

<0.00200

<0.00200 U

107

79

%Recovery

Result Qualifier

U

Job ID: 890-6080-1 SDG: 03C1558226

Prep Type: Total/NA

Prep Batch: 72819

Client Sample ID: Matrix Spike

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

88

112

91

D

7

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Solid Analysis Batch: 72833

Lab Sample ID: 890-6078-A-1-E MSD

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Analysis Batch: 72833									Prep	Batch:	72819	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	< 0.00200	U	0.0990	0.09057		mg/Kg		91	70 - 130	8	35	
Toluene	<0.00200	U	0.0990	0.09825		mg/Kg		99	70 - 130	8	35	ï
Ethylbenzene	<0.00200	U	0.0990	0.09332		mg/Kg		94	70 - 130	6	35	
m-Xylene & p-Xylene	<0.00401	U F2 F1	0.198	0.2400		mg/Kg		121	70 - 130	7	35	ŝ
o-Xylene	<0.00200	U	0.0990	0.1040		mg/Kg		105	70 - 130	14	35	
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									
4-Bromofluorobenzene (Surr)	132	S1+	70 - 130									
1,4-Difluorobenzene (Surr)	105		70 - 130									

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-72465/1-A						Client Sa	mple ID: Metho	d Blank
Matrix: Solid							Prep Type: 1	otal/NA
Analysis Batch: 72794							Prep Batch	n: 72465
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		02/06/24 10:41	02/10/24 18:47	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		02/06/24 10:41	02/10/24 18:47	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/06/24 10:41	02/10/24 18:47	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	156	S1+	70 - 130			02/06/24 10:41	02/10/24 18:47	1
o-Terphenyl	129		70 - 130			02/06/24 10:41	02/10/24 18:47	1

Matrix: Solid Analysis Batch: 72794

Analysis Batch: 72794							Prep	Batch: 72465
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	952.7		mg/Kg		95	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	978.5		mg/Kg		98	70 - 130	
C10-C28)								

Eurofins Carlsbad

Prep Type: Total/NA

Lab Sample ID: LCS 880-72465/2-A

QC Sample Results

Client: Ensolum Project/Site: JRU 17 BATTERY

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

	1
Job ID: 890-6080-1 SDG: 03C1558226	2
	3
Client Sample ID: Lab Control Sample Prep Type: Total/NA	4

Lab Sample ID: LCS 880-72	465/2-A						Client	Sample	D: Lab Co		
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 72794									Prep	Batch:	72465
	LCS	LCS									
Surrogate	%Recovery		Limits								
1-Chlorooctane			70 - 130								
o-Terphenyl	103		70 - 130								
Lab Sample ID: LCSD 880-7	2465/3-A					Clie	nt San	ple ID:	Lab Contro	I Sampl	e Dup
Matrix: Solid										ype: To	
Analysis Batch: 72794										Batch:	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	951.9		mg/Kg		95	70 - 130	0	20
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	962.2		mg/Kg		96	70 - 130	2	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane			70 - 130								
o-Terphenyl	105		70 - 130								
Lab Sample ID: 890-6080-1	MS							C	lient Samp	le ID: SS	5 06 A
Matrix: Solid										ype: To	
Analysis Batch: 72794										Batch:	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.5	U	1000	1012		mg/Kg		101	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.5	U	1000	923.5		mg/Kg		92	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recovery		Limits								
1-Chlorooctane	93		70 - 130								
o-Terphenyl	69	S1-	70 - 130								
Lab Sample ID: 890-6080-1	MSD							C	lient Samp	le ID: SS	5 06 A
Matrix: Solid										ype: To	
Analysis Batch: 72794										Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.5	U	1000	1121		mg/Kg		112	70 - 130	10	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.5	U	1000	1002		mg/Kg		100	70 - 130	8	20
C10-C28)											
	MSD	MSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane			70 - 130								
o-Terphenyl	72		70 - 130								
	12		/0 - /00								

Project/Site: JRU 17 BATTERY

Client: Ensolum

QC Sample Results

Job ID: 890-6080-1 SDG: 03C1558226

Method: 300.0 - Anions, Ion Chromatography

-												
Lab Sample ID: MB 880-72130/1-A								(Client S	ample ID:		
Matrix: Solid										Prep	Type: So	oluble
Analysis Batch: 72328												
• • •	_	MB MB					_	_				
Analyte		esult Qualifier		RL	Unit		D	Pro	epared	Analy:		Dil Fac
Chloride	<	5.00 U		5.00	mg/K	g				02/05/24	12:34	1
- Lab Sample ID: LCS 880-72130/2-4							Cli	ent	Sample	ID: Lab C	ontrol Sa	ample
Matrix: Solid											Type: So	
Analysis Batch: 72328												
			Spike	LCS	LCS					%Rec		
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits		
Chloride			250	245.4		mg/Kg			98	90 - 110		
												_
Lab Sample ID: LCSD 880-72130/3	- A					CI	ient S	Sam	ple ID: I	Lab Contro		
Matrix: Solid										Prep	Type: So	oluble
An alter to Details 70000												
Analysis Batch: 72328			Califo	1.050	1.000							000
Analysis Batch: 72328			Spike		LCSD	Unit		D	% Bao	%Rec		
Analyte			Added	Result	LCSD Qualifier	Unit		D	%Rec	%Rec Limits	RPD	Limit
Analyte						Unit mg/Kg		D _	%Rec 97	%Rec		Limit
Analyte			Added	Result				<u>D</u> _	97	%Rec Limits	RPD 1	Limi 20
Analyte Chloride Lab Sample ID: 890-6075-A-6-B MS			Added	Result				<u>D</u>	97	%Rec Limits 90 - 110 Sample ID	RPD 1	Limit 20 Spike
Analyte Chloride Lab Sample ID: 890-6075-A-6-B MS Matrix: Solid	 3		Added	Result				<u>D</u> _	97	%Rec Limits 90 - 110 Sample ID	RPD 1	Limit 20 Spike
Analyte Chloride Lab Sample ID: 890-6075-A-6-B MS Matrix: Solid	Sample	Sample	Added	Result 243.4				<u>D</u>	97	%Rec Limits 90 - 110 Sample ID	RPD 1	Limit 20 Spike
Analyte Chloride Lab Sample ID: 890-6075-A-6-B MS Matrix: Solid Analysis Batch: 72328	Sample	Sample Qualifier	Added 250	Result 243.4	Qualifier			<u>D</u> -	97	%Rec Limits 90 - 110 Sample ID Prep	RPD 1	Limit 20 Spike
Analyte Chloride Lab Sample ID: 890-6075-A-6-B MS Matrix: Solid Analysis Batch: 72328	Sample	•	Added 250 Spike	Result 243.4	Qualifier	mg/Kg			97 Client	%Rec Limits 90 - 110 Sample ID Prep %Rec	RPD 1	Limit 20 Spike
Analyte Chloride Lab Sample ID: 890-6075-A-6-B MS Matrix: Solid Analysis Batch: 72328 Analyte Chloride	Sample Result 345	•	Added 250 Spike Added	Result 243.4 MS Result	Qualifier	mg/Kg			97 Client %Rec 92	%Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	 P: Matrix Type: So	Limi 20 Spike oluble
Analyte Chloride Lab Sample ID: 890-6075-A-6-B MS Matrix: Solid Analysis Batch: 72328 Analyte Chloride Lab Sample ID: 890-6075-A-6-C MS	Sample Result 345	•	Added 250 Spike Added	Result 243.4 MS Result	Qualifier	mg/Kg	Clien		97 Client %Rec 92	%Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 D: Matrix S	 P: Matrix Type: So 	Limit 20 Spike oluble
Analyte Chloride Lab Sample ID: 890-6075-A-6-B MS Matrix: Solid Analysis Batch: 72328 Analyte Chloride Lab Sample ID: 890-6075-A-6-C MS Matrix: Solid	Sample Result 345	•	Added 250 Spike Added	Result 243.4 MS Result	Qualifier	mg/Kg	Clien		97 Client %Rec 92	%Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 D: Matrix S	 P: Matrix Type: So	Limit 20 Spike oluble
Analyte Chloride Lab Sample ID: 890-6075-A-6-B MS Matrix: Solid Analysis Batch: 72328 Analyte Chloride Lab Sample ID: 890-6075-A-6-C MS	Sample Result 345	Qualifier	Added 250 Spike Added 252	Result 243.4 MS Result 575.9	Qualifier MS Qualifier	mg/Kg	Clien		97 Client %Rec 92	%Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 P: Matrix S Prep	 P: Matrix Type: So 	Limit 20 Spike oluble
Analyte Chloride Lab Sample ID: 890-6075-A-6-B MS Matrix: Solid Analysis Batch: 72328 Analyte Chloride Lab Sample ID: 890-6075-A-6-C MS Matrix: Solid	Sample Result 345	Qualifier	Added 250 Spike Added	Result 243.4 MS Result 575.9	Qualifier MS Qualifier	mg/Kg	Clien		97 Client %Rec 92	%Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 D: Matrix S	 P: Matrix Type: So 	oluble

QC Association Summary

Client: Ensolum Project/Site: JRU 17 BATTERY

5

Job ID: 890-6080-1 SDG: 03C1558226

GC VOA

Prep Batch: 72819

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6080-1	SS 06 A	Total/NA	Solid	5035	
890-6080-2	SS 06 B	Total/NA	Solid	5035	
MB 880-72819/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-72819/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-72819/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-6078-A-1-D MS	Matrix Spike	Total/NA	Solid	5035	
890-6078-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 72833

890-6078-A-T-E MSD		TOtal/INA	50110	5035		•
Analysis Batch: 72833						ð
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	9
890-6080-1	SS 06 A	Total/NA	Solid	8021B	72819	
890-6080-2	SS 06 B	Total/NA	Solid	8021B	72819	
MB 880-72819/5-A	Method Blank	Total/NA	Solid	8021B	72819	
LCS 880-72819/1-A	Lab Control Sample	Total/NA	Solid	8021B	72819	
LCSD 880-72819/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	72819	
890-6078-A-1-D MS	Matrix Spike	Total/NA	Solid	8021B	72819	
890-6078-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	72819	
Analysis Batch: 73049						13

Analysis Batch: 73049

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-6080-1	SS 06 A	Total/NA	Solid	Total BTEX	
890-6080-2	SS 06 B	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 72465

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6080-1	SS 06 A	Total/NA	Solid	8015NM Prep	
890-6080-2	SS 06 B	Total/NA	Solid	8015NM Prep	
MB 880-72465/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-72465/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-72465/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-6080-1 MS	SS 06 A	Total/NA	Solid	8015NM Prep	
890-6080-1 MSD	SS 06 A	Total/NA	Solid	8015NM Prep	

Analysis Batch: 72794

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-6080-1	SS 06 A	Total/NA	Solid	8015B NM	72465
890-6080-2	SS 06 B	Total/NA	Solid	8015B NM	72465
MB 880-72465/1-A	Method Blank	Total/NA	Solid	8015B NM	72465
LCS 880-72465/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	72465
LCSD 880-72465/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	72465
890-6080-1 MS	SS 06 A	Total/NA	Solid	8015B NM	72465
890-6080-1 MSD	SS 06 A	Total/NA	Solid	8015B NM	72465

Analysis Batch: 72960

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6080-1	SS 06 A	Total/NA	Solid	8015 NM	
890-6080-2	SS 06 B	Total/NA	Solid	8015 NM	

QC Association Summary

Client: Ensolum Project/Site: JRU 17 BATTERY

Page 163 of 178

Job ID: 890-6080-1 SDG: 03C1558226

HPLC/IC

Leach Batch: 72130

ab Sample ID.	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
90-6080-1	SS 06 A	Soluble	Solid	DI Leach	
90-6080-2	SS 06 B	Soluble	Solid	DI Leach	
/IB 880-72130/1-A	Method Blank	Soluble	Solid	DI Leach	
CS 880-72130/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
CSD 880-72130/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
90-6075-A-6-B MS	Matrix Spike	Soluble	Solid	DI Leach	
90-6075-A-6-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

890-6075-A-6-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach		
Analysis Batch: 72328						8
Lab Sample ID 890-6080-1	Client Sample ID SS 06 A	Prep Type Soluble	Matrix Solid	Method 300.0	Prep Batch 72130	9
890-6080-2	SS 06 B	Soluble	Solid	300.0	72130	
MB 880-72130/1-A	Method Blank	Soluble	Solid	300.0	72130	
LCS 880-72130/2-A	Lab Control Sample	Soluble	Solid	300.0	72130	
LCSD 880-72130/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	72130	
890-6075-A-6-B MS	Matrix Spike	Soluble	Solid	300.0	72130	
890-6075-A-6-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	72130	
						13

5 6

9

Job ID: 890-6080-1 SDG: 03C1558226

Lab Sample ID: 890-6080-1 Matrix: Solid

Lab Sample ID: 890-6080-2

Matrix: Solid

Date Collected: 01/31/24 09:15 Date Received: 01/31/24 13:15

Project/Site: JRU 17 BATTERY

Client Sample ID: SS 06 A

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	72819	02/11/24 13:26	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	72833	02/12/24 21:37	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73049	02/12/24 21:37	SM	EET MID
Total/NA	Analysis	8015 NM		1			72960	02/10/24 19:55	SM	EET MID
Total/NA	Prep	8015NM Prep			10.10 g	10 mL	72465	02/06/24 10:41	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	72794	02/10/24 19:55	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	72130	02/01/24 11:22	SMC	EET MID
Soluble	Analysis	300.0		1			72328	02/05/24 13:55	СН	EET MID

Client Sample ID: SS 06 B

Date Collected: 01/31/24 09:20 Date Received: 01/31/24 13:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	72819	02/11/24 13:26	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	72833	02/12/24 22:03	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73049	02/12/24 22:03	SM	EET MID
Total/NA	Analysis	8015 NM		1			72960	02/10/24 21:02	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	72465	02/06/24 10:41	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	72794	02/10/24 21:02	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	72130	02/01/24 11:22	SMC	EET MID
Soluble	Analysis	300.0		1			72328	02/05/24 14:02	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Client: Ensolum Project/Site: JRU 17 BATTERY

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority		gram	Identification Number	Expiration Date
exas	NEL	AP	T104704400-23-26	06-30-24
• •		but the laboratory is not certil	ied by the governing authority. This lis	t may include analytes
for which the agency	does not offer certification.			
for which the agency Analysis Method	does not offer certification. Prep Method	Matrix	Analyte	
0,		Matrix Solid	Analyte Total TPH	

Job ID: 890-6080-1

SDG: 03C1558226

Page 165 of 178

10

Method Summary

Client: Ensolum Project/Site: JRU 17 BATTERY Job ID: 890-6080-1 SDG: 03C1558226

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
	Environmental Protection Agency	n November 1006 And Its Lindetes	
	Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition	on, November 1986 And Its Updates.	
TAL SOP =	- TestAmerica Laboratories, Standard Operating Procedure		
Laboratory Re			
EET MID =	Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Sample Summary

Client: Ensolum Project/Site: JRU 17 BATTERY Job ID: 890-6080-1 SDG: 03C1558226

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
90-6080-1	SS 06 A	Solid	01/31/24 09:15	01/31/24 13:15	2'	4
90-6080-2	SS 06 B	Solid	01/31/24 09:20	01/31/24 13:15	3'	
						5
						8
						9
						10
						1:
						13
						14

			1/31/24	Suma	CHAR
Date/Time	re) Received by: (Signature)	Date/Time Relinguished by: (Signature)	(e)	ture) Received by: (Signature)	Relinquished by: (Signature)
	s and conditions ond the control previously negotiated	or service - synamue ov unis ovcar nein and neingens armenter as single statistication client company to Euromix Serico, its amiliates and subcontractors. It assigns standard terms and conditions of service. Eurofix Serico will be lable only for the cost of samples and salar not assume any responsibility for any losses or expensions incured by the client if the vector is an incured by the control of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco. but not analyzed. These terms will be enforced unless previously negotiated	der from client company to Eurohns onsibility for any losses or expenses 5 for each sample submitted to Euro	or reminquisisments or samples constitutes a valid purchase o e only for the cost of samples and shall not assume any reg of \$85.00 will be applied to each project and a charge of \$	service, signature of this toccur ment and service. Eurofins Xenco will be liab Eurofins Xenco. A minimum charg
n U V Zn 0 /7471	Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr TI Sn U V Zn 10 Ni Se Ag TI U Hg: 1631 / 245.1 / 7470 / 7471	A 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo N TCLP/SPLP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U	13PPM Texas 11 AI Sb A LP/SPLP 6010 : 8RCRA Sb	200.8 / 6020: 8RCRA 13F etal(s) to be analyzed TCLP /	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed
			-		
EN. 2017, U SI68, EXP. 0	EV	5	/		
E Contra avier	AFE			/	
080921001	10			/	
Cost Center	6				
101011111111111			$\left \right $		
ABIG27UCIINS	1D.		3, 6	1 4 4 920	2206B
Sample Comments	2	1	Comp Cont	C 1/2//20	SCOLA
Sample Comments		Pi	# of	Matrix Date	Sample Identification
NaOH+Ascorbic Acid: SAPC	NaOt	1	20		Total Containers:
Nd 20 203: NdSO 3 Zn Acetate+NaOH: Zn	Zn Au	(8	st.	NA	Sample Custody Seals:
NaHSO 4: NABIS	NaHS	(Er 015 02	Paran	Ves No N/A Thermometer ID:	Samples Received Intact: Cooler Custody Seals:
H ₃ PO ₄ :HP	H ₃ PC	5)		TempBlank: (Yes)No Wet Ice:	SAMPLE RECEIPT
2	H ₂ SO	000			
Cool: Cool MeOH: Me	Cool		ne day received hy	Conner Whitmen TAT starts th	Sampler's Name:
None: NO DI Water: H ₂ O	None		Rush Code	03C 155 8 226 ARoutine	
Preservative Codes	IEST	ANALYSIS REQUEST	n Around	×	Project Name: J
Other:	Deliverables: EDD ADaPT	ren@ExxonMobil.com	Garatt.G	303 857 2946 Email:	Phone: 3(
	Reporting: Level II Level III PST/UST TRRP	Carlsbard NN 88220	City, State ZIP:	bad, NM. 88220	City, State ZIP:
	State of Project:	Giard	Address:	122 National Parks Huy	Address: 5
Ids RRC Superfund	Program: UST/PST PRP Brownfields	2.4		Enselvm	Company Name: En
ents	Work Order Comments	Garret Green	Bill to: (if different)	acoma Morrissey	Project Manager:
Page 1 of 1	6080 www.xenco.com	Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	Hobbs, NM (57		
		EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296	EL Paso, TX (91)	Xenco	
	Work Order No:	Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland; TX (432) 704-5440, San Antonio, TX (210) 509-3334	Ch Houston, TX (2 Midland, TX (432		🔅 eurofins

Job Number: 890-6080-1 SDG Number: 03C1558226

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 6080 List Number: 1 Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

14

14

Login Sample Receipt Checklist

Client: Ensolum

<6mm (1/4").

Login Number: 6080 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Job Nur

Job Number: 890-6080-1 SDG Number: 03C1558226

List Source: Eurofins Midland List Creation: 02/01/24 11:02 AM

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 171 of 178

QUESTIONS

Action 476280

QUESTIO	NS
Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	476280
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAB1627451198
Incident Name	NAB1627451198 JAMES RANCH UNIT #017 @ 30-015-27784
Incident Type	Produced Water Release
Incident Status	Remediation Closure Report Received
Incident Well	[30-015-27784] JAMES RANCH UNIT #017

Location of Release Source

Please	answer all the	questions in this group.

Site Name	JAMES RANCH UNIT #017
Date Release Discovered	09/19/2016
Surface Owner	Federal

Incident Details

Please answer all the questions in this group.		
Incident Type	Produced Water Release	
Did this release result in a fire or is the result of a fire	No	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	No	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No	

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.		
Crude Oil Released (bbls) Details	Not answered.	
Produced Water Released (bbls) Details	Cause: Corrosion Treating Tower Produced Water Released: 22 BBL Recovered: 15 BBL Lost: 7 BBL.	
Is the concentration of chloride in the produced water >10,000 mg/l	Yes	
Condensate Released (bbls) Details	Not answered.	
Natural Gas Vented (Mcf) Details	Not answered.	
Natural Gas Flared (Mcf) Details	Not answered.	
Other Released Details	Not answered.	
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 476280

· · · · · ·

QUESTIONS (continued)		
Operator:	OGRID:	
XTO ENERGY, INC	5380	
6401 Holiday Hill Road	Action Number:	
Midland, TX 79707	476280	
	Action Type:	
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	

QUESTIONS

Nature and Volume of Release (continued)		
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.	
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No	
Reasons why this would be considered a submission for a notification of a major release	Unavailable.	
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.		

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.	
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
	Not answered. ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-un C-141 submission	
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: Colton Brown Title: Environmental Advisor Email: colton.s.brown@exxonmobil.com Date: 06/18/2025	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	UGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	476280
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)
What method was used to determine the depth to ground water	Attached Document
Did this release impact groundwater or surface water	Νο
What is the minimum distance, between the closest lateral extents of the release an	id the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Between ½ and 1 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between ½ and 1 (mi.)
Any other fresh water well or spring	Between ½ and 1 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between ½ and 1 (mi.)
A subsurface mine	Between 1 and 5 (mi.)
An (non-karst) unstable area	Between 1000 (ft.) and ½ (mi.)
Categorize the risk of this well / site being in a karst geology	Medium
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	No

Remediation Plan

appropriate district office no later than 90 days after the release discovery date.
Yes
sociated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Yes
No
rams per kilograms.)
2050
79
79
0
0
forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,
10/05/2018
01/31/2024
01/31/2024
2650
370
2650
0
me of submission and may (be) change(d) over time as more remediation efforts are completed.

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

QUESTIONS, Page 3

Action 476280

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTI	IONS (continued)
Operator: XTO ENERGY, INC 6401 Holiday Hill Road Midland, TX 79707	OGRID: 5380 Action Number: 476280 Action Type:
QUESTIONS	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)
Remediation Plan (continued)	
Please answer all the questions that apply or are indicated. This information must be provided to the	a appropriate district office no later than 00 days after the release discovery date
This remediation will (or is expected to) utilize the following processes to remediate	
(Select all answers below that apply.)	
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	No
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.
(In Situ) Soil Vapor Extraction	Not answered.
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.
OTHER (Non-listed remedial process)	Yes
Other Non-listed Remedial Process. Please specify	No impacted soil identified
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed er which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Colton Brown Title: Environmental Advisor Email: colton.s.brown@exxonmobil.com Date: 06/18/2025
The OCD recognizes that proposed remediation measures may have to be minimally adjusted in acc significantly deviate from the remediation plan proposed, then it should consult with the division to a	ordance with the physical realities encountered during remediation. If the responsible party has any need to letermine if another remediation plan submission is required.

QUESTIONS, Page 4

Action 476280

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 476280

Page 175 of 178

QUESTIONS (continued)		
Operator:	OGRID:	
XTO ENERGY, INC	5380	
6401 Holiday Hill Road	Action Number:	
Midland, TX 79707	476280	
	Action Type:	
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	

QU	ES.	ΓIO	NS

Deferral Requests Only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of	
Requesting a deferral of the remediation closure due date with the approval of this submission	No

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	476280
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	308025
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	01/31/2024
What was the (estimated) number of samples that were to be gathered	2
What was the sampling surface area in square feet	400

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all re	emediation steps have been completed.
Requesting a remediation closure approval with this submission	Yes
Have the lateral and vertical extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area	No
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes
What was the total surface area (in square feet) remediated	2650
What was the total volume (cubic yards) remediated	0
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes
What was the total surface area (in square feet) reclaimed	150
What was the total volume (in cubic yards) reclaimed	0
Summarize any additional remediation activities not included by answers (above)	"Soil sampling activities were completed at the Site to assess for the presence or absence of impacts to soil resulting from the September 19, 2016, produced water release. Based on soil sample laboratory analytical results compliant with the Closure Criteria on-pad and the reclamation requirement in samples collected from the top four feet of the pasture area, no further remediation was required. Following the soil sampling activities conducted in 2024, approximately 2,500 square feet of waste-containing soil were delineated within the top 4 feet of soil at sample location SS05. Following Site decommissioning, an estimated 370 cubic yards of waste-containing soil will be reclaimed. The presence of the waste-containing soil present on-pad does not cause an imminent risk to human health, the environment, or groundwater. XTO will reclaim this soil reporting COC concentrations exceeding the reclamation requirement but below Closure Criteria during final Site reclamation. "
	closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents o
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a water, human health or the environment. In addition, OCD acceptance of a C-141 repor	
I hereby agree and sign off to the above statement	Name: Colton Brown Title: Environmental Advisor Email: colton.s.brown@exxonmobil.com Date: 06/18/2025

QUESTIONS, Page 6

Action 476280

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Page 177 of 178

Action 476280

QUESTIONS (continued) OGRID: Operator: **XTO ENERGY, INC** 5380 6401 Holiday Hill Road Action Number: Midland, TX 79707 476280 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Reclamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	
Requesting a reclamation approval with this submission	No

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	476280
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

Created By		Condition Date
scwells	None	6/24/2025