February 27,

2025

Incident NO. nOY1709044723/1RP-4664 Groundwater Abatement and 2024 Monitoring Report Epperson 16-Inch Pipeline Release Lea County, New Mexico

Prepared for:

Targa Midstream Services LLC

P.O. Box 1689

Lovington, New Mexico 88269

Prepared by:

507 N. Marienfeld Street, Suite 201 Midland, Texas 79701 (432)687-0901

Mark J Larson Certified Professional Geologist #10490

Project No. 23-0115-03

This Page Intentionally Left Blank

•

Table of Contents

1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION	.4
2.1	Background	4
3.0	LNAPL AND GROUNDWATER ABATEMENT	5
3.1	Additonal Monitoring Well	5
3.2	LNAPL Abatement	6
3.3	Dissolved Hydrocarbon (BTEX) Reduction	7
4.0	SEMI-ANNUAL GROUNDWATER MONITORING	8
4.1	February 1, 2024	8
4.2	November 11, 2024	9
5.0 CC	NCLUSION AND REOCMMENDATION	10
5.1	Conclusion1	10
5.2	Recommendation1	10

List of Tables

Table 1a	Monitoring Well TMW-1 Completion Details and Gauging Summary
Table 1b	Monitoring Well Completion Details and Gauging Summary
Table 2	Groundwater Sample Analytical Data Summary

List of Figures

Figure 1	Topographic Map
Figure 2	Aerial Map
Figure 3	Site Drawing
Figure 4	LNAPL Thickness Map
Figure 5a	Groundwater Potentiometric Surface Map, February 1, 2024
Figure 5b	Groundwater Potentiometric Surface Map, November 11, 2024
Figure 6a	BTEX Concentrations in Groundwater Map, February 1, 2024
Figure 6b	BTEX Concentrations in Groundwater Map, November 11, 2024
Figure 7	Chloride Concentrations in Groundwater Map

List of Appendices

Appendix A	NMOCD Communications
Appendix B	Affidavits of Notice Publication
Appendix C	NMOSE Well Permit
Appendix D	TMW-4 Geologic Log and Completion Diagram
Appendix E	EcoVac Reports
Appendix F	Gandy Corporation Disposal Ticket
Appendix G	Laboratory Reports

1.0 EXECUTIVE SUMMARY

Larson & Associates, Inc. (LAI) on behalf of Targa Midstream Services, LLC (Targa) submits this report to the State of New Mexico Oil Conservation Division (NMOCD) to document the abatement of light nonaqueous phase liquid (LNAPL) consisting of natural gas condensate and dissolved benzene, toluene, ethylbenzene and xylenes (BTEX) in groundwater from monitoring well TMW-1 at the Epperson 16-inch pipeline (Site) located in Lea County, New Mexico. The abatement was performed in accordance with the requirements of the document titled, *"1RP-4664 (Incident No. nOY1709044723), Final Groundwater Abatement Plan, Epperson 16-Inch Pipeline Release, Lea County, New Mexico, January 20, 2022",* which was approved by NMOCD on August 29, 2023. The legal description is Unit M (SW/4, SW/4), Section 24, Township 11 South, Range 33 East. The geodetic coordinates are North 33.346925° and West -103.574597°. The LNAPL and dissolved hydrocarbon abatement was performed in accordance with New Mexico Administrative code (NMAC) 19.15.30.19.

High volume soil vapor extraction (SVE) was the selected methodology for abating LNAPL and dissolved hydrocarbons (BTEX) in groundwater at the Site. EcoVac Services (EcoVac), Moore, Oklahoma, used a truck-mounted dual phase SVE system with Enhanced Fluid Recovery[®] (EFR) to extract LNAPL and dissolved hydrocarbons (BTEX) in groundwater from monitoring well TMW-1. The EcoVac EFR system vacuum blower draws higher liquid and vapor volumes from the well and utilizes two (2) auxiliary internal combustion engines to combust vapors while liquids are contained in an onboard tank. Liquids were discharged to a portable (frac) tank leased from Gandy Corporation with recovered liquid disposed in an NMOCD permitted offsite commercial Class II SWD well. Vapors were combusted or supplemented with propane as fuel for two (2) internal combustion engines with emissions below the New Mexico Environment Department (NMED) limits for requiring a permit.

LNAPL and groundwater were gauged in four (4) monitoring wells (TMW-1, TMW-2, TMW-3 and TMW-4) prior to initiating SVE extraction on August 5, 2024. LNAPL (0.29 feet) was gauged in monitoring TMW-1 with groundwater gauged at 30.68 feet below ground surface (bgs). EcoVac successfully removed LNAPL from well TMW-1 during the first 3-day extraction event performed on August 5, 6 and August 7, 2024. A second 3-day extraction event was performed on September 10, 11 and 12, 2024. LNAPL was gauged weekly in the monitoring well TMW-1 between the SVE events and for 4 weeks after completing the second extraction event. LNAPL was not detected in well TMW-1 or the remaining monitoring wells (TMW-2, TMW-3 and TMW-4). Monitoring well TMW-4 was installed between wells TMW-1 and TMW-2 to allow monitoring for vapor extraction influence and groundwater drawdown. No vapor extraction influence or groundwater drawdown was detected in wells TMW-4 and TMW-2 located approximately 214 feet and 430 feet east from well TMW-1, respectively. During the first SVE event on August 5, 2024, the maximum hydrocarbon vapor concentration in the effluent stream was 13,000 parts per million per volume (ppmv) at the beginning of extraction and decrease in hydrocarbon vapor concentration.

Incident No. nOY1709044723/1RP-4664 Groundwater Abatement and 2024 Monitoring Report Epperson 16 - Inch Pipeline Release February 27, 2025

The higher hydrocarbon concentration is likely from removal of LNAPL during the first extraction period. On September 10, 2024, the maximum hydrocarbon vapor concentration was 10,000 ppmv at the beginning of the extraction period ending at 4,500 ppmv near the end of the extraction period on September 12, 2024. The hydrocarbon vapor concentration decreased about 55 percent over the extraction period which suggests removal of dissolved hydrocarbons in groundwater. The data concludes that vacuum extraction and groundwater drawdown was centered around well TMW-1 and the release area. The EcoVac system recovered a total of 252.8 pounds equivalent to about 39.9 gallons of hydrocarbon as vapor and a total of 8,769 gallons of fluid consisting mainly of groundwater from monitoring well TMW-1, as shown on Table 1 and on Figure 2. LAI personnel collected groundwater samples from well TMW-1 during and following the extraction events and reported the following dissolved hydrocarbon (BTEX) concentrations:

Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)
January 31, 2019	11.6	9.45	1.30	3.51
August 23, 2024	0.352	0.584	0.936	3.13
November 11, 2024	<0.0400	<0.0400	0.656	0.762

The groundwater monitoring data for well TMW-1 represents a significant decrease in dissolved hydrocarbon (BTEX) concentration from SVE extraction processes. BTEX concentrations in the remaining wells (TMW-2, TMW-3 and TMW-4) have been below the analytical method reporting limits and New Mexico Water Quality Control Commission (NMWQCC) human health standards. Chloride has been below the NMWQCC domestic water quality standard of 250 milligrams per liter (mg/L) in all wells except TMW-3 with chloride reported at 297 mg/L and 325 mg/L during semi-annual groundwater monitoring events on February 1, 2024 and November 11, 2024, respectively. The suspected source for the elevated chloride is an unlined produced water disposal pit that was observed on a historic aerial photograph (February 3, 1968) at a tank battery on the adjoining lease west of the Site. No significant changes in depth to groundwater, groundwater elevation or groundwater flow direction were noted from previous monitoring events. On October 24, 2024, Gandy Corporation, Tatum, New Mexico, disposed of an estimated 220 barrels of remediation derived waste, mainly groundwater, at the DKD, LLC, Richardson Fee SWD No. 002 located in Unit K (NE/4, SW/4), Section 5, Township 14 South, Range 36 East in Lea County, New Mexico.

Path Forward:

Incident No. nOY1709044723/1RP-4664

Groundwater Abatement and 2024 Monitoring Report Epperson 16 - Inch Pipeline Release

February 27, 2025

Targa will continue monitoring groundwater quality from monitoring wells TMW-1 through TMW-4 as presented in the NMOCD approved abatement plan with results presented to the NMOCD in annual reports.

2.0 INTRODUCTION

Larson & Associates, Inc. (LIA), on behalf of Targa Midstream Services, LLC (Targa) presents this report to the New Mexico Oil Conservation Commission (NMOCD) to document abatement of light nonaqueous phase liquid (LNAPL) in the form of natural gas condensate and dissolved benzene, toluene, ethylbenzene and xylenes (BTEX) in groundwater from monitoring well TMW-1 at the Epperson 16-inch pipeline release (Site) located in Lea County, New Mexico. The abatement was performed in accordance with the requirements of the document titled, *"1RP-4664 (Incident No. nOY1709044723), Final Groundwater Abatement Plan, Epperson 16-Inch Pipeline Release, Lea County, New Mexico, January 20, 2022".* The Site is located about 15 miles west of Tatum, New Mexico, in Unit M (SW/4, SW/4), Section 24, Township 11 South, Range 33 East. The geodetic coordinates are North 33.346925° and West -103.574597°. Figure 1 presents a topographic map. Figure 2 presents an aerial map.

2.1 Background

On May 27, 2016, Targa representative, Ralph England, and LAI personnel visited the Site to document the release. LAI personnel observed an area without vegetation measuring about 40 x 45 feet or about 1,800 square feet. On March 29, 2017, the initial C-141 was submitted to the NMOCD District 1, which assigned the release Incident Number nOY1709044723 and remediation permit number 1RP-4664. The spill was delineated according to NMOCD guidelines (Guidelines for Remediation of Leaks, Spills and Releases, August 13, 1993). The spill was remediated between October 13, 2017 and July 7, 2021, according to NMOCD approved plans. On July 18, 2021, NMOCD granted approval for backfilling the excavation according to 19.15.29.13D(1). Appendix A presents the NMOCD communications.

On December 5, 2022, LAI on behalf of Targa volunteered and submitted a draft groundwater abatement plan to NMOCD (Bradford Billings). On January 4, 2023, LAI on behalf of Targa submitted an email to Mr. Billings and Mr. Nelson Velez with NMOCD requesting an update on the approval status for the groundwater abatement plan. No response from NMOCD was received due to Mr. Billings retiring. On February 22, 2023, the *"1RP-4664 (Incident No. nOY1709044723, Final Groundwater Abatement Plan, January 20, 2022"* was submitted to Mr. Nelson Velez with NMOCD. Mr. Velez stated in a phone call (July 18, 2023) that he had approved the groundwater abatement plan and had forwarded it to Ms. Rosa Romero, NMOCD Environmental Bureau Chief, and Mike Bratcher, NMOCD District 2, for final approval. On August 29, 2023, NMOCD (Mike Buchanan) issued a letter to Targa stating that the Stage 2 abatement plan was administratively complete and approval of the Public Notice and Participation Proposal. NMOCD requested Targa to provide proof of public notice in accordance with Paragraph (2) of Subsection D of 19.15.30.13 NMAC. Appendix B presents the NMOCD approval letter.

On August 31, 2023, Targa submitted notices of the abatement to the State of New Mexico State Land Office (SLO) and Pearce Trust as landowners within 1-mile of the Site. On September 2, 2023 and September 3, 2023, notices of the abatement were published in the Albuquerque Journal and Hobbs News-Sun,

respectively. Appendix B presents the affidavits of publication for the public notices.

On February 25, 2025, Targa received an email from NMOCD (Mike Buchanan) that stated in part that NMOCD rejected the Application for administrative approval of a release notification and corrective action (C-141), for incident ID (n#) nOY1709044723, for the following reasons:

- Review of the January 20, 2022 Groundwater Abatement Plan is not approved based on the missing information, please revise and resubmit in thirty (30) days
 - Please include more information on the disposal process for excavation derived waste. Recovery waste must also be clearly defined and sent to an approved OCD waste facility. If placed in an SWD well for disposal, please provide more detail on which one and where.
 - 2. Please revise sections 2.0 and 3.0, as both state "Stage 1 Abatement".
 - 3. Add a discussion on seasonal variability.
 - 4. If available, please include most recent sampling results and data through 2024.
 - 5. Resubmit the stage 1 & 2 abatement plan to OCD in thirty (30) days from today, no later than March 26, 2025.

On February 25, 2025, following a telephone discussion between Targa (Ms. Christina Higginbotham) and NMOCD (Mike Buchanan) it was determined that Targa had previously received approval for the Stage 2 abatement plan dated January 20, 2022. The information requested by NMOCD has been incorporated into this report, as applicable. Mr. Buchanan stated that the approval letter dated August 29, 2023, as well as public notice documentation, was uploaded to the NMOCD system and is part of the administrative record. Mr. Buchanan stated that the approval letter dated August 29, 2023, was uploaded to the NMOCD system and is part of the administrative record. Mr. Buchanan stated that the approval letter dated August 29, 2023, was uploaded to the NMOCD system and is part of the administrative record (see Appendix A for NMOCD communications and Appendix B for public notice affidavits and letter dated August 29, 2023).

3.0 LNAPL AND GROUNDWATER ABATEMENT

The LNAPL and dissolved hydrocarbon (BTEX) abatement was performed in accordance with New Mexico Administrative code (NMAC) 19.15.30.19 under the abatement plan approved by NMOCD on August 29, 2023.

3.1 Additional Monitoring Well Installation

On November 2, 2023, LAI submitted notice on behalf of Targa to NMOCD for installing an additional monitoring well (TMW-4) between TMW-1 and TMW-2 (November 13, 2023), collecting groundwater samples from the monitoring wells (November 17, 2023) and notice for the first SVE extraction event (December 4, 2023). On November 13, 2023, Scarborough Drilling, Inc. (SDI) under supervision from LAI installed monitoring TMW-4. The well was installed into a five (5) inch diameter boring advanced to forty-one (41) feet below ground surface (bgs) with an air rotary rig. The well was constructed with 2-inch diameter

Incident No. nOY1709044723/1RP-4664 Groundwater Abatement and 2024 Monitoring Report Epperson 16 - Inch Pipeline Release February 27, 2025

schedule 40 PVC casing and twenty (2) feet of 0.010-inch factory slotted and screw threaded screen. The well screen was positioned above and below the groundwater level observed during drilling. Groundwater was gauged at 33.36 feet bgs. Figure 3 presents a Site drawing showing the monitoring location. Appendix A presents the NMOCD notification. Appendix C presents the State of New Mexico Office of the State Engineer (NMOSE) well permit. Appendix D presents the geologic log and well completion diagram for TMW-4.

3.2 LNAPL Abatement

The SVE extraction was initially scheduled to commence on December 4, 2023, however due to landowner approval, the remediation was delayed. On August 5 through 7, 2024 and September 10 through 12, 2024, EcoVac Services (EcoVac), Moore, Oklahoma, under supervision from LAI, used a truck-mounted dual phase SVE system with Enhanced Fluid Recovery[®] (EFR) to extract LNAPL and dissolved hydrocarbons (BTEX) in groundwater from monitoring well TMW-1. The EcoVac EFR system vacuum blower draws higher liquid and vapor volumes from the well and utilizes two (2) auxiliary internal combustion engines to combust vapors while liquids are contained in an onboard tank. Liquids were discharged to a portable (frac) tank leased from Gandy Corporation with recovered liquid disposed in an NMOCD permitted offsite commercial Class II SWD well. Taga provided notice to NMOCD prior to commencing remediation.

On August 5, 2024, groundwater and LNAPL were gauged in four (4) monitoring wells (TMW-1 through TMW-4) using an electronic oil and water interface probe that was decontaminated between wells with a solution of potable water and laboratory-grade detergent (Alconox[®]) and rinsed with distilled water. LNAPL was gauged at 0.29 feet thick in well TMW-1. LNAPL was not detected in the remaining wells. LNAPL was gauged each morning on August 6 and 7, 2024, prior to liquid and vapor extraction. LNAPL was not detected in well TMW-1 on August 6 and 7, 2024.

Between August 5 and 7, 2024, EcoVac recovered approximately 101.5 pounds equivalent to about 16.8 gallons of hydrocarbons as vapor and a total of 4,266 gallons of fluid consisting primarily of groundwater between August 5 and 7, 2024. No vacuum or groundwater drawdown influences were observed in wells TMW-4 and TMW-2 located about 214 and 430 feet, respectively, from well TMW-1.

Between September 10 and 12, 2024, the EcoVac system recovered approximately 141.3 pounds equivalent to about 23.1 gallons of hydrocarbon as vapor and a total of 4,503 gallons of fluid consisting primarily of groundwater between September 10 and 12, 2024. Vacuum and groundwater drawdown influence was not observed in the nearest wells (TMW-4 and TMW-2).

During the two (2) extraction events, EcoVac system recovered a total of 252.8 pounds equivalent to about 39.9 gallons of hydrocarbon as vapor and a total of 8,769 gallons of fluid consisting primarily of groundwater from monitoring well TMW-1. LNAPL was gauged in monitoring well TMW-1 once weekly between and after each extraction event. A hydrocarbon sheen was observed in well TMW-1 on August 23, 2024, September 3, 2024, and September 9, 2024. LNAPL greater than a sheen was not detected in the monitoring wells after the initial extraction event on August 5, 6 and 7, 2024.

Incident No. nOY1709044723/1RP-4664 Groundwater Abatement and 2024 Monitoring Report Epperson 16 - Inch Pipeline Release February 27, 2025

During the first SVE event on August 5, 2024, the maximum hydrocarbon vapor concentration in the effluent stream was 13,000 parts per million per volume (ppmv) at the beginning of extraction and decreased to 400 ppmv near the end of extraction on August 7, 2024, about a 97 percent decrease in hydrocarbon vapor concentration. The higher hydrocarbon concentration confirms removal of LNAPL and hydrocarbon mass. On October 24, 2024, Gandy Corporation, Tatum, New Mexico, disposed of an estimated 220 barrels of remediation derived waste, mainly groundwater, at the DKD, LLC, Richardson Fee SWD No. 002 located in Unit K (NE/4, SW/4), Section 5, Township 14 South, Range 36 East in Lea County, New Mexico. Table 1a presents the LNAPL and groundwater gauging summary for monitoring well TMW-1. Appendix A presents the NMOCD communications. Appendix E presents the EcoVac reports. Appendix F presents the Gandy Corporation disposal ticket.

3.3 Dissolved Hydrocarbon (BTEX) Reduction

On September 10, 2024, the maximum hydrocarbon vapor concentration was 10,000 ppmv at the beginning of the extraction period ending at 4,500 ppmv near the end of the extraction period on September 12, 2024. The hydrocarbon vapor concentration decreased about 55 percent over the extraction period confirms removal of dissolved hydrocarbons in groundwater. On August 23, 2024, LAI personnel collected a groundwater sample from monitoring well TMW-1 to assess the effectiveness of the abatement process for reducing dissolved hydrocarbon (BTEX) concentration in groundwater. The sample was collected using the low stress or low flow method following EPA protocol (EQASOP-GW4, Revision 4, September 19, 2017), where an environmental pump is submerged near the middle of the water column and the well is pumped at a low flowrate until environmental parameters stabilize. The sample was collected from the discharge from dedicated disposable Tygon[®] pump tubing. The sample was delivered under chain of custody control (COC) and preservation to Eurofins Xenco Laboratories (Eurofins) located in Midland, Texas. Eurofins analyzed the sample for BTEX by EPA SW-846 Method 8021B. The following table presents the dissolved BTEX results in groundwater from monitoring well TMW-1 prior to, during and following SVE remediation:

Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)
January 31, 2019	11.6	9.45	1.30	3.51
August 23, 2024	0.352	0.584	0.936	3.13
November 11, 2024	<0.0400	<0.0400	0.656	0.762

Incident No. nOY1709044723/1RP-4664 Groundwater Abatement and 2024 Monitoring Report Epperson 16 - Inch Pipeline Release

February 27, 2025

Residual LNAPL was not present in monitoring well TMW-1 following SVE remediation. On November 11, 2024, benzene and toluene were not reported in groundwater samples from monitoring well TMW-1 at concentrations above the analytical reporting limit of 0.0400 milligrams per liter (mg/L) representing concentration reductions of about 89 and 93 percent, respectively, between the initial (August 5 through 7, 2024) and final (September 10 through 12, 2024) SVE extraction events. The benzene and toluene concentrations were reduced below the State of New Mexico Water Quality Control Commission (WQCC) human health standards of 0.005 mg/L and 1.0 mg/L, respectively, from monitoring well TMW-1 following the final SVE extraction event on September 10 through 12, 2024. Ethylbenzene and xylenes concentrations decreased about 49.5 and 78 percent, respectively, in groundwater from monitoring well TMW-1 between the initial (August 5 through 7, 2024) and final (September 10 through 12, 2024). On November 11, 2024, the ethylbenzene concentration (0.656 mg/L) in groundwater from monitoring well TMW-1 was below the State of New Mexico Water Quality Control Commission (WQCC) human health standard of 0.700 mg/L. The total xylenes concentration in groundwater from monitoring well TMW-1 (0.762 mg/L) was above the WQCC human health standard of 0.62 mg/L. Appendix G presents the laboratory report.

4.0 SEMI-ANNUAL GROUNDWATER MONITORING

4.1 February 1, 2024

The first 2024 semi-annual groundwater monitoring event was performed on February 1, 2024. Targa provided notification to the NMOCD. LNAPL and groundwater were gauged in three (3) monitoring wells (TMW-1, TMW-2 and TMW-3) with an electronic oil and water interface probe which was decontaminated between wells with a solution of potable water and laboratory-grade detergent (Alconox[®]) and rinsed with distilled water. LNAPL was gauged in TMW-1 at 0.79 feet on February 1, 2024. LNAPL was not detected in wells TMW-2 and TMW-3. Table 1b presents the monitoring well gauging and completion summary. Figure 4 presents the LNAPL thickness map.

Depth to groundwater ranged from 29.92 feet bgs in well TMW-3 to 31.38 feet bgs in well TMW-1. The groundwater potentiometric surface elevation ranged from 4,197.69 feet above mean sea level (MSL) in well TMW-1 (upgradient) to 4,196.71 feet above MSL in well TMW-3 (downgradient). The groundwater flow direction was from west to east-southeast at a gradient of 0.0015 feet per foot (ft/ft). Figure 5a presents the groundwater potentiometric map for February 1, 2024.

Since LNAPL (0.79 feet) was gauged in well TMW-1 no samples were collected from this well. Groundwater samples were collected from monitoring wells TMW-2 and TMW-3 using the low stress or low flow method as previously described. The Tygon[®] tubing was discarded after each use and the pump was thoroughly cleaned between wells with a solution of potable water and laboratory grade detergent (Alconox[®]) and rinsed with distilled water. The samples were submitted under COC and preservation to Eurofins, and were analyzed BTEX by EPA SW-846 Method 8021B and chloride by EPA Method 300. Table 2 presents the analytical laboratory data summary. Appendix F presents the laboratory report.

Incident No. nOY1709044723/1RP-4664 Groundwater Abatement and 2024 Monitoring Report Epperson 16 - Inch Pipeline Release

February 27, 2025

BTEX compounds were not detected at concentrations above the laboratory method reporting limits and NMWQCC human health standards in samples from monitoring wells TMW-2 and TMW-3. Chloride was reported at 51.6 mg/L in the sample from monitoring well TMW-2, which was below the NMWQCC domestic water quality standard of 250 mg/L. Chloride was above the NMWQCC domestic water quality standard at 297 mg/L in the sample from monitoring well TMW-3. As previously presented in the closure report titled, "*nOY1709044723 (RP-4664) Closure Report, Epperson 16 Inch Pipeline Release Site #1, Lea County, New Mexico, August 4, 2021*", the suspected source for the chloride in well TMW-3 is most likely associated with potential impacts from an unlined produced water disposal pit that was observed on a historic aerial photograph (February 3, 1968) at a tank battery on the adjoining lease west of the Site. Figure 6a presents the BTEX concentrations in groundwater samples on February 1, 2024. Figure 7 presents chloride concentrations in groundwater samples from monitoring wells.

4.2 November 11, 2024

The second 2024 semi-annual groundwater monitoring event was performed on November 11, 2024. Targa provided notification to the NMOCD. The electronic oil and water interface probe did not detect LNAPL in monitoring wells TMW-1 through TMW-4. Depth to groundwater was gauged between 30.06 feet bgs (TMW-3) and 30.89 feet bgs (TMW-1). The groundwater potentiometric surface elevation ranged from 4,197.63 feet above MSL in well TMW-1 (upgradient) and 4,196.57 feet above MSL in well TMW-3 (downgradient). The groundwater flow direction was from west to east-southeast at a gradient of 0.0016 ft/ft. Figure 5b presents the groundwater potentiometric map for November 11, 2024.

Groundwater samples were collected from the monitoring wells (TMW-1, TMW-2, TMW-3 and TMW-4) using the low stress or low flow method as previously described. Eurofins analyzed the samples for BTEX by EPA SW-846 Method 8021B and chloride by EPA Method 300. Table 2 presents the analytical laboratory data summary. Appendix F presents the laboratory report.

Benzene and toluene were not detected above the laboratory analytical method reporting limits and NMWQCC human health standards in samples from monitoring wells TMW-1 through TMW-4. Ethylbenzene and xylenes were not detected above the laboratory analytical method reporting limits and NMWQCC human health standards in samples from monitoring wells TMW-2, TMW-3 and TMW-4. Ethylbenzene (0.656 mg/L) and xylenes (0.762 mg/L) were reported in the sample from monitoring well TMW-1 with ethylbenzene below the NMWQCC human health standard of 0.700 mg/L and xylenes above the NMWQCC human health standard of 0.62 mg/L. The BTEX concentrations reported for well TMW-1 represent a significant concentration decrease resulting from LNAPL and groundwater extraction. The chloride in samples from TMW-1, TMW02 and TMW-3 were 73.5 mg/L. 49.9 mg/L and 51.3 mg/L, respectively, and were below the NMWQCC domestic water quality standard. Chloride in well TMW-3 (325 mg/L) exceeded the NMWQCC domestic water quality standard with the suspected source being an unlined produced water disposal pit that was observed on a historic aerial photograph (February 3, 1968) at a tank battery on the adjoining lease west of the Site. Figure 6b presents the BTEX concentrations in

groundwater samples on November 11, 2024. Figure 7 presents chloride concentrations in groundwater samples from monitoring wells.

5.0 CONCLUSION AND RECOMMENDATION

5.1 Conclusion

LNAPL (condensate) was removed and dissolved phase hydrocarbons (BTEX) concentrations greatly decreased in monitoring well TMW-1. During the first SVE event on August 5, 2024, the maximum hydrocarbon vapor concentration in the effluent stream was 13,000 ppmv at the beginning of extraction and decreased to 400 ppmv near the end of extraction on August 7, 2024, about a 97 percent decrease in hydrocarbon vapor concentration. The higher hydrocarbon concentration confirms removal of LNAPL and hydrocarbon mass. On September 10, 2024, the maximum hydrocarbon vapor concentration decreased about 50 ppmv at the beginning of the extraction period ending at 4,500 ppmv near the end of the extraction period on September 12, 2024. The hydrocarbon vapor concentration decreased about 55 percent over the extraction period confirms removal of dissolved hydrocarbons in groundwater. No significant changes in depth to groundwater, groundwater elevation or groundwater flow direction were noted from previous monitoring events.

5.2 Recommendation

Per the NMOCD approved abatement plan, Targa will continue groundwater monitoring of wells TMW-1 through TMW-4 on a semi-annual (twice yearly) for two (2) years and laboratory analysis for BTEX and chloride by EPA SW-846 Method 8021B and Method 300, respectively. Groundwater monitoring will include gauging LNAPL and groundwater depth. Upon reaching the abatement standards and requirements set forth in 19.15.30.9 NMAC, an abatement completion report will be submitted along with any proposed changes to long-term monitoring and site maintenance requirements.

Tables

Table 1a Monitoring Well TMW-1 Remediation Gauging Summary Targa Midstream Services, LLC, Epperson 16" Pipeline Release Lea County, New Mexico

Well Informatio	Groundwater Data							
Well ID		Date Gauged	Depth to Product (feet TOC)	Depth to Water (feet TOC)	LNAPL Thickness (feet)	Corrected Water Elevation (feet AMSL)	Depth to Water (feet BGS)	
TMW-01								
Date Drilled:	03/13/2018	03/14/2018		33.25		4,198.17	30.35	
Drilled Depth BGS (feet):	39	04/18/2019		33.31		4,198.11	30.41	
Well Depth from TOC (feet):	40.55	01/31/2019		33.45		4,197.97	30.55	
Well Diameter (inches):	2	07/18/2019		34.07		4,197.35	31.17	
Screen Interval BGS (feet):	36.97-27.32	07/19/2019	33.24	33.84	0.60	4,197.58	30.94	
Casing Stickup (feet):	2.9	08/08/2019	33.17	34.03	0.86	4,197.39	31.13	
Ground Elevation AMSL (feet):	4,228.40	02/24/2020	33.19	33.74	0.55	4,197.68	30.84	
TOC Elevation AMSL (feet):	4,231.42	09/03/2021	33.33	33.90	0.57	4,197.52	31.00	
		02/01/2024	33.49	34.28	0.79	4,197.14	31.38	
		08/05/2024	33.29	33.58	0.29	4,197.84	30.68	
		08/16/2024		33.77		4,197.65	30.87	
		08/23/2024		33.76	Sheen	4,197.66	30.86	
		09/03/2024		33.77	Sheen	4,197.65	30.87	
		09/06/2024		33.76	Sheen	4,197.66	30.86	
		09/20/2024		33.77		4,197.65	30.87	
		09/27/2024		33.78		4,197.64	30.88	
		10/07/2024		33.78		4,197.64	30.88	
		10/11/2024		33.78		4,197.64	30.88	
		11/11/2024		33.79		4,197.63	30.89	

Notes:

Wells drilled and installed by Scarborough Drilling, Inc., Lamesa, Texas, using 2 inch schedule 40 threaded PVC casing and screen.

Groundwater elevation corrected for LNAPL thickness assuming 0.7 specific gravity.

Elevations are above mean sea level referenced to 1984 Geodetic Datum.

bgs: below ground surface

TOC: top of casing

All values are in feet, unless otherwise noted.

Monitoring Well Completion and Gauging Summary Targa Midstream Services, LLC, Epperson 16" Pipeline Release Lea County, New Mexico

Well Information		Groundwater Data						
Well ID		Date Gauged	Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Depth to Water (feet BGS)	Corrected Water Elevation (feet AMSL)	
TMW-01		03/14/2018			33.25	30.25	4,198.17	
Date Drilled:	03/13/2018	04/18/2019			33.31	30.41	4,198.11	
Drilled Depth BGS (feet):	39	01/31/2019			33.45	30.55	4,197.97	
Well Depth from TOC (feet):	40.55	07/18/2019			34.07	31.17	4,197.35	
Well Diameter (inches):	2	07/19/2019	33.24	0.60	33.84	30.94	4,198.00	
Screen Interval BGS (feet):	36.97 to 27.32	08/08/2019	33.17	0.86	34.03	31.13	4,197.99	
Casing Stickup (feet):	2.9	02/24/2020	33.19	0.55	33.74	30.84	4,198.06	
Ground Elevation AMSL (feet)	4,228.40	09/03/2021	33.33	0.57	33.90	31.00	4,197.92	
TOC Elevation AMSL (feet)	4,231.42	02//01/2024	33.49	0.79	34.28	31.38	4,197.69	
		08/05/2024	33.29	0.29	33.58	30.68	4,197.69	
		08/06/2024			33.73	30.83	4,197.36	
		08/16/2024			33.74	30.84	4,197.69	
		08/16/2024			33.76	30.86	4,197.70	
		08/23/2024		Sheen	33.77	30.87	4,197.69	
		09/03/2024		Sheen	33.76	30.86	4,197.70	
		09/06/2024		Sheen	33.77	30.87	4,197.69	
		09/20/2024			33.78	30.88	4,197.68	
		09/27/2024			33.78	30.88	4,197.68	
		10/07/2024			33.79	30.89	4,197.67	
		10/11/2024			33.78	30.88	4,197.68	
		11/11/2024			33.79	30.89	4,197.67	
TMW-02		07/18/2019			32.29	29.76	4,197.01	
Date Drilled:	07/16/2019	07/19/2019			32.22	29.68	4,197.08	
Drilled Depth BGS (feet):	36	08/08/2019			32.21	29.63	4,197.09	
Well Depth from TOC (feet):	38.31	02/24/2020			32.16	29.63	4,197.14	
Well Diameter (inches):	2	09/03/2021			32.29	29.76	4,197.01	
Screen Interval BGS (feet):	35.10 to 15.47	02/01/2024			32.55	30.02	4,196.75	
Casing Stickup (feet):	2.53	08/05/2024			32.60	30.97	4,196.70	
Ground Elevation AMSL (feet)	4,226.78	08/06/2024			32.58	30.05	4,196.72	
TOC Elevation AMSL (feet)	4,229.30	08/07/2024			32.58	30.05	4,196.72	
		08/16/2024			33.77	31.24	4,195.53	
		08/23/2024			33.76	31.23	4,196.54	
		11/11/2024			32.61	30.08	4,196.69	
TMW-03		07/18/2019			32.13	29.62	4,197.01	
Date Drilled:	07/16/2019	08/08/2019			32.13	29.62	4,197.01	
Drilled Depth BGS (feet):	36	02/24/2020			32.05	29.54	4,197.09	
Well Depth from TOC (feet):	38.34	09/03/2021			32.20	29.69	4,196.94	
Well Diameter (inches):	2	02/01/2024			32.43	29.92	4,196.71	
Screen Interval BGS (feet):	35.83 to 15.82	08/05/2024			32.51	30.00	4,196.63	
Casing Stickup (feet):	2.51	08/06/2024			32.49	29.98	4,196.65	
Ground Elevation AMSL (feet)	4,226.55	08/07/2024			32.49	29.98	4,196.65	
TOC Elevation AMSL (feet)	4,229.14	11/11/2024			32.57	30.06	4,196.57	

Page 1 of 2 Released to Imaging: 7/1/2025 9:20:22 AM

Monitoring Well Completion and Gauging Summary Targa Midstream Services, LLC, Epperson 16" Pipeline Release Lea County, New Mexico

Well Informati	Groundwater Data						
Well ID		Date Gauged	Depth to Product (feet TOC)	LNAPL Thickness (feet)	Depth to Water (feet TOC)	Depth to Water (feet BGS)	Corrected Water Elevation (feet AMSL)
TMW-04		02/01/2024			32.78	30.05	4,197.37
Date Drilled:	11/13/2023	08/05/2024			32.87	30.14	4,197.28
Drilled Depth BGS (feet):	41.00	08/06/2024			32.85	30.12	4,197.30
Well Depth from TOC (feet):	43.73	08/07/2024			32.85	30.12	4,197.30
Well Diameter (inches):	2	11/11/2024			32.89	30.16	4,197.26
Screen Interval BGS (feet):	21.31 to 40.31						
Casing Stickup (feet):	2.73						
Ground Elevation AMSL (feet)	4,227.42						
TOC Elevation AMSL (feet)	4,230.15						

Notes: Wells drilled and installed by Scarborough Drilling, Inc., Lamesa, Texas, using 2 inch schedule 40 threaded PVC casing and screen

Groundwater elevation corrected for LNAPL thickness assuming 0.7 specific gravity

bgs: below ground surface

TOC: top of casing

Elevations are above mean sea level referenced to 1984 Geodetic Datum.

All values are in feet, unless otherwise noted.

Table 2

Groundwater Sample Analytical Data Summary

Targa Midstream Services, LLC, Epperson 16" Pipeline Release

Lea County, New Mexico
33.34696, -103.57471

33.34696, -103.57471										
Well ID	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride				
	Dato	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)				
NMWQCC Standard:		0.005	1	0.7	0.62	250				
TMW-1	03/14/2018	12.4	9.76	0.48	0.425	66.3				
	01/31/2019	11.6	9.45	1.3	3.51	150				
	2/24/2020*									
	9/3/2021*									
	2/1/2024*									
	08/23/2024	0.352	0.584	0.936	3.13					
	11/11/2024	<0.0400	<0.0400	0.655	0.762	73.5				
TMW-2	07/22/2019	<0.00100	<0.00100	<0.00100	<0.00300	47.0				
	02/24/2020	<0.00100	<0.00100	<0.00100	<0.00300	47.7				
	09/03/2021	<0.00100	<0.00100	<0.00100	<0.00300	52.8				
	02/01/2024	<0.00200	<0.00200	<0.00200	<0.00400	51.6				
	11/11/2024	<0.00200	<0.00200	<0.00200	<0.00400	49.9				
TMW-3	07/22/2019	<0.00100	<0.00100	<0.00100	<0.00300	276				
	02/24/2020	<0.00100	<0.00100	<0.00100	<0.00300	265				
	09/03/2021	<0.00100	<0.00100	<0.00100	<0.00300	305				
	02/01/2024	<0.00200	<0.00200	<0.00200	<0.00400	297				
	11/11/2024	<0.00200	<0.00200	<0.00200	<0.00400	325				
TMW-4	02/01/2024	<0.00200	<0.00200	<0.00200	<0.00400	52.3				
	11/11/2024	<0.00200	<0.00200	<0.00200	<0.00400	51.3				
	QA/QC (Duplicate)									
TMW-3	09/03/2021	<0.00100	<0.00100	<0.00100	<0.00300	301				
TMW-2	02/01/2024	<0.00200	<0.00200	<0.00200	<0.00400	52.2				
TMW-2	11/11/2024	<0.00200	<0.00200	<0.00200	<0.00400	54.2				

Notes: Analysis performed by Permian Basin Environmental Lab (PBEL) or Eurofins Laboratories (Eurofins),

Midland, Texas by EPA Method SW-8021B (BTEX) and EPA Method E-300 (chloride)

mg/L: milligrams per liter; equivalent to parts per million (ppm)

--: no data available

*: sample not collected due to presence of LNAPL in monitoring well

Bold and highlighted indicates parameter concentration exceeds the NMWQCC human health standard or domestic water quality standard

•

Figures

Figure 1 - Topographic Map

Figure 5b - Groundwater Potentiometric Surface Map, November 11, 2024

8.5" x 11"

8.5" x 11"

8.5" x 11"

Appendix A

NMOCD Communications

From: Griswold, Jim, EMNRD <<u>Jim.Griswold@emnrd.nm.gov</u>> Sent: Thursday, January 12, 2023 2:07 PM To: Mark Larson <<u>Mark@laenvironmental.com</u>>; Velez, Nelson, EMNRD <<u>Nelson.Velez@emnrd.nm.gov</u>> Subject: FW: [EXTERNAL] Re: 1RP-4664 - Epperson 16 Inch Pipeline Revised Groundwater Abatement Plan, Targa Midstream Services, LLC, December 1, 2022

Hi Mark,

Nelson is still with us. It appears you just typed his email address incorrectly (you forgot the "m" in "emnrd").

Jim

From: Mark Larson <<u>Mark@laenvironmental.com</u>> Sent: Thursday, January 12, 2023 10:40 AM To: Griswold, Jim, EMNRD <<u>Jim.Griswold@emnrd.nm.gov</u>> Cc: Higginbotham, Christina <<u>chigginbotham@targaresources.com</u>>; Klein, Cynthia S. <<u>cynthiaklein@targaresources.com</u>>

Subject: FW: [EXTERNAL] Re: 1RP-4664 - Epperson 16 Inch Pipeline Revised Groundwater Abatement Plan, Targa Midstream Services, LLC, December 1, 2022

Hello Jim,

I am reaching out for assistance with Bradford retiring and Nelson no longer shown on the NMOCD contact list. The attached abatement plan was initially submitted to Bradford on December 5, 2022. The abatement plan was resubmitted after revising a regulatory citation but has not been uploaded the NMOCD web portal. Should we upload to the web portal? Thank you,

Mark

From: Mark Larson

Sent: Wednesday, January 4, 2023 3:25 PM

To: Billings, Bradford, EMNRD <<u>Bradford.Billings@emnrd.nm.gov</u>>; 'Nelson.Velez@enrd.nm.gov' <<u>Nelson.Velez@enrd.nm.gov</u>>

Cc: Higginbotham, Christina < <u>chigginbotham@targaresources.com</u>>; Klein, Cindy S.

<<u>CynthiaKlein@targaresources.com</u>>

Subject: FW: [EXTERNAL] Re: 1RP-4664 - Epperson 16 Inch Pipeline Revised Groundwater Abatement Plan, Targa Midstream Services, LLC, December 1, 2022

Hello Bradford/Nelson,

Just following up to see if you had a chance to review and approve the attached revised groundwater abatement plan for the Targa Midstream Services Epperson 16 Inch Pipeline Release site (1RP-4664/nOY1709044723) and/or if Targo needs to upload the abatement plan to the NMOCD web portal.

Thank you,

Mark J. Larson, P.G. President/Sr. Hydrogeologist 507 N. Marienfeld St., Suite 202 Midland, Texas 79701 Office – 432-687-0901 Cell – 432- 556-8656 Fax – 432-687-0456 mark@laenvironmental.com

<image001.png>

"Serving the Permian Basin Since 2000"

From: Mark Larson Sent: Tuesday, December 13, 2022 1:31 PM To: 'Billings, Bradford, EMNRD' <<u>Bradford.Billings@emnrd.nm.gov</u>> Subject: RE: [EXTERNAL] Re: 1RP-4664 - Epperson 16 Inch Pipeline Revised Groundwater Abatement Plan, Targa Midstream Services, LLC, December 1, 2022

Bradford, My oversight! Please see attached revised abatement plan. Thank you, Mark

From: Billings, Bradford, EMNRD <<u>Bradford.Billings@emnrd.nm.gov</u>> Sent: Tuesday, December 13, 2022 12:32 PM To: Mark Larson <<u>Mark@laenvironmental.com</u>> Subject: RE: [EXTERNAL] Re: 1RP-4664 - Epperson 16 Inch Pipeline Revised Groundwater Abatement Plan, Targa Midstream Services, LLC, December 1, 2022

Citation is

19.15.30.112A(7)

This keeps it in OCD and not the WQCC

Bradford

From: Mark Larson <<u>Mark@laenvironmental.com</u>> Sent: Tuesday, December 13, 2022 9:37 AM To: Billings, Bradford, EMNRD <<u>Bradford.Billings@emnrd.nm.gov</u>> Cc: Higginbotham, Christina <<u>chigginbotham@targaresources.com</u>>; <u>cklein@targaresources.com</u> Subject: RE: [EXTERNAL] Re: 1RP-4664 - Epperson 16 Inch Pipeline Revised Groundwater Abatement Plan, Targa Midstream Services, LLC, December 1, 2022

Hello Bradford, Just following up on your email to see if you've had a chance to look over the revised groundwater abatement plan and if Targa needs to upload to the NMOCD web portal. Thank you, Mark

From: Billings, Bradford, EMNRD <<u>Bradford.Billings@emnrd.nm.gov</u>> Sent: Monday, December 5, 2022 4:52 PM To: Mark Larson <<u>Mark@laenvironmental.com</u>> Subject: RE: [EXTERNAL] Re: 1RP-4664 - Epperson 16 Inch Pipeline Revised Groundwater Abatement Plan, Targa Midstream Services, LLC, December 1, 2022 I will let you know following my looksee.

Bradford

From: Mark Larson <<u>Mark@laenvironmental.com</u>> Sent: Monday, December 5, 2022 3:50 PM To: Billings, Bradford, EMNRD <<u>Bradford.Billings@emnrd.nm.gov</u>> Subject: RE: [EXTERNAL] Re: 1RP-4664 - Epperson 16 Inch Pipeline Revised Groundwater Abatement Plan, Targa Midstream Services, LLC, December 1, 2022

Same thought here except always good to see you. I will request Targa to upload if needed.

From: Billings, Bradford, EMNRD <<u>Bradford.Billings@emnrd.nm.gov</u>> Sent: Monday, December 5, 2022 4:40 PM To: Mark Larson <<u>Mark@laenvironmental.com</u>> Subject: RE: [EXTERNAL] Re: 1RP-4664 - Epperson 16 Inch Pipeline Revised Groundwater Abatement Plan, Targa Midstream Services, LLC, December 1, 2022

Hi, Way good to see you recently. Has this been uploaded to portal yet? Thanks!

Bradford

From: Mark Larson <<u>Mark@laenvironmental.com</u>>

Sent: Monday, December 5, 2022 3:30 PM

To: Billings, Bradford, EMNRD < Bradford.Billings@emnrd.nm.gov>

Cc: Higginbotham, Christina < <u>chigginbotham@targaresources.com</u>>; Klein, Cynthia S.

<<u>cynthiaklein@targaresources.com</u>>

Subject: [EXTERNAL] Re: 1RP-4664 - Epperson 16 Inch Pipeline Revised Groundwater Abatement Plan, Targa Midstream Services, LLC, December 1, 2022

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Hello Bradford,

Per our meeting on Wednesday, November 30, 2022, please find attached the revised groundwater abatement plan for the Targa Midstream Services, LLC (Targa) Epperson 16-inch pipeline release (1RP-4664). The abatement plan is submitted under the New Mexico Water Quality Control Commission (WQCC) emergency abatement provision in 20.6.2.4105(8). Please contact Christina Higginbotham with Targa at (713) 584-1396 or email chigginbotham@targaresources.com or me if you have questions. We look forward to your approval. Respectfully,

Mark J. Larson, P.G. President/Sr. Hydrogeologist 507 N. Marienfeld St., Suite 202 Midland, Texas 79701 Office – 432-687-0901 Cell – 432- 556-8656 Fax – 432-687-0456 mark@laenvironmental.com

<image001.png>

"Serving the Permian Basin Since 2000"

Re: Targa Midstream Services Epperson 16" Pipeline Release Draft Groundwater Abatement Plan

From Mark Larson <Mark@laenvironmental.com>

Date Wed 2/22/2023 9:15 AM

- To Nelson.Velez@emnrd.nm.gov <Nelson.Velez@emnrd.nm.gov>
- Cc Higginbotham, Christina <chigginbotham@targaresources.com>; Klein, Cindy S. <CynthiaKlein@targaresources.com>

1 attachment (11 MB)

Final Groundwater Abatement Plan, January 26, 2022.pdf;

Hello Nelson,

Per our recent telephone conversation please see the draft groundwater abatement plan attached for your review. The plan was submitted to Bradford Billings in January 2022 and after a telephone discussion he requested the plan to be resubmitted under the NMOCD emergency abatement provision. Please let me know if you have comments, concerns or if approved to upload to the NMOCD web portal. Thank you,

Mark J. Larson, P.G. President/Sr. Hydrogeologist 507 N. Marienfeld St., Suite 202 Midland, Texas 79701 Office – 432-687-0901 Cell – 432- 556-8656 Fax – 432-687-0456 mark@laenvironmental.com

ssociates, Inc. Environmental Consultan

"Serving the Permian Basin Since 2000"

From: Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov> Sent: Friday, January 13, 2023 11:59 AM To: Mark Larson <Mark@laenvironmental.com> Cc: 'Barnhill, Amy D.' <ABarnhill@chevron.com>; Robert Nelson <rnelson@laenvironmental.com> Subject: RE: [EXTERNAL] FW: Culebra Bluff SE 5 32 Fed Com 3 Background Sampling Variance Approval

Mark,

Ditto the sentiment. The pleasure was all mine. I'll plan on reviewing the early part of next week.

Have a great & enjoyable weekend.

Approval Request - Targa Midstream Services, Epperson 16-Inch Pipeline Release Groundwater Abatement Plan, 1RP-4664, Lea County, New Mexico

From Mark Larson <Mark@laenvironmental.com>

Date Tue 7/18/2023 5:17 PM

- To Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>; Romero, Rosa, EMNRD <RosaM.Romero@emnrd.nm.gov>; Nelson.Velez@emnrd.nm.gov>
- Cc Klein, Cindy S. <CynthiaKlein@targaresources.com>; Higginbotham, Christina <chigginbotham@targaresources.com>

1 attachment (11 MB)

Revised Final Groundwater Abatement Plan, December 1, 2022 (July 18, 2023).pdf;

Hello Mike,

I'm following per our telephone conversation last week regarding approval to proceed with the public and landowner notices for the attached groundwater abatement plan for 1RP-4664 (Targa Midstream Services Epperson 16 Inch Pipeline Release) in Lea County, New Mexico. Nelson Valez stated in a call that he had approved the groundwater abatement plan and forwarded to you and Ms. Rosa Romero for final approval. Your consideration and approval of the groundwater abatement plan is requested and greatly appreciated. Please contact Ms. Christina Higginbotham (chigginbotham@targaresources.com), Cindy Klein (CynthiaKlein@targaresources.com) or me if you have questions. Respectfully,

Mark J. Larson, P.G. President/Sr. Hydrogeologist 507 N. Marienfeld St., Suite 202 Midland, Texas 79701 Office – 432-687-0901 Cell – 432- 556-8656 Fax – 432-687-0456 mark@laenvironmental.com

Re: [EXTERNAL] Re: Epperson 16-inch Pipeline Release (1RP-4664/nOY1709044723) Monitoring Well Installation and Groundwater Sample Collection Notification

From Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>

Date Fri 11/3/2023 8:41 AM

- To Mark Larson <Mark@laenvironmental.com>
- Cc Higginbotham, Christina <chigginbotham@targaresources.com>; Klein, Cynthia S. <cynthiaklein@targaresources.com>; Robert Nelson <rnelson@laenvironmental.com>; Daniel St. Germain <dstgermain@laenvironmental.com>; Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>; Buchanan, Michael, EMNRD <Michael.Buchanan@emnrd.nm.gov>

Good morning Mark,

Thank you for the notice. If an OCD representative is not on-site on the date &/or time given, please proceed with your sampling. For whatever reason, the sample collection timeframe is altered, please notify the OCD as soon as possible so we may adjust our schedule(s). Failure to notify the OCD of the rescheduling may result in the sample(s) not being accepted.

Please keep a copy of this communication for inclusion within the appropriate reporting documentation.

Thanks again!

Regards,

Nelson Velez • Environmental Specialist - Adv Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | nelson.velez@emnrd.nm.gov http://www.emnrd.state.nm.us/OCD/

From: Mark Larson <Mark@laenvironmental.com> Sent: Thursday, November 2, 2023 4:12 PM To: Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>; Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov> Cc: Higginbotham, Christina <chigginbotham@targaresources.com>; Klein, Cynthia S. <cynthiaklein@targaresources.com>; Robert Nelson <rnelson@laenvironmental.com>; Daniel St. Germain <dstgermain@laenvironmental.com> **Subject:** [EXTERNAL] Re: Epperson 16-inch Pipeline Release (1RP-4664/nOY1709044723) Monitoring Well Installation and Groundwater Sample Collection Notification

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Nelson Velez, NMOCD Aztec Mike Bratcher, NMOCD Artesia

This message is submitted to the New Mexico Oil Conservation Division (OCD) on behalf of Targa Resources (Targa) to provide notice that personnel from Larson & Associates, Inc. (LAI) will be at the Epperson 16-Inch Pipeline Release (1RP-4664/nOY1709044723) on November 13, 2023, at approximately 10:00am MST for the purpose of installing one (1) groundwater monitoring well (TMW-4) per the OCD approved groundwater abatement plan. The well will be developed the following day (November 14, 2023) and groundwater samples will be collected on November 17, 2023, and will be analyzed for BTEX and chloride. The first SVE extraction event is scheduled to commence on December 4, 2023. Please feel free to contact Christina Higginbotham with Targa at (713) 584-1396 or email chigginbotham@targaresources.com, Cindy Klein with Targa at (575) 631-7093 or email cklein@targaresources.com, Mark Larson at (432)687-0901 or email mark@laenvironmental.com or me if you have any questions.

Thank you,

Robert Nelson Project Manager Office – 432-687-0901 Cell – 432-664-4804 rnelson@laenvironmental.com

arson & # ssociates, inc. Envronmental Consultance

FW: Epperson 16-inch Pipeline Release (1RP-4664/nOY1709044723) Monitoring Well Installation and Groundwater Sample Collection Notification

From Mark Larson <Mark@laenvironmental.com>

Date Tue 11/21/2023 1:15 PM

To Rainey, Colton D. <crainey@targaresources.com>; Higginbotham, Christina <chigginbotham@targaresources.com>; Klein, Cindy S. <CynthiaKlein@targaresources.com>

From: Mark Larson Sent: Thursday, November 2, 2023 5:13 PM To: Nelson.Velez@emnrd.nm.gov; Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov> Cc: Higginbotham, Christina <chigginbotham@targaresources.com>; Klein, Cindy S. <CynthiaKlein@targaresources.com>; Robert Nelson <rnelson@laenvironmental.com>; Daniel St. Germain <dstgermain@laenvironmental.com> Subject: Re: Epperson 16-inch Pipeline Release (1RP-4664/nOY1709044723) Monitoring Well Installation and Groundwater Sample Collection Notification

Nelson Velez, NMOCD Aztec Mike Bratcher, NMOCD Artesia

This message is submitted to the New Mexico Oil Conservation Division (OCD) on behalf of Targa Resources (Targa) to provide notice that personnel from Larson & Associates, Inc. (LAI) will be at the Epperson 16-Inch Pipeline Release (1RP-4664/nOY1709044723) on November 13, 2023, at approximately 10:00am MST for the purpose of installing one (1) groundwater monitoring well (TMW-4) per the OCD approved groundwater abatement plan. The well will be developed the following day (November 14, 2023) and groundwater samples will be collected on November 17, 2023, and will be analyzed for BTEX and chloride. The first SVE extraction event is scheduled to commence on December 4, 2023. Please feel free to contact Christina Higginbotham with Targa at (713) 584-1396 or email chigginbotham@targaresources.com, Cindy Klein with Targa at (575) 631-7093 or email cklein@targaresources.com, Mark Larson at (432)687-0901 or email mark@laenvironmental.com or me if you have any questions.

Thank you,

Robert Nelson Project Manager Office – 432-687-0901 Cell – 432-664-4804 rnelson@laenvironmental.com

arson & ssociates, Inc.

Fw: [EXTERNAL] The Oil Conservation Division (OCD) has rejected the application, Application ID: 78564

From Mark Larson <Mark@laenvironmental.com> Date Wed 2/26/2025 10:24 AM

To Mark Larson <Mark@laenvironmental.com>

From: Higginbotham, Christina M. <chigginbotham@targaresources.com>
Sent: Wednesday, February 26, 2025 10:02 AM
To: Mark Larson <Mark@laenvironmental.com>
Subject: FW: [EXTERNAL] The Oil Conservation Division (OCD) has rejected the application, Application ID: 78564

Can you please send me proof of public notice for Epperson as well?

From: Buchanan, Michael, EMNRD <Michael.Buchanan@emnrd.nm.gov>
Sent: Wednesday, February 26, 2025 10:01 AM
To: Higginbotham, Christina M. <chigginbotham@targaresources.com>
Subject: RE: [EXTERNAL] The Oil Conservation Division (OCD) has rejected the application, Application ID: 78564

Good morning, Christina

I went ahead and uploaded the approval letter, so it is now part of the record, and I made a note that it was approved on 08/29/2023. When you have a chance to upload the proof of distribution for the public notice, would you please let me know that way it's also on record?

Thank you,

Mike

From: Higginbotham, Christina M. <<u>chigginbotham@targaresources.com</u>>
 Sent: Tuesday, February 25, 2025 1:02 PM
 To: Buchanan, Michael, EMNRD <<u>Michael.Buchanan@emnrd.nm.gov</u>>
 Subject: FW: [EXTERNAL] The Oil Conservation Division (OCD) has rejected the application, Application ID: 78564

From: OCDOnline@state.nm.us <OCDOnline@state.nm.us> Sent: Tuesday, February 25, 2025 12:44 PM To: Higginbotham, Christina M. <<u>chigginbotham@targaresources.com</u>> Subject: [EXTERNAL] The Oil Conservation Division (OCD) has rejected the application, Application ID: 78564

CAUTION: This email originated from outside of Targa. Do not click links or open attachments unless you recognize the sender and know the content is safe.

To whom it may concern (c/o Christina Higginbotham for TARGA MIDSTREAM SERVICES LLC), The OCD has rejected the submitted *Application for administrative approval of a release notification and corrective action* (C-141), for incident ID (n#) nOY1709044723, for the following reasons:

 Review of the January 20, 2022 Groundwater Abatement Plan is not approved based on the missing information, please revise and resubmit in thirty (30) days. 1. Please include more information on the disposal process for excavation derived waste. Recovery waste must also be clearly defined and sent to an approved OCD waste facility. If placed in an SWD well for disposal, please provide more detail on which one and where. 2. Please revise the sections 2.0 and 3.0, as both state "Stage 1 Abatement." 3. Add a discussion on seasonal variability. 4. If available, please include most recent sampling results and data through 2024. 5. Resubmit the stage 1 & stage 2 abatement plan to OCD in thirty (30) days from today, no later than March 26, 2025.

The rejected C-141 can be found in the OCD Online: Permitting - Action Status, under the Application ID: 78564.

Please review and make the required correction(s) prior to resubmitting.

If you have any questions why this application was rejected or believe it was rejected in error, please contact me prior to submitting an additional C-141.

Thank you,

Michael Buchanan

Environmental Specialist

505-490-0798

Michael.Buchanan@emnrd.nm.gov

New Mexico Energy, Minerals and Natural Resources Department

1220 South St. Francis Drive Santa Fe, NM 87505 Appendix **B**

Affidavits of Notice Publication

Targa Midstram Services, LLC, a subsidiary of Targa Re-sources: Corp., has issued for public comment: a Stage 2. Abalement Plan, for the Epperson 16-Inci Pipeline re-lease located about 15-miles y west of Tatim, in Los County, New Mexico. On March 31, 2017, the New Mexico. Oil Conservation Division

Conservation Division (NMOCD) Issued the release

ncident number nOY/177090447231 and reme-

diation permit number 1RP-

RGAMIDSTREAMSER VICESLLCASUBSIDIA

RY

AFFIDAVIT OF PUBLICATION

STATE OF NEW MEXICO

County of Bernalillo SS

Wayne Barnard, the undersigned, authorized Representative of the Albuquerque Journal, on oath states that this newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Session Laws of 1937, that payment therefore has been made of assessed as court cost; and that the notice, copy of which is hereto attached, was published in said paper in the regular daily edition, for 1 time(s) on the following date(s):

09/02/2023

5

Sworn and subscribed before me, a Notary Public, in and for the County of Bernalillo and State of New Mexico this

1108393

of

2023

day of September

\$134.53 PRICE

Statement to come at the end of month.

ACCOUNT NUMBER

STATE OF NEW MEXICO NOTARY PUBLIC DAVID LINDSEY MONTOYA COMMISSION NUMBER 1140229 EXPIRATION DATE 04-26-2027 Montoja David L

Affidavit of Publication

STATE OF NEW MEXICO COUNTY OF LEA

I, Daniel Russell, Publisher of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, solemnly swear that the clipping attached hereto was published in the regular and entire issue of said newspaper, and not a supplement thereof for a period of 1 issue(s).

> Beginning with the issue dated September 03, 2023 and ending with the issue dated September 03, 2023.

Publisher

Sworn and subscribed to before me this 3rd day of September 2023.

h Black

Business Manager

My commission expires January 29, 2027

(Seal) STATE OF NEW MEXICO NOTARY PUBLIC GUSSIE RUTH BLACK COMMISSION # 1087526 COMMISSION EXPIRES 01/29/2027

This newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said publication has been made. LEGAL NOTICE September 3, 2023

PUBLIC NOTICE OF 30-DAY PUBLIC COMMENT PERIOD FOR STAGE 2 ABATEMENT PLAN FOR THE EPPERSON 16-INCH PIPELINE RELEASE

Targa Midstream Services, LLC, a subsidiary of Targa Resources Corp., has issued for public comment a Stage 2 Abatement Plan for the Epperson 16-Inch Pipeline release located about 15miles west of Tatum, in Lea County, New Mexico. On March 31, 2017, the New Mexico Oil Conservation Division (NMOCD) issued the release incident number nOY17709044723 and remediation permit number 1RP-4664. The Stage 2 Abatement Plan summarizes environmental investigations, monitoring, soil remediation, describes current conditions, and need for abatement, as wells as the proposed abatement plan and implementation details.

The NMOCD Director has reviewed the Stage 2 Abatement Plan and determined that the Plan is administratively complete. The NMOCD Director has complied with Subsection B of 19.15.30.15 of the New Mexico Administrative Code by reviewing the document and concluding that it satisfies the requirements of Subsection C of 19.15.30.13.

The public may view the Stage 2 Abatement Plan electronically on the NMOCD public database at https://wwwapps.emnrd.nm.gov/OCD/ OCDPermitting/Data/Incidents/Incidents.aspx.Enter nOY1709044723 in the Incident ID box, then scroll to the bottom of the page and click on Continue. To find the Stage 2 Abatement Plan, click on application ID 78564 dated March 30, 2023. The Stage 2 Abatement Plan can also be viewed by contacting the NMOCD office listed below.

NMOCD is accepting written comments and requests for public hearing that include reasons why a hearing should be held. Before approving the Stage 2 Abatement Plan, NMOCD will consider comments and requests if received within 30 days after publication of this public notice.

Please submit written comments by October 3, 2023, to Nelson Velez, Environmental Specialist, New Mexico Oil Conservation Division, 5200 Oakland Avenue, NE Suite 100, Albuquerque, NM 87113 or via email at nelson.velez@emnrd.nm.gov. The responsible party's address is Targa Resources Corp., Christina Higginbotham, 811 Louisiana Street, Suite 2100, Houston, Texas 77002.

This notice was publist.ad on or near September 3, 2023, in the Albuquerque Journal and Hobbs News-Sun newspapers. #00282339

02105581

00282339

MARK LARSON LARSON AND ASSOCIATES 507 NORTH MARIENFELD STE 202 MIDLAND, TX 79701

State of New Mexico Energy, Minerals and Natural Resources Department

Michele Lujan Grisham Governor

Sarah Cottrell Propst Cabinet Secretary

Todd E. Leahy, JD, PhD Deputy Cabinet Secretary **Dylan Fuge** Acting Director Oil Conservation Division

Christina Higginbotham Targa Midstream Services, LLC 811 Louisiana Street, Ste 2100 Houston, TX 77002

RE: Determination of Administratively Complete Stage 2 Abatement Plan for <u>Epperson 16" Pipeline</u> Incident #s NOY1709044723; Application ID: 78564; Admin. Order #: 1RP-4664

Ms. Higginbotham:

Oil Conservation Division (OCD) received a Stage 2 Abatement Plan as well as a Proposed Public Notice and Participation submittal prepared for Targa Midstream Services, LLC's (Targa) on behalf by Larson & Associates, dated February 4, 2022.

We have reviewed the plan and determined it to be administratively complete.

The OCD also approves the draft of the Public Notice and Participation Proposal. The required public notice and participation should now proceed under the provisions of Subsections A and B of 19.15.30.15 NMAC.

Pursuant to 19.15.30.15 Subsection A, paragraph (7), please *provide a copy of proof of public notice distribution to the OCD*.

Stage 2 abatement plan document satisfies the requirements of Paragraph (2) of Subsection D of 19.15.30.13 NMAC. *Proof of notice to be provided to the OCD.*

The division shall distribute notice of the abatement plan's filing with the next division and commission hearing docket.

If you have any questions, please contact Mike Buchanan of the Environmental Incident Group at (505) 490-0798 or by email at *michael.buchanan@emnrd.nm.gov*

On behalf of the OCD, I wish to thank you and your staff for your cooperation during this remediation and abatement process.

Respectfully,

Michael Buchanan

Mike Buchanan Environmental Specialist-Adv. Date: 08/29/2023

1220 South St. Francis Drive = Santa Fe, New Mexico 87505 Phone (05) 476-3460 = Fax (505) 476-3462 = www.emnrd.state.nm.us/ocd Appendix C

NMOSE Well Permit

Mike A. Hamman, P.E. State Engineer

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr: 761593 File Nbr: L 15724

Jun. 12, 2024

CHRISTINA HIGGINBOTHAM TARGA RESOURCES INC 811 LOUISIANA SUITE 2100 HOUSTON, TX 77002

Greetings:

Your approved copy of the above numbered permit to drill a well for non-consumptive purposes is enclosed. You must obtain an additional permit if you intend to use the water. It is your responsibility to provide the contracted well driller with a copy of the permit that must be made available during well drilling activities.

Carefully review the attached conditions of approval for all specific permit requirements.

- * If use of this well is temporary in nature and the well will be plugged at the end of the well usage, the OSE must initially approve of the plugging. If plugging approval is not conditioned in this permit, the applicant must submit a Plugging Plan of Operations for approval prior to the well being plugged. The Plugging Record must be properly completed and submitted to the OSE within 30 days of the well plugging.
- * If the final intended purpose and condition requires a well ID tag and meter installation, the applicant must immediately send a completed meter report form to this office.
- * The well record and log must be submitted within 30 days of the completion of the well or if the attempt was a dry hole.
- * This permit expires and will be cancelled if no well is drilled and/or a well log is not received by the date set forth in the conditions of approval.

Appropriate forms can be downloaded from the OSE website www.ose.state.nm.us.

Sincerely,

Azacena Ramirez (575)622-6521

Enclosure

explore

		File No. 1-15724 POD1
NEW	WR-07 APPLICATIO	OF THE STATE ENGINEER
	For fees, see State Engineer	vebsite: http://www.ose.state.nm.us/
Purpose:	Pollution Control And/Or Recovery	Ground Source Heat Pump
Exploratory Well*(Pump test)	Construction Site/Publ Works Dewatering	c Other(Describe):
Monitoring Well	Mine Dewatering	
		if use is consumptive or nonconsumptive.) will be notified if a proposed exploratory well is used for public water supply.
and the second	ad Stat Data:	Requested End Date:
Temporary Request - Request	ed Start Date.	requested End Date.

1. APPLICANT(S)

Name: Targa Resources, Inc.		Name:		
Contact or Agent: Christina Higginbotham	check here if Agent	Contact or Agent: check here if Agent		
Mailing Address: 811 Louisiana, Suite 2100		Mailing Address:		
City: Houston		City:		
State: TX	Zip Code: 77002	State:	Zip Code:	
Phone: (281) 620-7835 Phone (Work): (713) 584-139	Home 🔳 Cell	Phone:		
E-mail (optional): chigginbotham@targaresourc	es.com	E-mail (optional):		

002 001 JUN 10 2024 m2134

FOR OSE INTERNAL USE	Application for Permit, Form WR-0	07, Rev 07/12/22
File No.: L-15724	Tm. No.: 761593	Receipt No.: 2-46372
Trans Description (optional):	LON	
Sub-Basin:	PCW/LOG Due	Date: 6/12/25
and a second		Page 1 of 3

2. WELL(S) Describe the well(s) applicable to this application.

(Lat/Long - WGS84).			tate Plane (NAD 83), UTM (NAD 83), <u>or</u> Latitude/Longitude a PLSS location in addition to above.	
NM State Plane (NAD83) NM West Zone NM East Zone NM East Zone NM Central Zone		ITM (NAD83) (Mete]Zone 12N]Zone 13N	rs) El Lat/Long (WGS84) (to the nearest 1/10 th of second)	
Well Number (if known):	X or Easting or Longitude:	Y or Northing or Latitude:	Provide if known: -Public Land Survey System (PLSS) (<i>Quarters or Halves</i> , Section, Township, Range) OR - Hydrographic Survey Map & Tract; OR - Lot, Block & Subdivision; OR - Land Grant Name	
L-157247001	103° 34 26.31 W	33°20 48.16 N	Unit M (SW/4, SW/4), S.24, T.11S, R33E, Lea County, NM	
NOTE: If more well location Additional well description	is need to be descrit s are attached:	bed, complete form Yes III No	WR-08 (Attachment 1 – POD Descriptions) If yes, how many	
Other description relating well to common landmarks, streets, or other:				
Well is on land owned by: Ric	ky Pearce and Pearce	e Trust		
Well Information: NOTE: If (If yes, how many	more than one (1) we	ell needs to be des	cribed, provide attachment. Attached? Yes No	
Approximate depth of well (fe	et): 35 - 40	0	Dutside diameter of well casing (inches): 2.00	
Driller Name: Lane Scarborough Driller License Number: WD-1188				

3. ADDITIONAL STATEMENTS OR EXPLANATIONS

Well will be used to monitor groundwater for	up to 2 years	
		000 800 000 10 2024 m2134
	FOR OSE INTERNAL USE	Application for Permit, Form WR-07 Version 07/12/22

4

File No .:) .

Tm No .: 761593

Page 2 of 3

Released to Imaging: 7/1/2025 9:20:22 AM

Mine De-Watering: Pollution Control and/or Recovery: Construction Exploratory: Include a plan for pollution De-Watering: Include a plan for pollution is proposed control/recovery, that includes the following control/recovery, that includes the Include a description of the well a future A description of the need for mine proposed dewatering following: oublic water A description of the need for the dewatering. operation. supply well? The estimated duration of pollution control or recovery operation. for completion of the operation. the operation. Yes NO The estimated maximum period of The source(s) of the water to be diverted. The geohydrologic characteristics of the The maximum amount of time for completion of the operation. If Yes, an water to be diverted, The annual diversion amount. The annual consumptive use application must A description of the need anuiter(s). be filed with for the dewatering operation, amount. NMED-DWB. diverted per annum. The maximum amount of water to be and. concurrently. The maximum amount of water to be A description of how the diverted and injected for the duration of 🔲 Include a diverted water will be disposed diverted for the duration of the operation. the operation. description of The quality of the water. The method and place of discha The method and place of discharge. of. Ground Source Heat Pump: the requested The method of measurement of water pump test if Include a description of the diverted water produced and discharged. applicable. The recharge of water to the aquifer The source of water to be injected. The method of measurement of geothermal heat exchange Description of the estimated area of project, The number of boreholes hydrologic effect of the project Monitoring water injected. for the completed project and The method and place of discharge. The characteristics of the aquifer. The method of determining the The reason An estimation of the effects on surface required depths and duration water rights and underground water rights resulting annual consumptive use of The time frame for of the from the mine dewatering project. constructing the geothermal water and depletion from any related A description of the methods employed to monitoring is heat exchange project, and. stream system. The duration of the project. Preliminary surveys, design estimate effects on surface water rights and required. Proof of any permit required from the underground water rights. New Mexico Environment Department Information on existing wells, rivers, An access agreement if the data, and additional springs, and wellands within the area of information shall be included to applicant is not the owner of the land on provide all essential facts hydrologic effect. which the pollution plume control or recovery well is to be located. relating to the request.

4. SPECIFIC REQUIREMENTS: The applicant must include the following, as applicable to each well type. Please check the appropriate boxes, to indicate the information has been included and/or attached to this application.

ACKNOWLEDGEMENT

I, We (name of applicant(s)), Christine Higginbotham

Print Name(s)

affirm that the foregoing statements are true to the best of (my, our) knowledge and belief.

ht Higginboth

Applicant Signature

Page 3 of 3

ACTION OF THE STATE ENGINEER

provided it is not exercised to the d Mexico nor detrimental to the public	Dapproved element of any others havin	s application is:	ot contrary to the conservation of water in New
Witness my hand and seal this	2th June	20 24	, for the State Engineer,
Mike A. Hamman,		, State Engineer	CG2 (01) (CA, 16 2024 pm2) (1
By K.Pare	kh	Kashyar Print	Parekh
Signature Title Water Resources	s Manager I		
Pnnt	FOR OSE INT	rernal use ap	Cilication for Permit, Form WR-07 Version 07/12/22

NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

SPECIFIC CONDITIONS OF APPROVAL

- 17-16 Construction of a water well by anyone without a valid New Mexico Well Driller License is illegal, and the landowner shall bear the cost of plugging the well by a licensed New Mexico well driller. This does not apply to driven wells, the casing of which does not exceed two and three-eighths inches outside diameter.
- 17-1B Depth of the well shall not exceed the thickness of the Ogallala formation.
- 17-4 No water shall be appropriated and beneficially used under this permit.
- 17-6 The well authorized by this permit shall be plugged completely using the following method per Rules and Regulations Governing Well Driller Licensing, Construction, Repair and Plugging of Wells; Subsection C of 19.27.4.30 NMAC unless an alternative plugging method is proposed by the well owner and approved by the State Engineer upon completion of the permitted use. All pumping appurtenance shall be removed from the well prior to plugging. To plug a well, the entire well shall be filled from the bottom upwards to ground surface using a tremie pipe. The bottom of the tremie shall remain submerged in the sealant throughout the entire sealing process; other placement methods may be acceptable and approved by the state engineer. The well shall be plugged with an office of the state engineer approved sealant for use in the plugging of non-artesian wells. The well driller shall cut the casing off at least four (4) feet below ground surface and fill the open hole with at least two vertical feet of approved sealant. The driller must fill or cover any open annulus with sealant. Once the sealant has cured, the well driller or well owner may cover the seal with soil. A Plugging Report for said well shall be filed with the Office of the State Engineer in a District Office within 30 days of completion of the plugging.

Trn Desc: L 15724 POD1

File Number: <u>L 15724</u> Trn Number: <u>761593</u>

page: l

•

NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

SPECIFIC CONDITIONS OF APPROVAL (Continued)

- 17-7 The Permittee shall utilize the highest and best technology available to ensure conservation of water to the maximum extent practical.
- 17-B The well shall be drilled by a driller licensed in the State of New Mexico in accordance with 72-12-12 NMSA 1978. A licensed driller shall not be required for the construction of a well driven without the use of a drill rig, provided that the casing shall not exceed two and three-eighths (2 3/8) inches outside diameter.
- 17-C The well driller must file the well record with the State Engineer and the applicant within 30 days after the well is drilled or driven. It is the well owner's responsibility to ensure that the well driller files the well record. The well driller may obtain the well record form from any District Office or the Office of the State Engineer website.
- 17-P The well shall be constructed, maintained, and operated to prevent inter-aquifer exchange of water and to prevent loss of hydraulic head between hydrogeologic zones.
- 17-Q The State Engineer retains jurisdiction over this permit.
- 17-R Pursuant to section 72-8-1 NMSA 1978, the permittee shall allow the State Engineer and OSE representatives entry upon private property for the performance of their respective duties, including access to the ditch or acequia to measure flow and also to the well for meter reading and water level measurement.

Trn Desc: L 15724 POD1

File Number: L 15724 Trn Number: 761593

page: 2

NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

SPECIFIC CONDITIONS OF APPROVAL (Continued)

LOG The Point of Diversion L 15724 POD1 must be completed and the Well Log filed on or before 06/12/2025.

ACTION OF STATE ENGINEER

Notice of Intention Rcvd:	Date Rcvd. Corrected:
Formal Application Rcvd: 06/10/2024	Pub. of Notice Ordered:
Date Returned - Correction:	Affidavit of Pub. Filed:

This application is approved provided it is not exercised to the detriment of any others having existing rights, and is not contrary to the conservation of water in New Mexico nor detrimental to the public welfare of the state; and further subject to the specific conditions listed previously.

Witness my hand and seal this <u>12</u> day of <u>Jun</u> A.D., <u>2024</u>

Mike A. Hamman, P.E. , State Engineer

Klarde By: KASHYAP PAREKH

Trn Desc: L 15724 POD1

File Number: <u>L 15724</u> Trn Number: <u>76</u>1593

page: 3

•

OFFICE OF THE STATE ENGINEER/INTERSTATE STREAM COMMISSION - ROSWELL OFFICE

OFFICIAL REC		BER: <u>2</u>	- 46372	DATE:	11- 12-23	FILE NO.: _	New	
			RECEIVED:	five	-	DOLLARS	CHECK NO .: 185 60	2 CASH:
PAYOR: TO	rga R	esou	rces, IN	CADDRESS	: 811 Louisia	na, Suite 2100 c	ITY: Houston	STATE: <u>]X</u>
ZIP: MOT	DZ F	RECEIVE	D BY: <u>VC</u>		_	•		

INSTRUCTIONS: Indicate the number of actions to the left of the appropriate type of filing. Complete the receipt information. Original to payor; pink copy to Program Support/ASD; and yellow copy for Water Rights. If a mistake is made, void the original and all copies and submit to Program Support/ASD as part of your daily deposit.

A. Ground Water Filing Fees

M. (unu water i ning rees		
	1.	Change of Ownership of Water Right	\$	2.00
	2.	Application to Appropriate or Supplemen	t	
		Domestic 72-12-1 Well	\$	125.00
	3.	Application to Repair or Deepen		
		72-12-1 Well	Ś	75.00
	4.	Application for Replacement	•	
		72-12-1 Well	s	75.00
	5.	Application to Change Purpose of Use	Ŧ	
	э.	72-12-1 Well	ć	75.00
	~			
	6.	Application for Stock Well/Temp. Use	\$	5.00
	7.	Application to Appropriate Irrigation,		
		Municipal, or Commercial Use	\$	25.00
	8.	Declaration of Water Right	\$	1.00
	9.	Application for Additional Point of	Ŧ	
		Diversion Non 72-12-1 Per Well	\$	25.00
	10	Application to Change Place or	*	22.00
	10.	Purpose of Use Non 72-12-1 Well	c	25.00
		Application to Change Point of Diversion	Ŧ	2.3.00
	11,			
		and Place and/or Purpose of Use from		F0 00
		Surface Water to Ground Water	Ş	50.00
<u> </u>	12.	Application to Change Point of Diversion		
		and Place and/or Purpose of Use from		
		Ground Water to Ground Water	\$	50.00
	13.	Application to Change Point of		
		Diversion of Non 72-12-1 Well	\$	25.00
-	14.	Application to Repair or Deepen		
		Non 72-12-1 Well	\$	5.00
			Ŧ	

1	15. Application for Test, Expl. Observ. Well	\$ 5.00
	16. Application for Extension of Time	\$ 25.00
	17. Proof of Application to Beneficial Use	\$ 25.00
	18. Notice of Intent to Appropriate	\$ 25.00

B. Surface Water Filing Fees

0.0		ace water runny rees		
	1.	Change of Ownership of a Water Right	\$	5.00
	2.	Declaration of Water Right	\$	10.00
	3.	Amended Declaration	\$	25.00
	4.	Application to Change Point of Diversion		
		and Place and/or Purpose of Use from		
		Surface Water to Surface Water	\$	200.00
	5.	Application to Change Point of Diversion		
		and Place and/or Purpose of Use from		
		Ground Water to Surface Water	\$	200.00
	6.	Application to Change Point of		
		Diversion	\$	100.00
	7.	Application to Change Place and/or	*	
	••	Purpose of Use	\$	100.00
	8.	Application to Appropriate		25.00
	9.	Notice of Intent to Appropriate	š	25.00
		Application for Extension of Time		50.00
		Supplemental Well to a Surface Right		100.00
_		Return Flow Credit	•	100.00
		Proof of Completion of Works		25.00
		Proof of Application of Water to	٣	20,00
	• ••	Beneficial Use	\$	25.00
	15	Water Development Plan	τ.	100.00
		Declaration of Livestock Water	*	100.00
	10.	Impoundment	Ś	10.00
	17	Application for Livestock Water	Ŧ	10.00
	17.	Impoundment	\$	10.00
		mpoordment	Ŷ	10.00

C. Well Driller Fees Application for Well Driller's License Application for Renewal of Well \$ 50.00 Driller's License \$ 50.00 3. Application to Amend Well Driller's \$ 50.00 License **D. Reproduction of Documents** ____ @ 0.25¢ \$_____ ş_____ ____ Map(s) @ \$3.00 E. Certification F. Other G. Comments: Mail

All fees are non-refundable.

Appendix D

TMW-4

Geologic Log and Well Completion Diagram

Received by OCD: 3/26/2025 8:26:40 AM

Appendix E

EcoVac Reports

August 13, 2024

Mr. Mark Larson President Larson & Associates, Inc. 507 N Marienfeld St #205 Midland, Texas 79701-4356 Mark@laenvironmental.com

Subject: Enhanced Fluid Recovery (EFR®) Report August 05 through 07, 2024 Targa Midstream Services Epperson 16 Inch Pipeline Release Lea County, New Mexico

Dear Mr. Larson:

Please find attached the data summary for the EFR[®] remediation conducted at the subject site on August 05 thru 07, 2024. The EFR[®] remediation was implemented in well TMW-1. EFR[®] is a mobile multi-phase/dual-phase extraction technology shown to be effective for mass removal of hydrocarbons in the soils/groundwater.

August 05, 2024

EFR[®] was performed for 8.0 hours at well TMW-1 for this event. Separate-phase hydrocarbons (SPH) were detected in well TMW-1, at a thickness of 0.29' prior to conducting this event. SPH was not detected in well TMW-1 upon conclusion of this event.

A calculated total of 45.8 pounds of petroleum hydrocarbons (approximately 7.6 equivalent gallons of hydrocarbon) in vapor concentrations were removed during this EFR[®] event on August 05, 2024.

The hydrocarbon vapor extraction removal rate varied from a high of 15.7 pounds per hour at the beginning of the event, to a low of 2.9 pounds per hour near the end of the event. The hydrocarbon removal rate was slightly elevated throughout the event.

4200 Crystal Springs Rd., Suite 100, Moore, OK 73160 (405) 895-9990 - Fax (405) 895-9954 www.ecovacservices.com Vapor concentrations ranged from a high of 13,000 parts per million by volume (PPM_V) at the beginning of the event, to a low of 2,700 PPMv near the end of the event. The concentrations were high to elevated throughout event.

The range of vacuum readings recorded during this EFR[®] event from the monitor well is detailed in the attached EFR[®] Field Data Sheet and summarized below:

Extraction Well	Vacuum Readings
Truck	23 inches of mercury
TMW-1	2 inches of mercury

Vacuum Influence

The differential pressure data are detailed in the Field Data Sheets in Attachment 1. Differential pressures from the nearest monitor wells were recorded during this event to assess the vacuum induced by EFR[®] in the vadose zone. A vacuum influence was not observed at a distance of 214 or 430 feet from well TMW-1. The differential pressure data are detailed in the attached table and summarized below:

Monitor Well	Maximum Change	Nearest Extraction Well (Approx. Distance)
TMW-2	0.00 inches of water	TMW-1 (430 feet)
TMW-4	0.00 inches of water	TMW-1 (214 feet)

Groundwater Drawdown

Groundwater levels were recorded during this event to assess the groundwater drawdown created by EFR[®]. The groundwater drawdown data is summarized below:

Monitor Well	Maximum Change	<u>Well Type</u>
TMW-1	-0.27 feet	Extraction Well
TMW-2	0.03 feet	TMW-1 (430 feet)
TMW-4	0.02 feet	TMW-1 (214 feet)

Groundwater Extraction

A total of 1,339 gallons of fluid were extracted from the well during this 8.0-hour event. The water was offloaded into a frac tank on-site.

August 06, 2024

EFR[®] was performed for 8.0 hours at well TMW-1 for this event. Separate-phase hydrocarbons (SPH) were not detected in well TMW-1 prior to conducting this event, or upon conclusion of this event.

A calculated total of 33.8 pounds of petroleum hydrocarbons (approximately 5.6 equivalent gallons of hydrocarbon) in vapor concentrations were removed during this EFR^{\circledast} event on August 06, 2024.

The hydrocarbon vapor extraction removal rate varied from a high of 8.9 pounds per hour at the beginning of the event, to a low of 2.0 pounds per hour at the end of the event. The hydrocarbon removal rate was slightly elevated throughout the event.

Vapor concentrations ranged from a high of 9,800 parts per million by volume (PPM_V) at the beginning of the event, to a low of 2,200 PPMv at the end of the event. The concentrations were high to elevated throughout event.

The range of vacuum readings recorded during this EFR[®] event from the monitor well is detailed in the attached EFR[®] Field Data Sheet and summarized below:

Extraction Well	Vacuum Readings
Truck	22 inches of mercury
TMW-1	3 inches of mercury

Vacuum Influence

The differential pressure data are detailed in the Field Data Sheets in Attachment 1. Differential pressures from the nearest monitor wells were recorded during this event to assess the vacuum induced by EFR[®] in the vadose zone. A vacuum influence was not observed at a distance of 214 or 430 feet from well TMW-1. The differential pressure data are detailed in the attached table and summarized below:

Monitor Well	Maximum Change	Nearest Extraction Well (Approx. Distance)
TMW-2	0.00 inches of water	TMW-1 (430 feet)
TMW-4	0.00 inches of water	TMW-1 (214 feet)

Groundwater Drawdown

Groundwater levels were recorded during this event to assess the groundwater drawdown created by EFR[®]. The groundwater drawdown data is summarized below:

Monitor Well	Maximum Change	Well Type
TMW-1	-0.78 feet	Extraction Well
TMW-2	0.00 feet	TMW-1 (430 feet)
TMW-4	0.00 feet	TMW-1 (214 feet)

Groundwater Extraction

A total of 1,426 gallons of fluid were extracted from the well during this 8.0-hour event. The water was offloaded into a frac tank on-site.

August 07, 2024

EFR[®] was performed for 8.0 hours at well TMW-1 for this event. Separate-phase hydrocarbons (SPH) were not detected in well TMW-1 prior to conducting this event, or upon conclusion of this event.

A calculated total of 21.9 pounds of petroleum hydrocarbons (approximately 3.6 equivalent gallons of hydrocarbon) in vapor concentrations were removed during this EFR[®] event on August 07, 2024.

The hydrocarbon vapor extraction removal rate varied from a high of 5.4 pounds per hour at the beginning of the event, to a low of 0.4 pounds per hour at the end of the event. The hydrocarbon removal rate was slightly elevated throughout the event.

Vapor concentrations ranged from a high of 4,500 parts per million by volume (PPM_V) at the beginning of the event, to a low of 400 PPMv at the end of the event. The concentrations were high to elevated throughout event.

The range of vacuum readings recorded during this EFR[®] event from the monitor well is detailed in the attached EFR[®] Field Data Sheet and summarized below:

Extraction Well	Vacuum Readings
Truck	24 inches of mercury
TMW-1	3 inches of mercury

Vacuum Influence

The differential pressure data are detailed in the Field Data Sheets in Attachment 1. Differential pressures from the nearest monitor wells were recorded during this event to assess the vacuum induced by $\text{EFR}^{\textcircled{B}}$ in the vadose zone. A vacuum influence was not observed at a distance of 214 or 430 feet from well TMW-1. The differential pressure data are detailed in the attached table and summarized below:

Monitor Well	Maximum Change	Nearest Extraction Well (Approx. Distance)
TMW-2	0.00 inches of water	TMW-1 (430 feet)
TMW-4	0.00 inches of water	TMW-1 (214 feet)

Groundwater Drawdown

Groundwater levels were recorded during this event to assess the groundwater drawdown created by EFR[®]. The groundwater drawdown data is summarized below:

Monitor Well	Maximum Change	<u>Well Type</u>
TMW-1	-0.70 feet	Extraction Well
TMW-2	0.02 feet	TMW-1 (430 feet)
TMW-4	0.01 feet	TMW-1 (214 feet)

Groundwater Extraction

A total of 1,501 gallons of fluid were extracted from the well during this 8.0-hour event. The water was offloaded into a frac tank on-site.

Conclusions

The following conclusions are based on the data collected during this event.

- 1. A hydrocarbon mass of 101.5 pounds (16.8 equivalent gallons) via vapors was extracted during this 3-day event.
- 2. A total of 4,266 gallons of fluids were extracted during this 3-day event.
- 3. A vacuum influence was not observed in TMW-2 and TMW-4, at a distance of 430 and 214 feet, respectively, from TMW-1.
- 4. A groundwater drawdown influence was not observed in TMW-2 and TMW-4, at a distance of 430 and 214 feet, respectively, from TMW-1.

Thank you for this opportunity to team with Larson & Associates, Inc. in serving the environmental needs of your clients. We look forward to working with you again in the future to provide innovative and cost-effective environmental solutions at this and other sites.

Sincerely, EcoVac Services

Jeffing M. Brammer

Jeffrey M. Brammer, PG Western Regional Manager, Hydrogeologist

Attachments:

1. Field Data Sheets

ATTACHMENT 1 FIELD DATA SHEETS

EFR[®] FIELD DATA SHEET

County, ne nm 30			head	tion Wel	1-			Technician: Mo		Date: 08/05/20	024
nm 10 30	⁷ -1		head		1-			Vacuu	m Truck Exhau	st	
nm 10 30	-1			Vacuum			Vacuum Truck Exhaust				
Inlet	-1		<i>/</i> •	v ac aum							
	'-1		(11	n. Hg)				Offgas	Flow	Removal	Interval
	-1						Concentration	Velocity	Rate	Rate	Removal
							PPM	FT/MIN	CFM	LBS/HR	LBS
	TMW-1										
0 2	23 2	2					13,000	2000	98	15.7	3.9
5 2	23 2	2					12,800	2000	98	15.5	3.9
30 2	.3 2	2					11,000	2000	98	13.3	3.3
15 2	.3 2	2					10,800	2000	98	13.1	3.3
00 2	23 2	2					10,500	2000	98	12.7	3.2
30 2	23 2	2					9,000	2000	98	10.9	5.4
00 2	23 2	2					6,000	1500	74	5.4	2.7
00 2	23 2	2					5,000	1500	74	4.5	4.5
00 2	23 2	2					4,900	1500	74	4.4	4.4
00 2	.3 2	2					4,700	1500	74	4.3	4.3
00 2	23 2	2					2,700	1500	74	2.5	2.5
30 2	23 2	2					3,200	1500	74	2.9	4.4
		_								1	_
		-									-
no Dat	a.		Before EFR [®] Ev			EFR [®] Ev	ent	А	fter EFR [®] Ever	nt	Corr. DTW
		(ft)	DТ	TS (ft)	-				DTS (ft) DTW (ft) SPH (ft)		Change (ft)
	10	(11)						D15 (II)			-0.27
			5.	3.77				-			0.03
				-				-			0.03
				-	52	.07	0.00	-	52.85	0.00	0.02
					-						-
					-					<u> </u>	
											_
											_
								_			
Inform	nation		W	ell ID	Breath	er Port	Stinger Depth		ecovery/Dispo	sal Informatic	n
		_						-			pounds
			11	/1 VV - 1		iscu	30			43.8	1
					-						gallons
					-			· · · · ·			equiv. gals.
											g/mole
		C-44s								On-Site	
2	2,894				1						
3.0	0							Total Liquids Re	emoved:	1,339	gallons
				Pump I	nformatio	n	Notes :				
			Time:		8:30-	16:30					
		-	# Pum	ps:		2					
rvices.	.com										
	00 2 00 2	00 23 2 00 23 2 00 23 2 00 23 2 00 23 2 00 23 2 00 23 2 00 23 2 00 23 2 00 23 2 00 23 2 00 23 2 00 23 2 00 23 2 00 23 2 01 0 1 02 0 1 030 0 0 030 0 0 030 0 0 030 0 0 030 0 0 030 0 0 030 0 0 030 0 0 030 0 0 030 0 0 030 0 0 0	00 2.3 2 00 2.3 2 00 2.3 2 00 2.3 2 00 2.3 2 00 2.3 2 00 2.3 2 00 2.3 2 00 2.3 2 00 2.3 2 00 2.3 2 00 2.3 2 00 2.3 2 00 2.3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 23 2	00 23 2	00 23 2	00 23 2	00 23 2	00 23 2 1 1 6,000 1500 00 23 2 1 1 4,900 1500 00 23 2 1 1 4,700 1500 00 23 2 1 1 4,700 1500 00 23 2 1 1 2,700 1500 00 23 2 1 1 2,700 1500 00 23 2 1 1 1 1 1 01 1 1 1 1 1 1 1 01 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 13 1 1 1 1 1 1 1 13 1 1 <td>00 23 2 1 1 6,000 1500 74 00 23 2 1 1 5,000 1500 74 00 23 2 1 1 4,900 1500 74 00 23 2 1 1 4,700 1500 74 00 23 2 1 1 2,700 1500 74 00 23 2 1 1 2,700 1500 74 01 2 1 1 1 2,700 1500 74 01 2 1 1 1 1 1 1 1 10 1</td> <td>00 23 2 </td>	00 23 2 1 1 6,000 1500 74 00 23 2 1 1 5,000 1500 74 00 23 2 1 1 4,900 1500 74 00 23 2 1 1 4,700 1500 74 00 23 2 1 1 2,700 1500 74 00 23 2 1 1 2,700 1500 74 01 2 1 1 1 2,700 1500 74 01 2 1 1 1 1 1 1 1 10 1	00 23 2

Differential Pressure and Groundwater Drawdown Data Recorded During EFR[®] August/5/2024 Epperson 16" P/L Lea County, NM

		Well Designation:					
		TMW-2	TMW-4				
Nearest E	xtraction Well:	TMW-1	TMW-1				
Approxii	nate Distance:	430 feet	214 feet				
Time	Time Elapsed Time Differential Pressures (inches of water						
10:00	1.5 hrs.	0.00	0.00				
11:00	2.5 hrs.	0.00	0.00				
12:00	3.5 hrs.	0.00	0.00				
13:00	4.5 hrs.	0.00	0.00				
14:00	5.5 hrs.	0.00	0.00				
15:00	6.5 hrs.	0.00	0.00				
Maxim	um Change:	0.00	0.00				

DIFFERENTIAL PRESSURE DATA

GROUNDWATER DRAWDOWN DATA

		Well Designation:				
		TMW-2	TMW-4			
Nearest Extr	action Well:	TMW-1 TMW-1				
Approxima	te Distance:	430 feet 214 feet				
Time	Elapsed Time	Depth to Liquid (feet below top of casing):				
Prior to	D EFR [®]	32.60	32.87			
After	EFR®	32.57 32.85				
Maximun	n Change:	0.03	0.02			

EFR[®] FIELD DATA SHEET

Client: Larson & A	ssociates				Facili	ity: Ep	perso	on 16" I	P/L				Event #	
Facility Address :	Lea Cour	nty, N	М				•				Technician: Mo	sley	Date: 08/06/2	024
					Extra	ction V	Vell-			Vacuum Truck Exhaust				
Extraction	Time					l Vacu								
Well(s)	hh:mm				(1	in. Hg)					Offgas	Flow	Removal	Interval
										Concentration	Velocity	Rate	Rate	Removal
			V-1							PPM	FT/MIN	CFM	LBS/HR	LBS
Start Time:	7:15	Inlet	TMW-1											
TMW-1	7:30	22	3							9,800	1500	74	8.9	2.2
	7:45	22	3							9,800	1500	74	8.9	2.2
	8:00	22	3							9,100	1500	74	8.3	2.1
	8:15	22	3							9,500	1500	74	8.6	2.2
	8:45	22	3							9,300	1500	74	8.4	4.2
	9:15	22	3							7,500	1500	74	6.8	3.4
	10:15	22	3							5,000	1500	74	4.5	4.5
	11:15	22	3							3,500	1500	74	3.2	3.2
	12:15	22	3							3,300	1500	74	3.0	3.0
	13:15	22	3							2,800	1500	74	2.5	2.5
	14:15	22	3							2,500	1500	74	2.3	2.3
	15:15	22	3							2,200	1500	74	2.0	2.0
Well (Gauging I	Data:						Before	EFR [®] Ev	vent	After EFR [®] Event		Corr. DTW	
Well No.	Diam.		ΓD (ft))	D	DTS (ft)		DTW (ft)		SPH (ft)	DTS (ft)	DTW (ft)	SPH (ft)	Change (ft)
TMW-1	2"					-		33	3.73	0.00	-	34.51	0.00	-0.78
TMW-2	2"					-		32	2.58	0.00	-	32.58	0.00	0.00
TMW-4	2"					-		32	2.85	0.00	-	32.85	0.00	0.00
											<u> </u>			
Vacuum T	ruck Inf					Well ID		Breat	her Port	Stinger Depth	-	Recovery/Dispo	osal Informatio	<u>on</u>
Subcontractor:		EcoV	'ac		Т	MW-1		cl	osed	36'	Hydrocarbons (v	1 /	33.8	pounds
Truck Operator:		Vitov	vic								Hydrocarbons (1	-		gallons
Truck No.:		153									Total Hydrocarb	oons:	5.6	equiv. gals.
Vacuum Pumps:		Beck	er								Molecular Weig	ht Utilized:	78.0	g/mole
Pump Type:			4s							Disposal Facility	y:	On-Site		
Tank Capacity (ga	l.):	2,89	94								Manifest Numbe	er:		
Stack I.D. (inches)		3.0									Total Liquids Re	emoved:	1,426	gallons
EC			-			Pum	p Inf	ormati	on	Notes :				
SER					Time				-15:15					
	ovacservio				# Pur				2					
	5-895-999		-		RPM	-		1.	000					
403-893-9990					- 2		1,		1					

.

Differential Pressure and Groundwater Drawdown Data Recorded During EFR[®] August/6/2024 Epperson 16" P/L Lea County, NM

		Well Desi	gnation:
		TMW-2	TMW-4
Nearest Ex	straction Well:	TMW-1	TMW-1
Approxim	nate Distance:	430 feet	214 feet
Time	Elapsed Time	Differential Pressure	s (inches of water):
8:15	1.0 hr.	0.00	0.00
9:15	2.0 hrs.	0.00	0.00
10:15	3.0 hrs.	0.00	0.00
11:15	4.0 hrs.	0.00	0.00
12:15	5.0 hrs.	0.00	0.00
13:15	6.0 hrs.	0.00	0.00
14:15	7.0 hrs.	0.00	0.00
Maximum Change:		0.00	0.00

DIFFERENTIAL PRESSURE DATA

GROUNDWATER DRAWDOWN DATA

		Well Des	ignation:
		TMW-2	TMW-4
Nearest Ex	traction Well:	TMW-1	TMW-1
Approximate Distance:		430 feet	214 feet
Time	Elapsed Time	Depth to Liquid (feet below top of casing):	
Prior	Prior to EFR [®]		32.85
After	·EFR®	32.58	32.85
Maximu	m Change:	0.00	0.00

EFR[®] FIELD DATA SHEET

Client: Larson & A	Associates				Facili	ity: Ep	perso	on 16" P	7/L				Event #	
Facility Address :	Lea Cour										Technician: Mo	osley	Date: 08/07/2	024
· · ·		Extraction Well-										m Truck Exhau	ist	
Extraction	Time				head	d Vacu	um							
Well(s)	hh:mm				(in. Hg)					Offgas	Flow	Removal	Interval
										Concentration	Velocity	Rate	Rate	Removal
			V-1							PPM	FT/MIN	CFM	LBS/HR	LBS
Start Time:	7:00	Inlet	TMW-1											
TMW-1	7:15	24	3							4,500	2000	98	5.4	1.4
	7:30	24	3							4,200	2000	98	5.1	1.3
	7:45	24	3							4,200	2000	98	5.1	1.3
	8:00	24	3							4,000	2000	98	4.8	1.2
	8:30	24	3							4,000	2000	98	4.8	2.4
	9:00	24	3							3,800	2000	98	4.6	2.3
	10:00	24	3							3,200	1800	88	3.5	3.5
	11:00	24	3							2,400	1800	88	2.6	2.6
	12:00	24	3							2,200	1800	88	2.4	2.4
	13:00	24	3							1,800	1800	88	2.0	2.0
	14:00	24	3							1,100	1800	88	1.2	1.2
	15:00	24	3							400	1800	88	0.4	0.4
Well Gauging Data: Before EFR [®] Ev		vent	A	After EFR [®] Even	nt	Corr. DTW								
Well No.	Diam.	-	ΓD (ft)	D	TS (ft))	DTV	W (ft)	SPH (ft)	DTS (ft)	DTW (ft)	SPH (ft)	Change (ft)
TMW-1	2"					-		33	5.74	0.00	-	34.44	0.00	-0.70
TMW-2	2"					-			.58	0.00	-	32.56	0.00	0.02
TMW-4	2"					-			2.85	0.00	-	32.84	0.00	0.01
Vacuum T	ruck Info	ormat	tion		N	Well ID		Breath	ner Port	Stinger Depth	I	Recovery/Dispo	sal Informatio	<u>on</u>
Subcontractor:		EcoV	'ac		Г	MW-1		clo	osed	36'	Hydrocarbons (vapor):	21.9	pounds
Truck Operator:		Vitov	vic								Hydrocarbons (l	iquid):		gallons
Truck No.:		153									Total Hydrocarb	oons:	3.6	equiv. gals.
Vacuum Pumps:										Molecular Weig	ht Utilized:	78.0	g/mole	
Pump Type:		Twin LC-44s							Disposal Facilit		On-Site	-		
Tank Capacity (ga	1.):	2,894			Manifest Number	-								
Stack I.D. (inches)		3.0				Total Liquids R		1,501	gallons					
			Notes :	Le com Enquitas IX		1,001	0							
EC					Time		ш			10005.				
					Time				<u>-15:00</u>					
	ovacservic		m		# Pur	-			2					
405-895-9990				RPM	s:		1,0	000						

.

Differential Pressure and Groundwater Drawdown Data Recorded During EFR[®] August/7/2024 Epperson 16" P/L Lea County, NM

		Well Des	ignation:
		TMW-2	TMW-4
Nearest Ex	xtraction Well:	TMW-1	TMW-1
Approxin	nate Distance:	430 feet	214 feet
Time	Elapsed Time	Differential Pressure	es (inches of water):
8:00	1.0 hr.	0.00	0.00
9:00	2.0 hrs.	0.00	0.00
10:00	3.0 hrs.	0.00	0.00
11:00	4.0 hrs.	0.00	0.00
12:00	5.0 hrs.	0.00	0.00
13:00	6.0 hrs.	0.00	0.00
14:00	7.0 hrs.	0.00	0.00
Maxim	um Change:	0.00	0.00

DIFFERENTIAL PRESSURE DATA

GROUNDWATER DRAWDOWN DATA

		Well Desig	gnation:
		TMW-2	TMW-4
Nearest Ex	traction Well:	TMW-1	TMW-1
Approximate Distance:		430 feet	214 feet
Time	Elapsed Time	Depth to Liquid (feet below top of casing):	
Prior	Prior to EFR [®]		32.85
After	EFR®	32.56	32.84
Maximu	m Change:	0.02	0.01

September 13, 2024

Mr. Mark Larson President Larson & Associates, Inc. 507 N Marienfeld St #205 Midland, Texas 79701-4356 Mark@laenvironmental.com

Subject: Enhanced Fluid Recovery (EFR®) Report September 10 through 12, 2024 Targa Midstream Services Epperson 16 Inch Pipeline Release Lea County, New Mexico

Dear Mr. Larson:

Please find attached the data summary for the EFR[®] remediation conducted at the subject site on September 10 thru 12, 2024. The EFR[®] remediation was implemented in well TMW-1. EFR[®] is a mobile multi-phase/dual-phase extraction technology shown to be effective for mass removal of hydrocarbons in the soils/groundwater.

September 10, 2024

EFR[®] was performed for 8.0 hours at well TMW-1 for this event. Separate-phase hydrocarbons (SPH) were not detected in well TMW-1 prior to conducting this event, or upon conclusion of this event.

A calculated total of 45.2 pounds of petroleum hydrocarbons (approximately 7.2 equivalent gallons of hydrocarbon) in vapor concentrations were removed during this EFR[®] event on September 10, 2024.

The hydrocarbon vapor extraction removal rate varied from a high of 10.9 pounds per hour at the beginning of the event, to a low of 4.2 pounds per hour at the end of the event. The hydrocarbon removal rate was slightly elevated throughout the event.

4200 Crystal Springs Rd., Suite 100, Moore, OK 73160 (405) 895-9990 - Fax (405) 895-9954 www.ecovacservices.com Vapor concentrations ranged from a high of 10,000 parts per million by volume (PPM_V) at the beginning of the event, to a low of 4,300 PPMv at the end of the event. The concentrations were high to elevated throughout event.

The range of vacuum readings recorded during this EFR[®] event from the truck and the monitor well are detailed in the attached EFR[®] Field Data Sheet and summarized below:

Extraction Well	Vacuum Readings
Truck	22 inches of mercury
TMW-1	2 inches of mercury

Groundwater Drawdown

Groundwater levels were recorded during this event to assess the groundwater drawdown created by EFR[®]. The groundwater drawdown data is summarized below:

Monitor Well	Maximum Change	<u>Well Type</u>
TMW-1	-0.61 feet	Extraction Well
TMW-4	0.02 feet	TMW-1 (214 feet)

Groundwater Extraction

A total of 1,501 gallons of fluid were extracted from the well during this 8.0-hour event. The water was offloaded into a frac tank on-site.

September 11, 2024

EFR[®] was performed for 8.0 hours at well TMW-1 for this event. Separate-phase hydrocarbons (SPH) were not detected in well TMW-1 prior to conducting this event, or upon conclusion of this event.

A calculated total of 54.9 pounds of petroleum hydrocarbons (approximately 9.1 equivalent gallons of hydrocarbon) in vapor concentrations were removed during this EFR[®] event on September 11, 2024.

The hydrocarbon vapor extraction removal rate varied from a high of 7.7 pounds per hour toward the middle of the event, to a low of 4.4 pounds per hour toward the beginning of the event. The hydrocarbon removal rate was slightly elevated throughout the event.

Vapor concentrations ranged from a high of 8,000 parts per million by volume (PPM_V) in the middle of the event, to a low of 4,500 PPMv at the beginning of the event. The concentrations were high to elevated throughout event.

The range of vacuum readings recorded during this EFR[®] event from the truck and the monitor well is detailed in the attached EFR[®] Field Data Sheet and summarized below:

Extraction Well	Vacuum Readings
Truck	22 inches of mercury
TMW-1	2 inches of mercury

Groundwater Drawdown

Groundwater levels were recorded during this event to assess the groundwater drawdown created by EFR[®]. The groundwater drawdown data is summarized below:

Monitor Well	Maximum Change	Well Type
TMW-1	-1.01 feet	Extraction Well
TMW-4	0.01 feet	TMW-1 (214 feet)

Groundwater Extraction

A total of 1,555 gallons of fluid were extracted from the well during this 8.0-hour event. The water was offloaded into a frac tank on-site.

September 12, 2024

EFR[®] was performed for 8.0 hours at well TMW-1 for this event. Separate-phase hydrocarbons (SPH) were not detected in well TMW-1 prior to conducting this event, or upon conclusion of this event.

A calculated total of 41.2 pounds of petroleum hydrocarbons (approximately 6.8 equivalent gallons of hydrocarbon) in vapor concentrations were removed during this EFR[®] event on September 12, 2024.

The hydrocarbon vapor extraction removal rate varied from a high of 5.9 pounds per hour at the beginning of the event, to a low of 4.6 pounds per hour toward the middle of the event. The hydrocarbon removal rate was slightly elevated throughout the event.

Vapor concentrations ranged from a high of 5,800 parts per million by volume (PPM_V) toward the end of the event, to a low of 4,500 PPMv toward the beginning of the event. The concentrations were high to elevated throughout event.

The range of vacuum readings recorded during this EFR[®] event from the truck and the monitor well is detailed in the attached EFR[®] Field Data Sheet and summarized below:

Extraction Well	Vacuum Readings
Truck	22 inches of mercury
TMW-1	2 inches of mercury

Groundwater Drawdown

Groundwater levels were recorded during this event to assess the groundwater drawdown created by EFR[®]. The groundwater drawdown data is summarized below:
Monitor Well	Maximum Change	Well Type
TMW-1	-0.52 feet	Extraction Well
TMW-4	-0.02 feet	TMW-1 (214 feet)

Groundwater Extraction

A total of 1,447 gallons of fluid were extracted from the well during this 8.0-hour event. The water was offloaded into a frac tank on-site.

Conclusions

The following conclusions are based on the data collected during this event.

- 1. A hydrocarbon mass of 141.3 pounds (23.1 equivalent gallons) via vapors was extracted during this 3-day event.
- 2. A total of 4,503 gallons of fluids were extracted during this 3-day event.

Thank you for this opportunity to team with Larson & Associates, Inc. in serving the environmental needs of your clients. We look forward to working with you again in the future to provide innovative and cost-effective environmental solutions at this and other sites.

Sincerely, EcoVac Services

Jeffing M. Brammer

Jeffrey M. Brammer, PG Western Regional Manager, Hydrogeologist

Attachments: 1. Field Data Sheets

ATTACHMENT 1 FIELD DATA SHEETS

EFR[®] FIELD DATA SHEET

Client: Larson & A	Associates				Facili	ity: Ep	perso	on 16"]	P/L				Event #	
Facility Address :			М			• I	•				Technician: Mo	osley	Date: 09/10/2)24
					Extra	ction V	Vell-				Vacuum Truck Exhaust			-
Extraction	Time					d Vacu								
Well(s)	hh:mm				(in. Hg)					Offgas	Flow	Removal	Interval
										Concentration	Velocity	Rate	Rate	Removal
			/-1							PPM	FT/MIN	CFM	LBS/HR	LBS
Start Time:	8:30	nlet	TMW-1											
TMW-1	8:45	22	2							10,000	1800	88	10.9	2.7
	9:00	22	2							9,000	1800	88	9.8	2.5
	9:15	22	2							8,000	1800	88	8.7	2.2
	9:30	22	2							7,200	1800	88	7.8	2.0
	10:00	22	2							7,000	1800	88	7.6	3.8
	10:30	22	2							6,800	1800	88	7.4	3.7
	11:30	22	2							6,200	1500	74	5.6	5.6
	12:30	22	2							5,600	1500	74	5.1	5.1
	13:30	22	2							4,600	1700	83	4.7	4.7
	14:30	22	2							4,500	1700	83	4.6	4.6
	15:30	22	2							4,300	1600	78	4.2	4.2
	16:30	22	2							4,300	1600	78	4.2	4.2
		-												
Well	Gauging I	Data:			İ	L A		Before	EFR [®] Ev	rent	After EFR [®] Event		nt	Corr. DTW
Well No.	Diam.		TD (ft	:)	E	TS (ft))	DT	W (ft)	SPH (ft)	DTS (ft)	DTW (ft)	SPH (ft)	Change (ft)
TMW-1	2"		,	/		-	,		3.75	0.00	-	34.36	0.00	-0.61
TMW-4	2"					-			2.88	0.00	-	32.86	0.00	0.02
											-			
Vacuum T	ruck Inf	ormat	tion		Ŋ	Well ID		Breat	ther Port	Stinger Depth	H	Recovery/Dispo	osal Information	
Subcontractor:		EcoV	/ac		Г	MW-1		cl	osed	35'	Hydrocarbons (v	wapor):	45.2	pounds
Truck Operator:		Vitov	vic				_]				Hydrocarbons (l	iquid):		gallons
Truck No.:		153		-							Total Hydrocarb	-	7.5	equiv. gals.
Vacuum Pumps:		Beck	er								Molecular Weig		78.0	g/mole
Pump Type:			LC-4	-4s							Disposal Facility		On-Site	<i></i>
Tank Capacity (ga	1.):	2,89									Manifest Number			
Stack I.D. (inches)		3.0									Total Liquids Re		1,501	gallons
						Pum	n Inf	formati	on	Notes :	Letter Diquido In		1,001	0
EC				-	Time		ш			10005.				
SER					Time			<u>8:30</u>	<u>)-16:30</u>					
	ovacservic		m		# Pur	•			2					
403	5-895-999	U			RPM	s:		l	,000					

EFR[®] FIELD DATA SHEET

Client: Larson & A	Associates				Facili	ity: Ep	perso	on 16" I	P/L				Event #	
Facility Address :	Lea Cour	nty, Nl	M								Technician: Mo	osley	Date: 09/11/2	024
					Extra	ction V	Vell-					m Truck Exhau	ist	
Extraction	Time				head	d Vacu	um							
Well(s)	hh:mm				(in. Hg)					Offgas	Flow	Removal	Interval
										Concentration	Velocity	Rate	Rate	Removal
			V-1							PPM	FT/MIN	CFM	LBS/HR	LBS
Start Time:	8:15	Inlet	TMW-1											
TMW-1	8:30	22	2							4,500	2000	98	5.4	1.4
	8:45	22	2							4,500	1800	88	4.9	1.2
	9:00	22	2							4,500	1600	78	4.4	1.1
	9:15	22	2							6,100	1600	78	5.9	1.5
	9:45	22	2							7,000	1600	78	6.8	3.4
	10:15	22	2							8,000	1600	78	7.7	3.9
	11:15	22	2							7,500	1600	78	7.3	7.3
	12:15	22	2							7,700	1600	78	7.5	7.5
	13:15	22	2							7,800	1600	78	7.6	7.6
	14:15	22	2							7,400	1600	78	7.2	7.2
	15:15	22	2							7,000	1600	78	6.8	6.8
	16:15	22	2							6,500	1600	78	6.3	6.3
			-											
Well	Gauging I	Data:			İ	L A		Before	EFR [®] Ev	rent	After EFR [®] Event		Corr. DTW	
Well No.	Diam.		ΓD (ft)	D	TS (ft))	DT	W (ft)	SPH (ft)	DTS (ft)	DTW (ft)	SPH (ft)	Change (ft)
TMW-1	2"					-			3.79	0.00	-	34.80	0.00	-1.01
TMW-4	2"					-			2.86	0.00	-	32.85	0.00	0.01
								-						
														-
<u>Vacuum T</u>	ruck Inf	ormat	tion		V	Well ID		Breat	her Port	Stinger Depth	I	Recovery/Dispo	oosal Information	
Subcontractor:		EcoV	'ac		Г	MW-1		cl	osed	35'	Hydrocarbons (v	vapor):	54.9	pounds
Truck Operator:		Vitov	vic								Hydrocarbons (1	iquid):		gallons
Truck No.:		153									Total Hydrocarb	oons:	9.1	equiv. gals.
Vacuum Pumps:		Beck	er								Molecular Weig		78.0	g/mole
Pump Type:			LC-4	4s							Disposal Facility		On-Site	-
Tank Capacity (ga	1.):	2,89									Manifest Numbe			
Stack I.D. (inches)		3.0	•								Total Liquids Re		1,555	gallons
						Pum	n Inf	formati	on	Notes :	Li cui Elquius IX		1,000	5
EC					T:		иш			110105.				
					Time			<u>8:15</u>	<u>-16:15</u>					
	ovacservic		m		# Pur	-			2					
403	5-895-999	U			RPM	s:		1	,000					

EFR[®] FIELD DATA SHEET

Client: Larson & A	Associates				Facili	ity: Ep	perso	on 16" 1	P/L				Event #		
Facility Address :	Lea Cour	nty, Nl	М								Technician: Mo	osley	Date: 09/12/2	024	
					Extra	ction V	Vell-					m Truck Exhau	ist		
Extraction	Time				head	d Vacu	um								
Well(s)	hh:mm				(in. Hg)					Offgas	Flow	Removal	Interval	
										Concentration	Velocity	Rate	Rate	Removal	
			V-1							PPM	FT/MIN	CFM	LBS/HR	LBS	
Start Time:	7:15	Inlet	TMW-1												
TMW-1	7:30	22	2							5,400	1800	88	5.9	1.5	
	7:45	22	2							5,000	1800	88	5.4	1.4	
	8:00	22	2							4,500	1800	88	4.9	1.2	
	8:15	22	2							4,800	1600	78	4.6	1.2	
	8:45	22	2							5,200	1600	78	5.0	2.5	
	9:15	22	2							5,400	1600	78	5.2	2.6	
	10:15	22	2							5,000	1600	78	4.8	4.8	
	11:15	22	2							4,800	1600	78	4.6	4.6	
	12:15	22	2							5,200	1600	78	5.0	5.0	
	13:15	22	2							5,400	1600	78	5.2	5.2	
	14:15	22	2							5,800	1600	78	5.6	5.6	
	15:15	22	2							5,700	1600	78	5.5	5.5	
Well	Gauging I	Data:						Before	e EFR® E۱	rent	After EFR [®] Event		Corr. DTW		
Well No.	Diam.]	ГD (ft)	Ľ	DTS (ft))	DT	W (ft)	SPH (ft)	DTS (ft)	DTW (ft)	SPH (ft)	Change (ft)	
TMW-1	2"					-			3.79	0.00	-	34.31	0.00	-0.52	
TMW-4	2"					-			2.88	0.00	-	32.90	0.00	-0.02	
Vacuum T	ruck Inf				Ŋ	Well ID		Breat	ther Port	Stinger Depth	<u> </u>	Recovery/Dispo	oosal Information		
Subcontractor:		EcoV	'ac		Г	MW-1		c	losed	35'	Hydrocarbons (v	vapor):	41.2	pounds	
Truck Operator:		Vitov	vic								Hydrocarbons (1	iquid):		gallons	
Truck No.:		153									Total Hydrocarb	oons:	6.8	equiv. gals.	
Vacuum Pumps:		Beck	er								Molecular Weig	ht Utilized:	78.0	g/mole	
Pump Type:		Twin	LC-4	4s							Disposal Facilit	y:	On-Site		
Tank Capacity (ga	1.):	2,89									Manifest Number				
Stack I.D. (inches)		3.0									Total Liquids Re		1,447	gallons	
			-			Pum	p Inf	formati	ion	Notes :				<u> </u>	
EC				-	Time				5-15:15						
	ovacservic			2	# Pur			<u>/.1.</u>	2						
	5-895-999					-		1	,000						
40;	7-072-7775	v u			RPM	з.		1	,000						

Appendix F

Gandy Corporation Disposal Ticket

Gandy Corporation P.O. Box 2140 Lovington, NM 88260

Fax

Invoice

Date Invoice # 10/24/2024 256230

gandycorporation.com

Phone 575-396-0522

Bill To: **Targa Midstream Services Accounts** Payable 811 Louisiana, Suite 2100 Houston, TX 77002-1400

Lease:

575-396-0797

Saunders Plant 50 Warren Road Lovington, NM 88260 Epperson Kandi Pardue

PO Number	Terms	Due Date
TAR 397146	Net 30	11/23/2024

Quantity	Item Code	Description		U/M	Price Each	Amount
9.5 220 1	3D 160 150	10/18/24 WT 586681 Vacuum Truck w/130 bbl Tank and Operator Disposal - DKD Richardson Fuel & Environmental Surcharge		HR BBLS	96.00 0.90 91.20	912.00 198.00 91.20
TERMS: Net	30-Interest of 1	1/2% per month (18% per annum) added to accounts over 90 days	Subto Sales	otal Tax (5	.25%)	\$1,201.20
			Paym	nents/	Credits	\$0.00
			Tota	1		\$1,264.26

INVOICE SUPPORTING DOCUMENTS

Date	24-HOUR SERVICE, CALL LOVINGTON (575) 396-4948 TATUM (575) 398-4960	GANDY COI KILL TRUCKS - VACUUM T ROLL OFFS - TANK CLEA PRC #	TRUCKS - WINC	CH TRUCKS	L	586	N MEXICO 88260
Company Therigh Parchase Order No Invoice No Nom Epifet 620 Rig No Location Tite and Pade Not Location Tites Cat Pade Pade AM Tites Cat Pade Pade Pade Detect Oil Produced Water Pade Pade Produced Water Pade Pade Pade Pade Produced Water Pade Pade <th>11-18-24</th> <th></th> <th>-</th> <th>N</th> <th></th> <th>25</th> <th>6230</th>	11-18-24		-	N		25	6230
Rom Ephersban Rig No. Location To lase Will No. Location The Coll AM Total In AM THE RATE AMOUNT The Coll Brite Water Trend Water The Coll Brite Water Trend Water The Location The Coll AMOUNT The AMOUNT Bits Hadred 220 90 1987 The Coll of the						Invoice N	ło
To Less	From EDDerbon						
The Content of Public Network Pred Water Pre	To Lease				Location		
Died Brick Wier Pred War Pred War But Hadre Bd O , 90 198. Product Wer Pred War But Hadre Bd O , 90 198. Drown Openator or Putter Schulos filler 1006 f. S. 91.5 91.60 91.20 Helper Helper Helper Helper Description of Work Hard To Empty out Kouch to Sculo Had No heil loads of P/w / 23/1 Richard SRX) - 12399 / 23/1 Sub Total 1202, 20 Sales Tax 4.3006					TIME	RATE	AMOUNT
Dever Operator or Punker Sampas Perlant Hape Hape Hape Hape Devery Operator or Punker Sampas Perlant Hape Devery Operator of Work Hard to Compty out Porac & book to Sculo Hard to hard of P/W Richard SOX - 12309 12311 Sub Total 1281,000 Sub Total 1281,000							
nteper Helper Helper Helper Description of Work Hack to empty out touc & book to ScuO Helper Description of Work Hack to empty out touc & book to ScuO Helper Richard(SOX) - 12309 12311 Sub Total 1209 Sub Total 1		Bbls. Hauled	820)		.90	198.
nteper Helper Helper Helper Description of Work Hack to empty out touc & book to ScuO Helper Description of Work Hack to empty out touc & book to ScuO Helper Richard(SOX) - 12309 12311 Sub Total 1209 Sub Total 1	Driver, Operator or Pusher Sh. L. B				95	9/20	91200
héper Héper Héper Description of Work Had to Empty out Kore & bok to Swo Hend to have loads of flue Richard(SOX) - 12309 12311 Sub Total 1209 Sub Total 1209 Site Tax Sub Total 1209 Site Tax Site Tax		19-3		10% S.	9.5		91.50
httpe: Other Charges Description of Work Had to empty, out touc & took to Swo 4 and to had loads of P/w Richard SGX) - 12359 123/1 Sub Total / 200, 20 Siles Tax 4 3.00	Helper	······					
Other Charges Description of Work Had to Empty out fore & took to Swa Hend to had loads of flue Richard SAX) - 12309 12311 Sub Totel 1201, 20 Sub Totel 1201, 20 Sales Tas 63.00	Helper				1	1	
Lud to hell loads of P/W Richards(N) - 12309 123/1 Sub Total 120/.20 Sub Total 120/.20 Sub Total 120/.20 Sub Total 120/.20	Other Charges	· · · · · · · · · · · · · · · · · · ·			<u> </u>		······
Sales Tax 43,04							
Sales Tax 43,04		······································					
Sales Tax 43,04						· · · · · · · · · · · · · · · · · · ·	<u></u>
Sales Tax 43,04			· · · · · · · · · · · · · · · · · · ·				
Sales Tax 43,04							
Sales Tax 43,04				-,-*	<u>.</u>	······································	
Sales Tax 43,04			<u> </u>				
Sales Tax 43,04							<u> </u>
Sales Tax 43,04		<u> </u>	·				
Sales Tax 43,04		······································					<u> </u>
Sales Tax 43,04							
Sales Tax 43,04							
Sales Tax 43,04			······	<u>. </u>			
Sales Tax 43,04		·····					
Sales Tax 43,04						Sub Total	1201.20
TOTAL 1264.24					·····		43.06
						TOTAL	1264.24

Page 81 of 137

•

Authorized By:

Page 82 of 137

Facility Operator						
DKD, LLC						
Facility	Richards	on SWD				
Ticket #	12311					
Date	October	18 2024				
Start	Time	End Time				
01:29	€ PM					
	Service C	Company				
GANDY CORPORATION						
Driver Santos Palacio						
Tru	ck #	Service Ticket #				
A.C		586681				
40)5	086681				
40	Source (
4(Operator				
	Source (TAF	Operator				
	Source (TAF	Operator RGA me (Lease)				
	Source (TAF ource Nat EPPEI	Operator RGA me (Lease)				
S	Source (TAF ource Nat EPPEI	Operator RGA me (Lease) RSON				
S	Source (TAF ource Nat EPPEI ce #	Operator RGA me (Lease) RSON Well #				
Sour	Source (TAF ource Nat EPPEI ce #	Operator RGA me (Lease) RSON Well # EPPERSON				

•

X IL Cl

※※#·J...絶動**しばの**

.

.

-

Page 83 of 137

Facility Operator						
DKD, LLC						
Facility	Richards	Richardson SWD				
Ticket #	12309					
Date	October	18 2024				
Start	Time	End Time				
11:29) AM					
	Service C	Sompany				
GA	ANDY COP	RPORATION				
Driver Santos Palacio						
True	ck #	Service Ticket #				
40)5	586681				
	Source (Operator				
	TAF	RGA				
S	ource Na	me (Lease)				
	EPPE	RSON				
Sour	ce #	Well #				
		EPPERSON				
Mate	erial	Volume				
Production 120 bbls						

X Sta- En - **. .** .

.

Appendix G

Laboratory Reports

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Brenda Balbino Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701 Generated 8/27/2024 5:10:39 PM

JOB DESCRIPTION

Epperson 23-0115-03

JOB NUMBER

880-47655-1

ËOL

2**T DR** ino nc. ield 202

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 8/27/2024 5:10:39 PM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 87 of 137

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	9
Lab Chronicle	10
Certification Summary	11
Method Summary	12
Sample Summary	13
Chain of Custody	14
-	15

Definitions/Glossary

Client: Larson & Associates, Inc. Project/Site: Epperson

Job ID: 880-47655-1 SDG: 23-0115-03

Qualifiers

CV0A1 Qualifier Qualifier Description 4 U Indicates the analyte was analyzed for but not detected. 5 Clossary 5 Abbreviation These commonly used abbreviations may or may not be present in this report. 6 T Listed under the "D" column to designate that the result is reported on a dry weight basis 7 SR Percent Recovery 7 CFL Colons Free Liquid 7 DR Duplicate Error Ratio (normalized absolute difference) 9 DI Fac Duplicate Error Ratio (normalized absolute difference) 9 DL Detection Limit (DoDIDOE) 9 DL Detection Limit (DoDIDOE) 9 DL Detection Limit (DoDIDOE) 11 DL Detection Limit (DoDIDOE) 11 DL Estimated Detection Limit (DoDIDOE) 11 DL Estimated Detection Limit (DoDIDOE) 11 DL Estimated Detection Limit (DoDIDOE) 11 DL Estimated Detection Limit (Datation DonDODOE) 13 DL Maint Detectable Concentration (Radiochemistry) 13 MDA Minimum Detectable Concentration	Qualifiers		- 3
U Indicates the analyte was analyzed for but not detected. 5 Abbreviation These commonly used abbreviations may or may not be present in this report. 6 x Listed under the "D" column to designate that the result is reported on a dry weight basis 7 %R Percent Recovery 7 CFL Contains Free Liquid 7 DIF Ac Dilution Factor 8 DL Detection Limit (DoD/DCE) 9 DL Detection Limit (DoD/DCE) 9 DL Detection Limit (DoD/DCE) 9 DL Detection Limit (DoD/DCE) 10 LOO Limit of Detection (Dod/DOE) 11 LOD Limit of Detection (Dod/DOE) 11 LOD Limit of Detection (Dod/DOE) 12 MDA Minimum Detectable Activity (Radiochemistry) 13 MDC Minimum Detectable Activity (Radiochemistry) 13 MDL Method Quantitation Limit 14 ML Minimum Detectable Activity (Radiochemistry) 14 MDL Method Quantitation Limit 14			
Giossary 5 Abbreviation These commonly used abbreviations may or may not be present in this report. 6 T Listed under the "D" column to designate that the result is reported on a dry weight basis 7 SR Percent Recovery 7 CFL Contains Free Liquid 7 CFU Colory Forming Unit 8 DR Duplicate Error Ratio (normalized absolute difference) 9 DL Detection Limit (DoD/DCE) 9 DL Detection Limit (DoD/DCE) 9 DL Detection Limit (DoD/DCE) 11 DQ Limit of Detection Limit (DoD/DCE) 11 LOQ Limit of Countiation (Radiochemistry) 11 DQ Limit of Detection Limit (DoD/DCE) 11 NDA Minimum Detectable Activity (Radiochemistry) 11 MDA Minimum Detectable Activity (Radiochemistry) 13 MDC Minimum Detectable Activity (Radiochemistry) 13 MDA Minimum Detectable Activity (Radiochemistry) 14 MI Minimum Detectable Activity (Radiochemistry) 14 MDA Minimum Detectable Activity (Radiochemistry) <td></td> <td>· .</td> <td>_ 4</td>		· .	_ 4
Abbreviation These commonly used abbreviations may or may not be present in this report. Isited under the "D" column to designate that the result is reported on a dry weight basis Image: Contrains Pree Liquid Image: Contrains Pree Contrains Pree Contrains Pree Contrains Pree Contrains Pree Contrains Pree Contrains Pree Contrains Pree Contrains Pree Contrains Pree Contrains Pree Contrains Pree Contrains Pree Contrains Pree Contrains Contrains Contrains Contrains Contrains Contrains Contrains Pree Pree Pree Pree Pree Pree Pree Pre	U	Indicates the analyte was analyzed for but not detected.	
u Listed under the "D" column to designate that the result is reported on a dry weight basis 9 %R Percent Recovery 7 CFL Contains Free Liquid 7 CFU Colony Forming Unit 8 DER Duplicate Error Ratio (normalized absolute difference) 9 Dil Fac Dilution Factor 9 DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample 10 DLC Decision Level Concentration (Radiochemistry) 11 EDL Estimated Detection Limit (DoXIDOE) 11 LOO Limit of Detection DoDOE) 11 LOD Limit of Detection DoD/DOE) 12 MDA Minimum Detectable Activity (Radiochemistry) 13 MDC Minimum Detectable Concentration (Radiochemistry) 13 MDC Minimum Detectable Concentration (Radiochemistry) 13 MDC Minimum Detectable Concentration (Radiochemistry) 13 MDA Minimum Detectable Concentration (Radiochemistry) 13 MDC Minimum Level (Dioxin) 14 <td>Glossary</td> <td></td> <td>- 5</td>	Glossary		- 5
%RPercent Recovery7CFLContains Free Liquid7CFUColory Forming Unit8CNFContains No Free Liquid8DERDuplicate Error Ratio (normalized absolute difference)9Dill FacDilution Fachar9DLA Ection Limit (DoD/DOE)9DL, RA, RE, INIndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample10DLDetection Limit (DoD/DOE)11EDLDetection Constration (Radiochemistry)11EDLEstimated Detection Limit (Dioxin)11LOQLimit of Detection (DoD/DOE)12MCLEPA recommended "Maximum Contaminant Level"13MDAMinimum Detectable Activity (Radiochemistry)13MDLMinimum Detectable Activity (Radiochemistry)13MDLMinimum Detectable Concentration (Radiochemistry)13MDLMinimum Detectable Concentration (Radiochemistry)13MDLMinimum Detectable Concentration (Radiochemistry)14MDLMinimum Detectable Concentration (Radiochemistry)14MDLMinimum Detectable Concentration (Radiochemistry)14MDLMinimum Detectable Concentration (Radiochemistry)14MDLMost Probable Number14MDLMost Probable Number14MDLNot Detection Limit14MDLNot Detection Limit14MDLNot Detection Limit14MDLNot Detection Limit </td <td>Abbreviation</td> <td>These commonly used abbreviations may or may not be present in this report.</td> <td></td>	Abbreviation	These commonly used abbreviations may or may not be present in this report.	
CFLContains Free LiquidImage: Control of Control Con	¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
CFUColony Forming Unit8CNFContains No Free Liquid9DERDuplicate Error Ratio (normalized absolute difference)9Dil FacDiution Factor9DLDetection Limit (DoD/DOE)9DL, RA, RE, INIndicets a Diution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample10DLDetection Limit (DoD/DOE)11LODetection Limit (DoD/DOE)11LOLimit of Detection (Radiochemistry)12MDAInimum Detectable Concentration (Radiochemistry)12MDAMinimum Detectable Activity (Radiochemistry)13MDCMinimum Detectable Activity (Radiochemistry)14MDAMinimum Detectable Concentration (Radiochemistry)14MDAMinimum Detectable Concentration (Radiochemistry)14MDAMinimum Detectable Concentration (Radiochemistry)14MDAMinimum Detectable Concentration (Radiochemistry)14MDAMonimum Detectable Concentration (Radiochemistry)14MDANot Detectad at the reporting limit (or MDL or EDL if shown)14NCNot Detectad at the reporting limit (or MDL or EDL if shown	%R	Percent Recovery	
CNFContais No Free Liquid8DERDuplicate Error Ratio (normalized absolute difference)9Dil FacDiution Factor9DLDetection Limit (DoDDOE)9DL, RA, RE, INIndicates a Diution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample10DLCDecision Level Concentration (Radiochemistry)11LODEstimated Detection Limit (DioXin)12LOQLimit of Detection (DoD/DOE)12LOQEnvironmended "Maximum Contaminant Level"13MDLEPA recommended "Maximum Contaminant Level"13MDLMethod Detection Limit (DioXin)13MDLMethod Detection Limit (DioXin)13MDLMethod Detection Limit14MDAMinimum Detectable Activity (Radiochemistry)13MDLMethod Dutection Limit14MLMinimum Level (DioXin)14MLMethod Quantitation Limit14MLMethod Quantitation Limit14MDLNot Detected at the reporting limit (or MDL or EDL if shown)14NEGNegative / Absent14POSPolicial Quantitation Limit14PRSPresumptive14PRSPresumptive14PRSPresumptive14PRSPresumptive14PRSPresumptive14PRSPresumptive14PRSPresumptive14PRSPresumptive14PRS<	CFL	Contains Free Liquid	
DERDuplicate Error Ratio (normalized absolute difference)9DIF FacDilution Factor9DLDetection Limit (DoD/DOE)10DL, RA, RE, INIndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample10DLCDecision Level Concentration (Radiochemistry)10EDLEstimated Detection Limit (Dioxin)11LODLimit of Detection (DoD/DOE)12MCLEPA recommended "Maximum Contaminant Level"12MDAMinimum Detectable Activity (Radiochemistry)13MDCMinimum Detectable Activity (Radiochemistry)14MDAMinimum Detectable Activity (Radiochemistry)14MDAMinimum Detectable Activity (Radiochemistry)14MDAMinimum Detectable Activity (Radiochemistry)14MDAMonimum Level (Dioxin)14MDAMonimum Level (Dioxin)14 <td>CFU</td> <td>Colony Forming Unit</td> <td>0</td>	CFU	Colony Forming Unit	0
Dil FacDilution Factor9DLDetection Limit (DoD//DOE)DL, RA, RE, INIndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample10DLCDecision Level Concentration (Radiochemistry)11EDLEstimated Detection (DoD//DOE)11LOQLimit of Detection (DoD//DOE)12MCLEPA recommended "Maximum Contaminant Level"13MDAMinimum Detectable Activity (Radiochemistry)13MDCMinimum Detectable Concentration (Radiochemistry)13MDCMinimum Detectable Concentration (Radiochemistry)13MDCMinimum Detectable Concentration (Radiochemistry)14MLMinimum Level (Dioxin)14MLMinimum Level (Dioxin)14MLMinimum Level (Dioxin)14MLMinimum Level (Dioxin)14MPNMost Probable Number14MQLNot Detected at the reporting limit (or MDL or EDL if shown)14NEGNegative / Absent14POSPositive / Present14PQLPractical Quantitation Limit14PRESPresumptive14QCQuality Control14RERReltive Error Ratio (Radiochemistry)14RERReltive Error Ratio (Radiochemistry)14RERReltive Error Ratio (Radiochemistry)14RERReltive Error Ratio (Radiochemistry)14RERReltive Error Ratio (Radiochemistry)14RE	CNF	Contains No Free Liquid	Ō
DL Detection Limit (DoD/DOE) DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample 10 DLC Decision Level Concentration (Radiochemistry) 11 EDL Estimated Detection Limit (Dioxin) 11 LOQ Limit of Detection (DoD/DOE) 11 LOQ Limit of Quantitation (DoD/DOE) 12 MCL EPA recommended "Maximum Contaminant Level" 13 MDA Minimum Detectable Activity (Radiochemistry) 13 MDL Method Detection Limit (Radiochemistry) 14 ML Minimum Level (Dioxin)	DER	Duplicate Error Ratio (normalized absolute difference)	
DL, RA, RE, INIndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sampleIIIDLCDecision Level Concentration (Radiochemistry)IIIEDLEstimated Detection Limit (Dioxin)IIILOQLimit of Detection (DoD/DOE)IIILOQLimit of Quantitation (DoD/DOE)IIIMCLEPA recommended "Maximum Contaminant Level"IIIMDAMinimum Detectable Activity (Radiochemistry)IIIIMDCMinimum Detectable Activity (Radiochemistry)IIIIIMDLMethod Detection LimitIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Dil Fac	Dilution Factor	9
DLCDecision Level Concentration (Radiochemistry)EDLEstimated Detection Limit (Dioxin)LOQLimit of Detection (DoD/DOE)LOQLimit of Quantitation (DoD/DOE)MCLEPA recommended "Maximum Contaminant Level"MDAMinimum Detectable Activity (Radiochemistry)MDAMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection Limit (Radiochemistry)MDLMethod Detection LimitMLMinimum Level (Dioxin)MPNMost Probable NumberMCLMethod Quantitation LimitNCNot CalculatedNCNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Precent Difference, a measure of the relative difference between two pointsTEFQToxicity Equivalent Factor (Dioxin)	DL	Detection Limit (DoD/DOE)	
EDLEstimated Detection Limit (Dixin)11LODLimit of Detection (DoD/DOE)12LOQLimit of Quantitation (DoD/DOE)12MCLEPA recommended "Maximum Contaminant Level"13MDAMinimum Detectable Activity (Radiochemistry)13MDCMinimum Detectable Activity (Radiochemistry)13MDLMethod Detection Limit14MLMinimum Level (Dioxin)14MLMinimum Level (Dioxin)14MDAMointrum Level (Dioxin)14MDLMethod Quantitation Limit14MCMothod Quantitation Limit14NCNot Calculated15NDNot Detected at the reporting limit (or MDL or EDL if shown)15NEGNegative / Absent14POSPositive / Present15POSPositive / Present15POSPositive / Concultation Limit14PRESPresumptive15QCQuality Control15RERRelative Error Ratio (Radiochemistry)15RLReporting Limit or Requested Limit (Radiochemistry)15RPDRelative Percent Difference, a measure of the relative difference between two points15TEQToxicity Equivalent Actor (Dixin)15	DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
LODLimit of Detection (DoD/DOE)LOQLimit of Quantitation (DoD/DOE)MCLEPA recommended "Maximum Contaminant Level"MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMLMinimum Level (Dioxin)MPNMost Probable NumberMQLMethod Quantitation LimitNCNot CalculatedNDNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFQToxicity Equivalent Quotient (Dioxin)	DLC	Decision Level Concentration (Radiochemistry)	
LOQLimit of Quantitation (DoD/DOE)12MCLEPA recommended "Maximum Contaminant Level"13MDAMinimum Detectable Activity (Radiochemistry)13MDCMinimum Detectable Concentration (Radiochemistry)13MDLMethod Detection Limit14MDLMinimum Level (Dioxin)14MPNMost Probable Number14MQLMethod Quantitation Limit14NCNot Calculated14NDNot Detected at the reporting limit (or MDL or EDL if shown)14NEGNegative / Absent14POSPositive / Present14PQLPractical Quantitation Limit14PRESPresumptive14QCQuality Control14RERRelative Error Ratio (Radiochemistry)14RPDRelative Procent Difference, a measure of the relative difference between two points14TEFToxicity Equivalent Factor (Dioxin)14	EDL	Estimated Detection Limit (Dioxin)	
MCLEPA recommended "Maximum Contaminant Level"MDAMinimum Detectable Activity (Radiochemistry)13MDCMinimum Detectable Concentration (Radiochemistry)13MDLMethod Detection Limit14MLMinimum Level (Dioxin)14MLMinimum Level (Dioxin)14MPNMost Probable Number14MQLMethod Quantitation Limit14NCNot Calculated14NDNot Detected at the reporting limit (or MDL or EDL if shown)14NEGNegative / Absent14POSPositive / Present14PQLPractical Quantitation Limit14PRESPresumptive14QCQuality Control14RERRelative Error Ratio (Radiochemistry)14RLReporting Limit or Requested Limit (Radiochemistry)14RPDRelative Prercent Difference, a measure of the relative difference between two points14TEFToxicity Equivalent Factor (Dioxin)14TEQToxicity Equivalent Quotient (Dioxin)14	LOD	Limit of Detection (DoD/DOE)	
MDAMinimum Detectable Activity (Radiochemistry)13MDCMinimum Detectable Concentration (Radiochemistry)14MDLMethod Detection Limit14MLMinimum Level (Dioxin)14MPNMost Probable Number14MQLMethod Quantitation Limit14NCNot Calculated14NDNot Detected at the reporting limit (or MDL or EDL if shown)14NEGNegative / Absent14POSPositive / Present14PQLPractical Quantitation Limit14PRESPresumptive14QCQuality Control14RERRelative Error Ratio (Radiochemistry)14REDReporting Limit or Requested Limit (Radiochemistry)14RPDRelative Procent Difference, a measure of the relative difference between two points14TEQToxicity Equivalent Factor (Dioxin)14	LOQ	Limit of Quantitation (DoD/DOE)	
MDCMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMLMinimum Level (Dioxin)MPNMost Probable NumberMQLMethod Quantitation LimitNCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPQLPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEQToxicity Equivalent Quotient (Dioxin)	MCL	EPA recommended "Maximum Contaminant Level"	
MDLMethod Detection LimitMainMLMinimum Level (Dioxin)14MPNMost Probable Number14MQLMethod Quantitation Limit14NCNot Calculated14NDNot Detected at the reporting limit (or MDL or EDL if shown)14NEGNegative / Absent14POSPositive / Present14PQLPractical Quantitation Limit14PRESPresumptive14QCQuality Control14RERRelative Error Ratio (Radiochemistry)14RLReporting Limit or Requested Limit (Radiochemistry)14RPDRelative Parcent Difference, a measure of the relative difference between two points14TEFToxicity Equivalent Factor (Dioxin)14TEQToxicity Equivalent Quotient (Dioxin)14	MDA	Minimum Detectable Activity (Radiochemistry)	
MLMinimum Level (Dioxin)MPNMost Probable NumberMQLMethod Quantitation LimitNCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Precent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	MDC	Minimum Detectable Concentration (Radiochemistry)	
MPNMost Probable NumberMQLMethod Quantitation LimitNCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	MDL	Method Detection Limit	
MQLMethod Quantitation LimitNCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	ML	Minimum Level (Dioxin)	
NCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)	MPN	Most Probable Number	
NDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	MQL	Method Quantitation Limit	
NEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	NC	Not Calculated	
POSOPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	NEG	Negative / Absent	
PRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	POS	Positive / Present	
QCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	PQL	Practical Quantitation Limit	
RERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	PRES	Presumptive	
RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	QC	Quality Control	
RPD Relative Percent Difference, a measure of the relative difference between two points TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)	RER	Relative Error Ratio (Radiochemistry)	
TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)	RL	Reporting Limit or Requested Limit (Radiochemistry)	
TEQ Toxicity Equivalent Quotient (Dioxin)	RPD	Relative Percent Difference, a measure of the relative difference between two points	
	TEF	Toxicity Equivalent Factor (Dioxin)	
	TEQ	Toxicity Equivalent Quotient (Dioxin)	
	TNTC		

Case Narrative

Client: Larson & Associates, Inc. Project: Epperson

Job ID: 880-47655-1

Job ID: 880-47655-1

Job Narrative 880-47655-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 8/23/2024 5:00 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -0.3°C.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Page 89 of 137

Eurofins Midland

Client Sample Results

Client: Larson & Associates, Inc. Project/Site: Epperson

Client Sample ID: TWM-1 Date Collected: 08/23/24 11:00 Date Received: 08/23/24 17:00

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Lab Sam	

Page 90 of 137

Dil Fac

20

20

20

20

20

20

20

20

1

Dil Fac

Dil Fac

nple ID: 880-47655-1 **Matrix: Water**

5

Eurofins Midland

Method: SW846 8021B - Volatile Organic Compounds (GC) Result Qualifier RL Unit D Prepared Analyzed 40.0 ug/L 08/26/24 14:54 352 40.0 08/26/24 14:54 **584** ug/L Ethylbenzene 936 40.0 ug/L 08/26/24 14:54 80.0 ug/L 08/26/24 14:54 m,p-Xylenes 2130 997 40.0 ug/L 08/26/24 14:54 80.0 ug/L 08/26/24 14:54 **Xylenes**, Total 3130 %Recovery Qualifier Limits Prepared Analyzed 4-Bromofluorobenzene (Surr) 126 70 - 130 08/26/24 14:54 1,4-Difluorobenzene (Surr) 105 70 - 130 08/26/24 14:54

Method: TAL SOP Total BTEX	- Total BTEX Calcu	lation				
Analyte	Result Qualifier	· RL	Unit	D	Prepared	Analyzed
Total BTEX	5.00	0.0800	mg/L			08/26/24 14:54

Client: Larson & Associates, Inc. Project/Site: Epperson

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Water

-			Pe
		BFB1	DFBZ1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-47655-1	TWM-1	126	105
LCS 880-89364/3	Lab Control Sample	102	103
LCSD 880-89364/4	Lab Control Sample Dup	98	106
MB 880-89364/8	Method Blank	103	90
Surrogate Legend			

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Page 91 of 137

5 6

Job ID: 880-47655-1 SDG: 23-O115-03

Prep Type: Total/NA

Eurofins Midland

QC Sample Results

Client: Larson & Associates, Inc. Project/Site: Epperson

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-89364/8 **Matrix: Water**

Analysis Batch: 89364

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<2.00	U	2.00	ug/L			08/26/24 13:10	1
Toluene	<2.00	U	2.00	ug/L			08/26/24 13:10	1
Ethylbenzene	<2.00	U	2.00	ug/L			08/26/24 13:10	1
m,p-Xylenes	<4.00	U	4.00	ug/L			08/26/24 13:10	1
o-Xylene	<2.00	U	2.00	ug/L			08/26/24 13:10	1
Xylenes, Total	<4.00	U	4.00	ug/L			08/26/24 13:10	1
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130				08/26/24 13:10	1
1,4-Difluorobenzene (Surr)	90		70 - 130				08/26/24 13:10	1

Lab Sample ID: LCS 880-89364/3 Matrix: Water Analysis Batch: 89364

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	100	114.3		ug/L		114	70 - 130	
Toluene	100	107.8		ug/L		108	70 - 130	
Ethylbenzene	100	110.8		ug/L		111	70 - 130	
m,p-Xylenes	200	226.7		ug/L		113	70 - 130	
o-Xylene	100	114.7		ug/L		115	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: LCSD 880-89364/4

Matrix: Water Analysis Batch: 89364

Analysis Baton. 00004	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	100	119.7		ug/L		120	70 - 130	5	20
Toluene	100	109.8		ug/L		110	70 - 130	2	20
Ethylbenzene	100	113.1		ug/L		113	70 - 130	2	20
m,p-Xylenes	200	230.9		ug/L		115	70 - 130	2	20
o-Xylene	100	116.4		ug/L		116	70 - 130	1	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		70 - 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Job ID: 880-47655-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Page 92 of 137

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Eurofins Midland

QC Association Summary

Client: Larson & Associates, Inc. Project/Site: Epperson

Job ID: 880-47655-1 SDG: 23-0115-03

GC VOA

Analysis Batch: 89364

Lab Sample IDClient Sample IDPrep TypeMatrixMethodPrep Batch880-47655-1TWM-1Total/NAWater8021BMB 880-89364/8Method BlankTotal/NAWater8021BLCS 880-89364/3Lab Control SampleTotal/NAWater8021BLCSD 880-89364/4Lab Control Sample DupTotal/NAWater8021Bnalysis Batch: 89479Eab Sample IDClient Sample IDPrep TypeMatrixMethodPrep Batch880-47655-1TWM-1Total/NAWaterTotal BTEXPrep Batch	880-47655-1 TWM-1 Total/NA Water 8021B MB 880-89364/8 Method Blank Total/NA Water 8021B LCS 880-89364/3 Lab Control Sample Total/NA Water 8021B LCSD 880-89364/4 Lab Control Sample Dup Total/NA Water 8021B nalysis Batch: 89479 Client Sample ID Prep Type Matrix Method	rep Batch
MB 880-89364/8 Method Blank Total/NA Water 8021B CS 880-89364/3 Lab Control Sample Total/NA Water 8021B CSD 880-89364/4 Lab Control Sample Dup Total/NA Water 8021B nalysis Batch: 89479 Elient Sample ID Prep Type Matrix Method Prep Batch	MB 880-89364/8 Method Blank Total/NA Water 8021B CS 880-89364/3 Lab Control Sample Total/NA Water 8021B CSD 880-89364/4 Lab Control Sample Dup Total/NA Water 8021B nalysis Batch: 89479 Client Sample ID Prep Type Matrix Method Method I	
CS 880-89364/3 Lab Control Sample Total/NA Water 8021B CSD 880-89364/4 Lab Control Sample Dup Total/NA Water 8021B nalysis Batch: 89479 Elient Sample ID Prep Type Matrix Method Prep Batch	CS 880-89364/3 Lab Control Sample Total/NA Water 8021B CSD 880-89364/4 Lab Control Sample Dup Total/NA Water 8021B nalysis Batch: 89479 Image: Client Sample ID Prep Type Matrix Method Image: Client Sample ID	
CSD 880-89364/4 Lab Control Sample Dup Total/NA Water 8021B nalysis Batch: 89479 ab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch	CSD 880-89364/4 Lab Control Sample Dup Total/NA Water 8021B alysis Batch: 89479 ab Sample ID Client Sample ID Prep Type Matrix Method I	
ab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch	alysis Batch: 89479 ab Sample ID Prep Type Matrix Method I	
ab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch	ab Sample ID Prep Type Matrix Method I	
30-47655-1 TWM-1 Total BTEX Total BTEX	B0-47655-1 TWM-1 Total/NA Water Total BTEX	rep Batch

Eurofins Midland

Page 93 of 137

Lab Chronicle

Client: Larson & Associates, Inc. Project/Site: Epperson

Client Sample ID: TWM-1 Date Collected: 08/23/24 11:00 Date Received: 08/23/24 17:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		20	5 mL	5 mL	89364	08/26/24 14:54	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			89479	08/26/24 14:54	SM	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-47655-1 SDG: 23-0115-03

Lab Sample ID: 880-47655-1 Matrix: Water

Matrix: Water

5 6

9

Eurofins Midland

Released to Imaging: 7/1/2025 9:20:22 AM

Accreditation/Certification Summary

Client: Larson & Associates, Inc. P

Job ID: 880-47655-1

Page 95 of 137

10

163, 110.			JOD ID. 000-47033-1	
			SDG: 23-0115-03	
IS Midland alytes for this laboratory w	vere covered under each	h accreditation/certification below.		
Progra	ım	Identification Number	Expiration Date	
		T104704400	06-30-25	5
loes not offer certification.		, , , ,	ity. This list may include analytes	6
	Water	Total BTEX		
				8
				9
	are included in this report	As Midland alytes for this laboratory were covered under each Program NELAP are included in this report, but the laboratory is re- loes not offer certification. Prep Method Matrix	As Midland alytes for this laboratory were covered under each accreditation/certification below. Program NELAP Identification Number T104704400 are included in this report, but the laboratory is not certified by the governing author loes not offer certification. Prep Method Matrix Analyte	SDG: 23-0115-03 As Midland alytes for this laboratory were covered under each accreditation/certification below. Program Identification Number Expiration Date NELAP T104704400 06-30-25 are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes loses not offer certification. Prep Method Matrix Analyte

Eurofins Midland

.

Method Summary

Client: Larson & Associates, Inc. Project/Site: Epperson

Job ID: 880-47655-1 SDG: 23-0115-03

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
otal BTEX	Total BTEX Calculation	TAL SOP	EET MID
030B	Purge and Trap	SW846	EET MID
Protocol R	eferences:		
SW846 :	= "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods",	Third Edition, November 1986 And Its Upda	tes.
TAL SOF	P = TestAmerica Laboratories, Standard Operating Procedure		
Laboratory	References:		
-	9 = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)7	04-5440	

Protocol References:

Laboratory References:

Eurofins Midland

Sample Summary

Client: Larson & Associates, Inc. Project/Site: Epperson Job ID: 880-47655-1 SDG: 23-O115-03

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-47655-1	TWM-1	Water	08/23/24 11:00	08/23/24 17:00

LABORATORY:

ENVOXINS

Released to Imaging: 7/1/2025 9:20:22 AM

Page 14 of 15

8/27/2024

Page 98 of 137

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Login Number: 47655 List Number: 1 Creator: Vasquez, Julisa

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

Job Number: 880-47655-1 SDG Number: 23-0115-03

List Source: Eurofins Midland

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701 Generated 2/14/2024 3:23:31 PM

JOB DESCRIPTION

Epperson 3233

JOB NUMBER

880-38793-1

2**T T**

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Page 100 of 137

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 2/14/2024 3:23:31 PM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
-	18

Definitions/Glossary

Client: Larson & Associates, Inc.
Project/Site: Epperson

Job ID: 880-38793-1

Project/Site: E	pperson SDG: 3233	
Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		5
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	8
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	Q
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	13
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Case Narrative

Job ID: 880-38793-1

Page 104 of 137

Job ID: 880-38793-1

Eurofins Midland

Job Narrative 880-38793-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 2/1/2024 4:27 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.8°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) precision for analytical batch 880-73077 was outside control limits. Sample non-homogeneity is suspected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for analytical batch 880-72526 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 880-38793-1 SDG: 3233

Project/Site: Epperson **Client Sample ID: TMW-3**

Client: Larson & Associates, Inc.

Lab Sample ID: 880-38793-1

Matrix: Water

5

Date	Collected:	02/01/24	09:35
Date	Received:	02/01/24	16:27

Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<2.00	U	2.00	ug/L			02/14/24 06:10	
Toluene	<2.00	U	2.00	ug/L			02/14/24 06:10	
Ethylbenzene	<2.00	U	2.00	ug/L			02/14/24 06:10	
m,p-Xylenes	<4.00	U	4.00	ug/L			02/14/24 06:10	
o-Xylene	<2.00	U	2.00	ug/L			02/14/24 06:10	
Xylenes, Total	<4.00	U	4.00	ug/L			02/14/24 06:10	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	108		70 - 130		-		02/14/24 06:10	
1,4-Difluorobenzene (Surr)	90		70 - 130				02/14/24 06:10	
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00400	U	0.00400	mg/L			02/14/24 06:10	
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Chloride	297	F1	5.00	mg/L			02/07/24 08:18	
ate Collected: 02/01/24 10:23 ate Received: 02/01/24 16:27							Matrix	k: Wat
Method: SW846 8021B - Volatile Analyte		ounds (GC) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Benzene	<2.00		2.00	ug/L			02/14/24 06:30	
Toluene	<2.00	U	2.00	ug/L			02/14/24 06:30	
Ethylbenzene	<2.00	U	2.00	ug/L			02/14/24 06:30	
m,p-Xylenes	<4.00	U	4.00	ug/L			02/14/24 06:30	
o-Xylene	<2.00	U	2.00	ug/L			02/14/24 06:30	
Xylenes, Total	<4.00	U	4.00	ug/L			02/14/24 06:30	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	106		70 - 130		-		02/14/24 06:30	-
1,4-Difluorobenzene (Surr)	103		70 - 130				02/14/24 06:30	
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Total BTEX	<0.00400	U	0.00400	mg/L			02/14/24 06:30	
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Analyte	51.6		2.50	mg/L			02/07/24 08:38	
Chloride						Lab San	nple ID: 880-3	8793-
Chloride lient Sample ID: TMW-4						Lab San		8793- k: Wat
Chloride Chloride Client Sample ID: TMW-4 ate Collected: 02/01/24 11:07 ate Received: 02/01/24 16:27						Lab San		
Chloride lient Sample ID: TMW-4 ate Collected: 02/01/24 11:07		ounds (GC)				Lab San		

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<2.00	U	2.00	ug/L			02/14/24 06:51	1
Toluene	<2.00	U	2.00	ug/L			02/14/24 06:51	1

Eurofins Midland

Job ID: 880-38793-1 SDG: 3233

Matrix: Water

5

Lab Sample ID: 880-38793-3

Client Sample ID: TMW-4

Client: Larson & Associates, Inc.

Project/Site: Epperson

Date Collected: 02/01/24 11:07 Date Received: 02/01/24 16:27

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	<2.00	U	2.00	ug/L			02/14/24 06:51	1
n,p-Xylenes	<4.00	U	4.00	ug/L			02/14/24 06:51	1
o-Xylene	<2.00	U	2.00	ug/L			02/14/24 06:51	1
Xylenes, Total	<4.00	U	4.00	ug/L			02/14/24 06:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	111		70 - 130		-		02/14/24 06:51	1
1,4-Difluorobenzene (Surr)	101		70 - 130				02/14/24 06:51	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/L			02/14/24 06:51	1
Method: EPA 300.0 - Anions, I	on Chromatograp	ohy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	52.3		2.50	mg/L			02/07/24 08:45	5
Method: SW846 8021B - Volati		ounds (GC) Qualifier	RL	Unit	D	Branarad	Analyzed	Dil Fac
Analyte Benzene			2.00	0/// ug/L		Prepared	Analyzed 02/14/24 07:11	
Toluene	<2.00		2.00	ug/L			02/14/24 07:11	1
Ethylbenzene	<2.00		2.00	ug/L			02/14/24 07:11	י 1
n,p-Xylenes	<4.00		4.00	ug/L			02/14/24 07:11	
o-Xylene	<2.00		2.00	ug/L			02/14/24 07:11	י 1
Xylenes, Total	<4.00		4.00	ug/L			02/14/24 07:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130		-	•	02/14/24 07:11	1
1,4-Difluorobenzene (Surr)	100		70 - 130				02/14/24 07:11	1
Method: TAL SOP Total BTEX	- Total BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/L			02/14/24 07:11	1
Method: EPA 300.0 - Anions, I	on Chromatograp	ohy						
Method: EPA 300.0 - Anions, I Analyte		o <mark>hy</mark> Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

02/07/24 08:52

Chloride

2.50

mg/L

52.2

5

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Water

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
880-38793-1	TMW-3	108	90		
880-38793-1 MS	TMW-3	124	98		6
880-38793-1 MSD	TMW-3	109	101		
880-38793-2	TMW-2	106	103		
880-38793-3	TMW-4	111	101		
880-38793-4	Dup-1	110	100		8
LCS 880-73077/34	Lab Control Sample	111	95		
LCSD 880-73077/35	Lab Control Sample Dup	114	95		0
MB 880-72955/5-A	Method Blank	79	98		3
MB 880-73077/39	Method Blank	80	99		
Surrogate Legend					
BFB = 4-Bromofluorobe	enzene (Surr)				
DFBZ = 1,4-Difluorober	nzene (Surr)				

urrogate Legend

Page 107 of 137

Job ID: 880-38793-1 SDG: 3233

Prep Type: Total/NA

Eurofins Midland

QC Sample Results

Method: 8021B - Volatile Organic Compounds (GC)

8 ,	
Job ID: 880-38793-1 SDG: 3233	2

Lab Sample ID: MB 880-72955/5-A									Client Sa	mple ID: Metho	
Matrix: Water										Prep Type:	
Analysis Batch: 73077										Prep Batc	h: 72955
		ΜВ									
Analyte			Qualifier			Unit	D		Prepared	Analyzed	Dil Fac
Benzene		.00		2.00		ug/L			02/12/24 16:23	02/13/24 19:14	1
Toluene		.00		2.00		ug/L			02/12/24 16:23	02/13/24 19:14	1
Ethylbenzene		.00		2.00		ug/L			02/12/24 16:23	02/13/24 19:14	1
m,p-Xylenes		.00		4.00		ug/L			02/12/24 16:23	02/13/24 19:14	1
o-Xylene		.00		2.00		ug/L			02/12/24 16:23	02/13/24 19:14	1
Xylenes, Total	<4	.00	U	4.00		ug/L			02/12/24 16:23	02/13/24 19:14	1
	I	ΜВ	МВ								
Surrogate	%Recov	ery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		79		70 - 130					02/12/24 16:23	02/13/24 19:14	1
1,4-Difluorobenzene (Surr)		98		70 - 130					02/12/24 16:23	02/13/24 19:14	1
Lak Camala ID: MD 000 72077/20									Olivert Or		
Lab Sample ID: MB 880-73077/39 Matrix: Water									Client Sa	mple ID: Metho	
										Prep Type:	TOLAI/INA
Analysis Batch: 73077		мв	MB								
Analyte			Qualifier	RL		Unit	D		Prepared	Analyzed	Dil Fac
Benzene		.00		2.00		ug/L			riepaieu	02/14/24 05:48	1
Toluene		.00		2.00		ug/L				02/14/24 05:48	1
		.00		2.00		-				02/14/24 05:48	1
Ethylbenzene						ug/L					
m,p-Xylenes		.00		4.00		ug/L				02/14/24 05:48	1
o-Xylene		.00		2.00		ug/L				02/14/24 05:48	1
Xylenes, Total	<4	.00	0	4.00		ug/L				02/14/24 05:48	1
	I	ΜВ	МВ								
Surrogate	%Recov	ery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		80		70 - 130				_		02/14/24 05:48	1
1,4-Difluorobenzene (Surr)		99		70 - 130						02/14/24 05:48	1
- Lab Sample ID: LCS 880-73077/34								Cli	iont Samplo I	D: Lab Control	Sample
Matrix: Water								•	on ounpion	Prep Type:	
Analysis Batch: 73077											Total The
Analysis Baten. room				Spike	LCS	LCS				%Rec	
Analyte				Added		Qualifier	Unit		D %Rec	Limits	
Benzene				100	79.93		ug/L	_		70 - 130	
Toluene				100	106.8		ug/L		107	70 - 130	
Ethylbenzene				100	100.6		ug/L		101	70 - 130	
m,p-Xylenes				200	209.1		ug/L		101	70 - 130	
										70 - 130	
o-Xylene				100	106.7		ug/L		107	70 - 130	
	LCS L										
	Recovery		ifier	Limits							
4-Bromofluorobenzene (Surr)	Recovery 111		ifier	70 - 130							
	Recovery		fier								
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	6 Recovery 111 95		ifier	70 - 130			Clien	nt S	Sample ID: La	ab Control San	nple Dup
4-Bromofluorobenzene (Surr)	6 Recovery 111 95		ifier	70 - 130			Clien	nt S	Sample ID: La	ab Control San Prep Type:	
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-73077/3 Matrix: Water	6 Recovery 111 95		ifier	70 - 130			Clien	nt S	Sample ID: La	ab Control San Prep Type:	
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-73077/3	6 Recovery 111 95		fier	70 - 130 70 - 130	LCSD	LCSD	Clien	nt S	Sample ID: La		
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-73077/3 Matrix: Water	6 Recovery 111 95		fier	70 - 130		LCSD Qualifier	Clien	nt S	Sample ID: La	Prep Type:	Total/NA RPD

5

Eurofins Midland
Client: Larson & Associates, Inc. Project/Site: Epperson

Job ID: 880-38793-1 SDG: 3233

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-73077/35 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA Analysis Batch: 73077 Spike LCSD LCSD %Rec RPD Analyte Added **Result Qualifier** Unit %Rec Limits RPD Limit D Toluene 100 110.5 110 70 - 130 20 ug/L 3 Ethylbenzene 100 104.7 ug/L 105 70 - 130 4 20 200 m,p-Xylenes 214.1 ug/L 107 70 - 130 2 20 o-Xylene 100 109.7 ug/L 110 70 - 130 3 20 LCSD LCSD %Recovery Qualifier Limits Surrogate 70 - 130 4-Bromofluorobenzene (Surr) 114 1,4-Difluorobenzene (Surr) 95 70 - 130 Lab Sample ID: 880-38793-1 MS **Client Sample ID: TMW-3**

Matrix: Water

Analysis Batch: 73077

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<2.00	U	100	81.00		ug/L		81	70 - 130	
Toluene	<2.00	U	100	109.9		ug/L		110	70 - 130	
Ethylbenzene	<2.00	U	100	114.3		ug/L		114	70 - 130	
m,p-Xylenes	<4.00	U	200	245.5		ug/L		122	70 - 130	
o-Xylene	<2.00	U	100	125.7		ug/L		126	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	124		70 - 130
1,4-Difluorobenzene (Surr)	98		70 - 130

Lab Sample ID: 880-38793-1 MSD Matrix: Water Analysis Batch: 73077

-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<2.00	U	100	91.20		ug/L		91	70 - 130	12	25
Toluene	<2.00	U	100	104.6		ug/L		105	70 - 130	5	25
Ethylbenzene	<2.00	U	100	97.06		ug/L		97	70 - 130	16	25
m,p-Xylenes	<4.00	U	200	198.5		ug/L		99	70 - 130	21	25
o-Xylene	<2.00	U	100	101.8		ug/L		102	70 - 130	21	25
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	109		70 - 130								
1,4-Difluorobenzene (Surr)	101		70 - 130								

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-72526/3 Matrix: Water Analysis Batch: 72526						Client Sa	ample ID: Metho Prep Type: 1	
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.500	U	0.500	mg/L			02/07/24 07:58	1

Page 109 of 137

Prep Type: Total/NA

Client Sample ID: TMW-3 Prep Type: Total/NA

Client: Larson & Associates, Inc.

Project/Site: Epperson

Job ID: 880-38793-1 SDG: 3233

Method: 300.0 - Anions, Ion Chromatography (Continued)

 Lab Sample ID: LCS 880-72526/4							Client	Samp	le ID: Lab C	ontrol S	ample
Matrix: Water										Type: To	
Analysis Batch: 72526										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
·			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride			25.0	25.26		mg/L		101	90 - 110		
_ Lab Sample ID: LCSD 880-72526/	5					Clie	ent Sam	ple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Water										Type: To	
Analysis Batch: 72526										-	
-			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			25.0	25.14		mg/L		101	90 _ 110	0	20
 Lab Sample ID: 880-38793-1 MS									Client Sam	ple ID: T	MW-3
Matrix: Water										Гуре: То	
Analysis Batch: 72526											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	297	F1	250	599.5	F1	mg/L		121	90 - 110		
_ Lab Sample ID: 880-38793-1 MSD									Client Sam	ple ID: T	MW-3
Matrix: Water									Prep ⁻	· Type: To	tal/NA
Analysis Batch: 72526										-	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	297	F1	250	598.3	F1	mg/L		121	90 - 110	0	20

QC Association Summary

Client: Larson & Associates, Inc. Project/Site: Epperson Job ID: 880-38793-1 SDG: 3233

GC VOA

Prep Batch: 72955

.ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
1B 880-72955/5-A	Method Blank	Total/NA	Water	5035	
alysis Batch: 7307	7				
ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-38793-1	TMW-3	Total/NA	Water	8021B	
880-38793-2	TMW-2	Total/NA	Water	8021B	
880-38793-3	TMW-4	Total/NA	Water	8021B	
880-38793-4	Dup-1	Total/NA	Water	8021B	
MB 880-72955/5-A	Method Blank	Total/NA	Water	8021B	72955
AB 880-73077/39	Method Blank	Total/NA	Water	8021B	
CS 880-73077/34	Lab Control Sample	Total/NA	Water	8021B	
CSD 880-73077/35	Lab Control Sample Dup	Total/NA	Water	8021B	
880-38793-1 MS	TMW-3	Total/NA	Water	8021B	
380-38793-1 MSD	TMW-3	Total/NA	Water	8021B	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-38793-1	TMW-3	Total/NA	Water	Total BTEX		
880-38793-2	TMW-2	Total/NA	Water	Total BTEX		
880-38793-3	TMW-4	Total/NA	Water	Total BTEX		
880-38793-4	Dup-1	Total/NA	Water	Total BTEX		

HPLC/IC

Analysis Batch: 72526

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-38793-1	TMW-3	Total/NA	Water	300.0	
880-38793-2	TMW-2	Total/NA	Water	300.0	
880-38793-3	TMW-4	Total/NA	Water	300.0	
880-38793-4	Dup-1	Total/NA	Water	300.0	
MB 880-72526/3	Method Blank	Total/NA	Water	300.0	
LCS 880-72526/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-72526/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-38793-1 MS	TMW-3	Total/NA	Water	300.0	
880-38793-1 MSD	TMW-3	Total/NA	Water	300.0	

Page 111 of 137

Lab Chronicle

Client: Larson & Associates, Inc. Project/Site: Epperson

Client Sample ID: TMW-3 Date Collected: 02/01/24 09:35

Date Received: 02/01/24 16:27

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	73077	02/14/24 06:10	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73156	02/14/24 06:10	SM	EET MID
Total/NA	Analysis	300.0		10			72526	02/07/24 08:18	СН	EET MID

Client Sample ID: TMW-2 Date Collected: 02/01/24 10:23 Date Received: 02/01/24 16:27

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	73077	02/14/24 06:30	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73156	02/14/24 06:30	SM	EET MID
Total/NA	Analysis	300.0		5			72526	02/07/24 08:38	СН	EET MID

Client Sample ID: TMW-4 Date Collected: 02/01/24 11:07 Date Received: 02/01/24 16:27

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	73077	02/14/24 06:51	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73156	02/14/24 06:51	SM	EET MID
Total/NA	Analysis	300.0		5			72526	02/07/24 08:45	СН	EET MID

Client Sample ID: Dup-1

Date Collected: 02/01/24 00:00 Date Received: 02/01/24 16:27

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	73077	02/14/24 07:11	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73156	02/14/24 07:11	SM	EET MID
Total/NA	Analysis	300.0		5			72526	02/07/24 08:52	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-38793-1 SDG: 3233

Lab Sample ID: 880-38793-1

Lab Sample ID: 880-38793-2

Lab Sample ID: 880-38793-3

Lab Sample ID: 880-38793-4

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

	:: Larson & Associate ct/Site: Epperson	es, Inc.		-	Job ID:	880-38793-1 SDG: 3233 2
	-		e covered under each accredit	tation/certification below.		3
Laboratory: Eurofins Midland Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority Program Identification Number Expiration Date Texas NELAP Total BTEX 06-30-24 Matrix Analysis Method Prep Method Matrix Analysis Method Prep Method Matrix Water Total BTEX Analyte	4					
Texa						5
	• •		but the laboratory is not certifi	ied by the governing authority. This lis	t may include analytes	6
	Analysis Method	Prep Method	Matrix	Analyte		
	Total BTEX		Water	Total BTEX		
						8
						9
						10
						13

.

Method Summary

Client: Larson & Associates, Inc. Project/Site: Epperson

Job ID: 880-38793-1 SDG: 3233

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5030B	Purge and Trap	SW846	EET MID

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Page 115 of 137

Job ID: 880-38793-1 SDG: 3233

Client: Larson & Associates, Inc. Project/Site: Epperson

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-38793-1	TMW-3	Water	02/01/24 09:35	02/01/24 16:27
880-38793-2	TMW-2	Water	02/01/24 10:23	02/01/24 16:27
880-38793-3	TMW-4	Water	02/01/24 11:07	02/01/24 16:27
880-38793-4	Dup-1	Water	02/01/24 00:00	02/01/24 16:27

Received by OCD: 3/26/2025 8:26:40 AM

Page 116 of 137

Job Number: 880-38793-1

List Source: Eurofins Midland

SDG Number: 3233

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Login Number: 38793 List Number: 1 Creator: Wheeler, Jazmine

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Brenda Balbino Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701 Generated 11/18/2024 1:03:47 PM

JOB DESCRIPTION

Epperson 23-0115-02

JOB NUMBER

880-50965-1

ËOL

CT 6 CT 6 CT 7 C

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 11/18/2024 1:03:47 PM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 120 of 137

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

Definitions/Glossary

Client: Larson & Associates, Inc. Project/Site: Epperson Job ID: 880-50965-1

Project/Site: I	Epperson	SDG: 23-0115-02	
Qualifiers			3
GC VOA			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			5
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
☆	Listed under the "D" column to designate that the result is reported on a dry weight basis		8
%R	Percent Recovery		
CFL	Contains Free Liquid		9
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		12
LOD	Limit of Detection (DoD/DOE)		IJ
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA MDC	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry) Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG	Negative / Absent		
POS	Positive / Present		
PQL	Practical Quantitation Limit		
PRES	Presumptive		
QC	Quality Control		
RER	Relative Error Ratio (Radiochemistry)		
RL	Reporting Limit or Requested Limit (Radiochemistry)		
RPD	Relative Percent Difference, a measure of the relative difference between two points		
TEF	Toxicity Equivalent Factor (Dioxin)		
TEQ	Toxicity Equivalent Quotient (Dioxin)		
TNTC	Too Numerous To Count		

.

Case Narrative

Client: Larson & Associates, Inc. Project: Epperson

Job ID: 880-50965-1

Eurofins Midland

Job ID: 880-50965-1

Job Narrative 880-50965-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/12/2024 11:10 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.5°C.

GC VOA

Method 8021B: The following sample was diluted due to the nature of the sample matrix: TMW-1 (880-50965-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Page 122 of 137

Client Sample Results

RL

2.00

Unit

ug/L

D

Prepared

Client: Larson & Associates, Inc. Project/Site: Epperson

Client Sample ID: TMW-3 Date Collected: 11/11/24 10:10 Date Received: 11/12/24 11:10

Analyte

Benzene

Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<2.00 U

Delizene	-2.00	0	2.00	ug/L			11/10/24 12.40	•
Toluene	<2.00	U	2.00	ug/L			11/13/24 12:43	1
Ethylbenzene	<2.00	U	2.00	ug/L			11/13/24 12:43	1
m,p-Xylenes	<4.00	U	4.00	ug/L			11/13/24 12:43	1
o-Xylene	<2.00	U	2.00	ug/L			11/13/24 12:43	1
Xylenes, Total	<4.00	U	4.00	ug/L			11/13/24 12:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				11/13/24 12:43	1
1,4-Difluorobenzene (Surr)	100		70 - 130				11/13/24 12:43	1
Method: TAL SOP Total BTI	EX - Total BTE	X Calculat	ion					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/L			11/13/24 12:43	1
Method: EPA 300.0 - Anions	s, Ion Chroma	tography						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	325		5.00	mg/L			11/17/24 17:45	10
Client Sample ID: TMW-	2				L	ab Sampl	e ID: 880-50)965-2
Date Collected: 11/11/24 10:3							Matrix	: Water
Date Received: 11/12/24 11:1								
Method: SW846 8021B - Vo Analyte		Compound Qualifier	ds (GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<2.00		2.00	ug/L	<u>-</u>	Toparoa	11/13/24 13:04	1
Toluene	<2.00		2.00	ug/L			11/13/24 13:04	1
Ethylbenzene	<2.00		2.00	ug/L			11/13/24 13:04	1
m,p-Xylenes	<4.00		4.00	ug/L			11/13/24 13:04	
o-Xylene	<2.00		2.00	ug/L			11/13/24 13:04	1
Xylenes, Total	<4.00		4.00	ug/L			11/13/24 13:04	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130			•	11/13/24 13:04	1
1,4-Difluorobenzene (Surr)	99		70 - 130				11/13/24 13:04	1
- Method: TAL SOP Total BTI	EX - Total BTE	X Calculat	ion					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/L		-	11/13/24 13:04	1
Method: EPA 300.0 - Anions	s, Ion Chroma	tography						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	49.9		2.50	mg/L		-	11/17/24 19:23	5
Client Sample ID: TMW-	4				L	ab Sampl	e ID: 880-50	965-3
Date Collected: 11/11/24 11:0								: Water
Date Received: 11/12/24 11:1								
	latile Organic	Compoun	ds (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Midland

Page 123 of 137

Matrix: Water

Dil Fac

1

Job ID: 880-50965-1 SDG: 23-0115-02

Lab Sample ID: 880-50965-1

Analyzed

11/13/24 12:43

Released to Imaging: 7/1/2025 9:20:22 AM

5

Job ID: 880-50965-1 SDG: 23-0115-02

Matrix: Water

5

Lab Sample ID: 880-50965-3

Client Sample ID: TMW-4 Date Collected: 11/11/24 11:07 Date Received: 11/12/24 11:10

Client: Larson & Associates, Inc.

Project/Site: Epperson

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	<2.00	U	2.00	ug/L			11/13/24 13:25	1
m,p-Xylenes	<4.00	U	4.00	ug/L			11/13/24 13:25	1
o-Xylene	<2.00	U	2.00	ug/L			11/13/24 13:25	1
Xylenes, Total	<4.00	U	4.00	ug/L			11/13/24 13:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				11/13/24 13:25	1
1,4-Difluorobenzene (Surr)	100		70 - 130				11/13/24 13:25	1
Method: TAL SOP Total BTI	EX - Total BTE	X Calculat	ion					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/L			11/13/24 13:25	1
Method: EPA 300.0 - Anions	s, Ion Chroma	tography						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	51.3		2.50	mg/L			11/17/24 20:21	5
lient Sample ID: TMW-	1				La	ab Sampl	e ID: 880-50)965-4
ate Collected: 11/11/24 11:4							Matrix	: Wateı
ate Received: 11/12/24 11:1	0							
Method: SW846 8021B - Vo	-		• •		_			
Analyte		Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Benzene	<40.0		40.0	ug/L			11/13/24 14:05	20
Toluene	<40.0	U	40.0	ug/L			11/13/24 14:05	20
Ethylbenzene	655		40.0	ug/L			11/13/24 14:05	20
m,p-Xylenes	680		80.0	ug/L			11/13/24 14:05	20
o-Xylene	82.1		40.0	ug/L			11/13/24 14:05	20
Xylenes, Total	762		80.0	ug/L			11/13/24 14:05	20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130				11/13/24 14:05	20
1,4-Difluorobenzene (Surr)	100		70 - 130				11/13/24 14:05	20
Method: TAL SOP Total BTI	EX - Total BTE	X Calculat	ion					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	1.42		0.0800	mg/L			11/13/24 14:05	1
Method: EPA 300.0 - Anions	· ·							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	73.5		2.50	mg/L			11/17/24 20:54	5
lient Sample ID: Dup-1					La	ab Sampl	e ID: 880-50)965-5
ate Collected: 11/11/24 00:0	0						Matrix	: Water
Date Received: 11/12/24 11:1	0							
Method: SW846 8021B - Vo	latile Organic	Compoun	ds (GC)					
Analyte		Qualifier		ug/L	D	Prepared	Analyzed 11/13/24 13:45	Dil Fac
Benzene			2.00					

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<2.00	U	2.00	ug/L			11/13/24 13:45	1
Toluene	<2.00	U	2.00	ug/L			11/13/24 13:45	1
Ethylbenzene	<2.00	U	2.00	ug/L			11/13/24 13:45	1
m,p-Xylenes	<4.00	U	4.00	ug/L			11/13/24 13:45	1

5

Job ID: 880-50965-1 SDG: 23-0115-02

Client Sample ID: Dup-1 Date Collected: 11/11/24 00:00 Date Received: 11/12/24 11:10

Client: Larson & Associates, Inc.

Project/Site: Epperson

Lab Sample ID: 880-50965-5

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	<2.00	U	2.00	ug/L			11/13/24 13:45	1
Xylenes, Total	<4.00	U	4.00	ug/L			11/13/24 13:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130		-		11/13/24 13:45	1
			70 (00				11/13/24 13:45	1
1,4-Difluorobenzene (Surr)	100		70 - 130				11/13/24 13.45	1
		X Calculat					11/13/24 13.45	1
Method: TAL SOP Total BT	EX - Total BTE	X Calculat Qualifier		Unit	D	Prepared	Analyzed	, Dil Fac
Analyte	EX - Total BTE	Qualifier	ion	<mark>Unit</mark>	D	Prepared		Dil Fac
Method: TAL SOP Total BT Analyte Total BTEX	EX - Total BTE Result <0.00400	Qualifier U	ion RL		<u>D</u>	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BT Analyte Total BTEX	EX - Total BTE Result <0.00400	Qualifier	ion RL	mg/L	<u>D</u>	Prepared	Analyzed	1
Method: TAL SOP Total BT Analyte	EX - Total BTE Result <0.00400	Qualifier U	ion RL		<u>D</u> . 	Prepared	Analyzed	Dil Fac

Client: Larson & Associates, Inc. Project/Site: Epperson

Method: 8021B - Volatile Organic Compounds (GC) **Matrix: Water**

			Perc	ent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
880-50965-1	TMW-3	101	100		
880-50965-1 MS	TMW-3	99	100		6
880-50965-1 MSD	TMW-3	103	100		
880-50965-2	TMW-2	92	99		
880-50965-3	TMW-4	95	100		
880-50965-4	TMW-1	97	100		9
880-50965-5	Dup-1	95	100		
LCS 880-95586/3	Lab Control Sample	102	101		C
LCSD 880-95586/4	Lab Control Sample Dup	104	100		2
MB 880-95586/8	Method Blank	92	95		
Surrogate Legend					

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Page 126 of 137

Job ID: 880-50965-1 SDG: 23-0115-02

Prep Type: Total/NA

4 5 6

Client: Larson & Associates, Inc. Project/Site: Epperson

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-95586/8 Matrix: Water

Analysis Batch: 95586

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<2.00	U	2.00	ug/L			11/13/24 12:22	1
Toluene	<2.00	U	2.00	ug/L			11/13/24 12:22	1
Ethylbenzene	<2.00	U	2.00	ug/L			11/13/24 12:22	1
m,p-Xylenes	<4.00	U	4.00	ug/L			11/13/24 12:22	1
o-Xylene	<2.00	U	2.00	ug/L			11/13/24 12:22	1
Xylenes, Total	<4.00	U	4.00	ug/L			11/13/24 12:22	1
	MB	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130		-		11/13/24 12:22	1
1,4-Difluorobenzene (Surr)	95		70 - 130				11/13/24 12:22	1

Lab Sample ID: LCS 880-95586/3 Matrix: Water Analysis Batch: 95586

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	100	106.1		ug/L		106	70 - 130	
Toluene	100	103.7		ug/L		104	70 - 130	
Ethylbenzene	100	109.2		ug/L		109	70 - 130	
m,p-Xylenes	200	209.7		ug/L		105	70 - 130	
o-Xylene	100	117.5		ug/L		117	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: LCSD 880-95586/4

Matrix: Water Analysis Batch: 95586

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	100	109.3		ug/L		109	70 - 130	3	20
Toluene	100	108.3		ug/L		108	70 - 130	4	20
Ethylbenzene	100	113.8		ug/L		114	70 - 130	4	20
m,p-Xylenes	200	220.2		ug/L		110	70 - 130	5	20
o-Xylene	100	124.9		ug/L		125	70 - 130	6	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 880-50965-1 MS Matrix: Water

Analysis Batch: 95586

-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<2.00	U	100	112.5		ug/L		112	70 - 130	
Toluene	<2.00	U	100	110.0		ug/L		110	70 - 130	

Eurofins Midland

Client Sample ID: TMW-3

Prep Type: Total/NA

Job ID: 880-50965-1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Client: Larson & Associates, Inc. Project/Site: Epperson Job ID: 880-50965-1 SDG: 23-0115-02

Page 128 of 137

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-5096 Matrix: Water	5-1 MS							Clie	ent Sample I Prep Type		
Analysis Batch: 95586									гтер туре	. 101	
Analysis Baten. 50000	Sample	Sample	Spike	MS	MS				%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Ethylbenzene	<2.00		100	116.3		ug/L		116	70 - 130		
m,p-Xylenes	<4.00		200	225.1		ug/L		113	70 - 130		
o-Xylene	<2.00		100	126.1		ug/L		126	70 - 100		
						0					
Surrogata	MS %Recovery	MS Qualifiar	Limits								
Surrogate 4-Bromofluorobenzene (Surr)		Quaimer	70 - 130								
1,4-Difluorobenzene (Surr)	99 100		70 - 130 70 - 130								
, i Billaciosciizone (cult)	100		10-100								
Lab Sample ID: 880-5096	5-1 MSD							Clie	ent Sample I		
Matrix: Water									Prep Type	: Tot	tal/N
Analysis Batch: 95586											
	-	Sample	Spike	-	MSD				%Rec		R
Analyte		Qualifier	Added		Qualifier	Unit	D			RPD	Li
Benzene	<2.00		100	111.7		ug/L		112	70 - 130	1	
Toluene	<2.00		100	109.5		ug/L		110	70 - 130	0	
Ethylbenzene	<2.00	U	100	115.1		ug/L		115	70 - 130	1	
n,p-Xylenes	<4.00	U	200	223.7		ug/L		112	70 - 130	1	
o-Xylene	<2.00	U	100	126.3		ug/L		126	70 - 130	0	
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	103		70 - 130								
1,4-Difluorobenzene (Surr)	100		70 - 130								
lethod: 300.0 - Anion	s, Ion Chr	omatograp	hy								
Lab Sample ID: MB 880-9	5888/3						Cli	ent Sam	ple ID: Met	h <mark>od</mark> l	Blaı
Matrix: Water									Prep Type	: Tot	tal/N
Analysis Batch: 95888											
		MB MB									
Analyte		sult Qualifier		L	Unit		D F	Prepared	Analyzec		Dil F
Chloride	<0	.500 U	0.50	00	mg/L				11/17/24 17	:06	
Lab Sample ID: LCS 880-	95888/4					Cli	ent Sa	mple ID	: Lab Contr	ol Sa	amn
Matrix: Water						U.			Prep Type		
Analysis Batch: 95888											
anayolo Batoli. 00000			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		

Lab Sample ID: LCSD 880-95888/5 Matrix: Water

Analysis Batch: 95888										
	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	25.0	25.16		mg/L		101	90 - 110	1	20	

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client: Larson & Associates, Inc. Project/Site: Epperson Page 129 of 137

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-5096 Matrix: Water	5-1 MS							Clie	ent Sampl Prep Ty		
Analysis Batch: 95888	Sampla	Sample	Spike	MS	MS				%Rec		
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Chloride	325		250	571.3		mg/L		99	90 - 110		
Lab Sample ID: 880-5096 Matrix: Water	5-1 MSD							Clie	ent Sampl Prep Ty		
Analysis Batch: 95888	Commis	0	Orailea	MOD	MOD				%Rec		
Analyte	•	Sample Qualifier	Spike Added	MSD Bosult	Qualifier	Unit	D	%Rec	%Rec Limits	RPD	RPD Limit
Chloride	325	<u>waanner</u>	250	580.9		mg/L		102	90 - 110	2	20

QC Association Summary

Client: Larson & Associates, Inc. Project/Site: Epperson

GC VOA

Analysis Batch: 95586

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50965-1	TMW-3	Total/NA	Water	8021B	
880-50965-2	TMW-2	Total/NA	Water	8021B	
880-50965-3	TMW-4	Total/NA	Water	8021B	
880-50965-4	TMW-1	Total/NA	Water	8021B	
880-50965-5	Dup-1	Total/NA	Water	8021B	
MB 880-95586/8	Method Blank	Total/NA	Water	8021B	
LCS 880-95586/3	Lab Control Sample	Total/NA	Water	8021B	
LCSD 880-95586/4	Lab Control Sample Dup	Total/NA	Water	8021B	
880-50965-1 MS	TMW-3	Total/NA	Water	8021B	
880-50965-1 MSD	TMW-3	Total/NA	Water	8021B	

Analysis Batch: 95717

LC3 000-90000/3	Lab Control Sample	TOLAI/INA	Water	00210		1
LCSD 880-95586/4	Lab Control Sample Dup	Total/NA	Water	8021B		8
880-50965-1 MS	TMW-3	Total/NA	Water	8021B		
880-50965-1 MSD	TMW-3	Total/NA	Water	8021B		9
Analysis Batch: 957	'17					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-50965-1	TMW-3	Total/NA	Water	Total BTEX		
880-50965-2	TMW-2	Total/NA	Water	Total BTEX		
880-50965-3	TMW-4	Total/NA	Water	Total BTEX		
880-50965-4	TMW-1	Total/NA	Water	Total BTEX		
880-50965-5	Dup-1	Total/NA	Water	Total BTEX		
HPLC/IC						

HPLC/IC

Analysis Batch: 95888

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-50965-1	TMW-3	Total/NA	Water	300.0	
880-50965-2	TMW-2	Total/NA	Water	300.0	
880-50965-3	TMW-4	Total/NA	Water	300.0	
880-50965-4	TMW-1	Total/NA	Water	300.0	
880-50965-5	Dup-1	Total/NA	Water	300.0	
MB 880-95888/3	Method Blank	Total/NA	Water	300.0	
LCS 880-95888/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-95888/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-50965-1 MS	TMW-3	Total/NA	Water	300.0	
880-50965-1 MSD	TMW-3	Total/NA	Water	300.0	

Job ID: 880-50965-1

SDG: 23-0115-02

5

Job ID: 880-50965-1 SDG: 23-0115-02

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 880-50965-3

Lab Sample ID: 880-50965-4

Lab Sample ID: 880-50965-5

Client Sample ID: TMW-3 Date Collected: 11/11/24 10:10 Date Received: 11/12/24 11:10

Client: Larson & Associates, Inc.

Project/Site: Epperson

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type Total/NA	Analysis	Method 8021B	Run	Factor 1	Amount 5 mL	Amount 5 mL	Number 95586	or Analyzed 11/13/24 12:43	Analyst MNR	Lab EET MID
Total/NA	Analysis	Total BTEX		1			95717	11/13/24 12:43	SM	EET MID
Total/NA	Analysis	300.0		10	10 mL	10 mL	95888	11/17/24 17:45	СН	EET MID

Client Sample ID: TMW-2 Date Collected: 11/11/24 10:35 Date Received: 11/12/24 11:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	95586	11/13/24 13:04	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			95717	11/13/24 13:04	SM	EET MID
Total/NA	Analysis	300.0		5	10 mL	10 mL	95888	11/17/24 19:23	СН	EET MID

Client Sample ID: TMW-4 Date Collected: 11/11/24 11:07 Date Received: 11/12/24 11:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	95586	11/13/24 13:25	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			95717	11/13/24 13:25	SM	EET MID
Total/NA	Analysis	300.0		5	10 mL	10 mL	95888	11/17/24 20:21	СН	EET MID

Client Sample ID: TMW-1 Date Collected: 11/11/24 11:45 Date Received: 11/12/24 11:10

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		20	5 mL	5 mL	95586	11/13/24 14:05	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			95717	11/13/24 14:05	SM	EET MID
Total/NA	Analysis	300.0		5	10 mL	10 mL	95888	11/17/24 20:54	СН	EET MID

Client Sample ID: Dup-1 Date Collected: 11/11/24 00:00 Date Received: 11/12/24 11:10

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	95586	11/13/24 13:45	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			95717	11/13/24 13:45	SM	EET MID
Total/NA	Analysis	300.0		5	10 mL	10 mL	95888	11/17/24 21:26	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Lab Sample ID: 880-50965-1 **Matrix: Water** Lab Sample ID: 880-50965-2

Accreditation/Certification Summary

Client: Larson & Associates, Inc. Project/Site

Job ID: 880-50965-1

Page 132 of 137

10

Project/Site: Epperson				SDG: 23-0115-02
Laboratory: Eurofi	ns Midland			
Unless otherwise noted, all ar	alytes for this laboratory were covered unde	r each accreditation/certification below.		
Authority	Program	Identification Number	Expiration Date	
Texas	NELAP	T104704400	06-30-25	
The following analyte	s are included in this report, but the laborator does not offer certification.			ude analytes

Analysis Method Prep Method Matrix Analyte Total BTEX Water Total BTEX

Method Summary

Client: Larson & Associates, Inc. Project/Site: Epperson

Job ID: 880-50965-1 SDG: 23-0115-02

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5030B	Purge and Trap	SW846	EET MID

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Released to Imaging: 7/1/2025 9:20:22 AM

Sample Summary

Client: Larson & Associates, Inc. Project/Site: Epperson Job ID: 880-50965-1 SDG: 23-0115-02

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
880-50965-1	TMW-3	Water	11/11/24 10:10	11/12/24 11:10	
880-50965-2	TMW-2	Water	11/11/24 10:35	11/12/24 11:10	
880-50965-3	TMW-4	Water	11/11/24 11:07	11/12/24 11:10	
880-50965-4	TMW-1	Water		11/12/24 11:10	
880-50965-5	Dup-1	Water	11/11/24 00:00	11/12/24 11:10	

Received by OCD: 3/26/2025 8:26:40 AM

CHAIN-OF-CUSTODY No. 2373 BROKEN JINTACT JNOT USED FIELD NOTES 0 P RECEIVING TEMP. J. OD. THERM#: TO S COLLECTOR: DSG PAGE LAB WORK ORDER#: Epperson LABORATORY USE ONLY: **J HAND DELIVERED CUSTODY SEALS -**CARRIER BILL # 23-0115-07 2074 PROJECT LOCATION OR NAME: **TURN AROUND TIME** NORMALX LAI PROJECT #: OTHER _ 1 DAY J 2 DAY 13 DATE :#Od SUSTINA CIII D -.e. 202 UNPRESSERVED RECEIVED BY: (Signature) RECEIVED BY: (Signature) PRESERVATION (Signature) Midland, TX 79701 ICE 132-687-0901 X HOPN C 'OS'H GISON RECEIVED BY: ONH ICH 880-50965 Chain of Custody # of Containers J Matrix 3 DATE/TIME DATE/TIME DATE/TIME Janiel St Germain 10:10 10:35 11:45 50:1 Time SL=SLUDGE OT=OTHER P=PAINT Date MIM SSOCIDTES, Inc. Environmental Consultants LABORATORY: FLUNDAND S=SOIL W=WATER RELINQUISHED BY:(Signature) RELINQUISHED BY:(Signature) A=AIR Lab # **Aarson &** Data Reported to: MN/LSN RECINOUISHERBARY TIME ZONE: Time zone/State: Ves No TRRP report? Field Sample I.D. MW-Z P-MM Z-MW -MW -un 00 TOTAL

Released to Imaging: 7/1/2025 9:20:22 AM

Page 135 of 137

Job Number: 880-50965-1 SDG Number: 23-0115-02

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Login Number: 50965 List Number: 1 Creator: Vasquez, Julisa

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

14

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

CONDITIONS

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 137 of 137

CONDITIONS

Action 445712

CONDITIONS

 Operator:
 OGRID:

 TARGA MIDSTREAM SERVICES LLC
 24650

 811 Louisiana Street
 Action Number:

 Houston, TX 77002
 445712

 Action Type:
 [UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

Created By Condition Condition jburdine Review of 2024 Monitoring Report for Epperson 16-inch pipeline release. Report approved. 1. Continue groundwater monitoring of wells TMW-1 through TMW-4 on a semi-annual (twice yearly) for two (2) years and laboratory analysis for BTEX and chloride by EPA SW-846 Method 8021B and Method 300, respectively per approved abatement plan. 2. Continue to include gauging LNAPL and groundwater depth during monitoring. 3. Upon reaching the abatement standards and requirements set forth in 19.15.30.9 NMAC, a stand-alone abatement completion report will be submitted per OCD permitting. 4. Any proposed changes to long-term monitoring and site maintenance requirements for the site will be sent in as a stand-alone report through OCD permitting. 5. Submit 2025 Annual report no later than July 1, 2026. 7/1/2025

Released to Imaging: 7/1/2025 9:20:22 AM