

SITE INFORMATION

Deferral Report Yukon Gold 31 CTB 2 Incident ID: NAPP2504240482 Unit H Sec 31 T23S R30E Eddy County, New Mexico 32.26299°, -103.91305°

Produced Water Release Point of Release: Pinhole developed on a 3" ball valve on water dump line Release Date: 02.09.2025 Volume Released: 5.706 Barrels of Produced Water Volume Recovered: 0 Barrels of Produced Water

CARMONA RESOURCES

Prepared for: Devon Energy 5315 Buena Vista Drive, Carlsbad, New Mexico 88220

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 500 Midland, Texas 79701

> 310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 REMEDIATION ACTIVITIES

5.0 CONCLUSIONS

FIGURES

FIGURE 1	OVERVIEW	FIGURE 2	TOPOGRAPHIC		
FIGURE 3	AREA OF CONCERN	FIGURE 4	EXCAVATION		
FIGURE 5	DEFERRAL				
APPENDICES					
APPENDIX A	TABLE				
APPENDIX B	РНОТОЅ				
APPENDIX C	INITIAL C-141 & NMOCD (CORRESPONDENCE			
APPENDIX D	SITE CHARACTERIZATION, GROUNDWATER, & KARST SURVEY				
APPENDIX E	LABORATORY REPORTS				
APPENDIX F	NAPP2427461130 - DEFERRAL REPORT				

.

May 13, 2025

Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Deferral Report Yukon Gold 31 CTB 2 Devon Energy Incident ID: NAPP2504240482 Site Location: Unit H, S31, T23S, R30E (Lat 32.26299°, Long -103.91305°) Eddy County, New Mexico

Mr. Bratcher:

On behalf of Devon Energy (Devon), Carmona Resources, LLC has prepared this letter to document site activities for the Yukon Gold 31 CTB 2. The site is located at 32.26299°, -103.91305° within Unit H, S31, T23S, R30E, in Eddy County, New Mexico (Figures 1 and 2).

1.0 Site Information and Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on February 9, 2025, due to a pinhole leak on a 3 inch ball valve on a water dump line. It resulted in the release of approximately five point seven-zero-six (5.706) barrels of produced water, with zero (0) barrels of produced water recovered. The spill boundaries are shown in Figure 3. The initial C-141 form is attached in Appendix C.

2.0 Site Characterization and Groundwater

The site is located within a medium karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, no known water sources are within a 0.50-mile radius of the location. On April 1, 2025, Carmona Resources installed a groundwater determination bore located approximately 0.04 miles Southwest of the release area in S31, T23S, R30E. The bore indicated no signs of water at a depth of 55 feet below ground surface (ft bgs) when it was gauged on April 7, 2025. A copy of the groundwater determination bore log is attached in Appendix D.

Additionally, a karst survey was completed on January 27, 2025, per NMOCD & BLM request. The Karst Survey resulted in "no surface karst features within the 200-foot (61-meter)[1] survey area surrounding the spill delineation boundary". Remediation proceeded per the standards set in Table 1 NMAC 19.15.29.12 Groundwater >55 feet due to the site being determined to be in a "Low Karst" environment. See Appendix D for Site Characterization, Groundwater information, Karst Survey.

310 West Wall Street, Suite 500 Midland, Texas 79701 432.813.1992

3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 2,500 mg/kg (GRO + DRO + MRO).
- TPH: 1,000 mg/kg (GRO + DRO).
- Chloride: 10,000 mg/kg.

4.0 Remediation Activities

Beginning on April 22, 2025, Carmona Resources personnel were onsite to supervise the remediation activities, collect confirmation samples, and document backfill activities. Before collecting composite confirmation samples, the NMOCD division office was notified via NMOCD portal on April 16, 2025, per Subsection D of 19.15.29.12 NMAC. See Appendix C. The entire area of concern was excavated to a depth of 1.0' bgs. A total of three (3) confirmation floor samples were collected (CS-1 through CS-3), and twelve (12) sidewall samples (SW-1 through SW-12) were collected every 200 square feet to ensure the proper removal of the contaminated soils. All collected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and Chloride by EPA method 4500. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The excavation depths and confirmation sample locations are shown in Figures 4.

Deferment Area

A 6"-8" buffer zone on each side of Devon's equipment, and underneath the equipment on site will be deferred per 19.15.29.12.C.2 NMAC. To remove all contaminated material, major facility deconstruction would have to take place. Removing soil within that buffer zone could potentially cause structural instability and might result in additional releases in the future as backfill material can shift and settle over time. The deferred areas are defined by the following composite confirmation sidewall samples: SW-1 through SW-3, SW-6, and SW-7. Additional sample points collected from a separate spill remediation project (conducted at the same time as this one) can be used to define the western extent of this spill area. CS-1 through CS-4 along with SW-1 & SW-4 from NMOCD Incident ID: NAPP2427461130 can be used to horizontally define this release area. Please see Table 2 and Figure 4A & 4B in appendix F. Approximately 1,098 square feet, 41 cubic yards, of contamination was left in place under the site equipment. Refer to Table 1 and Figure 5.

Once the remediation activities were completed, the excavated areas were backfilled with clean material to surface grade. Approximately 316 square feet of contamination was remediated, resulting in 12 cubic yards of material excavated and transported offsite for proper disposal. Backfill operations were completed on May 12, 2025. The backfill material was sourced from Northern Delaware Basin Landfill and was collected for laboratory analysis on April 25, 2025, before being utilized. Laboratory data can be found in Table 1.

310 West Wall Street, Suite 500 Midland, Texas 79701 432.813.1992

5.0 Conclusions

Based on the area, safety, and active facility equipment, Devon requests to defer the chloride impact within the facility equipment. Remediation of the deferred area will be completed during plugging and abandonment activities or when equipment is removed, whichever comes first. If you have any questions regarding this report or need additional information, please contact us at 432-813-1992.

Sincerely, Carmona Resources, LLC

Ashton Thielke Environmental Manager

Gilbert Priego Project Manager

310 West Wall Street, Suite 500 Midland, Texas 79701 432.813.1992

APPENDIX A

•

Table 1 YUKON GOLD 31 CTB 2 Devon Energy Eddy County, New Mexico

					-	-						
Sample ID	Date	Depth (ft)	GRO	TPH DRO	(mg/kg) MRO	Total	Benzene (mg/kg)	Toluene (mg/kg)	Ethlybenzene (mg/kg)	Xylene (mg/kg)	Total BTEX (mg/kg)	Chloride (mg/kg)
CS-1	4/25/2025	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	1,070
CS-2	4/25/2025	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
CS-3	4/25/2025	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
SW-1	4/25/2025	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	640
SW-2	4/25/2025	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	1,960
SW-3	4/25/2025	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	1,820
SW-4	4/25/2025	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	192
SW-5	4/25/2025	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	128
SW-6	4/25/2025	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	720
SW-7	4/25/2025	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	1,310
SW-8	4/25/2025	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
SW-9	4/25/2025	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	192
SW-10	4/25/2025	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
SW-11	4/25/2025	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	544
SW-12	4/25/2025	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	96.0
Backfill	4/25/2025	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	320
	ory Criteria ^A		1,000	mg/kg		2,500 mg/kg	10 mg/kg				50 mg/kg	10,000 mg/kg

(-) Not Analyzed ^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram TPH - Total Petroleum Hydrocarbons ft - feet (CS) Confirmation Sample (SW) Sidewall Sample Deferral Area

APPENDIX B

PHOTOGRAPHIC LOG

Devon Energy

Photograph No. 1

Facility: Yukon Gold 31 CTB 2

County: Eddy County, New Mexico

Description: View North, area of CS-1.

Photograph No. 2

Facility: Yukon Gold 31 CTB 2

County: Eddy County, New Mexico

Description: View North, area of CS-2.

Facility: Yukon Gold 31 CTB 2

County: Eddy County, New Mexico

Description: View Northwest, area of CS-3.

Yukon Gold 10:56:40 AM

PHOTOGRAPHIC LOG

Devon Energy

Description:

View North of backfilled area.

Photograph No. 6

Facility: Yukon Gold 31 CTB 2

County: Eddy County, New Mexico

Description: View North of backfilled area.

PHOTOGRAPHIC LOG

Devon Energy

Photograph No. 7 Facility: Yukon Gold 31 CTB 2 County: Eddy County, New Mexico Description: View West of backfilled area.

APPENDIX C

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	430665
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

QUESTIONS

Location of Release Source				
Please answer all the questions in this group.				
Site Name	YUKON GOLD 31 CTB 2			
Date Release Discovered	02/09/2025			
Surface Owner	Federal			

Incident Details

Please answer all the questions in this group.				
Incident Type	Produced Water Release			
Did this release result in a fire or is the result of a fire	No			
Did this release result in any injuries	No			
Has this release reached or does it have a reasonable probability of reaching a watercourse	Νο			
Has this release endangered or does it have a reasonable probability of endangering public health	No			
Has this release substantially damaged or will it substantially damage property or the environment	No			
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No			

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.				
Crude Oil Released (bbls) Details	Not answered.			
Produced Water Released (bbls) Details	Cause: Corrosion Valve Produced Water Released: 6 BBL Recovered: 0 BBL Lost: 6 BBL.			
Is the concentration of chloride in the produced water >10,000 mg/l	Yes			
Condensate Released (bbls) Details	Not answered.			
Natural Gas Vented (Mcf) Details	Not answered.			
Natural Gas Flared (Mcf) Details	Not answered.			
Other Released Details	Not answered.			
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Pinhole developed on 3" ball valve on water dump line of 3 phase and released 5.7 bbls of produced water onto pad surface.			

QUESTIONS

Action 430665

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 430665

Page 20eof 354

QUESTIONS (continued)

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	430665
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

QUESTIONS

	Nature and Volume of Release (continued)					
	Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.				
ſ	Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No				
	Reasons why this would be considered a submission for a notification of a major release	Unavailable.				
l	With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.					

Initial Response			
The responsible party must undertake the following actions immediately unless they could create a se	afety hazard that would result in injury.		
The source of the release has been stopped	True		
The impacted area has been secured to protect human health and the environment	True		
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True		
All free liquids and recoverable materials have been removed and managed appropriately	True		
If all the actions described above have not been undertaken, explain why	Not answered.		
Per Paragraph 4 of Subsection B of 19.15.29.8 NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please prepare			

and attach all information needed for closure evaluation in the follow-up C-141 submission.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

ACKNOWLEDGMENTS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	430665
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

ACKNOWLEDGMENTS

$\overline{\mathbf{v}}$	I acknowledge that I am authorized to submit notification of a release on behalf of my operator.
V	I acknowledge that upon submitting this application, I will be creating a new incident file (assigned to my operator) to track the notification(s) and corrective action(s) for a release, pursuant to NMAC 19.15.29.
M	I acknowledge that creating a new incident file will require my operator to file subsequent submission(s) of form "C-141, Application for administrative approval of a release notification and corrective action", pursuant to NMAC 19.15.29.
	I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment.
	I acknowledge the fact that the acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment.
V	I acknowledge the fact that, in addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Action 430665

Page 21eof 354

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	430665
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

CONDITIONS		
Created By	Condition	Condition Date
jraley	When submitting future reports regarding this release, please submit the calculations used or specific justification for the volumes reported on the initial C-141.	2/11/2025

CONDITIONS

Page 22eof 354

Action 430665

Received by OCL	Received by OCD: 5/13/2025 11:42:19 AM Calculato TPage 23 of 354		
lı	Inputs in blue, Outputs in red		
Co	Contaminated Soil measurement		
Length(Ft) Width(Ft)		Depth(Ft)	
<u>21</u>	<u>16.000</u>	<u>0.083</u>	
Cubic Feet of S	Soil Impacted	27.888	
Barrels of So	il Impacted	<u>4.97</u>	
Soil T	уре	Clay/Sand	
Barrels of Oil Assuming 100% Saturation		<u>0.75</u>	
Saturation	Fluid pre	esent with shovel/backhoe	
Estimated Barrels of Oil Released		0.75	
Free Stand		ing Fluid Only	
Length(Ft)	Width(Ft)	Depth(Ft)	
<u>21</u>	<u>16.000</u>	<u>0.083</u>	
Standing fluid		<u>4.960</u>	
Released to Imaging: 7/7/2025 9:20		<u>5.706</u> .	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Page 24eof 354

Action 431673

QUESTIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	431673
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2504240482
Incident Name	NAPP2504240482 YUKON GOLD 31 CTB 2 @ 0
Incident Type	Produced Water Release
Incident Status	Initial C-141 Received
Incident Facility	[fAPP2123652649] YUKON GOLD 31 CTB 2

Location of Release Source

Please answer all the questions in this group.		
Site Name	YUKON GOLD 31 CTB 2	
Date Release Discovered	02/09/2025	
	Site Name	

Surface Owner

incident Details		
Please answer all the questions in this group.		
Incident Type	Produced Water Release	
Did this release result in a fire or is the result of a fire	No	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	Νο	
Has this release substantially damaged or will it substantially damage property or the environment	Νο	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No	

Federal

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.		
Crude Oil Released (bbls) Details	Not answered.	
Produced Water Released (bbls) Details	Cause: Corrosion Valve Produced Water Released: 6 BBL Recovered: 0 BBL Lost: 6 BBL.	
Is the concentration of chloride in the produced water >10,000 mg/l	Yes	
Condensate Released (bbls) Details	Not answered.	
Natural Gas Vented (Mcf) Details	Not answered.	
Natural Gas Flared (Mcf) Details	Not answered.	
Other Released Details	Not answered.	
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Pinhole developed on 3" ball valve on water dump line of 3 phase and released 5.7 bbls of produced water onto pad surface.	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 431673

QUESTIONS (continued)

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	431673
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

QUESTIONS

Nature and Volume of Release (continued)		
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.	
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No	
Reasons why this would be considered a submission for a notification of a major release	Unavailable.	
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.		

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.		
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
If all the actions described above have not been undertaken, explain why Per Paragraph (4) of Subsection B of 19.15.29.8 NMAC the responsible party may commence remedi	Not answered. ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of	
actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of Subsection A of 19.15.29.11 MMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: James Raley Title: EHS Professional Email: jim.raley@dvn.com Date: 02/13/2025	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:	
DEVON ENERGY PRODUCTION COMPANY, LP	6137	
333 West Sheridan Ave.	Action Number:	
Oklahoma City, OK 73102	431673	
	Action Type:	
	[C-141] Initial C-141 (C-141-v-Initial)	

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Not answered.
What method was used to determine the depth to ground water	Not answered.
Did this release impact groundwater or surface water	Not answered.
What is the minimum distance, between the closest lateral extents of the release an	d the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Not answered.
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Not answered.
An occupied permanent residence, school, hospital, institution, or church	Not answered.
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Not answered.
Any other fresh water well or spring	Not answered.
Incorporated municipal boundaries or a defined municipal fresh water well field	Not answered.
A wetland	Not answered.
A subsurface mine	Not answered.
An (non-karst) unstable area	Not answered.
Categorize the risk of this well / site being in a karst geology	Not answered.
A 100-year floodplain	Not answered.
Did the release impact areas not on an exploration, development, production, or storage site	Not answered.

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

Requesting a remediation plan approval with this submission

No The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

QUESTIONS, Page 3

Action 431673

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	431673
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

CONDITIONS

Created By		Condition Date
nvelez	None	2/13/2025

Page 27cof 354

Action 431673

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Page 28cof 354

Action 452613

QUESTIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	452613
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2504240482
Incident Name	NAPP2504240482 YUKON GOLD 31 CTB 2 @ 0
Incident Type	Produced Water Release
Incident Status	Initial C-141 Approved
Incident Facility	[fAPP2123652649] YUKON GOLD 31 CTB 2

Location of Release Source	
Site Name	YUKON GOLD 31 CTB 2
Date Release Discovered	02/09/2025
Surface Owner	Federal

Sampling Event General Information Please answer all the questions in this group. What is the sampling surface area in square feet 650 What is the estimated number of samples that will be gathered 12 Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 04/23/2025 19.15.29.12 NMAC Time sampling will commence 09:00 AM Please provide any information necessary for observers to contact samplers Carmona Resources - 432-813-8988 (32.263019, -103.913419) Carmona Resources will be onsite from 04.23.2025 until Please provide any information necessary for navigation to sampling site 04.25.2025 and will continue into the following week to collect the remaining confirmation samples.

General Information Phone: (505) 629-6116

CONDITIONS

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	452613
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

Created By		Condition Date
jraley	Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.	4/16/2025

CONDITIONS

Action 452613

APPENDIX D

Received by OCD: 5/13/2025 11:42:19 Nearest water well Devon Energy

55' GWDB - Drilled 2025 OUKON GOLD 31 19 FEDERAL COM #212H (09.30.2024)

CALL ROOM DO

· · · · · · · ·

Google Earth Released to Imaging: 7/7/2025 9:20:25 AM

mage © 2025 Airbus

0.04 Miles
0.50 Mile Radius
Groundwater Determination Bore

Page 31 of 354

• YUKON GOLD 31 19 FEDERAL COM #212H (09.30.2024)

Received by OCD: 5/13/2025 11:42:19 AM Nearest water well

0

Devon Energy

Google Earth Released to Imaging: 7/7/2025 9:20:25 AM

🕹 0.50 Mile Radius

🎝 1.28 Miles

Legend

- 跪 1.85 Miles
- 🍰 2.16 Miles
- Groundwater Determination Bore
- USGS Water Well
- YUKON GOLD 31 19 FEDERAL COM #212H (09.30.2024)

Received by OCD: 5/13/2025 11:42:19 AM

Devon Energy

YUKON GOLD 31 19 FEDERAL COM #212H (09.30.2024) •

m

• YUKON GOLD 31 19 FEDERAL COM #212H (09.30.2024)

New Mexico Office of the State Engineer Water Column/Average Depth to Water

 (A CLW##### in the POD suffix
 (R=POD has indicates

 indicates
 been replaced,

 replaced
 O=orphaned,

 & no longer serves a
 C=the file is water right file.)

(quarters are smallest to largest)

POD Number	Code	Sub basin	County	Q64	Q16	Q4	Sec	Tws	Range	X	Y	Мар	Distance	Well Depth		Water Column
<u>C 04526 POD1</u>		CUB	ED	SE	NW	SE	06	24S	30E	601898.6	3568060.3		2107			
<u>C 02486</u>		С	ED	SW	NE	SW	19	23S	30E	601304.0	3572832.0 *	•	2893	350		
<u>C 04497 POD1</u>		CUB	ED	NW	NE	SW	04	24S	30E	604659.7	3568278.5	•	2976	110		
<u>C 04597 POD5</u>		CUB	ED	NE	NW	SE	24	23S	29E	600198.3	3572931.9	۲	3521			
<u>C 04597 POD4</u>		CUB	ED	NW	NW	SE	24	23S	29E	600158.9	3572947.2		3557			
<u>C 03908 POD3</u>		CUB	ED	SW	NW	SW	34	23S	30E	605850.9	3569640.1		3559	463		
<u>C 04597 POD3</u>		CUB	ED	NW	NW	SE	24	23S	29E	600171.6	3572991.0		3585			
<u>C 03908 POD2</u>		CUB	ED	SW	NW	SW	34	23S	30E	605872.3	3569594.1	۲	3587	518		
<u>C 04597 POD2</u>		CUB	ED	NW	NW	SE	24	23S	29E	600122.2	3572959.1		3589			
<u>C 04597 POD1</u>		CUB	ED	NW	NW	SE	24	23S	29E	600124.4	3573002.9	٢	3623			
<u>C 02108</u>		CUB	ED		NW	SW	80	24S	30E	602702.0	3566487.0 *	٩	3656	200	186	14

Average Depth to Water: 186 feet

(meters)

Minimum Depth: 186 feet

Page 34 of 354

(In feet)

Maximum Depth: 186 feet

Record Count: 11

<u>UTM Filters (in meters):</u>

Easting: 602324.00 Northing: 3570124.00 Radius: 4000

 \ast UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

October 2, 2024 08:32 AM MST

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

Z	OSE POD NO. Pod 1	(WELL NO	.)	7	WELL TAG ID NO.			OSE FILE NO C-4913	(S).			
ATIO	WELL OWNE	. ,				r		PHONE (OPT	IONAL)			
TOC	Devon Prod							CITY		STATE	3	ZIP
WELL	5315 Buena							Carlsbad		NM	88220	
GENERAL AND WELL LOCATION	WELL	I LA	DE	GREES 32	MINUTES 15	SECO 45.		* ACCURAC	Y REQUIRED: ONE TEN	TH OF A	SECOND	
VERA	(FROM GPS	3)	NGITUDE	103	54	49.	.73 W	* DATUM RI	EQUIRED: WGS 84		1	
I. GEP	DESCRIPTIO S31 T23s R		IG WELL LOCATION TO	STREET ADDR	ESS AND COMMON	N LANDM	IARKS – PLS	S (SECTION, T	OWNSHJIP, RANGE) WH	ERE AV	AILABLE	
-	531 1238 R	300										
	LICENSE NO. WD-1	862	NAME OF LICENSED		James Hawley				NAME OF WELL DRI H&F		COMPANY prises, LLC	
	DRILLING ST 4-1-2		DRILLING ENDED 4-1-25	DEPTH OF CO	MPLETED WELL (F 55'	T)		LE DEPTH (FT) 55'	DEPTH WATER FIR	ST ENCO N/		
7	COMPLETED	WELL IS:	ARTESIAN *add		E SHALLO	OW (UNCO	DNFINED)		C WATER LEVEL	/A	DATE STATIC 4-7-	
TION	DRILLING FL	UID:	✓ AIR	MUD	ADDITIV	VES – SPE	CIFY:					
RMA	OR CONTRACTOR OF				ER CABLE TOOL OTHER – SPECIFY:				CHECK INSTAI	HERE I	F PITLESS ADA	PTER IS
INFC					MATERIAL ANI GRADE	D/OR	CA	ASING	CASING		SING WALL	SLOT
ASING	FROM	то	DIAM (inches)		each casing string sections of screen			NECTION IYPE oling diameter)	INSIDE DIAM. (inches)		HICKNESS (inches)	SIZE (inches)
& C	0'	55'	5'	No c	casing left in hole							
FING												
RIL				1	1							
2. D									-			
	DEPTH	(feet bgl)	BORE HOLE	LIST ANNU	JLAR SEAL MATE			L PACK SIZE-	AMOUNT		METHC	D OF
ML	FROM	TO	DIAM. (inches)	*(if using Ce	RANGE E ntralizers for Artes			e spacing below	(cubic feet)		PLACEN	
3. ANNULAR MATERIAL						N/A						
MAJ												
AR												
NUL				- <u></u>					+			
NA.	· · · · · ·								+			
			I									2/2022
	R OSE INTER E NO.	NAL USE	5		POD N	0.			-20 WELL RECORD	& LOC	J (Version 09/2	22/2022)
	CATION				1001			WELL TAG			PAGE	1 OF 2

Released to Imaging: 7/7/2025 9:20:25 AM

	DEPTH (f	eet bgl)		COLOR AND TYPE OF MATERIAL E	NCOUN	TERED -		WA	FFR	ESTIMATED YIELD FOR
	FROM	ТО	THICKNESS (feet)	INCLUDE WATER-BEARING CAVITIES C (attach supplemental sheets to fully d	R FRAC	FURE ZONE	s	BEAR (YES	ING?	WATER- BEARING ZONES (gpm)
	0'	5'		Y	√ N					
	5'	15'	10'	Brown Sand		Y	√ N			
	15'	55'		Y	√ N					
						A		Y	N	
	-			2				Y	N	
-								Y	Ν	
4. HYDROGEOLOGIC LOG OF WELL								Y	N	
5				1 a				Y	N	
3								Y	N	
								Y	N	
5								Y	N	
FOI								Y	N	
500								Y	N	7
					201			Y	N	
4. 1								Y	N	
The second								Y	N	
								Y	N	
								Y	N	
								Y	N	
								Y	N	
								Y	N	
	METHOD I	ISED TO E	STIMATE VIELD	OF WATER-BEARING STRATA:			TOTA	AL ESTI	MATED	
			AIR LIFT	BAILER OTHER – SPECIFY: DTGW	Bore				O (gpm):	0.00
NOI	WELL TES	T TEST	RESULTS - ATT RT TIME, END TI	ACH A COPY OF DATA COLLECTED DURING ME, AND A TABLE SHOWING DISCHARGE A	WELL T	ESTING, IN WDOWN OV	CLUDI ER THI	NG DISC E TESTI	CHARGE	METHOD, OD.
TEST; RIG SUPERVISI	MISCELLA	NEOUS IN	W	epth to groundwater bore was gauged for wate as removed, bore hole was backfilled with dri bured from 10' BGS to surface.	er on 4-7 ll cutting	-25. DTGW to 10' BGS.	bore w Hydra	as dry. ' ted bent	Tempora conite ho	ry well casing le plug was
5. TESI	PRINT NAM		DRILL RIG SUPE	RVISOR(S) THAT PROVIDED ONSITE SUPERV	ISION O	F WELL COM	NSTRU	CTION (OTHER T	HAN LICENSEE
SIGNATURE	CORRECT	RECORD	OF THE ABOVE I	FIES THAT, TO THE BEST OF HIS OR HER KN DESCRIBED HOLE AND THAT HE OR SHE WI 30 DAYS AFTER COMPLETION OF WELL DRI	LL FILE	GE AND BEI THIS WELL	LIEF, T RECOF	HE FOR RD WITH	EGOING I THE ST	IS A TRUE AN TATE ENGINEE
6. SIGN	\leq	SIGNA	ture of driller	James Hawley		_		4	-7-25 DATE	
550	1									
	R OSE INTER	NAL USE		POD NO.		WR-20 WI TRN NO.	ELL RE	CORD &	LOG (V	ersion 09/22/202
rIL	ENO.			FOD NO.		TRIVINO.				

Released to Imaging: 7/7/2025 9:20:25 AM

PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

I. GENERAL / WELL OWNERSHIP:

State Engineer Well Number: C-4913 F	POD1		
Well owner: Devon Production CO. LF		Phone No.	·
Mailing address: 5315 Buena Vista Dr.			
City: Carlsbad		NM	Zip code:88220
II. WELL PLUGGING INFORMAT	<u>'ION:</u>		
1) Name of well drilling company	that plugged well: H&R Enter	erprises, LLC.	
2) New Mexico Well Driller Lice	nse No.: WD-1862	I	Expiration Date: 6-16-25
3) Well plugging activities were s	supervised by the following we	ell driller(s)/rig superv	visor(s):

	Nathan Smelcer		
4)	Date well plugging began: 4-7-25	Date well plugging concluded: 4-7-25	

4)	Date well plugging began	n: 4-7-25		Date	e well plu	ugging co	oncluded:	4-7-25	
5)	GPS Well Location:	Latitude:	32	deg,	15	min,	45.26	sec	

		_ 0		,		
Longitude:	103	deg.	54	min.	49.73	sec, WGS 84
Longitude.		,		mm,		500, 11 05 01

6) Depth of well confirmed at initiation of plugging as: <u>55'</u> ft below ground level (bgl), by the following manner: <u>well sounder</u>

7) Static water level measured at initiation of plugging: <u>N/A</u> ft bgl

9) Were all plugging activities consistent with an approved plugging plan? <u>yes</u> If not, please describe differences between the approved plugging plan and the well as it was plugged (attach additional pages as needed):

Version: September 8, 2009 Page 1 of 2

Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with 10) horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

For each interval plugged, describe within the following columns:

Depth (ft bgl)	Plugging <u>Material Used</u> (include any additives used)	Volume of <u>Material Placed</u> (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	<u>Comments</u> ("casing perforated first", "open annular space also plugged", etc.)
-	0' - 10' Hydrated Bentonite	Approx. 10.2 gallons	10.2 gallons	Pour	
-	10' - 55' Drill Cuttibgs	Approx. 46 gallons	46 gallons	Pour	
-					
-					
-					
-					
-					
-					
-					
-					
]	cubic feet x 7.	BY AND OBTAIN .4805 = gallons .97 = gallons		
III. SIGN	ATURE:	cubic yards x 201	.97 = gallons		

James Hawley

_, say that I am familiar with the rules of the Office of the State I, Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

4-7-25 Signature of Well Driller Date

Version: September 8, 2009 Page 2 of 2

PAGE 1: OF 2

10.000

WELL TAG ID NO.

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

NO	ose pod no POD1 (M		0.)		WELL TAG ID N n/a	10.		OSE FILE NO(3 C-4526	S).			
OCATI	WELL OWN		•		1			PHONE (OPTI	ONAL)			
WELL L	WELL OWN 6401 Holic					<u> </u>		CITY Midland		state TX 7	9707	ZIP
1. GENERAL AND WELL LOCATION	WELL LOCATIO		DI	egrees 32°	minutes 14'	seco 42.	NDS 15" N		REQUIRED: ONE TENT	TH OF A SECON	٩D	
NER	(FROM GP	PS) LC	ONGITUDE	103°	55'	6.2	20" W	* DATUM REC	QUIRED: WGS 84			
1. GE	DESCRIPTION NW NE SO		ING WELL LOCATION TO 4S R30E	O STREET ADD	RESS AND COMM	ON LANDM	iarks – pls	S (SECTION, TO	WNSHJIP, RANGE) WH	ERE AVAILABI	LE	
	LICENSE NO		NAME OF LICENSED			<u> </u>			NAME OF WELL DRI			
	124	-			Jackie D. Atki					ineering Asso		1C.
	DRILLING S 05/14/		DRILLING ENDED 05/14/2021		OMPLETED WELL orary well mate	• •		le depth (ft) 105	DEPTH WATER FIRS	n/a		
N	COMPLETEI	D WELL IS:	ARTESIAN	🚺 DRY HO	le 🔲 shal	LOW (UNC	ONFINED)		STATIC WATER LEV	'EL IN COMPLE n/a	eted wei	LL (FT)
АТІС	DRILLING F	LUID:	🗹 AIR		ADDI	TIVES – SPE	CIFY:					
DRM	DRILLING M	ETHOD:	ROTARY	HAMME	R 🗌 CABLI	E TOOL	OTHE	R - SPECIFY:	Hollo	w Stem Aug	ger	
2. DRILLING & CASING INFORMATION	DEPTH FROM	(feet bgl) TO	DIAM	(include	MATERIAL A GRADE each casing strin	ıg, and	CONN	ASING VECTION VPE	CASING INSIDE DIAM.	CASING V THICKN	ESS	SLOT SIZE (inches)
CAS	0	105	(inches) ±6.5	note	sections of scree Boring- HSA	en)		ling diameter)	(inches)	(inche	5)	
G&	0	105	10.5		Boring- HSA							-
TLIN											····-	
DRII												
2.]												
										I		
	DEPTH	(feet bgl)	BORE HOLE		IST ANNULAR	SEAL MA	ATERIAL A	AND	AMOUNT	1	METHO	D OF
IAL	FROM	ТО	DIAM. (inches)		AVEL PACK SIZ				(cubic feet)		LACEM	
TER												
WA'											_	
ANNULAR MATERIAL				 								
INN				+					<u> </u>			
3. Aľ				+								
				1								
FOR	OSE INTER	NAL USI	E					WR-2	0 WELL RECORD &	& LOG (Vers	ion 06/31	0/17)
			671		PODI		.1	TRNI		$\frac{1}{2}$		<u> </u>

245.30E.6.414

Released	to	Imaging:	7/7/2025 9:20:25 AM
nercuscu i		inusuis.	

ヒュの

LOCATION

- -

	DEPTH (1 FROM	eet bgl) TO	THICKNESS (feet)	INCLUDE WATE	D TYPE OF MATERIA R-BEARING CAVITIE plemental sheets to ful	S OR FRAC	TURE ZONES		WATER BEARING (YES / NO	G?	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
ŀ	0	4	4	SAND, poorly	y graded, fine-very grain	ed, Reddish-	brown, dry		Y 🗸	N	
ł	4	12	8		poorly-mod. consolidat				Y V	'N	
ł	12	19	7		ded, fine-very grained, s			,	Y V	'N	
	19	24	5	SAND, poorly graded,	fine-very grained, some	caliche grav	el, Light- Brow	n, dry	Y V	'N	
	24	72	48	SAND, poorly	graded, fine-very graine	d, Reddish B	rown, moist		Y 🗸	'N	
Ŀ	72	92	20	SAND, poorly grade	ed, fine-very grained, so	ne silt, Redd	ish Brown, mo	ist	Y 🗸	' N	
HYDROGEOLOGIC LOG OF WELL	92	102	10		orly graded, fine-very gr			+	Y 🗸	'N	
OF V	102	105	3	SILTY SAND, po	oorly graded, fine-very g	rained, Redd	ish Brown, dry		Y 🗸	'N	
ğ		·							Y	N	
L C L				······································					Y	N	
Ö									Y	N	
EOI									Y	N	
00									Y	N	
									Y	N	
4. H									Y	N	
									Y	N	
									Y	N	
				1					Y	N	
		· · · · · —							Y	N	
									Y	N	
									Y	N	
	METHOD U	SED TO ES	I TIMATE YIELD	I OF WATER-BEARIN	G STRATA:	···		TOT/	L ESTIMA	TED	
		_	IR LIFT		HER - SPECIFY:			WEL	L YIELD (g	;pm):	0.00
					HER - SFECH I.						
7	WELL TES			ACH A COPY OF DAT ME, AND A TABLE SH							· · ·
NOIS											<i></i>
RVI	MISCELLA	NEOUS INF		emporary well materia							
TEST; RIG SUPERVI				et below ground surfa		tonite chips	from ten fee	t belo	w ground su	irface	to surface.
IC S			_		e on one peologist.						
T; R											
TES	PRINT NAM	IE(S) OF D	RILL RIG SUPER	RVISOR(S) THAT PRO	VIDED ONSITE SUPE	RVISION O	F WELL CON	STRUG	CTION OTH	ER TH	AN LICENSEE:
5.	Shane Eldri	dge, Carme	lo Trevino, Car	neron Pruitt							
B	CORRECT I	RECORD O	F THE ABOVE I	FIES THAT, TO THE B DESCRIBED HOLE AN	D THAT HE OR SHE	WILL FILE '					
TUE	AND THE P	ERMIT HO	LDER WITHIN	30 DAYS AFTER COM	PLETION OF WELL D	RILLING:					
SIGNATURE	Jack A	tkins		Ia	ckie D. Atkins				06/09/20	021	
6. SI	/			Ja						021	
		SIGNAT	URE OF DRILLE	R / PRINT SIGNEE	NAME				D	ATE	
FOI	R OSE INTER						WR_20 W/P	LPE		GWe	rsion 06/30/2017)
	E NO.	-	4526		POD NO.	1	TRN NO.		9210	9	SION 00/00/2017]
LOG	CATION		, <u> </u>			WEIT			110		PAGE 2 OF 2

WELL RECORD & LOG

OSE DII JAN 28 2021 PM4:24

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

Ň	OSE POD NO POD1 (B)		WELL TAG ID NO. n/a			OSE FILE NO() C-4497	S).			
CATIC	WELL OWN				L,,,,			PHONE (OPTI	ONAL)			
VELL LO	WELL OWN 6401 Holid							CITY Midland		STATE TX 7	79707	ZIP
GENERAL AND WELL LOCATION	WELL LOCATIO		TITUDE	GREES 32°	minutes 14'	seco 46.		J	REQUIRED: ONE TENT	TH OF A SECO	ND	·
NER	(FROM GF		NGITUDE	-103°	53'		46" W		QUIRED: WGS 84			
1. GE	DESCRIPTION NE SW Se		IG WELL LOCATION TO R30E	STREET ADD	RESS AND COMMON	LANDM	IARKS – PLS	S (SECTION, TO	WNSHJIP, RANGE) WHI	ERE AVAILAB	ILE	
	LICENSE NO 124		NAME OF LICENSED		Jackie D. Atkins				NAME OF WELL DRI Atkins Eng	LLING COMP		IC.
	DRILLING S 12/28/		DRILLING ENDED 12/28/2020		OMPLETED WELL (FI rary well materia	-		le depth (ft) 110	DEPTH WATER FIRS	T ENCOUNTE n/a	RED (FT)	
N	COMPLETE	D WELL IS:	ARTESIAN	🗹 DRY HO	LE 🗍 SHALLO	W (UNC	ONFINED)		STATIC WATER LEV	EL IN COMPL n/a	ETED WEI	.L (FT)
ATIO	DRILLING F	LUID:	🗹 AIR	MUD	ADDITIV	ES – SPE	CIFY:					
ORM	DRILLING M	ETHOD:	ROTARY		R 🗍 CABLE T	OOL	✓ OTHE	R - SPECIFY:	Hollo	w Stem Au	ger	
2. DRILLING & CASING INFORMATION	DEPTH FROM	(feet bgl) TO	BORE HOLE DIAM (inches)	(include	MATERIAL AND GRADE each casing string,		CONN	ASING NECTION TYPE	CASING INSIDE DIAM. (inches)	CASING THICKN (inche	VESS	SLOT SIZE (inches)
¢ CA	0	110	±8.5		sections of screen) Boring- HSA		(add coup)	ling diameter)	-			
NG					····							
SILL				1								
2. DI												
					<u> </u>							
	DEPTH	(feet bgl)	BORE HOLE		ST ANNULAR SE				AMOUNT		METHO	
ANNULAR MATERIAL	FROM	TO	DIAM. (inches)	GRA	VEL PACK SIZE	RANG	E BY INTE	RVAL	(cubic feet)		PLACEM	ENT
ATE												
LR M				<u> </u>								
IULA												
Э.												
FOP	OSE INTER	NALUSE		1				WR_0	ا ٥ WELL RECORD ۵		tion 06/20)/17)
	$\frac{OSE INTER}{C}$ NO. (- 44	,97		POD NO).	[TRN 1	,	2.6	101 00/30	<u>"" " ()</u>
LOC	ATION	2 3	1 -	T245	Sec 4 R	230) E	WELL TAG I	DNO. NA		PAGE	OF 2

Released to Imaging: 7/7/2025 9:20:25 AM

PAGE 2 OF 2

Ά

	DEPTH (feet bgl)	THICKNESS	COLOR AN	D TYPE OF MATER	IAL ENCOUN	TERED -		WAT		ESTIMATED YIELD FOR
	FROM	то	(feet)		ER-BEARING CAVIT oplemental sheets to t			5	BEAR		WATER- BEARING ZONES (gpm)
	0	1.5	1.5	CALICHE, poor-mode	erate consolidation, fe	w sand, fine gra	in, light brown	, dry	Y	√ N	
	1.5	5	3.5	SAND, well graded, fit	ne grain, few gravel, s	ub angular, 2-8	mm. Red/brow	n, dry	Y	√ N	
	5	16	11	SAND, fine grain, p	oorly graded, few gra	vel, some clay,	red/brown, mo	ist	Y	√ N	
	16	85	69	SAND, well graded,	, large grain, little clay	, noncohesive,,	red/brown, mo	oist	Y	√ N	
	85			SANDSTONE, very	y poorly consolidated,	medium-fine g	rain, well grade	ed,	Y	√ N	
Г		105	20	few caliche gravel, su	ib angular, 1.5-7mm, l	ight brown - alr	nond brown, m	oist	Y	√ N	
VEL	105			SANDSTONE, hi	ghly consolidated, me	dium-fine grain	, poorly graded	Ļ	Y	√ N	
OF V		110	5	few clay, low pla	sticity, noncohesive, l	ight brown-alm	ond brown, dry	,	Y	√ N	
4. HYDROGEOLOGIC LOG OF WELL						-			Y	N	
ICL									Y	N	
DO.					· · · · · ·				Y	N	
EOI									Y	N	
SOG									Y	N	
IQX									Y	N	
4. H									Y	N	
									 Y	N	
										 N	
									 Y	N	
									Y	N	
										N	
									Y	N	
	METHODI			OF WATER READEN	C CTD ATA .		· · · · · ·		L ESTIM		
				OF WATER-BEARIN					L YIELD		0.00
	PUM		IR LIFT	BAILER O	THER – SPECIFY:						
ION	WELL TES			ACH A COPY OF DAT ME, AND A TABLE SI							
TEST; RIG SUPERVISION	MISCELLA	NEOUS INF	fe	emporary well materi et below ground surfa ogs adapted from WS	ace, then hydrated b	entonite chips	ackfilled usin from ten fee	g drill t belov	l cuttings w ground	from to surface	tal depth to ten to surface.
EST	PRINT NAM	Æ(S) OF DI	RILL RIG SUPER	VISOR(S) THAT PRO	VIDED ONSITE SU	PERVISION O	WELL CON	STRU	TION OT	THER TH	IAN LICENSEE:
5. T	Shane Eldrid					1					
6. SIGNATURE	CORRECT I	RECORD O	F THE ABOVE I	FIES THAT, TO THE E DESCRIBED HOLE AN 00 DAYS AFTER COM	ND THAT HE OR SH	E WILL FILE					
SIGN/	Jack A	tkins		Ja	ckie D. Atkins				01/15	/2021	
9		SIGNAT	URE OF DRILLE	R / PRINT SIGNEE	NAME					DATE	
FOI	R OSE INTER	NALIISE					WR-20 WFI	LRF	CORD & I		rsion 06/30/2017)
	E NO. C	-449	7		POD NO.		TRN NO.		82	SZ	6

Sec 4

RBOE

WELL TAG ID NO.

245

2

3

LOCATION

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

Page 43 of 354

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr: 682526 File Nbr: C 04497 Well File Nbr: C 04497 POD1

Feb. 05, 2021

TACOMA MORRISSEY WSP USA 3300 NORTH A STREET BLDG 1 #222 MIDLAND, TX 79705

Greetings:

The above numbered permit was issued in your name on 12/01/2020.

The Well Record was received in this office on 01/28/2021, stating that it had been completed on 12/28/2020, and was a dry well. The well is to be plugged according to 19.27.4.30 NMAC.

Please note that another well can be drilled under this permit if the well is completed and the well log filed on or before 12/01/2021.

If you have any questions, please feel free to contact us.

Sincerely, Ŵ Andrew Dennis (575) 622-6521

drywell

Received by OCD: 5/13/2025 11:42:19 AM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Groundwater 🗙 New Mexico 🗙 GO		Date	Time	? Water-level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Metho measu
-------------------------------	--	------	------	---	------------------------	---	---	---------------------------------	-------------	---------------------

Click to hideNews Bulletins

• Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 321542103522801

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 321542103522801 23S.30E.34.133144 USGS-4

Eddy County, New Mexico Latitude 32°15'45.42", Longitude 103°52'36.09" NAD83 Land-surface elevation 3,413 feet above NAVD88 The depth of the well is 518 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer.

This well is completed in the Otner aquilers (199930000000) local aquifer. This well is completed in the Rustler Formation (312RSLR) local aquifer.

Table of data

Tab-separated data

Graph of data

Reselect period

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
1961-12-12		D	62610		2977.68	NGVD29	1	Z			
1961-12-12		D	62611		2979.38	NAVD88	1	Z			
1961-12-12		D	72019	433.62			1	Z			
1962-05-10		D	62610		2978.11	NGVD29	1	Z			
1962-05-10		D	62611		2979.81	NAVD88	1	Z			
1962-05-10		D	72019	433.19			1	Z			
1962-07-31		D	62610		2978.13	NGVD29	1	Z			
1962-07-31		D	62611		2979.83	NAVD88	1	Z			
1962-07-31		D	72019	433.17			1	Z			
1962-08-08		D	62610		2978.13	NGVD29	1	Z			
1962-08-08		D	62611		2979.83	NAVD88	1	Z			
1962-08-08		D	72019	433.17			1	Z			
1963-03-10		D	62610		2977.80	NGVD29	1				
1963-03-10		D	62611		2979.50	NAVD88	1				
1963-03-10		D	72019	433.50			1				
1972-09-25		D	62610		2977.39	NGVD29	1				
1972-09-25		D	62611		2979.09	NAVD88	1				
1972-09-25		D	72019	433.91			1	Z			
1976-12-14		D	62610		2974.74	NGVD29	1	_			
1976-12-14		D	62611		2976.44	NAVD88	1				
1976-12-14		D	72019	436.56			1	Z			

Section

Explanation

Code Description

Received by OCD: 5/13/2025 11:42:19 AM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Page 45 of 354

Date	Time	? Water-level date-time accuracy	? Parameter code		Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Metho measu
Referenced vertical da	tum	NA	VD88	North Americ	can Vertical Datum o	f 1988			
Referenced vertical datum		NG	VD29	National Geodetic Vertical Datum of 1929					
Status			1	Static					
Method of measurement			Z	Other.					
Measuring agency				Not determin	ned				
Source of measurement				Not determin	ned				
Water-level approval s	tatus		А	Approved for	publication Proce	ssing and review com	pleted.		

Questions or Comments Help Data Tips Explanation of terms Subscribe for system changes

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2024-10-02 10:45:10 EDT 0.31 0.23 nadww01

USA.gov

.

YUKON GOLD 31 19 FEDERAL COM #212H (09.30.2024)

10/2/2024

World Hillshade

Esri, NASA, NGA, USGS, FEMA, Esri Community Maps Contributors, New Mexico State University, Texas Parks & Wildlife, CONANP, Esri, TomTom,

YUKON GOLD 31 19 FEDERAL COM #212H (09.30.2024)

TomTom, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau, New Mexico Oil Conservation Division

Environmental Karst Study Report Yukon Gold 31 19 Federal Com #212 Eddy County, New Mexico

Prepared For: Carmona Resources 310 W Wall Street, Suite 500 Midland, TX 79701

□ Positive within 200 feet of spill delineation boundary

✓ Negative within 200 feet of spill delineation boundary

☑ Stable □ Unstable Ground

□ Karst Monitor Recommended

February 21, 2025

CARM-001-20241105 ©2025 – Southwest Geophysical Consulting, LLC. All rights reserved.

i

Published by:

Southwest Geophysical Consulting, LLC 5117 Fairfax Dr. NW Albuquerque, NM 87114 (505) 585-2550 www.swgeophys.com

Prepared by:

Garrett Jorgensen Olague Senior Field Geologist garrett@swgeophys.com

Reviewed by:

David Decker, PhD, PG, CPG CEO, Principal Geologist dave@swgeophys.com

Prepared for:

Carmona Resources 310 West Wall Street, Suite 500 Midland TX, 79701

Ashton Thielke (281) 753-5659 thielkea@carmonaresources.com

MMXXV

CARM-001-20241105

©2025

Released to Imaging: 7/7/2025 9:20:25 AM

TABLE OF CONTENTS

FRONT MATTER i
TABLE OF CONTENTSii
LIST OF FIGURESiii
LIST OF TABLESiii
1.0 INTRODUCTION
1.1 Goals of this Study1
1.2 Summary of Findings
1.3 Affected Environment1
1.4 Limitations of Report
2.0 LOCATION AND DESCRIPTION OF STUDY AREA
2.1 Description of Site
2.2 Local Geology Summary5
2.3 Description of Survey
2.3.1 Surface Karst Inventory6
2.3.2 Geophysical Survey8
3.0 RESULTS
3.1 Surface Karst Survey
3.2 Geophysical Survey
4.0 DISCUSSION
5.0 SUMMARY
6.0 DISCLOSURE STATEMENT
7.0 REFERENCES
8.0 GLOSSARY OF TERMS
9.0 ATTESTATION

•

LIST OF FIGURES

-igure 1: Karst occurrence zone overview	2
-igure 2: Land ownership and PLSS overview	4
-igure 3: Geology overview	5
-igure 4: Surface survey overview	6
-igure 5: Geophysical survey overview	8
-igure 6: Aerial karst survey results	10
-igure 7: 2D inverted resistivity section	11
-igure 8: Data overlay	13

LIST OF TABLES

Table 1: Survey Line Data Table	9
Table 2: Software Information and Settings	9

•

1.0 INTRODUCTION

This report was commissioned by Carmona Resources (hereinafter referred to as "the client"), on November 5, 2024, for the purpose of conducting an environmental karst study within an area encompassing the Yukon Gold 31 19 Federal Com #212 release site (hereinafter termed "YG31") centered at N 32.765001° W 104.282459°.

1.1 Goals of this Study

The goals of this study are to conduct a surface karst inventory and provide the client with the location and description of any surface karst features located within 200 feet (61 meters) of the spill delineation boundary (as defined by 19.15.29.12 NMAC^[1]) and to determine whether stable ground exists (as defined by 19.15.2 NMAC Definitions^[2]) within the spill boundary of the Yukon Gold 31 19 Federal Com #212 release using electrical resistivity imaging^[3].

1.2 Summary of Findings

- No surface karst features exist within the 200-foot (61-meter) zone surrounding the spill delineation boundary.
- No anomalies consistent with air-filled voids are located within the YG31 resistivity survey area, indicating the zone beneath the geophysical survey is not subject to collapse.
- Well-layered stratigraphy is interpreted to exist beneath the area where the geophysical survey was conducted, indicating stable ground.

1.3 Affected Environment

The YG31 project site is located in evaporite karst terrain, a landform that is characterized by underground drainage through solutionally enlarged conduits. Evaporite karst terrain may contain sinkholes, sinking streams, caves, and springs. Sinkholes leading to underground drainages and voids are common. These karst features, as well as occasional fissures and discontinuities in the bedrock, provide the primary sources for rapid recharge of the groundwater aquifers of the region. Additionally, karst may develop by hypogene processes involving dissolution by upwelling fluids from depth independent of recharge from the overlying or immediately adjacent surface. Hypogene karst systems may not be connected to the surface and can remain undiscovered unless encountered during drilling or excavation.

Karst features are delicate resources that are often of geological, hydrological, biological, and archeological importance, and should be protected. The four primary concerns in these types of terrain are environmental issues, worker safety, equipment damage, and infrastructure integrity.

The Bureau of Land Management (BLM) categorizes all areas within the Carlsbad Field Office (CFO) zone of responsibility as having either low, medium, high, or critical cave potential based on geology, occurrence of known caves, density of karst features, and potential impacts to freshwater aquifers^[4]. These designations are also recognized by the New Mexico State Land Office (NMSLO). This project occurs within both a **HIGH** karst occurrence zone (HKOZ) and a **MEDIUM** karst occurrence zone (MKOZ)^[5] (**Figure 1**).

A high karst occurrence zone is defined as an area in known soluble rock types that contains a high frequency of significant caves and karst features such as sinkholes, bedrock fractures that provide rapid recharge of karst aquifers, and springs that provide riparian habitat^[4].

A medium karst occurrence zone is defined as an area in known soluble rock types that may have a shallow insoluble overburden. These areas may contain isolated karst features such as caves and sinkholes. Groundwater recharge may not be wholly dependent on karst features, but the karst features still provide the most rapid aquifer recharge in response to surface runoff^[4].

Figure 1: Karst occurrence zone overview. Background image credit: Google Earth. Image date: August 21, 2024. Image datum: WGS-84.

Due to the rapidity with which evaporite karst develops, each location within a CKOZ or HKOZ must be assessed on an individual basis to determine the existence of surface karst features and the possibility of sub-surface karst development each time a release occurs.

1.4 Limitations of Report

This report should be read in full. No responsibility is accepted for the use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

This report has been prepared for the use of Carmona Resources in accordance with generally accepted consulting practices. Every effort has been made to ensure the information in this report is accurate as of the time of its writing. This report has not been prepared for use by parties other than the client, their contracting party, and their respective consulting advisors. It may not contain sufficient information for the purposes of other parties or for other uses.

This report was prepared upon completion of the associated fieldwork using a standard template prepared by Southwest Geophysical Consulting and is based on information collected prior to fieldwork, conditions encountered on site, and data collected during the fieldwork and reviewed at the time of preparation. Southwest Geophysical Consulting disclaims responsibility for any changes that might have occurred at the site after this time. The interpreted results, locations, and depths noted in this report (if applicable) should be taken as an interpretation only and no decision should be based solely on this information. Physical verification of aerial imagery analysis results should be conducted in the field prior to using this information for remediation planning. Physical verification of geophysical results using geotechnical methods should be conducted.

To the best of our knowledge, the information contained in this report is accurate at the date of issue. Due to the nature of karst terrain, the information in this report shall not be used beyond three years past the dates of the field work provided in section **2.3 Description of Survey**. Large weather events can shorten this time period as areas subject to karst development can rapidly form new features subsequent to these events.

2.0 LOCATION AND DESCRIPTION OF STUDY AREA

2.1 Description of Site

The site is located 34.3 kilometers (21.3 miles) southeast of Carlsbad, New Mexico, east of Rawhide and Gavilan Roads. The release area is located within the northeast ¼ section of section 31, NM T23S R30E^[6] (Figure 1 and Figure 2). The region has rolling terrain with karstification occurring in the gypsite soils and underlying gypsum and dolomite bedrock^[7] (see section *2.2 Local Geology Summary* for further information). The climate in this area of southeast New Mexico is semi-arid with an average annual precipitation of approximately 13 inches, of which about two-thirds falls as rain during summer thunderstorms from June to October. Summers are hot and sunny while winters are generally mild, with an average maximum temperature of 96°F in July and an average minimum temperature of 28°F in January^[8]. This area is within the Chihuahuan Desert Thornscrub as defined by the Southwestern Regional ReGAP Vegetation map^[9] and the vegetation consists mostly of areas of blue grama, nine-awned pappus grass, burro grass and low scrub including yucca. The spill delineation boundary is located within both an HKOZ and MKOZ^[5] (Figure 1) and entirely within BLM-CFO managed land^[10] (Figure 2).

Figure 2: Land ownership and PLSS overview. Background image credit: Google Earth. Image date: August 21, 2024. Image datum: WGS-84.

2.2 Local Geology Summary

The site for the YG31 survey is located east of Nash Draw at an elevation of 967 meters (3,173 feet), \pm 15 meters (49.2 feet). This region is entirely underlain by the Permian Rustler Formation (Pru). The area is mantled by thin gypsiferous soils (gypsite), Quaternary eolian deposits (Qe), and piedmont gravels (Qp)^[11] up to 5 meters in depth (**Figure 3**).

The Rustler Formation is an evaporite facies composed mainly of thin siltstones and sandstones interbedded with claystones, dolomite, and gypsum, and contains both karst-forming strata (the Forty-niner and Tamarisk members) and two shallow aquifers (the Magenta and Culebra Dolomite members)^[12].

The Pru overlies the Permian Salado Formation (PsI), a layer of extremely soluble halite which can readily dissolve to create caves, sinkholes, and other karst features; however, due to its extremely soluble nature, only non-soluble silt and sand remain from the dissolution of this layer at the surface^[12]. The Rustler Formation may be subject to collapse if a void has developed beneath it in the Salado Formation^[13].

The survey area is covered by the easily accessible Geologic Map of New Mexico (2003) at 1:500,000 scale^[11] and the Digital Geologic Map of New Mexico in ARC/INFO Format^[14].

Figure 3: Geology overview. Geology map credit: The Digital Geologic Map of New Mexico in ARC/INFO Format. Background image credit: Google Earth. Image date: August 21, 2024. Image datum: WGS-84.

2.3 Description of Survey

2.3.1 Surface Karst Inventory

Southwest Geophysical Consulting, in partnership with SWCA Environmental Consultants, provides aerial karst surveys using small, uncrewed aerial systems (sUAS) that are flown by qualified, FAA licensed drone pilots and that meet the stringent Bureau of Land Management – Carlsbad Field Office requirements for both pedestrian and aerial karst surveys.

The aerial karst survey includes a surface karst desk study prior to the flight which allows us to provide client feedback in the event of any previously known karst features in the area. The desk study is performed out to 305 meters (1,000 feet) from the spill delineation boundary per New Mexico Oil Conservation Division guidance^[1] (**Figure 4**). The study was performed using satellite and aerial imagery from Google Earth Pro dated March 20, 2023 (please note features less than one meter in diameter are generally not visible using this method); the Southwest Geophysical Cave and Karst Database dated December 23, 2024^[15]; the Remuda Basin, NM, 1:24,000 quad, 1985, USGS topographic map; and the latest lidar imagery from CalTopo.com. Please note that we use older topographic maps because newer maps have had caves removed from them. These searches and queries returned no results within the survey boundary.

Figure 4: Surface survey overview. Background image credit: Google Earth. Image date: August 21, 2024. Datum: WGS-84.

Aerial karst surveys are conducted at low elevation within 200 meters of the spill delineation boundary^[4] (**Figure 4**) following a preplanned raster pattern flightpath designed for the purpose of generating at least 75% imagery overlap. The collected high-resolution, georeferenced imagery is stitched together to develop orthomosaic imagery which is further developed into a digital elevation model (DEM); the DEM is then processed into a local relief model (LRM) (**Figure 6**). This LRM is color coded to enhance differences in elevation of as little as five centimeters. The orthoimagery, DEM, and LRM are uploaded to a server where they are analyzed by an experienced karst geologist. Finally, the data is reviewed by a senior karst geologist for quality assurance and downloaded into a table for inclusion in a written report^[16].

The resolution of the orthoimagery is clear enough that features as small as 10 centimeters can be positively identified in most circumstances. Occasionally there are ambiguous features identified during an aerial survey that will need to be checked in the field if they are impacted by the proposed remediation efforts. Specifically, it is difficult to tell the difference between solution tubes, abandoned uncased well bores, and some burrows in drone imagery. If an ambiguous feature is located during imagery analysis, it is marked with a yellow dot in **Figure 6**. If a feature of any likelihood is subsequently verified in the field prior to publication of the report, the dot will be changed to a red triangle if confirmed as a karst feature or deleted if not.

The imagery for this study was collected via aerial survey by Pat Lagodney of SWCA on November 18, 2024. Surface karst features may have developed after this date and will not be noted in this report. Imagery analysis was completed by Dave Decker of Southwest Geophysical Consulting on December 2, 2024.

2.3.2 Geophysical Survey

For this survey, an Advanced Geosciences Inc. (AGI) SuperSting[™] Wifi R8 with a multielectrode switchbox, a 56-electrode array of 40-centimeter-long electrodes, and a tablet controller were used to image the subsurface. This survey consisted of one resistivity line in a dipole-dipole strong-gradient configuration laid out south to north. The single line consisted of 56 electrodes at 4-meter spacing, resulting in a 220-meter-long array (**Figure 5, Table 1**). A preconfigured command file was used to run the data collection (DDSG56). This electrode configuration provided a depth of investigation of 44 meters (144 feet) and a resolution of 2.0 to 2.5 meters (6.6 to 8.2 feet) within the first 5 to 8 meters (16 to 26 feet) from the surface. A Leica GS18 GPS was used to record electrode locations and elevations.

Figure 5: Geophysical survey overview. One survey line was conducted with 56 electrodes each at 4-meter spacing (yellow dots denoted with blue numbers). Background image credit: Google Earth. Image date: August 21, 2024. Image datum: WGS-84.

Table 1 provides basic line data. Detailed information including electrode number, location in latitude/ longitude (decimal degree format), and elevation in meters can be found in the accompanying data files.

Table 1: Survey Line Data Table. The .kmz file contains all the points for the survey line listed in the file name. These data are available in the accompanying files YG31_ERI_Points.xlsx and CARM-001-20241105_YG31_Data_Files.kmz.

File Name:	Completed By:	Date:
YG3101.kmz	Garrett Jorgensen Olague – Senior Field Geologist Britt Bommer – Field Geologist Steven Kesler – Field Geologist	1/27/2025

EarthImager[™] 2D software was used to download and process the data and to provide the model used to make our interpretations. The design of the survey and the orientation of each of the lines provides the information necessary to make the determination of "stable" or "unstable" ground at this site.

A typical starting model was used for the data processing due to the two-layer model of the geology in the area; specifically, generally high-resistivity gypsum and dolomite at the surface and low-resistivity saturated gypsum and dolomite bedrock at depth. The starting model used was "average apparent resistivity" and a default inversion setting of "surface," with a minimum apparent resistivity set to 0.1 Ohm-meters (Ohm-m or Ω -m) and a max apparent resistivity set to 100,000 Ω -m (**Table 2**).

O	
Software Name:	EarthImager [™] 2D
Version:	2.4.4.649
Starting Model:	Average Apparent Resistivity
Default Inversion Settings:	Surface
Changes to Default Inversion Settings:	Max Apparent Resistivity = 100 kΩ-m
	Min Apparent Resistivity = 0.1Ω -m

Table 2: Software Information and Settings

Note: Raw data files (.stg files for EarthImager™ 2D) and processed data (.trn files, terrain files for surface correction in EarthImager™ 2D and .out files, the processed .stg files) are available upon request.

All field work, including setup, stow, and travel, was completed by Garrett Jorgensen Olague, Britt Bommer, and Steven Kesler on January 27, 2025.

3.0 RESULTS

3.1 Surface Karst Survey

The desk study and surface karst survey showed no surface karst features within the 200foot (61-meter)^[1] survey area surrounding the spill delineation boundary (Figure 6). No springs exist within the 1,000-foot (305-meter)^[1] survey boundary.

Figure 6: Aerial karst survey results. Background image credit: Google Earth. Image date: March 20, 2023. Image datum: WGS-84.

3.2 Geophysical Survey

Electrical resistivity tomography forms images of the subsurface by causing a current to flow through the rock and soil and then measuring the resistance of these materials as the current flows through them. This measurement is taken many times and the resulting data, once processed, is used to produce a model of the subsurface (**Figure 7**). This model is produced using "non-unique" solutions, which means that there are many models and interpretations which will satisfy the data. Using experience and knowledge of the local geology, a high-confidence model can be established and used to develop an accurate understanding of what lies below the surface. This survey was conducted with the express purpose of locating subsurface voids and does not purport to find paleokarst (old, non-

active karst features that have been filled in with sand and sediment) or nascent karst features below the resolution limit of the survey.

The results of this study indicate a moderately well-layered geologic system with resistivities between 3.3 and 1,572 Ohm-m (**Figure 7**). Please keep in mind when viewing the 2D inverted resistivity sections that color maps can be widely different for each view. Always check the color map located on the right side of the image when viewing the 2D images to ensure you understand the range of resistivities presented. Distances along the top and depths along the left side are in meters. The color map along the right side is in Ohm-m. Due to the nature of the survey, shallower zones have higher resolution between electrodes than deeper zones; therefore, small features at depth will not be visible.

Figure 7: 2D inverted resistivity sections. Reds and oranges indicate higher resistivity values. Yellows and greens are medium-resistivity values. Blues are low-resistivity values. Please note that the color scale is relative. The dashed black line indicates the location of the well pad.

4.0 DISCUSSION

No anomalies consistent with air-filled subsurface voids are found within the YG31 survey area. However, small solutionally enlarged voids or fractures at or near the resolution limit of the survey (1.5 – 2.0 meters) may be present. Slightly higher-than-average resistivity areas less than 10 meters beneath the surface are interpreted as dry caliche or gypsite soils. Due to their low resistivity values when compared with significant subsurface voids, these features should not be a concern during remediation efforts. Areas of moderate resistivity (yellows, and greens) near the surface are interpreted as dry gypsite soils and gypsum bedrock of the Rustler Formation^[17] (**Figure 7** and **Figure 8**).

The low-resistivity area between 3.3 - 15 Ohm-m is interpreted to represent fluid from the brine release. Other low resistivity areas between 15 and 50 may represent surface-to-subsurface hydrologic pathways, or a layer of either clays and halite lenses or moist or saturated layers within the Rustler Formation. (**Figure 7**).

Please remember that these are interpretations made from knowledge of the local subsurface materials and experience. **They remain interpretations until verified by geotechnical methods.** Employing a BLM-CFO approved karst monitor on site during any drilling and/or remediation activities that require excavation below four feet in depth should be considered.

Fracture sets within the subsurface can act as hydrologic pathways to the water table. Rapid dissolution of gypsum can occur along these pathways creating solution-enlarged fractures, and in some cases, voids within months to years. For this reason, this survey is valid only for this remediation event.

Within karst terrains like the project site, small air- or sediment-filled voids and/or brecciated zones and solutionally enlarged fractures that are below the resolution limit of the survey (2.0 -2.5 meters) may exist; these may be encountered during excavation, and if so, should be evaluated by a karst specialist prior to continued work.

Figure 8: Data overlay. Colored trapezoid is the 2D inverted resistivity line. Background image credit: Google Earth. Image date: March 20, 2023.

5.0 SUMMARY

- The YG31 survey contains no surface karst features within 200 feet (61 meters) of the spill delineation boundary.
- No shallow anomalies interpreted as large voids or related karst features that would present a danger to equipment operators are located within the survey area.
- Intercepting a void during remediation is unlikely, but still possible. Small voids or solutionally enlarged fractures below the resolution limit of the survey may be encountered.
- Well-layered stratigraphy is interpreted to exist beneath the area where the geophysical survey was conducted, indicating stable ground.
- When conducting any remediation activities in this area, employing a BLM-CFO approved karst monitor on site should be considered.

6.0 DISCLOSURE STATEMENT

High karst occurrence zones are prone to rapid karst formation and warrant careful planning and engineering to mitigate karst-forming processes that could be accelerated by removal of surface cover or the vibrations associated with heavy equipment used in the remediation process.

Mitigation measures for any karst features revealed during excavation shall be approved by the Bureau of Land Management – Carlsbad Field Office and follow the Natural Resources Conservation Service Conservation Practice Standard for Karst Sinkhole Treatment, Code 527, or the Bureau of Land Management Cave and Karst Management Handbook, H-8380-1.

Vigilance during remediation activities is paramount. If voids are encountered during excavation, contact the Bureau of Land Management Karst Division at (575) 234-5972, the New Mexico State Land Office Surface Resources Division at (505) 827-5768, or a BLM-CFO approved karst contractor and request an on-site investigation from a karst expert if one is not already on site. A karst consultant can generally be available in Eddy County within five hours.

Approved karst monitors should have karst feature identification training, at least two years of supervised experience identifying karst features, wilderness first aid training, SRT training, confined space training, gas monitor training, and a minimum of SPAR cave rescue training through NCRC. They should have with them the proper gear and be prepared both physically and mentally to enter a collapse feature within minutes to perform a rescue if needed. Monitoring services with qualified karst monitors, as well as cave surveys and geophysical surveys, are available from Southwest Geophysical Consulting.

Under no circumstances should an untrained, inexperienced person enter a cave, pit, sinkhole, or collapse feature. All field employees of Southwest Geophysical Consulting have extensive caving experience and the ability to determine whether entry into a karst feature is safe or presents a hazard. In the event it is necessary to enter a karst feature, Southwest Geophysical Consulting can provide these services on request.

Cave and karst resource inventory reports, karst feature investigations, and geophysical reports commissioned at the request of the land manager should be submitted to:

BLM-CFO: <u>blm_nm_karst@blm.gov</u>

Cave and karst resource inventory reports for the NMSLO should be submitted to the respective project manager.

7.0 REFERENCES

- 1 Division, O. C. *Title 19, Chapter 15, Part 29* (Oil Conservation Division, 2018).
- 2 NMSLO. (ed Oil Conservation Division) (New Mexico State Land Office, Santa Fe, NM, 2018).
- 3 Decker, D. & Jorgensen, G. L. *Environmental Karst Surveys White Paper* (Southwest Geophysical Consulting, LLC, 2024).
- 4 Goodbar, J. R. Vol. BLM Management Handbook H-8380-1 (ed Carlsbad Field Office) 59 (Bureau of Land Management, Denver, CO, 2015).
- 5 Decker, D., Trautner, E. & Palmer, R. (Bureau of Land Management Carlsbad Field Office, 2025).
- 6 Earthpoint. *Earthpoint Tools for Google Earth,* <<u>https://www.earthpoint.us/Townships.aspx</u>> (2022).
- 7 Decker, D. D., Land, L. & Luke, B. Characterization of Playa Lakes in the Gypsum Karst of Southeastern New Mexico and West Texas, USA. *Oklahoma Geological Survey Circular 113* **113** (2021).
- 8 W.R.C.C. National Climate Data Center 1981-2010 Normal Climate Summary for Carlsbad, New Mexico (291469), (2010).
- 9 Whitehead, W. & Flynn, C. *Plant Utilization in Southeastern New Mexico: Botany, Ethnobotany, and Archaeology*. (Bureau of Land Management, Carlsbad Field Office, 2017).
- 10 NMSLO. Digital overlay (KML) of the surface land ownership in New Mexico (New Mexico State Land Office, Santa Fe, NM, 2024).
- 11 Scholle, P. A. Geologic Map of New Mexico. (2003).
- 12 Austin, G. S. *Geology and mineral deposits of Ochoan rocks in Delaware Basin and adjacent areas*. Vol. Circular 159 (New Mexico Bureau of Mines and Mineral Resources, 1978).
- 13 Johnson, K. S. Evaporite Karst in the United States. *Carbonates and Evaporites* **12**, 2-14 (1997).
- 14 Green, G. N. & Jones, G. E. *The Digital Geologic Map of New Mexico in ARC/INFO Format*, <<u>https://mrdata.usgs.gov/geology/state/state.php?state=NM</u>> (1997).
- 15 Decker, D. D., Jorgensen, G. L. & Palmer, R. in *Southwest Geophysical Cave and Karst Database* (ed LLC Southwest Geophysical Consulting) (Albuquerque, NM, 2025).

- 16 Whitehead, W., Bandy, M. & Decker, D. Protocol for Using UAV Photography for Rapid Assessment of Karst Features in Southeast New Mexico. *Proceedings of the 2022 Cave and Karst Management Symposium* (2022).
- 17 Hill, C. A. *Geology of the Delaware Basin, Guadalupe, Apache and Glass Mountains, New Mexico and West Texas*. Vol. 96-39 (Permian Basin Section - SEPM, 1996).

8.0 GLOSSARY OF TERMS

AGI	Advanced Geosciences Inc.
BLM-CFO	Bureau of Land Management - Carlsbad Field Office
brecciated	Fractured rock caused by faulting or collapse.
caprock-collapse sinkhole	Collapse of roof-spanning rock into a cave or void.
cave	Natural opening at the surface large enough for a person to enter.
cover-collapse sinkhole	Collapse of roof-spanning soil or clay ground cover into a subsurface void.
ERI	Electrical Resistivity Imaging
GPS	Global Positioning System
grike	A solutionally enlarged, vertical, or sub-vertical joint or fracture.
-	High confidence modifier for a PKF. This is typically reserved for a
(H)	feature that is definitely karst but has not been confirmed in the
	field.
НКОΖ	High Karst Occurrence Zone
karst	A landscape containing solutional features such as caves,
	sinkholes, swallets, and springs.
(L)	Low confidence modifier for a PKF. This is typically a feature that
	cannot be ruled out as karst but is most likely NOT karst related.
	This modifier may also be used for pseudokarst features.
(M)	Medium confidence modifier for PKF. This is an ambiguous
	feature that can't be positively identified as karst without a field
	visit (e.g., burrows, abandoned unlined wells, solution tubes, pseudokarst).
МКОΖ	Medium Karst Occurrence Zone
NCRC	National Cave Rescue Commission
NKF	Non-karst feature. Used for features originally identified as PKF
	that have been subsequently identified in the field as non-karst
	related. This term may also be used for pseudokarst features.
NMSLO	New Mexico State Land Office
Ohm-m	Ohm-meter, a unit of measurement for resistivity. Sometimes
	abbreviated Ω-m.
paleokarst	Previously formed karst features that have been filled in by
	erosion and/or deposition of minerals.
Pat	Permian Artesia Group
Рс	Permian Capitan Formation
Pcs	Permian Castile Formation

CARM-001-20241105

.

Pdl	Permian Dewey Lake Formation
PKF	Possible karst feature. This term is reserved for features
	identified in satellite or aerial imagery that have NOT been
	visited in the field. Further modifiers include (H) for high
	confidence, (M) for medium confidence, and (L) for low
	confidence. These confidence levels are based on field
	experience.
PLSS	Public Land Survey System
Pqg	Permian Queen/Greyburg Formation
Pru	Permian Rustler Formation
pseudokarst	Karst-like features (sinkholes, conduits, voids etc.) that are not
pseudokarse	formed by dissolution. These types of features include soil piping,
	lava tubes, and some cover-collapse and suffosion sinkholes.
Psl	Permian Salado Formation
Psr	Permian Seven Rivers Formation
Pt	Permian Tansill Formation
Ру	Permian Yates Formation
Qal	Quaternary alluvium
Qe	Quaternary eolian deposits
Qp	Quaternary piedmont deposits
Qpl	Quaternary playa lake deposits
RKF	Recognized karst feature. This term is reserved for karst features
	that have been physically verified in the field.
SPAR	Small Party Assisted Rescue
sUAS	Small, uncrewed aerial system
suffosion sinkhole	Raveling of soil into a pre-existing void or fracture.
swallet	A natural opening in the surface, too small for a person, that drains
	water to an aquifer. Some are "open," meaning a void can be seen
	below; some are "closed, "meaning they are full of sediment.
SWG	Southwest Geophysical Consulting, LLC
UTM	Universal Transverse Mercator (projected coordinates)
(V)	Field verified modifier for a RKF. This indicates that the feature has
	been visited by a qualified karst professional in the field and fully
	identified
WGS	World Geodetic System (geographic coordinates)

•

9.0 ATTESTATION

David D. Decker, PhD, PG, CPG

Chief Executive Officer, Principal Geologist Southwest Geophysical Consulting, LLC 5117 Fairfax Dr. NW Albuquerque, NM 87114 <u>dave@swgeophys.com</u> (505) 585-2550

CERTIFICATE OF AUTHOR

I, David D. Decker, a Licensed Professional Geologist and a Certified Professional Geologist, do certify that:

- I am currently employed as a consulting geologist in the specialty of caves and karst with an office address of 5117 Fairfax Dr. NW, Albuquerque, NM, USA, 87114.
- I graduated with a Master of Science in Applied Physics with a specialization in Sensor Systems from the Naval Post Graduate School in Monterey, California, in 2003, and a Doctor of Philosophy in Earth and Planetary Sciences from the University of New Mexico, Albuquerque, New Mexico, in 2018.
- I am a Licensed Professional Geologist in the State of Texas, USA (PG-15242) and have been since 2021. I am a Certified Professional Geologist through the American Institute of Professional Geologists (CPG-12123) and have been since 2021.
- I have been employed as a geologist continuously since 2016. I was previously employed as a Fire Controlman, Naval Flight Officer, and Aerospace Engineering Duty Officer in the U.S. Navy and operated, maintained, and installed various sensor systems including magnetic, electromagnetic, radar, communications, and acoustic systems in various capacities from 1986 through 2010.
- I have been involved in various aspects of cave and karst studies continuously since 1985, including exploration, mapping, and scientific studies.
- I have read the definition of "qualified karst professional" set out in the ASTM Standard Practice for Preliminary Karst Terrain Assessment for Site Development (ASTM E-1527). I meet the definition of "qualified professional" for the purposes of this standard.
- I am responsible for the content, compilation, and editing of all sections of report number CARM-001-20241105 entitled, "Environmental Karst Study Report, Yukon Gold 31 19 Federal Com #212, Eddy County, New Mexico." I or a duly authorized and qualified representative of Southwest Geophysical Consulting, LLC, have personally visited this site and/or reviewed the aerial imagery on the date or dates mentioned in section 2.3 Description of Survey.

• I have no prior involvement nor monetary interest in the described property or project, save for my fee for conducting this investigation and providing the report.

Dated in Albuquerque, New Mexico, February 23, 2025.

David D. Decker PhD, CPG-12123

APPENDIX E

April 29, 2025

ASHTON THIELKE CARMONA RESOURCES 310 W WALL ST, SUITE 500 MIDLAND, TX 79701

RE: YUKON GOLD (02.09.2025)

Enclosed are the results of analyses for samples received by the laboratory on 04/25/25 12:29.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C24-00112. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celez D. Keine

Celey D. Keene Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	04/25/2025	Sampling Date:	04/25/2025
Reported:	04/29/2025	Sampling Type:	Soil
Project Name:	YUKON GOLD (02.09.2025)	Sampling Condition:	Cool & Intact
Project Number:	2681	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NM		

Sample ID: CS - 1 (1') (H252507-01)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/28/2025	ND	2.16	108	2.00	0.861	
Toluene*	<0.050	0.050	04/28/2025	ND	2.15	108	2.00	1.55	
Ethylbenzene*	<0.050	0.050	04/28/2025	ND	2.07	103	2.00	2.14	
Total Xylenes*	<0.150	0.150	04/28/2025	ND	6.06	101	6.00	2.41	
Total BTEX	<0.300	0.300	04/28/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.6	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1070	16.0	04/28/2025	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/28/2025	ND	218	109	200	1.32	
DRO >C10-C28*	<10.0	10.0	04/28/2025	ND	210	105	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	04/28/2025	ND					
Surrogate: 1-Chlorooctane	104	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	108	% 40.6-15	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	04/25/2025	Sampling Date:	04/25/2025
Reported:	04/29/2025	Sampling Type:	Soil
Project Name:	YUKON GOLD (02.09.2025)	Sampling Condition:	Cool & Intact
Project Number:	2681	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NM		

Sample ID: CS - 2 (1') (H252507-02)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/28/2025	ND	2.16	108	2.00	0.861	
Toluene*	<0.050	0.050	04/28/2025	ND	2.15	108	2.00	1.55	
Ethylbenzene*	<0.050	0.050	04/28/2025	ND	2.07	103	2.00	2.14	
Total Xylenes*	<0.150	0.150	04/28/2025	ND	6.06	101	6.00	2.41	
Total BTEX	<0.300	0.300	04/28/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.4	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	04/28/2025	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/28/2025	ND	218	109	200	1.32	
DRO >C10-C28*	<10.0	10.0	04/28/2025	ND	210	105	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	04/28/2025	ND					
Surrogate: 1-Chlorooctane	103	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	106	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	04/25/2025	Sampling Date:	04/25/2025
Reported:	04/29/2025	Sampling Type:	Soil
Project Name:	YUKON GOLD (02.09.2025)	Sampling Condition:	Cool & Intact
Project Number:	2681	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NM		

Sample ID: CS - 3 (1') (H252507-03)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/28/2025	ND	2.16	108	2.00	0.861	
Toluene*	<0.050	0.050	04/28/2025	ND	2.15	108	2.00	1.55	
Ethylbenzene*	<0.050	0.050	04/28/2025	ND	2.07	103	2.00	2.14	
Total Xylenes*	<0.150	0.150	04/28/2025	ND	6.06	101	6.00	2.41	
Total BTEX	<0.300	0.300	04/28/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.2	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	04/28/2025	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/28/2025	ND	218	109	200	1.32	
DRO >C10-C28*	<10.0	10.0	04/28/2025	ND	210	105	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	04/28/2025	ND					
Surrogate: 1-Chlorooctane	105 9	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	106 9	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	04/25/2025	Sampling Date:	04/25/2025
Reported:	04/29/2025	Sampling Type:	Soil
Project Name:	YUKON GOLD (02.09.2025)	Sampling Condition:	Cool & Intact
Project Number:	2681	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NM		

Sample ID: SW - 1 (1') (H252507-04)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/28/2025	ND	2.16	108	2.00	0.861	
Toluene*	<0.050	0.050	04/28/2025	ND	2.15	108	2.00	1.55	
Ethylbenzene*	<0.050	0.050	04/28/2025	ND	2.07	103	2.00	2.14	
Total Xylenes*	<0.150	0.150	04/28/2025	ND	6.06	101	6.00	2.41	
Total BTEX	<0.300	0.300	04/28/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	640	16.0	04/28/2025	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/28/2025	ND	218	109	200	1.32	
DRO >C10-C28*	<10.0	10.0	04/28/2025	ND	210	105	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	04/28/2025	ND					
Surrogate: 1-Chlorooctane	105	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	107	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	04/25/2025	Sampling Date:	04/25/2025
Reported:	04/29/2025	Sampling Type:	Soil
Project Name:	YUKON GOLD (02.09.2025)	Sampling Condition:	Cool & Intact
Project Number:	2681	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NM		

Sample ID: SW - 2 (1') (H252507-05)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/28/2025	ND	2.16	108	2.00	0.861	
Toluene*	<0.050	0.050	04/28/2025	ND	2.15	108	2.00	1.55	
Ethylbenzene*	<0.050	0.050	04/28/2025	ND	2.07	103	2.00	2.14	
Total Xylenes*	<0.150	0.150	04/28/2025	ND	6.06	101	6.00	2.41	
Total BTEX	<0.300	0.300	04/28/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.0	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1960	16.0	04/28/2025	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/28/2025	ND	218	109	200	1.32	
DRO >C10-C28*	<10.0	10.0	04/28/2025	ND	210	105	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	04/28/2025	ND					
Surrogate: 1-Chlorooctane	104	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	105	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	04/25/2025	Sampling Date:	04/25/2025
Reported:	04/29/2025	Sampling Type:	Soil
Project Name:	YUKON GOLD (02.09.2025)	Sampling Condition:	Cool & Intact
Project Number:	2681	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NM		

Sample ID: SW - 3 (1') (H252507-06)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/28/2025	ND	2.16	108	2.00	0.861	
Toluene*	<0.050	0.050	04/28/2025	ND	2.15	108	2.00	1.55	
Ethylbenzene*	<0.050	0.050	04/28/2025	ND	2.07	103	2.00	2.14	
Total Xylenes*	<0.150	0.150	04/28/2025	ND	6.06	101	6.00	2.41	
Total BTEX	<0.300	0.300	04/28/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.0	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1820	16.0	04/28/2025	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/28/2025	ND	218	109	200	1.32	
DRO >C10-C28*	<10.0	10.0	04/28/2025	ND	210	105	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	04/28/2025	ND					
Surrogate: 1-Chlorooctane	103	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	105	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	04/25/2025	Sampling Date:	04/25/2025
Reported:	04/29/2025	Sampling Type:	Soil
Project Name:	YUKON GOLD (02.09.2025)	Sampling Condition:	Cool & Intact
Project Number:	2681	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NM		

Sample ID: SW - 4 (1') (H252507-07)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/28/2025	ND	2.16	108	2.00	0.861	
Toluene*	<0.050	0.050	04/28/2025	ND	2.15	108	2.00	1.55	
Ethylbenzene*	<0.050	0.050	04/28/2025	ND	2.07	103	2.00	2.14	
Total Xylenes*	<0.150	0.150	04/28/2025	ND	6.06	101	6.00	2.41	
Total BTEX	<0.300	0.300	04/28/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	04/28/2025	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/28/2025	ND	194	97.2	200	2.20	
DRO >C10-C28*	<10.0	10.0	04/28/2025	ND	206	103	200	0.783	
EXT DRO >C28-C36	<10.0	10.0	04/28/2025	ND					
Surrogate: 1-Chlorooctane	97.1	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	95.7	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	04/25/2025	Sampling Date:	04/25/2025
Reported:	04/29/2025	Sampling Type:	Soil
Project Name:	YUKON GOLD (02.09.2025)	Sampling Condition:	Cool & Intact
Project Number:	2681	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NM		

Sample ID: SW - 5 (1') (H252507-08)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/28/2025	ND	2.16	108	2.00	0.861	
Toluene*	<0.050	0.050	04/28/2025	ND	2.15	108	2.00	1.55	
Ethylbenzene*	<0.050	0.050	04/28/2025	ND	2.07	103	2.00	2.14	
Total Xylenes*	<0.150	0.150	04/28/2025	ND	6.06	101	6.00	2.41	
Total BTEX	<0.300	0.300	04/28/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	<i>98.3</i>	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	04/28/2025	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/28/2025	ND	194	97.2	200	2.20	
DRO >C10-C28*	<10.0	10.0	04/28/2025	ND	206	103	200	0.783	
EXT DRO >C28-C36	<10.0	10.0	04/28/2025	ND					
Surrogate: 1-Chlorooctane	97.4	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	97.0	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	04/25/2025	Sampling Date:	04/25/2025
Reported:	04/29/2025	Sampling Type:	Soil
Project Name:	YUKON GOLD (02.09.2025)	Sampling Condition:	Cool & Intact
Project Number:	2681	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NM		

Sample ID: SW - 6 (1') (H252507-09)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/28/2025	ND	2.16	108	2.00	0.861	
Toluene*	<0.050	0.050	04/28/2025	ND	2.15	108	2.00	1.55	
Ethylbenzene*	<0.050	0.050	04/28/2025	ND	2.07	103	2.00	2.14	
Total Xylenes*	<0.150	0.150	04/28/2025	ND	6.06	101	6.00	2.41	
Total BTEX	<0.300	0.300	04/28/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	720	16.0	04/28/2025	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/28/2025	ND	194	97.2	200	2.20	
DRO >C10-C28*	<10.0	10.0	04/28/2025	ND	206	103	200	0.783	
EXT DRO >C28-C36	<10.0	10.0	04/28/2025	ND					
Surrogate: 1-Chlorooctane	100	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	<i>98.3</i>	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	04/25/2025	Sampling Date:	04/25/2025
Reported:	04/29/2025	Sampling Type:	Soil
Project Name:	YUKON GOLD (02.09.2025)	Sampling Condition:	Cool & Intact
Project Number:	2681	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NM		

Sample ID: SW - 7 (1') (H252507-10)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/28/2025	ND	2.16	108	2.00	0.861	
Toluene*	<0.050	0.050	04/28/2025	ND	2.15	108	2.00	1.55	
Ethylbenzene*	<0.050	0.050	04/28/2025	ND	2.07	103	2.00	2.14	
Total Xylenes*	<0.150	0.150	04/28/2025	ND	6.06	101	6.00	2.41	
Total BTEX	<0.300	0.300	04/28/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1310	16.0	04/28/2025	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/28/2025	ND	194	97.2	200	2.20	
DRO >C10-C28*	<10.0	10.0	04/28/2025	ND	206	103	200	0.783	
EXT DRO >C28-C36	<10.0	10.0	04/28/2025	ND					
Surrogate: 1-Chlorooctane	99.8	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	96.9	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	04/25/2025	Sampling Date:	04/25/2025
Reported:	04/29/2025	Sampling Type:	Soil
Project Name:	YUKON GOLD (02.09.2025)	Sampling Condition:	Cool & Intact
Project Number:	2681	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NM		

Sample ID: SW - 8 (1') (H252507-11)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/28/2025	ND	2.16	108	2.00	0.861	
Toluene*	<0.050	0.050	04/28/2025	ND	2.15	108	2.00	1.55	
Ethylbenzene*	<0.050	0.050	04/28/2025	ND	2.07	103	2.00	2.14	
Total Xylenes*	<0.150	0.150	04/28/2025	ND	6.06	101	6.00	2.41	
Total BTEX	<0.300	0.300	04/28/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.8	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	04/28/2025	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/28/2025	ND	194	97.2	200	2.20	
DRO >C10-C28*	<10.0	10.0	04/28/2025	ND	206	103	200	0.783	
EXT DRO >C28-C36	<10.0	10.0	04/28/2025	ND					
Surrogate: 1-Chlorooctane	99.6	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	99.7	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	04/25/2025	Sampling Date:	04/25/2025
Reported:	04/29/2025	Sampling Type:	Soil
Project Name:	YUKON GOLD (02.09.2025)	Sampling Condition:	Cool & Intact
Project Number:	2681	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NM		

Sample ID: SW - 9 (1') (H252507-12)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/28/2025	ND	2.16	108	2.00	0.861	
Toluene*	<0.050	0.050	04/28/2025	ND	2.15	108	2.00	1.55	
Ethylbenzene*	<0.050	0.050	04/28/2025	ND	2.07	103	2.00	2.14	
Total Xylenes*	<0.150	0.150	04/28/2025	ND	6.06	101	6.00	2.41	
Total BTEX	<0.300	0.300	04/28/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.1	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	04/28/2025	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/28/2025	ND	194	97.2	200	2.20	
DRO >C10-C28*	<10.0	10.0	04/28/2025	ND	206	103	200	0.783	
EXT DRO >C28-C36	<10.0	10.0	04/28/2025	ND					
Surrogate: 1-Chlorooctane	92.2	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	90.9	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	04/25/2025	Sampling Date:	04/25/2025
Reported:	04/29/2025	Sampling Type:	Soil
Project Name:	YUKON GOLD (02.09.2025)	Sampling Condition:	Cool & Intact
Project Number:	2681	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NM		

Sample ID: SW - 10 (1') (H252507-13)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/28/2025	ND	2.16	108	2.00	0.861	
Toluene*	<0.050	0.050	04/28/2025	ND	2.15	108	2.00	1.55	
Ethylbenzene*	<0.050	0.050	04/28/2025	ND	2.07	103	2.00	2.14	
Total Xylenes*	<0.150	0.150	04/28/2025	ND	6.06	101	6.00	2.41	
Total BTEX	<0.300	0.300	04/28/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.4	% 71.5-13	4						
Chloride, SM4500Cl-B	′kg	Analyze	d By: CT						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	04/28/2025	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/28/2025	ND	194	97.2	200	2.20	
DRO >C10-C28*	<10.0	10.0	04/28/2025	ND	206	103	200	0.783	
EXT DRO >C28-C36	<10.0	10.0	04/28/2025	ND					
Surrogate: 1-Chlorooctane	101 9	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	99.9	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	04/25/2025	Sampling Date:	04/25/2025
Reported:	04/29/2025	Sampling Type:	Soil
Project Name:	YUKON GOLD (02.09.2025)	Sampling Condition:	Cool & Intact
Project Number:	2681	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NM		

Sample ID: SW - 11 (1') (H252507-14)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/28/2025	ND	2.16	108	2.00	0.861	
Toluene*	<0.050	0.050	04/28/2025	ND	2.15	108	2.00	1.55	
Ethylbenzene*	<0.050	0.050	04/28/2025	ND	2.07	103	2.00	2.14	
Total Xylenes*	<0.150	0.150	04/28/2025	ND	6.06	101	6.00	2.41	
Total BTEX	<0.300	0.300	04/28/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.1	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	544	16.0	04/28/2025	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/28/2025	ND	194	97.2	200	2.20	
DRO >C10-C28*	<10.0	10.0	04/28/2025	ND	206	103	200	0.783	
EXT DRO >C28-C36	<10.0	10.0	04/28/2025	ND					
Surrogate: 1-Chlorooctane	97.5	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	94.9	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	04/25/2025	Sampling Date:	04/25/2025
Reported:	04/29/2025	Sampling Type:	Soil
Project Name:	YUKON GOLD (02.09.2025)	Sampling Condition:	Cool & Intact
Project Number:	2681	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NM		

Sample ID: SW - 12 (1') (H252507-15)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/28/2025	ND	2.16	108	2.00	0.861	
Toluene*	<0.050	0.050	04/28/2025	ND	2.15	108	2.00	1.55	
Ethylbenzene*	<0.050	0.050	04/28/2025	ND	2.07	103	2.00	2.14	
Total Xylenes*	<0.150	0.150	04/28/2025	ND	6.06	101	6.00	2.41	
Total BTEX	<0.300	0.300	04/28/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	04/28/2025	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/28/2025	ND	194	97.2	200	2.20	
DRO >C10-C28*	<10.0	10.0	04/28/2025	ND	206	103	200	0.783	
EXT DRO >C28-C36	<10.0	10.0	04/28/2025	ND					
Surrogate: 1-Chlorooctane	98.8	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	97.4	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Chain of Custody

.

						U	nain		Cu	ISIC	Juy					•		Wa	ork (Orde	er No	H256	<u>so7</u>	Page 18 of 19
	Ashton Thielles				Bill to: (if d	lifferent)		Carmo	ona Re	source	es	,							W	ork O	rder (Comments	-	4
	Ashton Thielke	11000			Company	and the second									Р	rogran	n: US	T/PS		RP [Brow	nfields RRC	uperfund	
Company Name:	Carmona Resou				Address:											tate of	-							
Address:					City, State	e ZIP:									R	eportin	g:Lev	el II [Lev				Level IV	니
City, State ZIP:	Midland, TX 797			Email:	Sig, Stat										D	elivera	bles:	EDD			ADaP	T Other		
Phone:	432-813-8988											•	NALY	SIS RE	-011	EST						Preserva	ative Codes	
Project Name:	YUKON GO	OLD (02.09.2	025)		Rush		Pres.										T				T	None: NO	DI Water: H ₂	0
Project Number:		2681		Routine	1		Code								+		+				•	Cool: Cool	MeOH: Me	
Project Location	· Eddy	County, NM		Due Date:	48 h	nour			(0)													HCL: HC	HNO ₃ : HN	
Sampler's Name:		KR		-					+ MRO)													H ₂ S0 ₄ : H ₂	NaOH: Na	
PO #:			V. An	Wet Ice:	Voc	No	Parameters		+ DRO	8												H₃PO₄: HP		
SAMPLE RECEI		p Blank:	Yes No Thermom	/	Yés 140	INC	amo	8021	+	e 45											НОГР	NaHSO4: NAB	IS	
Received Intact:	Is: Yes	1	Correction		to.	3:	Pai	BTEX 8021B	GRO	Chloride 4500											¥	Na ₂ S ₂ O ₃ : NaS	O ₃	
Cooler Custody Seal				ure Reading:	3.3			6	5M (5												Zn Acetate+Na	aOH: Zn	
Sample Custody Sea Total Containers:				Temperature:					TPH 8015M (GRO													NaOH+Ascorb	ic Acid: SAPC	
Sample Ider	ntification	Date	Time	Soil	Water	Grab/ Comp	# of Cont		TPH													Sample	Comments	-
CS-1	(1')	4/25/2025		Х		Comp	1	X	Х	X										-	-	1		_
CS-2		4/25/2025		Х		Comp	1	X	Х	Х							_			-		2		_
CS-3		4/25/2025		Х		Comp	1	Х	X	X					-		_			-	-	3		\neg
SW-1		4/25/2025		Х		Comp	1	X	X	X			_		_		_			-	-	12		\neg
SW-2		4/25/2025		Х		Comp	1	X	X	X					_		_	_		-	-	2		-
SW-3		4/25/2025		Х		Comp	1	X	X	X					_	_	_			-	-	9		_
SW-4		4/25/2025		X		Comp	1	X	X	X					-		\rightarrow			-		8		-
SW-5		4/25/2025		Х		Comp	1	X	X	X					-		\rightarrow			-				-
SW-6	6 (1')	4/25/2025		X		Comp	1	X	X	X	-				-+		-		-	-	-	9		_
SW-7	7 (1')	4/25/2025		X		Comp		X	X	X											1	110		╡
		J	Please	send results	to cmoe	ehring@	carmon	areso	ources	s.com	and	mcarm	nona@)carmo	onar	esour	ces.c	om						
	(O)	1	Dessiv	ed by: (Signat	ture)			Date/	Time		R	Relinquis	shed b	y: (Sign	natu	re)		Rece	eived	by: (\$	Signat	ure)	Date/Time	
Relinquished b	by: (Signature)	0.0-	Receiv	O / A / I			4.25		1 Charles in the	229		4												
1 Kevint	eres	840	ana	July	/		42	101	4	an	4													
5				U					10		6				1							Revise	d Date 05012020 Rev. 2	020.1

Received by OCD: 5/13/2025 11:42:19 AM

Chain of Custody

٢

. .

		•				С	hain	of	Cu	isto	dy						v	Vork	Orde	er No	: <u>H250</u> Page	251	57	a 19 of 19
																					Page	_2	of2_	
	A LA Think				Bill to: (if d	ifferent)	1	Carmo	ona Re	source	s							٧	Vork C	Order	Comments			4
Project Manager:	Ashton Thielk Carmona Res				Company											Program:	UST/P	ST	PRP	Brow	nfields RR	c [uperfund	
Company Name:	310 West Wa				Address:											State of F				_	_	_	1	_
Address:					City, State	e ZIP:																	Level IV	-1
City, State ZIP:	Midland, TX 7			Email:												Deliverab	es: ED	DD		ADaP	T Othe	er:		
Phone:	432-813-8988			In the second second		~						۵١		SIS R	EQI	JEST					Preserv	vative	e Codes	
Project Name:	YUKON	GOLD (02.09.2	2025)		Rush		Pres.										Τ	Τ			None: NO		Water: H ₂	0
Project Number:		2681		//			Code						+		•						Cool: Cool	N	leOH: Me	
Project Location	Edd	dy County, NM		Due Date:	48 -	iour	/		MRO)												HCL: HC	Н	INO3: HN	
Sampler's Name:		KR				-	s		+												H ₂ S0 ₄ : H ₂	N	aOH: Na	
PO #:		Disaki	Yes No	Wet Ice:	Yes	No	Parameters	m	TPH 8015M (GRO + DRO	00											H ₃ PO ₄ : HP			
SAMPLE RECE		emp Blank: Yes No	Thermom	1	140		ram	8021	+ 0	le 45										НОГР	NaHSO ₄ : NA			
Received Intact: Cooler Custody Sea		No N/A	Correctio		tO		Ра	BTEX 8021B	(GR	Chloride 4500										Ť	Na ₂ S ₂ O ₃ : Na		-	
Sample Custody Sea		No N/A		ture Reading:	3.	3:		in in	15M	ð											Zn Acetate+N NaOH+Ascor			
Total Containers:			Corrected	d Temperature:	3.1	li			H 80												NaOn+Ascol			
Sample Ide	entification	Date	Time	Soil	Water	Grab/ Comp	# of Cont												_		Sampl	e Co	mments	
SW-8	8 (1')	4/25/2025		Х		Comp	1	X	X	X			+	_			+	+		+	12			_
SW-9	9 (1')	4/25/2025		Х		Comp	1	X	X	X				-+	-		+	+	+	+	13			_
SW-1	0 (1')	4/25/2025		Х		Comp	1	X	X	X	-		+		_		+	+	+	+		• .		_
SW-1	1 (1')	4/25/2025	-	Х		Comp	1	X	X	X	•		+				+	+	-	+	14			-
SW-1	2 (1')	4/25/2025		Х		Comp	1	X	X	X			-		-		+	+	+-	+				-
								-	-	-			+			\vdash	-	+	+	-				-
										-		\vdash	-+					+	+	-	-			
					-	-		-		-			-		-		+	+	+	+				_
								-	-	-	-		+	-+			-	+	-	-				_
							L			1					_					_	-			_
			Please	send results	s to cmo	ehring@	carmor	ares	ource	s.com	and	mcarm	ona@)carmo	ona	resourc	es.cor	n 						
~			_			~	1		(T)			elinquis	hodb	aur (Sia	Inat		Re	ceive	ed by: ((Signa	ture)	D	ate/Time	-
Relinquished	by: (Signature)		Receiv	ed by: (Signat	1				Time	and the first	Re	eiinquisi	ned b	iy. (Sig	mat		Re		a by. ((oigiia				
1 Kevin	Reges	Sle	dr	igue	A		42	2.9	56	224	2									-				
5					0				S.		6									23		- d Date	05012020 Rev	2020

Received by OCD: 5/13/2025 11:42:19 AM

0

April 29, 2025

ASHTON THIELKE CARMONA RESOURCES 310 W WALL ST, SUITE 500 MIDLAND, TX 79701

RE: YUKON GOLD (02.09.2025)

Enclosed are the results of analyses for samples received by the laboratory on 04/25/25 12:29.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C24-00112. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	04/25/2025	Sampling Date:	04/25/2025
Reported:	04/29/2025	Sampling Type:	Soil
Project Name:	YUKON GOLD (02.09.2025)	Sampling Condition:	Cool & Intact
Project Number:	2681	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY COUNTY, NM		

Sample ID: BACKFILL (H252506-01)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	04/28/2025	ND	2.16	108	2.00	0.861	
Toluene*	<0.050	0.050	04/28/2025	ND	2.15	108	2.00	1.55	
Ethylbenzene*	<0.050	0.050	04/28/2025	ND	2.07	103	2.00	2.14	
Total Xylenes*	<0.150	0.150	04/28/2025	ND	6.06	101	6.00	2.41	
Total BTEX	<0.300	0.300	04/28/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: KV					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Chloride	320	16.0	04/28/2025	ND	432	108	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
GRO C6-C10*	<10.0	10.0	04/28/2025	ND	218	109	200	1.32	
DRO >C10-C28*	<10.0	10.0	04/28/2025	ND	210	105	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	04/28/2025	ND					
Surrogate: 1-Chlorooctane	74.7	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	75.0	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Chain of Custody

.....

					Bill to: 17 d	lifferent)		Carmo	ona Re	sources							Work	k Order	Comments	
oject Manager:	Ashton meike			Bill to: (if different) Carmona Resources Company Name:						Program: UST/PST PRP Brownfields RRC uperfund										
mpany Name:	Gaimona Roccuree			Address:										of Pro						
dress:	310 West W				City, State	o 71D.		6						Repo	rting:Le	evel II [Level	III 🗗 🗄	ST/UST TRRP	Level IV
y, State ZIP:	Midland, TX			F araily	City, State	6 211 .			-					Deliv	erables	EDD		ADa	PT Othe	er:
one:	432-813-89	88		Email:											-		1		Preserv	vative Codes
pject Name:	YUKO	GOLD (02.09.2	2025)	Turr	n Around		Pres.			- T		ANAL	YSIS	REQUES					None: NO	DI Water:
oject Number:		2681		Routine	Rush	n	Code					-						+	Cool: Cool	MeOH: Me
oject Location	Ė	ddy County, NM		Due Date:	48	HR			<u> </u>										HCL: HC	HNO3: HN
mpler's Name:		KR			-				MRO)										HCL. HC H ₂ S0 ₄ : H ₂	NaOH: Na
) #:						2	ers		+										H ₂ OO ₄ : HP	
MPLE RECE	IPT	Temp Blank:	Yes No	Wet Ice:	Yes	(No)	Parameters	21B	TPH 8015M (GRO + DRO	4500		-		-				0		BIS
ceived Intact:	(Yes No	Thermom	eter ID:	140		ara	BTEX 8021B	R0	Chloride								НОГР	Na ₂ S ₂ O ₃ : NaS	
Cooler Custody Seals: Yes No N/A Correction Factor						BTE	Up C									Zn Acetate+N				
mple Custody Se	eals: Y	es No N/A		ure Reading:	3.3				0151										NaOH+Ascort	
tal Containers:			Corrected	Temperature:	3.(-	-	-	H 8											
Sample Ide	entification	Date	Time	Soil	Water	Grab/ Comp	# of Cont			1		-							Sample	e Comments
Bac	kfill	4/25/2025		Х		Comp	1	X	X	X		_	-		-			+		
								-					-		+			+		
								-	-		_	-			-					
•								-			_	-	-		+	-		+		
								-	-		_	-	-		-	-				
							-	-	-		_	-	-		-	-		+		
								_			_		-		-	-	\vdash	+		
								_	-		-	_	-		-		\vdash	+		
		-										_	-		-	-	\vdash	-		
						-														
			Diagon	send results	s to cmo	ehrina@	carmo	nares	ources	s.com	and mc	armona	a@car	monareso	ources	.com				
			Flease	Jenu result																
												2								~
			~.															-1.0		dan sin
							-		/Time					Signature)	T	Deer	ived by	y: (Sign	ature)	Date/Time
				ed by: (Signa																

APPENDIX F

SITE INFORMATION

Deferral Report Yukon Gold 31 19 Federal Com #212H Incident ID: NAPP2427461130 Unit H Sec 31 T23S R30E Eddy County, New Mexico 32.262943°, -103.916068°

Produced Water Release Point of Release: Pinhole Leak on 3-Phase Water Leg Release Date: 09.30.2024 Volume Released: 7.6 Barrels of Produced Water Volume Recovered: 5 Barrels of Produced Water

CARMONA RESOURCES

Prepared for: Devon Energy 5315 Buena Vista Drive, Carlsbad, New Mexico 88220

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 500 Midland, Texas 79701

> 310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 SITE ASSESSMENT ACTIVITIES

5.0 REMEDIATION ACTIVITIES

6.0 CONCLUSIONS

FIGURES

FIGURE 1	OVERVIEW	FIGURE 2	TOPOGRAPHIC					
FIGURE 3	SAMPLE LOCATION	FIGURE 4A-4B	EXCAVATION					
FIGURE 5	DEFERRAL							
<u>APPENDICES</u>								
APPENDIX A	TABLES							
APPENDIX B	РНОТОЅ							
APPENDIX C	INITIAL C-141 & NMOCD	CORRESPONDENCE						
APPENDIX D	SITE CHARACTERIZATION, GROUNDWATER, & KARST SURVEY							
APPENDIX E	LABORATORY REPORTS							

.

May 13, 2025

Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Deferral Report Yukon Gold 31 19 Federal Com #212H Devon Energy Incident ID: NAPP2427461130 Site Location: Unit H, S31, T23S, R30E (Lat 32.262943°, Long -103.916068°) Eddy County, New Mexico

Mr. Bratcher:

On behalf of Devon Energy (Devon), Carmona Resources, LLC has prepared this letter to document site activities for the Yukon Gold 31 19 Federal Com #212H. The site is located at 32.262943°, -103.916068° within Unit H, S31, T23S, R30E, in Eddy County, New Mexico (Figures 1 and 2).

1.0 Site Information and Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on September 30, 2024, due to pinhole leak on the 3-phase water leg. It resulted in the release of approximately seven point six (7.6) barrels of produced water, and approximately five (5) barrels of produced water were recovered. The spill boundaries are shown in Figure 3. The initial C-141 form is attached in Appendix C.

2.0 Site Characterization and Groundwater

The site is located within a medium karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, no known water sources are within a 0.50-mile radius of the location. On April 1, 2025, Carmona Resources installed a groundwater determination bore located approximately 0.04 miles Southwest of the release area in S31, T23S, R30E. The bore indicated no signs of water at a depth of 55 feet below ground surface (ft bgs) when it was gauged on April 7, 2025. A copy of the groundwater determination bore log is attached in Appendix D.

Additionally, a karst survey was completed on January 27, 2025, per NMOCD & BLM request. The Karst Survey resulted in "no surface karst features within the 200-foot (61-meter)[1] survey area surrounding the spill delineation boundary". Remediation proceeded per the standards set in Table 1 NMAC 19.15.29.12 Groundwater >55 feet due to the site being determined to be in a "Low Karst" environment. See Appendix D for Site Characterization, Groundwater information, Karst Survey.

310 West Wall Street, Suite 500 Midland, Texas 79701 432.813.1992

3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 2,500 mg/kg (GRO + DRO + MRO).
- TPH: 1,000 mg/kg (GRO + DRO).
- Chloride: 10,000 mg/kg.

4.0 Site Assessment Activities

On October 10, 2024, Carmona Resources, LLC performed site assessment activities to evaluate soil impacts stemming from the release. A total of five (5) borehole samples (BH-1 through BH-5) and nine (9) horizontal sample points (H-1 through H-9) were advanced to depths ranging from surface to 24' bgs inside and surrounding the release. See Figure 3 for the soil sample locations. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Eurofins Laboratories in Midland, Texas. The samples were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chloride by EPA method 300.0. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix E.

Vertical Delineation

Vertical delineation was achieved in all areas for Benzene, total BTEX, TPH, and Chloride concentrations. Refer to Table 1.

Horizontal Delineation

Horizontal delineation was achieved in all areas for Benzene, total BTEX, TPH, and Chloride concentrations. Refer to Table 1.

5.0 Remediation Activities

Beginning on April 22, 2025, Carmona Resources personnel were onsite to supervise the remediation activities, collect confirmation samples, and document backfill activities. Before collecting composite confirmation samples, the NMOCD division office was notified via NMOCD portal on April 16, 2025, per Subsection D of 19.15.29.12 NMAC. See Appendix C. The areas of BH-1 through BH-5 were excavated to a depth of 1.5' bgs. A total of fourteen (14) confirmation floor samples were collected (CS-1 through CS-14), and fourteen (14) sidewall samples (SW-1 through SW-14) were collected every 200 square feet to ensure the proper removal of the contaminated soils. All collected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and Chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The excavation depths and confirmation sample locations are shown in Figures 4A and 4B.

310 West Wall Street, Suite 500 Midland, Texas 79701 432.813.1992

Deferment Area

A 6"-8" buffer zone on each side of Devons' equipment, and underneath the equipment, on site will be deferred per 19.15.29.12.C.2 NMAC. To remove all contaminated material, major facility deconstruction would have to take place. Removing soil within that buffer zone could potentially cause structural instability and might result in additional releases in the future as backfill material can shift and settle over time. The deferred areas are defined by the following composite confirmation sidewall samples: SW-12 through SW-13. Approximately 462 square feet, 26 cubic yards, of contamination was left in place under the site equipment. Refer to Table 2 and Figure 5.

Once the remediation activities were completed, the excavated areas were backfilled with clean material to surface grade. Approximately 2,413 square feet of contamination was remediated, resulting in 134 cubic yards of material excavated and transported offsite for proper disposal. Backfill operations were completed on May 10, 2025. The backfill material was sourced from Northern Delaware Basin Landfill and was collected for laboratory analysis on April 25, 2025, before being utilized. Laboratory data can be found in Table 2.

6.0 Conclusions

Based on the area, safety, and active facility equipment, Devon requests to defer the chloride impact within the facility equipment. Remediation of the deferred area will be completed during plugging and abandonment activities or when equipment is removed, whichever comes first. If you have any questions regarding this report or need additional information, please contact us at 432-813-1992.

Sincerely, Carmona Resources, LLC

Ashton Thielke Environmental Manager

Gilbert Priego Project Manager

310 West Wall Street, Suite 500 Midland, Texas 79701 432.813.1992

APPENDIX A

.

Table 1 YUKON GOLD 31 19 FEDERAL COM #212H Devon Energy Eddy County, New Mexico

Sample ID	Date	Depth (ft)		TPH	(mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Deptii (it)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	10/10/2024	0-1.0'	<50.0	913	<50.0	913	< 0.00201	< 0.00201	<0.00201	0.0130	0.0130	29,400
		2.0'	<49.8	<49.8	<49.8	<49.8	< 0.00201	< 0.00201	<0.00201	<0.00402	< 0.00402	7,800
		4.0'	<49.8	<49.8	<49.8	<49.8	< 0.00199	< 0.00199	<0.00199	<0.00398	<0.00398	6,090
		6.0'	<49.9	<49.9	<49.9	<49.9	< 0.00199	< 0.00199	<0.00199	<0.00398	< 0.00398	8,230
BH-1		8.0'	<49.9	<49.9	<49.9	<49.9	<0.00199	< 0.00199	<0.00199	<0.00398	<0.00398	4,360
		10'	<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00396	< 0.00396	4,910
		12'	<49.8	<49.8	<49.8	<49.8	<0.00202	< 0.00202	<0.00202	<0.00403	< 0.00403	598
		14'	<49.7	<49.7	<49.7	<49.7	<0.00202	< 0.00202	<0.00202	<0.00404	<0.00404	282
		16'	<50.0	<50.0	<50.0	<50.0	<0.00202	< 0.00202	<0.00202	<0.00404	<0.00404	145
	10/10/2024	0-1.0'	<49.8	163	<49.8	163	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	31,900
		2.0'	<50.0	<50.0	<50.0	<50.0	<0.00200	< 0.00200	<0.00200	<0.00399	< 0.00399	5,130
		4.0'	<49.7	<49.7	<49.7	<49.7	< 0.00199	< 0.00199	<0.00199	<0.00398	<0.00398	4,910
		6.0'	<50.0	<50.0	<50.0	<50.0	<0.00200	< 0.00200	<0.00200	<0.00399	<0.00399	5,500
BH-2		8.0'	<49.9	<49.9	<49.9	<49.9	<0.00202	< 0.00202	<0.00202	< 0.00403	< 0.00403	2,900
DII-2		10'	<49.8	<49.8	<49.8	<49.8	<0.00198	<0.00198	<0.00198	<0.00396	< 0.00396	198
		15'	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	4,730
		20'	<49.9	<49.9	<49.9	<49.9	<0.00200	< 0.00200	<0.00200	<0.00399	<0.00399	535
		22'	<50.0	<50.0	<50.0	<50.0	<0.00201	< 0.00201	<0.00201	<0.00402	<0.00402	131
		24'	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	62.7
	10/10/2024	0-1.0'	<49.8	138	<49.8	138	<0.00202	< 0.00202	<0.00202	<0.00404	< 0.00404	17,300
		2.0'	<49.8	<49.8	<49.8	<49.8	< 0.00199	< 0.00199	<0.00199	<0.00398	<0.00398	4,740
		4.0'	<49.7	<49.7	<49.7	<49.7	<0.00198	< 0.00198	<0.00198	< 0.00396	< 0.00396	5,790
		6.0'	<49.7	<49.7	<49.7	<49.7	<0.00201	< 0.00201	<0.00201	<0.00402	< 0.00402	5,810
BH-3		8.0'	<50.0	<50.0	<50.0	<50.0	<0.00201	< 0.00201	<0.00201	<0.00402	<0.00402	4,180
BII-5		10'	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	5,370
		15'	<49.7	<49.7	<49.7	<49.7	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	1,150
		20'	<49.8	<49.8	<49.8	<49.8	<0.00199	< 0.00199	<0.00199	<0.00398	<0.00398	329
		22'	<49.7	<49.7	<49.7	<49.7	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	134
		24'	<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	118
	10/10/2024	0-1.0'	<49.7	111	<49.7	111	<0.00202	< 0.00202	<0.00202	<0.00403	< 0.00403	13,300
	"	2.0'	<50.0	<50.0	<50.0	<50.0	<0.00202	< 0.00202	<0.00202	<0.00404	< 0.00404	3,830
		3.0'	<49.8	<49.8	<49.8	<49.8	<0.00199	< 0.00199	<0.00199	<0.00398	< 0.00398	3,390
BH-4		4.0'	<49.9	<49.9	<49.9	<49.9	<0.00200	< 0.00200	<0.00200	<0.00399	< 0.00399	3,160
		5.0'	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	2,040
		6.0'	<50.0	<50.0	<50.0	<50.0	<0.00200	< 0.00200	<0.00200	<0.00399	< 0.00399	285
	"	8.0'	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	< 0.00402	35.8
	10/10/2024	0-1.0'	<49.8	<49.8	<49.8	<49.8	<0.00202	< 0.00202	<0.00202	<0.00403	< 0.00403	19,200
	"	5.0'	<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00396	< 0.00396	72.8
DU 5	"	10'	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	59.6
BH-5	"	15'	<49.9	<49.9	<49.9	<49.9	<0.00200	< 0.00200	<0.00200	<0.00399	<0.00399	75.3
	"	16'	<49.8	<49.8	<49.8	<49.8	<0.00201	< 0.00201	<0.00201	<0.00402	< 0.00402	34.8
	"	18'	<49.9	<49.9	<49.9	<49.9	<0.00201	< 0.00201	<0.00201	<0.00402	< 0.00402	28.8
	ory Criteria ^A		1,000	mg/kg		2,500 mg/kg	10 mg/kg				50 mg/kg	10,000 mg/kg
(-) No	t Analyzed											

(-) Not Analyzed

A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram

TPH - Total Petroleum Hydrocarbons

ft - feet

(BH) Borehole Sample Removed

•

Table 1 YUKON GOLD 31 19 FEDERAL COM #212H Devon Energy Eddy County, New Mexico

0 1 10	Date	Damth (ft)	TPH (mg/kg)			Benzene	Toluene	Ethlybenzene	Xylene	Total	Chloride	
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	BTEX (mg/kg)	(mg/kg)
H-1	10/10/2024	0-1.0'	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<10.0
H-2	10/10/2024	0-1.0'	<50.4	<50.4	<50.4	<50.4	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<10.1
H-3	10/10/2024	0-1.0'	<50.5	<50.5	<50.5	<50.5	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<10.1
H-4	10/10/2024	0-1.0'	<50.3	<50.3	<50.3	<50.3	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	<10.0
H-5	10/10/2024	0-1.0'	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	24.3
H-6	10/10/2024	0-1.0'	<49.7	<49.7	<49.7	<49.7	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	<10.1
H-7	10/10/2024	0-1.0'	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<9.96
H-8	10/10/2024	0-1.0'	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	<9.92
H-9	10/10/2024	0-1.0'	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<9.94
Regula	ntory Criteria ^A		1,000	mg/kg		2,500 mg/kg	10 mg/kg				50 mg/kg	10,000 mg/l
	tory Criteria		1,000	mg/kg		2,500 mg/kg	10 mg/kg				50 mg/kg	10,0

(-) Not Analyzed

 A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram TPH - Total Petroleum Hydrocarbons ft - feet (H) Horizontal Sample

Table 2 YUKON GOLD 31 19 FEDERAL COM #212H Devon Energy Eddy County, New Mexico

Eddy County, New Mexico												
Sample ID	Date	Depth (ft)	GRO	TPH DRO	(mg/kg) MRO	Total	Benzene (mg/kg)	Toluene (mg/kg)	Ethlybenzene (mg/kg)	Xylene (mg/kg)	Total BTEX	Chloride (mg/kg)
CS-1	4/23/2025	1.5"	ND	ND	ND	ND	(IIIg/Kg) ND	(IIIg/Kg)	(mg/kg) ND	(IIIg/Kg) ND	(mg/kg) ND	2,000
CS-2	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	4,270
CS-3	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	3,230
CS-4	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,070
CS-5	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	4,830
CS-6	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	3,100
CS-7	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	4,710
CS-8	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CS-9	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	4,560
CS-10	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	27.7
CS-11	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	22.1
CS-12	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	3,240
CS-13	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	4,270
CS-14	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	3,880
Backfill	4/25/2025	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	304
	ory Criteria ^A Analyzed		1,000	mg/kg		2,500 mg/kg	10 mg/kg				50 mg/kg	10,000 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram TPH - Total Petroleum Hydrocarbons ft - feet

(CS) Confirmation Sample (ND) Non-Detect

Table 2 YUKON GOLD 31 19 FEDERAL COM #212H Devon Energy Eddy County, New Mexico

Eddy County, New Mexico												
Sample ID	Date	Depth (ft)	GRO	TPH DRO	(mg/kg) MRO	Total	Benzene (mg/kg)	Toluene (mg/kg)	Ethlybenzene (mg/kg)	Xylene (mg/kg)	Total BTEX	Chloride (mg/kg)
SW-1	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	(mg/kg) ND	ND
SW-2	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SW-3	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SW-4	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	20.7
SW-5	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SW-6	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SW-7	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SW-8	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SW-9	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SW-10	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SW-11	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SW-12	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,950
SW-13	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,080
SW-14	4/23/2025	1.5'	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,390
	ory Criteria ^A ot Analyzed					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/k

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram

TPH - Total Petroleum Hydrocarbons ft - feet

(SW) Sidewall Sample (ND) Non-Detect

Deferral Area

APPENDIX B

Devon Energy

Photograph No. 1

Facility:	Yukon Gold 31 19 Federal Com #212H
	#21211

County: Eddy County, New Mexico

Description:

View North, area of CS-1 through CS-9.

Photograph No. 2

Facility:	Yukon Gold 31 19 Federal Com
	#212H

County: Eddy County, New Mexico

Description:

View Northwest, area of CS-1 through CS-12.

Photograph No. 3

Facility:	Yukon Gold 31 19 Federal Com #212H

County: Eddy County, New Mexico

Description:

View Southeast, area of CS-1 through CS-12.

CARMONA RESOURCES

Devon Energy

Photograph No. 4

Facility:	Yukon Gold 31 19 Federal Com #212H

County: Eddy County, New Mexico

Description:

View Northwest, area of CS-13.

Photograph No. 5

Facility:	Yukon Gold 31 19 Federal Com
	#212H

County: Eddy County, New Mexico

Description: View Southeast, area of CS-13.

Photograph No. 6

Facility:	Yukon Gold 31 19 Federal Com #212H

County: Eddy County, New Mexico

Description:

View South, area of CS-14.

Devon Energy

Photograph No. 7

Facility:	Yukon Gold 31 19 Federal Com
	#212H

County: Eddy County, New Mexico

Description:

View North, area of CS-14.

Photograph No. 8

Facility:	Yukon Gold 31 19 Federal Com
	#212H

County: Eddy County, New Mexico

Description: View North of backfilled area of CS-14

Photograph No. 9

Facility:	Yukon Gold 31 19 Federal Com #212H

County: Eddy County, New Mexico

Description:

View North of backfilled areas of CS-1 through CS-12

Devon Energy

Photograph No. 10

Facility:	Yukon Gold 31 19 Federal Com
	#212H

County: Eddy County, New Mexico

Description:

View South of backfilled areas of CS-1 through CS-12

Photograph No. 11

- Facility:Yukon Gold 31 19 Federal Com#212H
- County: Eddy County, New Mexico

Description:

View South of backfilled area of CS-13

Photograph No. 12

Facility:	Yukon Gold 31 #212H	19 Federal Com

County: Eddy County, New Mexico

Description:

View South of backfilled area CS-14.

APPENDIX C

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

PageH2Jeof 354

Action 388590

QUESTIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	388590
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

QUESTIONS

Location of Release Source	
Please answer all the questions in this group.	
Site Name	YUKON GOLD 31 19 FEDERAL COM #212H
Date Release Discovered	09/30/2024
Surface Owner	Federal

Incident Details

Please answer all the questions in this group.	
Incident Type	Produced Water Release
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	Νο
Has this release endangered or does it have a reasonable probability of endangering public health	Νο
Has this release substantially damaged or will it substantially damage property or the environment	Νο
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	Νο

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.

Crude Oil Released (bbls) Details	Not answered.
Produced Water Released (bbls) Details	Cause: Equipment Failure Separator Produced Water Released: 8 BBL Recovered: 5 BBL Lost: 3 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Pinhole leak found on 3-phase water leg. well was shut in and leak was isolated. estimated 7.6 bbls spilled in skid and on the pad. 5 bbls recovered.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	388590
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

QUESTIONS

lature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No
Reasons why this would be considered a submission for a notification of a major release	Unavailable.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e	e, gas only) are to be submitted on the C-129 form.

Initial Response	
The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	tion immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please prepare

Released to Imaging: 7/7/2025-9:20:25 (AMI

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

ACKNOWLEDGMENTS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	388590
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

ACKNOWLEDGMENTS

\checkmark	I acknowledge that I am authorized to submit notification of a release on behalf of my operator.
	I acknowledge that upon submitting this application, I will be creating a new incident file (assigned to my operator) to track the notification(s) and corrective action(s) for a release, pursuant to NMAC 19.15.29.
	l acknowledge that creating a new incident file will require my operator to file subsequent submission(s) of form "C-141, Application for administrative approval of a release notification and corrective action", pursuant to NMAC 19.15.29.
	I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment.
V	I acknowledge the fact that the acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment.
V	I acknowledge the fact that, in addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

ACKNOWLEDGMENTS

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	388590
	Action Type:
	[NOTIEY] Notification Of Release (NOR)

CONDITIONS

Created By	Condition	Condition Date
wdale	When submitting future reports regarding this release, please submit the calculations used or specific justification for the volumes reported on the initial C- 141.	9/30/2024

.

Yukon Gold 31-19 Fed Com 212H

9/30/2024

OCD incident nAPP2427461130

Spill Volume(Bbls) Calculator		
In	Inputs in blue, Outputs in red	
Col	ntaminated S	Soil measurement
Area (so	q feet)	Depth (in)
<u>2,665</u>	<u>.00</u>	<u>0.25</u>
Cubic Feet of S	oil Impacted	<u>55.52</u>
Barrels of So	il Impacted	<u>9.90</u>
Soil T	уре	Clay/Sand
Barrels of Oi 100% Sat	0	<u>1.48</u>
Saturation	Fluid	present when squeezed
Estimated Ba Relea		0.74
	Free Stand	ing Fluid Only
Area (so	q feet)	Depth (inches))
<u>2,464</u>	<u>00</u>	<u>0.188</u>
Standin	g fluid	<u>6.86</u>
<u>Total fluid</u>	ls spilled	<u>7.60</u>

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page1126eof 354

QUESTIONS

Action 388686

QUESTIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	388686
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

QUESTIONS

Incident ID (n#)	nAPP2427461130
Incident Name	NAPP2427461130 YUKON GOLD 31 19 FEDERAL COM #212H @ 30-015-47316
Incident Type	Produced Water Release
Incident Status	Initial C-141 Received
Incident Well	[30-015-47316] YUKON GOLD 31 19 FEDERAL COM #212H

Location of Release Source

Please answer all the questions in this group.	
Site Name	YUKON GOLD 31 19 FEDERAL COM #212H
Date Release Discovered	09/30/2024
Surface Owner	Federal

Incident Details

Please answer all the questions in this group.	
Incident Type	Produced Water Release
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	No
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission Crude Oil Released (bbls) Details Not answered. Cause: Equipment Failure | Separator | Produced Water | Released: 8 BBL | Recovered: 5 Produced Water Released (bbls) Details BBL | Lost: 3 BBL Is the concentration of chloride in the produced water >10,000 mg/l Yes Condensate Released (bbls) Details Not answered. Natural Gas Vented (Mcf) Details Not answered. Natural Gas Flared (Mcf) Details Not answered. Other Released Details Not answered. Are there additional details for the questions above (i.e. any answer containing Pinhole leak found on 3-phase water leg. well was shut in and leak was isolated. estimated Other, Specify, Unknown, and/or Fire, or any negative lost amounts) 7.6 bbls spilled in skid and on the pad. 5 bbls recovered.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	388686
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

QUESTIONS

Initial Response

Nature and Volume of Release (continued)		
	Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
	Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No
	Reasons why this would be considered a submission for a notification of a major release	Unavailable.
	With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.	

Fhe responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.		
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the		

The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
If all the actions described above have not been undertaken, explain why	Not answered.	
Per Paragraph (4) of Subsection B of 19.15.29.8 NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of Subsection A of 19.15.29.11 NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby arree and sign off to the above statement	Name: Dale Woodall Title: EHS Professional	

Email: Dale.Woodall@dvn.com

Date: 10/01/2024

QUESTIONS, Page 2

Action 388686

PageH27eof 354

I hereby agree and sign off to the above statement

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:	
DEVON ENERGY PRODUCTION COMPANY, LP	6137	
333 West Sheridan Ave.	Action Number:	
Oklahoma City, OK 73102	388686	
	Action Type:	
	[C-141] Initial C-141 (C-141-v-Initial)	

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date. What is the shallowest death to groundwater henceth the area offected by the

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Not answered.
What method was used to determine the depth to ground water	Not answered.
Did this release impact groundwater or surface water	Not answered.
What is the minimum distance, between the closest lateral extents of the release an	d the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Not answered.
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Not answered.
An occupied permanent residence, school, hospital, institution, or church	Not answered.
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Not answered.
Any other fresh water well or spring	Not answered.
Incorporated municipal boundaries or a defined municipal fresh water well field	Not answered.
A wetland	Not answered.
A subsurface mine	Not answered.
An (non-karst) unstable area	Not answered.
Categorize the risk of this well / site being in a karst geology	Not answered.
A 100-year floodplain	Not answered.
Did the release impact areas not on an exploration, development, production, or storage site	Not answered.

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

Requesting a remediation plan approval with this submission

No The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170 District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	388686
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

CONDITIONS

Created By	Condition	Condition Date
scott.rodgers	None	10/1/2024

PageH29eof 354 CONDITIONS

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Action Type:

[NOTIFY] Notification Of Sampling (C-141N)

Page1130eof 354

QUESTIONS

Action 452610

QUESTIC	ONS
	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	452610

QUESTIONS

Operator:

Prerequisites	
Incident ID (n#)	nAPP2427461130
Incident Name	NAPP2427461130 YUKON GOLD 31 19 FEDERAL COM #212H @ 30-015-47316
Incident Type	Produced Water Release
Incident Status	Initial C-141 Approved
Incident Well	[30-015-47316] YUKON GOLD 31 19 FEDERAL COM #212H

Location of Release Source	
Site Name	YUKON GOLD 31 19 FEDERAL COM #212H
Date Release Discovered	09/30/2024
Surface Owner	Federal

Sampling Event General Information								
Please answer all the questions in this group.								
What is the sampling surface area in square feet	3,000							
What is the estimated number of samples that will be gathered	25							
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	04/23/2025							
Time sampling will commence	09:00 AM							
Please provide any information necessary for observers to contact samplers	Carmona Resources – 432-813-8988							
Please provide any information necessary for navigation to sampling site	(32.263355, -103.913565) Carmona Resources will be onsite from 04.23.2025 until 04.25.2025 and will continue into the following week to collect the remaining confirmation samples. "							

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	452610
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

CONDIT	ONS	
Created By		Condition Date
jraley	Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.	4/16/2025

CONDITIONS

APPENDIX D

Received by OCD: 5/13/2025 11:42:19 Nearest water well Devon Energy

55' GWDB - Drilled 2025 OUKON GOLD 31 19 FEDERAL COM #212H (09.30.2024)

CONTRACTOR NO.

· · · · · · · ·

Google Earth Released to Imaging: 7/7/2025 9:20:25 AM

mage © 2025 Airbus

0.04 Miles
0.50 Mile Radius
Groundwater Determination Bore

Page 133 of 354

• YUKON GOLD 31 19 FEDERAL COM #212H (09.30.2024)

Received by OCD: 5/13/2025 11:42:19 AM Nearest water well

0

Devon Energy

Google Earth Released to Imaging: 7/7/2025 9:20:25 AM

🕹 0.50 Mile Radius

🎝 1.28 Miles

Legend

- 跪 1.85 Miles
- 🍰 2.16 Miles
- Groundwater Determination Bore
- USGS Water Well
- YUKON GOLD 31 19 FEDERAL COM #212H (09.30.2024)

Received by OCD: 5/13/2025 11:42:19 AM

Devon Energy

YUKON GOLD 31 19 FEDERAL COM #212H (09.30.2024) •

m

• YUKON GOLD 31 19 FEDERAL COM #212H (09.30.2024)

New Mexico Office of the State Engineer Water Column/Average Depth to Water

 (A CLW##### in

 the POD suffix
 (R=POD has

 indicates
 been

 the POD has been
 replaced,

 replaced
 O=orphaned,

 & no longer serves a
 C=the file is

 water right file.)
 closed)

(quarters are smallest to largest)

POD Number	Code	Sub basin	County	Q64	Q16	Q4	Sec	Tws	Range	X	Y	Мар	Distance	Well Depth		Water Column
<u>C 04526 POD1</u>		CUB	ED	SE	NW	SE	06	24S	30E	601898.6	3568060.3	•	2107			
<u>C 02486</u>		С	ED	SW	NE	SW	19	23S	30E	601304.0	3572832.0 *	•	2893	350		
<u>C 04497 POD1</u>		CUB	ED	NW	NE	SW	04	24S	30E	604659.7	3568278.5	•	2976	110		
<u>C 04597 POD5</u>		CUB	ED	NE	NW	SE	24	23S	29E	600198.3	3572931.9	•	3521			
<u>C 04597 POD4</u>		CUB	ED	NW	NW	SE	24	23S	29E	600158.9	3572947.2	۲	3557			
<u>C 03908 POD3</u>		CUB	ED	SW	NW	SW	34	23S	30E	605850.9	3569640.1	۲	3559	463		
<u>C 04597 POD3</u>		CUB	ED	NW	NW	SE	24	23S	29E	600171.6	3572991.0	۲	3585			
<u>C 03908 POD2</u>		CUB	ED	SW	NW	SW	34	23S	30E	605872.3	3569594.1	۲	3587	518		
<u>C 04597 POD2</u>		CUB	ED	NW	NW	SE	24	23S	29E	600122.2	3572959.1		3589			
<u>C 04597 POD1</u>		CUB	ED	NW	NW	SE	24	23S	29E	600124.4	3573002.9	۲	3623			
<u>C 02108</u>		CUB	ED		NW	SW	08	24S	30E	602702.0	3566487.0 *		3656	200	186	14

Average Depth to Water: 186 feet

(meters)

Minimum Depth: 186 feet

Maximum Depth: 186 feet

Record Count: 11

<u>UTM Filters (in meters):</u>

Easting: 602324.00 Northing: 3570124.00 Radius: 4000

 \ast UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

October 2, 2024 08:32 AM MST

(In feet)

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

z	OSE POD NO. (Pod 1	WELL NO	.)	1	WELL TAG ID NO).		OSE FILE C-4913	E NO(S	5).			
VIIO	WELL OWNER	NAME(S)	(PHONE (OPTIC	DNAL)			
OCA	Devon Prod					r							
ITT	WELL OWNER 5315 Buena				1			CITY Carlsba	d		stat NM	те 88220	ZIP
D WE	5515 Buella	- 1500 D		GREES	MINUTES	SECO	NDS		-			00220	
LAN	WELL LOCATION	TAT	TITUDE	32	15		.26 N	* ACCUF	RACY	REQUIRED: ONE TENT	TH OF A	A SECOND	
GENERAL AND WELL LOCATION	(FROM GPS			103	54	49	.73 W	* DATUN	MREC	UIRED: WGS 84			
GEN	DESCRIPTION	NRELATIN	NG WELL LOCATION TO	STREET ADDR	ESS AND COMMO	N LANDM	ARKS – PLS	SS (SECTION	N, TO	WNSHJIP, RANGE) WH	ERE AV	VAILABLE	
-	S31 T23s R	30e											
	LICENSE NO.		NAME OF LICENSED		Iamaa Harri					NAME OF WELL DRI			
	WD-18	1.0	DRILLING ENDED		James Hawley		BODE HO	LE DEPTH	(FT)	DEPTH WATER FIRS		rprises, LLC	2
	DRILLING ST. 4-1-2		DRILLING ENDED 4-1-25	DEPTHOFCO	MPLETED WELL (1 55'	-1)	DUKE HO	55'	(Г1)	DEFIN WATEK FIRS		/A	,
-	COMPLETED WELL IS: ARTESIAN *add I DRY HOLE SHALLOW (UNCONFINE) Centralizer info below								COM	WATER LEVEL PLETED WELL N/	/A	DATE STATIC 4-7	MEASURED
2. DRILLING & CASING INFORMATION	DRILLING FL	UID:	AIR	MUD	ADDITI	VES – SPE	ECIFY:		.,				
RMA	DRILLING ME	THOD: 🔽	ROTARY HAMM	AER CABI	LE TOOL OT	HER – SPE	ECIFY:			CHECK INSTAL	HERE LED	IF PITLESS ADA	APTER IS
INFO	DEPTH (feet bgl)	BORE HOLE	CASING	MATERIAL AN	D/OR	C	ASING		CASING	CA	SING WALL	SLOT
ING	FROM	ТО	DIAM (inches)		GRADE each casing string		CON	NECTION TYPE		INSIDE DIAM. (inches)	T	HICKNESS (inches)	SIZE (inches)
CAS	0'	55'	(inches)		sections of screen	,	(add coup	oling diamet	ter)			()	
NG &			3										
TTT					1								
DRI.							-						
7											-		
		t. 15		LIST ANNU	JLAR SEAL MAT	ERIAL A	ND GRAVE	L PACK SI	IZE-				
F	DEPTH (FROM	feet bgl) TO	BORE HOLE DIAM. (inches)	*(:5		BY INTE			ale>	AMOUNT (cubic feet)		METH	
3. ANNULAR MATERIAL	FROM	10		<u>Cir using Ce</u>	ntralizers for Arte	N/A	- indicate th	e spacing b	<u>eiow</u>)				
MAT													
AR													
INN				· · · ·									
3. Al	, i												5
Steen					1								
	OSE INTERI	NAL USE	1							0 WELL RECORD	& LO	G (Version 09/	22/2022)
	E NO.				POD N	10.			TRN			DAG	E 1 OF 2
1 100	CATION							WELL T	AGI	D NO.		PAG	LIOF2

Released to Imaging: 7/7/2025 9:20:25 AM

-	DEPTH (f	TO	THICKNESS (feet)	INCLUDE WATER-BEARING CAVITIES	COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES							
	FROM	10	(icet)	(attach supplemental sheets to fully	describe a	ll units)		(YES	/ NO)	BEARING ZONES (gpm		
	0'	5'	5'	Topsoil				Y	√ N			
	5'	15'	10'	Brown Sand				Y	🗸 N			
F	15'	55'	40'	Red Sand	Y	√ N						
								Y	Ν			
								Y	N			
								Y	N			
								Y	N			
								Y	Ν			
			(Y	Ν			
				×				Y	Ν	1		
								Y	Ν			
								Y	Ν			
								Y	Ν	- F		
								Y	N			
								Y	Ν			
								Y	Ν			
								Y	N			
						7		Y	N			
								Y	Ν			
								Y	N			
								Y	N	e ²		
	METHOD U			OF WATER-BEARING STRATA: BAILER ☑OTHER – SPECIFY: DTGW	V Bore			AL ESTI LL YIEL	MATED D (gpm):	0.00		
	WELL TES	T TES	T RESULTS - ATT RT TIME, END TI	ACH A COPY OF DATA COLLECTED DURIN ME, AND A TABLE SHOWING DISCHARGE A	G WELL 7 ND DRA	TESTING, ING WDOWN OV	CLUDI ER TH	NG DISO E TESTI	CHARGE NG PERIO	METHOD, OD.		
	MISCELLA	NEOUS II	w	epth to groundwater bore was gauged for wa as removed, bore hole was backfilled with dr ured from 10' BGS to surface.	ter on 4-7 ill cutting	-25. DTGW to 10' BGS.	bore v Hydra	vas dry. ated ben	Tempora tonite hol	ry well casing le plug was		
	PRINT NAI Nathan Sm		DRILL RIG SUPEI	RVISOR(S) THAT PROVIDED ONSITE SUPER	VISION O	F WELL CON	ISTRU	CTION (OTHER T	HAN LICENSI		
	CORRECT	RECORD	OF THE ABOVE I	FIES THAT, TO THE BEST OF HIS OR HER K DESCRIBED HOLE AND THAT HE OR SHE W 10 DAYS AFTER COMPLETION OF WELL DR	ILL FILE	GE AND BEI THIS WELL	LIEF, 1 RECO	THE FOR RD WITI	EGOING H THE ST	IS A TRUE A		
TWO I EVIDIC .0	\leq	SIGNA	ATURE OF DRILL	James Hawley R PRINT SIGNEE NAME				4	-7-25 DATE			
			(WP 20 W	II DI		2100 W	ersion 00/22/20		
	<u>r ose intef</u> e no.	INAL USE	5	POD NO.		TRN NO.	ULL RE	CORD &	e LUG (V	ersion 09/22/20		
							N			PAGE 2 O		

Released to Imaging: 7/7/2025 9:20:25 AM

PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

I. GENERAL / WELL OWNERSHIP:

State Engineer Well No			
Well owner: Devon P	roduction CO. LP.	Phon	e No.:
Mailing address: 5315	i Buena Vista Dr.		r
		nte:NM	Zip code:88220
II. WELL PLUGGIN	G INFORMATION:		
1) Name of well	drilling company that plugged well	H&R Enterprises, LLC.	
2) New Mexico	Well Driller License No.: WD-186	2	Expiration Date: 6-16-25
3) Well plugging Nathan Smele		following well driller(s)/rig	supervisor(s):

4)	Date well plugging began:	4-7-25	Date well plugging concluded:	4-7-25

5)	GPS Well Location:	Latitude:	32	deg,	15	min,	45.26	sec
		Longitude:	103	deg,	54	min,	49.73	sec, WGS 84

6)	Depth of well confirmed at initiation of plugging as:	55'	ft below ground level (bgl),
, ,	by the following manner: well sounder		

7) Static water level measured at initiation of plugging: <u>N/A</u> ft bgl

8) Date well plugging plan of operations was approved by the State Engineer: <u>11-15-24</u>

9) Were all plugging activities consistent with an approved plugging plan? <u>yes</u> If not, please describe differences between the approved plugging plan and the well as it was plugged (attach additional pages as needed):

Version: September 8, 2009 Page 1 of 2

Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with 10) horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

For each interval plugged, describe within the following columns:

Depth (ft bgl)	Plugging <u>Material Used</u> (include any additives used)	Volume of <u>Material Placed</u> (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	<u>Comments</u> ("casing perforated first", "open annular space also plugged", etc.)
-	0' - 10' Hydrated Bentonite	Approx. 10.2 gallons	10.2 gallons	Pour	
-	10' - 55' Drill Cuttibgs	Approx. 46 gallons	46 gallons	Pour	
			· · ·		
-					
_					
-					
_					
-	•				
-	-				
_]	MULTIPLY	BY AND OBTAIN		
III SICA	ATUDE.	cubic feet x 7. cubic yards x 201	4805 = gallons 97 = gallons		
III. SIGN	AIUKE:				

James Hawley

_, say that I am familiar with the rules of the Office of the State I, Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

4-7-25 Signature of Well Driller Date

Released to Imaging: 7/7/2025 9:20:25 AM

PAGE 1: OF 2

10.000

WELL TAG ID NO.

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

NO	OSE POD NO. (WELL NO.) POD1 (MW-1)				WELL TAG ID NO. OSE FILE NO n/a C-4526			D(S).				
OCATI	WELL OWN				L	<u> </u>		PHONE (OPTI	ONAL)			
WELL L	WELL OWN 6401 Holic					<u></u>		CITY Midland		STATE TX 7	79707	ZIP
1. GENERAL AND WELL LOCATION	WELL LOCATIO	N L	D	egrees 32°	minutes 14'	SECO 42.			REQUIRED: ONE TENT	TH OF A SECO	IND	
NER	(FROM GP	'S) L(ONGITUDE	103°	55'	6.2	20" W	* DATUM REC	QUIRED: WGS 84			
1. GE	i	DESCRIPTION RELATING WELL LOCATION TO STREET ADDRESS AND COMMON LANDMARKS – PLSS (SECTION, TOWNSHJIP, RANGE) WHERE AVAILABLE NW NE Sec. 06 T24S R30E										
	LICENSE NO		NAME OF LICENSEI			<u> / .</u>			NAME OF WELL DRI			
	124				Jackie D. Atkin					ineering Ass	-	nc.
	DRILLING S 05/14/		DRILLING ENDED 05/14/2021	OMPLETED WELL (orary well mater			le depth (ft) 105	DEPTH WATER FIRS	n/a			
N	COMPLETEI	O WELL IS:	: ARTESIAN	🚺 DRY HO	LE SHALLOW (UNCONFINED)			STATIC WATER LEV	TEL IN COMPL 11/a	ETED WE	LL (FT)	
АТІС	DRILLING FLUID: 📝 AIR 🗍 MUD ADDITIVES – SPECIFY:											
DRM	DRILLING M	ETHOD:	ROTARY	HAMME	R CABLE	TOOL	OTHE	R - SPECIFY:	Hollo	w Stem Au	ger	
2. DRILLING & CASING INFORMATION	FROM TO DIAM		DIAM	(include each casing string, and		CONN	ASING VECTION VPE	CASING CASING W. INSIDE DIAM. THICKNE (inches) (inches)		NESS	SLOT SIZE (inches)	
CAS	0	105	(inches) ±6.5	note	sections of screen Boring- HSA	n)		ling diameter)	(inches)	(inch		
G&	0	105	10.5									
TLIN											·····	
DRII												
2.]												
										I		
	DEPTH	(feet bgl)	BORE HOLE	L	IST ANNULAR	SEAL MA	TERIAL A	AND	AMOUNT		METHO	D OF
IAL	FROM	ТО	DIAM. (inches)		AVEL PACK SIZ				(cubic feet)		PLACEN	
TER												
WA'												
ANNULAR MATERIAL				 								
INN									<u> </u>			
3. Aľ												
FOR	OSE INTER	NAL USI	E					WR-2	0 WELL RECORD &	& LOG (Ver	sion 06/3	0/17)
			STILL			10	.1	TRNI		$\frac{1}{2}$		

245.30E.6.414

Released	to	Imaging.	7/7/2025	9:20:25 AM	
neicuseu	w	imuging.	11114045	7.40.45 MM	

ヒュの

LOCATION

- -

	DEPTH (1 FROM	feet bgl) TO	THICKNESS (feet)	INCLUDE WATE	D TYPE OF MATERIAL I R-BEARING CAVITIES (plemental sheets to fully d	OR FRAC	TURE ZONE	s	WAT BEARI (YES /	NG?	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	4	4	SAND, poorly	graded, fine-very grained,	Reddish-	brown, dry		Y	√ N	
ŀ	4	12	8		poorly-mod. consolidated,				Y	√ N	
	12	19	7		led, fine-very grained, som			v	Y	✓ N	
	19	24	5		fine-very grained, some cal				Y	√ N	
	24	72	48		graded, fine-very grained, l		_		Y	√ N	
	72	92	20		d, fine-very grained, some			oist	Y	√ N	
/ELJ	92	102	10						Y	√ N	
DF W	92 102 10 SILTY SAND, poorly graded, fine-very grained, Reddish Brown, moist 102 105 3 SILTY SAND, poorly graded, fine-very grained, Reddish Brown, dry								Y	√ N	
bg	U 102 103 5 SILT I SAID, poorty graded, Inte-very granted, Keddish Blown, dry									N	
CE	3									N	
0CI	ğ										
IOI	102 102 10 SILTY SAND, poorly graded, fine-very grained, Reddish Brown, moist 102 105 3 SILTY SAND, poorly graded, fine-very grained, Reddish Brown, dry									N N	
00										N	
XDR										N	
4. H									Y 		
									Y	N	
									Y	N	
									Y		
									Y	N	
		···-							Y	N	
									Y	N	
	METHODI			OF WATER DEADING				TOT	AL ESTIM		
			_	OF WATER-BEARING					L YIELD		0.00
	PUM		IR LIFT	BAILER OT	HER – SPECIFY:						
SION	WELL TES				A COLLECTED DURING						
TEST; RIG SUPERVIS	MISCELLA	NEOUS INF	fe		ls removed and the soil ce, then hydrated bentor on-site geologist.						
TEST	PRINT NAM	IE(S) OF D	RILL RIG SUPE	RVISOR(S) THAT PRO	VIDED ONSITE SUPERV	ISION O	F WELL CON	STRU	CTION OT	HER TH	AN LICENSEE:
5. T		. ,	elo Trevino, Car								
SIGNATURE	CORRECT I	RECORD O	F THE ABOVE I	DESCRIBED HOLE AN	EST OF HIS OR HER KN D THAT HE OR SHE WI PLETION OF WELL DRII	LL FILE					
6. SIGN	Jack A	tkins		Jac	kie D. Atkins				06/09	/2021	
Ĩ		SIGNAT	URE OF DRILLE	R / PRINT SIGNEE	NAME					DATE	
EOT							W/D OA W/D	11 00	COBD & 1	00.07	nion 06/20/2017
	<u>R OSE INTER</u> E NO.	-	4526		POD NO.		TRN NO.		921	09	sion 06/30/2017)
	CATION					WELL	TAG ID NO.	<u> </u>	10010	-	PAGE 2 OF 2

CSE DIT JUN 10 2021 m2:47

.

.

WELL RECORD & LOG

OSE DII JAN 28 2021 pm4:24

NA.

WELL TAG ID NO.

PAGE 1 OF 2

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

	000 000 000		~ `										
z	OSE POD NO POD1 (B		0.)	we n/a	ELL TAG ID NO.			OSE FILE NO(S). C-4497					
TIO	WELL OWN		5)						E (OPTIC	ONAL)			
GENERAL AND WELL LOCATION	XTO Ener									· — ,			
LL L	WELL OWN							CITY			STATE		ZIP
WE	6401 Holic	lay Hill l	Эт.					Midla	ind	· • · · · · · · · · · · · · · · · · · ·	TX	79707	
	WELL		DE		MINUTES SECONDS					· · · · · ·	···		
AL /	LOCATIO		ATITUDE	32° 14' 46.69" N				REQUIRED: ONE TENT	TH OF A S	ECOND			
NER	(FROM GP	rs) La	ONGITUDE	-103°	53'	20.46	" W	* DAT	UM REC	UIRED: WGS 84			
GE			ING WELL LOCATION TO	STREET ADDRESS	AND COMMON L	ANDMAI	RKS – PLS	S (SECT	ION, TO	WNSHJIP, RANGE) WH	ERE AVA	LABLE	
-	NE SW Se	c. 4 T24	S R30E										
	LICENSE NO		NAME OF LICENSED							NAME OF WELL DRI			
	124	49			ie D. Atkins					_	_	Associates, In	nc.
	DRILLING S 12/28/		DRILLING ENDED 12/28/2020	DEPTH OF COMPLETED WELL (FT) BORE HOLE temporary well material 1			le dept 110	H (FT)	DEPTH WATER FIRS	ST ENCOU n/a			
			12,20,2020						STATIC WATER LEV				
7	COMPLETE	D WELL IS:	ARTESIAN	DRY HOLE SHALLOW (UNCONFINED)				UTATIC WATERLEY	n/a		LL (11)		
IOI	DRILLING FLUID: AIR MUD ADDITIVES - SPECIFY:								I				
MA	DRILLING M	ETHOD:		HAMMER	CABLE TO	OL	✓] OTHE	R – SPEC	JFY:	Hollo	w Stem	Auger	
IFOI	DEPTH	(feet bgl)		CASING MA	TERIAL AND/(·			-	1
2. DRILLING & CASING INFORMATION	FROM	TO	BORE HOLE	G	RADE			ASING VECTIO	N	CASING INSIDE DIAM.		NG WALL CKNESS	SLOT SIZE
		(inches)			casing string, an ons of screen)			YPE		(inches)		nches)	(inches)
& C/	0	110	±8.5	Boring- HSA			(-		••	
9 N													
וררו													
. DR													
2				1									
	DEPTH	(feet bgl)	BORE HOLE		NNULAR SEA					AMOUNT		METHO	
ANNULAR MATERIAL	FROM	то	DIAM. (inches)	GRAVEL	PACK SIZE-R	ANGE I	BY INTE	RVAL		(cubic feet)		PLACEM	IENT
NTEI										-			
X M/													
ILAF								<u></u>					
NNC													i
3. A													
FOR	OSE INTER								WR-20	WELL RECORD &	<u>k LOG (</u>	Version 06/3	0/17)
FILE	ENO. (<u>]-4</u> 1	197		POD NO.				TRN N	10. 6825	7.6		

T245 Sec 4 R 30E

Released to Imaging: 7/7/2025 9:20:25 AM

3

2

LOCATION

PAGE 2 OF 2

A

	DEPTH (feet bgl)			COLOR AN	D TYPE OF MATER	NAL ENCOLIN	TERED -		WATER		ESTIMATED
			THICKNESS		ER-BEARING CAVIT			3	BEAR		YIELD FOR WATER-
	FROM	то	(feet)	(attach sup	plemental sheets to :	fully describe a	ll units)		(YES	/ NO)	BEARING ZONES (gpm)
	0	1.5	1.5	CALICHE, poor-mode	erate consolidation, fe	w sand, fine gra	in, light brown	, dry	Y	🗸 N	
	1.5	5	3.5	SAND, well graded, fi	ne grain, few gravel, s	sub angular, 2-8	mm. Red/brow	n, dry	Y	√ N	
	5	16	11	SAND, fine grain, p	oorly graded, few gra	vel, some clay,	red/brown, mo	ist	Y	√ N	
1	16	85	69	SAND, well graded,	, large grain, little clay	, noncohesive,,	red/brown, mo	oist	Y	√ N	
	85			SANDSTONE, very	y poorly consolidated,	medium-fine g	rain, well grade	ed,	Y	√ N	
Г		105	20	few caliche gravel, su	ıb angular, 1.5-7mm, l	light brown - alr	nond brown, m	oist	Y	√ N	
4. HYDROGEOLOGIC LOG OF WELL	105			SANDSTONE, hi	ghly consolidated, me	dium-fine grain	, poorly graded	ι,	Y	√ N	
OF V		110	5	few clay, low pla	sticity, noncohesive, l	ight brown-alm	ond brown, dry	,	Y	√ N	
ŐĞ									Y	N	
ICL									Y	N	
DO,									Y	N	· · · · ·
EOI									Y	N	
SOG									Y	N	
IQXI									Y	N	
4. H						· · ·			Y	N	
							<u></u>		Y	N	
									Y	N	
									Y	N	
				· · · · · · · · · · · · · · · · · · ·	<u></u>				Y	N	
									 Y	N	
									Y	N	
	METHOD U	SED TO ES	I TIMATE YIELD	I OF WATER-BEARIN	G STRATA		· · · · · ·	TOT/	AL ESTIN		
	METHOD USED TO ESTIMATE YIELD OF WATER-BEARING STRATA:					WELL YIELD (gpm): 0.00					
					THER – SPECIFY:						
NO	WELL TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.										
TEST; RIG SUPERVISIO	MISCELLA	NEOUS INF	ORMATION: TA	emporary well materia	als removed and the		ackfilled usin	o drill	Cutting	from to	tal denth to ten
PER			Ie	et below ground surfa	ace, then hydrated t	pentonite chips	from ten fee	t belo	w ground	l surface	to surface.
G SU			L	ogs adapted from WS	P on-site geologist.						
R											
EST	PRINT NAM	E(S) OF DI	RILL RIG SUPER	RVISOR(S) THAT PRO	VIDED ONSITE SU	PERVISION O	F WELL CON	STRU	CTION O	THER TH	HAN LICENSEE:
5.1	Shane Eldrid					,					
KE	CORRECT F	ECORD O	F THE ABOVE I	FIES THAT, TO THE E DESCRIBED HOLE AN	ND THAT HE OR SH	E WILL FILE					
IUI	AND THE P	ERMIT HO	LDER WITHIN 3	30 DAYS AFTER COM	IPLETION OF WELL	DRILLING:					
6. SIGNATURE	Jack A	tkins		Ja	ckie D. Atkins				01/1:	5/2021	
6. S.	/		י ז דפרו פר פווו	R / PRINT SIGNEE							
		SIGNAT	UKE OF DKILLE	CK / FRINT SIGNEE						DATE	
FOF	OSE INTERI		feerente		1		WR-20 WEI			LOG (Ve	rsion 06/30/2017)
FIL	eno. C	-449	7		POD NO.		TRN NO.	6	. 82	SL	6

3

LOCATION

245

Sec 4

K?

SOE

WELL TAG ID NO.
John R. D Antonio, Jr., P.E. State Engineer

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr: 682526 File Nbr: C 04497 Well File Nbr: C 04497 POD1

Feb. 05, 2021

TACOMA MORRISSEY WSP USA 3300 NORTH A STREET BLDG 1 #222 MIDLAND, TX 79705

Greetings:

The above numbered permit was issued in your name on 12/01/2020.

The Well Record was received in this office on 01/28/2021, stating that it had been completed on 12/28/2020, and was a dry well. The well is to be plugged according to 19.27.4.30 NMAC.

Please note that another well can be drilled under this permit if the well is completed and the well log filed on or before 12/01/2021.

If you have any questions, please feel free to contact us.

Sincerely, Ŵ Andrew Dennis (575) 622-6521

drywell

Received by OCD: 5/13/2025 11:42:19 AM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Groundwater V New Mexico V GO		Date	Time	? Water-level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Metho meası
-------------------------------	--	------	------	---	------------------------	---	---	---------------------------------	-------------	---------------------

Click to hideNews Bulletins

• Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 321542103522801

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 321542103522801 23S.30E.34.133144 USGS-4

Eddy County, New Mexico Latitude 32°15'45.42", Longitude 103°52'36.09" NAD83 Land-surface elevation 3,413 feet above NAVD88 The depth of the well is 518 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer.

This well is completed in the Otner aquilers (199930000000) local aquifer. This well is completed in the Rustler Formation (312RSLR) local aquifer.

Table of data

Tab-separated data

Graph of data

Reselect period

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
1961-12-12		D	62610		2977.68	NGVD29	1	Z			
1961-12-12		D	62611		2979.38	NAVD88	1	Z			
1961-12-12		D	72019	433.62			1	Z			
1962-05-10		D	62610		2978.11	NGVD29	1	Z			
1962-05-10		D	62611		2979.81	NAVD88	1	Z			
1962-05-10		D	72019	433.19			1	Z			
1962-07-31		D	62610		2978.13	NGVD29	1	Z			
1962-07-31		D	62611		2979.83	NAVD88	1	Z			
1962-07-31		D	72019	433.17			1	Z			
1962-08-08		D	62610		2978.13	NGVD29	1	Z			
1962-08-08		D	62611		2979.83	NAVD88	1	Z			
1962-08-08		D	72019	433.17			1	Z			
1963-03-10		D	62610		2977.80	NGVD29	1	Z			
1963-03-10		D	62611		2979.50	NAVD88	1				
1963-03-10		D	72019	433.50			1				
1972-09-25		D	62610		2977.39	NGVD29	1				
1972-09-25		D	62611		2979.09	NAVD88	1				
1972-09-25		D	72019				1				
1976-12-14		D	62610		2974.74	NGVD29	1	_			
1976-12-14		D	62611		2976.44	NAVD88	1	Z			
1976-12-14		D	72019	436.56			1	Z			

Section

Code

Received by OCD: 5/13/2025 11:42:19 AM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Page 147 of 354

Date	Time	? Water-level date-time accuracy	? Parame code	ter	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Metho meası
Referenced vertical dat	um	NAV	/D88	North Americ	can Vertical Datum of	1988			
Referenced vertical datum		NG	/D29	National Geo	detic Vertical Datum o	of 1929			
Status			1	Static					
Method of measuremen	nt	:	Z	Other.					
Measuring agency				Not determin	ned				
Source of measuremen	ıt			Not determin	ned				
Water-level approval st	tatus		4	Approved for	publication Process	sing and review complete	ed.		

Questions or Comments <u>Help</u> Data Tips Explanation of terms Subscribe for system changes

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2024-10-02 10:45:10 EDT 0.31 0.23 nadww01

.

YUKON GOLD 31 19 FEDERAL COM #212H (09.30.2024)

10/2/2024

World Hillshade

Esri, NASA, NGA, USGS, FEMA, Esri Community Maps Contributors, New Mexico State University, Texas Parks & Wildlife, CONANP, Esri, TomTom,

YUKON GOLD 31 19 FEDERAL COM #212H (09.30.2024)

New Mexico Oil Conservation Division

TomTom, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

Environmental Karst Study Report Yukon Gold 31 19 Federal Com #212 Eddy County, New Mexico

Prepared For: Carmona Resources 310 W Wall Street, Suite 500 Midland, TX 79701

□ Positive within 200 feet of spill delineation boundary

✓ Negative within 200 feet of spill delineation boundary

☑ Stable □ Unstable Ground

□ Karst Monitor Recommended

February 21, 2025

CARM-001-20241105 ©2025 – Southwest Geophysical Consulting, LLC. All rights reserved.

Published by:

Southwest Geophysical Consulting, LLC 5117 Fairfax Dr. NW Albuquerque, NM 87114 (505) 585-2550 www.swgeophys.com

Prepared by:

Garrett Jorgensen Olague Senior Field Geologist garrett@swgeophys.com

Reviewed by:

David Decker, PhD, PG, CPG CEO, Principal Geologist dave@swgeophys.com

Prepared for:

Carmona Resources 310 West Wall Street, Suite 500 Midland TX, 79701

Ashton Thielke (281) 753-5659 thielkea@carmonaresources.com

MMXXV

CARM-001-20241105

©2025

Released to Imaging: 7/7/2025 9:20:25 AM

TABLE OF CONTENTS

FRONT MATTER i	
TABLE OF CONTENTSii	
LIST OF FIGURESiii	
LIST OF TABLESiii	
1.0 INTRODUCTION	
1.1 Goals of this Study1	
1.2 Summary of Findings1	
1.3 Affected Environment1	
1.4 Limitations of Report	
2.0 LOCATION AND DESCRIPTION OF STUDY AREA	
2.1 Description of Site	
2.2 Local Geology Summary	
2.3 Description of Survey	
2.3.1 Surface Karst Inventory6	
2.3.2 Geophysical Survey8	
3.0 RESULTS	
3.1 Surface Karst Survey	
3.2 Geophysical Survey	
4.0 DISCUSSION	
5.0 SUMMARY	
6.0 DISCLOSURE STATEMENT	
7.0 REFERENCES	
8.0 GLOSSARY OF TERMS	
9.0 ATTESTATION	

•

LIST OF FIGURES

-igure 1: Karst occurrence zone overview	2
-igure 2: Land ownership and PLSS overview	4
-igure 3: Geology overview	5
-igure 4: Surface survey overview	6
-igure 5: Geophysical survey overview	8
-igure 6: Aerial karst survey results	10
-igure 7: 2D inverted resistivity section	11
-igure 8: Data overlay	13

LIST OF TABLES

Table 1: Survey Line Data Table	9
Table 2: Software Information and Settings	9

•

1.0 INTRODUCTION

This report was commissioned by Carmona Resources (hereinafter referred to as "the client"), on November 5, 2024, for the purpose of conducting an environmental karst study within an area encompassing the Yukon Gold 31 19 Federal Com #212 release site (hereinafter termed "YG31") centered at N 32.765001° W 104.282459°.

1.1 Goals of this Study

The goals of this study are to conduct a surface karst inventory and provide the client with the location and description of any surface karst features located within 200 feet (61 meters) of the spill delineation boundary (as defined by 19.15.29.12 NMAC^[1]) and to determine whether stable ground exists (as defined by 19.15.2 NMAC Definitions^[2]) within the spill boundary of the Yukon Gold 31 19 Federal Com #212 release using electrical resistivity imaging^[3].

1.2 Summary of Findings

- No surface karst features exist within the 200-foot (61-meter) zone surrounding the spill delineation boundary.
- No anomalies consistent with air-filled voids are located within the YG31 resistivity survey area, indicating the zone beneath the geophysical survey is not subject to collapse.
- Well-layered stratigraphy is interpreted to exist beneath the area where the geophysical survey was conducted, indicating stable ground.

1.3 Affected Environment

The YG31 project site is located in evaporite karst terrain, a landform that is characterized by underground drainage through solutionally enlarged conduits. Evaporite karst terrain may contain sinkholes, sinking streams, caves, and springs. Sinkholes leading to underground drainages and voids are common. These karst features, as well as occasional fissures and discontinuities in the bedrock, provide the primary sources for rapid recharge of the groundwater aquifers of the region. Additionally, karst may develop by hypogene processes involving dissolution by upwelling fluids from depth independent of recharge from the overlying or immediately adjacent surface. Hypogene karst systems may not be connected to the surface and can remain undiscovered unless encountered during drilling or excavation.

Karst features are delicate resources that are often of geological, hydrological, biological, and archeological importance, and should be protected. The four primary concerns in these types of terrain are environmental issues, worker safety, equipment damage, and infrastructure integrity.

The Bureau of Land Management (BLM) categorizes all areas within the Carlsbad Field Office (CFO) zone of responsibility as having either low, medium, high, or critical cave potential based on geology, occurrence of known caves, density of karst features, and potential impacts to freshwater aquifers^[4]. These designations are also recognized by the New Mexico State Land Office (NMSLO). This project occurs within both a **HIGH** karst occurrence zone (HKOZ) and a **MEDIUM** karst occurrence zone (MKOZ)^[5] (**Figure 1**).

A high karst occurrence zone is defined as an area in known soluble rock types that contains a high frequency of significant caves and karst features such as sinkholes, bedrock fractures that provide rapid recharge of karst aquifers, and springs that provide riparian habitat^[4].

A medium karst occurrence zone is defined as an area in known soluble rock types that may have a shallow insoluble overburden. These areas may contain isolated karst features such as caves and sinkholes. Groundwater recharge may not be wholly dependent on karst features, but the karst features still provide the most rapid aquifer recharge in response to surface runoff^[4].

Figure 1: Karst occurrence zone overview. Background image credit: Google Earth. Image date: August 21, 2024. Image datum: WGS-84.

CARM-001-20241105

Due to the rapidity with which evaporite karst develops, each location within a CKOZ or HKOZ must be assessed on an individual basis to determine the existence of surface karst features and the possibility of sub-surface karst development each time a release occurs.

1.4 Limitations of Report

This report should be read in full. No responsibility is accepted for the use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

This report has been prepared for the use of Carmona Resources in accordance with generally accepted consulting practices. Every effort has been made to ensure the information in this report is accurate as of the time of its writing. This report has not been prepared for use by parties other than the client, their contracting party, and their respective consulting advisors. It may not contain sufficient information for the purposes of other parties or for other uses.

This report was prepared upon completion of the associated fieldwork using a standard template prepared by Southwest Geophysical Consulting and is based on information collected prior to fieldwork, conditions encountered on site, and data collected during the fieldwork and reviewed at the time of preparation. Southwest Geophysical Consulting disclaims responsibility for any changes that might have occurred at the site after this time. The interpreted results, locations, and depths noted in this report (if applicable) should be taken as an interpretation only and no decision should be based solely on this information. Physical verification of aerial imagery analysis results should be conducted in the field prior to using this information for remediation planning. Physical verification of geophysical results using geotechnical methods should be conducted.

To the best of our knowledge, the information contained in this report is accurate at the date of issue. Due to the nature of karst terrain, the information in this report shall not be used beyond three years past the dates of the field work provided in section **2.3 Description of Survey**. Large weather events can shorten this time period as areas subject to karst development can rapidly form new features subsequent to these events.

CARM-001-20241105

Released to Imaging: 7/7/2025 9:20:25 AM

2.0 LOCATION AND DESCRIPTION OF STUDY AREA

2.1 Description of Site

The site is located 34.3 kilometers (21.3 miles) southeast of Carlsbad, New Mexico, east of Rawhide and Gavilan Roads. The release area is located within the northeast ¼ section of section 31, NM T23S R30E^[6] (Figure 1 and Figure 2). The region has rolling terrain with karstification occurring in the gypsite soils and underlying gypsum and dolomite bedrock^[7] (see section *2.2 Local Geology Summary* for further information). The climate in this area of southeast New Mexico is semi-arid with an average annual precipitation of approximately 13 inches, of which about two-thirds falls as rain during summer thunderstorms from June to October. Summers are hot and sunny while winters are generally mild, with an average maximum temperature of 96°F in July and an average minimum temperature of 28°F in January^[8]. This area is within the Chihuahuan Desert Thornscrub as defined by the Southwestern Regional ReGAP Vegetation map^[9] and the vegetation consists mostly of areas of blue grama, nine-awned pappus grass, burro grass and low scrub including yucca. The spill delineation boundary is located within both an HKOZ and MKOZ^[5] (Figure 1) and entirely within BLM-CFO managed land^[10] (Figure 2).

Figure 2: Land ownership and PLSS overview. Background image credit: Google Earth. Image date: August 21, 2024. Image datum: WGS-84.

CARM-001-20241105

4

2.2 Local Geology Summary

The site for the YG31 survey is located east of Nash Draw at an elevation of 967 meters (3,173 feet), \pm 15 meters (49.2 feet). This region is entirely underlain by the Permian Rustler Formation (Pru). The area is mantled by thin gypsiferous soils (gypsite), Quaternary eolian deposits (Qe), and piedmont gravels (Qp)^[11] up to 5 meters in depth (**Figure 3**).

The Rustler Formation is an evaporite facies composed mainly of thin siltstones and sandstones interbedded with claystones, dolomite, and gypsum, and contains both karst-forming strata (the Forty-niner and Tamarisk members) and two shallow aquifers (the Magenta and Culebra Dolomite members)^[12].

The Pru overlies the Permian Salado Formation (PsI), a layer of extremely soluble halite which can readily dissolve to create caves, sinkholes, and other karst features; however, due to its extremely soluble nature, only non-soluble silt and sand remain from the dissolution of this layer at the surface^[12]. The Rustler Formation may be subject to collapse if a void has developed beneath it in the Salado Formation^[13].

The survey area is covered by the easily accessible Geologic Map of New Mexico (2003) at 1:500,000 scale^[11] and the Digital Geologic Map of New Mexico in ARC/INFO Format^[14].

Figure 3: Geology overview. Geology map credit: The Digital Geologic Map of New Mexico in ARC/INFO Format. Background image credit: Google Earth. Image date: August 21, 2024. Image datum: WGS-84.

CARM-001-20241105

2.3 Description of Survey

2.3.1 Surface Karst Inventory

Southwest Geophysical Consulting, in partnership with SWCA Environmental Consultants, provides aerial karst surveys using small, uncrewed aerial systems (sUAS) that are flown by qualified, FAA licensed drone pilots and that meet the stringent Bureau of Land Management – Carlsbad Field Office requirements for both pedestrian and aerial karst surveys.

The aerial karst survey includes a surface karst desk study prior to the flight which allows us to provide client feedback in the event of any previously known karst features in the area. The desk study is performed out to 305 meters (1,000 feet) from the spill delineation boundary per New Mexico Oil Conservation Division guidance^[1] (**Figure 4**). The study was performed using satellite and aerial imagery from Google Earth Pro dated March 20, 2023 (please note features less than one meter in diameter are generally not visible using this method); the Southwest Geophysical Cave and Karst Database dated December 23, 2024^[15]; the Remuda Basin, NM, 1:24,000 quad, 1985, USGS topographic map; and the latest lidar imagery from CalTopo.com. Please note that we use older topographic maps because newer maps have had caves removed from them. These searches and queries returned no results within the survey boundary.

Figure 4: Surface survey overview. Background image credit: Google Earth. Image date: August 21, 2024. Datum: WGS-84.

CARM-001-20241105

Aerial karst surveys are conducted at low elevation within 200 meters of the spill delineation boundary^[4] (**Figure 4**) following a preplanned raster pattern flightpath designed for the purpose of generating at least 75% imagery overlap. The collected high-resolution, georeferenced imagery is stitched together to develop orthomosaic imagery which is further developed into a digital elevation model (DEM); the DEM is then processed into a local relief model (LRM) (**Figure 6**). This LRM is color coded to enhance differences in elevation of as little as five centimeters. The orthoimagery, DEM, and LRM are uploaded to a server where they are analyzed by an experienced karst geologist. Finally, the data is reviewed by a senior karst geologist for quality assurance and downloaded into a table for inclusion in a written report^[16].

The resolution of the orthoimagery is clear enough that features as small as 10 centimeters can be positively identified in most circumstances. Occasionally there are ambiguous features identified during an aerial survey that will need to be checked in the field if they are impacted by the proposed remediation efforts. Specifically, it is difficult to tell the difference between solution tubes, abandoned uncased well bores, and some burrows in drone imagery. If an ambiguous feature is located during imagery analysis, it is marked with a yellow dot in **Figure 6**. If a feature of any likelihood is subsequently verified in the field prior to publication of the report, the dot will be changed to a red triangle if confirmed as a karst feature or deleted if not.

The imagery for this study was collected via aerial survey by Pat Lagodney of SWCA on November 18, 2024. Surface karst features may have developed after this date and will not be noted in this report. Imagery analysis was completed by Dave Decker of Southwest Geophysical Consulting on December 2, 2024.

2.3.2 Geophysical Survey

For this survey, an Advanced Geosciences Inc. (AGI) SuperSting[™] Wifi R8 with a multielectrode switchbox, a 56-electrode array of 40-centimeter-long electrodes, and a tablet controller were used to image the subsurface. This survey consisted of one resistivity line in a dipole-dipole strong-gradient configuration laid out south to north. The single line consisted of 56 electrodes at 4-meter spacing, resulting in a 220-meter-long array (**Figure 5, Table 1**). A preconfigured command file was used to run the data collection (DDSG56). This electrode configuration provided a depth of investigation of 44 meters (144 feet) and a resolution of 2.0 to 2.5 meters (6.6 to 8.2 feet) within the first 5 to 8 meters (16 to 26 feet) from the surface. A Leica GS18 GPS was used to record electrode locations and elevations.

Figure 5: Geophysical survey overview. One survey line was conducted with 56 electrodes each at 4-meter spacing (yellow dots denoted with blue numbers). Background image credit: Google Earth. Image date: August 21, 2024. Image datum: WGS-84.

Table 1 provides basic line data. Detailed information including electrode number, location in latitude/ longitude (decimal degree format), and elevation in meters can be found in the accompanying data files.

Table 1: Survey Line Data Table. The .kmz file contains all the points for the survey line listed in the file name. These data are available in the accompanying files YG31_ERI_Points.xlsx and CARM-001-20241105_YG31_Data_Files.kmz.

File Name:	Completed By:	Date:
YG3101.kmz	Garrett Jorgensen Olague – Senior Field Geologist Britt Bommer – Field Geologist Steven Kesler – Field Geologist	1/27/2025

EarthImager[™] 2D software was used to download and process the data and to provide the model used to make our interpretations. The design of the survey and the orientation of each of the lines provides the information necessary to make the determination of "stable" or "unstable" ground at this site.

A typical starting model was used for the data processing due to the two-layer model of the geology in the area; specifically, generally high-resistivity gypsum and dolomite at the surface and low-resistivity saturated gypsum and dolomite bedrock at depth. The starting model used was "average apparent resistivity" and a default inversion setting of "surface," with a minimum apparent resistivity set to 0.1 Ohm-meters (Ohm-m or Ω -m) and a max apparent resistivity set to 100,000 Ω -m (**Table 2**).

Software Name:	EarthImager [™] 2D
Version:	2.4.4.649
Starting Model:	Average Apparent Resistivity
Default Inversion Settings:	Surface
Changes to Default Inversion Settings:	Max Apparent Resistivity = 100 kΩ-m
	Min Apparent Resistivity = 0.1 Ω -m

Table 2: Software Information and Settings

Note: Raw data files (.stg files for EarthImager[™] 2D) and processed data (.trn files, terrain files for surface correction in EarthImager[™] 2D and .out files, the processed .stg files) are available upon request.

All field work, including setup, stow, and travel, was completed by Garrett Jorgensen Olague, Britt Bommer, and Steven Kesler on January 27, 2025.

3.0 RESULTS

3.1 Surface Karst Survey

The desk study and surface karst survey showed no surface karst features within the 200foot (61-meter)^[1] survey area surrounding the spill delineation boundary (Figure 6). No springs exist within the 1,000-foot (305-meter)^[1] survey boundary.

Figure 6: Aerial karst survey results. Background image credit: Google Earth. Image date: March 20, 2023. Image datum: WGS-84.

3.2 Geophysical Survey

Electrical resistivity tomography forms images of the subsurface by causing a current to flow through the rock and soil and then measuring the resistance of these materials as the current flows through them. This measurement is taken many times and the resulting data, once processed, is used to produce a model of the subsurface (**Figure 7**). This model is produced using "non-unique" solutions, which means that there are many models and interpretations which will satisfy the data. Using experience and knowledge of the local geology, a high-confidence model can be established and used to develop an accurate understanding of what lies below the surface. This survey was conducted with the express purpose of locating subsurface voids and does not purport to find paleokarst (old, non-

CARM-001-20241105

active karst features that have been filled in with sand and sediment) or nascent karst features below the resolution limit of the survey.

The results of this study indicate a moderately well-layered geologic system with resistivities between 3.3 and 1,572 Ohm-m (**Figure 7**). Please keep in mind when viewing the 2D inverted resistivity sections that color maps can be widely different for each view. Always check the color map located on the right side of the image when viewing the 2D images to ensure you understand the range of resistivities presented. Distances along the top and depths along the left side are in meters. The color map along the right side is in Ohm-m. Due to the nature of the survey, shallower zones have higher resolution between electrodes than deeper zones; therefore, small features at depth will not be visible.

Figure 7: 2D inverted resistivity sections. Reds and oranges indicate higher resistivity values. Yellows and greens are medium-resistivity values. Blues are low-resistivity values. Please note that the color scale is relative. The dashed black line indicates the location of the well pad.

4.0 DISCUSSION

No anomalies consistent with air-filled subsurface voids are found within the YG31 survey area. However, small solutionally enlarged voids or fractures at or near the resolution limit of the survey (1.5 – 2.0 meters) may be present. Slightly higher-than-average resistivity areas less than 10 meters beneath the surface are interpreted as dry caliche or gypsite soils. Due to their low resistivity values when compared with significant subsurface voids, these features should not be a concern during remediation efforts. Areas of moderate resistivity (yellows, and greens) near the surface are interpreted as dry gypsite soils and gypsum bedrock of the Rustler Formation^[17] (**Figure 7** and **Figure 8**).

The low-resistivity area between 3.3 - 15 Ohm-m is interpreted to represent fluid from the brine release. Other low resistivity areas between 15 and 50 may represent surface-to-subsurface hydrologic pathways, or a layer of either clays and halite lenses or moist or saturated layers within the Rustler Formation. (**Figure 7**).

Please remember that these are interpretations made from knowledge of the local subsurface materials and experience. **They remain interpretations until verified by geotechnical methods.** Employing a BLM-CFO approved karst monitor on site during any drilling and/or remediation activities that require excavation below four feet in depth should be considered.

Fracture sets within the subsurface can act as hydrologic pathways to the water table. Rapid dissolution of gypsum can occur along these pathways creating solution-enlarged fractures, and in some cases, voids within months to years. For this reason, this survey is valid only for this remediation event.

Within karst terrains like the project site, small air- or sediment-filled voids and/or brecciated zones and solutionally enlarged fractures that are below the resolution limit of the survey (2.0 -2.5 meters) may exist; these may be encountered during excavation, and if so, should be evaluated by a karst specialist prior to continued work.

Figure 8: Data overlay. Colored trapezoid is the 2D inverted resistivity line. Background image credit: Google Earth. Image date: March 20, 2023.

5.0 SUMMARY

- The YG31 survey contains no surface karst features within 200 feet (61 meters) of the spill delineation boundary.
- No shallow anomalies interpreted as large voids or related karst features that would present a danger to equipment operators are located within the survey area.
- Intercepting a void during remediation is unlikely, but still possible. Small voids or solutionally enlarged fractures below the resolution limit of the survey may be encountered.
- Well-layered stratigraphy is interpreted to exist beneath the area where the geophysical survey was conducted, indicating stable ground.
- When conducting any remediation activities in this area, employing a BLM-CFO approved karst monitor on site should be considered.

6.0 DISCLOSURE STATEMENT

High karst occurrence zones are prone to rapid karst formation and warrant careful planning and engineering to mitigate karst-forming processes that could be accelerated by removal of surface cover or the vibrations associated with heavy equipment used in the remediation process.

Mitigation measures for any karst features revealed during excavation shall be approved by the Bureau of Land Management – Carlsbad Field Office and follow the Natural Resources Conservation Service Conservation Practice Standard for Karst Sinkhole Treatment, Code 527, or the Bureau of Land Management Cave and Karst Management Handbook, H-8380-1.

Vigilance during remediation activities is paramount. If voids are encountered during excavation, contact the Bureau of Land Management Karst Division at (575) 234-5972, the New Mexico State Land Office Surface Resources Division at (505) 827-5768, or a BLM-CFO approved karst contractor and request an on-site investigation from a karst expert if one is not already on site. A karst consultant can generally be available in Eddy County within five hours.

Approved karst monitors should have karst feature identification training, at least two years of supervised experience identifying karst features, wilderness first aid training, SRT training, confined space training, gas monitor training, and a minimum of SPAR cave rescue training through NCRC. They should have with them the proper gear and be prepared both physically and mentally to enter a collapse feature within minutes to perform a rescue if needed. Monitoring services with qualified karst monitors, as well as cave surveys and geophysical surveys, are available from Southwest Geophysical Consulting.

Under no circumstances should an untrained, inexperienced person enter a cave, pit, sinkhole, or collapse feature. All field employees of Southwest Geophysical Consulting have extensive caving experience and the ability to determine whether entry into a karst feature is safe or presents a hazard. In the event it is necessary to enter a karst feature, Southwest Geophysical Consulting can provide these services on request.

Cave and karst resource inventory reports, karst feature investigations, and geophysical reports commissioned at the request of the land manager should be submitted to:

BLM-CFO: <u>blm_nm_karst@blm.gov</u>

Cave and karst resource inventory reports for the NMSLO should be submitted to the respective project manager.

7.0 REFERENCES

- 1 Division, O. C. *Title 19, Chapter 15, Part 29* (Oil Conservation Division, 2018).
- 2 NMSLO. (ed Oil Conservation Division) (New Mexico State Land Office, Santa Fe, NM, 2018).
- 3 Decker, D. & Jorgensen, G. L. *Environmental Karst Surveys White Paper* (Southwest Geophysical Consulting, LLC, 2024).
- 4 Goodbar, J. R. Vol. BLM Management Handbook H-8380-1 (ed Carlsbad Field Office) 59 (Bureau of Land Management, Denver, CO, 2015).
- 5 Decker, D., Trautner, E. & Palmer, R. (Bureau of Land Management Carlsbad Field Office, 2025).
- 6 Earthpoint. *Earthpoint Tools for Google Earth,* <<u>https://www.earthpoint.us/Townships.aspx</u>> (2022).
- 7 Decker, D. D., Land, L. & Luke, B. Characterization of Playa Lakes in the Gypsum Karst of Southeastern New Mexico and West Texas, USA. *Oklahoma Geological Survey Circular 113* **113** (2021).
- 8 W.R.C.C. National Climate Data Center 1981-2010 Normal Climate Summary for Carlsbad, New Mexico (291469), (2010).
- 9 Whitehead, W. & Flynn, C. *Plant Utilization in Southeastern New Mexico: Botany, Ethnobotany, and Archaeology*. (Bureau of Land Management, Carlsbad Field Office, 2017).
- 10 NMSLO. Digital overlay (KML) of the surface land ownership in New Mexico (New Mexico State Land Office, Santa Fe, NM, 2024).
- 11 Scholle, P. A. Geologic Map of New Mexico. (2003).
- 12 Austin, G. S. *Geology and mineral deposits of Ochoan rocks in Delaware Basin and adjacent areas*. Vol. Circular 159 (New Mexico Bureau of Mines and Mineral Resources, 1978).
- 13 Johnson, K. S. Evaporite Karst in the United States. *Carbonates and Evaporites* **12**, 2-14 (1997).
- 14 Green, G. N. & Jones, G. E. *The Digital Geologic Map of New Mexico in ARC/INFO Format*, <<u>https://mrdata.usgs.gov/geology/state/state.php?state=NM</u>> (1997).
- 15 Decker, D. D., Jorgensen, G. L. & Palmer, R. in *Southwest Geophysical Cave and Karst Database* (ed LLC Southwest Geophysical Consulting) (Albuquerque, NM, 2025).

- 16 Whitehead, W., Bandy, M. & Decker, D. Protocol for Using UAV Photography for Rapid Assessment of Karst Features in Southeast New Mexico. *Proceedings of the 2022 Cave and Karst Management Symposium* (2022).
- 17 Hill, C. A. *Geology of the Delaware Basin, Guadalupe, Apache and Glass Mountains, New Mexico and West Texas*. Vol. 96-39 (Permian Basin Section - SEPM, 1996).

8.0 GLOSSARY OF TERMS

AGI	Advanced Geosciences Inc.
BLM-CFO	Bureau of Land Management - Carlsbad Field Office
brecciated	Fractured rock caused by faulting or collapse.
caprock-collapse sinkhole	Collapse of roof-spanning rock into a cave or void.
cave	Natural opening at the surface large enough for a person to enter.
cover-collapse sinkhole	Collapse of roof-spanning soil or clay ground cover into a subsurface void.
ERI	Electrical Resistivity Imaging
GPS	Global Positioning System
grike	A solutionally enlarged, vertical, or sub-vertical joint or fracture.
(H)	High confidence modifier for a PKF. This is typically reserved for a
('')	feature that is definitely karst but has not been confirmed in the
	field.
НКОΖ	High Karst Occurrence Zone
karst	A landscape containing solutional features such as caves,
	sinkholes, swallets, and springs.
(L)	Low confidence modifier for a PKF. This is typically a feature that
	cannot be ruled out as karst but is most likely NOT karst related.
	This modifier may also be used for pseudokarst features.
(M)	Medium confidence modifier for PKF. This is an ambiguous
	feature that can't be positively identified as karst without a field
	visit (e.g., burrows, abandoned unlined wells, solution tubes, pseudokarst).
MKOZ	Medium Karst Occurrence Zone
NCRC	National Cave Rescue Commission
NKF	Non-karst feature. Used for features originally identified as PKF
	that have been subsequently identified in the field as non-karst
	related. This term may also be used for pseudokarst features.
NMSLO	New Mexico State Land Office
Ohm-m	Ohm-meter, a unit of measurement for resistivity. Sometimes
	abbreviated Ω-m.
paleokarst	Previously formed karst features that have been filled in by
	erosion and/or deposition of minerals.
Pat	Permian Artesia Group
Рс	Permian Capitan Formation
Pcs	Permian Castile Formation

CARM-001-20241105

.

Pdl	Permian Dewey Lake Formation
PKF	Possible karst feature. This term is reserved for features
	identified in satellite or aerial imagery that have NOT been
	visited in the field. Further modifiers include (H) for high
	confidence, (M) for medium confidence, and (L) for low
	confidence. These confidence levels are based on field
	experience.
PLSS	Public Land Survey System
Pqg	Permian Queen/Greyburg Formation
Pru	Permian Rustler Formation
pseudokarst	Karst-like features (sinkholes, conduits, voids etc.) that are not
	formed by dissolution. These types of features include soil piping,
	lava tubes, and some cover-collapse and suffosion sinkholes.
Psl	Permian Salado Formation
Psr	Permian Seven Rivers Formation
Pt	Permian Tansill Formation
Ру	Permian Yates Formation
Qal	Quaternary alluvium
Qe	Quaternary eolian deposits
Qp	Quaternary piedmont deposits
Qpl	Quaternary playa lake deposits
RKF	Recognized karst feature. This term is reserved for karst features
	that have been physically verified in the field.
SPAR	Small Party Assisted Rescue
sUAS	Small, uncrewed aerial system
suffosion sinkhole	Raveling of soil into a pre-existing void or fracture.
swallet	A natural opening in the surface, too small for a person, that drains
	water to an aquifer. Some are "open," meaning a void can be seen
	below; some are "closed, "meaning they are full of sediment.
SWG	Southwest Geophysical Consulting, LLC
UTM	Universal Transverse Mercator (projected coordinates)
(V)	Field verified modifier for a RKF. This indicates that the feature has
	been visited by a qualified karst professional in the field and fully
	identified
WGS	World Geodetic System (geographic coordinates)

•

9.0 ATTESTATION

David D. Decker, PhD, PG, CPG

Chief Executive Officer, Principal Geologist Southwest Geophysical Consulting, LLC 5117 Fairfax Dr. NW Albuquerque, NM 87114 <u>dave@swgeophys.com</u> (505) 585-2550

CERTIFICATE OF AUTHOR

I, David D. Decker, a Licensed Professional Geologist and a Certified Professional Geologist, do certify that:

- I am currently employed as a consulting geologist in the specialty of caves and karst with an office address of 5117 Fairfax Dr. NW, Albuquerque, NM, USA, 87114.
- I graduated with a Master of Science in Applied Physics with a specialization in Sensor Systems from the Naval Post Graduate School in Monterey, California, in 2003, and a Doctor of Philosophy in Earth and Planetary Sciences from the University of New Mexico, Albuquerque, New Mexico, in 2018.
- I am a Licensed Professional Geologist in the State of Texas, USA (PG-15242) and have been since 2021. I am a Certified Professional Geologist through the American Institute of Professional Geologists (CPG-12123) and have been since 2021.
- I have been employed as a geologist continuously since 2016. I was previously employed as a Fire Controlman, Naval Flight Officer, and Aerospace Engineering Duty Officer in the U.S. Navy and operated, maintained, and installed various sensor systems including magnetic, electromagnetic, radar, communications, and acoustic systems in various capacities from 1986 through 2010.
- I have been involved in various aspects of cave and karst studies continuously since 1985, including exploration, mapping, and scientific studies.
- I have read the definition of "qualified karst professional" set out in the ASTM Standard Practice for Preliminary Karst Terrain Assessment for Site Development (ASTM E-1527). I meet the definition of "qualified professional" for the purposes of this standard.
- I am responsible for the content, compilation, and editing of all sections of report number CARM-001-20241105 entitled, "Environmental Karst Study Report, Yukon Gold 31 19 Federal Com #212, Eddy County, New Mexico." I or a duly authorized and qualified representative of Southwest Geophysical Consulting, LLC, have personally visited this site and/or reviewed the aerial imagery on the date or dates mentioned in section 2.3 Description of Survey.

• I have no prior involvement nor monetary interest in the described property or project, save for my fee for conducting this investigation and providing the report.

Dated in Albuquerque, New Mexico, February 23, 2025.

David D. Decker PhD, CPG-12123

APPENDIX E

Received by OCD: 5/13/2025 11:42:19 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ashton Thielke Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 10/15/2024 4:08:57 PM

JOB DESCRIPTION

Yukon Gold 31-19 Fed Com 212H Eddy County, NM

JOB NUMBER

880-49694-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 10/15/2024 4:08:57 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-49694-1

SDG: Eddy County, NM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	20
Lab Chronicle	23
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	30

EDL

LOD

LOQ

MCL

MDA

MDC

MDL

MPN

MQL

NC

ND NEG

POS

PQL PRES

QC

RER

RPD

TEF

TEQ TNTC

RL

ML

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present Practical Quantitation Limit

Presumptive

Quality Control

Method Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

54

3

	Definitions/Glossary	
Client: Carmor		Job ID: 880-49694-1
	ukon Gold 31-19 Fed Com 212H	SDG: Eddy County, NM
Qualifiers		
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
J	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		
Qualifier	Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¢	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	

Case Narrative

Client: Carmona Resources Project: Yukon Gold 31-19 Fed Com 212H Job ID: 880-49694-1

9694-1

Page 180 of 354

Job ID: 880-49694-1

Eurofins Midland

Job Narrative 880-49694-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/11/2024 2:05 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -4.3°C.

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: H-1 (0-1.0') (880-49694-1), H-2 (0-1.0') (880-49694-2), H-3 (0-1.0') (880-49694-3), H-4 (0-1.0') (880-49694-4), H-5 (0-1.0') (880-49694-5), H-6 (0-1.0') (880-49694-6), H-7 (0-1.0') (880-49694-7), H-8 (0-1.0') (880-49694-8) and H-9 (0-1.0') (880-49694-9).

GC VOA

Method 8021B: The matrix spike duplicate (MSD) recoveries for preparation batch 880-93140 and analytical batch 880-93171 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-93208 and analytical batch 880-93209 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (LCS 880-93208/2-A) and (LCSD 880-93208/3-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: H-6 (0-1.0') (880-49694-6), H-7 (0-1.0') (880-49694-7), H-8 (0-1.0') (880-49694-8), H-9 (0-1.0') (880-49694-9), (LCS 880-93129/2-A) and (LCSD 880-93129/3-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.
Client Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: H-1 (0-1.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:04	10/14/24 12:43	1
Foluene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:04	10/14/24 12:43	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:04	10/14/24 12:43	1
n-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/11/24 16:04	10/14/24 12:43	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:04	10/14/24 12:43	1
Kylenes, Total	<0.00398	U	0.00398		mg/Kg		10/11/24 16:04	10/14/24 12:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				10/11/24 16:04	10/14/24 12:43	1
1,4-Difluorobenzene (Surr)	99		70 - 130				10/11/24 16:04	10/14/24 12:43	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/14/24 12:43	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) ((3C)						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9		49.9		mg/Kg			10/14/24 13:25	1
nalyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	
Method: SW846 8015B NM - Dies Analyte				MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		10/14/24 15:10	10/14/24 13:25	1
GRO)-C6-C10 Diesel Range Organics (Over	<49.9		49.9		mg/Kg		10/14/24 15:10	10/14/24 13:25	1
C10-C28)	10.0	0	10.0		mg/rtg		10/11/21 10:10	10/11/21 10:20	
Dil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		10/14/24 15:10	10/14/24 13:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	100		70 - 130				10/14/24 15:10	10/14/24 13:25	1
p-Terphenyl	87		70 - 130				10/14/24 15:10	10/14/24 13:25	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<10.0	U	10.0		mg/Kg			10/14/24 14:34	1
lient Sample ID: H-2 (0-1.0))						Lab Sam	ple ID: 880-4	9694-2
ate Collected: 10/10/24 00:00								Matri	x: Solid
ate Received: 10/11/24 14:05									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)	1						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		10/11/24 16:04	10/14/24 13:03	1

SDG: Eddy County, NM Lab Sample ID: 880-49694-1

Job ID: 880-49694-1

Matrix: Solid 5

<0.00199 U 0.00199 mg/Kg 10/11/24 16:04 10/14/24 13:03 1 <0.00199 U 0.00199 mg/Kg 10/11/24 16:04 10/14/24 13:03 1 <0.00398 U 0.00398 mg/Kg 10/11/24 16:04 10/14/24 13:03 1 <0.00199 U 0.00199 mg/Kg 10/11/24 16:04 10/14/24 13:03 1 <0.00398 U 0.00398 10/11/24 16:04 10/14/24 13:03 mg/Kg 1 %Recovery Qualifier Limits Dil Fac Prepared Analyzed 112 70 - 130 10/11/24 16:04 10/14/24 13:03 1 102 70 - 130 10/11/24 16:04 10/14/24 13:03 1

Eurofins Midland

Released to Imaging: 7/7/2025 9:20:25 AM

Toluene

o-Xylene

Surrogate

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Project/Site: Yukon Gold 31-19 Fed Com 212H

Matrix: Solid

5

Job ID: 880-49694-1 SDG: Eddy County, NM

Lab Sample ID: 880-49694-2

Client Sample ID: H-2 (0-1.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/14/24 13:03	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.4	U	50.4		mg/Kg			10/14/24 15:38	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.4	U	50.4		mg/Kg		10/14/24 15:10	10/14/24 15:38	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.4	U	50.4		mg/Kg		10/14/24 15:10	10/14/24 15:38	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.4	U	50.4		mg/Kg		10/14/24 15:10	10/14/24 15:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130				10/14/24 15:10	10/14/24 15:38	1
o-Terphenyl	89		70 - 130				10/14/24 15:10	10/14/24 15:38	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hv - Solubl	е						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<10.1	U	10.1		mg/Kg			10/14/24 16:35	1

Client Sample ID: H-3 (0-1.0')

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Lab Sample ID: 880-49694-3 Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:04	10/14/24 13:24	1
Toluene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:04	10/14/24 13:24	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:04	10/14/24 13:24	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/11/24 16:04	10/14/24 13:24	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:04	10/14/24 13:24	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		10/11/24 16:04	10/14/24 13:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130				10/11/24 16:04	10/14/24 13:24	1
1,4-Difluorobenzene (Surr)	103		70 - 130				10/11/24 16:04	10/14/24 13:24	1

Analyte Total BTEX	Result <0.00398	Qualifier	RL 0.00398	MDL	Unit mg/Kg	D	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Dies									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.5	U	50.5		mg/Kg			10/14/24 15:54	1
_ Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.5	U	50.5		mg/Kg		10/14/24 15:10	10/14/24 15:54	1
(GRO)-C6-C10									

Client Sample ID: H-3 (0-1.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		10/14/24 15:10	10/14/24 15:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130				10/14/24 15:10	10/14/24 15:54	1
o-Terphenyl	92		70 - 130				10/14/24 15:10	10/14/24 15:54	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<10.1	U	10.1		mg/Kg			10/14/24 14:43	1
Client Sample ID: H-4 (0-1.0)							Lab Sam	ple ID: 880-4	9694-4
ate Collected: 10/10/24 00:00								Mote:	x: Solid

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00198	U	0.00198		mg/Kg		10/11/24 16:04	10/14/24 13:44	1
Toluene	<0.00198	U	0.00198		mg/Kg		10/11/24 16:04	10/14/24 13:44	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		10/11/24 16:04	10/14/24 13:44	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		10/11/24 16:04	10/14/24 13:44	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		10/11/24 16:04	10/14/24 13:44	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		10/11/24 16:04	10/14/24 13:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130				10/11/24 16:04	10/14/24 13:44	1
1,4-Difluorobenzene (Surr)	102		70 - 130				10/11/24 16:04	10/14/24 13:44	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			10/14/24 13:44	1

	Method: SW846 8015 NM - Diesel Ra	ange Organ	ics (DRO) (G	iC)						
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Total TPH	<50.3	U	50.3		mg/Kg			10/14/24 16:10	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.3	U	50.3		mg/Kg		10/14/24 15:10	10/14/24 16:10	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.3	U	50.3		mg/Kg		10/14/24 15:10	10/14/24 16:10	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		10/14/24 15:10	10/14/24 16:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	107		70 - 130				10/14/24 15:10	10/14/24 16:10	1
o-Terphenyl	93		70 - 130				10/14/24 15:10	10/14/24 16:10	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<10.0	U	10.0		mg/Kg			10/14/24 14:51	1

Job ID: 880-49694-1

SDG: Eddy County, NM

Lab Sample ID: 880-49694-3 Matrix: Solid

Client Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: H-5 (0-1.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:04	10/14/24 14:05	1
Toluene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:04	10/14/24 14:05	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:04	10/14/24 14:05	1
n-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		10/11/24 16:04	10/14/24 14:05	1
p-Xylene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:04	10/14/24 14:05	1
Kylenes, Total	<0.00403	U	0.00403		mg/Kg		10/11/24 16:04	10/14/24 14:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Bromofluorobenzene (Surr)	110		70 - 130				10/11/24 16:04	10/14/24 14:05	1
1,4-Difluorobenzene (Surr)	102		70 - 130				10/11/24 16:04	10/14/24 14:05	1
Method: TAL SOP Total BTEX - T									
analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fotal BTEX	<0.00403	U	0.00403		mg/Kg			10/14/24 14:05	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fotal TPH	<49.9	U	49.9		mg/Kg			10/14/24 16:26	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics GRO)-C6-C10	<49.9	U	49.9		mg/Kg		10/14/24 15:10	10/14/24 16:26	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		10/14/24 15:10	10/14/24 16:26	1
Dil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		10/14/24 15:10	10/14/24 16:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
I-Chlorooctane	102		70 - 130				10/14/24 15:10	10/14/24 16:26	1
p-Terphenyl	88		70 - 130				10/14/24 15:10	10/14/24 16:26	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	24.3		10.1		mg/Kg			10/14/24 15:12	1
lient Sample ID: H-6 (0-1.0')						Lab Sam	ple ID: 880-4	9694-6
ate Collected: 10/10/24 00:00								Matri	x: Solid
ate Received: 10/11/24 14:05									
Method: SW846 8021B - Volatile	•		·						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202		0.00202		mg/Kg		10/11/24 16:04	10/14/24 14:25	1
Toluene	<0.00202		0.00202		mg/Kg		10/11/24 16:04	10/14/24 14:25	1
Ethylbenzene	<0.00202		0.00202		mg/Kg		10/11/24 16:04	10/14/24 14:25	1
m-Xylene & p-Xylene	< 0.00404	U	0.00404		mg/Kg		10/11/24 16:04	10/14/24 14:25	1

m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg	10/11/24 16:04	10/14/24 14:25	1
o-Xylene	<0.00202	U	0.00202	mg/Kg	10/11/24 16:04	10/14/24 14:25	1
Xylenes, Total	<0.00404	U	0.00404	mg/Kg	10/11/24 16:04	10/14/24 14:25	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130		10/11/24 16:04	10/14/24 14:25	1
1,4-Difluorobenzene (Surr)	102		70 - 130		10/11/24 16:04	10/14/24 14:25	1

Eurofins Midland

Page 184 of 354

Job ID: 880-49694-1 SDG: Eddy County, NM

Lab Sample ID: 880-49694-5

Matrix: Solid

5

Project/Site: Yukon Gold 31-19 Fed Com 212H

Matrix: Solid

5

Job ID: 880-49694-1 SDG: Eddy County, NM

Client Sample ID: H-6 (0-1.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			10/14/24 14:25	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			10/14/24 15:23	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		10/11/24 15:41	10/14/24 15:23	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		10/11/24 15:41	10/14/24 15:23	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		10/11/24 15:41	10/14/24 15:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	86		70 - 130				10/11/24 15:41	10/14/24 15:23	1
o-Terphenyl	64	S1-	70 - 130				10/11/24 15:41	10/14/24 15:23	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hv - Solubl	e						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<10.1	U	10.1		mg/Kg			10/14/24 15:19	1

Client Sample ID: H-7 (0-1.0')

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Lab Sample ID: 880-49694-7 Matrix: Solid

-Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:04	10/14/24 14:46	1
Toluene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:04	10/14/24 14:46	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:04	10/14/24 14:46	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/11/24 16:04	10/14/24 14:46	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:04	10/14/24 14:46	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		10/11/24 16:04	10/14/24 14:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130				10/11/24 16:04	10/14/24 14:46	1
1,4-Difluorobenzene (Surr)	102		70 - 130				10/11/24 16:04	10/14/24 14:46	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/14/24 14:46	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			10/14/24 15:38	1
Method: SW846 8015B NM - Di	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	<49.8	U	49.8		mg/Kg		10/11/24 15:41	10/14/24 15:38	1
Gasoline Range Organics	<49.0	0							
0 0	<49.6	0							
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<49.8		49.8		mg/Kg		10/11/24 15:41	10/14/24 15:38	1

Eurofins Midland

Page 1

Lab Sample ID: 880-49694-6

Client Sample ID: H-7 (0-1.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		10/11/24 15:41	10/14/24 15:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	92		70 - 130				10/11/24 15:41	10/14/24 15:38	1
o-Terphenyl	69	S1-	70 - 130				10/11/24 15:41	10/14/24 15:38	1
Chloride	<9.96	U	9.96		mg/Kg			10/14/24 15:26	1
	~9.90	0	9.90		iiig/Kg		Lab Oam		
lient Sample ID: H-8 (0-1.0')							Lab Sam	ple ID: 880-4	
ate Collected: 10/10/24 00:00								Matri	x: Solid
ate Received: 10/11/24 14:05									

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		10/11/24 16:04	10/14/24 15:06	1
Toluene	<0.00200	U	0.00200	mg/Kg		10/11/24 16:04	10/14/24 15:06	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		10/11/24 16:04	10/14/24 15:06	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		10/11/24 16:04	10/14/24 15:06	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		10/11/24 16:04	10/14/24 15:06	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		10/11/24 16:04	10/14/24 15:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130			10/11/24 16:04	10/14/24 15:06	1
1,4-Difluorobenzene (Surr)	100		70 - 130			10/11/24 16:04	10/14/24 15:06	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg	 		10/14/24 15:06	1

N	Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)											
A	nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
T	otal TPH	<49.9	U	49.9		mg/Kg			10/14/24 15:54	1		

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		10/11/24 15:41	10/14/24 15:54	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		10/11/24 15:41	10/14/24 15:54	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		10/11/24 15:41	10/14/24 15:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130				10/11/24 15:41	10/14/24 15:54	1
o-Terphenyl	69	S1-	70 - 130				10/11/24 15:41	10/14/24 15:54	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<9.92	U	9.92		mg/Kg			10/14/24 15:33	1

Page 186 of 354

Matrix: Solid

5

Job ID: 880-49694-1 SDG: Eddy County, NM

Lab Sample ID: 880-49694-7

Client Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: H-9 (0-1.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:04	10/14/24 16:29	1
Toluene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:04	10/14/24 16:29	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:04	10/14/24 16:29	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/11/24 16:04	10/14/24 16:29	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:04	10/14/24 16:29	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		10/11/24 16:04	10/14/24 16:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				10/11/24 16:04	10/14/24 16:29	1
1,4-Difluorobenzene (Surr)	103		70 - 130				10/11/24 16:04	10/14/24 16:29	1
- Method: TAL SOP Total BTEX - 1	Total BTEX Cald	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/14/24 16:29	1
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Analyte Total TPH	Result <49.9	Qualifier U	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies	Result <49.9	Qualifier U	RL 49.9		mg/Kg	<u>D</u>	Prepared		Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte	Result <49.9 sel Range Orga Result	Qualifier U nics (DRO) Qualifier	(GC)	MDL	mg/Kg Unit	<u>D</u>	Prepared	10/14/24 16:10 Analyzed	Dil Fac 1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	Result <49.9	Qualifier U nics (DRO) Qualifier	(GC)		mg/Kg		<u>.</u>	10/14/24 16:10	1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 sel Range Orga Result	Qualifier U nics (DRO) Qualifier U	(GC)		mg/Kg Unit		Prepared	10/14/24 16:10 Analyzed	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga Result sel Range Orga Result <49.9	Qualifier U nics (DRO) Qualifier U U	RL 49.9 (GC) RL 49.9		mg/Kg Unit mg/Kg		Prepared 10/11/24 15:41	Analyzed 10/14/24 16:10	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	Result <49.9	Qualifier U nics (DRO) Qualifier U U U	RL 49.9 (GC) RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 10/11/24 15:41 10/11/24 15:41	Analyzed 10/14/24 16:10 10/14/24 16:10 10/14/24 16:10	1 Dil Fac 1 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	Result <49.9	Qualifier U nics (DRO) Qualifier U U U	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 10/11/24 15:41 10/11/24 15:41 10/11/24 15:41	Analyzed 10/14/24 16:10 10/14/24 16:10 10/14/24 16:10 10/14/24 16:10	1 Dil Fac 1 1 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9	Qualifier U nics (DRO) Qualifier U U U	RL 49.9 (GC) RL 49.9 49.9 49.9 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 10/11/24 15:41 10/11/24 15:41 10/11/24 15:41 Prepared	Analyzed 10/14/24 16:10 10/14/24 16:10 10/14/24 16:10 10/14/24 16:10 10/14/24 16:10 10/14/24 16:10 10/14/24 16:10	1 Dil Fac 1 1 1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9	Qualifier U nics (DRO) Qualifier U U U Qualifier S1-	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9 20.9 Limits 70 - 130 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 10/11/24 15:41 10/11/24 15:41 10/11/24 15:41 Prepared 10/11/24 15:41	Analyzed 10/14/24 16:10 4 10/14/24 16:10 10/14/24 16:10 10/14/24 16:10 10/14/24 16:10 10/14/24 16:10	1 Dil Fac 1 1 1 1 1 <i>Dil Fac</i> 1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9 sel Range Orga Result <49.9 <49.9 <49.9 <49.9 %Recovery 85 63 Chromatograp	Qualifier U nics (DRO) Qualifier U U U Qualifier S1-	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9 20.9 Limits 70 - 130 70 - 130		mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 10/11/24 15:41 10/11/24 15:41 10/11/24 15:41 Prepared 10/11/24 15:41	Analyzed 10/14/24 16:10 4 10/14/24 16:10 10/14/24 16:10 10/14/24 16:10 10/14/24 16:10 10/14/24 16:10	1 Dil Fac 1 1 1 1 1 <i>Dil Fac</i> 1

Job ID: 880-49694-1 SDG: Eddy County, NM

Lab Sample ID: 880-49694-9

Matrix: Solid

5

Eurofins Midland

Released to Imaging: 7/7/2025 9:20:25 AM

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

_				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-49694-1	H-1 (0-1.0')	114	99		17
880-49694-2	H-2 (0-1.0')	112	102		
880-49694-3	H-3 (0-1.0')	108	103		12
880-49694-4	H-4 (0-1.0')	108	102		
880-49694-5	H-5 (0-1.0')	110	102		
880-49694-6	H-6 (0-1.0')	108	102		
880-49694-7	H-7 (0-1.0')	110	102		
880-49694-8	H-8 (0-1.0')	116	100		
880-49694-9	H-9 (0-1.0')	110	103		
880-49696-A-41-B MS	Matrix Spike	104	103		
880-49696-A-41-C MSD	Matrix Spike Duplicate	103	87		
LCS 880-93140/1-A	Lab Control Sample	108	100		
LCSD 880-93140/2-A	Lab Control Sample Dup	107	100		
MB 880-93140/5-A	Method Blank	104	98		
0					
Surrogate Legend					
BFB = 4-Bromofluoroben					
DFBZ = 1,4-Difluorobenz	ene (Surr)				

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-49689-A-1-H MS	Matrix Spike	91	79
880-49689-A-1-I MSD	Matrix Spike Duplicate	104	89
880-49689-A-6-E MS	Matrix Spike	108	107
880-49689-A-6-F MSD	Matrix Spike Duplicate	110	108
880-49694-1	H-1 (0-1.0')	100	87
880-49694-2	H-2 (0-1.0')	101	89
880-49694-3	H-3 (0-1.0')	106	92
880-49694-4	H-4 (0-1.0')	107	93
880-49694-5	H-5 (0-1.0')	102	88
880-49694-6	H-6 (0-1.0')	86	64 S1-
880-49694-7	H-7 (0-1.0')	92	69 S1-
880-49694-8	H-8 (0-1.0')	94	69 S1-
880-49694-9	H-9 (0-1.0')	85	63 S1-
LCS 880-93129/2-A	Lab Control Sample	98	133 S1+
LCS 880-93208/2-A	Lab Control Sample	109	166 S1+
LCSD 880-93129/3-A	Lab Control Sample Dup	98	133 S1+
LCSD 880-93208/3-A	Lab Control Sample Dup	109	167 S1+
MB 880-93129/1-A	Method Blank	112	92
MB 880-93208/1-A	Method Blank	131 S1+	125

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 880-49694-1

Prep Type: Total/NA

Prep Type: Total/NA

SDG: Eddy County, NM

Lab Sample ID: MB 880-93140/5-A

QC Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Analysis Batch: 93171								Prep Type: 1 Prep Batch	
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:04	10/14/24 11:40	1
Toluene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:04	10/14/24 11:40	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:04	10/14/24 11:40	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		10/11/24 16:04	10/14/24 11:40	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:04	10/14/24 11:40	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		10/11/24 16:04	10/14/24 11:40	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				10/11/24 16:04	10/14/24 11:40	1
1,4-Difluorobenzene (Surr)	98		70 - 130				10/11/24 16:04	10/14/24 11:40	1
Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	<0.00400 MB 	U MB Qualifier	0.00400 Limits 70 - 130				10/11/24 16:04 Prepared 10/11/24 16:04	10/14/24 11:40 <u>Analyzed</u> 10/14/24 11:40	_

Lab Sample ID: LCS 880-93140/1-A Matrix: Solid

Analysis Batch: 93171

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09611		mg/Kg		96	70 - 130	
Toluene	0.100	0.09059		mg/Kg		91	70 - 130	
Ethylbenzene	0.100	0.09166		mg/Kg		92	70 - 130	
m-Xylene & p-Xylene	0.200	0.1969		mg/Kg		98	70 - 130	
o-Xylene	0.100	0.09946		mg/Kg		99	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	108		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: LCSD 880-93140/2-A

Matrix: Solid

Analysis Batch: 93171							Prep	Batch:	93140
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09444		mg/Kg		94	70 - 130	2	35
Toluene	0.100	0.08975		mg/Kg		90	70 - 130	1	35
Ethylbenzene	0.100	0.08962		mg/Kg		90	70 - 130	2	35
m-Xylene & p-Xylene	0.200	0.1925		mg/Kg		96	70 - 130	2	35
o-Xylene	0.100	0.09627		mg/Kg		96	70 - 130	3	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 880-49696-A-41-B MS Matrix: Solid

Analysis Potoby 02171

Analysis Batch: 93171									Prep	Batch: 93140
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U F1	0.100	0.08688		mg/Kg		87	70 - 130	
Toluene	<0.00201	U	0.100	0.08217		mg/Kg		82	70 - 130	

Eurofins Midland

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Page 189 of 354

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 93140	

QC Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Job ID: 880-49694-1 SDG: Eddy County, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-49696-/ Matrix: Solid									Sample ID Prep 1	Гуре: То	
Analysis Batch: 93171										Batch:	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ethylbenzene	<0.00201	U	0.100	0.08358		mg/Kg		84	70 - 130		
m-Xylene & p-Xylene	<0.00402	U	0.200	0.1791		mg/Kg		90	70 - 130		
o-Xylene	<0.00201	U	0.100	0.09136		mg/Kg		91	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	104		70 - 130								
			70 - 130								
Lab Sample ID: 880-49696-A Matrix: Solid		Sample		MeD	MCD	Cli	ient Sa	ample IE	Prep	oike Dup Type: To Batch:	tal/N 9314
Lab Sample ID: 880-49696-/ Matrix: Solid Analysis Batch: 93171	A-41-C MSD Sample	•	Spike	MSD	MSD			·	Prep 1 Prep %Rec	Type: To Batch:	tal/N/ 9314 RPI
Lab Sample ID: 880-49696-/ Matrix: Solid Analysis Batch: 93171 ^{Analyte}	A-41-C MSD Sample Result	Qualifier	Spike Added	Result	Qualifier	Unit	ient Sa	%Rec	Prep 1 Prep %Rec Limits	Type: To Batch: 	tal/N/ 9314(RPI Limi
Lab Sample ID: 880-49696-/ Matrix: Solid Analysis Batch: 93171 Analyte Benzene	A-41-C MSD Sample Result <0.00201	Qualifier U F1	Spike Added 0.100	Result 0.06946	Qualifier	- <mark>Unit</mark> mg/Kg		%Rec 69	Prep 1 Prep %Rec Limits 70 - 130	Type: To Batch: RPD 22	tal/N/ 93140 RPI Limi 3
Lab Sample ID: 880-49696-4 Matrix: Solid Analysis Batch: 93171 Analyte Benzene Toluene	A-41-C MSD Sample Result <0.00201 <0.00201	Qualifier U F1 U	Spike Added 0.100 0.100	Result 0.06946 0.07584	Qualifier	- <mark>Unit</mark> mg/Kg mg/Kg		%Rec 69 76	Prep 7 Prep %Rec Limits 70 - 130 70 - 130	Type: To Batch: RPD 22 8	tal/N/ 93140 RPI Limi 3: 3:
Lab Sample ID: 880-49696-7 Matrix: Solid Analysis Batch: 93171 Analyte Benzene Toluene Ethylbenzene	A-41-C MSD Sample Result <0.00201 <0.00201 <0.00201	Qualifier U F1 U U	Spike Added 0.100 0.100 0.100	Result 0.06946 0.07584 0.08420	Qualifier	- <mark>Unit</mark> mg/Kg mg/Kg mg/Kg		%Rec 69 76 84	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch: RPD 22 8 1	tal/N/ 93140 RPI Limi 38 38 38
Lab Sample ID: 880-49696-/ Matrix: Solid Analysis Batch: 93171 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	A-41-C MSD Sample Result <0.00201 <0.00201 <0.00201 <0.00402	Qualifier U F1 U U U	Spike Added 0.100 0.100 0.100 0.200	Result 0.06946 0.07584 0.08420 0.1778	Qualifier	Unit mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 69 76 84 89	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: 22 8 1	tal/N/ 93140 RPI Limi 33 33 33 33 33
Lab Sample ID: 880-49696-4 Matrix: Solid Analysis Batch: 93171 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	A-41-C MSD Sample Result <0.00201 <0.00201 <0.00201	Qualifier U F1 U U U	Spike Added 0.100 0.100 0.100	Result 0.06946 0.07584 0.08420	Qualifier	- <mark>Unit</mark> mg/Kg mg/Kg mg/Kg		%Rec 69 76 84	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch: RPD 22 8 1	tal/N/ 93140 RPI Limi 33 33 33 33 33
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-49696-4 Matrix: Solid Analysis Batch: 93171 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	A-41-C MSD Sample Result <0.00201 <0.00201 <0.00201 <0.00402 <0.00201	Qualifier U F1 U U U U U	Spike Added 0.100 0.100 0.100 0.200	Result 0.06946 0.07584 0.08420 0.1778	Qualifier	Unit mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 69 76 84 89	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: 22 8 1	tal/N/
Lab Sample ID: 880-49696-/ Matrix: Solid Analysis Batch: 93171 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene	A-41-C MSD Sample Result <0.00201 <0.00201 <0.00201 <0.00402 <0.00201	Qualifier U F1 U U U U U WSD	Spike Added 0.100 0.100 0.100 0.200	Result 0.06946 0.07584 0.08420 0.1778	Qualifier	Unit mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 69 76 84 89	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: 22 8 1	tal/N/ 93140 RPI Limi 33 33 33 33 33
Lab Sample ID: 880-49696-/ Matrix: Solid Analysis Batch: 93171 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	A-41-C MSD Sample Result <0.00201 <0.00201 <0.00201 <0.00402 <0.00201 MSD	Qualifier U F1 U U U U U WSD	Spike Added 0.100 0.100 0.100 0.200 0.100	Result 0.06946 0.07584 0.08420 0.1778	Qualifier	Unit mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 69 76 84 89	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: 22 8 1	tal/N/ 93140 RPI Limi 33 33 33 33 33

Matrix: Solid Analysis Batch: 93206

-	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		10/11/24 15:40	10/14/24 09:54	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		10/11/24 15:40	10/14/24 09:54	1
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/11/24 15:40	10/14/24 09:54	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				10/11/24 15:40	10/14/24 09:54	1

70 - 130

92

Lab Sample ID: LCS 880-93129/2-A Matrix: Solid

o-Terphenyl

Analysis Batch: 93206 Prep Batch: 93129 Spike LCS LCS %Rec Analyte Added Result Qualifier %Rec Limits Unit D 1000 1021 102 70 - 130 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 1038 mg/Kg 104 70 - 130 C10-C28)

Eurofins Midland

1

Prep Type: Total/NA

10/14/24 09:54

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

10/11/24 15:40

Prep Batch: 93129

5

7 8

QC Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-93	129/2-A						Client	Sample	ID: Lab Co		
Matrix: Solid										ype: To	
Analysis Batch: 93206									Prep	Batch:	9312
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	98		70 - 130								
o-Terphenyl		S1+	70 - 130								
Lab Sample ID: LCSD 880-9	a3129/3-∆					Clier	nt Sam	nle ID: I	Lab Contro	l Sampl	e Dui
Matrix: Solid							it out			ype: To	
Analysis Batch: 93206										Batch:	
Analysis Datch. 33200			Spike	LCSD	LCSD				%Rec	Daten.	RPI
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics			1000	1024	Quanner	mg/Kg		102	70 - 130	0	2
(GRO)-C6-C10											
Diesel Range Organics (Over C10-C28)			1000	1045		mg/Kg		105	70 - 130	1	2
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	98		70 - 130								
o-Terphenyl	133	S1+	70 - 130								
Analysis Batch: 93206	Sample	Sample	Spike	MS	MS				Prep %Rec	Batch:	9312
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	997	876.5		mg/Kg		88	70 - 130		
Diesel Range Organics (Over C10-C28)	<50.0	U	997	733.1		mg/Kg		74	70 - 130		
	MS	MS									
Surrogate	%Recovery		Limits								
1-Chlorooctane	<u>91</u>		70 - 130								
o-Terphenyl	79		70 - 130								
Lab Sample ID: 880-49689-/	A-1-I MSD					Cli	ient Sa	ample ID): Matrix Sp		
Matrix: Solid										ype: To	
Analysis Batch: 93206	. .	Commit-	0		MOD					Batch:	
-		Sample	Spike		MSD	Unit	D	% Baa	%Rec	RPD	RPC Limi
-	Sample	-	Addad	Poeule							LII(1
Analyte	Result	Qualifier	Added	1027	Qualifier				Limits		
Analyte Gasoline Range Organics		Qualifier	Added	Result 1027	Qualifier	mg/Kg		103	70 - 130	16	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U			Quaimer						2
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0 <50.0	Qualifier U U	997	1027	Quaimer	mg/Kg		103	70 - 130	16	20
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0 <50.0	Qualifier U U	997	1027	Quaimer	mg/Kg		103	70 - 130	16	20
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	Result <50.0 <50.0 MSD	Qualifier U U	997	1027	Quaimer	mg/Kg		103	70 - 130	16	2

QC Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

– Lab Sample ID: MB 880-93208/ Matrix: Solid	1-A									Client Sa		Method Type: To	
Analysis Batch: 93209												Batch:	
-		ИВ МВ											
Analyte	Res	ult Qual	ifier	RL	MDL	Unit		D	P	repared	Analyz	ed	Dil Fac
Gasoline Range Organics	<50	0.0 U		50.0		mg/K	3		10/1	4/24 08:00	10/14/24	09:54	1
(GRO)-C6-C10													
Diesel Range Organics (Over C10-C28)	<50).0 U		50.0		mg/K	9		10/1	4/24 08:00	10/14/24	09:54	1
Oil Range Organics (Over C28-C36)	<50).0 U		50.0		mg/K	9		10/1	4/24 08:00	10/14/24	09:54	1
	I	ИВ МВ											
Surrogate	%Recove	ery Qual	ifier Lim	its					P	repared	Analyz	red	Dil Fac
1-Chlorooctane	1	31 S1+	70 -	130				-	10/1	4/24 08:00	10/14/24	09:54	1
o-Terphenyl	1	25	70 -	130					10/1	4/24 08:00	10/14/24	09:54	1
Ξ													
Lab Sample ID: LCS 880-93208	3/2-A							CI	ient	Sample I			
Matrix: Solid												Гуре: То	
Analysis Batch: 93209											-	Batch:	93208
			Spike		LCS						%Rec		
Analyte			Added		t Qua	lifier	Unit		D	%Rec	Limits		
Gasoline Range Organics			1000	1077	,		mg/Kg			108	70 - 130		
(GRO)-C6-C10			1000	121 [.]	1		malka			121	70 - 130		
Diesel Range Organics (Over C10-C28)			1000	121			mg/Kg			121	70 - 130		
	LCS L	cs											
Surrogate	%Recovery 0		Limits										
1-Chlorooctane	109	uumer	70 - 130	-									
o-Terphenyl	166 5	31+	70 - 130										
		-											
Lab Sample ID: LCSD 880-9320	08/3-A						Cli	ent \$	Sam	ple ID: La	ab Contro	I Samp	le Dup
Matrix: Solid												Type: To	
Analysis Batch: 93209												Batch:	
			Spike	LCSI	LCS	D					%Rec		RPD
Analyte			Added	Resul	t Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	1075	5		mg/Kg		_	108	70 - 130	0	20
(GRO)-C6-C10			1000	1287	,		m a //			100	70 - 130	6	00
Diesel Range Organics (Over C10-C28)			1000	128			mg/Kg			129	70 - 130	0	20
	LCSD L	CSD											
Surrogate	%Recovery 0	Qualifier	Limits										
1-Chlorooctane	109		70 - 130	_									
o-Terphenyl	167 S	\$1+	70 - 130										
 Lab Sample ID: 880-49689-A-6-	FMS									Client 9	ample ID	• Matrix	Snike
Matrix: Solid										onent d		Type: To	
Analysis Batch: 93209												Batch:	
Analysis Daten. 33203	Sample S	amnle	Spike	М	5 MS						%Rec	Daten.	33200
Analyte	Result C	-	Added		t Qua	lifior	Unit		D	%Rec	Limits		
Gasoline Range Organics	<49.8 L		Added	973.9			mg/Kg		-	98	70 - 130		
(GRO)-C6-C10	~4J.0 C	,	593	913.3	,		mg/itg			30	10 - 150		
Diesel Range Organics (Over	<49.8 L	I	993	947.6	6		mg/Kg			95	70 - 130		
							2 0						

5

Job ID: 880-49694-1 SDG: Eddy County, NM

Eurofins Midland

C10-C28)

Lab Sample ID: 880-49689-A-6-E MS

Matrix: Solid

Surrogate

o-Terphenyl

1-Chlorooctane

Analysis Batch: 93209

QC Sample Results

Limits

70 - 130

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

MS MS

%Recovery Qualifier

108

107

Page	<i>193</i>	of 3	54
------	------------	------	----

Prep Type: Total/NA

Prep Batch: 93208

Client Sample ID: Matrix Spike

5 6 7 8 9

Lab Sample ID: 880-49689-A-6-F MSD								Client Sample ID: Matrix Spike Duplicate						
Matrix: Solid				Prep 1	Type: To	tal/NA								
Analysis Batch: 93209									Prep	Batch:	93208			
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD			
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit			
Gasoline Range Organics	<49.8	U	993	965.5		mg/Kg		97	70 - 130	1	20			
(GRO)-C6-C10														
Diesel Range Organics (Over	<49.8	U	993	931.8		mg/Kg		94	70 - 130	2	20			
C10-C28)														
	MSD	MSD												
Surrogate	%Recovery	Qualifier	Limits											
1-Chlorooctane	110		70 - 130											
o-Terphenyl	108		70 - 130											

Method: 300.0 - Anions, Ion C	hromat	ogra	aphy												
Lab Sample ID: MB 880-93147/1-A Matrix: Solid Analysis Batch: 93217	k											Client S	Sample ID: Prep	Method Type: S	
· · · · · · · · · · · · · · · · · · ·		МВ	мв												
Analyte	Re	esult	Qualifier		RL		MDL	Unit		D	P	repared	Analy	zed	Dil Fac
Chloride	<	10.0	U		10.0			mg/Kg					10/14/24	13:32	1
Lab Sample ID: LCS 880-93147/2-	A									CI	ient	Sample	D: Lab C	ontrol S	ample
Matrix: Solid													Prep	Type: S	Soluble
Analysis Batch: 93217															
				Spike		LCS	LCS						%Rec		
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Chloride				250		262.3			mg/Kg			105	90 - 110		
Lab Sample ID: LCSD 880-93147/3	3-A								Cli	ent S	Sam	ple ID:	Lab Contro	ol Samp	le Dup
Matrix: Solid													Prep	Type: S	Soluble
Analysis Batch: 93217															
				Spike		LCSD	LCS	D					%Rec		RPD
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
Chloride				248		256.9			mg/Kg		_	104	90 - 110	2	20
Lab Sample ID: 880-49642-A-21-D	MS											Client	Sample ID	: Matrix	Spike
Matrix: Solid													Prep	Type: S	Soluble
Analysis Batch: 93217															
	Sample	Samp	ole	Spike		MS	MS						%Rec		
Analyte	Result	Quali	fier	Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Chloride	790			249		1015			mg/Kg			90	90 - 110		

Job ID: 880-49694-1 SDG: Eddy County, NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

ab Sample ID: 880-49642-A- latrix: Solid	-21-E MSD					CI	ient Sa	ample IC	: Matrix Sp Prep	oike Dup Type: So		
nalysis Batch: 93217	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
nalyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	E
hloride	790		249	1013		mg/Kg		90	90 - 110	0	20	
												i

QC Association Summary

Prep Type

Total/NA

Matrix

Solid

Method

5035

5035

5035

5035

5035

5035

5035

5035

5035

5035

5035

5035

5035

5035

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID

H-1 (0-1.0')

H-2 (0-1.0')

H-3 (0-1.0')

H-4 (0-1.0')

H-5 (0-1.0')

H-6 (0-1.0')

H-7 (0-1.0')

H-8 (0-1.0')

H-9 (0-1.0')

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Page 195 of 354

Prep Batch

Job ID: 880-49694-1 SDG: Eddy County, NM

880-49696-A-41-C MSD Analysis Batch: 93171

GC VOA

880-49694-1

880-49694-2

880-49694-3

880-49694-4

880-49694-5

880-49694-6

880-49694-7

880-49694-8

880-49694-9

MB 880-93140/5-A

LCS 880-93140/1-A

LCSD 880-93140/2-A

880-49696-A-41-B MS

Prep Batch: 93140

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49694-1	H-1 (0-1.0')	Total/NA	Solid	8021B	93140
880-49694-2	H-2 (0-1.0')	Total/NA	Solid	8021B	93140
880-49694-3	H-3 (0-1.0')	Total/NA	Solid	8021B	93140
880-49694-4	H-4 (0-1.0')	Total/NA	Solid	8021B	93140
880-49694-5	H-5 (0-1.0')	Total/NA	Solid	8021B	93140
880-49694-6	H-6 (0-1.0')	Total/NA	Solid	8021B	93140
880-49694-7	H-7 (0-1.0')	Total/NA	Solid	8021B	93140
880-49694-8	H-8 (0-1.0')	Total/NA	Solid	8021B	93140
880-49694-9	H-9 (0-1.0')	Total/NA	Solid	8021B	93140
MB 880-93140/5-A	Method Blank	Total/NA	Solid	8021B	93140
LCS 880-93140/1-A	Lab Control Sample	Total/NA	Solid	8021B	93140
LCSD 880-93140/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	93140
880-49696-A-41-B MS	Matrix Spike	Total/NA	Solid	8021B	93140
880-49696-A-41-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	93140

Analysis Batch: 93329

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-49694-1	H-1 (0-1.0')	Total/NA	Solid	Total BTEX	
880-49694-2	H-2 (0-1.0')	Total/NA	Solid	Total BTEX	
880-49694-3	H-3 (0-1.0')	Total/NA	Solid	Total BTEX	
880-49694-4	H-4 (0-1.0')	Total/NA	Solid	Total BTEX	
880-49694-5	H-5 (0-1.0')	Total/NA	Solid	Total BTEX	
880-49694-6	H-6 (0-1.0')	Total/NA	Solid	Total BTEX	
880-49694-7	H-7 (0-1.0')	Total/NA	Solid	Total BTEX	
880-49694-8	H-8 (0-1.0')	Total/NA	Solid	Total BTEX	
880-49694-9	H-9 (0-1.0')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 93129

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-49694-6	H-6 (0-1.0')	Total/NA	Solid	8015NM Prep	
880-49694-7	H-7 (0-1.0')	Total/NA	Solid	8015NM Prep	
880-49694-8	H-8 (0-1.0')	Total/NA	Solid	8015NM Prep	

Eurofins Midland

Released to Imaging: 7/7/2025 9:20:25 AM

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Client Sample ID

H-6 (0-1.0')

H-7 (0-1.0')

H-8 (0-1.0')

H-9 (0-1.0')

Method Blank

Matrix Spike

GC Semi VOA (Continued)

Prep Batch: 93129 (Continued)

Lab Sample ID

MB 880-93129/1-A

LCS 880-93129/2-A

LCSD 880-93129/3-A

880-49689-A-1-H MS

880-49689-A-1-I MSD

Lab Sample ID

880-49694-6

880-49694-7

880-49694-8

Analysis Batch: 93206

880-49694-9

Method

8015NM Prep

8015NM Prep

8015NM Prep

8015NM Prep

8015NM Prep

8015NM Prep

Method

8015B NM

8015B NM

8015B NM

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Prep Batch

Prep Batch

93129

Job ID: 880-49694-1 SDG: Eddy County, NM

5
8
9

93129	
93129	
93129	
93129	
93129	
93129	
93129	
93129	

880-49694-9	H-9 (0-1.0')	Total/NA	Solid	8015B NM	93129
MB 880-93129/1-A	Method Blank	Total/NA	Solid	8015B NM	93129
LCS 880-93129/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	93129
LCSD 880-93129/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	93129
880-49689-A-1-H MS	Matrix Spike	Total/NA	Solid	8015B NM	93129
880-49689-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	93129
Prep Batch: 93208					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49694-1	H-1 (0-1.0')	Total/NA	Solid	8015NM Prep	
880-49694-2	H-2 (0-1.0')	Total/NA	Solid	8015NM Prep	
880-49694-3	H-3 (0-1.0')	Total/NA	Solid	8015NM Prep	
880-49694-4	H-4 (0-1.0')	Total/NA	Solid	8015NM Prep	
880-49694-5	H-5 (0-1.0')	Total/NA	Solid	8015NM Prep	
MB 880-93208/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-93208/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-93208/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-49689-A-6-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-49689-A-6-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 93209

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49694-1	H-1 (0-1.0')	Total/NA	Solid	8015B NM	93208
880-49694-2	H-2 (0-1.0')	Total/NA	Solid	8015B NM	93208
880-49694-3	H-3 (0-1.0')	Total/NA	Solid	8015B NM	93208
880-49694-4	H-4 (0-1.0')	Total/NA	Solid	8015B NM	93208
880-49694-5	H-5 (0-1.0')	Total/NA	Solid	8015B NM	93208
MB 880-93208/1-A	Method Blank	Total/NA	Solid	8015B NM	93208
LCS 880-93208/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	93208
LCSD 880-93208/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	93208
880-49689-A-6-E MS	Matrix Spike	Total/NA	Solid	8015B NM	93208
880-49689-A-6-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	93208

Analysis Batch: 93374

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49694-1	H-1 (0-1.0')	Total/NA	Solid	8015 NM	
880-49694-2	H-2 (0-1.0')	Total/NA	Solid	8015 NM	
880-49694-3	H-3 (0-1.0')	Total/NA	Solid	8015 NM	
880-49694-4	H-4 (0-1.0')	Total/NA	Solid	8015 NM	

QC Association Summary

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

GC Semi VOA (Continued)

Analysis Batch: 93374 (Continued)

Lab Sample ID 880-49694-5	Client Sample ID H-5 (0-1.0')	Prep Type Total/NA	Matrix Solid	Method 8015 NM	Prep Batch
880-49694-6	H-6 (0-1.0')	Total/NA	Solid	8015 NM	
880-49694-7	H-7 (0-1.0')	Total/NA	Solid	8015 NM	
880-49694-8	H-8 (0-1.0')	Total/NA	Solid	8015 NM	
880-49694-9	H-9 (0-1.0')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 93147

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49694-1	H-1 (0-1.0')	Soluble	Solid	DI Leach	
880-49694-2	H-2 (0-1.0')	Soluble	Solid	DI Leach	
880-49694-3	H-3 (0-1.0')	Soluble	Solid	DI Leach	
880-49694-4	H-4 (0-1.0')	Soluble	Solid	DI Leach	
880-49694-5	H-5 (0-1.0')	Soluble	Solid	DI Leach	
880-49694-6	H-6 (0-1.0')	Soluble	Solid	DI Leach	
880-49694-7	H-7 (0-1.0')	Soluble	Solid	DI Leach	
880-49694-8	H-8 (0-1.0')	Soluble	Solid	DI Leach	
880-49694-9	H-9 (0-1.0')	Soluble	Solid	DI Leach	
MB 880-93147/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-93147/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-93147/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-49642-A-21-D MS	Matrix Spike	Soluble	Solid	DI Leach	
880-49642-A-21-E MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 93217

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-49694-1	H-1 (0-1.0')	Soluble	Solid	300.0	93147
880-49694-2	H-2 (0-1.0')	Soluble	Solid	300.0	93147
880-49694-3	H-3 (0-1.0')	Soluble	Solid	300.0	93147
880-49694-4	H-4 (0-1.0')	Soluble	Solid	300.0	93147
880-49694-5	H-5 (0-1.0')	Soluble	Solid	300.0	93147
880-49694-6	H-6 (0-1.0')	Soluble	Solid	300.0	93147
880-49694-7	H-7 (0-1.0')	Soluble	Solid	300.0	93147
880-49694-8	H-8 (0-1.0')	Soluble	Solid	300.0	93147
880-49694-9	H-9 (0-1.0')	Soluble	Solid	300.0	93147
MB 880-93147/1-A	Method Blank	Soluble	Solid	300.0	93147
LCS 880-93147/2-A	Lab Control Sample	Soluble	Solid	300.0	93147
LCSD 880-93147/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	93147
880-49642-A-21-D MS	Matrix Spike	Soluble	Solid	300.0	93147
880-49642-A-21-E MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	93147

Page 197 of 354

Job ID: 880-49694-1 SDG: Eddy County, NM

Project/Site: Yukon Gold 31-19 Fed Com 212H

Job ID: 880-49694-1 SDG: Eddy County, NM

Lab Sample ID: 880-49694-1

Matrix: Solid

5 6

9

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Client Sample ID: H-1 (0-1.0')

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	93140	10/11/24 16:04	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93171	10/14/24 12:43	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93329	10/14/24 12:43	MNR	EET MID
Total/NA	Analysis	8015 NM		1			93374	10/14/24 13:25	SM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93209	10/14/24 13:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10.00 mL	93208	10/14/24 15:10	TKC	EET MID
Soluble	Leach	DI Leach			5.00 g	50 mL	93147	10/11/24 16:44	SA	EET MID
Soluble	Analysis	300.0		1			93217	10/14/24 14:34	СН	EET MID

Lab Sample ID: 880-49694-2

Lab Sample ID: 880-49694-3

Lab Sample ID: 880-49694-4

Matrix: Solid

Matrix: Solid

Client Sample ID: H-2 (0-1.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	93140	10/11/24 16:04	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93171	10/14/24 13:03	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93329	10/14/24 13:03	MNR	EET MID
Total/NA	Analysis	8015 NM		1			93374	10/14/24 15:38	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10.00 mL	93208	10/14/24 15:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93209	10/14/24 15:38	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	93147	10/11/24 16:44	SA	EET MID
Soluble	Analysis	300.0		1			93217	10/14/24 16:35	СН	EET MID

Client Sample ID: H-3 (0-1.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	93140	10/11/24 16:04	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93171	10/14/24 13:24	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93329	10/14/24 13:24	MNR	EET MID
Total/NA	Analysis	8015 NM		1			93374	10/14/24 15:54	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10.00 mL	93208	10/14/24 15:10	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93209	10/14/24 15:54	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	93147	10/11/24 16:44	SA	EET MID
Soluble	Analysis	300.0		1			93217	10/14/24 14:43	СН	EET MID

Client Sample ID: H-4 (0-1.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	93140	10/11/24 16:04	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93171	10/14/24 13:44	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93329	10/14/24 13:44	MNR	EET MID

Eurofins Midland

Matrix: Solid

Job ID: 880-49694-1 SDG: Eddy County, NM

Lab Sample ID: 880-49694-4 Matrix: Solid

Lab Sample ID: 880-49694-5

Lab Sample ID: 880-49694-6

Lab Sample ID: 880-49694-7

Matrix: Solid

Matrix: Solid

Solid

9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			93374	10/14/24 16:10	SM	EET MID
Total/NA	Prep	8015NM Prep			9.95 g	10.00 mL	93208	10/14/24 15:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93209	10/14/24 16:10	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	93147	10/11/24 16:44	SA	EET MID
Soluble	Analysis	300.0		1			93217	10/14/24 14:51	СН	EET MID

Client Sample ID: H-5 (0-1.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	93140	10/11/24 16:04	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93171	10/14/24 14:05	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93329	10/14/24 14:05	MNR	EET MID
Total/NA	Analysis	8015 NM		1			93374	10/14/24 16:26	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10.00 mL	93208	10/14/24 15:10	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93209	10/14/24 16:26	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	93147	10/11/24 16:44	SA	EET MID
Soluble	Analysis	300.0		1			93217	10/14/24 15:12	CH	EET MID

Client Sample ID: H-6 (0-1.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	93140	10/11/24 16:04	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93171	10/14/24 14:25	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93329	10/14/24 14:25	MNR	EET MID
Total/NA	Analysis	8015 NM		1			93374	10/14/24 15:23	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10.00 mL	93129	10/11/24 15:41	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93206	10/14/24 15:23	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	93147	10/11/24 16:44	SA	EET MID
Soluble	Analysis	300.0		1			93217	10/14/24 15:19	CH	EET MID

Client Sample ID: H-7 (0-1.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	93140	10/11/24 16:04	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93171	10/14/24 14:46	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93329	10/14/24 14:46	MNR	EET MID
Total/NA	Analysis	8015 NM		1			93374	10/14/24 15:38	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10.00 mL	93129	10/11/24 15:41	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93206	10/14/24 15:38	SM	EET MID

Eurofins Midland

Matrix: Solid

Released to Imaging: 7/7/2025 9:20:25 AM

Job ID: 880-49694-1

SDG: Eddy County, NM

Lab Chronicle

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: H-7 (0-1.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Date Received: 10	/11/24 14:05							
	Batch	Batch		Dil	Initial	Final	Batch	
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.02 g	50 mL	93147	10/11/24 16:44	SA	EET MID
Soluble	Analysis	300.0		1			93217	10/14/24 15:26	СН	EET MID

Client Sample ID: H-8 (0-1.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	93140	10/11/24 16:04	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93171	10/14/24 15:06	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93329	10/14/24 15:06	MNR	EET MID
Total/NA	Analysis	8015 NM		1			93374	10/14/24 15:54	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10.00 mL	93129	10/11/24 15:41	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93206	10/14/24 15:54	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	93147	10/11/24 16:44	SA	EET MID
Soluble	Analysis	300.0		1			93217	10/14/24 15:33	СН	EET MID

Client Sample ID: H-9 (0-1.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	93140	10/11/24 16:04	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93171	10/14/24 16:29	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93329	10/14/24 16:29	MNR	EET MID
Total/NA	Analysis	8015 NM		1			93374	10/14/24 16:10	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10.00 mL	93129	10/11/24 15:41	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93206	10/14/24 16:10	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	93147	10/11/24 16:44	SA	EET MID
Soluble	Analysis	300.0		1			93217	10/14/24 15:40	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Lab Sample ID: 880-49694-7 Matrix: Solid

9

Lab Sample ID: 880-49694-8 Matrix: Solid

Lab Sample ID: 880-49694-9 Matrix: Solid

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	im	Identification Number	Expiration Date		
exas	NELAF	ס	T104704400	06-30-25		
				t may include analytes		
for which the agency of	loes not offer certification.		ied by the governing authority. This lis	t may include analytes		
• ,	•	t the laboratory is not certif <u>Matrix</u> Solid	Analyte	t may include analytes		

Eurofins Midland

Page 201 of 354

10

Method Summary

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Job ID: 880-49694-1 SDG: Eddy County, NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
EPA = US	STM International Environmental Protection Agency Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Ec	lition, November 1986 And Its Updates.	
TAL SOP =	TestAmerica Laboratories, Standard Operating Procedure		
Laboratory Re	ferences:		
EET MID =	Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Laboratory References:

Sample Summary

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Job ID: 880-49694	4-1
SDG: Eddy County, N	NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-49694-1	H-1 (0-1.0')	Solid	10/10/24 00:00	10/11/24 14:05
880-49694-2	H-2 (0-1.0')	Solid	10/10/24 00:00	10/11/24 14:05
880-49694-3	H-3 (0-1.0')	Solid	10/10/24 00:00	10/11/24 14:05
880-49694-4	H-4 (0-1.0')	Solid	10/10/24 00:00	10/11/24 14:05
880-49694-5	H-5 (0-1.0')	Solid	10/10/24 00:00	10/11/24 14:05
880-49694-6	H-6 (0-1.0')	Solid	10/10/24 00:00	10/11/24 14:05
880-49694-7	H-7 (0-1.0')	Solid	10/10/24 00:00	10/11/24 14:05
880-49694-8	H-8 (0-1.0')	Solid	10/10/24 00:00	10/11/24 14:05
880-49694-9	H-9 (0-1.0')	Solid	10/10/24 00:00	10/11/24 14:05

Chain of Custody

							C	hair	1 01	C	usto	ody						W	101	880-	4969	4 Chain of	f Custo	ρdy		
Designet Managari	Achto	n Thielke				Dill Any or			0.000	ana D	esourc				٦		-		M	ork O	rdor	Page		11		
Project Manager:	Carmona Resources					Bill to: (if Company			Carn		esourc	es				Work Order Comments Program: UST/PST PRP Brownfields RRC Superfund										
Company Name: Address:				Address:									-	State			, D,		DIO.		INKC					
City, State ZIP:	310 West Wall Ste. 500 Midland, TX 79701				City, Stat									1			-	□ Lev	vel III		T/UST 🕞	RRP				
		13-8988	101		Email													s: EDI	_		ADaP		Other:			
Phone:					Email.	thielkea	(@carmo	naresou	rces.	com	_		_		_				_							
Project Name:	Yuk	on Gold 3	31-19 Fed Co	m 212H	1	n Around		Pres.		1			ANA	LYSIS	REQ	UEST		1						ive Codes		
Project Number:			2539		Routine	Rush		Code									_				<u> </u>	None: NO	1	DI Water: H ₂ C		
Project Location		Eddy	County, NM		Due Date:	Nor	mal			6												Cool: Coo		MeOH: Me		
Sampler's Name:			IR							MR												HCL: HC		HNO ₃ : HN		
PO #:						10		ters		¢												H ₂ S0 ₄ : H ₂		NaOH: Na		
SAMPLE RECE	Ы	1 1	np Blank:	Yes No		on cert	(Yes) No		021B	ă +	300.0											H ₃ PO ₄ : HI				
Received Intact: Cooler Custody Sea	e.	Yes	NO NA	Thermom		-4 3		Par		Para	BTEX 8021B	8015M (GRO + DRO + MRO)	ride										НОГР	NaHSO ₄ : Na ₂ S ₂ O ₃ :		
Sample Custody Sea			NO N/A		ure Reading:					M (Chloride											Zn Acetat				
Total Containers:					Temperature:					8015									NaOH+Ascorbic Acid: SAPC							
Sample Ide	ntificati	on	Date	Time	Soil	Water	Grab/ Comp	# of Cont		H												San	nple C	omments		
H-1 (0-	1.0')		10/10/2024		Х		G	1	Х	X	Х															
H-2 (0-	1.0')		10/10/2024		Х		G	1	Х	X	X															
H-3 (0-	1.0')		10/10/2024		Х		G	1	X	X	X															
H-4 (0-	1.0')		10/10/2024		X		G	1	X	Х	Х															
H-5 (0-	1.0')		10/10/2024		Х		G	1	X	X	X															
H-6 (0-	1.0')		10/10/2024		Х		G	1	X	Х	Х															
H-7 (0-	1.0')		10/10/2024		Х		G	1	X	X	X															
H-8 (0-	1.0')		10/10/2024		Х		G	1	Х	Х	X											1				
H-9 (0-	1.0')		10/10/2024		Х		G	1	X	Х	X					_		-								
				Please s	send results	to cmoel	hring@c	armona	areso	urces	.com	and mca	rmona	@carm	iona	resou	rces.	com								
Relinquished by	/: (Sigr	nature)		Receive	d by: (Signatu	ure)			Date/	Time		Reling	uished	by: (Sig	gnati	ure)		Rece	ived b	y: (Si	gnatu	ıre)	C	Date/Time		

54052

13

plingy

Released to Imaging: 7/7/2025 9:20:25 AM

2

Revised Date 05012020 Rev. 2020.1

Received by OCD: 5/13/2025 11:42:19 AM

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 49694 List Number: 1

Creator: Vasquez, Julisa

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 880-49694-1

SDG Number: Eddy County, NM List Source: Eurofins Midland Received by OCD: 5/13/2025 11:42:19 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ashton Thielke Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 10/16/2024 4:49:34 PM

JOB DESCRIPTION

Yukon Gold 31-19 Fed Com 212H Eddy County, NM

JOB NUMBER

880-49696-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notos and contact information

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 10/16/2024 4:49:34 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

SDG: Eddy County, NM

Page 208 of 354

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	7
Surrogate Summary	39
	42
	57
Lab Chronicle	68
Certification Summary	81
Method Summary	82
Sample Summary	83
Chain of Custody	84
-	89

Job ID: 880-49696	3-1
SDG: Eddy County, N	١M

Qualifiers

		5
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
S1-	Surrogate recovery exceeds control limits, low biased.	5
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VO	Α	
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
S1-	Surrogate recovery exceeds control limits, low biased.	
S1+	Surrogate recovery exceeds control limits, high biased.	8
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		9
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	4.0
CFL	Contains Free Liquid	13
CFU	Colony Forming Unit	

- DER Duplicate Error Ratio (normalized absolute difference)
- Dil FacDilution FactorDLDetection Limit (DoD/DOE)DL, RA, RE, INIndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sampleDLCDecision Level Concentration (Radiochemistry)EDLEstimated Detection Limit (Dioxin)
- LOD Limit of Detection (DoD/DOE)
- LOQ Limit of Quantitation (DoD/DOE)
- MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry)
- MDC Minimum Detectable Concentration (Radiochemistry)
- MDL Method Detection Limit
- ML Minimum Level (Dioxin) MPN Most Probable Number
- MQL Method Quantitation Limit
- NC Not Calculated
- ND Not Detected at the reporting limit (or MDL or EDL if shown)
- NEG Negative / Absent POS Positive / Present
- PQL Practical Quantitation Limit PRES Presumptive
- PRES Presumptive QC Quality Control
- RER Relative Error Ratio (Radiochemistry)
- RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources Project: Yukon Gold 31-19 Fed Com 212H Job ID: 880-49696-1

Job ID: 880-49696-1

Eurofins Midland

-49696-1

Job Narrative 880-49696-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/11/2024 2:05 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -4.3°C.

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: BH-1 (0-1.0') (880-49696-1), BH-1 (2.0') (880-49696-2), BH-1 (4.0') (880-49696-3), BH-1 (6.0') (880-49696-4), BH-1 (8.0') (880-49696-5), BH-1 (10') (880-49696-6), BH-1 (12') (880-49696-7), BH-1 (14') (880-49696-8), BH-2 (0-1.0') (880-49696-9), BH-2 (2.0') (880-49696-10), BH-2 (4.0') (880-49696-11), BH-2 (6.0') (880-49696-12), BH-2 (8.0') (880-49696-13), BH-2 (10') (880-49696-14), BH-2 (15') (880-49696-15), BH-2 (20') (880-49696-16), BH-2 (22') (880-49696-17), BH-3 (0-1.0') (880-49696-18), BH-3 (2.0') (880-49696-19), BH-3 (4.0') (880-49696-20), BH-3 (6.0') (880-49696-21), BH-3 (8.0') (880-49696-22), BH-3 (10') (880-49696-23), BH-3 (15') (880-49696-24), BH-3 (20') (880-49696-25), BH-3 (22') (880-49696-26), BH-4 (0-1.0') (880-49696-27), BH-4 (2.0') (880-49696-28), BH-4 (3.0') (880-49696-29), BH-4 (4.0') (880-49696-30), BH-4 (5.0') (880-49696-31), BH-4 (6.0') (880-49696-32), BH-5 (0-1.0') (880-49696-33), BH-5 (5.0') (880-49696-34), BH-5 (10') (880-49696-35), BH-5 (15') (880-49696-36), BH-5 (16') (880-49696-37), BH-1 (16') (880-49696-38), BH-2 (24') (880-49696-39), BH-3 (24') (880-49696-40), BH-4 (8.0') (880-49696-41) and BH-5 (18') (880-49696-42).

GC VOA

Method 8021B: The matrix spike duplicate (MSD) recoveries for preparation batch 880-93140 and analytical batch 880-93171 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-93174 recovered above the upper control limit for Benzene, Toluene, Ethylbenzene, m-Xylene & p-Xylene and o-Xylene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: (CCV 880-93174/2) and (CCV 880-93174/33).

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-93138 and analytical batch 880-93174 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (LCS 880-93129/2-A) and (LCSD 880-93129/3-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (LCS 880-93072/2-A), (LCS 880-93134/2-A), (LCSD 880-93072/3-A) and (LCSD 880-93134/3-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: An incorrect volume of surrogate spiking solution was inadvertently added the following samples: BH-4 (2.0') (880-49696-28). Percent recoveries are based on the amount spiked.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (LCSD 880-93136/3-A). Evidence of matrix interferences is not obvious.

Case Narrative

Client: Carmona Resources Project: Yukon Gold 31-19 Fed Com 212H

Job ID: 880-49696-1

Eurofins Midland

Job ID: 880-49696-1 (Continued)

Method 8015MOD NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-93136 and analytical batch 880-93283 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D - Soluble: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-93148 and analytical batch 880-93221 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 300 ORGFM 28D - Soluble: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-93149 and analytical batch 880-93243 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-1 (0-1.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:00	10/14/24 12:54	1
Toluene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:00	10/14/24 12:54	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:00	10/14/24 12:54	1
m-Xylene & p-Xylene	0.00927		0.00402		mg/Kg		10/11/24 16:00	10/14/24 12:54	1
o-Xylene	0.00372		0.00201		mg/Kg		10/11/24 16:00	10/14/24 12:54	1
Xylenes, Total	0.0130		0.00402		mg/Kg		10/11/24 16:00	10/14/24 12:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				10/11/24 16:00	10/14/24 12:54	1
1,4-Difluorobenzene (Surr)	87		70 - 130				10/11/24 16:00	10/14/24 12:54	1
Method: TAL SOP Total BTEX - Tot									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0130		0.00402		mg/Kg			10/14/24 12:54	1
Method: SW846 8015 NM - Diesel F									
Analyte Fotal TPH	Result 913	Qualifier	RL 50.0	MDL	Unit mg/Kg	D	Prepared	Analyzed	Dil Fac
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	RL	MDL		<u>D</u>			
Gasoline Range Organics GRO)-C6-C10	<50.0	0	50.0		mg/Kg		10/11/24 15:41	10/14/24 16:26	1
Diesel Range Organics (Over C10-C28)	913		50.0		mg/Kg		10/11/24 15:41	10/14/24 16:26	1
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/11/24 15:41	10/14/24 16:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
I-Chlorooctane	98		70 - 130				10/11/24 15:41	10/14/24 16:26	1
p-Terphenyl	117		70 - 130				10/11/24 15:41	10/14/24 16:26	1
Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	29400		498		mg/Kg			10/14/24 15:46	50
lient Sample ID: BH-1 (2.0')							Lab Sam	ple ID: 880-4	9696-2
ate Collected: 10/10/24 00:00 ate Received: 10/11/24 14:05								Matri	x: Solid
Method: SW846 8021B - Volatile Or	ania Comp	ounde (CC)							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:00	10/14/24 13:20	1
Toluene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:00	10/14/24 13:20	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:00	10/14/24 13:20	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		10/11/24 16:00	10/14/24 13:20	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:00	10/14/24 13:20	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		10/11/24 16:00	10/14/24 13:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		70 - 130				10/11/24 16:00	10/14/24 13:20	1
1,4-Difluorobenzene (Surr)	94		70 - 130				10/11/24 16:00	10/14/24 13:20	1

Eurofins Midland

Page 212 of 354

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-1

Matrix: Solid

5

1(

Released to Imaging: 7/7/2025 9:20:25 AM

Project/Site: Yukon Gold 31-19 Fed Com 212H

Matrix: Solid

Matrix: Solid

5

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-2

Client Sample ID: BH-1 (2.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			10/14/24 13:20	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			10/14/24 16:42	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		10/11/24 15:41	10/14/24 16:42	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		10/11/24 15:41	10/14/24 16:42	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		10/11/24 15:41	10/14/24 16:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130				10/11/24 15:41	10/14/24 16:42	1
o-Terphenyl	77		70 - 130				10/11/24 15:41	10/14/24 16:42	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7800		99.2		mg/Kg			10/14/24 16:07	10

Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 13:47	1
Toluene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 13:47	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 13:47	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/11/24 16:00	10/14/24 13:47	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 13:47	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		10/11/24 16:00	10/14/24 13:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				10/11/24 16:00	10/14/24 13:47	1
1,4-Difluorobenzene (Surr)	84		70 - 130				10/11/24 16:00	10/14/24 13:47	1

Method: TAL SOP Total BTEX -	Total BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/14/24 13:47	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (C	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			10/15/24 06:12	1
 Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(60)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		10/11/24 12:35	10/15/24 06:12	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		10/11/24 12:35	10/15/24 06:12	1
C10-C28)									

Eurofins Midland

Results

Client Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-1 (4.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		10/11/24 12:35	10/15/24 06:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130				10/11/24 12:35	10/15/24 06:12	1
o-Terphenyl	93		70 - 130				10/11/24 12:35	10/15/24 06:12	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6090		101		mg/Kg			10/14/24 16:14	10
lient Sample ID: BH-1 (6.0')							Lab Sam	ple ID: 880-4	9696-4
ate Collected: 10/10/24 00:00								Matri	x: Solid

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 14:13	1
Toluene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 14:13	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 14:13	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/11/24 16:00	10/14/24 14:13	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 14:13	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		10/11/24 16:00	10/14/24 14:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114		70 - 130				10/11/24 16:00	10/14/24 14:13	1
1,4-Difluorobenzene (Surr)	99		70 - 130				10/11/24 16:00	10/14/24 14:13	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	I	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg		_		10/14/24 14:13	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Total TPH	<49.9	U	49.9		mg/Kg			10/15/24 06:26	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		10/11/24 12:35	10/15/24 06:26	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		10/11/24 12:35	10/15/24 06:26	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		10/11/24 12:35	10/15/24 06:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130				10/11/24 12:35	10/15/24 06:26	1
o-Terphenyl	93		70 - 130				10/11/24 12:35	10/15/24 06:26	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8230		198		mg/Kg			10/14/24 16:42	20

Job ID: 880-49696-1

SDG: Eddy County, NM

Lab Sample ID: 880-49696-3 Matrix: Solid

Client Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-1 (8.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

39 39 39 39 39 39 <i>Dil Fa</i> 39 29 Dil Fa
39 39 39 39 <i>Dil Fa</i> 39 39 Dil Fa
39 39 39 <i>Dil Fa</i> 39 39 Dil Fa
39 39 39 39 39 39 Dil Fa
39 <i>Dil Fa</i> 39 39 Dil Fa
Dil Fa 39 39 Dil Fa
39 39 Dil Fa
39 Dil Fa
Dil Fa
39
Dil Fa
42
Dil Fa
42
42
42
Dil Fa
42
42
Dil Fa
49 1
0-49696-6
latrix: Solio
Dil Fa
06
M

m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg	10/11/24 16:00	10/14/24 15:06	1
o-Xylene	<0.00198	U	0.00198	mg/Kg	10/11/24 16:00	10/14/24 15:06	1
Xylenes, Total	<0.00396	U	0.00396	mg/Kg	10/11/24 16:00	10/14/24 15:06	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	% Recovery 	Qualifier	Limits		Prepared 10/11/24 16:00	Analyzed	Dil Fac

Eurofins Midland

Page 215 of 354

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-5

Matrix: Solid

5

Matrix: Solid

5

Job ID: 880-49696-1

SDG: Eddy County, NM

Lab Sample ID: 880-49696-6

Client Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-1 (10') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			10/14/24 15:06	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			10/15/24 06:56	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		10/11/24 12:35	10/15/24 06:56	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		10/11/24 12:35	10/15/24 06:56	
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/11/24 12:35	10/15/24 06:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	96		70 - 130				10/11/24 12:35	10/15/24 06:56	1
o-Terphenyl	92		70 - 130				10/11/24 12:35	10/15/24 06:56	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	le						
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4910		99.4		mg/Kg			10/14/24 16:56	10

Client Sample ID: BH-1 (12')

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Lap Sample ID: 880-49696-7 Matrix: Solid

1

1

1

1

1

1

1

1

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00202 U 10/11/24 16:00 10/14/24 15:32 0.00202 mg/Kg Toluene <0.00202 U 0.00202 10/11/24 16:00 10/14/24 15:32 mg/Kg Ethylbenzene <0.00202 U 0.00202 10/14/24 15:32 mg/Kg 10/11/24 16:00 m-Xylene & p-Xylene <0.00403 U 0.00403 mg/Kg 10/11/24 16:00 10/14/24 15:32 o-Xylene <0.00202 U 0.00202 mg/Kg 10/11/24 16:00 10/14/24 15:32 Xylenes, Total <0.00403 U 0.00403 10/11/24 16:00 10/14/24 15:32 mg/Kg %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 70 - 130 10/11/24 16:00 10/14/24 15:32 4-Bromofluorobenzene (Surr) 120 1,4-Difluorobenzene (Surr) 89 70 - 130 10/11/24 16:00 10/14/24 15:32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			10/14/24 15:32	1
Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (C	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			10/15/24 07:11	1
Method: SW846 8015B NM - Di	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		10/11/24 12:35	10/15/24 07:11	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		10/11/24 12:35	10/15/24 07:11	1
Client Sample ID: BH-1 (12') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:0

Method: SW846 8015B NM - D)iesel Range Orga	nics (DRO)	(GC) (Continu	ed)					
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		10/11/24 12:35	10/15/24 07:11	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	89		70 - 130				10/11/24 12:35	10/15/24 07:11	
o-Terphenyl	85		70 - 130				10/11/24 12:35	10/15/24 07:11	
Method: EPA 300.0 - Anions,	Ion Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	598		10.0		mg/Kg			10/14/24 17:02	
lient Sample ID: BH-1 (1	4')						Lab Sam	ple ID: 880-4	9696-8
ate Collected: 10/10/24 00:00								Matri	ix: Solie
ate Received: 10/11/24 14:05									
	• •	ounds (GC) Qualifier) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
	• •			MDL	Unit	D	Prepared	Analvzed	Dil Fa
Analyte	• •	Qualifier		MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 10/14/24 15:59	
Analyte Benzene	Result	Qualifier U	RL	MDL		<u>D</u>			
Analyte Benzene Toluene	Result <0.00202	Qualifier U U	RL 0.00202	MDL	mg/Kg	<u>D</u>	10/11/24 16:00	10/14/24 15:59	
Analyte Benzene Toluene Ethylbenzene	Result <0.00202	Qualifier U U U	RL 0.00202 0.00202	MDL	mg/Kg mg/Kg	<u>D</u>	10/11/24 16:00 10/11/24 16:00	10/14/24 15:59 10/14/24 15:59	
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Result <0.00202	Qualifier U U U	RL 0.00202 0.00202 0.00202 0.00202	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	10/11/24 16:00 10/11/24 16:00 10/11/24 16:00	10/14/24 15:59 10/14/24 15:59 10/14/24 15:59	
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Result <0.00202	Qualifier U U U U U U	RL 0.00202 0.00202 0.00202 0.00404	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00	10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59	
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total	Result <0.00202	Qualifier U U U U U U	RL 0.00202 0.00202 0.00202 0.00404 0.00202	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00	10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59	- - - - -
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate	Result <0.00202	Qualifier U U U U U U U U	RL 0.00202 0.00202 0.00202 0.00202 0.00404 0.00202 0.00202 0.00404	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00	10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59	Dil Fa
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofiuorobenzene (Surr)	Result <0.00202	Qualifier U U U U U U U U	RL 0.00202 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 Limits	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 Prepared	10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 Analyzed	Dil Fa
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	Result <0.00202	Qualifier U U U U U U U Qualifier	RL 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 0.00404 Limits 70 - 130	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00	10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59	Dil Fa
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX	Result <0.00202	Qualifier U U U U U U U Qualifier	RL 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 0.00404 Limits 70 - 130	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00	10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59	Dil Fa
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	Result <0.00202	Qualifier Qualifier Qualifier Qualifier	RL 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 0.00404 Limits 70 - 130 70 - 130		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 Prepared 10/11/24 16:00 10/11/24 16:00	10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59	Dil Fa
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte	Result <0.00202	Qualifier U U U U U U U Qualifier U U	RL 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 Limits 70 - 130 70 - 130 RL 0.00404		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit		10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 Prepared 10/11/24 16:00 10/11/24 16:00	10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 Analyzed	Dil Fa
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte Total BTEX	Result <0.00202	Qualifier U U U U U U U Qualifier U U	RL 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 Limits 70 - 130 70 - 130 RL 0.00404	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit		10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 10/11/24 16:00 Prepared 10/11/24 16:00 10/11/24 16:00	10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 10/14/24 15:59 Analyzed	Dil Fac

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		10/11/24 12:35	10/15/24 09:17	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		10/11/24 12:35	10/15/24 09:17	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		10/11/24 12:35	10/15/24 09:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	85		70 - 130				10/11/24 12:35	10/15/24 09:17	1
o-Terphenyl	79		70 - 130				10/11/24 12:35	10/15/24 09:17	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	282		10.1		mg/Kg			10/14/24 17:09	1

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-7 Matrix: Solid

12 13

Eurofins Midland

Released to Imaging: 7/7/2025 9:20:25 AM

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-2 (0-1.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 16:25	
Toluene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 16:25	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 16:25	
n-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/11/24 16:00	10/14/24 16:25	
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 16:25	
(ylenes, Total	<0.00398	U	0.00398		mg/Kg		10/11/24 16:00	10/14/24 16:25	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Bromofluorobenzene (Surr)	108		70 - 130				10/11/24 16:00	10/14/24 16:25	
,4-Difluorobenzene (Surr)	88		70 - 130				10/11/24 16:00	10/14/24 16:25	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/14/24 16:25	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	163		49.8		mg/Kg			10/15/24 09:32	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<49.8	U	49.8		mg/Kg		10/11/24 12:35	10/15/24 09:32	
Diesel Range Organics (Over	163		49.8		mg/Kg		10/11/24 12:35	10/15/24 09:32	
C 10-C28) Dil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		10/11/24 12:35	10/15/24 09:32	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Chlorooctane	88		70 - 130				10/11/24 12:35	10/15/24 09:32	
p-Terphenyl	94		70 - 130				10/11/24 12:35	10/15/24 09:32	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	31900		498		mg/Kg			10/14/24 17:16	50
lient Sample ID: BH-2 (2.0')							Lab Samp	le ID: 880-49	696-10
ate Collected: 10/10/24 00:00								Matri	ix: Solie
ate Received: 10/11/24 14:05									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
5									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:00	10/14/24 16:52	1
Toluene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:00	10/14/24 16:52	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:00	10/14/24 16:52	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		10/11/24 16:00	10/14/24 16:52	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:00	10/14/24 16:52	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		10/11/24 16:00	10/14/24 16:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130				10/11/24 16:00	10/14/24 16:52	1
1,4-Difluorobenzene (Surr)	94		70 - 130				10/11/24 16:00	10/14/24 16:52	1

Eurofins Midland

Page 218 of 354

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-9

Matrix: Solid

Project/Site: Yukon Gold 31-19 Fed Com 212H

Matrix: Solid

5

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-10

Client Sample ID: BH-2 (2.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			10/14/24 16:52	1
Method: SW846 8015 NM - Diese	I Range Organi	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			10/14/24 18:36	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		10/11/24 15:55	10/14/24 18:36	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		10/11/24 15:55	10/14/24 18:36	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/11/24 15:55	10/14/24 18:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130				10/11/24 15:55	10/14/24 18:36	1
o-Terphenyl	92		70 - 130				10/11/24 15:55	10/14/24 18:36	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hv - Solubl	е						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5130	F1	100		mg/Kg			10/14/24 12:39	10

Client Sample ID: BH-2 (4.0')

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Lab Sample ID: 880-49696-11 Matrix: Solid

lethod: SW846	8021B - Volat	tile Organic C	ompounds (GC)

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 18:38	1
Toluene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 18:38	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 18:38	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/11/24 16:00	10/14/24 18:38	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 18:38	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		10/11/24 16:00	10/14/24 18:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				10/11/24 16:00	10/14/24 18:38	1
1,4-Difluorobenzene (Surr)	84		70 - 130				10/11/24 16:00	10/14/24 18:38	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/14/24 18:38	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			10/14/24 19:21	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		10/11/24 15:55	10/14/24 19:21	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		10/11/24 15:55	10/14/24 19:21	

Eurofins Midland

Released to Imaging: 7/7/2025 9:20:25 AM

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-2 (4.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		10/11/24 15:55	10/14/24 19:21	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130				10/11/24 15:55	10/14/24 19:21	1
o-Terphenyl	88		70 - 130				10/11/24 15:55	10/14/24 19:21	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4910		100		mg/Kg			10/14/24 12:55	10

Client Sample ID: BH-2 (6.0')

Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		10/11/24 16:00	10/14/24 19:05	1
Toluene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:00	10/14/24 19:05	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:00	10/14/24 19:05	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		10/11/24 16:00	10/14/24 19:05	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:00	10/14/24 19:05	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		10/11/24 16:00	10/14/24 19:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130				10/11/24 16:00	10/14/24 19:05	1
1,4-Difluorobenzene (Surr)	97		70 - 130				10/11/24 16:00	10/14/24 19:05	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			10/14/24 19:05	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	<50.0	U	50.0		mg/Kg			10/14/24 19:35	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		10/11/24 15:55	10/14/24 19:35	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		10/11/24 15:55	10/14/24 19:35	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/11/24 15:55	10/14/24 19:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	85		70 - 130				10/11/24 15:55	10/14/24 19:35	1
o-Terphenyl	81		70 - 130				10/11/24 15:55	10/14/24 19:35	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5500		101		mg/Kg			10/14/24 13:00	10

Eurofins Midland

Matrix: Solid

Matrix: Solid

5

12 13

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-11

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-2 (8.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:00	10/14/24 19:31	1
Toluene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:00	10/14/24 19:31	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:00	10/14/24 19:31	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		10/11/24 16:00	10/14/24 19:31	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:00	10/14/24 19:31	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		10/11/24 16:00	10/14/24 19:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				10/11/24 16:00	10/14/24 19:31	1
1,4-Difluorobenzene (Surr)	88		70 - 130				10/11/24 16:00	10/14/24 19:31	1
Method: TAL SOP Total BTEX - To	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			10/14/24 19:31	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (G	C)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			10/14/24 19:50	1
Method: SW846 8015B NM - Diese Analyte		nics (DRO) (Qualifier	<mark>GC)</mark> RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	- Kesuit <49.9		49.9	MDL		<u> </u>	10/11/24 15:55	10/14/24 19:50	1
GRO)-C6-C10	~49.9	0	49.9		mg/Kg		10/11/24 15:55	10/14/24 19:50	I
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		10/11/24 15:55	10/14/24 19:50	1
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		10/11/24 15:55	10/14/24 19:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	90		70 - 130				10/11/24 15:55	10/14/24 19:50	1
o-Terphenyl	86		70 - 130				10/11/24 15:55	10/14/24 19:50	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2900		50.2		mg/Kg			10/14/24 13:06	5
lient Sample ID: BH-2 (10')							Lab Samp	le ID: 880-49	696-14
ate Collected: 10/10/24 00:00								Matri	x: Solid
ate Received: 10/11/24 14:05									
ate Received: 10/11/24 14:05 Method: SW846 8021B - Volatile (Organic Comp	ounds (GC)							

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00198	U	0.00198		mg/Kg		10/11/24 16:00	10/14/24 19:58	1
<0.00198	U	0.00198		mg/Kg		10/11/24 16:00	10/14/24 19:58	1
<0.00198	U	0.00198		mg/Kg		10/11/24 16:00	10/14/24 19:58	1
<0.00396	U	0.00396		mg/Kg		10/11/24 16:00	10/14/24 19:58	1
<0.00198	U	0.00198		mg/Kg		10/11/24 16:00	10/14/24 19:58	1
<0.00396	U	0.00396		mg/Kg		10/11/24 16:00	10/14/24 19:58	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
119		70 - 130				10/11/24 16:00	10/14/24 19:58	1
93		70 - 130				10/11/24 16:00	10/14/24 19:58	1
_	<0.00198 <0.00198 <0.00198 <0.00396 <0.00198 <0.00396 %Recovery 119	119	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198 U 0.00198 mg/Kg 10/11/24 16:00 <0.00198	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Eurofins Midland

Page 221 of 354

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-13

Matrix: Solid

5

Client Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-14

Client Sample ID: BH-2 (10') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			10/14/24 19:58	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			10/14/24 20:05	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		10/11/24 15:55	10/14/24 20:05	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		10/11/24 15:55	10/14/24 20:05	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		10/11/24 15:55	10/14/24 20:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130				10/11/24 15:55	10/14/24 20:05	1
o-Terphenyl	86		70 - 130				10/11/24 15:55	10/14/24 20:05	1
Method: EPA 300.0 - Anions, Ion	Chromatogran	hy - Solubl	e						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	198		10.1		mg/Kg		·	10/14/24 13:11	1

Client Sample ID: BH-2 (15')

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Lab Sample ID: 880-49696-15 Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 20:24	1
Toluene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 20:24	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 20:24	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/11/24 16:00	10/14/24 20:24	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:00	10/14/24 20:24	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		10/11/24 16:00	10/14/24 20:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				10/11/24 16:00	10/14/24 20:24	1
1,4-Difluorobenzene (Surr)	90		70 - 130				10/11/24 16:00	10/14/24 20:24	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/14/24 20:24	1
Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			10/14/24 20:21	1
Method: SW846 8015B NM - Di	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	<49.8	U	49.8		mg/Kg		10/11/24 15:55	10/14/24 20:21	1
Gasoline Range Organics									
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		10/11/24 15:55	10/14/24 20:21	1

Eurofins Midland

Job ID: 880-49696-1

SDG: Eddy County, NM

Lab Sample ID: 880-49696-15

Client Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-2 (15') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		10/11/24 15:55	10/14/24 20:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
I-Chlorooctane	89		70 - 130				10/11/24 15:55	10/14/24 20:21	1
p-Terphenyl	86		70 - 130				10/11/24 15:55	10/14/24 20:21	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4730		99.6		mg/Kg			10/14/24 13:27	10

Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:00	10/14/24 20:51	1
Toluene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:00	10/14/24 20:51	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:00	10/14/24 20:51	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		10/11/24 16:00	10/14/24 20:51	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:00	10/14/24 20:51	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		10/11/24 16:00	10/14/24 20:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130				10/11/24 16:00	10/14/24 20:51	1
1,4-Difluorobenzene (Surr)	101		70 - 130				10/11/24 16:00	10/14/24 20:51	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			10/14/24 20:51	1

Method: SW846 8015 NM - Diesel F	Range Organ	ics (DRO) (O	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			10/14/24 20:35	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		10/11/24 15:55	10/14/24 20:35	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		10/11/24 15:55	10/14/24 20:35	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		10/11/24 15:55	10/14/24 20:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130				10/11/24 15:55	10/14/24 20:35	1
o-Terphenyl	90		70 - 130				10/11/24 15:55	10/14/24 20:35	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	535		9.92		mg/Kg			10/14/24 13:33	1

Eurofins Midland

Matrix: Solid

10

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-2 (22') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:00	10/14/24 21:17	1
Toluene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:00	10/14/24 21:17	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:00	10/14/24 21:17	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		10/11/24 16:00	10/14/24 21:17	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:00	10/14/24 21:17	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		10/11/24 16:00	10/14/24 21:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130				10/11/24 16:00	10/14/24 21:17	1
1,4-Difluorobenzene (Surr)	100		70 - 130				10/11/24 16:00	10/14/24 21:17	1
Method: TAL SOP Total BTEX - T									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			10/14/24 21:17	1
Method: SW846 8015 NM - Diese	• •					_	_ .		
Analyte Fotal TPH	Result <50.0	Qualifier		MDL	mg/Kg	D	Prepared	Analyzed 10/14/24 20:50	Dil Fac
Method: SW846 8015B NM - Dies Analyte		Qualifier	(GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier		MDL		D	·		
Gasoline Range Organics GRO)-C6-C10	<50.0		50.0		mg/Kg		10/11/24 15:55	10/14/24 20:50	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		10/11/24 15:55	10/14/24 20:50	1
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/11/24 15:55	10/14/24 20:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	90		70 - 130				10/11/24 15:55	10/14/24 20:50	1
o-Terphenyl	87		70 - 130				10/11/24 15:55	10/14/24 20:50	1
Method: EPA 300.0 - Anions, Ion									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	131		10.1		mg/Kg			10/14/24 13:38	1
lient Sample ID: BH-3 (0-1.)	0')						Lab Samp	le ID: 880-49	696-18
ate Collected: 10/10/24 00:00 ate Received: 10/11/24 14:05								Matri	x: Solid
	Organia Comp	oundo (CC)							
Method: SW846 8021B - Volatile	organic comp	ounus (GC)						

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:00	10/14/24 21:44	1
Toluene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:00	10/14/24 21:44	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:00	10/14/24 21:44	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		10/11/24 16:00	10/14/24 21:44	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:00	10/14/24 21:44	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		10/11/24 16:00	10/14/24 21:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130				10/11/24 16:00	10/14/24 21:44	1
1,4-Difluorobenzene (Surr)	95		70 - 130				10/11/24 16:00	10/14/24 21:44	1

Eurofins Midland

Page 224 of 354

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-17

Matrix: Solid

Released to Imaging: 7/7/2025 9:20:25 AM

Project/Site: Yukon Gold 31-19 Fed Com 212H

Matrix: Solid

5

Job ID: 880-49696-1 SDG: Eddy County, NM

Client Sample ID: BH-3 (0-1.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			10/14/24 21:44	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	138		49.8		mg/Kg			10/14/24 21:05	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		10/11/24 15:55	10/14/24 21:05	1
(GRO)-C6-C10									
Diesel Range Organics (Over	138		49.8		mg/Kg		10/11/24 15:55	10/14/24 21:05	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		10/11/24 15:55	10/14/24 21:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130				10/11/24 15:55	10/14/24 21:05	1
o-Terphenyl	97		70 - 130				10/11/24 15:55	10/14/24 21:05	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	17300		500		mg/Kg			10/14/24 13:44	50

Client Sample ID: BH-3 (2.0')

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Lab Sample ID: 880-49696-19 Matrix: Solid

-Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		10/15/24 08:26	10/15/24 19:10	1
Toluene	<0.00199	U	0.00199		mg/Kg		10/15/24 08:26	10/15/24 19:10	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/15/24 08:26	10/15/24 19:10	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/15/24 08:26	10/15/24 19:10	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/15/24 08:26	10/15/24 19:10	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		10/15/24 08:26	10/15/24 19:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				10/15/24 08:26	10/15/24 19:10	1
1,4-Difluorobenzene (Surr)	99		70 - 130				10/15/24 08:26	10/15/24 19:10	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/15/24 19:10	,
Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			10/14/24 21:20	1
Method: SW846 8015B NM - Di	esel Range Orga	nics (DRO)	(GC)						
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte									
•	<49.8	U	49.8		mg/Kg		10/11/24 15:55	10/14/24 21:20	1
Analyte Gasoline Range Organics (GRO)-C6-C10		U	49.8		mg/Kg		10/11/24 15:55	10/14/24 21:20	1

Eurofins Midland

Page

Lab Sample ID: 880-49696-18

C10-C28)

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-3 (2.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		10/11/24 15:55	10/14/24 21:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	87		70 - 130				10/11/24 15:55	10/14/24 21:20	1
o-Terphenyl	83		70 - 130				10/11/24 15:55	10/14/24 21:20	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4740		101		mg/Kg			10/14/24 13:49	10
lient Sample ID: BH-3 (4.0')							Lab Samp	le ID: 880-49	696-20
ate Collected: 10/10/24 00:00								Matri	x: Solid

Date Received: 10/11/24 14:05

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		10/11/24 16:00	10/14/24 22:36	1
Toluene	<0.00198	U	0.00198	mg/Kg		10/11/24 16:00	10/14/24 22:36	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		10/11/24 16:00	10/14/24 22:36	1
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		10/11/24 16:00	10/14/24 22:36	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		10/11/24 16:00	10/14/24 22:36	1
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		10/11/24 16:00	10/14/24 22:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	122		70 - 130			10/11/24 16:00	10/14/24 22:36	1
1,4-Difluorobenzene (Surr)	103		70 - 130			10/11/24 16:00	10/14/24 22:36	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg	 		10/14/24 22:36	1

Method: SW846 8015 NM - Diesel R	lange Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			10/14/24 21:51	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		10/11/24 15:55	10/14/24 21:51	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		10/11/24 15:55	10/14/24 21:51	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		10/11/24 15:55	10/14/24 21:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	89		70 - 130				10/11/24 15:55	10/14/24 21:51	1
o-Terphenyl	86		70 - 130				10/11/24 15:55	10/14/24 21:51	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5790	F1	101		mg/Kg			10/14/24 13:54	10

Job ID: 880-49696-1 SDG: Eddy County, NM Lab Sample ID: 880-49696-19 Matrix: Solid

5

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-3 (6.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:02	10/14/24 12:10	1
Toluene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:02	10/14/24 12:10	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:02	10/14/24 12:10	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		10/11/24 16:02	10/14/24 12:10	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:02	10/14/24 12:10	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		10/11/24 16:02	10/14/24 12:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				10/11/24 16:02	10/14/24 12:10	1
1,4-Difluorobenzene (Surr)	99		70 - 130				10/11/24 16:02	10/14/24 12:10	1
Method: TAL SOP Total BTEX - To	tal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			10/14/24 12:10	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
īotal TPH	<49.7	U	49.7		mg/Kg			10/14/24 22:05	1
Method: SW846 8015B NM - Diese			1						
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Gasoline Range Organics GRO)-C6-C10	<49.7	U	49.7		mg/Kg		10/11/24 15:55	10/14/24 22:05	1
Diesel Range Organics (Over C10-C28)	<49.7	U	49.7		mg/Kg		10/11/24 15:55	10/14/24 22:05	1
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		10/11/24 15:55	10/14/24 22:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	84		70 - 130				10/11/24 15:55	10/14/24 22:05	1
p-Terphenyl	81		70 - 130				10/11/24 15:55	10/14/24 22:05	1
Method: EPA 300.0 - Anions, Ion C	hromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5810		99.6		mg/Kg			10/14/24 14:11	10
lient Sample ID: BH-3 (8.0')							Lab Samp	le ID: 880-49	696-22
ate Collected: 10/10/24 00:00 ate Received: 10/11/24 14:05								Matri	x: Solid
Method: SW846 8021B - Volatile O	mania Com	aunde (CC)							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:02	10/14/24 12:30	1
Toluene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:02	10/14/24 12:30	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:02	10/14/24 12:30	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		10/11/24 16:02	10/14/24 12:30	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:02	10/14/24 12:30	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		10/11/24 16:02	10/14/24 12:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				10/11/24 16:02	10/14/24 12:30	1
1,4-Difluorobenzene (Surr)	98		70 - 130				10/11/24 16:02	10/14/24 12:30	1

Eurofins Midland

Page 227 of 354

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-21

Matrix: Solid

Project/Site: Yukon Gold 31-19 Fed Com 212H

Matrix: Solid

5

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-22

Client Sample ID: BH-3 (8.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			10/14/24 12:30	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			10/14/24 22:21	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		10/11/24 15:55	10/14/24 22:21	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		10/11/24 15:55	10/14/24 22:21	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/11/24 15:55	10/14/24 22:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	86		70 - 130				10/11/24 15:55	10/14/24 22:21	1
o-Terphenyl	82		70 - 130				10/11/24 15:55	10/14/24 22:21	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4180		99.2		mg/Kg			10/14/24 14:16	10

Client Sample ID: BH-3 (10')

Date Collected: 10/10/24 00:00

Lab Sample ID: 880-49696-23 Matrix: Solid

Date Received: 10/11/24 14:05 d. CM04C 0024D Malatile Or

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 12:51	1
Toluene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 12:51	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 12:51	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/11/24 16:02	10/14/24 12:51	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 12:51	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		10/11/24 16:02	10/14/24 12:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				10/11/24 16:02	10/14/24 12:51	1
1,4-Difluorobenzene (Surr)	97		70 - 130				10/11/24 16:02	10/14/24 12:51	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/14/24 12:51	1
Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (C	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			10/14/24 22:35	1
-									
Method: SW846 8015B NM - Di	esel Range Orga								
		Qualifier	(GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	• •	MDL	Unit mg/Kg	<u>D</u>	Prepared 10/11/24 15:55	Analyzed	Dil Fac
Analyte Gasoline Range Organics	Result	Qualifier		MDL		<u>D</u>			Dil Fac
Method: SW846 8015B NM - Di Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U		MDL		<u> </u>			Dil Fac 1

Eurofins Midland

Matrix: Solid

5

Job ID: 880-49696-1

SDG: Eddy County, NM

Lab Sample ID: 880-49696-23

Client Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-3 (10') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		10/11/24 15:55	10/14/24 22:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130				10/11/24 15:55	10/14/24 22:35	1
o-Terphenyl	90		70 - 130				10/11/24 15:55	10/14/24 22:35	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5370		101		mg/Kg			10/14/24 14:32	10

Client Sample ID: BH-3 (15')

Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 13:11	1
Toluene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 13:11	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 13:11	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/11/24 16:02	10/14/24 13:11	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 13:11	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		10/11/24 16:02	10/14/24 13:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				10/11/24 16:02	10/14/24 13:11	1
1,4-Difluorobenzene (Surr)	99		70 - 130				10/11/24 16:02	10/14/24 13:11	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/14/24 13:11	1

Method: SW846 8015 NM - Diesel R	Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			10/14/24 22:50	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		10/11/24 15:55	10/14/24 22:50	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		10/11/24 15:55	10/14/24 22:50	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		10/11/24 15:55	10/14/24 22:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130				10/11/24 15:55	10/14/24 22:50	1
o-Terphenyl	92		70 - 130				10/11/24 15:55	10/14/24 22:50	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1150		49.7		mg/Kg			10/14/24 14:38	5

Released to Imaging: 7/7/2025 9:20:25 AM

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-3 (20') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 13:32	1
<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 13:32	1
<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 13:32	1
<0.00398	U	0.00398		mg/Kg		10/11/24 16:02	10/14/24 13:32	1
<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 13:32	1
<0.00398	U	0.00398		mg/Kg		10/11/24 16:02	10/14/24 13:32	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
101		70 - 130				10/11/24 16:02	10/14/24 13:32	1
99		70 - 130				10/11/24 16:02	10/14/24 13:32	1
otal BTEX Cald	ulation							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00398	U	0.00398		mg/Kg			10/14/24 13:32	1
Range Organ	ics (DRO) (GC)						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<49.8	U	49.8		mg/Kg			10/14/24 23:05	1
el Range Orga	nics (DRO)	(GC)						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<49.8	U	49.8		mg/Kg		10/11/24 15:55	10/14/24 23:05	1
<49.8	U	49.8		mg/Kg		10/11/24 15:55	10/14/24 23:05	1
-10.9		40.9		malla		10/11/04 15.55	10/14/24 22:05	1
<49.0	0	49.0		mg/Kg		10/11/24 15:55	10/14/24 23.05	
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
84		70 - 130				10/11/24 15:55	10/14/24 23:05	1
80		70 - 130				10/11/24 15:55	10/14/24 23:05	1
Chromatograp	hy - Solubl	e						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
329		9.92		mg/Kg			10/14/24 14:43	1
						Lab Samp	le ID: 880-49	696-26
							IC ID. 000-40	030-20
								x: Solid
	 <0.00199 <0.00199 <0.00398 <0.00398 <0.00398 <0.00398 <i>Recovery</i> 101 99 tal BTEX Calc Result Characterization <i>Result</i> <i>Result</i> <i>Result</i> <i>Result</i> 	101 99 Detail BTEX Calculation Result Qualifier <0.00398	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		10/11/24 16:02	10/14/24 13:52	1
Toluene	<0.00198	U	0.00198		mg/Kg		10/11/24 16:02	10/14/24 13:52	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		10/11/24 16:02	10/14/24 13:52	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		10/11/24 16:02	10/14/24 13:52	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		10/11/24 16:02	10/14/24 13:52	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		10/11/24 16:02	10/14/24 13:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				10/11/24 16:02	10/14/24 13:52	1
1,4-Difluorobenzene (Surr)	99		70 - 130				10/11/24 16:02	10/14/24 13:52	1

Eurofins Midland

Page 230 of 354

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-25

Matrix: Solid

5

10/16/202

5

Job ID: 880-49696-1

SDG: Eddy County, NM

Lab Sample ID: 880-49696-26

Client Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-3 (22')

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			10/14/24 13:52	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			10/14/24 23:19	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		10/11/24 15:55	10/14/24 23:19	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		10/11/24 15:55	10/14/24 23:19	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		10/11/24 15:55	10/14/24 23:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	86		70 - 130				10/11/24 15:55	10/14/24 23:19	1
o-Terphenyl	82		70 - 130				10/11/24 15:55	10/14/24 23:19	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	134		10.0		mg/Kg			10/14/24 14:49	1

Client Sample ID: BH-4 (0-1.0')

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05 Lab Sample ID: 880-49696-27 Matrix: Solid

ate	Received:	10/11/24 14:0	5	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:02	10/14/24 14:13	1
Toluene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:02	10/14/24 14:13	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:02	10/14/24 14:13	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		10/11/24 16:02	10/14/24 14:13	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:02	10/14/24 14:13	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		10/11/24 16:02	10/14/24 14:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				10/11/24 16:02	10/14/24 14:13	1
1,4-Difluorobenzene (Surr)	98		70 - 130				10/11/24 16:02	10/14/24 14:13	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			10/14/24 14:13	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	111		49.7		mg/Kg			10/14/24 23:35	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
					mg/Kg		10/11/24 15:55	10/14/24 23:35	
Gasoline Range Organics	<49.7	U	49.7		iliy/ky		10/11/24 13.33	10/14/24 23.33	1
	<49.7	U	49.7		ilig/Kg		10/11/24 13:55	10/14/24 23:33	1

Eurofins Midland

Method: SW846 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

SDG: Eddy County, NM

Lab Sample ID: 880-49696-27

Lab Sample ID: 880-49696-28

Client Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-4 (0-1.0')

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		10/11/24 15:55	10/14/24 23:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	96		70 - 130				10/11/24 15:55	10/14/24 23:35	1
o-Terphenyl	96		70 - 130				10/11/24 15:55	10/14/24 23:35	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	13300		200		mg/Kg			10/14/24 14:54	20

Client Sample ID: BH-4 (2.0')

Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:02	10/14/24 14:33	1
Toluene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:02	10/14/24 14:33	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:02	10/14/24 14:33	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		10/11/24 16:02	10/14/24 14:33	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:02	10/14/24 14:33	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		10/11/24 16:02	10/14/24 14:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				10/11/24 16:02	10/14/24 14:33	1
1,4-Difluorobenzene (Surr)	98		70 - 130				10/11/24 16:02	10/14/24 14:33	1
- Method: TAL SOP Total BTEX	- Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00404	U	0.00404		mg/Kg			10/14/24 14:33	1

	Method: SW846 8015 NM - Diesel R	Range Organi	ics (DRO) (GC)						
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Total TPH	<50.0	U	50.0		mg/Kg			10/14/24 23:49	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		10/11/24 15:55	10/14/24 23:49	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		10/11/24 15:55	10/14/24 23:49	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/11/24 15:55	10/14/24 23:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	69	S1-	70 - 130				10/11/24 15:55	10/14/24 23:49	1
o-Terphenyl	68	S1-	70 - 130				10/11/24 15:55	10/14/24 23:49	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3830		101		mg/Kg			10/14/24 14:59	10

Eurofins Midland

Job ID: 880-49696-1

5

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-4 (3.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 14:54	1
Toluene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 14:54	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 14:54	1
n-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/11/24 16:02	10/14/24 14:54	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 14:54	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		10/11/24 16:02	10/14/24 14:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130				10/11/24 16:02	10/14/24 14:54	1
1,4-Difluorobenzene (Surr)	98		70 - 130				10/11/24 16:02	10/14/24 14:54	1
Method: TAL SOP Total BTEX - To	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/14/24 14:54	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (G	C)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			10/15/24 00:04	1
Method: SW846 8015B NM - Dies	el Range Orga	nice (DRO) ((60)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8		49.8		mg/Kg		10/11/24 15:55	10/15/24 00:04	1
GRO)-C6-C10		-							
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		10/11/24 15:55	10/15/24 00:04	1
C10-C28)									
Dil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		10/11/24 15:55	10/15/24 00:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130				10/11/24 15:55	10/15/24 00:04	1
p-Terphenyl	87		70 - 130				10/11/24 15:55	10/15/24 00:04	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Soluble)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3390		49.8		mg/Kg			10/14/24 15:05	5
lient Sample ID: BH-4 (4.0')							Lab Samp	le ID: 880-49	696-30
ate Collected: 10/10/24 00:00								Matri	x: Solid
ate Received: 10/11/24 14:05									
Method: SW846 8021B - Volatile (Organic Comp	ounds (GC)							
A	- D!!	0			11	D	Durana	A	Dil Fac
Analyte	Result	Qualifier	RL	MDL	Unit	U	Prepared	Analyzed	DIIFac

Analyto	Rooun	quanner	112	0
Benzene	<0.00200	U	0.00200	 mg/Kg
Toluene	<0.00200	U	0.00200	mg/Kg
Ethylbenzene	<0.00200	U	0.00200	mg/Kg

m-Xylene & p-Xylene	<0.00399 U	J	0.00399	mg/Kg	10/11/24 16:02	10/14/24 15:14	1
o-Xylene	<0.00200 U	J	0.00200	mg/Kg	10/11/24 16:02	10/14/24 15:14	1
Xylenes, Total	<0.00399 U	J	0.00399	mg/Kg	10/11/24 16:02	10/14/24 15:14	1
Surrogate	%Recovery Q	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery Q 102	Qualifier	Limits 70 - 130		Prepared 10/11/24 16:02	Analyzed 10/14/24 15:14	Dil Fac

Eurofins Midland

10/11/24 16:02 10/14/24 15:14

10/14/24 15:14

10/11/24 16:02

Page 233 of 354

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-29

Matrix: Solid

5

1

1

Project/Site: Yukon Gold 31-19 Fed Com 212H

Matrix: Solid

5

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-30

Client Sample ID: BH-4 (4.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			10/14/24 15:14	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			10/14/24 18:36	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U F1	49.9		mg/Kg		10/11/24 15:58	10/14/24 18:36	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U F1	49.9		mg/Kg		10/11/24 15:58	10/14/24 18:36	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		10/11/24 15:58	10/14/24 18:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	79		70 - 130				10/11/24 15:58	10/14/24 18:36	1
o-Terphenyl	85		70 - 130				10/11/24 15:58	10/14/24 18:36	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3160	F1	49.6		mg/Kg			10/14/24 15:48	5

Client Sample ID: BH-4 (5.0')

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05 Lab Sample ID: 880-49696-31 Matrix: Solid

-Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 16:49	1
Toluene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 16:49	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 16:49	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/11/24 16:02	10/14/24 16:49	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 16:49	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		10/11/24 16:02	10/14/24 16:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				10/11/24 16:02	10/14/24 16:49	1
1,4-Difluorobenzene (Surr)	101		70 - 130				10/11/24 16:02	10/14/24 16:49	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/14/24 16:49	
Method: SW846 8015 NM - Die	sel Range Organ	ics (DRO) (G	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			10/14/24 19:21	
		nics (DRO)	(GC)						
Method: SW846 8015B NM - Di	lesel Range Orga								
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte		Qualifier	• •	MDL	Unit mg/Kg	<u>D</u>	Prepared 10/11/24 15:58	Analyzed	Dil Fac
Analyte Gasoline Range Organics	Result	Qualifier		MDL		<u> </u>	· · · · · · · · · · · · · · · · · · ·		Dil Fac
Method: SW846 8015B NM - Di Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U		MDL		<u>D</u>	· · · · · · · · · · · · · · · · · · ·		D

Eurofins Midland

5

12 13

Job ID: 880-49696-1

SDG: Eddy County, NM

Lab Sample ID: 880-49696-31

Client Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-4 (5.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		10/11/24 15:58	10/14/24 19:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	76		70 - 130				10/11/24 15:58	10/14/24 19:21	1
o-Terphenyl	82		70 - 130				10/11/24 15:58	10/14/24 19:21	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2040		49.8		mg/Kg			10/14/24 16:04	5
Client Sample ID: BH-4 (6.0')							Lab Samp	le ID: 880-49	696-32
ate Collected: 10/10/24 00:00								Matri	x: Solid

Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:02	10/14/24 17:10	1
Toluene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:02	10/14/24 17:10	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:02	10/14/24 17:10	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		10/11/24 16:02	10/14/24 17:10	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:02	10/14/24 17:10	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		10/11/24 16:02	10/14/24 17:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				10/11/24 16:02	10/14/24 17:10	1
1,4-Difluorobenzene (Surr)	98		70 - 130				10/11/24 16:02	10/14/24 17:10	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg	_		10/14/24 17:10	1

	Method: SW846 8015 NM - Diesel R	Range Organ	ics (DRO) (O	SC)						
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Total TPH	<50.0	U	50.0		mg/Kg			10/14/24 19:35	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		10/11/24 15:58	10/14/24 19:35	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		10/11/24 15:58	10/14/24 19:35	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/11/24 15:58	10/14/24 19:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	73		70 - 130				10/11/24 15:58	10/14/24 19:35	1
o-Terphenyl	78		70 - 130				10/11/24 15:58	10/14/24 19:35	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	285		9.92		mg/Kg			10/14/24 16:10	1

Eurofins Midland

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-5 (0-1.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:02	10/14/24 17:30	1
Foluene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:02	10/14/24 17:30	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:02	10/14/24 17:30	1
n-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		10/11/24 16:02	10/14/24 17:30	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:02	10/14/24 17:30	1
Kylenes, Total	<0.00403	U	0.00403		mg/Kg		10/11/24 16:02	10/14/24 17:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Bromofluorobenzene (Surr)			70 - 130				10/11/24 16:02	10/14/24 17:30	1
1,4-Difluorobenzene (Surr)	98		70 - 130				10/11/24 16:02	10/14/24 17:30	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			10/14/24 17:30	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (0	C)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fotal TPH	<49.8	U	49.8		mg/Kg			10/14/24 19:50	1
nalyte asoline Range Organics	_ Result <49.8			MDL	Unit mg/Kg	<u>D</u>	Prepared 10/11/24 15:58	Analyzed 10/14/24 19:50	Dil Fa
Method: SW846 8015B NM - Dies Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
GRO)-C6-C10	<49.8	U	49.8		mg/Kg		10/11/24 15:58	10/14/24 19:50	1
Diesel Range Organics (Over	<49.8	U.	49.8		mg/Kg		10/11/24 15:58	10/14/24 19:50	
C10-C28)	10.0	0	10.0		mg/rtg		10,11,21 10.00	10/11/21 10:00	
Dil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		10/11/24 15:58	10/14/24 19:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	79		70 - 130				10/11/24 15:58	10/14/24 19:50	1
p-Terphenyl	86		70 - 130				10/11/24 15:58	10/14/24 19:50	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Soluble)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	19200		496		mg/Kg			10/14/24 16:15	50
lient Sample ID: BH-5 (5.0')							Lab Samp	le ID: 880-49	696-34
ate Collected: 10/10/24 00:00							Ē	Matri	x: Solid
ate Received: 10/11/24 14:05									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00198	U	0.00198		mg/Kg		10/11/24 16:02	10/14/24 17:51	1

<0.00198 U

<0.00198 U

<0.00396 U

<0.00198 U

<0.00396 U

%Recovery Qualifier

100

99

Toluene

o-Xylene

Surrogate

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

0.00198

0.00198

0.00396

0.00198

0.00396

Limits

70 - 130

70 - 130

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Eurofins Midland

1

1

1

1

1

1

1

Dil Fac

10/11/24 16:02 10/14/24 17:51

10/14/24 17:51

10/14/24 17:51

10/14/24 17:51

10/14/24 17:51

Analyzed

10/14/24 17:51

10/14/24 17:51

10/11/24 16:02

10/11/24 16:02

10/11/24 16:02

10/11/24 16:02

Prepared

10/11/24 16:02

10/11/24 16:02

Page 236 of 354

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-33

Matrix: Solid

5

Client Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-34

Client Sample ID: BH-5 (5.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			10/14/24 17:51	
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			10/14/24 20:05	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		10/11/24 15:58	10/14/24 20:05	
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		10/11/24 15:58	10/14/24 20:05	
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/11/24 15:58	10/14/24 20:05	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	76		70 - 130				10/11/24 15:58	10/14/24 20:05	
o-Terphenyl	82		70 - 130				10/11/24 15:58	10/14/24 20:05	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	72.8		10.1		mg/Kg			10/14/24 16:20	

Client Sample ID: BH-5 (10')

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Lab Sample ID: 880-49696-35 Matrix: Solid

Nethod: SW846 8021B - Volatile Organic Compounds ((GC)	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 18:11	1
Toluene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 18:11	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 18:11	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/11/24 16:02	10/14/24 18:11	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 18:11	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		10/11/24 16:02	10/14/24 18:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				10/11/24 16:02	10/14/24 18:11	1
1,4-Difluorobenzene (Surr)	98		70 _ 130				10/11/24 16:02	10/14/24 18:11	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/14/24 18:11	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (C	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			10/14/24 20:21	1
Method: SW846 8015B NM - Di	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	<49.8	U	49.8		mg/Kg		10/11/24 15:58	10/14/24 20:21	1
Gasoline Range Organics									
Gasoline Range Organics (GRO)-C6-C10									
0 0	<49.8	U	49.8		mg/Kg		10/11/24 15:58	10/14/24 20:21	1

Eurofins Midland

Released to Imaging: 7/7/2025 9:20:25 AM

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-5 (10') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		10/11/24 15:58	10/14/24 20:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	72		70 - 130				10/11/24 15:58	10/14/24 20:21	1
o-Terphenyl	76		70 - 130				10/11/24 15:58	10/14/24 20:21	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	59.6		9.96		mg/Kg			10/14/24 16:37	1

Client Sample ID: BH-5 (15')

Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:02	10/14/24 18:32	1
Toluene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:02	10/14/24 18:32	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:02	10/14/24 18:32	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		10/11/24 16:02	10/14/24 18:32	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:02	10/14/24 18:32	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		10/11/24 16:02	10/14/24 18:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				10/11/24 16:02	10/14/24 18:32	1
1,4-Difluorobenzene (Surr)	99		70 - 130				10/11/24 16:02	10/14/24 18:32	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	[D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg				10/14/24 18:32	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)												
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
	Total TPH	<49.9	U	49.9		mg/Kg			10/14/24 20:35	1		

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		10/11/24 15:58	10/14/24 20:35	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		10/11/24 15:58	10/14/24 20:35	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		10/11/24 15:58	10/14/24 20:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	73		70 - 130				10/11/24 15:58	10/14/24 20:35	1
o-Terphenyl	77		70 - 130				10/11/24 15:58	10/14/24 20:35	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	75.3		10.1		mg/Kg			10/14/24 16:42	1

Eurofins Midland

Matrix: Solid

Matrix: Solid

5

12 13

Job ID: 880-49696-1

SDG: Eddy County, NM

Lab Sample ID: 880-49696-35

Lab Sample ID: 880-49696-36

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-5 (16') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:02	10/14/24 18:52	1
Toluene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:02	10/14/24 18:52	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:02	10/14/24 18:52	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		10/11/24 16:02	10/14/24 18:52	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:02	10/14/24 18:52	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		10/11/24 16:02	10/14/24 18:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				10/11/24 16:02	10/14/24 18:52	1
1,4-Difluorobenzene (Surr)	100		70 - 130				10/11/24 16:02	10/14/24 18:52	1
Method: TAL SOP Total BTEX - To	tal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			10/14/24 18:52	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			10/14/24 20:50	1
_ Method: SW846 8015B NM - Diese	l Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		10/11/24 15:58	10/14/24 20:50	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		10/11/24 15:58	10/14/24 20:50	1
C10-C28) Oil Range Organics (Over C28-C36)	<49.8		49.8		mg/Kg		10/11/24 15:58	10/14/24 20:50	1
On Mange Organics (Over C20-C50)	~43.0	0	49.0		mg/rtg		10/11/24 15:56	10/14/24 20:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	74		70 - 130				10/11/24 15:58	10/14/24 20:50	1
o-Terphenyl	79		70 - 130				10/11/24 15:58	10/14/24 20:50	1
			e						
Method: EPA 300.0 - Anions, Ion C		-							
Analyte	Result	Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
		-		MDL	unit mg/Kg		Prepared	Analyzed 10/14/24 16:47	1
Analyte	Result	-	RL	MDL		<u>D</u>			1
Analyte Chloride	Result	-	RL	MDL		<u>D</u>		10/14/24 16:47	1

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:02	10/14/24 19:13	1
Toluene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:02	10/14/24 19:13	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:02	10/14/24 19:13	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		10/11/24 16:02	10/14/24 19:13	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		10/11/24 16:02	10/14/24 19:13	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		10/11/24 16:02	10/14/24 19:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				10/11/24 16:02	10/14/24 19:13	1
1,4-Difluorobenzene (Surr)	99		70 - 130				10/11/24 16:02	10/14/24 19:13	1

Eurofins Midland

Page 239 of 354

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-37

Matrix: Solid

5

dland

5

Client Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-38

Client Sample ID: BH-1 (16') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			10/14/24 19:13	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			10/14/24 21:05	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		10/11/24 15:58	10/14/24 21:05	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		10/11/24 15:58	10/14/24 21:05	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/11/24 15:58	10/14/24 21:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	77		70 - 130				10/11/24 15:58	10/14/24 21:05	1
o-Terphenyl	82		70 - 130				10/11/24 15:58	10/14/24 21:05	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hv - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	145		9.92		mg/Kg			10/14/24 16:53	1

Client Sample ID: BH-2 (24')

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Lab Sample ID: 880-49696-39 Matrix: Solid

-Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
				WDL					
Benzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 19:33	1
Toluene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 19:33	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 19:33	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/11/24 16:02	10/14/24 19:33	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/11/24 16:02	10/14/24 19:33	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		10/11/24 16:02	10/14/24 19:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				10/11/24 16:02	10/14/24 19:33	1
1,4-Difluorobenzene (Surr)	98		70 - 130				10/11/24 16:02	10/14/24 19:33	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/14/24 19:33	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (O	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			10/14/24 21:20	1
	esel Range Orga	nics (DRO)	(GC)						
	Bosult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result								
Analyte Gasoline Range Organics			50.0		mg/Kg		10/11/24 15:58	10/14/24 21:20	1
			50.0		mg/Kg		10/11/24 15:58	10/14/24 21:20	1

Eurofins Midland

C10-C28)

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-2 (24') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/11/24 15:58	10/14/24 21:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	76		70 - 130				10/11/24 15:58	10/14/24 21:20	1
o-Terphenyl	81		70 - 130				10/11/24 15:58	10/14/24 21:20	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	62.7		10.1		mg/Kg			10/14/24 16:58	1

Client Sample ID: BH- 3 (24')

Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00198	U	0.00198		mg/Kg		10/11/24 16:02	10/14/24 19:54	1
Toluene	<0.00198	U	0.00198		mg/Kg		10/11/24 16:02	10/14/24 19:54	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		10/11/24 16:02	10/14/24 19:54	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		10/11/24 16:02	10/14/24 19:54	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		10/11/24 16:02	10/14/24 19:54	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		10/11/24 16:02	10/14/24 19:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				10/11/24 16:02	10/14/24 19:54	1
1,4-Difluorobenzene (Surr)	99		70 - 130				10/11/24 16:02	10/14/24 19:54	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			10/14/24 19:54	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)											
	Analyte	Result	Qualifier	RL	MDL Ur	nit I	D	Prepared	Analyzed	Dil Fac	
	Total TPH	<50.0	U	50.0	m	ıg/Kg			10/14/24 21:51	1	

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		10/11/24 15:58	10/14/24 21:51	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		10/11/24 15:58	10/14/24 21:51	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/11/24 15:58	10/14/24 21:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	70		70 - 130				10/11/24 15:58	10/14/24 21:51	1
o-Terphenyl	75		70 - 130				10/11/24 15:58	10/14/24 21:51	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	118		9.96		mg/Kg			10/14/24 17:04	1

Eurofins Midland

Matrix: Solid

Matrix: Solid

5

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-39

Lab Sample ID: 880-49696-40

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Client Sample ID: BH-4 (8.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U F1	0.00201		mg/Kg		10/11/24 16:04	10/14/24 12:02	1
Toluene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:04	10/14/24 12:02	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:04	10/14/24 12:02	1
n-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		10/11/24 16:04	10/14/24 12:02	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		10/11/24 16:04	10/14/24 12:02	1
Kylenes, Total	<0.00402	U	0.00402		mg/Kg		10/11/24 16:04	10/14/24 12:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Bromofluorobenzene (Surr)	114		70 - 130				10/11/24 16:04	10/14/24 12:02	1
,4-Difluorobenzene (Surr)	100		70 - 130				10/11/24 16:04	10/14/24 12:02	1
Method: TAL SOP Total BTEX - T	Total BTEX Calc	culation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			10/14/24 12:02	1
	Bango Organ	ics (DRO) (GC)						
Aethod: SW846 8015 NM - Diese	a Range Organ		/						
	Result	Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte		Qualifier		MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 10/14/24 22:05	
Analyte Fotal TPH	Result <49.9	Qualifier U	RL 49.9	MDL		<u> </u>	Prepared		
Analyte ^T otal TPH Method: SW846 8015B NM - Dies	Result <49.9 sel Range Orga Result	Qualifier U nics (DRO) Qualifier	RL 49.9	MDL		D	Prepared Prepared		1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	Result <49.9	Qualifier U nics (DRO) Qualifier	(GC)		mg/Kg		<u>.</u>	10/14/24 22:05	1 Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10 C28)	Result <49.9 sel Range Orga Result	Qualifier U nics (DRO) Qualifier U	(GC)		mg/Kg Unit		Prepared	10/14/24 22:05 Analyzed	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga Result sel Range Orga Result <49.9	Qualifier U nics (DRO) Qualifier U U	RL 49.9 (GC) RL 49.9		mg/Kg Unit mg/Kg		Prepared 10/11/24 15:58	10/14/24 22:05 Analyzed 10/14/24 22:05	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36)	Result <49.9	Qualifier U nics (DRO) Qualifier U U	RL 49.9 (GC) RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 10/11/24 15:58 10/11/24 15:58	Analyzed 10/14/24 22:05 10/14/24 22:05 10/14/24 22:05	1 Dil Fac 1 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate	Result <49.9	Qualifier U nics (DRO) Qualifier U U U	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 10/11/24 15:58 10/11/24 15:58 10/11/24 15:58	10/14/24 22:05 Analyzed 10/14/24 22:05 10/14/24 22:05 10/14/24 22:05	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10	Result <49.9	Qualifier U nics (DRO) Qualifier U U U	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 10/11/24 15:58 10/11/24 15:58 10/11/24 15:58 Prepared	10/14/24 22:05 Analyzed 10/14/24 22:05 10/14/24 22:05 10/14/24 22:05 10/14/24 22:05 Analyzed	1 Dil Fac 1 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9	Qualifier U nics (DRO) Qualifier U U U Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9 49.9 70.130 70.130 70.130		mg/Kg Unit mg/Kg mg/Kg		Prepared 10/11/24 15:58 10/11/24 15:58 10/11/24 15:58 Prepared 10/11/24 15:58	I0/14/24 22:05 Analyzed 10/14/24 22:05 10/14/24 22:05 10/14/24 22:05 10/14/24 22:05 Analyzed 10/14/24 22:05	1 Dil Fac 1 1 1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane p-Terphenyl	Result <49.9 sel Range Orga Result <49.9 <49.9 <49.9 <49.9 %Recovery 72 76 Chromatograp	Qualifier U nics (DRO) Qualifier U U U Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9 49.9 70.130 70.130 70.130	MDL	mg/Kg Unit mg/Kg mg/Kg		Prepared 10/11/24 15:58 10/11/24 15:58 10/11/24 15:58 Prepared 10/11/24 15:58	I0/14/24 22:05 Analyzed 10/14/24 22:05 10/14/24 22:05 10/14/24 22:05 10/14/24 22:05 Analyzed 10/14/24 22:05	1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate I-Chlorooctane D-Terphenyl Method: EPA 300.0 - Anions, Ion	Result <49.9 sel Range Orga Result <49.9 <49.9 <49.9 <49.9 %Recovery 72 76 Chromatograp	Qualifier U Qualifier U U Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9 49.9 20.9 Limits 70 - 130 70 - 130 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 10/11/24 15:58 10/11/24 15:58 10/11/24 15:58 Prepared 10/11/24 15:58 10/11/24 15:58	10/14/24 22:05 Analyzed 10/14/24 22:05 10/14/24 22:05 10/14/24 22:05 10/14/24 22:05 10/14/24 22:05 10/14/24 22:05	1 Dil Fac 1 1 1 1 <i>Dil Fac</i> 1 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate -Chlorooctane -Terphenyl Method: EPA 300.0 - Anions, Ion analyte	Result <49.9	Qualifier U Qualifier U U Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 49.9 49.9 20.130 70 - 130 70 - 130 8 RL	MDL	mg/Kg Unit mg/Kg mg/Kg mg/Kg Unit	<u>D</u>	Prepared 10/11/24 15:58 10/11/24 15:58 10/11/24 15:58 Prepared 10/11/24 15:58 10/11/24 15:58 10/11/24 15:58	10/14/24 22:05 Analyzed 10/14/24 22:05 10/14/24 22:05 10/14/24 22:05 Analyzed 10/14/24 22:05 Analyzed 10/14/24 22:05 Analyzed	Dil Fac

method. Otto to 21D - Volatile Organic Compounds (CO)													
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac					
<0.00201	U	0.00201		mg/Kg		10/11/24 16:04	10/14/24 12:22	1					
<0.00201	U	0.00201		mg/Kg		10/11/24 16:04	10/14/24 12:22	1					
<0.00201	U	0.00201		mg/Kg		10/11/24 16:04	10/14/24 12:22	1					
<0.00402	U	0.00402		mg/Kg		10/11/24 16:04	10/14/24 12:22	1					
<0.00201	U	0.00201		mg/Kg		10/11/24 16:04	10/14/24 12:22	1					
<0.00402	U	0.00402		mg/Kg		10/11/24 16:04	10/14/24 12:22	1					
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac					
109		70 - 130				10/11/24 16:04	10/14/24 12:22	1					
	Result <0.00201	Result Qualifier <0.00201	Result Qualifier RL <0.00201	Result Qualifier RL MDL <0.00201	Result Qualifier RL MDL Unit <0.00201	Result Qualifier RL MDL Unit D <0.00201	Result Qualifier RL MDL Unit D Prepared <0.00201	Result Qualifier RL MDL Unit D Prepared Analyzed <0.00201					

70 - 130

104

Matrix: Solid

5

Job ID: 880-49696-1

SDG: Eddy County, NM

Lab Sample ID: 880-49696-41

Eurofins Midland

10/14/24 12:22

10/11/24 16:04

1,4-Difluorobenzene (Surr)

5

Client Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-42

Client Sample ID: BH-5 (18') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			10/14/24 12:22	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
otal TPH	<49.9	U	49.9		mg/Kg			10/14/24 22:21	1
/lethod: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Basoline Range Organics	<49.9	U	49.9		mg/Kg		10/11/24 15:58	10/14/24 22:21	1
GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		10/11/24 15:58	10/14/24 22:21	1
C10-C28)									
Dil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		10/11/24 15:58	10/14/24 22:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
-Chlorooctane	70		70 - 130				10/11/24 15:58	10/14/24 22:21	1
p-Terphenyl	74		70 - 130				10/11/24 15:58	10/14/24 22:21	1
Method: EPA 300.0 - Anions, Ion	Chromatogran	hy - Solubi	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	28.8		10.0		mg/Kg		· · ·	10/14/24 17:25	1

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptar
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-49696-1	BH-1 (0-1.0')	100	87	
880-49696-1 MS	BH-1 (0-1.0')	108	94	
880-49696-1 MSD	BH-1 (0-1.0')	110	96	
380-49696-2	BH-1 (2.0')	117	94	
80-49696-3	BH-1 (4.0')	117	84	
80-49696-4	BH-1 (6.0')	114	99	
80-49696-5	BH-1 (8.0')	106	93	
30-49696-6	BH-1 (0.0) BH-1 (10')	108	100	
80-49696-7	BH-1 (12')	120	89	
0-49696-8	BH-1 (14')	100	87	
80-49696-9	BH-2 (0-1.0')	108	88	
0-49696-10	BH-2 (2.0')	110	94	
0-49696-11	BH-2 (4.0')	95	84	
0-49696-12	BH-2 (6.0')	116	97	
0-49696-13	BH-2 (8.0')	101	88	
0-49696-14	BH-2 (10')	119	93	
0-49696-15	BH-2 (15')	113	90	
0-49696-16	BH-2 (20')	115	101	
0-49696-17	BH-2 (22')	106	100	
-49696-18	BH-3 (0-1.0')	120	95	
49696-19	BH-3 (2.0')	102	99	
49696-20	BH-3 (4.0')	122	103	
49696-21	BH-3 (6.0')	102	99	
49696-21 MS	BH-3 (6.0')	105	100	
49696-21 MSD	BH-3 (6.0')	106	100	
-49696-22	BH-3 (8.0')	100	98	
49696-23	BH-3 (10')	101	97	
19696-24	BH-3 (15')	101	99	
49696-25	BH-3 (20')	101	99	
49696-26	BH-3 (22')	99	99	
49696-27	BH-4 (0-1.0')	99	98	
49696-28	BH-4 (2.0')	99	98	
-49696-29	BH-4 (3.0')	107	98	
-49696-30	BH-4 (4.0')	107	98	
)-49696-31		102	99 101	
)-49696-32	BH-4 (5.0') BH-4 (6.0')	101		
	BH-4 (6.0')		98	
30-49696-33	BH-5 (0-1.0')	102	98	
80-49696-34	BH-5 (5.0')	100	99	
30-49696-35	BH-5 (10')	100	98	
0-49696-36	BH-5 (15')	102	99	
0-49696-37	BH-5 (16')	100	100	
)-49696-38	BH-1 (16')	102	99	
)-49696-39	BH-2 (24')	100	98	
)-49696-40	BH- 3 (24')	100	99	
-49696-41	BH-4 (8.0')	114	100	
-49696-41 MS	BH-4 (8.0')	104	103	
-49696-41 MSD	BH-4 (8.0')	103	87	
)-49696-42	BH-5 (18')	109	104	
0-49779-A-1-D MS	Matrix Spike	107	101	

Prep Type: Total/NA

5

6

Job ID: 880-49696-1

SDG: Eddy County, NM

Surrogate Summary

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Method: 8021B - Volatile Organic Compounds (GC) (Continued) Matrix: Solid

				Percent Surrogate Reco
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-49779-A-1-E MSD	Matrix Spike Duplicate	109	100	
LCS 880-93138/1-A	Lab Control Sample	98	91	
LCS 880-93140/1-A	Lab Control Sample	108	100	
LCSD 880-93138/2-A	Lab Control Sample Dup	112	100	
LCSD 880-93140/2-A	Lab Control Sample Dup	107	100	
MB 880-93138/5-A	Method Blank	69 S1-	87	
MB 880-93140/5-A	Method Blank	104	98	
Surrogate Legend				
BFB = 4-Bromofluorobenzer	ne (Surr)			
DFBZ = 1,4-Difluorobenzene	e (Surr)			

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB2	DFBZ2		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
LCS 880-93139/1-A	Lab Control Sample	105	100		
LCS 880-93309/1-A	Lab Control Sample	105	100		
LCSD 880-93139/2-A	Lab Control Sample Dup	106	100		
LCSD 880-93309/2-A	Lab Control Sample Dup	106	100		
MB 880-93139/5-A	Method Blank	96	93		
MB 880-93309/5-A	Method Blank	95	95		

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-49682-A-41-B MS	Matrix Spike	111	98
880-49682-A-41-C MSD	Matrix Spike Duplicate	110	98
880-49689-A-1-H MS	Matrix Spike	91	79
880-49689-A-1-I MSD	Matrix Spike Duplicate	104	89
880-49696-1	BH-1 (0-1.0')	98	117
880-49696-2	BH-1 (2.0')	97	77
880-49696-3	BH-1 (4.0')	95	93
880-49696-4	BH-1 (6.0')	95	93
880-49696-5	BH-1 (8.0')	87	84
880-49696-6	BH-1 (10')	96	92
880-49696-7	BH-1 (12')	89	85
880-49696-8	BH-1 (14')	85	79
880-49696-9	BH-2 (0-1.0')	88	94
880-49696-10	BH-2 (2.0')	94	92
880-49696-10 MS	BH-2 (2.0')	109	98
880-49696-10 MSD	BH-2 (2.0')	108	95
880-49696-11	BH-2 (4.0')	91	88

Page 245 of 354

6

Job ID: 880-49696-1 SDG: Eddy County, NM

Prep Type: Total/NA

Prep Type: Total/NA

Job ID: 880-49696-1 SDG: Eddy County, NM

Prep Type: Total/NA

Project/Site: Yukon Gold 31-19 Fed Com 212H Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Client: Carmona Resources

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-49696-12	BH-2 (6.0')	85	81		
880-49696-13	BH-2 (8.0')	90	86		
880-49696-14	BH-2 (10')	91	86		
880-49696-15	BH-2 (15')	89	86		
880-49696-16	BH-2 (20')	94	90		
880-49696-17	BH-2 (22')	90	87		÷
880-49696-18	BH-3 (0-1.0')	95	97		
880-49696-19	BH-3 (2.0')	87	83		÷
880-49696-20	BH-3 (4.0')	89	86		
880-49696-21	BH-3 (6.0')	84	81		
880-49696-22	BH-3 (8.0')	86	82		
880-49696-23	BH-3 (10')	94	90		
880-49696-24	BH-3 (15')	95	92		
880-49696-25	BH-3 (20')	84	80		
880-49696-26	BH-3 (22')	86	82		
880-49696-27	BH-4 (0-1.0')	96	96		
880-49696-28	BH-4 (2.0')	69 S1-	68 S1-		
880-49696-29	BH-4 (3.0')	91	87		
880-49696-30	BH-4 (4.0')	79	85		Ē
880-49696-30 MS	BH-4 (4.0')	86	82		
880-49696-30 MSD	BH-4 (4.0')	86	82		
880-49696-31	BH-4 (5.0')	76	82		
880-49696-32	BH-4 (6.0')				
880-49696-33		73 79	78 86		
880-49696-34	BH-5 (0-1.0')				
	BH-5 (5.0')	76	82		
880-49696-35	BH-5 (10')	72 73	76 77		
880-49696-36	BH-5 (15')		77		
880-49696-37	BH-5 (16')	74	79		
880-49696-38	BH-1 (16')	77	82		
880-49696-39	BH-2 (24')	76	81		
880-49696-40	BH- 3 (24')	70	75		
880-49696-41	BH-4 (8.0')	72	76		
880-49696-42	BH-5 (18')	70	74		
LCS 880-93072/2-A	Lab Control Sample	105	143 S1+		
LCS 880-93129/2-A	Lab Control Sample	98	133 S1+		
LCS 880-93134/2-A	Lab Control Sample	105	141 S1+		
LCS 880-93136/2-A	Lab Control Sample	88	126		
LCSD 880-93072/3-A	Lab Control Sample Dup	107	146 S1+		
LCSD 880-93129/3-A	Lab Control Sample Dup	98	133 S1+		
LCSD 880-93134/3-A	Lab Control Sample Dup	105	142 S1+		
LCSD 880-93136/3-A	Lab Control Sample Dup	106	151 S1+		
MB 880-93072/1-A	Method Blank	83	85		
MB 880-93129/1-A	Method Blank	112	92		
MB 880-93134/1-A	Method Blank	95	96		
MB 880-93136/1-A	Method Blank	77	86		
Surrogate Logand					
Surrogate Legend					

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Midland

Lab Sample ID: MB 880-93138/5-A

QC Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Analysis Batch: 93174								Prep Type: 1 Prep Batch	
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:00	10/14/24 12:27	1
Toluene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:00	10/14/24 12:27	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:00	10/14/24 12:27	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		10/11/24 16:00	10/14/24 12:27	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:00	10/14/24 12:27	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		10/11/24 16:00	10/14/24 12:27	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	69	S1-	70 - 130				10/11/24 16:00	10/14/24 12:27	1
1,4-Difluorobenzene (Surr)	87		70 - 130				10/11/24 16:00	10/14/24 12:27	1

Lab Sample ID: LCS 880-93138/1-A Matrix: Solid

Analysis Batch: 93174

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09381		mg/Kg		94	70 - 130	
Toluene	0.100	0.1018		mg/Kg		102	70 - 130	
Ethylbenzene	0.100	0.1070		mg/Kg		107	70 - 130	
m-Xylene & p-Xylene	0.200	0.2149		mg/Kg		107	70 - 130	
o-Xylene	0.100	0.1060		mg/Kg		106	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		70 - 130
1,4-Difluorobenzene (Surr)	91		70 - 130

Lab Sample ID: LCSD 880-93138/2-A

Matrix: Solid

Analysis Batch: 93174							Prep	Batch:	93138
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1003		mg/Kg		100	70 - 130	7	35
Toluene	0.100	0.1103		mg/Kg		110	70 - 130	8	35
Ethylbenzene	0.100	0.1146		mg/Kg		115	70 - 130	7	35
m-Xylene & p-Xylene	0.200	0.2315		mg/Kg		116	70 - 130	7	35
o-Xylene	0.100	0.1144		mg/Kg		114	70 - 130	8	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 880-49696-1 MS Matrix: Solid

Analysis Potoby 02174

Analysis Batch: 93174									Prep	Batch: 93138
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.100	0.08593		mg/Kg		86	70 - 130	
Toluene	<0.00201	U	0.100	0.08452		mg/Kg		85	70 - 130	

Eurofins Midland

Prep Type: Total/NA

Client Sample ID: BH-1 (0-1.0')

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 93138

Page 42 of 89

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Job ID: 880-49696-1 SDG: Eddy County, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-49696-1 Matrix: Solid	MS								Client	Sample ID: E Prep Typ	e: To	tal/NA
Analysis Batch: 93174	•	_								Prep B	atcn:	93138
	Sample			Spike	MS	MS				%Rec		
Analyte	Result		ifier	Added		Qualifie			D %Rec	Limits		
Ethylbenzene		U		0.100	0.07570		mg/Kg		74	70 - 130		
m-Xylene & p-Xylene	0.00927			0.200	0.1541		mg/Kg		72	70 - 130		
o-Xylene	0.00372			0.100	0.08019		mg/Kg		76	70 - 130		
	MS	мs										
Surrogate	%Recovery	Qual	ifier	Limits								
4-Bromofluorobenzene (Surr)	108			70 - 130								
1,4-Difluorobenzene (Surr)	94			70 - 130								
Lab Sample ID: 880-49696-1	MSD								Client	Sample ID: E	6H-1 (0-1.0"
Matrix: Solid										Prep Typ		
Analysis Batch: 93174										Prep B		
,	Sample	Sam	ole	Spike	MSD	MSD				%Rec		RPD
Analyte	Result			Added		Qualifie	er Unit		D %Rec	Limits	RPD	Limit
Benzene	<0.00201			0.100	0.08761		mg/Kg		88	70 - 130	2	35
Toluene	<0.00201	U		0.100	0.08487		mg/Kg		85	70 - 130	0	35
Ethylbenzene	<0.00201	U		0.100	0.07355		mg/Kg		72	70 - 130	3	35
m-Xylene & p-Xylene	0.00927			0.200	0.1526		mg/Kg		72	70 - 130	1	35
o-Xylene	0.00372			0.100	0.07338		mg/Kg		70	70 - 130	9	35
-												
_		MSD										
Surrogate		Qual	ifier	Limits								
4-Bromofluorobenzene (Surr)	110			70 - 130								
1,4-Difluorobenzene (Surr)	96			70 - 130								
Lab Sample ID: MB 880-931	39/5-A								Client S	Sample ID: Me	thod	Blank
Matrix: Solid										Prep Typ	e: To	tal/NA
Analysis Batch: 93173										Prep B	atch:	03130
Analysis Baton. Sorro												33133
Analysis Batch. Sorro		мв	МВ									50103
-	Re		MB Qualifier	RL			nit	D	Prepared	Analyzed		
Analyte	 <0.00	esult		RL 0.00200			nit g/Kg	<u>D</u>	Prepared 10/11/24 16:02			Dil Fac
Analyte Benzene	<0.00	esult	Qualifier U			m		<u>D</u>	•	2 10/14/24 11:4	48	Dil Fac
Analyte Benzene Toluene	<0.00	esult 0200	Qualifier U U	0.00200		m	g/Kg	<u>D</u>	10/11/24 16:02	2 10/14/24 11:4 2 10/14/24 11:4	48 48	Dil Fac 1 1
Analyte Benzene Toluene Ethylbenzene	<0.00 <0.00 <0.00	esult 0200 0200	Qualifier U U U	0.00200		m m m	g/Kg g/Kg	<u>D</u>	10/11/24 16:02 10/11/24 16:02	2 10/14/24 11:4 2 10/14/24 11:4 2 10/14/24 11:4 2 10/14/24 11:4	48 48 48	Dil Fac 1 1
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	<0.00 <0.00 <0.00 <0.00	esult 0200 0200 0200	Qualifier U U U U	0.00200 0.00200 0.00200		m m m m	g/Kg g/Kg g/Kg	<u>D</u>	10/11/24 16:02 10/11/24 16:02 10/11/24 16:02	2 10/14/24 11:- 2 10/14/24 11:- 2 10/14/24 11:- 2 10/14/24 11:- 2 10/14/24 11:-	48 48 48 48	Dil Fac 1 1 1 1
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	<0.00 <0.00 <0.00 <0.00 <0.00 <0.00	esult 0200 0200 0200 0200 0200	Qualifier U U U U U U	0.00200 0.00200 0.00200 0.00200 0.00400		m m	g/Kg g/Kg g/Kg g/Kg	<u>D</u>	10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02	2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11:	48 48 48 48 48 48	Dil Fac 1 1 1 1
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	<0.00 <0.00 <0.00 <0.00 <0.00 <0.00	esult 0200 0200 0200 0200 0400 0200 0400	Qualifier U U U U U U	0.00200 0.00200 0.00200 0.00200 0.00400 0.00200		m m	g/Kg g/Kg g/Kg g/Kg g/Kg	<u>D</u>	10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02	2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11:	48 48 48 48 48 48	Dil Fac 1 1 1 1 1
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate	<0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00	esult 0200 0200 0200 0400 0200 0400 0400 040	Qualifier U U U U U U U U	0.00200 0.00200 0.00200 0.00200 0.00400 0.00200		m m	g/Kg g/Kg g/Kg g/Kg g/Kg	<u>D</u>	10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02	2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11:	48 48 48 48 48 48	Dil Fac 1 1 1 1 1 1 1 0 Dil Fac
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate	<0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00	esult 0200 0200 0200 0400 0200 0400 0400 040	Qualifier U U U U U U U U MB	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400		m m	g/Kg g/Kg g/Kg g/Kg g/Kg	<u>D</u>	10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02	2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11:	48 48 48 48 48 48 48	Dil Fac 1 1 1 1 1 1 1
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	<0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00	esult 0200 0200 0200 0200 0200 0200 0200 02	Qualifier U U U U U U U U MB	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 Limits		m m	g/Kg g/Kg g/Kg g/Kg g/Kg	<u>D</u>	10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 Prepared	2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11:	48 48 48 48 48 48 48 48	Dil Fac 1 1 1 1 1 1 1 1 2 <i>Dil Fac</i>
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	<0.00 <0.00 <0.00 <0.00 <0.00 <0.00 %Reco	esult 0200 0200 0200 0400 0400 0400 0400 040	Qualifier U U U U U U U U MB	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130		m m	g/Kg g/Kg g/Kg g/Kg g/Kg		10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 Prepared 10/11/24 16:02 10/11/24 16:02	2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11:	48 48 48 48 48 48 48 48 48	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCS 880-93	<0.00 <0.00 <0.00 <0.00 <0.00 <0.00 %Reco	esult 0200 0200 0200 0400 0400 0400 0400 040	Qualifier U U U U U U U U MB	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130		m m	g/Kg g/Kg g/Kg g/Kg g/Kg		10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 Prepared 10/11/24 16:02 10/11/24 16:02	2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11:	48 48 48 48 48 48 48 48 48 48	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCS 880-93 Matrix: Solid	<0.00 <0.00 <0.00 <0.00 <0.00 <0.00 %Reco	esult 0200 0200 0200 0400 0400 0400 0400 040	Qualifier U U U U U U U U MB	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130		m m	g/Kg g/Kg g/Kg g/Kg g/Kg		10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 Prepared 10/11/24 16:02 10/11/24 16:02	2 10/14/24 11: 2 10/14/24 11: 3 10/14/24 11: 4 10/14/24 11: 3 10/14/24 11: 4 10/14/24 11:	48 48 48 48 48 48 48 48 48 crol S e: To	Dil Fac
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCS 880-93 Matrix: Solid	<0.00 <0.00 <0.00 <0.00 <0.00 <0.00 %Reco	esult 0200 0200 0200 0400 0400 0400 0400 040	Qualifier U U U U U U U U MB	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130 70 - 130		m 	g/Kg g/Kg g/Kg g/Kg g/Kg		10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 Prepared 10/11/24 16:02 10/11/24 16:02	2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 2 10/14/24 11: 4 10: 4 10: 4 10: 4 10: 4 10: 4 10: 5 10: 4 10: 4 10: 5 10: 4 10: 4 10: 4 10: 4 10: 4 10: 4 10: 5 10: 6 10: 7 10: 8	48 48 48 48 48 48 48 48 48 crol S e: To	Dil Fac
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCS 880-93 Matrix: Solid Analysis Batch: 93173	<0.00 <0.00 <0.00 <0.00 <0.00 <0.00 %Reco	esult 0200 0200 0200 0400 0400 0400 0400 040	Qualifier U U U U U U U U MB	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130 70 - 130 70 - 130	LCS	LCS	g/Kg g/Kg g/Kg g/Kg g/Kg		10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02	2 10/14/24 11: 2 10/14/24 11: 4 ID: Lab Cont Prep Typ Prep B: %Rec	48 48 48 48 48 48 48 48 48 crol S e: To	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCS 880-93 Matrix: Solid Analysis Batch: 93173 Analyte	<0.00 <0.00 <0.00 <0.00 <0.00 <0.00 %Reco	esult 0200 0200 0200 0400 0400 0400 0400 040	Qualifier U U U U U U U U MB	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130 70 - 130 70 - 130	LCS Result	m 	g/Kg g/Kg g/Kg g/Kg g/Kg		10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 Prepared 10/11/24 16:02 10/11/24 16:02 iient Sample	2 10/14/24 11: 2 10/14/24 11: 3 10/14/24 11: 4 ID: Lab Cont Prep Typ Prep B: %Rec Limits	48 48 48 48 48 48 48 48 48 crol S e: To	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCS 880-93 Matrix: Solid Analysis Batch: 93173	<0.00 <0.00 <0.00 <0.00 <0.00 <0.00 %Reco	esult 0200 0200 0200 0400 0400 0400 0400 040	Qualifier U U U U U U U U MB	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130 70 - 130 70 - 130	LCS	LCS	g/Kg g/Kg g/Kg g/Kg g/Kg		10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02 10/11/24 16:02	2 10/14/24 11: 2 10/14/24 11: 4 ID: Lab Cont Prep Typ Prep B: %Rec	48 48 48 48 48 48 48 48 48 crol S e: To	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Ethylbenzene

m-Xylene & p-Xylene

0.1028

0.1909

mg/Kg

mg/Kg

103

95

70 - 130

70 - 130

0.100

0.200

Lab Sample ID: LCS 880-93139/1-A

Matrix: Solid

Analyte

o-Xylene

Analysis Batch: 93173

QC Sample Results

Spike

Added

0.100

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

LCS LCS

Page 249 of 354

Job ID: 880-49696-1

Prep Type: Total/NA Prep Batch: 93139

SDG: Eddy County, NM

Client Sample ID: Lab Control Sample

%Rec

Limits 70 - 130

Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	105		70 _ 130								
1,4-Difluorobenzene (Surr)	100		70 - 130								
Lab Sample ID: LCSD 880-9313	9/2-A					Clie	nt Sam	ple ID: I	Lab Contro	I Sampl	e Dup
Matrix: Solid									Prep 1	Type: Tot	tal/NA
Analysis Batch: 93173									Prep	Batch:	93139
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.100	0.09713		mg/Kg		97	70 - 130	3	35
Toluene			0.100	0.09619		mg/Kg		96	70 - 130	3	35
Ethylbenzene			0.100	0.1049		mg/Kg		105	70 - 130	2	35
m-Xylene & p-Xylene			0.200	0.1946		mg/Kg		97	70 - 130	2	35
o-Xylene			0.100	0.1079		mg/Kg		108	70 - 130	2	35
	1050										

LCS LCS

0.1054

Result Qualifier

Unit

mg/Kg

D

%Rec

105

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		70 _ 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 880-49696-21 MS Matrix: Solid Analysis Batch: 93173

Analysis Daton. 33173									1 leb r	Jaten. 33133
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.100	0.08952		mg/Kg		90	70 _ 130	
Toluene	<0.00201	U	0.100	0.08698		mg/Kg		87	70 - 130	
Ethylbenzene	<0.00201	U	0.100	0.09406		mg/Kg		94	70 _ 130	
m-Xylene & p-Xylene	<0.00402	U	0.200	0.1742		mg/Kg		87	70 _ 130	
o-Xylene	<0.00201	U	0.100	0.09626		mg/Kg		96	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 880-49696-21 MSD Matrix: Solid Analysis Batch: 93173

Analysis Batch: 93173									Prep	Batch:	93139
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U	0.100	0.08833		mg/Kg		88	70 - 130	1	35
Toluene	<0.00201	U	0.100	0.08652		mg/Kg		87	70 - 130	1	35
Ethylbenzene	<0.00201	U	0.100	0.09398		mg/Kg		94	70 - 130	0	35
m-Xylene & p-Xylene	<0.00402	U	0.200	0.1745		mg/Kg		87	70 - 130	0	35
o-Xylene	<0.00201	U	0.100	0.09672		mg/Kg		97	70 - 130	0	35

Eurofins Midland

Client Sample ID: BH-3 (6.0') Prep Type: Total/NA Prep Batch: 93139

Client Sample ID: BH-3 (6.0')

Prep Type: Total/NA

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-49696-21 MSD Matrix: Solid Analysis Batch: 93173

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: MB 880-93140/5-A Matrix: Solid

Analysis Batch: 93171

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		10/11/24 16:04	10/14/24 11:40	1
Toluene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:04	10/14/24 11:40	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:04	10/14/24 11:40	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		10/11/24 16:04	10/14/24 11:40	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		10/11/24 16:04	10/14/24 11:40	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		10/11/24 16:04	10/14/24 11:40	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				10/11/24 16:04	10/14/24 11:40	1
1,4-Difluorobenzene (Surr)	98		70 - 130				10/11/24 16:04	10/14/24 11:40	1

Lab Sample ID: LCS 880-93140/1-A Matrix: Solid Analysis Batch: 93171

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.09611		mg/Kg		96	70 - 130
Toluene	0.100	0.09059		mg/Kg		91	70 - 130
Ethylbenzene	0.100	0.09166		mg/Kg		92	70 - 130
m-Xylene & p-Xylene	0.200	0.1969		mg/Kg		98	70 - 130
o-Xylene	0.100	0.09946		mg/Kg		99	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	108		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: LCSD 880-93140/2-A Matrix: Solid Analysis Batch: 93171

Client Sample ID	: Lab	Contro	ol Sam	iple C)up
		Prep	Type:	Total/	NA

Prep Batch: 93140

Prep Type: Total/NA

Prep Batch: 93140

			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.100	0.09444		mg/Kg		94	70 - 130	2	35
Toluene			0.100	0.08975		mg/Kg		90	70 - 130	1	35
Ethylbenzene			0.100	0.08962		mg/Kg		90	70 - 130	2	35
m-Xylene & p-Xylene			0.200	0.1925		mg/Kg		96	70 - 130	2	35
o-Xylene			0.100	0.09627		mg/Kg		96	70 - 130	3	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								

• an • gate	,	quanne	
4-Bromofluorobenzene (Surr)	107		70 - 130

Eurofins Midland

 Page 250 of 354

 Job ID: 880-49696-1

 SDG: Eddy County, NM

Client Sample ID: BH-3 (6.0')

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 93139

Prep Type: Total/NA

Prep Batch: 93140

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-9 Matrix: Solid	3140/2-A							CI	ient	San	nple ID: La	ab Control Sa Prep Type		
Analysis Batch: 93171												Prep Bat		
			_											
	LCSD													
Surrogate	%Recovery	Quali	fier	Limits										
1,4-Difluorobenzene (Surr)	100			70 - 130										
Lab Sample ID: 880-49696-4	I1 MS										Clien	t Sample ID: I	3H-4 (8	. 0 '
Matrix: Solid												Prep Type		
Analysis Batch: 93171												Prep Bat	ch: 93 [,]	14
-	Sample	Samp	ole	Spike	MS	MS						%Rec		
Analyte	Result	Quali	fier	Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Benzene	<0.00201	U F1		0.100	0.08688			mg/Kg			87	70 - 130		
Toluene	<0.00201	U		0.100	0.08217			mg/Kg			82	70 - 130		
Ethylbenzene	<0.00201	U		0.100	0.08358			mg/Kg			84	70 - 130		
m-Xylene & p-Xylene	<0.00402	U		0.200	0.1791			mg/Kg			90	70 - 130		
o-Xylene	<0.00201	U		0.100	0.09136			mg/Kg			91	70 - 130		
	MS	MS												
Surrogate		ws Quali	ifior	Limits										
4-Bromofluorobenzene (Surr)	% Recovery 104	Quali		70 - 130										
1,4-Difluorobenzene (Surr)	104			70 - 130 70 - 130										
	105			10 - 130										
Lab Sample ID: 880-49696-4	1 MSD										Clien	t Sample ID: I	3H-4 (8	.0 '
Matrix: Solid												Prep Type		
Analysis Batch: 93171												Prep Bat		
•	Sample	Samp	ole	Spike	MSD	MSD)					%Rec		RP
Analyte	Result	Quali	fier	Added	Result	Qua	lifier	Unit		D	%Rec	Limits R	PD L	.im
Benzene	<0.00201	U F1		0.100	0.06946	F1		mg/Kg		_	69	70 - 130	22	3
Toluene	<0.00201	U		0.100	0.07584			mg/Kg			76	70 - 130	8	3
Ethylbenzene	<0.00201	U		0.100	0.08420			mg/Kg			84	70 - 130	1	3
m-Xylene & p-Xylene	<0.00402	U		0.200	0.1778			mg/Kg			89	70 - 130	1	3
o-Xylene	<0.00201	U		0.100	0.08984			mg/Kg			90	70 - 130	2	3
	MSD	MSD												
Surrogate	%Recovery		ifior	Limits										
4-Bromofluorobenzene (Surr)		Quan		70 - 130										
1,4-Difluorobenzene (Surr)	87			70 - 130 70 - 130										
	07			10-100										
Lab Sample ID: MB 880-933	09/5-A										Client Sa	mple ID: Metl	nod Bla	anl
Matrix: Solid												· Prep Type		
Analysis Batch: 93305												Prep Bat		
-		МВ	мв											
Analyte	R	esult	Qualifier	RL		MDL	Unit		D	P	repared	Analyzed	Dil	Fa
Benzene	<0.0	0200	U	0.00200			mg/Kg		_	10/1	5/24 08:26	10/15/24 11:24		
Toluene	<0.0	0200	U	0.00200			mg/Kg			10/1	5/24 08:26	10/15/24 11:24		
Ethylbenzene	<0.0	0200	U	0.00200			mg/Kg			10/1	5/24 08:26	10/15/24 11:24		
n-Xylene & p-Xylene	<0.0	0400	U	0.00400			mg/Kg			10/1	5/24 08:26	10/15/24 11:24		
o-Xylene	<0.0	0200	U	0.00200			mg/Kg			10/1	5/24 08:26	10/15/24 11:24		
Kylenes, Total	<0.0	0400	U	0.00400			mg/Kg			10/1	5/24 08:26	10/15/24 11:24		
		140	мв											
Curren er et e	~~=		MB							_		A		-
Surrogate	%Reco		Qualifier	<i>Limits</i>							Prepared	Analyzed		
4-Bromofluorobenzene (Surr)		95		70 - 130						10/1	5/24 08:26	10/15/24 11:24	•	

Eurofins	Midland

10/15/24 11:24

10/15/24 08:26

1,4-Difluorobenzene (Surr)

70 - 130

95

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Job ID: 880-49696-1 SDG: Eddy County, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid									Prep Type: Total/I
Analysis Batch: 93305									Prep Batch: 933
			Spike	LCS	LCS				%Rec
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene			0.100	0.09090		mg/Kg		91	70 - 130
Toluene			0.100	0.08993		mg/Kg		90	70 - 130
Ethylbenzene			0.100	0.09799		mg/Kg		98	70 - 130
m-Xylene & p-Xylene			0.200	0.1827		mg/Kg		91	70 - 130
o-Xylene			0.100	0.1009		mg/Kg		101	70 - 130
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
4-Bromofluorobenzene (Surr)	105		70 - 130						
1,4-Difluorobenzene (Surr)	100		70 - 130						
Lab Sample ID: LCSD 880-9 Matrix: Solid Analysis Batch: 93305	3309/2-A					Clie	ent Sam	ple ID:	Lab Control Sample D Prep Type: Total/I

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09637		mg/Kg		96	70 - 130	6	35
Toluene	0.100	0.09444		mg/Kg		94	70 - 130	5	35
Ethylbenzene	0.100	0.1033		mg/Kg		103	70 - 130	5	35
m-Xylene & p-Xylene	0.200	0.1905		mg/Kg		95	70 - 130	4	35
o-Xylene	0.100	0.1054		mg/Kg		105	70 - 130	4	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 880-49779-A-1-D MS Matrix: Solid Analysis Batch: 93305

Analysis Datch. 55505									гтер Ба	atch. 95509
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U	0.100	0.09367		mg/Kg		94	70 - 130	
Toluene	<0.00202	U	0.100	0.09222		mg/Kg		92	70 - 130	
Ethylbenzene	<0.00202	U	0.100	0.1003		mg/Kg		100	70 - 130	
m-Xylene & p-Xylene	<0.00403	U	0.200	0.1861		mg/Kg		93	70 - 130	
o-Xylene	<0.00202	U	0.100	0.1016		mg/Kg		102	70 - 130	
	MS	MS								

	1113	1013	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: 880-49779-A-1-E MSD Matrix: Solid

Analysis Batch: 93305 Prep Batch: 93309 Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Limits Limit Unit D %Rec RPD Benzene <0.00202 U 0.100 0.09000 mg/Kg 90 70 - 130 4 35 0.08836 Toluene <0.00202 U 0.100 70 - 130 35 mg/Kg 88 4 Ethylbenzene <0.00202 U 0.100 0.09618 mg/Kg 96 70 - 130 4 35

Eurofins Midland

Prep Type: Total/NA

5

7

Client Sample ID: Matrix Spike Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

Prep Batch: 93309

10/16/2024	
QC Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Job ID: 880-49696-1 SDG: Eddy County, NM

Page 253 of 354

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-49779-A	CI	Client Sample ID: Matrix Spike Duplicat Prep Type: Total/N									
Matrix: Solid									Prep I	ype: Io	
Analysis Batch: 93305									Prep	Batch:	93309
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
m-Xylene & p-Xylene	<0.00403	U	0.200	0.1793		mg/Kg		90	70 - 130	4	35
o-Xylene	<0.00202	U	0.100	0.09794		mg/Kg		98	70 - 130	4	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	109		70 - 130								
1,4-Difluorobenzene (Surr)	100		70 - 130								

Lab Sample ID: MB 880-93072/1- Matrix: Solid Analysis Batch: 93281							Client Sa	mple ID: Metho Prep Type: 1 Prep Batch	otal/NA
Analyte	MB Result	MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0		50.0		mg/Kg		10/11/24 12:35	10/15/24 01:20	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		10/11/24 12:35	10/15/24 01:20	1
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/11/24 12:35	10/15/24 01:20	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	83		70 - 130				10/11/24 12:35	10/15/24 01:20	1

70 - 130

Lab Sample ID: LCS 880-93072/2-A Matrix: Solid

Analysis Batch: 93281

o-Terphenyl

-	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics	1000	948.1		mg/Kg		95	70 - 130
(GRO)-C6-C10							
Diesel Range Organics (Over	1000	1154		mg/Kg		115	70 - 130
C10-C28)							

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	105		70 - 130
o-Terphenyl	143	S1+	70 - 130

85

Lab Sample ID: LCSD 880-93072/3-A Matrix: Solid Analysis Batch: 93281

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	955.4		mg/Kg		96	70 - 130	1	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	1194		mg/Kg		119	70 - 130	3	20
C10-C28)									

Prep Type: Total/NA

Prep Batch: 93072

7

Client Sample ID: Lab Control Sample

10/15/24 01:20

10/11/24 12:35

Prep Type: Total/NA Prep Batch: 93072

		/01100	
D	%Rec	Limits	
 _		70 400	

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 880-93072/3-A

Matrix: Solid

Analysis Batch: 93281

QC Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCSD LCSD

Job ID: 880-49696-1 SDG: Eddy County, NM

Prep Type: Total/NA

Prep Batch: 93072

Client Sample ID: Lab Control Sample Dup

Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	107		70 - 130								
o-Terphenyl	146	S1+	70 - 130								
	44 D MO							Oliont	Comple ID	Matrix	Cuilto
Lab Sample ID: 880-49682-A	-41-D WIS							Client	Sample ID		
Matrix: Solid										ype: To	
Analysis Batch: 93281	Commis	Sample	Spike	MS	ме				%Rec	Batch:	93072
Analista		Sample Qualifier	Added		MS Qualifier	11		%Rec	Limits		
Analyte					Quaimer	Unit	<u>D</u>				
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	1000	945.9		mg/Kg		95	70 - 130		
Diesel Range Organics (Over	<49.9	Ш	1000	852.7		mg/Kg		85	70 - 130		
C10-C28)		0	1000	002.1		mg/itg		00	70-100		
0.00020)											
		MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	111		70 - 130								
o-Terphenyl	98		70 - 130								
						0.1					
Lab Sample ID: 880-49682-A	-41-C MSD					CI	ent Sa	ample IL	D: Matrix Sp		
Matrix: Solid										ype: To	
Analysis Batch: 93281										Batch:	
	•	Sample	Spike	MSD					%Rec		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	1000	866.0		mg/Kg		87	70 - 130	9	20
Diesel Range Organics (Over											
C10-C28)	<49.9	U	1000	864.7		mg/Kg		86	70 - 130	1	20
010-020)	<49.9	U	1000	864.7		mg/Kg		86	70 - 130	1	20
010-020)		U MSD	1000	864.7		mg/Kg		86	70 - 130	1	20
	MSD	MSD		864.7		mg/Kg		86	70 - 130	1	20
Surrogate		MSD	1000 Limits 70 - 130	864.7		mg/Kg		86	70 - 130	1	20
Surrogate 1-Chlorooctane	MSD %Recovery	MSD	Limits	864.7		mg/Kg		86	70 - 130	1	20
Surrogate	MSD %Recovery 110	MSD	Limits 70 - 130	864.7		mg/Kg		86	70 - 130	1	20
Surrogate 1-Chlorooctane	MSD %Recovery 110 98	MSD	Limits 70 - 130	864.7		mg/Kg			70 - 130 Gample ID: 1		

Matrix: Solid Analysis Batch: 93206

d Dil Fac
0:54 1
):54 1
):54 1
d Dil Fac
9:54 1
):54 1
9

Eurofins Midland

Prep Batch: 93129

-

QC Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H Job ID: 880-49696-1 SDG: Eddy County, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-9312	29/2-A						Chem	Campio	D: Lab Co		
Matrix: Solid										Type: To	
Analysis Batch: 93206									Prep	Batch:	93129
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics			1000	1021		mg/Kg		102	70 - 130		
GRO)-C6-C10											
Diesel Range Organics (Over			1000	1038		mg/Kg		104	70 - 130		
C10-C28)											
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	98		70 - 130								
p-Terphenyl	133	S1+	70 - 130								
											_
Lab Sample ID: LCSD 880-931	129/3-A					Clier	nt Sam	ple ID: I	Lab Contro		-
Matrix: Solid										ype: To	
Analysis Batch: 93206										Batch:	
			Spike		LCSD				%Rec		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	1024		mg/Kg		102	70 - 130	0	20
GRO)-C6-C10 Diosol Pango Organics (Over			1000	1015		malka		105	70 120	1	20
Diesel Range Organics (Over C10-C28)			1000	1045		mg/Kg		105	70 - 130	1	20
510-020)											
	LCSD										
Surrogate	%Recovery		Limits								
•	98	Qualifier	70 - 130								
Surrogate 1-Chlorooctane 9-Terphenyl	%Recovery	Qualifier									
1-Chlorooctane D-Terphenyl	%Recovery 98 133	Qualifier	70 - 130						0		0
I-Chlorooctane o-Terphenyl Lab Sample ID: 880-49689-A-1	%Recovery 98 133	Qualifier	70 - 130					Client	Sample ID		
I-Chlorooctane o-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid	%Recovery 98 133	Qualifier	70 - 130					Client	Prep 1	Type: To	tal/NA
I-Chlorooctane o-Terphenyl Lab Sample ID: 880-49689-A-1	%Recovery 98 133 1-H MS	Qualifier S1+	70 - 130 70 - 130	МС	MC			Client	Prep 1 Prep		tal/NA
I-Chlorooctane o-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206	%Recovery 98 133 1-H MS Sample	Qualifier S1+ Sample	70 - 130 70 - 130 Spike		MS Qualifier	lloit			Prep 1 Prep %Rec	Type: To	tal/NA
I-Chlorooctane p-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte	%Recovery 98 133 1-H MS Sample Result	Qualifier S1+ Sample Qualifier	70 - 130 70 - 130 Spike Added	Result	MS Qualifier	Unit malka	D	%Rec	Prep 1 Prep %Rec Limits	Type: To	tal/NA
I-Chlorooctane o-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Gasoline Range Organics	%Recovery 98 133 1-H MS Sample	Qualifier S1+ Sample Qualifier	70 - 130 70 - 130 Spike			- Unit mg/Kg	D		Prep 1 Prep %Rec	Type: To	tal/NA
I-Chlorooctane b-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Gasoline Range Organics GRO)-C6-C10	• <u>%Recovery</u> 98 133 1-H MS • Sample <u>Result</u> <50.0	Qualifier S1+ Sample Qualifier U	70 - 130 70 - 130 Spike Added	Result		mg/Kg	D	%Rec	Prep 1 Prep %Rec Limits	Type: To	tal/NA
I-Chlorooctane o-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Gasoline Range Organics	%Recovery 98 133 1-H MS Sample Result	Qualifier S1+ Sample Qualifier U	70 - 130 70 - 130 Spike Added 997	Result 876.5			<u>D</u>	%Rec 88	Prep 1 Prep %Rec Limits 70 - 130	Type: To	tal/NA
I-Chlorooctane D-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	• <u>%Recovery</u> 98 133 1-H MS • Sample • <u>Result</u> <50.0	Qualifier S1+ Sample Qualifier U	70 - 130 70 - 130 Spike Added 997	Result 876.5		mg/Kg	<u>D</u>	%Rec 88	Prep 1 Prep %Rec Limits 70 - 130	Type: To	tal/NA
I-Chlorooctane b-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	%Recovery 98 133 1-H MS Sample Result <50.0 <50.0	Qualifier S1+ Sample Qualifier U U	70 - 130 70 - 130 Spike Added 997 997	Result 876.5		mg/Kg	D	%Rec 88	Prep 1 Prep %Rec Limits 70 - 130	Type: To	tal/NA
I-Chlorooctane b-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	%Recovery 98 133 1-H MS Sample Result <50.0 50.0 MS %Recovery	Qualifier S1+ Sample Qualifier U U	70 - 130 70 - 130 Spike Added 997 997	Result 876.5		mg/Kg	D_	%Rec 88	Prep 1 Prep %Rec Limits 70 - 130	Type: To	tal/NA
I-Chlorooctane -Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane	. <u>%Recovery</u> 98 133 1-H MS Sample <u>Result</u> <50.0 <50.0 Solution (State of the second	Qualifier S1+ Sample Qualifier U U	70 - 130 70 - 130 Spike Added 997 997 997 <u>Limits</u> 70 - 130	Result 876.5		mg/Kg	<u>D</u>	%Rec 88	Prep 1 Prep %Rec Limits 70 - 130	Type: To	tal/NA
I-Chlorooctane -Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane	%Recovery 98 133 1-H MS Sample Result <50.0 50.0 MS %Recovery	Qualifier S1+ Sample Qualifier U U	70 - 130 70 - 130 Spike Added 997 997	Result 876.5		mg/Kg	<u>D</u>	%Rec 88	Prep 1 Prep %Rec Limits 70 - 130	Type: To	tal/NA
I-Chlorooctane Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane Terphenyl	• <u>%Recovery</u> 98 133 1-H MS • <u>Result</u> <50.0 <50.0 • <u>MS</u> <u>%Recovery</u> 91 79	Qualifier S1+ Sample Qualifier U U	70 - 130 70 - 130 Spike Added 997 997 997 <u>Limits</u> 70 - 130	Result 876.5		mg/Kg		%Rec 88 74	Prep 1 %Rec Limits 70 - 130 70 - 130	Type: To Batch:	tal/NA 93129
I-Chlorooctane D-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-49689-A-1	• <u>%Recovery</u> 98 133 1-H MS • <u>Result</u> <50.0 <50.0 • <u>MS</u> <u>%Recovery</u> 91 79	Qualifier S1+ Sample Qualifier U U	70 - 130 70 - 130 Spike Added 997 997 997 <u>Limits</u> 70 - 130	Result 876.5		mg/Kg		%Rec 88 74	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch: 	tal/NA 93129
I-Chlorooctane D-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid	• <u>%Recovery</u> 98 133 1-H MS • <u>Result</u> <50.0 <50.0 • <u>MS</u> <u>%Recovery</u> 91 79	Qualifier S1+ Sample Qualifier U U	70 - 130 70 - 130 Spike Added 997 997 997 <u>Limits</u> 70 - 130	Result 876.5		mg/Kg		%Rec 88 74	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch: Dike Dup Type: To	blicate tal/NA
I-Chlorooctane D-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-49689-A-1	************************************	Qualifier S1+ Sample Qualifier U U MS Qualifier	70 - 130 70 - 130 Spike Added 997 997 <u>Limits</u> 70 - 130 70 - 130	Result 876.5 733.1	Qualifier	mg/Kg		%Rec 88 74	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 20: Matrix Sp Prep 1 Prep	Type: To Batch: 	tal/NA 93129 Dlicate tal/NA 93129
I-Chlorooctane -Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206	************************************	Qualifier S1+ Sample Qualifier U MS Qualifier	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 <u>Limits</u> 70 - 130 70 - 130 70 - 130	Result 876.5 733.1 MSD	Qualifier	mg/Kg mg/Kg Cli	ent Sa	%Rec 88 74	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70 - 190 70 - 190 70 - 190 70 - 190 70 - 190	Dike Dup Batch:	blicate tal/NA 93129
I-Chlorooctane -Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte	************************************	Qualifier S1+ Sample Qualifier U MS Qualifier Sample Qualifier	70 - 130 70 - 130 Spike Added 997 997 <u>Uimits</u> 70 - 130 70 - 130 70 - 130	Result 876.5 733.1 MSD Result	Qualifier	mg/Kg mg/Kg Cli		%Rec 88 74 ample ID	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70 - 190	Dike Dup Dike Dup Dype: To Batch: 	blicate tal/NA 93129
I-Chlorooctane -Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Basoline Range Organics	************************************	Qualifier S1+ Sample Qualifier U MS Qualifier Sample Qualifier	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 <u>Limits</u> 70 - 130 70 - 130 70 - 130	Result 876.5 733.1 MSD	Qualifier	mg/Kg mg/Kg Cli	ent Sa	%Rec 88 74	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70 - 190 70 - 190 70 - 190 70 - 190 70 - 190	Dike Dup Batch:	blicate tal/NA 93129
I-Chlorooctane -Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Basoline Range Organics GRO)-C6-C10	%Recovery 98 98 133 1-H MS Sample Result <50.0	Qualifier S1+ Sample Qualifier U MS Qualifier Qualifier U	70 - 130 70 - 130 70 - 130 997 997 997 997 997 997 997 997 997 997 997 997 997 Spike Added 997	Result 876.5 733.1 MSD Result 1027	Qualifier	mg/Kg mg/Kg Cli mg/Kg	ent Sa	%Rec 88 74 ample ID %Rec 103	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70 - 190	Dike Dup Type: To Dike Dup Type: To Batch: RPD 16	blicate tal/NA 93129
I-Chlorooctane -Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Basoline Range Organics	************************************	Qualifier S1+ Sample Qualifier U MS Qualifier Qualifier U	70 - 130 70 - 130 Spike Added 997 997 997 <u>Limits</u> 70 - 130 70 - 130 70 - 130	Result 876.5 733.1 MSD Result	Qualifier	mg/Kg mg/Kg Cli	ent Sa	%Rec 88 74 ample ID	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Prep 1 Prep %Rec Limits 70 - 130	Dike Dup Dike Dup Dype: To Batch: 	blicate tal/NA 93129
I-Chlorooctane D-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 98 98 133 1-H MS Sample Result <50.0	Qualifier S1+ Sample Qualifier U U MS Qualifier Qualifier U U	70 - 130 70 - 130 70 - 130 997 997 997 997 997 997 997 997 997 997 997 997 997 Spike Added 997	Result 876.5 733.1 MSD Result 1027	Qualifier	mg/Kg mg/Kg Cli mg/Kg	ent Sa	%Rec 88 74 ample ID %Rec 103	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Prep 1 Prep %Rec Limits 70 - 130	Dike Dup Type: To Dike Dup Type: To Batch: RPD 16	blicate tal/NA 93129
I-Chlorooctane D-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-49689-A-1 Matrix: Solid Analysis Batch: 93206 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 98 98 133 1-H MS Sample Result <50.0	Qualifier S1+ Qualifier U U MS Qualifier U Qualifier U U U	70 - 130 70 - 130 70 - 130 997 997 997 997 997 997 997 997 997 997 997 997 997 Spike Added 997	Result 876.5 733.1 MSD Result 1027	Qualifier	mg/Kg mg/Kg Cli mg/Kg	ent Sa	%Rec 88 74 ample ID %Rec 103	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Prep 1 Prep %Rec Limits 70 - 130	Dike Dup Type: To Dike Dup Type: To Batch: RPD 16	blicate tal/NA 93129

Eurofins Midland

QC Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Analysis Batch: 93206	-I MSD						C	Clier	nt Sa	mple ID:	Matrix Spike Prep Type Prep Bat	Tot	al/NA
Surrogate o-Terphenyl	MSD MS %Recovery Qua	D alifier	Limits 70 - 130										
o-rerprienyi	09		70 - 130										
Lab Sample ID: MB 880-93134	/1-A									Client Sa	mple ID: Meth		
Matrix: Solid											Prep Type		
Analysis Batch: 93281											Prep Bat	ch: 9	9313
		MB											
Analyte		Qualifier	RL	M	IDL			<u>D</u> .		epared	Analyzed		Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		I	mg/Kg			10/11	1/24 15:55	10/14/24 09:32		
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		I	mg/Kg			10/11	1/24 15:55	10/14/24 09:32		
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		I	mg/Kg			10/11	1/24 15:55	10/14/24 09:32		
	MB	MB											
Surrogate	%Recovery	Qualifier	Limits						Pr	repared	Analyzed		Dil Fa
1-Chlorooctane	95		70 - 130						10/11	1/24 15:55	10/14/24 09:32		
o-Terphenyl	96		70 - 130						10/11	1/24 15:55	10/14/24 09:32		
			Spike	LCS I	LCS						Prep Type Prep Bat %Rec		
Analysis Batch: 93281 Analyte			Spike Added 1000	LCS L Result 0 966.8			Init ng/Kg		<u>D</u>	%Rec	Prep Bat		
Analysis Batch: 93281 Analyte Gasoline Range Organics (GRO)-C6-C10			Added	Result (n			<u>D</u> .		Prep Bat %Rec Limits		
Analysis Batch: 93281 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over			Added	Result 966.8		n	ng/Kg		<u>D</u> .	97	Prep Bat %Rec Limits 70 - 130		
Analysis Batch: 93281 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	LCS LCS		Added	Result 966.8		n	ng/Kg		<u>D</u> .	97	Prep Bat %Rec Limits 70 - 130		
Analysis Batch: 93281 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	%Recovery Qua	S Alifier	Added 1000 1000 <i>Limits</i>	Result 966.8		n	ng/Kg		<u>D</u> .	97	Prep Bat %Rec Limits 70 - 130		
Analysis Batch: 93281 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane		alifier	Added	Result 966.8		n	ng/Kg		<u>D</u> .	97	Prep Bat %Rec Limits 70 - 130		
Analysis Batch: 93281 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl	%Recovery Qua 105 141 S1+	alifier	Added 1000 1000 Limits 70 - 130	Result 966.8		n	ng/Kg			97	Prep Bat %Rec Limits 70 - 130 70 - 130	ch: 9	9313
Analysis Batch: 93281 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-931	%Recovery Qua 105 141 S1+	alifier	Added 1000 1000 Limits 70 - 130	Result 966.8		n	ng/Kg	ent :		97	Prep Bat %Rec Limits 70 - 130 70 - 130	ch: (9313 e Du
Analysis Batch: 93281 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-931 Matrix: Solid	%Recovery Qua 105 141 S1+	alifier	Added 1000 1000 Limits 70 - 130	Result 966.8		n	ng/Kg	ent		97	Prep Bat %Rec Limits 70 - 130 70 - 130 70 - 130	mple : Tot	9313 e Du tal/N
Analysis Batch: 93281 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-931 Matrix: Solid	%Recovery Qua 105 141 S1+	alifier	Added 1000 1000 Limits 70 - 130	Result 966.8	Qualif	n	ng/Kg	ent :		97	Prep Bat %Rec Limits 70 - 130 70 - 130	mple : Tot	9313 e Du tal/N/ 9313
Analysis Batch: 93281 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-931 Matrix: Solid Analysis Batch: 93281	%Recovery Qua 105 141 S1+	alifier	Added 1000 1000 <u>Limits</u> 70 - 130 70 - 130	Result Q 966.8 1183	Qualif		ng/Kg	ent		97	Prep Bat %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 Prep Type Prep Bat %Rec	mple : Tot	e Duj tal/N/ 9313 RPI
Analysis Batch: 93281 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-931 Matrix: Solid Analysis Batch: 93281 Analyte Gasoline Range Organics	%Recovery Qua 105 141 S1+	alifier	Added 1000 1000 <u>Limits</u> 70 - 130 70 - 130 Spike	Result O 966.8 1183 1183 LCSD	Qualif	fier L	ng/Kg ng/Kg Clie	ent :	Sam	97 118 ple ID: L	Prep Bat %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 Prep Type Prep Bat %Rec	mple Tot ch: (e Du tal/N 9313 RP Lim
Analysis Batch: 93281 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-931 Matrix: Solid Analysis Batch: 93281 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	%Recovery Qua 105 141 S1+	alifier	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 Spike Added	Result C 966.8 1183 1183 LCSD LCSD L Result C	Qualif	fier L	ng/Kg ng/Kg Clia	ent	Sam	97 118 ple ID: L	Prep Bat %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 8 Prep Type Prep Bat %Rec Limits R	mple : Tot ch: {	e Du tal/N/ 9313 RP Lim 2
Analysis Batch: 93281 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-931 Matrix: Solid Analysis Batch: 93281 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<u>%Recovery</u> Qua 105 141 S14 34/3-A 	nlifier	Added 1000 1000 1000 1000 1000 1000 5pike Added 1000	Result Q 966.8 1183 1183 1183 LCSD I Result Q 963.3 1	Qualif	fier L	ng/Kg ng/Kg Clie Jnit ng/Kg	ent :	Sam	97 118 ple ID: L <u>%Rec</u> 96	Prep Bat %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 Prep Type Prep Bat %Rec Limits R 70 - 130	mple : Tot ch: { PD 0 -	9313 e Du tal/N
Matrix: Solid Analysis Batch: 93281 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-931 Matrix: Solid Analysis Batch: 93281 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	<u>%Recovery</u> Qua 105 141 S14 34/3-A 	nlifier	Added 1000 1000 1000 1000 1000 70 - 130 70 - 130 70 - 130 1000 1000 1000 1000 1000 1000 Limits	Result Q 966.8 1183 1183 1183 LCSD I Result Q 963.3 1	Qualif	fier L	ng/Kg ng/Kg Clie Jnit ng/Kg	ent	Sam	97 118 ple ID: L <u>%Rec</u> 96	Prep Bat %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 Prep Type Prep Bat %Rec Limits R 70 - 130	mple : Tot ch: { PD 0 -	e Du tal/N/ 9313 RPI Lim 2
Analysis Batch: 93281 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-931 Matrix: Solid Analysis Batch: 93281 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<u>%Recovery</u> Qua 105 141 S14 34/3-A 	SD	Added 1000 1000 1000 1000 1000 70 - 130 70 - 130 70 - 130 1000 1000 1000	Result Q 966.8 1183 1183 1183 LCSD I Result Q 963.3 1	Qualif	fier L	ng/Kg ng/Kg Clie Jnit ng/Kg	ent	Sam	97 118 ple ID: L <u>%Rec</u> 96	Prep Bat %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 Prep Type Prep Bat %Rec Limits R 70 - 130	mple : Tot ch: { PD 0 -	e Du tal/N. 9313 RP Lim 2

C10-C28)

QC Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-10 M	NS										Clie	nt Sample	ID: BH-	2 (2.0')
Matrix: Solid													Гуре: То	
Analysis Batch: 93281													Batch	
····· , ··· · ·····	Sample	Sam	ple	Spike		MS	MS					%Rec		
Analyte	Result		-	Added		Result	Qualifie	r	Unit	D	%Rec	Limits		
asoline Range Organics	<50.0	U		997		926.3			mg/Kg		93	70 - 130		
GRO)-C6-C10														
viesel Range Organics (Over 10-C28)	<50.0	U		997		924.8			mg/Kg		90	70 - 130		
	MS	мs												
urrogate	%Recovery	Qua	lifier	Limits										
-Chlorooctane	109			70 - 130	-									
-Terphenyl	98			70 - 130										
ab Sample ID: 880-49696-10 M	NSD										Clie	nt Sample	ID: BH-	2 (2.0')
Aatrix: Solid												Prep [·]	Гуре: То	otal/NA
Analysis Batch: 93281												Prep	Batch:	93134
	Sample	Sam	ple	Spike		MSD	MSD					%Rec		RPD
nalyte	Result		lifier	Added		Result	Qualifie	r	Unit	D	%Rec	Limits	RPD	Limit
asoline Range Organics GRO)-C6-C10	<50.0	U		997		906.7			mg/Kg		91	70 - 130	2	20
iesel Range Organics (Over	<50.0	U		997		902.5			mg/Kg		88	70 - 130	2	20
10-C28)														
	MSD	MSE)											
urrogate	%Recovery	Qua	lifier	Limits	_									
-Chlorooctane	108			70 - 130										
-Terphenyl	95			70 - 130										
ab Sample ID: MB 880-93136/	14 A										Client S	ample ID:	Mothod	Blank
Aatrix: Solid	1-4										Chefft 3		Туре: То	
Analysis Batch: 93283													Batch:	
analysis Baten. 30200		мв	МВ									110	, Daten.	50100
nalyte	R		Qualifier		RL		MDL Ur	nit		D F	repared	Analy	zed	Dil Fac
asoline Range Organics		50.0			50.0			g/Kg			11/24 15:57			1
GRO)-C6-C10								0 0						
iesel Range Organics (Over :10-C28)	<	\$0.0	U		50.0		m	g/Kg		10/1	11/24 15:57	10/14/24	09:32	1
il Range Organics (Over C28-C36)	<	50.0	U		50.0		m	g/Kg		10/*	11/24 15:57	10/14/24	09:32	1
		ΜВ	МВ											
urrogate	%Reco	very	Qualifier	Lim	its					F	Prepared	Analy	zed	Dil Fac
-Chlorooctane		77		70 -	130						11/24 15:57			1
-Terphenyl		86		70 -	130					10/	11/24 15:57	7 10/14/24	09:32	1
.ab Sample ID: LCS 880-93136	5/2-A									Clien	t Sample	ID: Lab C	ontrol S	Sample
latrix: Solid													Type: To	
analysis Batch: 93283													Batch	
				Spike		LCS	LCS					%Rec		
nalyte				Added			Qualifie	r	Unit	D	%Rec	Limits		
Gasoline Range Organics				1000		786.6			mg/Kg		79	70 - 130		
Diesel Range Organics (Over				1000		971.7			mg/Kg		97	70 - 130		

Eurofins Midland

Released to Imaging: 7/7/2025 9:20:25 AM

Lab Sample ID: LCS 880-93136/2-A

Lab Sample ID: LCSD 880-93136/3-A

Matrix: Solid

Surrogate

o-Terphenyl

Analyte

C10-C28)

Surrogate

o-Terphenyl

Analyte

C10-C28)

Surrogate 1-Chlorooctane

o-Terphenyl

Analyte

C10-C28)

Surrogate 1-Chlorooctane

o-Terphenyl

Matrix: Solid

1-Chlorooctane

Matrix: Solid

(GRO)-C6-C10

1-Chlorooctane

Matrix: Solid

Analysis Batch: 93283

Analysis Batch: 93283

Gasoline Range Organics (GRO)-C6-C10

Diesel Range Organics (Over

Analysis Batch: 93283

Gasoline Range Organics

Diesel Range Organics (Over

Analysis Batch: 93283

Gasoline Range Organics (GRO)-C6-C10

Diesel Range Organics (Over

Lab Sample ID: 880-49696-30 MS

Lab Sample ID: 880-49696-30 MSD

QC Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Method: 8015B NM - Diesel Range Organics

MSD MSD %Recovery Qualifier

86

82

Job ID: 880-49696-1

d Com 212H	ł							SDG: Edd	dy Count		
Range Or	ganics (E	DRO) (GC) (0	Continue	ed)							
2-A						Client	Sample		ontrol Sa Type: To Batch:	tal/NA	4
105	LCS										5
%Recovery		Limits									
88		70 - 130									
126		70 _ 130									
										_	7
6/3 - A					Clie	nt Sam	ple ID:	Lab Contro			
									Type: To		8
		Spike	1.050	LCSD				%Rec	Batch:	93136 RPD	
		Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit	9
		1000	884.8		mg/Kg		88	70 - 130	12	20	4.6
					0.0						
		1000	1146		mg/Kg		115	70 - 130	16	20	
LCSD	LCSD										
-	Qualifier	Limits									
106		70 - 130									12
151	S1+	70 - 130									
s							Clie	nt Sample	ID: BH-4	(4.0')	
									Type: To		
									Batch:		
Sample	Sample	Spike	MS	MS				%Rec			
	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits			
<49.9	U F1	1000	673.2	F1	mg/Kg		67	70 - 130			
<49.9	U F1	1000	654.6	F1	mg/Kg		65	70 - 130			
MS	MS										
%Recovery	Qualifier	Limits									
86		70 - 130									
82		70 - 130									
SD							Clie	nt Sample			
									Type: To		
Sample	Sample	Spike	MSD	MSD				%Rec	Batch:	93136 RPD	
-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
<49.9		1000	668.1		mg/Kg	— <u>-</u>	67	70 - 130	1	20	
					55				-		
<49.9	U F1	1000	659.9	F1	mg/Kg		66	70 - 130	1	20	

Limits

70 - 130

70 - 130

Eurofins Midland

Released to Imaging: 7/7/2025 9:20:25 AM

QC Sample Results

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Job ID: 880-49696-1 SDG: Eddy County, NM

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-93147/1-A Matrix: Solid												Client S	Sample ID: Prep	Methoo Type: S	
Analysis Batch: 93217															
			МВ												
Analyte			Qualifier		RL		MDL	Unit		<u>D</u>	Pi	repared	Analyz		Dil Fa
Chloride		<10.0	U		10.0			mg/Kg					10/14/24	13:32	
Lab Sample ID: LCS 880-93147/2-A	x									Cli	ent	Sample	BID: Lab Co	ontrol S	Sample
Matrix: Solid													Prep	Type: S	Solubl
Analysis Batch: 93217				Spiko		1.09	LCS						%Rec		
Analyte				Spike Added		Result		ifier	Unit		D	%Rec	Limits		
Chloride				250		262.3			mg/Kg		_	105	90 - 110		
Lab Sample ID: LCSD 880-93147/3 Matrix: Solid	- A								Cli	ent S	am	ple ID:	Lab Contro	-	
Analysis Batch: 93217													Prep	Type: S	Solubi
				Spike		LCSD	LCS	c					%Rec		RP
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Lim
Chloride				248		256.9			mg/Kg		_	104	90 _ 110	2	2
Lab Sample ID: 880-49696-1 MS Matrix: Solid												Client	Sample ID	: BH-1 Type: \$	· · · ·
Analysis Batch: 93217														.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Sample	Sam	ple	Spike		MS	MS						%Rec		
Analyte	Result	Qua	lifier	Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Chloride	29400			12500		40720			mg/Kg		_	91	90 _ 110		
Lab Sample ID: 880-49696-1 MSD Matrix: Solid												Client	Sample ID Prep	: BH-1 Type: \$	
Analysis Batch: 93217		-		• •									~-		
Analyta	Sample Result		-	Spike Added		MSD Result	MSD	ifior	Unit		D	%Rec	%Rec Limits	RPD	RP Lim
Analyte	29400			12500		41810	Quai		mg/Kg		_	99	90 - 110	3	2
Lab Sample ID: MB 880-93148/1-A												Client S	Sample ID:		
Matrix: Solid													Prep	Type: S	solub
Analysis Batch: 93221		мв	МВ												
Analyte	F		Qualifier		RL		MDL	Unit		D	Pi	repared	Analyz	ed	Dil Fa
Chloride		<10.0	U		10.0			mg/Kg				-	10/14/24	12:23	
Lab Sample ID: LCS 880-93148/2-A	4									Cli	ent	Sample	e ID: Lab Co		
Matrix: Solid													Prep	Type: S	Solub
Analysis Batch: 93221				Spike		LCS	LCS						%Rec		
Analyte				Added		Result		ifier	Unit		D	%Rec	Limits		
Chloride		·		250		236.7			mg/Kg			95	90 - 110		
Lab Sample ID: LCSD 880-93148/3	-A								Cli	ent S	am	ple ID:	Lab Contro	-	
Matrix: Solid													Prep	Type: S	Solub
An alterate Data to accord															
Analysis Batch: 93221				Caller		1.000	1.00	`					0/ D		
Analysis Batch: 93221 Analyte				Spike Added		LCSD Result			Unit		D	%Rec	%Rec Limits	RPD	RP Lim

Eurofins Midland

Client: Carmona Resources

Job ID: 880-49696-1 SDG: Eddy County, NM

Method: 300.0 - Anions, Ion Chromatography

Project/Site: Yukon Gold 31-19 Fed Com 212H

Lab Sample ID: 880-49696-10 MS								Clie	ent Sample I		
Matrix: Solid									Prep '	Type: S	olubl
Analysis Batch: 93221											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	5130	F1	2510	7910	F1	mg/Kg		111	90 - 110		
Lab Sample ID: 880-49696-10 MSD								Clie	ent Sample I	D: BH-	2 (2.0
Matrix: Solid									Prep [•]	Type: S	olub
Analysis Batch: 93221											
	Sample	Sample	Spike	MSD	MSD				%Rec		RF
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lin
Chloride	5130	F1	2510	7902	F1	mg/Kg		111	90 - 110	0	2
Lab Sample ID: 880-49696-20 MS								Clie	ent Sample I	D: BH-	3 (4.0
Matrix: Solid									Prep [·]	Type: S	olub
Analysis Batch: 93221											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	5790	F1	2530	8701	F1	mg/Kg		115	90 - 110		
Lab Sample ID: 880 <mark>-49696-20 MSD</mark> Matrix: Solid								Clie	ent Sample I Prep	D: BH∹ Type: S	
Analysis Batch: 93221											
	Sample	Sample	Spike	MSD	MSD				%Rec		R
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lin
Chloride	5790	F1	2530	8722	F1	mg/Kg		116	90 - 110	0	
Lab Sample ID: MB 880-93149/1-A Matrix: Solid Analysis Batch: 93243								Client S	Sample ID: I Prep	Method Type: S	
Matrix: Solid Analysis Batch: 93243	P	MB MB		PI	MDI Unit		n 8		Prep	Type: S	olub
Matrix: Solid Analysis Batch: 93243 ^{Analyte}		MB MB esult Qualifier	1	RL 0.0	MDL Unit mg/K	g	<u>D</u> P	Client S		Type: S	olub
Matrix: Solid Analysis Batch: 93243 Analyte Chloride	<	esult Qualifier	1			g		repared	Prep Analyza 10/14/24 1	Type: S ed 15:32	Dil Fa
Matrix: Solid Analysis Batch: 93243 Analyte Chloride Lab Sample ID: LCS 880-93149/2-A	<	esult Qualifier	1			g		repared	Prep • 	ed 15:32 -	Dil Fa
Matrix: Solid Analysis Batch: 93243 Analyte Chloride Lab Sample ID: LCS 880-93149/2-A Matrix: Solid	<	esult Qualifier	1			g		repared	Prep • 	Type: S ed 15:32	Dil Fa
Matrix: Solid Analysis Batch: 93243 Analyte Chloride Lab Sample ID: LCS 880-93149/2-A	<	esult Qualifier		0.0	mg/K	g		repared	Analyza 10/14/24 1 e ID: Lab Co Prep	ed 15:32 -	Dil Fa
Matrix: Solid Analysis Batch: 93243 Analyte Chloride Lab Sample ID: LCS 880-93149/2-A Matrix: Solid Analysis Batch: 93243	<	esult Qualifier	Spike	0.0 LCS	LCS	-	Client	repared	Analyz 10/14/24 1 e ID: Lab Cc Prep 1 %Rec	ed 15:32 -	Dil Fa
Matrix: Solid Analysis Batch: 93243 Chloride Lab Sample ID: LCS 880-93149/2-A Matrix: Solid Analysis Batch: 93243	<	esult Qualifier	Spike Added	0.0 LCS Result	mg/K	Unit		Prepared t Sample %Rec	Analyz 10/14/24 1 e ID: Lab Co Prep ° %Rec Limits	ed 15:32 -	Dil Fa
Matrix: Solid Analysis Batch: 93243 Chloride Lab Sample ID: LCS 880-93149/2-A Matrix: Solid Analysis Batch: 93243	<	esult Qualifier	Spike	0.0 LCS	LCS	-	Client	repared	Analyz 10/14/24 1 e ID: Lab Cc Prep 1 %Rec	ed 15:32 -	Dil F
Matrix: Solid Analysis Batch: 93243 Chloride Lab Sample ID: LCS 880-93149/2-A Matrix: Solid Analysis Batch: 93243 Analyte Chloride Lab Sample ID: LCSD 880-93149/3- Matrix: Solid		esult Qualifier	Spike Added	0.0 LCS Result	LCS	Unit mg/Kg	Client	Prepared t Sample <u>%Rec</u> 96	Analyz 10/14/24 ft e ID: Lab Co Prep ft %Rec Limits 90 - 110 Lab Contro	Type: S ed 5:32 ontrol S Type: S	Dil F
Matrix: Solid Analysis Batch: 93243 Chloride Lab Sample ID: LCS 880-93149/2-A Matrix: Solid Analysis Batch: 93243 Analyte Chloride Lab Sample ID: LCSD 880-93149/3- Matrix: Solid		esult Qualifier	Spike Added 250	0.0 LCS Result 238.8	LCS Qualifier	Unit mg/Kg	Client	Prepared t Sample <u>%Rec</u> 96	Analyze 10/14/24 1 e ID: Lab Co Prep 1 %Rec Limits 90 - 110 Lab Contro Prep 1	Type: S ed 5:32 - ontrol S Type: S 	Dil F amp olub
Matrix: Solid Analysis Batch: 93243 Chloride Lab Sample ID: LCS 880-93149/2-A Matrix: Solid Analysis Batch: 93243 Chloride Lab Sample ID: LCSD 880-93149/3- Matrix: Solid Analysis Batch: 93243		esult Qualifier	Spike Added 250 Spike	LCS Result 238.8	LCS Qualifier	Unit mg/Kg Cli	Client	[•] repared t Sample <u>%Rec</u> 96 nple ID:	Analyze 10/14/24 1 e ID: Lab Co Prep %Rec Limits 90 - 110 Lab Controo Prep %Rec	Type: S ed 15:32 - ontrol S Type: S I Samp Type: S	Dil Fa amp olub le Du olub RF
Matrix: Solid Analysis Batch: 93243 Chloride Lab Sample ID: LCS 880-93149/2-A Matrix: Solid Analysis Batch: 93243 Analyte Chloride Lab Sample ID: LCSD 880-93149/3- Matrix: Solid Analysis Batch: 93243		esult Qualifier	Spike Added 250	LCS Result 238.8	LCS Qualifier	Unit mg/Kg	Client	Prepared t Sample <u>%Rec</u> 96	Analyze 10/14/24 1 e ID: Lab Co Prep 1 %Rec Limits 90 - 110 Lab Contro Prep 1	Type: S ed 5:32 - ontrol S Type: S 	Dil F amp olub le Du olub RF Lin
Matrix: Solid Analysis Batch: 93243 Analyte Chloride Lab Sample ID: LCS 880-93149/2-A Matrix: Solid Analysis Batch: 93243 Analyte Chloride Lab Sample ID: LCSD 880-93149/3- Matrix: Solid Analysis Batch: 93243 Analyte Chloride		esult Qualifier	Spike Added 250 Spike Added	0.0 LCS Result 238.8 LCSD Result	LCS Qualifier	Unit mg/Kg Cli	Client	*repared * Sample %Rec 96 * NPIE ID: %Rec 96	Analyze 10/14/24 1 10/14/24 1 PID: Lab Co Prep %Rec Limits 90 - 110 %Rec Limits 90 - 110 %Rec Limits 90 - 110	Type: S ed 15:32 - ontrol S Type: S I Samp Type: S 	Dil F. amp olub olub RF Lin
Matrix: Solid Analysis Batch: 93243 Analyte Chloride Lab Sample ID: LCS 880-93149/2-A Matrix: Solid Analysis Batch: 93243 Analyte Chloride Lab Sample ID: LCSD 880-93149/3- Matrix: Solid Analysis Batch: 93243 Analyte Chloride Lab Sample ID: 880-49696-30 MS		esult Qualifier	Spike Added 250 Spike Added	0.0 LCS Result 238.8 LCSD Result	LCS Qualifier	Unit mg/Kg Cli	Client	*repared * Sample %Rec 96 * NPIE ID: %Rec 96	Prep Analyz 10/14/24 f Prep %Rec Limits 90 - 110 Lab Controo Prep %Rec Limits 90 - 110 wRec Limits 90 - 110 Prep	Type: S ed 15:32 - ontrol S Type: S I Samp Type: S 	Dil F amp colub colub colub RF Lin 2 4 (4.C
Matrix: Solid Analysis Batch: 93243 Analyte Chloride Lab Sample ID: LCS 880-93149/2-A Matrix: Solid		esult Qualifier	Spike Added 250 Spike Added	0.0 LCS Result 238.8 LCSD Result	LCS Qualifier	Unit mg/Kg Cli	Client	*repared * Sample %Rec 96 * NPIE ID: %Rec 96	Prep Analyz 10/14/24 f Prep %Rec Limits 90 - 110 Lab Controo Prep %Rec Limits 90 - 110 wRec Limits 90 - 110 Prep	Type: S ed 5:32 ontrol S Type: S I Samp Type: S RPD 0 D: BH	Dil Fa ampl colub de Du colub RP Lim 2 4 (4.0
Matrix: Solid Analysis Batch: 93243 Analyte Chloride Lab Sample ID: LCS 880-93149/2-A Matrix: Solid Analysis Batch: 93243 Analyte Chloride Lab Sample ID: LCSD 880-93149/3- Matrix: Solid Analysis Batch: 93243 Analyte Chloride Lab Sample ID: 880-49696-30 MS Matrix: Solid	A	esult Qualifier	Spike Added 250 Spike Added	0.0 LCS Result 238.8 LCSD Result 239.7	LCS Qualifier	Unit mg/Kg Cli	Client	^o repared Sample <u>%Rec</u> <u>96</u> %Rec <u>96</u>	Analyz 10/14/24 ft e ID: Lab Co Prep %Rec Limits 90 - 110 Lab Controo Prep %Rec Limits 90 - 110 Kec Limits 90 - 110 wrep %Rec Limits 90 - 110	Type: S ed 5:32 ontrol S Type: S I Samp Type: S RPD 0 D: BH	Dil Fa ampl colubl colubl colubl RP Lim 2 4 (4.0

Eurofins Midland

Client: Carmona Resources

Job ID: 880-49696-1 SDG: Eddy County, NM

Method: 300.0 - Anions, Ion Chromatography

Project/Site: Yukon Gold 31-19 Fed Com 212H

_ Lab Sample ID: 880-49696-30 MSI)							Clie	nt Sample	ID: BH-4	4 (4.0')
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 93243											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	3160	F1	1240	4668	F1	mg/Kg		122	90 - 110	0	20
Lab Sample ID: 880-49696-40 MS								Clie	nt Sample	ID: BH-	3 (24')
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 93243											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	118		249	367.8		mg/Kg		100	90 - 110		
- Lab Sample ID: 880-49696-40 MSI)							Clie	nt Sample	ID: BH-	3 (24')
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 93243											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	118		249	368.4		mg/Kg		101	90 _ 110	0	20

Eurofins Midland

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Released to Imaging: 7/7/2025 9:20:25 AM Pag

Job ID: 880-49696-1							
SDG: Eddy County, N	M						

Prep Batch: 93138

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-49696-1	BH-1 (0-1.0')	Total/NA	Solid	5035	
880-49696-2	BH-1 (2.0')	Total/NA	Solid	5035	
880-49696-3	BH-1 (4.0')	Total/NA	Solid	5035	
880-49696-4	BH-1 (6.0')	Total/NA	Solid	5035	
880-49696-5	BH-1 (8.0')	Total/NA	Solid	5035	
880-49696-6	BH-1 (10')	Total/NA	Solid	5035	
880-49696-7	BH-1 (12')	Total/NA	Solid	5035	
880-49696-8	BH-1 (14')	Total/NA	Solid	5035	
880-49696-9	BH-2 (0-1.0')	Total/NA	Solid	5035	
880-49696-10	BH-2 (2.0')	Total/NA	Solid	5035	
880-49696-11	BH-2 (4.0')	Total/NA	Solid	5035	
880-49696-12	BH-2 (6.0')	Total/NA	Solid	5035	
880-49696-13	BH-2 (8.0')	Total/NA	Solid	5035	
880-49696-14	BH-2 (10')	Total/NA	Solid	5035	
880-49696-15	BH-2 (15')	Total/NA	Solid	5035	
880-49696-16	BH-2 (20')	Total/NA	Solid	5035	
880-49696-17	BH-2 (22')	Total/NA	Solid	5035	
880-49696-18	BH-3 (0-1.0')	Total/NA	Solid	5035	
880-49696-20	BH-3 (4.0')	Total/NA	Solid	5035	
MB 880-93138/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-93138/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-93138/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-49696-1 MS	BH-1 (0-1.0')	Total/NA	Solid	5035	
880-49696-1 MSD	BH-1 (0-1.0')	Total/NA	Solid	5035	

Prep Batch: 93139

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49696-21	BH-3 (6.0')	Total/NA	Solid	5035	
880-49696-22	BH-3 (8.0')	Total/NA	Solid	5035	
880-49696-23	BH-3 (10')	Total/NA	Solid	5035	
880-49696-24	BH-3 (15')	Total/NA	Solid	5035	
880-49696-25	BH-3 (20')	Total/NA	Solid	5035	
880-49696-26	BH-3 (22')	Total/NA	Solid	5035	
880-49696-27	BH-4 (0-1.0')	Total/NA	Solid	5035	
880-49696-28	BH-4 (2.0')	Total/NA	Solid	5035	
880-49696-29	BH-4 (3.0')	Total/NA	Solid	5035	
880-49696-30	BH-4 (4.0')	Total/NA	Solid	5035	
880-49696-31	BH-4 (5.0')	Total/NA	Solid	5035	
880-49696-32	BH-4 (6.0')	Total/NA	Solid	5035	
880-49696-33	BH-5 (0-1.0')	Total/NA	Solid	5035	
880-49696-34	BH-5 (5.0')	Total/NA	Solid	5035	
880-49696-35	BH-5 (10')	Total/NA	Solid	5035	
880-49696-36	BH-5 (15')	Total/NA	Solid	5035	
880-49696-37	BH-5 (16')	Total/NA	Solid	5035	
880-49696-38	BH-1 (16')	Total/NA	Solid	5035	
880-49696-39	BH-2 (24')	Total/NA	Solid	5035	
880-49696-40	BH- 3 (24')	Total/NA	Solid	5035	
MB 880-93139/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-93139/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-93139/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-49696-21 MS	BH-3 (6.0')	Total/NA	Solid	5035	

Eurofins Midland

Page 262 of 354

1 1 1 1 3

10/16/2024

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

GC VOA (Continued)

Prep Batch: 93139 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-49696-21 MSD	BH-3 (6.0')	Total/NA	Solid	5035	
Prep Batch: 93140					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49696-41	BH-4 (8.0')	Total/NA	Solid	5035	
880-49696-42	BH-5 (18')	Total/NA	Solid	5035	
MB 880-93140/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-93140/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-93140/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-49696-41 MS	BH-4 (8.0')	Total/NA	Solid	5035	
880-49696-41 MSD	BH-4 (8.0')	Total/NA	Solid	5035	
_					

Analysis Batch: 93171

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-49696-41	BH-4 (8.0')	Total/NA	Solid	8021B	93140	
880-49696-42	BH-5 (18')	Total/NA	Solid	8021B	93140	
MB 880-93140/5-A	Method Blank	Total/NA	Solid	8021B	93140	
LCS 880-93140/1-A	Lab Control Sample	Total/NA	Solid	8021B	93140	
LCSD 880-93140/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	93140	
880-49696-41 MS	BH-4 (8.0')	Total/NA	Solid	8021B	93140	
880-49696-41 MSD	BH-4 (8.0')	Total/NA	Solid	8021B	93140	

Analysis Batch: 93173

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-49696-21	BH-3 (6.0')	Total/NA	Solid	8021B	93139
880-49696-22	BH-3 (8.0')	Total/NA	Solid	8021B	93139
880-49696-23	BH-3 (10')	Total/NA	Solid	8021B	93139
880-49696-24	BH-3 (15')	Total/NA	Solid	8021B	93139
880-49696-25	BH-3 (20')	Total/NA	Solid	8021B	93139
880-49696-26	BH-3 (22')	Total/NA	Solid	8021B	93139
880-49696-27	BH-4 (0-1.0')	Total/NA	Solid	8021B	93139
880-49696-28	BH-4 (2.0')	Total/NA	Solid	8021B	93139
880-49696-29	BH-4 (3.0')	Total/NA	Solid	8021B	93139
880-49696-30	BH-4 (4.0')	Total/NA	Solid	8021B	93139
880-49696-31	BH-4 (5.0')	Total/NA	Solid	8021B	93139
880-49696-32	BH-4 (6.0')	Total/NA	Solid	8021B	93139
880-49696-33	BH-5 (0-1.0')	Total/NA	Solid	8021B	93139
880-49696-34	BH-5 (5.0')	Total/NA	Solid	8021B	93139
880-49696-35	BH-5 (10')	Total/NA	Solid	8021B	93139
880-49696-36	BH-5 (15')	Total/NA	Solid	8021B	93139
880-49696-37	BH-5 (16')	Total/NA	Solid	8021B	93139
880-49696-38	BH-1 (16')	Total/NA	Solid	8021B	93139
880-49696-39	BH-2 (24')	Total/NA	Solid	8021B	93139
880-49696-40	BH- 3 (24')	Total/NA	Solid	8021B	93139
MB 880-93139/5-A	Method Blank	Total/NA	Solid	8021B	93139
LCS 880-93139/1-A	Lab Control Sample	Total/NA	Solid	8021B	93139
LCSD 880-93139/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	93139
880-49696-21 MS	BH-3 (6.0')	Total/NA	Solid	8021B	93139
880-49696-21 MSD	BH-3 (6.0')	Total/NA	Solid	8021B	93139

Page 263 of 354

Job ID: 880-49696-1 SDG: Eddy County, NM

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Job ID: 880-49696-1 SDG: Eddy County, NM

GC VOA

Analysis Batch: 93174

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-49696-1	BH-1 (0-1.0')	Total/NA	Solid	8021B	93138
880-49696-2	BH-1 (2.0')	Total/NA	Solid	8021B	93138
880-49696-3	BH-1 (4.0')	Total/NA	Solid	8021B	93138
880-49696-4	BH-1 (6.0')	Total/NA	Solid	8021B	93138
880-49696-5	BH-1 (8.0')	Total/NA	Solid	8021B	93138
880-49696-6	BH-1 (10')	Total/NA	Solid	8021B	93138
880-49696-7	BH-1 (12')	Total/NA	Solid	8021B	93138
880-49696-8	BH-1 (14')	Total/NA	Solid	8021B	93138
880-49696-9	BH-2 (0-1.0')	Total/NA	Solid	8021B	93138
880-49696-10	BH-2 (2.0')	Total/NA	Solid	8021B	93138
880-49696-11	BH-2 (4.0')	Total/NA	Solid	8021B	93138
880-49696-12	BH-2 (6.0')	Total/NA	Solid	8021B	93138
880-49696-13	BH-2 (8.0')	Total/NA	Solid	8021B	93138
880-49696-14	BH-2 (10')	Total/NA	Solid	8021B	93138
880-49696-15	BH-2 (15')	Total/NA	Solid	8021B	93138
880-49696-16	BH-2 (20')	Total/NA	Solid	8021B	93138
880-49696-17	BH-2 (22')	Total/NA	Solid	8021B	93138
880-49696-18	BH-3 (0-1.0')	Total/NA	Solid	8021B	93138
880-49696-20	BH-3 (4.0')	Total/NA	Solid	8021B	93138
MB 880-93138/5-A	Method Blank	Total/NA	Solid	8021B	93138
LCS 880-93138/1-A	Lab Control Sample	Total/NA	Solid	8021B	93138
LCSD 880-93138/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	93138
880-49696-1 MS	BH-1 (0-1.0')	Total/NA	Solid	8021B	93138
880-49696-1 MSD	BH-1 (0-1.0')	Total/NA	Solid	8021B	93138

Analysis Batch: 93305

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49696-19	BH-3 (2.0')	Total/NA	Solid	8021B	93309
MB 880-93309/5-A	Method Blank	Total/NA	Solid	8021B	93309
LCS 880-93309/1-A	Lab Control Sample	Total/NA	Solid	8021B	93309
LCSD 880-93309/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	93309
880-49779-A-1-D MS	Matrix Spike	Total/NA	Solid	8021B	93309
880-49779-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	93309

Prep Batch: 93309

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49696-19	BH-3 (2.0')	Total/NA	Solid	5035	
MB 880-93309/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-93309/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-93309/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-49779-A-1-D MS	Matrix Spike	Total/NA	Solid	5035	
880-49779-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 93327

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49696-1	BH-1 (0-1.0')	Total/NA	Solid	Total BTEX	
880-49696-2	BH-1 (2.0')	Total/NA	Solid	Total BTEX	
880-49696-3	BH-1 (4.0')	Total/NA	Solid	Total BTEX	
880-49696-4	BH-1 (6.0')	Total/NA	Solid	Total BTEX	
880-49696-5	BH-1 (8.0')	Total/NA	Solid	Total BTEX	
880-49696-6	BH-1 (10')	Total/NA	Solid	Total BTEX	

Eurofins Midland

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

GC VOA (Continued)

Analysis Batch: 93327 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49696-7	BH-1 (12')	Total/NA	Solid	Total BTEX	
880-49696-8	BH-1 (14')	Total/NA	Solid	Total BTEX	
380-49696-9	BH-2 (0-1.0')	Total/NA	Solid	Total BTEX	
380-49696-10	BH-2 (2.0')	Total/NA	Solid	Total BTEX	
380-49696-11	BH-2 (4.0')	Total/NA	Solid	Total BTEX	
380-49696-12	BH-2 (6.0')	Total/NA	Solid	Total BTEX	
380-49696-13	BH-2 (8.0')	Total/NA	Solid	Total BTEX	
380-49696-14	BH-2 (10')	Total/NA	Solid	Total BTEX	
380-49696-15	BH-2 (15')	Total/NA	Solid	Total BTEX	
380-49696-16	BH-2 (20')	Total/NA	Solid	Total BTEX	
380-49696-17	BH-2 (22')	Total/NA	Solid	Total BTEX	
380-49696-18	BH-3 (0-1.0')	Total/NA	Solid	Total BTEX	
380-49696-19	BH-3 (2.0')	Total/NA	Solid	Total BTEX	
380-49696-20	BH-3 (4.0')	Total/NA	Solid	Total BTEX	
380-49696-21	BH-3 (6.0')	Total/NA	Solid	Total BTEX	
380-49696-22	BH-3 (8.0')	Total/NA	Solid	Total BTEX	
380-49696-23	BH-3 (10')	Total/NA	Solid	Total BTEX	
380-49696-24	BH-3 (15')	Total/NA	Solid	Total BTEX	
380-49696-25	BH-3 (20')	Total/NA	Solid	Total BTEX	
380-49696-26	BH-3 (22')	Total/NA	Solid	Total BTEX	
380-49696-27	BH-4 (0-1.0')	Total/NA	Solid	Total BTEX	
380-49696-28	BH-4 (2.0')	Total/NA	Solid	Total BTEX	
80-49696-29	BH-4 (3.0')	Total/NA	Solid	Total BTEX	
380-49696-30	BH-4 (4.0')	Total/NA	Solid	Total BTEX	
380-49696-31	BH-4 (5.0')	Total/NA	Solid	Total BTEX	
380-49696-32	BH-4 (6.0')	Total/NA	Solid	Total BTEX	
380-49696-33	BH-5 (0-1.0')	Total/NA	Solid	Total BTEX	
380-49696-34	BH-5 (5.0')	Total/NA	Solid	Total BTEX	
380-49696-35	BH-5 (10')	Total/NA	Solid	Total BTEX	
380-49696-36	BH-5 (15')	Total/NA	Solid	Total BTEX	
380-49696-37	BH-5 (16')	Total/NA	Solid	Total BTEX	
380-49696-38	BH-1 (16')	Total/NA	Solid	Total BTEX	
380-49696-39	BH-2 (24')	Total/NA	Solid	Total BTEX	
880-49696-40	BH- 3 (24')	Total/NA	Solid	Total BTEX	
880-49696-41	BH-4 (8.0')	Total/NA	Solid	Total BTEX	
880-49696-42	BH-5 (18')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 93072

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-49696-3	BH-1 (4.0')	Total/NA	Solid	8015NM Prep	
880-49696-4	BH-1 (6.0')	Total/NA	Solid	8015NM Prep	
880-49696-5	BH-1 (8.0')	Total/NA	Solid	8015NM Prep	
880-49696-6	BH-1 (10')	Total/NA	Solid	8015NM Prep	
880-49696-7	BH-1 (12')	Total/NA	Solid	8015NM Prep	
880-49696-8	BH-1 (14')	Total/NA	Solid	8015NM Prep	
880-49696-9	BH-2 (0-1.0')	Total/NA	Solid	8015NM Prep	
MB 880-93072/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-93072/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-93072/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Eurofins Midland

Page 265 of 354

Job ID: 880-49696-1 SDG: Eddy County, NM

Released to Imaging: 7/7/2025 9:20:25 AM

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

GC Semi VOA (Continued)

Prep Batch: 93072 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49682-A-41-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-49682-A-41-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	
Prep Batch: 93129					

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49696-1	BH-1 (0-1.0')	Total/NA	Solid	8015NM Prep	
880-49696-2	BH-1 (2.0')	Total/NA	Solid	8015NM Prep	
MB 880-93129/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-93129/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-93129/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-49689-A-1-H MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-49689-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 93134

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-49696-10	BH-2 (2.0')	Total/NA	Solid	8015NM Prep	
880-49696-11	BH-2 (4.0')	Total/NA	Solid	8015NM Prep	
880-49696-12	BH-2 (6.0')	Total/NA	Solid	8015NM Prep	
880-49696-13	BH-2 (8.0')	Total/NA	Solid	8015NM Prep	
880-49696-14	BH-2 (10')	Total/NA	Solid	8015NM Prep	
880-49696-15	BH-2 (15')	Total/NA	Solid	8015NM Prep	
880-49696-16	BH-2 (20')	Total/NA	Solid	8015NM Prep	
880-49696-17	BH-2 (22')	Total/NA	Solid	8015NM Prep	
880-49696-18	BH-3 (0-1.0')	Total/NA	Solid	8015NM Prep	
880-49696-19	BH-3 (2.0')	Total/NA	Solid	8015NM Prep	
880-49696-20	BH-3 (4.0')	Total/NA	Solid	8015NM Prep	
880-49696-21	BH-3 (6.0')	Total/NA	Solid	8015NM Prep	
880-49696-22	BH-3 (8.0')	Total/NA	Solid	8015NM Prep	
880-49696-23	BH-3 (10')	Total/NA	Solid	8015NM Prep	
880-49696-24	BH-3 (15')	Total/NA	Solid	8015NM Prep	
880-49696-25	BH-3 (20')	Total/NA	Solid	8015NM Prep	
880-49696-26	BH-3 (22')	Total/NA	Solid	8015NM Prep	
880-49696-27	BH-4 (0-1.0')	Total/NA	Solid	8015NM Prep	
880-49696-28	BH-4 (2.0')	Total/NA	Solid	8015NM Prep	
880-49696-29	BH-4 (3.0')	Total/NA	Solid	8015NM Prep	
MB 880-93134/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-93134/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-93134/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-49696-10 MS	BH-2 (2.0')	Total/NA	Solid	8015NM Prep	
880-49696-10 MSD	BH-2 (2.0')	Total/NA	Solid	8015NM Prep	

Prep Batch: 93136

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-49696-30	BH-4 (4.0')	Total/NA	Solid	8015NM Prep	
880-49696-31	BH-4 (5.0')	Total/NA	Solid	8015NM Prep	
880-49696-32	BH-4 (6.0')	Total/NA	Solid	8015NM Prep	
880-49696-33	BH-5 (0-1.0')	Total/NA	Solid	8015NM Prep	
880-49696-34	BH-5 (5.0')	Total/NA	Solid	8015NM Prep	
880-49696-35	BH-5 (10')	Total/NA	Solid	8015NM Prep	
880-49696-36	BH-5 (15')	Total/NA	Solid	8015NM Prep	
880-49696-37	BH-5 (16')	Total/NA	Solid	8015NM Prep	

Eurofins Midland

Page 266 of 354

Job ID: 880-49696-1 SDG: Eddy County, NM

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

GC Semi VOA (Continued)

Prep Batch: 93136 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-49696-38	BH-1 (16')	Total/NA	Solid	8015NM Prep	
880-49696-39	BH-2 (24')	Total/NA	Solid	8015NM Prep	
880-49696-40	BH- 3 (24')	Total/NA	Solid	8015NM Prep	
880-49696-41	BH-4 (8.0')	Total/NA	Solid	8015NM Prep	
880-49696-42	BH-5 (18')	Total/NA	Solid	8015NM Prep	
MB 880-93136/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-93136/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-93136/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-49696-30 MS	BH-4 (4.0')	Total/NA	Solid	8015NM Prep	
880-49696-30 MSD	BH-4 (4.0')	Total/NA	Solid	8015NM Prep	

Analysis Batch: 93206

LC3 000-93130/2-A	Lab Control Sample	TOLAI/INA	30110	ou i sinimi Fiep		
LCSD 880-93136/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep		8
880-49696-30 MS	BH-4 (4.0')	Total/NA	Solid	8015NM Prep		
880-49696-30 MSD	BH-4 (4.0')	Total/NA	Solid	8015NM Prep		9
Analysis Batch: 93206						10
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-49696-1	BH-1 (0-1.0')	Total/NA	Solid	8015B NM	93129	
880-49696-2	BH-1 (2.0')	Total/NA	Solid	8015B NM	93129	
MB 880-93129/1-A	Method Blank	Total/NA	Solid	8015B NM	93129	
LCS 880-93129/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	93129	
LCSD 880-93129/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	93129	4.0
880-49689-A-1-H MS	Matrix Spike	Total/NA	Solid	8015B NM	93129	13
880-49689-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	93129	
-						

Analysis Batch: 93281

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-49696-3	BH-1 (4.0')	Total/NA	Solid	8015B NM	93072
880-49696-4	BH-1 (6.0')	Total/NA	Solid	8015B NM	93072
880-49696-5	BH-1 (8.0')	Total/NA	Solid	8015B NM	93072
880-49696-6	BH-1 (10')	Total/NA	Solid	8015B NM	93072
880-49696-7	BH-1 (12')	Total/NA	Solid	8015B NM	93072
880-49696-8	BH-1 (14')	Total/NA	Solid	8015B NM	93072
880-49696-9	BH-2 (0-1.0')	Total/NA	Solid	8015B NM	93072
880-49696-10	BH-2 (2.0')	Total/NA	Solid	8015B NM	93134
880-49696-11	BH-2 (4.0')	Total/NA	Solid	8015B NM	93134
880-49696-12	BH-2 (6.0')	Total/NA	Solid	8015B NM	93134
880-49696-13	BH-2 (8.0')	Total/NA	Solid	8015B NM	93134
880-49696-14	BH-2 (10')	Total/NA	Solid	8015B NM	93134
880-49696-15	BH-2 (15')	Total/NA	Solid	8015B NM	93134
880-49696-16	BH-2 (20')	Total/NA	Solid	8015B NM	93134
880-49696-17	BH-2 (22')	Total/NA	Solid	8015B NM	93134
880-49696-18	BH-3 (0-1.0')	Total/NA	Solid	8015B NM	93134
880-49696-19	BH-3 (2.0')	Total/NA	Solid	8015B NM	93134
880-49696-20	BH-3 (4.0')	Total/NA	Solid	8015B NM	93134
880-49696-21	BH-3 (6.0')	Total/NA	Solid	8015B NM	93134
880-49696-22	BH-3 (8.0')	Total/NA	Solid	8015B NM	93134
880-49696-23	BH-3 (10')	Total/NA	Solid	8015B NM	93134
880-49696-24	BH-3 (15')	Total/NA	Solid	8015B NM	93134
880-49696-25	BH-3 (20')	Total/NA	Solid	8015B NM	93134
880-49696-26	BH-3 (22')	Total/NA	Solid	8015B NM	93134
880-49696-27	BH-4 (0-1.0')	Total/NA	Solid	8015B NM	93134
880-49696-28	BH-4 (2.0')	Total/NA	Solid	8015B NM	93134
880-49696-29	BH-4 (3.0')	Total/NA	Solid	8015B NM	93134
MB 880-93072/1-A	Method Blank	Total/NA	Solid	8015B NM	93072

Eurofins Midland

5

Job ID: 880-49696-1 SDG: Eddy County, NM

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

GC Semi VOA (Continued)

Analysis Batch: 93281 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-93134/1-A	Method Blank	Total/NA	Solid	8015B NM	93134
LCS 880-93072/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	93072
LCS 880-93134/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	93134
LCSD 880-93072/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	93072
LCSD 880-93134/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	93134
880-49682-A-41-B MS	Matrix Spike	Total/NA	Solid	8015B NM	93072
880-49682-A-41-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	93072
880-49696-10 MS	BH-2 (2.0')	Total/NA	Solid	8015B NM	93134
880-49696-10 MSD	BH-2 (2.0')	Total/NA	Solid	8015B NM	93134

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49696-30	BH-4 (4.0')	Total/NA	Solid	8015B NM	93136
880-49696-31	BH-4 (5.0')	Total/NA	Solid	8015B NM	93136
880-49696-32	BH-4 (6.0')	Total/NA	Solid	8015B NM	93136
880-49696-33	BH-5 (0-1.0')	Total/NA	Solid	8015B NM	93136
880-49696-34	BH-5 (5.0')	Total/NA	Solid	8015B NM	93136
880-49696-35	BH-5 (10')	Total/NA	Solid	8015B NM	93136
880-49696-36	BH-5 (15')	Total/NA	Solid	8015B NM	93136
880-49696-37	BH-5 (16')	Total/NA	Solid	8015B NM	93136
880-49696-38	BH-1 (16')	Total/NA	Solid	8015B NM	93136
880-49696-39	BH-2 (24')	Total/NA	Solid	8015B NM	93136
880-49696-40	BH- 3 (24')	Total/NA	Solid	8015B NM	93136
880-49696-41	BH-4 (8.0')	Total/NA	Solid	8015B NM	93136
880-49696-42	BH-5 (18')	Total/NA	Solid	8015B NM	93136
MB 880-93136/1-A	Method Blank	Total/NA	Solid	8015B NM	93136
LCS 880-93136/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	93136
LCSD 880-93136/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	93136
880-49696-30 MS	BH-4 (4.0')	Total/NA	Solid	8015B NM	93136
880-49696-30 MSD	BH-4 (4.0')	Total/NA	Solid	8015B NM	93136

Analysis Batch: 93380

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-49696-1	BH-1 (0-1.0')	Total/NA	Solid	8015 NM	
880-49696-2	BH-1 (2.0')	Total/NA	Solid	8015 NM	
880-49696-3	BH-1 (4.0')	Total/NA	Solid	8015 NM	
880-49696-4	BH-1 (6.0')	Total/NA	Solid	8015 NM	
880-49696-5	BH-1 (8.0')	Total/NA	Solid	8015 NM	
880-49696-6	BH-1 (10')	Total/NA	Solid	8015 NM	
880-49696-7	BH-1 (12')	Total/NA	Solid	8015 NM	
880-49696-8	BH-1 (14')	Total/NA	Solid	8015 NM	
880-49696-9	BH-2 (0-1.0')	Total/NA	Solid	8015 NM	
880-49696-10	BH-2 (2.0')	Total/NA	Solid	8015 NM	
880-49696-11	BH-2 (4.0')	Total/NA	Solid	8015 NM	
880-49696-12	BH-2 (6.0')	Total/NA	Solid	8015 NM	
880-49696-13	BH-2 (8.0')	Total/NA	Solid	8015 NM	
880-49696-14	BH-2 (10')	Total/NA	Solid	8015 NM	
880-49696-15	BH-2 (15')	Total/NA	Solid	8015 NM	
880-49696-16	BH-2 (20')	Total/NA	Solid	8015 NM	
880-49696-17	BH-2 (22')	Total/NA	Solid	8015 NM	
880-49696-18	BH-3 (0-1.0')	Total/NA	Solid	8015 NM	

Eurofins Midland

Page 268 of 354

Job ID: 880-49696-1 SDG: Eddy County, NM

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

GC Semi VOA (Continued)

Analysis Batch: 93380 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-49696-19	BH-3 (2.0')	Total/NA	Solid	8015 NM	
880-49696-20	BH-3 (4.0')	Total/NA	Solid	8015 NM	
880-49696-21	BH-3 (6.0')	Total/NA	Solid	8015 NM	
880-49696-22	BH-3 (8.0')	Total/NA	Solid	8015 NM	
880-49696-23	BH-3 (10')	Total/NA	Solid	8015 NM	
880-49696-24	BH-3 (15')	Total/NA	Solid	8015 NM	
880-49696-25	BH-3 (20')	Total/NA	Solid	8015 NM	
880-49696-26	BH-3 (22')	Total/NA	Solid	8015 NM	
880-49696-27	BH-4 (0-1.0')	Total/NA	Solid	8015 NM	
880-49696-28	BH-4 (2.0')	Total/NA	Solid	8015 NM	
880-49696-29	BH-4 (3.0')	Total/NA	Solid	8015 NM	
880-49696-30	BH-4 (4.0')	Total/NA	Solid	8015 NM	
880-49696-31	BH-4 (5.0')	Total/NA	Solid	8015 NM	
880-49696-32	BH-4 (6.0')	Total/NA	Solid	8015 NM	
880-49696-33	BH-5 (0-1.0')	Total/NA	Solid	8015 NM	
880-49696-34	BH-5 (5.0')	Total/NA	Solid	8015 NM	
880-49696-35	BH-5 (10')	Total/NA	Solid	8015 NM	
880-49696-36	BH-5 (15')	Total/NA	Solid	8015 NM	
880-49696-37	BH-5 (16')	Total/NA	Solid	8015 NM	
880-49696-38	BH-1 (16')	Total/NA	Solid	8015 NM	
880-49696-39	BH-2 (24')	Total/NA	Solid	8015 NM	
880-49696-40	BH- 3 (24')	Total/NA	Solid	8015 NM	
880-49696-41	BH-4 (8.0')	Total/NA	Solid	8015 NM	
880-49696-42	BH-5 (18')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 93147

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49696-1	BH-1 (0-1.0')	Soluble	Solid	DI Leach	
880-49696-2	BH-1 (2.0')	Soluble	Solid	DI Leach	
880-49696-3	BH-1 (4.0')	Soluble	Solid	DI Leach	
880-49696-4	BH-1 (6.0')	Soluble	Solid	DI Leach	
880-49696-5	BH-1 (8.0')	Soluble	Solid	DI Leach	
880-49696-6	BH-1 (10')	Soluble	Solid	DI Leach	
880-49696-7	BH-1 (12')	Soluble	Solid	DI Leach	
880-49696-8	BH-1 (14')	Soluble	Solid	DI Leach	
880-49696-9	BH-2 (0-1.0')	Soluble	Solid	DI Leach	
MB 880-93147/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-93147/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-93147/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-49696-1 MS	BH-1 (0-1.0')	Soluble	Solid	DI Leach	
880-49696-1 MSD	BH-1 (0-1.0')	Soluble	Solid	DI Leach	

Leach Batch: 93148

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49696-10	BH-2 (2.0')	Soluble	Solid	DI Leach	
880-49696-11	BH-2 (4.0')	Soluble	Solid	DI Leach	
880-49696-12	BH-2 (6.0')	Soluble	Solid	DI Leach	
880-49696-13	BH-2 (8.0')	Soluble	Solid	DI Leach	
880-49696-14	BH-2 (10')	Soluble	Solid	DI Leach	

Page 269 of 354

Job ID: 880-49696-1 SDG: Eddy County, NM

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

HPLC/IC (Continued)

Leach Batch: 93148 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49696-15	BH-2 (15')	Soluble	Solid	DI Leach	
880-49696-16	BH-2 (20')	Soluble	Solid	DI Leach	
880-49696-17	BH-2 (22')	Soluble	Solid	DI Leach	
880-49696-18	BH-3 (0-1.0')	Soluble	Solid	DI Leach	
880-49696-19	BH-3 (2.0')	Soluble	Solid	DI Leach	
880-49696-20	BH-3 (4.0')	Soluble	Solid	DI Leach	
880-49696-21	BH-3 (6.0')	Soluble	Solid	DI Leach	_
880-49696-22	BH-3 (8.0')	Soluble	Solid	DI Leach	8
880-49696-23	BH-3 (10')	Soluble	Solid	DI Leach	_
880-49696-24	BH-3 (15')	Soluble	Solid	DI Leach	9
880-49696-25	BH-3 (20')	Soluble	Solid	DI Leach	
880-49696-26	BH-3 (22')	Soluble	Solid	DI Leach	
880-49696-27	BH-4 (0-1.0')	Soluble	Solid	DI Leach	
880-49696-28	BH-4 (2.0')	Soluble	Solid	DI Leach	
880-49696-29	BH-4 (3.0')	Soluble	Solid	DI Leach	
MB 880-93148/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-93148/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-93148/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	4
880-49696-10 MS	BH-2 (2.0')	Soluble	Solid	DI Leach	
880-49696-10 MSD	BH-2 (2.0')	Soluble	Solid	DI Leach	
880-49696-20 MS	BH-3 (4.0')	Soluble	Solid	DI Leach	
880-49696-20 MSD	BH-3 (4.0')	Soluble	Solid	DI Leach	

Leach Batch: 93149

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49696-30	BH-4 (4.0')	Soluble	Solid	DI Leach	
880-49696-31	BH-4 (5.0')	Soluble	Solid	DI Leach	
880-49696-32	BH-4 (6.0')	Soluble	Solid	DI Leach	
880-49696-33	BH-5 (0-1.0')	Soluble	Solid	DI Leach	
880-49696-34	BH-5 (5.0')	Soluble	Solid	DI Leach	
880-49696-35	BH-5 (10')	Soluble	Solid	DI Leach	
880-49696-36	BH-5 (15')	Soluble	Solid	DI Leach	
880-49696-37	BH-5 (16')	Soluble	Solid	DI Leach	
880-49696-38	BH-1 (16')	Soluble	Solid	DI Leach	
880-49696-39	BH-2 (24')	Soluble	Solid	DI Leach	
880-49696-40	BH- 3 (24')	Soluble	Solid	DI Leach	
880-49696-41	BH-4 (8.0')	Soluble	Solid	DI Leach	
880-49696-42	BH-5 (18')	Soluble	Solid	DI Leach	
MB 880-93149/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-93149/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-93149/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-49696-30 MS	BH-4 (4.0')	Soluble	Solid	DI Leach	
880-49696-30 MSD	BH-4 (4.0')	Soluble	Solid	DI Leach	
880-49696-40 MS	BH- 3 (24')	Soluble	Solid	DI Leach	
880-49696-40 MSD	BH- 3 (24')	Soluble	Solid	DI Leach	

Analysis Batch: 93217

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-49696-1	BH-1 (0-1.0')	Soluble	Solid	300.0	93147
880-49696-2	BH-1 (2.0')	Soluble	Solid	300.0	93147
880-49696-3	BH-1 (4.0')	Soluble	Solid	300.0	93147

Eurofins Midland

Page 270 of 354

Job ID: 880-49696-1 SDG: Eddy County, NM

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Job ID: 880-49696-1 SDG: Eddy County, NM

HPLC/IC (Continued)

Analysis Batch: 93217 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49696-4	BH-1 (6.0')	Soluble	Solid	300.0	93147
880-49696-5	BH-1 (8.0')	Soluble	Solid	300.0	93147
880-49696-6	BH-1 (10')	Soluble	Solid	300.0	93147
880-49696-7	BH-1 (12')	Soluble	Solid	300.0	93147
880-49696-8	BH-1 (14')	Soluble	Solid	300.0	93147
880-49696-9	BH-2 (0-1.0')	Soluble	Solid	300.0	93147
MB 880-93147/1-A	Method Blank	Soluble	Solid	300.0	93147
LCS 880-93147/2-A	Lab Control Sample	Soluble	Solid	300.0	93147
LCSD 880-93147/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	93147
880-49696-1 MS	BH-1 (0-1.0')	Soluble	Solid	300.0	93147
880-49696-1 MSD	BH-1 (0-1.0')	Soluble	Solid	300.0	93147

Analysis Batch: 93221

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49696-10	BH-2 (2.0')	Soluble	Solid	300.0	93148
880-49696-11	BH-2 (4.0')	Soluble	Solid	300.0	93148
880-49696-12	BH-2 (6.0')	Soluble	Solid	300.0	93148
880-49696-13	BH-2 (8.0')	Soluble	Solid	300.0	93148
880-49696-14	BH-2 (10')	Soluble	Solid	300.0	93148
880-49696-15	BH-2 (15')	Soluble	Solid	300.0	93148
880-49696-16	BH-2 (20')	Soluble	Solid	300.0	93148
880-49696-17	BH-2 (22')	Soluble	Solid	300.0	93148
880-49696-18	BH-3 (0-1.0')	Soluble	Solid	300.0	93148
880-49696-19	BH-3 (2.0')	Soluble	Solid	300.0	93148
880-49696-20	BH-3 (4.0')	Soluble	Solid	300.0	93148
880-49696-21	BH-3 (6.0')	Soluble	Solid	300.0	93148
880-49696-22	BH-3 (8.0')	Soluble	Solid	300.0	93148
880-49696-23	BH-3 (10')	Soluble	Solid	300.0	93148
880-49696-24	BH-3 (15')	Soluble	Solid	300.0	93148
880-49696-25	BH-3 (20')	Soluble	Solid	300.0	93148
880-49696-26	BH-3 (22')	Soluble	Solid	300.0	93148
880-49696-27	BH-4 (0-1.0')	Soluble	Solid	300.0	93148
880-49696-28	BH-4 (2.0')	Soluble	Solid	300.0	93148
880-49696-29	BH-4 (3.0')	Soluble	Solid	300.0	93148
MB 880-93148/1-A	Method Blank	Soluble	Solid	300.0	93148
LCS 880-93148/2-A	Lab Control Sample	Soluble	Solid	300.0	93148
LCSD 880-93148/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	93148
880-49696-10 MS	BH-2 (2.0')	Soluble	Solid	300.0	93148
880-49696-10 MSD	BH-2 (2.0')	Soluble	Solid	300.0	93148
880-49696-20 MS	BH-3 (4.0')	Soluble	Solid	300.0	93148
880-49696-20 MSD	BH-3 (4.0')	Soluble	Solid	300.0	93148

Analysis Batch: 93243

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-49696-30	BH-4 (4.0')	Soluble	Solid	300.0	93149
880-49696-31	BH-4 (5.0')	Soluble	Solid	300.0	93149
880-49696-32	BH-4 (6.0')	Soluble	Solid	300.0	93149
880-49696-33	BH-5 (0-1.0')	Soluble	Solid	300.0	93149
880-49696-34	BH-5 (5.0')	Soluble	Solid	300.0	93149
880-49696-35	BH-5 (10')	Soluble	Solid	300.0	93149
880-49696-36	BH-5 (15')	Soluble	Solid	300.0	93149

Eurofins Midland

5 6

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

HPLC/IC (Continued)

Analysis Batch: 93243 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-49696-37	BH-5 (16')	Soluble	Solid	300.0	93149
880-49696-38	BH-1 (16')	Soluble	Solid	300.0	93149
880-49696-39	BH-2 (24')	Soluble	Solid	300.0	93149
880-49696-40	BH- 3 (24')	Soluble	Solid	300.0	93149
880-49696-41	BH-4 (8.0')	Soluble	Solid	300.0	93149
880-49696-42	BH-5 (18')	Soluble	Solid	300.0	93149
MB 880-93149/1-A	Method Blank	Soluble	Solid	300.0	93149
LCS 880-93149/2-A	Lab Control Sample	Soluble	Solid	300.0	93149
LCSD 880-93149/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	93149
880-49696-30 MS	BH-4 (4.0')	Soluble	Solid	300.0	93149
880-49696-30 MSD	BH-4 (4.0')	Soluble	Solid	300.0	93149
880-49696-40 MS	BH- 3 (24')	Soluble	Solid	300.0	93149
880-49696-40 MSD	BH- 3 (24')	Soluble	Solid	300.0	93149

10/16/2024

Page 272 of 354

5

Job ID: 880-49696-1

SDG: Eddy County, NM

Client Sample ID: BH-1 (0-1.0')

Project/Site: Yukon Gold 31-19 Fed Com 212H

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-1

Matrix: Solid

5 6

9

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	93138	10/11/24 16:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93174	10/14/24 12:54	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 12:54	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 16:26	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10.00 mL	93129	10/11/24 15:41	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93206	10/14/24 16:26	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	93147	10/11/24 16:44	SA	EET MID
Soluble	Analysis	300.0		50			93217	10/14/24 15:46	СН	EET MID

Lab Sample ID: 880-49696-2

Lab Sample ID: 880-49696-3

Lab Sample ID: 880-49696-4

Matrix: Solid

Matrix: Solid

Client Sample ID: BH-1 (2.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	93138	10/11/24 16:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93174	10/14/24 13:20	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 13:20	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 16:42	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10.00 mL	93129	10/11/24 15:41	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93206	10/14/24 16:42	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	93147	10/11/24 16:44	SA	EET MID
Soluble	Analysis	300.0		10			93217	10/14/24 16:07	СН	EET MID

Client Sample ID: BH-1 (4.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	93138	10/11/24 16:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93174	10/14/24 13:47	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 13:47	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/15/24 06:12	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10.00 mL	93072	10/11/24 12:35	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/15/24 06:12	ТКС	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	93147	10/11/24 16:44	SA	EET MID
Soluble	Analysis	300.0		10			93217	10/14/24 16:14	СН	EET MID

Client Sample ID: BH-1 (6.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	93138	10/11/24 16:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93174	10/14/24 14:13	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 14:13	SM	EET MID

Eurofins Midland

Matrix: Solid

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-4

Lab Sample ID: 880-49696-5

Matrix: Solid

Matrix: Solid

Client Sample ID: BH-1 (6.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			93380	10/15/24 06:26	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10.00 mL	93072	10/11/24 12:35	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/15/24 06:26	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	93147	10/11/24 16:44	SA	EET MID
Soluble	Analysis	300.0		20			93217	10/14/24 16:42	СН	EET MID

Client Sample ID: BH-1 (8.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	93138	10/11/24 16:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93174	10/14/24 14:39	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 14:39	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/15/24 06:42	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10.00 mL	93072	10/11/24 12:35	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/15/24 06:42	ткс	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	93147	10/11/24 16:44	SA	EET MID
Soluble	Analysis	300.0		10			93217	10/14/24 16:49	CH	EET MID

Client Sample ID: BH-1 (10')

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Batch Batch Dil Initial Final Batch Prepared Method Ргер Туре Туре Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 5.05 g 5 mL 93138 10/11/24 16:00 MNR EET MID Total/NA 8021B 5 mL 5 mL 93174 10/14/24 15:06 MNR EET MID Analysis 1 Total/NA Total BTEX Analysis 1 93327 10/14/24 15:06 SM EET MID Total/NA Analysis 8015 NM 93380 10/15/24 06:56 SM EET MID 1 93072 10/11/24 12:35 Total/NA Prep 8015NM Prep 10.01 g 10.00 mL EL EET MID Total/NA Analysis 8015B NM 1 uL 1 uL 93281 10/15/24 06:56 ткс EET MID 1 Soluble Leach DI Leach 5.03 g 50 mL 93147 10/11/24 16:44 SA EET MID Soluble Analysis 300.0 10 93217 10/14/24 16:56 СН EET MID

Client Sample ID: BH-1 (12') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	93138	10/11/24 16:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93174	10/14/24 15:32	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 15:32	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/15/24 07:11	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10.00 mL	93072	10/11/24 12:35	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/15/24 07:11	TKC	EET MID

Eurofins Midland

Lab Sample ID: 880-49696-6

Matrix: Solid

Lab Sample ID: 880-49696-7 Matrix: Solid

Matrix: Solid

Matrix: Solid

Job ID: 880-49696-1 SDG: Eddy County, NM

Client Sample ID: BH-1 (12') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.00 g	50 mL	93147	10/11/24 16:44	SA	EET MID
Soluble	Analysis	300.0		1			93217	10/14/24 17:02	СН	EET MID

Client Sample ID: BH-1 (14') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	93138	10/11/24 16:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93174	10/14/24 15:59	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 15:59	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/15/24 09:17	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10.00 mL	93072	10/11/24 12:35	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/15/24 09:17	TKC	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	93147	10/11/24 16:44	SA	EET MID
Soluble	Analysis	300.0		1			93217	10/14/24 17:09	СН	EET MID

Client Sample ID: BH-2 (0-1.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	93138	10/11/24 16:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93174	10/14/24 16:25	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 16:25	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/15/24 09:32	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10.00 mL	93072	10/11/24 12:35	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/15/24 09:32	ТКС	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	93147	10/11/24 16:44	SA	EET MID
Soluble	Analysis	300.0		50			93217	10/14/24 17:16	СН	EET MID

Client Sample ID: BH-2 (2.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Lab Sample ID: 880-49696-10 Matrix: Solid

Lab Sample ID: 880-49696-9

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	93138	10/11/24 16:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93174	10/14/24 16:52	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 16:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 18:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10.00 mL	93134	10/11/24 15:55	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/14/24 18:36	TKC	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	93148	10/11/24 16:49	SA	EET MID
Soluble	Analysis	300.0		10			93221	10/14/24 12:39	CH	EET MID

Eurofins Midland

 SDG. Eddy County, NM

 Lab Sample ID: 880-49696-7 Matrix: Solid

 Prepared

 or Analyzed

 O/11/24 16:44
 Analyst
 Lab

 D/11/24 16:44
 SA
 EET MID

 O/14/24 17:02
 CH
 EET MID

 Lab Sample ID: 880-49696-8
 7

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client: Carmona Resources

Client Sample ID: BH-2 (4.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Initial

Amount

5.02 g

5 mL

10.06 g

1 uL

Final

Amount

5 mL

5 mL

10.00 mL

1 uL

Batch

93138

93174

93327

93380

93134

93281

93148

93221

Number

Dil

1

1

1

1

Factor

Run

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-11

Analyst

MNR

MNR

SM

SM

FL

TKC

SA

СН

Prepared

or Analyzed

10/11/24 16:00

10/14/24 18:38

10/14/24 18:38

10/14/24 19:21

10/11/24 15:55

10/14/24 19:21

10/11/24 16:49

10/14/24 12:55

Matrix: Solid

Lab

EET MID

Matrix: Solid

5 9

Lab Sample ID: 880-49696-12 Matrix: Solid

Lab Sample ID: 880-49696-13

4.98 g 50 mL 10

Client Sample ID: BH-2 (6.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	93138	10/11/24 16:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93174	10/14/24 19:05	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 19:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 19:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10.00 mL	93134	10/11/24 15:55	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/14/24 19:35	TKC	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	93148	10/11/24 16:49	SA	EET MID
Soluble	Analysis	300.0		10			93221	10/14/24 13:00	СН	EET MID

Client Sample ID: BH-2 (8.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	93138	10/11/24 16:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93174	10/14/24 19:31	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 19:31	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 19:50	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10.00 mL	93134	10/11/24 15:55	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/14/24 19:50	ТКС	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	93148	10/11/24 16:49	SA	EET MID
Soluble	Analysis	300.0		5			93221	10/14/24 13:06	СН	EET MID

Client Sample ID: BH-2 (10') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	93138	10/11/24 16:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93174	10/14/24 19:58	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 19:58	SM	EET MID

Eurofins Midland

Lab Sample ID: 880-49696-14 Matrix: Solid

Client Sample ID: BH-2 (10') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			93380	10/14/24 20:05	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10.00 mL	93134	10/11/24 15:55	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/14/24 20:05	TKC	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	93148	10/11/24 16:49	SA	EET MID
Soluble	Analysis	300.0		1			93221	10/14/24 13:11	СН	EET MID

Client Sample ID: BH-2 (15') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	93138	10/11/24 16:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93174	10/14/24 20:24	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 20:24	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 20:21	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10.00 mL	93134	10/11/24 15:55	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/14/24 20:21	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	93148	10/11/24 16:49	SA	EET MID
Soluble	Analysis	300.0		10			93221	10/14/24 13:27	СН	EET MID

Client Sample ID: BH-2 (20')

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	93138	10/11/24 16:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93174	10/14/24 20:51	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 20:51	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 20:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10.00 mL	93134	10/11/24 15:55	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/14/24 20:35	ткс	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	93148	10/11/24 16:49	SA	EET MID
Soluble	Analysis	300.0		1			93221	10/14/24 13:33	СН	EET MID

Client Sample ID: BH-2 (22') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	93138	10/11/24 16:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93174	10/14/24 21:17	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 21:17	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 20:50	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.01 g 1 uL	10.00 mL 1 uL	93134 93281	10/11/24 15:55 10/14/24 20:50	EL TKC	EET MID EET MID

Eurofins Midland

Matrix: Solid

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-14

Lab Sample ID: 880-49696-15

Matrix: Solid

Matrix: Solid

Lab Sample ID: 880-49696-16 Matrix: Solid

Lab Sample ID: 880-49696-17

Matrix: Solid

Matrix: Solid

Matrix: Solid

9

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-17

Lab Sample ID: 880-49696-18

Lab Sample ID: 880-49696-19

Client Sample ID: BH-2 (22') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Client: Carmona Resources

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.96 g	50 mL	93148	10/11/24 16:49	SA	EET MID
Soluble	Analysis	300.0		1			93221	10/14/24 13:38	СН	EET MID

Client Sample ID: BH-3 (0-1.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	93138	10/11/24 16:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93174	10/14/24 21:44	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 21:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 21:05	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10.00 mL	93134	10/11/24 15:55	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/14/24 21:05	TKC	EET MID
Soluble	Leach	DI Leach			5.00 g	50 mL	93148	10/11/24 16:49	SA	EET MID
Soluble	Analysis	300.0		50			93221	10/14/24 13:44	СН	EET MID

Client Sample ID: BH-3 (2.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	93309	10/15/24 08:26	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93305	10/15/24 19:10	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/15/24 19:10	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 21:20	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10.00 mL	93134	10/11/24 15:55	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/14/24 21:20	TKC	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	93148	10/11/24 16:49	SA	EET MID
Soluble	Analysis	300.0		10			93221	10/14/24 13:49	CH	EET MID

Client Sample ID: BH-3 (4.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Lab Sample ID: 880-49696-20 Matrix: Solid

Batch Dil Initial Final Batch Batch Prepared Prep Type Method Run Factor Amount Amount Number or Analyzed Analyst Туре Lab 5035 Total/NA Prep 5.05 g 5 mL 93138 10/11/24 16:00 MNR EET MID Total/NA Analysis 8021B 1 5 mL 5 mL 93174 10/14/24 22:36 MNR EET MID Total/NA Total BTEX 10/14/24 22:36 SM Analysis 93327 EET MID 1 Total/NA Analysis 8015 NM 1 93380 10/14/24 21:51 SM EET MID Total/NA 93134 Prep 8015NM Prep 10.07 g 10.00 mL 10/11/24 15:55 EL EET MID Total/NA Analysis 8015B NM 1 1 uL 1 uL 93281 10/14/24 21:51 TKC EET MID Soluble DI Leach 50 mL 93148 10/11/24 16:49 SA EET MID Leach 4.95 g Soluble Analysis 300.0 10 93221 10/14/24 13:54 СН EET MID

Eurofins Midland

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-21

Matrix: Solid

5 6

9

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Client Sample ID: BH-3 (6.0')

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	93139	10/11/24 16:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93173	10/14/24 12:10	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 12:10	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 22:05	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10.00 mL	93134	10/11/24 15:55	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/14/24 22:05	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	93148	10/11/24 16:49	SA	EET MID
Soluble	Analysis	300.0		10			93221	10/14/24 14:11	СН	EET MID

Lab Sample ID: 880-49696-22

Lab Sample ID: 880-49696-23

Lab Sample ID: 880-49696-24

Matrix: Solid

Matrix: Solid

Client Sample ID: BH-3 (8.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	93139	10/11/24 16:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93173	10/14/24 12:30	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 12:30	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 22:21	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10.00 mL	93134	10/11/24 15:55	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/14/24 22:21	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	93148	10/11/24 16:49	SA	EET MID
Soluble	Analysis	300.0		10			93221	10/14/24 14:16	СН	EET MID

Client Sample ID: BH-3 (10') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	93139	10/11/24 16:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93173	10/14/24 12:51	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 12:51	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 22:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10.00 mL	93134	10/11/24 15:55	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/14/24 22:35	ТКС	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	93148	10/11/24 16:49	SA	EET MID
Soluble	Analysis	300.0		10			93221	10/14/24 14:32	СН	EET MID

Client Sample ID: BH-3 (15') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	93139	10/11/24 16:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93173	10/14/24 13:11	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 13:11	SM	EET MID

Eurofins Midland

Released to Imaging: 7/7/2025 9:20:25 AM

Matrix: Solid

Client Sample ID: BH-3 (15') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			93380	10/14/24 22:50	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10.00 mL	93134	10/11/24 15:55	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/14/24 22:50	ТКС	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	93148	10/11/24 16:49	SA	EET MID
Soluble	Analysis	300.0		5			93221	10/14/24 14:38	СН	EET MID

Client Sample ID: BH-3 (20') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	93139	10/11/24 16:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93173	10/14/24 13:32	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 13:32	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 23:05	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10.00 mL	93134	10/11/24 15:55	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/14/24 23:05	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	93148	10/11/24 16:49	SA	EET MID
Soluble	Analysis	300.0		1			93221	10/14/24 14:43	СН	EET MID

Client Sample ID: BH-3 (22')

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	93139	10/11/24 16:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93173	10/14/24 13:52	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 13:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 23:19	SM	EET MID
Total/NA	Prep	8015NM Prep			10.07 g	10.00 mL	93134	10/11/24 15:55	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/14/24 23:19	TKC	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	93148	10/11/24 16:49	SA	EET MID
Soluble	Analysis	300.0		1			93221	10/14/24 14:49	CH	EET MID

Client Sample ID: BH-4 (0-1.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	93139	10/11/24 16:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93173	10/14/24 14:13	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 14:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 23:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10.00 mL	93134	10/11/24 15:55	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/14/24 23:35	TKC	EET MID

Eurofins Midland

Matrix: Solid

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-24

Lab Sample ID: 880-49696-25

Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Sample ID: 880-49696-27

Lab Sample ID: 880-49696-26

Matrix: Solid

Matrix: Solid

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-28

Lab Sample ID: 880-49696-29

Client Sample ID: BH-4 (0-1.0') Date Collected: 10/10/24 00:00

Project/Site: Yukon Gold 31-19 Fed Com 212H

Date Received: 10/11/24 14:05

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.99 g	50 mL	93148	10/11/24 16:49	SA	EET MID
Soluble	Analysis	300.0		20			93221	10/14/24 14:54	СН	EET MID

Client Sample ID: BH-4 (2.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	93139	10/11/24 16:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93173	10/14/24 14:33	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 14:33	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 23:49	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10.00 mL	93134	10/11/24 15:55	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/14/24 23:49	TKC	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	93148	10/11/24 16:49	SA	EET MID
Soluble	Analysis	300.0		10			93221	10/14/24 14:59	СН	EET MID

Client Sample ID: BH-4 (3.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	93139	10/11/24 16:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93173	10/14/24 14:54	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 14:54	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/15/24 00:04	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10.00 mL	93134	10/11/24 15:55	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93281	10/15/24 00:04	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	93148	10/11/24 16:49	SA	EET MID
Soluble	Analysis	300.0		5			93221	10/14/24 15:05	CH	EET MID

Client Sample ID: BH-4 (4.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Lab Sample ID: 880-49696-30 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	93139	10/11/24 16:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93173	10/14/24 15:14	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 15:14	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 18:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10.00 mL	93136	10/11/24 15:58	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93283	10/14/24 18:36	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	93149	10/11/24 16:54	SA	EET MID
Soluble	Analysis	300.0		5			93243	10/14/24 15:48	СН	EET MID

Eurofins Midland

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client: Carmona Resources

Client Sample ID: BH-4 (5.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Initial

Amount

5.02 g

5 mL

10.02 g

1 uL

5.02 g

Final

Amount

5 mL

5 mL

10.00 mL

1 uL

50 mL

Batch

93139

93173

93327

93380

93136

93283

93149

93243

Number

Dil

1

1

1

1

5

Factor

Run

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-31

Analyst

MNR

MNR

SM

SM

FL

TKC

SA

СН

Lab Sample ID: 880-49696-32

Lab Sample ID: 880-49696-33

Lab Sample ID: 880-49696-34

Prepared

or Analyzed

10/11/24 16:02

10/14/24 16:49

10/14/24 16:49

10/14/24 19:21

10/11/24 15:58

10/14/24 19:21

10/11/24 16:54

10/14/24 16:04

Matrix: Solid

Lab

EET MID

Matrix: Solid

Matrix: Solid

Client Sample ID: BH-4 (6.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	93139	10/11/24 16:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93173	10/14/24 17:10	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 17:10	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 19:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10.00 mL	93136	10/11/24 15:58	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93283	10/14/24 19:35	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	93149	10/11/24 16:54	SA	EET MID
Soluble	Analysis	300.0		1			93243	10/14/24 16:10	СН	EET MID

Client Sample ID: BH-5 (0-1.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	93139	10/11/24 16:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93173	10/14/24 17:30	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 17:30	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 19:50	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10.00 mL	93136	10/11/24 15:58	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93283	10/14/24 19:50	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	93149	10/11/24 16:54	SA	EET MID
Soluble	Analysis	300.0		50			93243	10/14/24 16:15	CH	EET MID

Client Sample ID: BH-5 (5.0') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Released to Imaging: 7/7/2025 9:20:25 AM

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	93139	10/11/24 16:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93173	10/14/24 17:51	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 17:51	SM	EET MID

Eurofins Midland

Matrix: Solid

Leach

Analysis

DI Leach

300.0

Date Received: 10/11/24 14:05

Soluble

Soluble

	Batch	Batch		Dil	Initial	Final	Batch	Prepared	
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst
Total/NA	Analysis	8015 NM		1			93380	10/14/24 20:05	SM
Total/NA	Prep	8015NM Prep			10.01 g	10.00 mL	93136	10/11/24 15:58	EL
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93283	10/14/24 20:05	TKC

1

Client Sample ID: BH-5 (10') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	93139	10/11/24 16:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93173	10/14/24 18:11	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 18:11	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 20:21	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10.00 mL	93136	10/11/24 15:58	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93283	10/14/24 20:21	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	93149	10/11/24 16:54	SA	EET MID
Soluble	Analysis	300.0		1			93243	10/14/24 16:37	CH	EET MID

4.95 g

50 mL

93149

93243

10/11/24 16:54

10/14/24 16:20

Client Sample ID: BH-5 (15')

Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	93139	10/11/24 16:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93173	10/14/24 18:32	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 18:32	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 20:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10.00 mL	93136	10/11/24 15:58	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93283	10/14/24 20:35	ткс	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	93149	10/11/24 16:54	SA	EET MID
Soluble	Analysis	300.0		1			93243	10/14/24 16:42	CH	EET MID

Client Sample ID: BH-5 (16') Date Collected: 10/10/24 00:00

Date Received:	10/11/24 14:0	5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	93139	10/11/24 16:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93173	10/14/24 18:52	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 18:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 20:50	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10.00 mL	93136	10/11/24 15:58	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93283	10/14/24 20:50	ткс	EET MID

Eurofins Midland

Page 283 of 354

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-34

SA

СН

Lab Sample ID: 880-49696-35

Matrix: Solid

Lab

EET MID EET MID EET MID

EET MID

EET MID

Matrix: Solid

Lab Sample ID: 880-49696-36

Matrix: Solid

Lab Sample ID: 880-49696-37 Matrix: Solid

Lab Chronicle

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-37

Lab Sample ID: 880-49696-38

Lab Sample ID: 880-49696-39

Client Sample ID: BH-5 (16') Date Collected: 10/10/24 00:00

Client: Carmona Resources

Date	Rece	ived: 10/11/24	14:05				
		Batch	Batch		Dil	Initial	Fina
-	-	-		-			-

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.03 g	50 mL	93149	10/11/24 16:54	SA	EET MID
Soluble	Analysis	300.0		1			93243	10/14/24 16:47	CH	EET MID

Client Sample ID: BH-1 (16') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	93139	10/11/24 16:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93173	10/14/24 19:13	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 19:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 21:05	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10.00 mL	93136	10/11/24 15:58	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93283	10/14/24 21:05	ТКС	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	93149	10/11/24 16:54	SA	EET MID
Soluble	Analysis	300.0		1			93243	10/14/24 16:53	СН	EET MID

Client Sample ID: BH-2 (24') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	93139	10/11/24 16:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93173	10/14/24 19:33	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 19:33	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 21:20	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10.00 mL	93136	10/11/24 15:58	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93283	10/14/24 21:20	TKC	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	93149	10/11/24 16:54	SA	EET MID
Soluble	Analysis	300.0		1			93243	10/14/24 16:58	СН	EET MID

Client Sample ID: BH-3 (24') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

Lab Sample ID: 880-49696-40 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	93139	10/11/24 16:02	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93173	10/14/24 19:54	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 19:54	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 21:51	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10.00 mL	93136	10/11/24 15:58	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93283	10/14/24 21:51	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	93149	10/11/24 16:54	SA	EET MID
Soluble	Analysis	300.0		1			93243	10/14/24 17:04	CH	EET MID

Eurofins Midland

Matrix: Solid

Matrix: Solid

Matrix: Solid

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client: Carmona Resources

Client Sample ID: BH-4 (8.0') Date Collected: 10/10/24 00:00

Date Received: 10/11/24 14:05

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Initial

Amount

4.98 g

5 mL

10.02 g

1 uL

5.02 g

Final

Amount

5 mL

5 mL

10.00 mL

1 uL

50 mL

Batch

93140

93171

93327

93380

93136

93283

93149

93243

Number

Dil

1

1

1

1

1

Factor

Run

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID: 880-49696-41

Analyst

MNR

MNR

SM

SM

EL

TKC

SA

СН

Prepared

or Analyzed

10/11/24 16:04

10/14/24 12:02

10/14/24 12:02

10/14/24 22:05

10/11/24 15:58

10/14/24 22:05

10/11/24 16:54

10/14/24 17:20

Matrix: Solid

Lab

EET MID

5 9

Lab Sample ID: 880-49696-42 Matrix: Solid

Client Sample ID: BH-5 (18') Date Collected: 10/10/24 00:00 Date Received: 10/11/24 14:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	93140	10/11/24 16:04	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	93171	10/14/24 12:22	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			93327	10/14/24 12:22	SM	EET MID
Total/NA	Analysis	8015 NM		1			93380	10/14/24 22:21	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10.00 mL	93136	10/11/24 15:58	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	93283	10/14/24 22:21	TKC	EET MID
Soluble	Leach	DI Leach			5.00 g	50 mL	93149	10/11/24 16:54	SA	EET MID
Soluble	Analysis	300.0		1			93243	10/14/24 17:25	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-49696-1 SDG: Eddy County, NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	ım	Identification Number	Expiration Date
exas	NELAF)	T104704400	06-30-25
The following analyte	es are included in this report, but	t the laboratory is not certif	fied by the governing authority. This lis	t mav include analvtes
for which the agency	does not offer certification.			
for which the agency Analysis Method		Matrix	Analyte	
for which the agency	does not offer certification.			

Eurofins Midland

10/16/2024

Method Summary

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Job ID: 880-49696-1 SDG: Eddy County, NM

Method	Method Description	Protocol	Laboratory			
8021B	Volatile Organic Compounds (GC)	SW846	EET MID			
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID			
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID			
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID			
300.0	Anions, Ion Chromatography	EPA	EET MID			
5035	Closed System Purge and Trap	SW846	EET MID			
8015NM Prep	Microextraction	SW846	EET MID			
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID			
EPA = US	STM International Environmental Protection Agency "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Ει	tition November 1086 And Its Undates				
	= TestAmerica Laboratories, Standard Operating Procedure	anion, november 1900 And its opuales.				
Laboratory References:						
EET MID	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440					

Laboratory References:

Eurofins Midland

Sample Summary

Client: Carmona Resources Project/Site: Yukon Gold 31-19 Fed Com 212H

Page	<i>288</i>	oj	f 354
------	------------	----	-------

Job ID: 880-49696-1 SDG: Eddy County, NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
880-49696-1	BH-1 (0-1.0')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-2	BH-1 (2.0')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-3	BH-1 (4.0')	Solid	10/10/24 00:00	10/11/24 14:05	
880-49696-4	BH-1 (6.0')	Solid	10/10/24 00:00	10/11/24 14:05	
880-49696-5	BH-1 (8.0')	Solid	10/10/24 00:00	10/11/24 14:05	
880-49696-6	BH-1 (10')	Solid	10/10/24 00:00	10/11/24 14:05	
880-49696-7	BH-1 (12')	Solid	10/10/24 00:00	10/11/24 14:05	
880-49696-8	BH-1 (14')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-9	BH-2 (0-1.0')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-10	BH-2 (2.0')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-11	BH-2 (4.0')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-12	BH-2 (6.0')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-13	BH-2 (8.0')	Solid	10/10/24 00:00	10/11/24 14:05	
880-49696-14	BH-2 (10')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-15	BH-2 (15')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-16	BH-2 (20')	Solid	10/10/24 00:00	10/11/24 14:05	
880-49696-17	BH-2 (22')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-18	BH-3 (0-1.0')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-19	BH-3 (2.0')	Solid	10/10/24 00:00	10/11/24 14:05	
880-49696-20	BH-3 (4.0')	Solid	10/10/24 00:00	10/11/24 14:05	
880-49696-21	BH-3 (6.0')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-22	BH-3 (8.0')	Solid	10/10/24 00:00	10/11/24 14:05	
880-49696-23	BH-3 (10')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-24	BH-3 (15')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-25	BH-3 (20')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-26	BH-3 (22')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-27	BH-4 (0-1.0')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-28	BH-4 (2.0')	Solid	10/10/24 00:00	10/11/24 14:05	
880-49696-29	BH-4 (3.0')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-30	BH-4 (4.0')	Solid	10/10/24 00:00	10/11/24 14:05	
880-49696-31	BH-4 (5.0')	Solid	10/10/24 00:00	10/11/24 14:05	
880-49696-32	BH-4 (6.0')	Solid	10/10/24 00:00	10/11/24 14:05	
880-49696-33	BH-5 (0-1.0')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-34	BH-5 (5.0')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-35	BH-5 (10')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-36	BH-5 (15')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-37	BH-5 (16')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-38	BH-1 (16')	Solid	10/10/24 00:00	10/11/24 14:05	
380-49696-39	BH-2 (24')	Solid	10/10/24 00:00	10/11/24 14:05	
880-49696-40	BH- 3 (24')	Solid	10/10/24 00:00	10/11/24 14:05	
880-49696-41	BH-4 (8.0')	Solid	10/10/24 00:00	10/11/24 14:05	
880-49696-42	BH-5 (18')	Solid	10/10/24 00:00	10/11/24 14:05	

											_				_	_							1 ayu	
Project Manager:	Ashtor	n Thielke				Bill to: (if d	different)		Carmo	ona Re	sourc	es								Wo	rk Or	rder (Comments	
Company Name:	Carmo	na Resou	urces			Company	/ Name:										Progra	am: US	ST/PS		RP 🗌	Brow	nfields 🗌 RRC	Buperfund
Address:	310 W	est Wall	Ste. 500			Address:											State							
City, State ZIP:	Midlan	d, TX 797	701			City, State	e ZIP:										Report	ting:Le	vel II [Lev	el III [PST		
Phone:		13-8988			Email:	thielkea(@carmo	naresou	rces.c	om							Delive	rables:	EDD		A	ADaP	T Other:	
Project Name:	Yuko	on Gold 3	1-19 Fed Con	m 212H	Turr	n Around								ANAL	YSIS F	REQ	UEST						Preserva	tive Codes
Project Number:			2539		Routine	Rush		Pres. Code					T										None: NO	DI Water: H ₂ O
Project Location		Eddy	County, NM		Due Date:	Nor	mal	Coue															Cool: Cool	MeOH: Me
Sampler's Name:		Lucy	IR							MRO)		6											HCL: HC	HNO3: HN
PO #:						\cap		2		1 + 1													H₂S0₄: H₂	NaOH: Na
SAMPLE RECEI	IPT	Тер	p Blank:	Yes No	Wet Ice:	Yes	No	Parameters	m	DRO	300.0												H₃PO₄: HP	
Received Intact:		Yes	No	Thermome	eter ID:	TRS	5	Iran	802	ō	le 3											НОГР	NaHSO₄: NABIS	\$
Cooler Custody Seal	IS:	Yes	No N/A	Correction	a Factor:	- 1		P	BTEX 8021B	GRO	Chloride											¥	Na ₂ S ₂ O ₃ : NaSO	3
Sample Custody Sea		Yes			ure Reading:	4	1.2		6	5M (ਲ												Zn Acetate+NaC)H: Zn
Total Containers:				Corrected	Temperature:	- 0	1.3	1 /		801													NaOH+Ascorbic	Acid: SAPC
Sample Ider	ntificatio	on	Date	Time	Soil	Water	Grab/ Comp	# of Cont		ΗdΤ													Sample C	Comments
BH-1 (0)-1.0')		10/10/2024		X		G	1	Х	X	Х													
BH-1 ((2.0')		10/10/2024		Х		G	1	X	Х	Х													
BH-1 ((4.0')		10/10/2024		Х		G	1	X	Х	Х													
BH-1 ((6.0')		10/10/2024		X		G	1	X	Х	х								_					
BH-1 ((8.0')		10/10/2024		Х	<u> </u>	G	1	Х	Х	Х													
BH-1 ((10')		10/10/2024		X		G	1	Х	Х	Х													
BH-1 ((12')		10/10/2024		Х	<u> '</u>	G	1	Х	X	Х				_									
BH-1 ((14')		10/10/2024		х		G	1	Х	Х	X													
BH-2 (0)-1.0')		10/10/2024		Х		G	1	Х	X	X													
BH-2 ((2.0')		10/10/2024		Х		G	1	X	Х	Х													
				Please s	send results t	to cmoel	nring@c	armona	iresou	urces.	.com	and r	ncarm	nona@)carm	ona	resou	rces.c	om					

Received by: (Signature) Date/Time Relinquished by: (Signature) Received by: (Signature) Date/Time Relinquished by: (Signature) 10/11/14 1425 2 6

Revised Date 05012020 Rev. 2020.1

Received by OCD: 5/13/2025 11:42:19 AM

Work Order No: ____

694

Project Manager:	Ashto	n Thielke				Bill to: (if	different)		Carm	ona R	esourc	es								Work	Orde	er Co	mments		of <u>5</u>
Company Name:	-	ona Reso							Carm		esourc	63				-	Deserve					-			uperfund [
Address:		est Wall				Company Address:	iname.	-	-								State of				Lbr	UWIII		ոս լթե	periana [
							710		-											l evel		PST/U	ятП та	RP 🗌	Level IV
City, State ZIP:		nd, TX 79	701			City, Stat						-				-	Delivera			_		DaPT [_	ner:	
Phone:	432-8	13-8988		-	Email:	thielkea	@carmo	naresou	irces.	com		_	_	_			Delivera	Dies.						lei.	
Project Name:	Yuk	on Gold 3	31-19 Fed Co	m 212H	Turr	Around		Pres.				_	1	ANAL	YSIS	REC	UEST			_			Prese	rvative (odes
Project Number:			2539		Routine	Rush		Code														N	one: NO	DIV	Vater: H ₂ O
Project Location		Eddy	County, NM		Due Date:	Nor	mal				· .											C	ool: Cool	Me	OH: Me
Sampler's Name:			IR							ARO												н	CL: HC	HNG	O₃: HN
PO #:								S		+												H,	₂ S0 ₄ : H ₂	Nac	DH: Na
SAMPLE RECE	IPT	Tem	p Blank:	Yes No	Wet Ice:	Yes	No	nete	e	DK DK	0.0												₃PO₄: HP		
Received Intact:		Ye	s No	Thermome	eter ID:			Parameters	802	ģ	de 3												aHSO₄: NA	BIS	
Cooler Custody Sea		Yes		Correction				à	BTEX 8021B	TPH 8015M (GRO + DRO + MRO)	Chloride 300.0										1		a ₂ S ₂ O ₃ : Na		
Sample Custody Se	als:	Yes	No N/A	<u> </u>	ure Reading:				a a	15M	ð												h Acetate+		
Fotal Containers:				Corrected	Temperature:					H 80												N	aOH+Asco	rbic Acid:	SAPC
Sample Ide	ntificatio	on	Date	Time	Soil	Water	Grab/ Comp	# of Cont		TPI													Samp	le Comr	nents
BH-2	(4.0')		10/10/2024		Х		G	1	X	Х	Х									_					
BH-2	(6.0')		10/10/2024		Х		G	1	X	Х	X														
BH-2	(8.0')		10/10/2024		Х		G	1	X	Х	X														
BH-2	(10')		10/10/2024		Х		G	1	Х	Х	Х														
BH-2	(15')		10/10/2024		Х		G	1	X	Х	Х														
BH-2	(20')		10/10/2024		Х		G	1	X	Х	X														
BH-2	(22')		10/10/2024		X		G	1	X	Х	Х														
BH-3 (0)-1.0')		10/10/2024		Х		G	1	X	Х	Х														
BH-3	(2.0')		10/10/2024		Х		G	1	X	Х	Х														
BH-3	(4.0')		10/10/2024		Х		G	1	X	Х	Х														
				Please s	end results t	o cmoel	nring@c	armona	resou	Irces	.com	and m	ncarm	ona@)carm	ona	resourc	es.co	m						
																		-							
											_														
Relinquished b	y: (Sign	ature)		Received	d by: (Signatu	ire)			Date/1			Rel	inquis	hed b	y: (Sig	gnati	ure)	Re	eceive	d by:	(Signa	ature)		Date/	Time
Co-	1-	~~	\cap	1H				10 11	du		105	2													
				Y							/	4													
)								6						2							
																							Revis	ed Date 0501	2020 Rev. 2020.
													ည်										1		

Page 290 of 354

Released to Imaging: 7/7/2025 9:20:25 AM

Work Order No: ____

694

Project Manager:	Ashtor	n Thielke				Bill to: (if a	different)		Carm	ona Re	esource	es								Worl	(Or	der C	Comments	
Company Name:	Carmo	na Reso	urces			Company	Name:									F	Progra	m: US1	r/PST	PRF	Þ	Browi	nfields 🗌 R	RC Buper
Address:	310 W	est Wall	Ste. 500			Address:											State o	f Proje	ct:					
City, State ZIP:		id, TX 79				City, Stat	te ZIP:										Reporti	ng:Lev	el II 🗌	Level	III []PST		RP 🗌 Leve
Phone:		13-8988			Email	thielkea		naresou	irces.	com			200			0	Delivera	ables:	EDD		A	ADaPT	r 🗆 🛛 Oti	her:
	-	_				n Around							,				IEST	-					Proso	rvative Cod
Project Name:	TUK	on Gold 3	31-19 Fed Cor					Pres.	-				-í					Т			Т		None: NO	DI Wate
Project Number:	-	5.11	2539	_		1		Code				_		- +	-	+	-		-			_	Cool: Cool	MeOH: I
Project Location		Eddy	County, NM IR		Due Date:	Nor	mai			õ													HCL: HC	HNO3: H
Sampler's Name: PO #:		_	IR							RA I													H0L: H0 H ₂ S0 ₄ : H ₂	NaOH: I
SAMPLE RECE		Terr	np Blank:	Yes No	Wet Ice:	Ves	No	eters	6	S.	0.												H₃PO₄: HP	
Received Intact:		Ye		Thermom				Parameters	BTEX 8021B	TPH 8015M (GRO + DRO + MRO)	Chloride 300.0											- 1	NaHSO₄: N⁄	ABIS
Cooler Custody Seal	Is:		No N/A	Correction		1		Pa	Ě	GR	orid												Na ₂ S ₂ O ₃ : Na	
Sample Custody Sea		Yes			ture Reading:				6	5M (÷												Zn Acetate+	
Total Containers:				Corrected	Temperature:					801			1										NaOH+Asco	orbic Acid: SA
Sample Ider	ntificatio	on	Date	Time	Soil	Water	Grab/ Comp	# of Cont		Н													Samp	le Commen
BH-3 ((6.0')		10/10/2024		X		G	1	X	X	X													
BH-3 ((8.0')		10/10/2024		X		G	1	X	X	X													
BH-3	(10')		10/10/2024		X		G	1	X	X	X													
BH-3	(15')		10/10/2024		X		G	1	X	X	Х													
BH-3	(20')		10/10/2024		X		G	1	X	X	Х													
BH-3	(22')		10/10/2024		Х		G	1	X	X	X													
BH-4 (0)-1.0')		10/10/2024		Х		G	1	X	X	X					$ \rightarrow $		_						
BH-4 ((2.0')		10/10/2024		X		G	1	X	X	X					\downarrow		_		_			ļ	
BH-4 ((3.0')		10/10/2024		X		G	1	X	X	X		_					_		_				
BH-4 ((4.0')		10/10/2024		X		G	1	X	X	X													
				Please s	send results	to cmoel	hring@c	armona	areso	urces	.com	and m	ncarm	ona@	carmo	nar	esour	ces.co	om					
																	_	_						
Delinguished b	(Ciar	(atura)		Ressiud	d by: (Signat				Date/	Time		Re	inquis	hed h	y: (Sigr	natu	re)	R	eceiv	ed by:	(Sig	inatu	re)	Date/Tim
Relinquished b				Redeive	d by: (Signat			1011			10	2	inquis		. (oigi	·····			50010	y .	(0.9		-/	
n'	/	~		IN	$\rightarrow -$		~	In	10-1	10	10	4					-+		_				<u> </u>	
J			T	4							_	- 6							_		-			
3				1								v												the second s

Page 291 of 354

Released to Imaging: 7/7/2025 9:20:25 AM

Work Order No: _______

Project Manager:	Ashton	Thielke				Bill to: (if	different)		Carm	ona Re	esource	es							Work	< Ord	ler C	Comments	
Company Name:	Carmo	na Reso	ources			Company	Name:									Progra	am: U	ST/PST		• B	rowr	nfields 🗌 Rí	RCsuperfur
Address:			Ste. 500			Address:										State	of Pro	ject:					
City, State ZIP:		d, TX 79				City, Stat										Report	ting:Le	vel II	Level	HI 🗆	PST		RP 🗌 Level I
Phone:		3-8988			Email	thielkea		naresou	irces c	om						Delive	rables	EDD		AD	DaPT	T Oth	ier:
				04011			Joanno				_				DEC	UEST						Proso	rvative Codes
Project Name:	Тико	n Gola	31-19 Fed Cor	n 212H	I ur ☑ Routine	n Around		Pres.							NEC		1	Т		—		None: NO	DI Water:
Project Number:			2539			Т		Code	-			-	-	+	_			-				Cool: Cool	MeOH: Me
Project Location		Eddy	y County, NM		Due Date:	Nor	mal			ô												HCL: HC	HNO ₃ : HN
Sampler's Name:			IR	_	4					MRO)								-			I	H ₂ S0 ₄ : H ₂	NaOH: Na
90 #: SAMPLE RECE		Tee	np Blank:	Yes No	Wet Ice:	Vac	No	Parameters		TPH 8015M (GRO + DRO +	0											H₃PO₄: HP	
Received Intact:	11-1		es No	Thermom	L	Tes	NO	ame	0211		9 300.0											NaHSO₄: NA	BIS
Cooler Custody Sea	als:	Yes		Correction		-	-	Par	BTEX 8021B	GRO	Chloride										0 1	Na ₂ S ₂ O ₃ : Na	
Sample Custody Se		Yes			ure Reading:				BT	SM (U U U											Zn Acetate+	
Total Containers:					Temperature:					801												NaOH+Asco	orbic Acid: SAP
Sample Ide	entificatio	on	Date	Time	Soil	Water	Grab/ Comp	# of Cont		HdT												Samp	le Comments
BH-4	(5.0')		10/10/2024		X		G	1	X	Х	Х												
BH-4	(6.0')		10/10/2024		X		G	1	X	Х	X												_
BH-5 (0-1.0')		10/10/2024		Х		G	1	X	Х	Х												
BH-5	(5.0')		10/10/2024		Х		G	1	X	Х	Х												
BH-5	(10')		10/10/2024		Х		G	1	Х	Х	Х											<u> </u>	
BH-5	(15')		10/10/2024		Х		G	1	X	Х	Х									\rightarrow			
BH-5	(16')		10/10/2024		Х		G	1	X	Х	X								_			L	
- BH-1	(16')		10/10/2024		Х		G	1	X	X	Х										Х		*HOLD*
BH-2	(24')		10/10/2024		X		G	1	X	X	Х									_	Х		*HOLD*
BH-3	(24')		10/10/2024		X		G	1	X	X	Х										Х	L	*HOLD*
				Please s	send results	to cmoe	hring@c	armona	areso	urces	.com	and mca	armona	a@carn	nona	aresou	rces.	com					
									_							_		_					
										_					_								
Relinguished I	w /Sign	atura)		Receive	ed by: (Signat	ture)			Date/	Time		Reline	nuisheo	by: (Si	igna	ture)		Receiv	ed by:	(Sigr	natu	ire)	Date/Time
	by. (Sign		-	Therefye					1A		405		12.01100		3							-	
10:	-	~	f	>pa			_	1101	p	1 1		4		-			-			_			
						_						6		_	_				_				

Received by OCD: 5/13/2025 11:42:19 AM

Work Order No:

Project Manager:	Ashtor	n Thielke				Bill to: (if	different)		Carm	ona Re	esource	es						W	ork Or	der	Comments	
						Company			00	ond re	5000.0		-		1	Program	UST			Brow	nfields 🗍 F	RRC Buperfur
Company Name:		ona Reso /est Wall				Address:							_	_	1	State of I			ப			Crapella
Address:								-							1		-		vel III [PST		RRP 🗌 Level I
City, State ZIP:		nd, TX 79	701		_	City, Stat					-	_		-		Deliverab		_		ADaP	_	ther:
Phone:	432-8	13-8988			Email	thielkea	@carmo	naresou	rces.c	com	_				1	Denveras						
Project Name:	Yuk	on Gold 3	31-19 Fed Co	m 212H	Tur	n Around		Pres.				-	ANA	YSIS R	EQ	UEST	-					ervative Codes
Project Number:			2539		Routine	C Rush		Code				_	-				_	_			None: NO	DI Water: I
Project Location		Eddy	County, NM		Due Date:	Nor	mal			-											Cool: Cool	MeOH: Me
Sampler's Name:			IR							MRO											HCL: HC	HNO3: HN
PO #:				_	-		_	ers		÷											H ₂ S0₄: H ₂	NaOH: Na
SAMPLE RECE	IPT	Terr	np Blank:	Yes No	Wet Ice:	Yes	No	met	218	ä	0.00									~	H₃PO₄: HP	
Received Intact:		_	s No	Thermom			_	Parameters	BTEX 8021B	5 S	ide									<u> </u>	NaHSO₄: N	
Cooler Custody Sea		Yes		Correction			_	L.	BTE	TPH 8015M (GRO + DRO + MRO)	Chloride 300.0										Na ₂ S ₂ O ₃ : N Zn Acetate	
Sample Custody Se	als:	Yes	No N/A		ure Reading:					015N	0											orbic Acid: SAPC
Total Containers:				Corrected	Temperature:					H 8(NaomAsc	
Sample Ide	ntificatio	on	Date	Time	Soil	Water	Grab/ Comp	# of Cont		1											Sam	ple Comments
BH-4	(8.0')	-	10/10/2024		x		G	1	X	X	X									Х		*HOLD*
BH-5	(18')		10/10/2024		Х		G	1	X	X	Х									Х		*HOLD*
																		+		_		
												_										
																	-			-		
	_																					
	_				end results	4						and mad		Bearmo	0.000	racource	00.90	n				
				Please s	sena results	to choe	nnng@c	annone	aresu	urces			innona	wearing	Una	10300100						
										-	_				_							
			-							_	_			_	_		_			_	-	
Relinquished b	y: (Sigr	nature)		Receive	d by: (Signat	ture)		+	Date/		-	Relind	luished	by: (Sigi	nat	ure)	Re	ceived t	oy: (Sig	gnatu	ire)	Date/Time
	1	2	1	P	2			10/11	on	14	65	2										
				4	5							4										
												0										

Received by OCD: 5/13/2025 11:42:19 AM

Job Number: 880-49696-1 SDG Number: Eddy County, NM

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 49696 List Number: 1

Creator: Vasquez, Julisa

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Carmona Resources

Project Name: Yukon Gold 31-19 Fed Com 212H

Work Order: E504244

Job Number: 01058-0007

Received: 4/24/2025

Revision: 2

Report Reviewed By:

Walter Hinchman Laboratory Director 4/28/25

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Date Reported: 4/28/25

Ashton Thielke 310 West Wall St. Suite 415 Midland, TX 79701

Ashton Thielke,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 4/24/2025 7:15:00AM, under the Project Name: Yukon Gold 31-19 Fed Com 212H.

The analytical test results summarized in this report with the Project Name: Yukon Gold 31-19 Fed Com 212H apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices: Southern New Mexico Area Lynn Jarboe Laboratory Technical Representative Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com

Michelle Gonzales Client Representative Office: 505-421-LABS(5227) Cell: 505-947-8222 mgonzales@envirotech-inc.com

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	5
Sample Data	6
CS-1 (1.5')	6
CS-2 (1.5')	7
CS-3 (1.5')	8
CS-4 (1.5')	9
CS-5 (1.5')	10
CS-6 (1.5')	11
CS-7 (1.5')	12
CS-8 (1.5')	13
CS-9 (1.5')	14
CS-10 (1.5')	15
CS-11 (1.5')	16
CS-12 (1.5')	17
SW-1 (1.5')	18
SW-2 (1.5')	19
SW-3 (1.5')	20
SW-4 (1.5')	21
QC Summary Data	22
QC - Volatile Organics by EPA 8021B	22
QC - Nonhalogenated Organics by EPA 8015D - GRO	23
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	24

•

Table of Contents (continued)

QC - Anions by EPA 300.0/9056A	25
Definitions and Notes	26
Chain of Custody etc.	27

Sample Summary

		Sample Sum	mary		
Carmona Resources 310 West Wall St. Suite 415 Midland TX, 79701		Project Name: Project Number: Project Manager:	Yukon Gold 31-19 01058-0007 Ashton Thielke	Fed Com 212H	Reported: 04/28/25 14:38
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
CS-1 (1.5')	E504244-01A	Soil	04/23/25	04/24/25	Glass Jar, 2 oz.
CS-2 (1.5')	E504244-02A	Soil	04/23/25	04/24/25	Glass Jar, 2 oz.
CS-3 (1.5')	E504244-03A	Soil	04/23/25	04/24/25	Glass Jar, 2 oz.
CS-4 (1.5')	E504244-04A	Soil	04/23/25	04/24/25	Glass Jar, 2 oz.
CS-5 (1.5')	E504244-05A	Soil	04/23/25	04/24/25	Glass Jar, 2 oz.
CS-6 (1.5')	E504244-06A	Soil	04/23/25	04/24/25	Glass Jar, 2 oz.
CS-7 (1.5')	E504244-07A	Soil	04/23/25	04/24/25	Glass Jar, 2 oz.
CS-8 (1.5')	E504244-08A	Soil	04/23/25	04/24/25	Glass Jar, 2 oz.
CS-9 (1.5')	E504244-09A	Soil	04/23/25	04/24/25	Glass Jar, 2 oz.
CS-10 (1.5')	E504244-10A	Soil	04/23/25	04/24/25	Glass Jar, 2 oz.
CS-11 (1.5')	E504244-11A	Soil	04/23/25	04/24/25	Glass Jar, 2 oz.
CS-12 (1.5')	E504244-12A	Soil	04/23/25	04/24/25	Glass Jar, 2 oz.
SW-1 (1.5')	E504244-13A	Soil	04/23/25	04/24/25	Glass Jar, 2 oz.
W-2 (1.5')	E504244-14A	Soil	04/23/25	04/24/25	Glass Jar, 2 oz.
SW-3 (1.5')	E504244-15A	Soil	04/23/25	04/24/25	Glass Jar, 2 oz.
SW-4 (1.5')	E504244-16A	Soil	04/23/25	04/24/25	Glass Jar, 2 oz.

	5	ample D	ata			
Carmona Resources	Project Name	e: Yuk	on Gold 31-19 l	Fed Com 212H		
310 West Wall St. Suite 415	Project Numb	ber: 0103	58-0007			Reported:
Midland TX, 79701	Project Mana	ger: Ash	ton Thielke			4/28/2025 2:38:37PM
		CS-1 (1.5')				
		E504244-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Anal	yst: SL		Batch: 2517079
Benzene	ND	0.0250	1	04/24/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/24/25	04/25/25	
Toluene	ND	0.0250	1	04/24/25	04/25/25	
o-Xylene	ND	0.0250	1	04/24/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/24/25	04/25/25	
Fotal Xylenes	ND	0.0250	1	04/24/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		84.5 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	yst: SL		Batch: 2517079
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/24/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.1 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Anal	yst: KH		Batch: 2517086
Diesel Range Organics (C10-C28)	ND	25.0	1	04/24/25	04/24/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/24/25	04/24/25	
Surrogate: n-Nonane		94.6 %	61-141	04/24/25	04/24/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	yst: DT		Batch: 2517084
Chloride	2000	40.0	2	04/24/25	04/24/25	

Sample Data

	5	ample D	ala			
Carmona Resources 310 West Wall St. Suite 415 Midland TX, 79701	Project Name: Project Numb Project Manag	er: 0103	on Gold 31-19 F 58-0007 ton Thielke	ed Com 212H		Reported: 4/28/2025 2:38:37PM
		CS-2 (1.5')				
		E504244-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: SL		Batch: 2517079
Benzene	ND	0.0250	1	04/24/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/24/25	04/25/25	
Toluene	ND	0.0250	1	04/24/25	04/25/25	
o-Xylene	ND	0.0250	1	04/24/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/24/25	04/25/25	
Total Xylenes	ND	0.0250	1	04/24/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		86.3 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: SL		Batch: 2517079
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/24/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		93.4 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: KH		Batch: 2517086
Diesel Range Organics (C10-C28)	ND	25.0	1	04/24/25	04/24/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/24/25	04/24/25	
Surrogate: n-Nonane		94.4 %	61-141	04/24/25	04/24/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: DT		Batch: 2517084
Chloride	4270	40.0	2	04/24/25	04/24/25	

	5	ample D	ala			
Carmona Resources 310 West Wall St. Suite 415 Midland TX, 79701	Project Name: Project Numb Project Manag	er: 0103	on Gold 31-19 Fe 58-0007 ton Thielke	ed Com 212H		Reported: 4/28/2025 2:38:37PM
		CS-3 (1.5')				
		E504244-03				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: SL		Batch: 2517079
Benzene	ND	0.0250	1	04/24/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/24/25	04/25/25	
Toluene	ND	0.0250	1	04/24/25	04/25/25	
o-Xylene	ND	0.0250	1	04/24/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/24/25	04/25/25	
Total Xylenes	ND	0.0250	1	04/24/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		84.5 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: SL		Batch: 2517079
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/24/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.4 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: KH		Batch: 2517086
Diesel Range Organics (C10-C28)	ND	25.0	1	04/24/25	04/24/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/24/25	04/24/25	
Surrogate: n-Nonane		95.2 %	61-141	04/24/25	04/24/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: DT		Batch: 2517084
Chloride	3230	40.0	2	04/24/25	04/24/25	

		bample D	ala			
Carmona Resources 310 West Wall St. Suite 415	Project Name Project Num		on Gold 31-19 F 58-0007		Reported: 4/28/2025 2:38:37PM	
Midland TX, 79701	Project Mana		ton Thielke			
	-	CS-4 (1.5')				
		E504244-04				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	vst: SL		Batch: 2517079
Benzene	ND	0.0250	1	04/24/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/24/25	04/25/25	
Toluene	ND	0.0250	1	04/24/25	04/25/25	
o-Xylene	ND	0.0250	1	04/24/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/24/25	04/25/25	
Total Xylenes	ND	0.0250	1	04/24/25	04/25/25	
urrogate: 4-Bromochlorobenzene-PID		84.5 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	vst: SL		Batch: 2517079
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/24/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.3 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	/kg Analyst: KH			Batch: 2517086
Diesel Range Organics (C10-C28)	ND	25.0	1	04/24/25	04/24/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/24/25	04/24/25	
Gurrogate: n-Nonane		96.1 %	61-141	04/24/25	04/24/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	vst: DT		Batch: 2517084
Chloride	1070	20.0	1	04/24/25	04/24/25	

	0	ample D	ala			
Carmona Resources 310 West Wall St. Suite 415	Project Name Project Numb		on Gold 31-19 Fe 58-0007		Reported:	
Midland TX, 79701	Project Mana		ton Thielke			4/28/2025 2:38:37PM
		CS-5 (1.5')				
		E504244-05				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: SL		Batch: 2517079
Benzene	ND	0.0250	1	04/24/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/24/25	04/25/25	
oluene	ND	0.0250	1	04/24/25	04/25/25	
-Xylene	ND	0.0250	1	04/24/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/24/25	04/25/25	
Total Xylenes	ND	0.0250	1	04/24/25	04/25/25	
urrogate: 4-Bromochlorobenzene-PID		84.6 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: SL		Batch: 2517079
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/24/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		90.4 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: KH		Batch: 2517086
Diesel Range Organics (C10-C28)	ND	25.0	1	04/24/25	04/24/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/24/25	04/24/25	
Surrogate: n-Nonane		93.1 %	61-141	04/24/25	04/24/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: DT		Batch: 2517084
Chloride	4830	40.0	2	04/24/25	04/24/25	

	5	ample D	ala			
Carmona Resources	Project Name		on Gold 31-19 Fe			
310 West Wall St. Suite 415	Project Numb		58-0007			Reported:
Midland TX, 79701	Project Mana	ger: Ash	ton Thielke			4/28/2025 2:38:37PM
		CS-6 (1.5')				
		E504244-06				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: SL		Batch: 2517079
Benzene	ND	0.0250	1	04/24/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/24/25	04/25/25	
Toluene	ND	0.0250	1	04/24/25	04/25/25	
p-Xylene	ND	0.0250	1	04/24/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/24/25	04/25/25	
Total Xylenes	ND	0.0250	1	04/24/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		86.0 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: SL		Batch: 2517079
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/24/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.6 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: KH			Batch: 2517086
Diesel Range Organics (C10-C28)	ND	25.0	1	04/24/25	04/24/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/24/25	04/24/25	
Surrogate: n-Nonane		93.3 %	61-141	04/24/25	04/24/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: DT		Batch: 2517084
Chloride	3100	40.0	2	04/24/25	04/24/25	

	D D	bample D	ala			
Carmona Resources	Project Name		on Gold 31-19 Fe			
310 West Wall St. Suite 415	Project Num		58-0007			Reported:
Midland TX, 79701	Project Mana	ager: Ash	ton Thielke			4/28/2025 2:38:37PM
		CS-7 (1.5')				
		E504244-07				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: SL		Batch: 2517079
Benzene	ND	0.0250	1	04/24/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/24/25	04/25/25	
Toluene	ND	0.0250	1	04/24/25	04/25/25	
o-Xylene	ND	0.0250	1	04/24/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/24/25	04/25/25	
Total Xylenes	ND	0.0250	1	04/24/25	04/25/25	
urrogate: 4-Bromochlorobenzene-PID		86.1 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: SL		Batch: 2517079
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/24/25	04/25/25	
urrogate: 1-Chloro-4-fluorobenzene-FID		91.7 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	g Analyst: KH			Batch: 2517086
Diesel Range Organics (C10-C28)	ND	25.0	1	04/24/25	04/24/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/24/25	04/24/25	
urrogate: n-Nonane		93.2 %	61-141	04/24/25	04/24/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: DT		Batch: 2517084
Chloride	4710	40.0	2	04/24/25	04/24/25	

	5	ample D	ala			
Carmona Resources 310 West Wall St. Suite 415	Project Name Project Numb		on Gold 31-19 Fe 58-0007		Reported: 4/28/2025 2:38:37PM	
Midland TX, 79701	Project Mana		ton Thielke			
		CS-8 (1.5')				
		E504244-08				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: SL		Batch: 2517079
Benzene	ND	0.0250	1	04/24/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/24/25	04/25/25	
Toluene	ND	0.0250	1	04/24/25	04/25/25	
o-Xylene	ND	0.0250	1	04/24/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/24/25	04/25/25	
Total Xylenes	ND	0.0250	1	04/24/25	04/25/25	
urrogate: 4-Bromochlorobenzene-PID		86.7 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: SL		Batch: 2517079
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/24/25	04/25/25	
urrogate: 1-Chloro-4-fluorobenzene-FID		91.4 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: KH			Batch: 2517086
Diesel Range Organics (C10-C28)	ND	25.0	1	04/24/25	04/24/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/24/25	04/24/25	
urrogate: n-Nonane		93.9 %	61-141	04/24/25	04/24/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: DT		Batch: 2517084
Chloride	ND	20.0	1	04/24/25	04/24/25	

	5	ample D	ala			
Carmona Resources 310 West Wall St. Suite 415 Midland TX, 79701	Project Name Project Numb Project Mana	ber: 0103	on Gold 31-19 Fe 58-0007 ton Thielke	1 Com 212H		Reported: 4/28/2025 2:38:37PM
		CS-9 (1.5')				
		E504244-09				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	: SL		Batch: 2517079
Benzene	ND	0.0250	1	04/24/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/24/25	04/25/25	
Toluene	ND	0.0250	1	04/24/25	04/25/25	
p-Xylene	ND	0.0250	1	04/24/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/24/25	04/25/25	
Fotal Xylenes	ND	0.0250	1	04/24/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		86.9 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	:: SL		Batch: 2517079
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/24/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.1 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	g Analyst: KH			Batch: 2517086
Diesel Range Organics (C10-C28)	ND	25.0	1	04/24/25	04/24/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/24/25	04/24/25	
Surrogate: n-Nonane		93.9 %	61-141	04/24/25	04/24/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: DT		Batch: 2517084
Chloride	4560	40.0	2	04/24/25	04/24/25	

	b	ample D	ala			
Carmona Resources 310 West Wall St. Suite 415	Project Name Project Numb		on Gold 31-19 F 58-0007	ed Com 212H		Reported:
Midland TX, 79701	Project Mana	ger: Ash	ton Thielke			4/28/2025 2:38:37PM
		CS-10 (1.5')				
		E504244-10				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	vst: SL		Batch: 2517079
Benzene	ND	0.0250	1	04/24/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/24/25	04/25/25	
Toluene	ND	0.0250	1	04/24/25	04/25/25	
p-Xylene	ND	0.0250	1	04/24/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/24/25	04/25/25	
Fotal Xylenes	ND	0.0250	1	04/24/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		86.5 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	/st: SL		Batch: 2517079
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/24/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.0 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	/st: KH		Batch: 2517086
Diesel Range Organics (C10-C28)	ND	25.0	1	04/24/25	04/24/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/24/25	04/24/25	
Surrogate: n-Nonane		95.3 %	61-141	04/24/25	04/24/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	/st: DT		Batch: 2517084
Chloride	27.7	20.0	1	04/24/25	04/24/25	

	3	ample D	ลเล			
Carmona Resources	Project Name:		on Gold 31-19 Fe 58-0007			
310 West Wall St. Suite 415	Project Number			Reported:		
Midland TX, 79701	Project Manag	ger: Ash	ton Thielke			4/28/2025 2:38:37PM
		CS-11 (1.5')				
		E504244-11				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: SL		Batch: 2517079
Benzene	ND	0.0250	1	04/24/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/24/25	04/25/25	
Toluene	ND	0.0250	1	04/24/25	04/25/25	
-Xylene	ND	0.0250	1	04/24/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/24/25	04/25/25	
Total Xylenes	ND	0.0250	1	04/24/25	04/25/25	
urrogate: 4-Bromochlorobenzene-PID		85.4 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	g Analyst: SL			Batch: 2517079
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/24/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.7 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: KH		Batch: 2517086
Diesel Range Organics (C10-C28)	ND	25.0	1	04/24/25	04/24/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/24/25	04/24/25	
urrogate: n-Nonane		94.2 %	61-141	04/24/25	04/24/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: DT		Batch: 2517084
Chloride	22.1	20.0	1	04/24/25	04/24/25	

	Di	ample D	ala			
	Project Name: Project Numbe		on Gold 31-191 58-0007		Reported:	
	Project Manag		ton Thielke			4/28/2025 2:38:37PM
		CS-12 (1.5')				
		E504244-12				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Ana	lyst: SL		Batch: 2517079
Benzene	ND	0.0250	1	04/24/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/24/25	04/25/25	
Toluene	ND	0.0250	1	04/24/25	04/25/25	
o-Xylene	ND	0.0250	1	04/24/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/24/25	04/25/25	
Total Xylenes	ND	0.0250	1	04/24/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		84.6 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	lyst: SL		Batch: 2517079
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/24/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.3 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ana	lyst: KH		Batch: 2517086
Diesel Range Organics (C10-C28)	ND	25.0	1	04/24/25	04/24/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/24/25	04/24/25	
Surrogate: n-Nonane		92.5 %	61-141	04/24/25	04/24/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ana	lyst: DT		Batch: 2517084
Chloride	3240	40.0	2	04/24/25	04/24/25	

	25	ample D	ลเล			
Carmona Resources	Project Name:	Yuk	on Gold 31-19 Fe	d Com 212H		
310 West Wall St. Suite 415	Project Numbe	er: 0103	58-0007	Reported:		
Midland TX, 79701	Project Manag	ger: Ash	ton Thielke			4/28/2025 2:38:37PM
	5	SW-1 (1.5')				
		E504244-13				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: SL		Batch: 2517079
Benzene	ND	0.0250	1	04/24/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/24/25	04/25/25	
Toluene	ND	0.0250	1	04/24/25	04/25/25	
p-Xylene	ND	0.0250	1	04/24/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/24/25	04/25/25	
Fotal Xylenes	ND	0.0250	1	04/24/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		83.8 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: SL		Batch: 2517079
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/24/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.0 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: KH		Batch: 2517086
Diesel Range Organics (C10-C28)	ND	25.0	1	04/24/25	04/24/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/24/25	04/24/25	
Surrogate: n-Nonane		93.8 %	61-141	04/24/25	04/24/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: DT		Batch: 2517084
Chloride	ND	20.0	1	04/24/25	04/24/25	

	3	ample D	ata			
Carmona Resources	Project Name	:: Yuk	on Gold 31-19 Fe	d Com 212H		
310 West Wall St. Suite 415	Project Numb	ber: 0105	58-0007	Reported:		
Midland TX, 79701	Project Mana	ger: Ash	ton Thielke			4/28/2025 2:38:37PM
		SW-2 (1.5')				
		E504244-14				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: SL		Batch: 2517079
Benzene	ND	0.0250	1	04/24/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/24/25	04/25/25	
Toluene	ND	0.0250	1	04/24/25	04/25/25	
p-Xylene	ND	0.0250	1	04/24/25	04/25/25	
p,m-Xylene	ND	0.0500	1	04/24/25	04/25/25	
Total Xylenes	ND	0.0250	1	04/24/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		83.6 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: SL		Batch: 2517079
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/24/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.6 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: KH		Batch: 2517086
Diesel Range Organics (C10-C28)	ND	25.0	1	04/24/25	04/24/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/24/25	04/24/25	
Surrogate: n-Nonane		97.5 %	61-141	04/24/25	04/24/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: DT		Batch: 2517084
Chloride	ND	20.0	1	04/24/25	04/24/25	

	25	ample D	ลเล			
Carmona Resources	Project Name:	Yuk	on Gold 31-19 Fe	d Com 212H		
310 West Wall St. Suite 415	Project Numbe	er: 0103	58-0007	Reported:		
Midland TX, 79701	Project Manag	ger: Ash	ton Thielke			4/28/2025 2:38:37PM
	5	SW-3 (1.5')				
		E504244-15				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: SL		Batch: 2517079
Benzene	ND	0.0250	1	04/24/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/24/25	04/25/25	
Toluene	ND	0.0250	1	04/24/25	04/25/25	
p-Xylene	ND	0.0250	1	04/24/25	04/25/25	
p,m-Xylene	ND	0.0500	1	04/24/25	04/25/25	
Fotal Xylenes	ND	0.0250	1	04/24/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		84.1 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: SL		Batch: 2517079
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/24/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.7 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: KH		Batch: 2517086
Diesel Range Organics (C10-C28)	ND	25.0	1	04/24/25	04/24/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/24/25	04/24/25	
Surrogate: n-Nonane		94.6 %	61-141	04/24/25	04/24/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: DT		Batch: 2517084
Chloride	ND	20.0	1	04/24/25	04/24/25	

	25	ample D	ลเล			
Carmona Resources	Project Name:	Yuk	on Gold 31-19 Fe	d Com 212H		
310 West Wall St. Suite 415	Project Numbe	er: 0105	58-0007	Reported: 4/28/2025 2:38:37PM		
Midland TX, 79701	Project Manag	ger: Ash	ton Thielke			
	Ş	SW-4 (1.5')				
		E504244-16				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: SL		Batch: 2517079
Benzene	ND	0.0250	1	04/24/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/24/25	04/25/25	
oluene	ND	0.0250	1	04/24/25	04/25/25	
-Xylene	ND	0.0250	1	04/24/25	04/25/25	
,m-Xylene	ND	0.0500	1	04/24/25	04/25/25	
Total Xylenes	ND	0.0250	1	04/24/25	04/25/25	
urrogate: 4-Bromochlorobenzene-PID		83.0 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: SL		Batch: 2517079
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/24/25	04/25/25	
urrogate: 1-Chloro-4-fluorobenzene-FID		92.1 %	70-130	04/24/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: KH		Batch: 2517086
Diesel Range Organics (C10-C28)	ND	25.0	1	04/24/25	04/24/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/24/25	04/24/25	
urrogate: n-Nonane		94.5 %	61-141	04/24/25	04/24/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: DT		Batch: 2517084
Chloride						

QC Summary Data

		QC D	umm		a				
Carmona Resources 310 West Wall St. Suite 415 Midland TX, 79701		Project Name: Project Number: Project Manager:	(Yukon Gold 31)1058-0007 Ashton Thielke		om 212H			Reported: 4/28/2025 2:38:37PM
		Analyst: SL							
Analyte		Reporting	Spike	Source		Rec		RPD	
	Result	Limit	Level	Result	Rec	Limits	RPD	Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2517079-BLK1)							Prepared: 0	4/24/25 A	nalyzed: 04/25/25
Benzene	ND	0.0250					-		
Ethylbenzene	ND	0.0250							
Toluene	ND	0.0250							
o-Xylene	ND	0.0250							
p,m-Xylene	ND	0.0500							
Total Xylenes	ND	0.0250							
Surrogate: 4-Bromochlorobenzene-PID	7.07	0.0250	8.00		88.4	70-130			
LCS (2517079-BS1)							Prepared: 0	4/24/25 A	analyzed: 04/25/25
Benzene	5.31	0.0250	5.00		106	70-130			
Ethylbenzene	5.25	0.0250	5.00		105	70-130			
Toluene	5.31	0.0250	5.00		106	70-130			
o-Xylene	5.19	0.0250	5.00		104	70-130			
p,m-Xylene	10.6	0.0500	10.0		106	70-130			
Total Xylenes	15.8	0.0250	15.0		105	70-130			
Surrogate: 4-Bromochlorobenzene-PID	7.03		8.00		87.9	70-130			
Matrix Spike (2517079-MS1)				Source:	E504244-	05	Prepared: 0	4/24/25 A	analyzed: 04/25/25
Benzene	5.33	0.0250	5.00	ND	107	70-130			
Ethylbenzene	5.29	0.0250	5.00	ND	106	70-130			
Toluene	5.32	0.0250	5.00	ND	106	70-130			
o-Xylene	5.20	0.0250	5.00	ND	104	70-130			
p,m-Xylene	10.7	0.0500	10.0	ND	107	70-130			
Total Xylenes	15.9	0.0250	15.0	ND	106	70-130			
Surrogate: 4-Bromochlorobenzene-PID	6.72		8.00		84.0	70-130			
Matrix Spike Dup (2517079-MSD1)				Source:	E504244-	05	Prepared: 0	4/24/25 A	analyzed: 04/25/25
Benzene	5.18	0.0250	5.00	ND	104	70-130	2.90	27	
Ethylbenzene	5.14	0.0250	5.00	ND	103	70-130	2.98	26	
Toluene	5.16	0.0250	5.00	ND	103	70-130	3.04	20	
p-Xylene	5.06	0.0250	5.00	ND	101	70-130	2.68	25	
p,m-Xylene	10.4	0.0500	10.0	ND	104	70-130	2.79	23	
Total Xylenes	15.4	0.0250	15.0	ND	103	70-130	2.75	26	
Surrogate: 4-Bromochlorobenzene-PID	6.74		8.00		84.2	70-130			

QC Summary Data

		$\mathbf{x} \in \mathbf{v}$	~~~~~	ary Dat					
Carmona Resources 310 West Wall St. Suite 415		Project Name: Project Number:	0	/ukon Gold 31- 1058-0007	19 Fed Co	om 212H			Reported:
Midland TX, 79701		Project Manager:	A	shton Thielke					4/28/2025 2:38:37PM
	Nor	halogenated C	Organics	by EPA 80	15D - GI	RO			Analyst: SL
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2517079-BLK1)							Prepared: 0	4/24/25 A	analyzed: 04/25/25
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.33		8.00		91.6	70-130			
LCS (2517079-BS2)							Prepared: 0	4/24/25 A	analyzed: 04/25/25
Gasoline Range Organics (C6-C10)	40.5	20.0	50.0		81.0	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.35		8.00		91.9	70-130			
Matrix Spike (2517079-MS2)				Source:	E504244-	05	Prepared: 0	4/24/25 A	analyzed: 04/25/25
Gasoline Range Organics (C6-C10)	43.1	20.0	50.0	ND	86.3	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.51		8.00		93.9	70-130			
Matrix Spike Dup (2517079-MSD2)				Source:	E504244-	05	Prepared: 0	4/24/25 A	analyzed: 04/25/25
Gasoline Range Organics (C6-C10)	48.1	20.0	50.0	ND	96.2	70-130	10.9	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.44		8.00		93.0	70-130			

QC Summary Data

		$\chi \cup \sim$							
Carmona Resources 310 West Wall St. Suite 415		Project Name: Project Number:		Yukon Gold 31- 01058-0007	19 Fed Co	om 212H			Reported:
Midland TX, 79701		Project Manager:	: .	Ashton Thielke					4/28/2025 2:38:37PM
	Nonha		Analyst: KH						
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2517086-BLK1)							Prepared: 0	4/24/25 A	Analyzed: 04/24/25
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	47.7		50.0		95.4	61-141			
LCS (2517086-BS1)							Prepared: 0	4/24/25 A	Analyzed: 04/24/25
Diesel Range Organics (C10-C28)	258	25.0	250		103	66-144			
Surrogate: n-Nonane	46.0		50.0		92.0	61-141			
Matrix Spike (2517086-MS1)				Source:	E504244-	04	Prepared: 0	4/24/25 A	Analyzed: 04/24/25
Diesel Range Organics (C10-C28)	260	25.0	250	ND	104	56-156			
Surrogate: n-Nonane	47.1		50.0		94.3	61-141			
Matrix Spike Dup (2517086-MSD1)				Source:	E504244-	04	Prepared: 0	4/24/25 A	Analyzed: 04/24/25
Diesel Range Organics (C10-C28)	264	25.0	250	ND	105	56-156	1.28	20	
Surrogate: n-Nonane	47.8		50.0		95.6	61-141			

QC Summary Data

			•	<i>J</i> –					
Carmona Resources 310 West Wall St. Suite 415		Project Name: Project Number:		Yukon Gold 31- 01058-0007	-19 Fed Co	om 212H			Reported:
Midland TX, 79701		Project Manager	•	Ashton Thielke					4/28/2025 2:38:37PM
		Anions	by EPA	300.0/9056	4				Analyst: DT
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2517084-BLK1)							Prepared: 0	4/24/25 <i>A</i>	Analyzed: 04/24/25
Chloride	ND	20.0							
LCS (2517084-BS1)							Prepared: 0	4/24/25 A	Analyzed: 04/24/25
Chloride	255	20.0	250		102	90-110			
Matrix Spike (2517084-MS1)				Source:	E504244-	03	Prepared: 0	4/24/25 A	Analyzed: 04/24/25
Chloride	3260	40.0	250	3230	14.6	80-120			M4
Matrix Spike Dup (2517084-MSD1)				Source:	E504244-	03	Prepared: 0	4/24/25 A	Analyzed: 04/24/25
Chloride	3320	40.0	250	3230	36.7	80-120	1.68	20	M4

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Carmona Resources	Project Name:	Yukon Gold 31-19 Fed Com 212H	
310 West Wall St. Suite 415	Project Number:	01058-0007	Reported:
Midland TX, 79701	Project Manager:	Ashton Thielke	04/28/25 14:38

M4 Matrix spike recovery value is suspect since the analyte concentration in the sample is disproportionate to the spike level. The associated LCS spike recovery was acceptable.

- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- RPD Relative Percent Difference
- DNI Did Not Ignite
- DNR Did not react with the addition of acid or base.
- Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Work Order No:	E504244
JOK	0 # 01058.0007

Project Manager:	Ashton	Thielke				Bill to: (if	different)		Jim F	Ralev						Γ			W	ork Or	rder (Comments	1 of2_	
Company Name:	Carmon					Compan	1.000		-	n Ener	av											nfields R	and the second se	
Address:			Ste. 500			Address	y Name.	1.7	Devo	II Eller	gy							Project			prow	meidsK		
			1617/0111														Пет		RP					
City, State ZIP:	Midland		701												les: ED				Contraction of the second					
Phone:	432-813	3-8988			Email:	jim.rale	.raley@dvn.com									Ľ	eliverad	oles: EL		+	ADaP	PT Other:		
Project Name:	Yukor	n Gold 3	81-19 Fed Co	m 212H	Turi	Around						QUE	EST			12.5		Prese	ervative Codes					
Project Number:			2539		Routine	🛛 Rush		Pres. Code												None: NO	DI Water: H			
Project Location	Eddy County, NM Due Date: 72 Hour				1.2			-											Cool: Cool	MeOH: Me				
Sampler's Name:			KR	-						RO)												HCL: HC	HNO3: HN	
PO #:	_							٤		¥												H ₂ S0 ₄ : H ₂	NaOH: Na	
SAMPLE RECE	IPT	Tem	p Blank:	Yes No	Wet Ice:	Yes	No	lete		DRO	8											H ₃ PO ₄ : HP		
Received Intact:		Ye	s No	Thermom	eter ID:			Parameters	BTEX 8021B	TPH 8015M (GRO + DRO + MRO)	Chloride 300										НОГД	NaHSO ₄ : N	ABIS	
Cooler Custody Sea	ls:	Yes	No N/A	Correction	n Factor:		_	Å	TEX	(GR	hlori										Н	Na ₂ S ₂ O ₃ : N	laSO ₃	
Sample Custody Se	als:	Yes	No N/A	Temperat	ure Reading:			i - Luig	m	15M	Ū											Zn Acetate-	+NaOH: Zn	
Total Containers:				Corrected	Temperature:					180												NaOH+Asc	orbic Acid: SAPC	
Sample Ide	ntificatior	1	Date	Time	Soil	Water	Grab/ Comp	# of Cont		1dL					1							Sam	ole Comments	
CS-1	(1.5')		4/23/2025		х		Comp	1	X	X	X										1	4.4		
CS-2	(1.5')		4/23/2025		х		Comp	1	X	X	X										2	3.4		
CS-3	(1.5')		4/23/2025		х		Comp	1	X	X	X					-					3	3.6		
CS-4	(1.5')		4/23/2025		Х		Comp	1	X	X	X										4	2.10		
CS-5	(1.5')		4/23/2025		х		Comp	1	X	X	X										5	2.9		
CS-6	(1.5')		4/23/2025		х		Comp	1	X	X	X										6	3.8		
CS-7	(1.5')		4/23/2025		Х		Comp	1	X	X	х										7	2.8		
CS-8	(1.5')		4/23/2025		х		Comp	1	X	X	X					+				-	8	3.3		
CS-9	(1.5')		4/23/2025		х		Comp	1	X	X	X										9	3.1		
CS-10	(1.5')		4/23/2025		х		Comp	1	X	X	х										10	2.9		
				- 					1	-							-	_						
				Please	send results	to cmoe	ehring@@	carmon	areso	urces	.com	and m	icarmo	na@c	armor	nares	source	s.com						
																-								
Relinquished b	y: (Signa	ture)		Receive	d by: (Signatu	ure)		1	Date/	Time		Rel	nquish	ed by:	(Signa	ature)	Rec	eived b	y: (Sig	gnatu	re)	Date/Time	
Riley Pla	gger		Mic	helle	Gonzales			4-23-	25	154	0	2 M	ichel	le G	onzo	ale.	s /	2.	An	C		4	1-23-25 15	
3 Tel	00							4-23		_	200	4					1	a. /	la 7	m	ri	- 4	14.75 714	
1								-	10 10 10								-pe	an					61.CA 11-	

Received by OCD: 5/13/2025 11:42:19 AM

Page 321 of 354

Work Order No: <u>E504244</u> Job# 01058-0007

Project Manager:	Ashton Thiell	(e			Bill to: (if	different)		Jim R	aley								Work O	rder	Comment	s	
Company Name:	Carmona Re	sources			Compan	y Name:		Devo	n Ener	qy				Pr	Program: UST/PST PRP Brownfields RRC uperfund State of Project:						
Address:	310 West Wa	all Ste. 500			Address									1							
City, State ZIP:	Midland, TX	79701			City, Stat									Re	eporting:L	evel II 🗌 I	_evel III	Þs٦	лият П		evel IV
Phone:	432-813-898			Email	: jim.raley		om							De	Deliverables: EDD 🗌 ADaPT 🗆					Other:	
Project Name:	Yukon Gold	31-19 Fed Co	m 212H	Tur	n Around		-				Les St	ANAL	YSIS RI	EQUEST						ervative C	Codes
Project Number:		2539		Routine	🛛 Rush		Pres. Code									None: NO	DIV	Nater: H ₂			
Project Location	Ed	dy County, NM		Due Date:	72	Hour													Cool: Coo	I MeC	OH: Me
Sampler's Name:		KR					1.7		RO)										HCL: HC		O3: HN
PO #:							2		¥										H ₂ S0 ₄ : H ₂	NaC	DH: Na
SAMPLE RECE	IPT Temp Blank:		Yes No	Wet Ice:	Yes	No	nete	8	DRO	8									H ₃ PO ₄ : H	þ	
Received Intact:		Yes No	Thermometer ID:			_	Parameters	802	+ 0	ide 3								ногр	NaHSO ₄ :		
Cooler Custody Sea	ls: Yes	No N/A	Correction			-	ď	BTEX 8021B	TPH 8015M (GRO + DRO + MRO)	Chloride 300								H	Na ₂ S ₂ O ₃ :	NaSO ₃	
Sample Custody Se	als: Yes	No N/A		ure Reading:				m l	15M	0									Zn Acetat	e+NaOH: Zr	1
Total Containers:			Corrected	Temperature	10 III III III III III III III III III I				H 80										NaOH+As	corbic Acid	SAPC
Sample Ide	ntification	Date	Time	Soil	Water	Grab/ Comp	# of Cont		₽										San	ple Com	nents
CS-11	(1.5')	4/23/2025		х		Comp	1	X	X	х								11	2.9		
CS-12	(1.5')	4/23/2025		Х		Comp	1	X	X	Х								IZ	2.8		
SW-1	(1.5')	4/23/2025		Х		Comp	1	X	X	х								13	2.4		
SW-2	(1.5')	4/23/2025		х		Comp	1	X	X	Х					_			14	4.4	_	
SW-3	(1.5')	4/23/2025		Х		Comp	1	X	X	Х								15	36		
SW-4	(1.5')	4/23/2025		х		Comp	1	X	х	Х								10	2.3		
														+	_	$\left \right $		-			
			Please	send results	s to cmoe	hring@	carmon	areso	urces	.com	and mca	rmona@	@carmo	nares	ources	com					
Relinquished b	y: (Signature)		Receive	d by: (Signat	ure)			Date/1	Time		Relinq	uished b	by: (Sign	gnature) Received by: (Signature)		Date/	Time				
Riley Play	zger	N	THE GOLD	e Gonzal			4-23-	25	154	10			Gonza		2	2)	ton			4-23-25	154
1	0		u vi u vi	- aniente	20		4-23		220		1 1101		40100	rer o U	15	uth.				1.24.25	

Received by OCD: 5/13/2025 11:42:19 AM

Revised Date 05012020 Rev. 2020.1

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Client:	Carmona Resources Da	ate Received:	04/24/25 07	7:15	Work Order ID: E504244
Phone:	(432) 813-6823 Da	ate Logged In:	04/24/25 07	7:13	Logged In By: Caitlin Mars
Email:	Du	ie Date:	04/28/25 17	7:00 (2 day TAT)	
Chain of	Custody (COC)				
	he sample ID match the COC?		Yes		
	he number of samples per sampling site location match	the COC	Yes		
3. Were s	samples dropped off by client or carrier?		Yes	Carrier: C	Courier
4. Was th	e COC complete, i.e., signatures, dates/times, requested	analyses?	Yes	—	
5. Were a	all samples received within holding time? Note: Analysis, such as pH which should be conducted in the i.e, 15 minute hold time, are not included in this disucssion.	e field,	Yes		Comments/Resolution
Sample 7	Turn Around Time (TAT)				
	e COC indicate standard TAT, or Expedited TAT?		Yes		Individual sample temperatures listed on
Sample (•				COC. Time sampled not provided on COC.
	sample cooler received?		Yes		
	was cooler received in good condition?		Yes		
-	e sample(s) received intact, i.e., not broken?		Yes		
	custody/security seals present?		No		
	s, were custody/security seals intact?		NA		
	he sample received on ice? If yes, the recorded temp is 4°C, i.e Note: Thermal preservation is not required, if samples are rec		Yes		
	minutes of sampling				
13. If no	visible ice, record the temperature. Actual sample ten	nperature:			
Sample (<u>Container</u>				
	queous VOC samples present?		No		
	VOC samples collected in VOA Vials?		NA		
	head space less than 6-8 mm (pea sized or less)?		NA		
	a trip blank (TB) included for VOC analyses?		NA		
	non-VOC samples collected in the correct containers?		Yes		
	appropriate volume/weight or number of sample containers	collected?	Yes		
Field La					
	field sample labels filled out with the minimum information and the sample ID?	ation:	Yes		
	Date/Time Collected?		Yes	l	
	Collectors name?		No		
Sample I	Preservation				
	the COC or field labels indicate the samples were prese	rved?	No		
22. Are s	ample(s) correctly preserved?		NA		
24. Is lab	filtration required and/or requested for dissolved metals	s?	No		
<u>Multiph</u>	ase Sample Matrix				
26. Does	the sample have more than one phase, i.e., multiphase?		No		
27. If yes	s, does the COC specify which phase(s) is to be analyzed	1?	NA		
Subconti	ract Laboratory				
28. Are s	amples required to get sent to a subcontract laboratory?		No		
		who?			

Signature of client authorizing changes to the COC or sample disposition.

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Carmona Resources

Project Name: Yukon Gold 31-19 Fed Com 212H

Work Order: E504253

Job Number: 01058-0007

Received: 4/25/2025

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 4/29/25

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported.
Date Reported: 4/29/25

Ashton Thielke 310 West Wall St. Suite 415 Midland, TX 79701

Ashton Thielke,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 4/25/2025 8:15:00AM, under the Project Name: Yukon Gold 31-19 Fed Com 212H.

The analytical test results summarized in this report with the Project Name: Yukon Gold 31-19 Fed Com 212H apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices: Southern New Mexico Area Lynn Jarboe Laboratory Technical Representative Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com

Michelle Gonzales Client Representative Office: 505-421-LABS(5227) Cell: 505-947-8222 mgonzales@envirotech-inc.com

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
CS-13 (1.5')	5
CS-14 (1.5')	6
SW-5 (1.5')	7
SW-6 (1.5')	8
SW-7 (1.5')	9
SW-8 (1.5')	10
SW-9 (1.5')	11
SW-10 (1.5')	12
SW-11 (1.5')	13
SW-12 (1.5')	14
SW-13 (1.5')	15
SW-14 (1.5')	16
QC Summary Data	17
QC - Volatile Organics by EPA 8021B	17
QC - Nonhalogenated Organics by EPA 8015D - GRO	18
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	19
QC - Anions by EPA 300.0/9056A	20
Definitions and Notes	21
Chain of Custody etc.	22

Sample Summary

		Sample Sum	mary		
Carmona Resources 310 West Wall St. Suite 415 Midland TX, 79701		Project Name: Project Number: Project Manager:	Yukon Gold 31-19 01058-0007 Ashton Thielke	Fed Com 212H	Reported: 04/29/25 13:57
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
CS-13 (1.5')	E504253-01A	Soil	04/24/25	04/25/25	Glass Jar, 4 oz.
CS-14 (1.5')	E504253-02A	Soil	04/24/25	04/25/25	Glass Jar, 4 oz.
W-5 (1.5')	E504253-03A	Soil	04/24/25	04/25/25	Glass Jar, 4 oz.
W-6 (1.5')	E504253-04A	Soil	04/24/25	04/25/25	Glass Jar, 4 oz.
W-7 (1.5')	E504253-05A	Soil	04/24/25	04/25/25	Glass Jar, 4 oz.
W-8 (1.5')	E504253-06A	Soil	04/24/25	04/25/25	Glass Jar, 4 oz.
W-9 (1.5')	E504253-07A	Soil	04/24/25	04/25/25	Glass Jar, 4 oz.
W-10 (1.5')	E504253-08A	Soil	04/24/25	04/25/25	Glass Jar, 4 oz.
W-11 (1.5')	E504253-09A	Soil	04/24/25	04/25/25	Glass Jar, 4 oz.
W-12 (1.5')	E504253-10A	Soil	04/24/25	04/25/25	Glass Jar, 4 oz.
W-13 (1.5')	E504253-11A	Soil	04/24/25	04/25/25	Glass Jar, 4 oz.
W-14 (1.5')	E504253-12A	Soil	04/24/25	04/25/25	Glass Jar, 4 oz.

	56	imple D	ala			
Carmona Resources 310 West Wall St. Suite 415 Midland TX, 79701	Project Name: Project Numbe Project Manag	er: 0103	on Gold 31-19 58-0007 ton Thielke	Fed Com 212H		Reported: 4/29/2025 1:57:09PM
	(CS-13 (1.5')				
	-	E504253-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Ana	lyst: BA		Batch: 2517115
Benzene	ND	0.0250	1	04/25/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/25/25	04/25/25	
Foluene	ND	0.0250	1	04/25/25	04/25/25	
p-Xylene	ND	0.0250	1	04/25/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/25/25	04/25/25	
Total Xylenes	ND	0.0250	1	04/25/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		102 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ana	lyst: BA		Batch: 2517115
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/25/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		99.1 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ana	Batch: 2517110		
Diesel Range Organics (C10-C28)	ND	25.0	1	04/25/25	04/25/25	
Oil Range Organics (C28-C36)	ND	50.0	1	04/25/25	04/25/25	
Surrogate: n-Nonane		98.4 %	61-141	04/25/25	04/25/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ana	lyst: DT		Batch: 2517109
Chloride	4270	40.0	2	04/25/25	04/25/25	

Sample Data

	5	ample D	ala			
Carmona Resources	Project Name	: Yuk	on Gold 31-19 Fe	d Com 212H		
310 West Wall St. Suite 415	Project Numb	er: 0103	58-0007			Reported:
Midland TX, 79701	Project Manag	ger: Ash	ton Thielke			4/29/2025 1:57:09PM
		CS-14 (1.5')				
		E504253-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: BA		Batch: 2517115
Benzene	ND	0.0250	1	04/25/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/25/25	04/25/25	
Toluene	ND	0.0250	1	04/25/25	04/25/25	
o-Xylene	ND	0.0250	1	04/25/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/25/25	04/25/25	
Total Xylenes	ND	0.0250	1	04/25/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		102 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	Batch: 2517115		
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/25/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		98.9 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	Batch: 2517110		
Diesel Range Organics (C10-C28)	ND	25.0	1	04/25/25	04/25/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/25/25	04/25/25	
Surrogate: n-Nonane		97.8 %	61-141	04/25/25	04/25/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: DT		Batch: 2517109
Chloride	3880	40.0	2	04/25/25	04/25/25	

	25	ample D	ลเล			
Carmona Resources 310 West Wall St. Suite 415	Project Name: Project Numbe		on Gold 31-19 Fe 58-0007	d Com 212H		Reported:
Midland TX, 79701	Project Manag	er: Ash	ton Thielke			4/29/2025 1:57:09PN
	5	SW-5 (1.5')				
]	E504253-03				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: BA		Batch: 2517115
Benzene	ND	0.0250	1	04/25/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/25/25	04/25/25	
Foluene	ND	0.0250	1	04/25/25	04/25/25	
p-Xylene	ND	0.0250	1	04/25/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/25/25	04/25/25	
Fotal Xylenes	ND	0.0250	1	04/25/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		101 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	g Analyst: BA			Batch: 2517115
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/25/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		99.8 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	Batch: 2517110		
Diesel Range Organics (C10-C28)	ND	25.0	1	04/25/25	04/25/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/25/25	04/25/25	
Surrogate: n-Nonane		102 %	61-141	04/25/25	04/25/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: DT		Batch: 2517109
Chloride	ND	20.0	1	04/25/25	04/25/25	

	32	ample D	ลเล			
Carmona Resources 310 West Wall St. Suite 415	Project Name: Project Numbe		on Gold 31-19 F 58-0007	ed Com 212H		Reported:
Midland TX, 79701	Project Manag		ton Thielke			4/29/2025 1:57:09PN
	5	SW-6 (1.5')				
		E504253-04				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	vst: BA		Batch: 2517115
Benzene	ND	0.0250	1	04/25/25	04/25/25	
thylbenzene	ND	0.0250	1	04/25/25	04/25/25	
oluene	ND	0.0250	1	04/25/25	04/25/25	
-Xylene	ND	0.0250	1	04/25/25	04/25/25	
,m-Xylene	ND	0.0500	1	04/25/25	04/25/25	
otal Xylenes	ND	0.0250	1	04/25/25	04/25/25	
urrogate: 4-Bromochlorobenzene-PID		103 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: BA			Batch: 2517115
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/25/25	04/25/25	
urrogate: 1-Chloro-4-fluorobenzene-FID		99.4 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	vst: NV		Batch: 2517110
Diesel Range Organics (C10-C28)	ND	25.0	1	04/25/25	04/26/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/25/25	04/26/25	
urrogate: n-Nonane		99.9 %	61-141	04/25/25	04/26/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	vst: DT		Batch: 2517109
Chloride	ND	20.0	1	04/25/25	04/25/25	

	5	ample D	ลเล			
Carmona Resources	Project Name:	: Yuk	on Gold 31-19 Fe	ed Com 212H		
310 West Wall St. Suite 415	Project Numb	er: 0103	58-0007			Reported:
Midland TX, 79701	Project Manag	ger: Ash	ton Thielke			4/29/2025 1:57:09PM
		SW-7 (1.5')				
		E504253-05				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: BA		Batch: 2517115
Benzene	ND	0.0250	1	04/25/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/25/25	04/25/25	
Foluene	ND	0.0250	1	04/25/25	04/25/25	
p-Xylene	ND	0.0250	1	04/25/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/25/25	04/25/25	
Fotal Xylenes	ND	0.0250	1	04/25/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		100 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	Batch: 2517115		
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/25/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		97.4 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys		Batch: 2517110	
Diesel Range Organics (C10-C28)	ND	25.0	1	04/25/25	04/26/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/25/25	04/26/25	
Surrogate: n-Nonane		99.5 %	61-141	04/25/25	04/26/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: DT		Batch: 2517109
Chloride	ND	20.0	1	04/25/25	04/25/25	

	D D	bample D	ala			
Carmona Resources 310 West Wall St. Suite 415	Project Name Project Num		on Gold 31-19 F 58-0007	Fed Com 212H		Reported:
Midland TX, 79701	Project Mana		ton Thielke			4/29/2025 1:57:09PM
,	5	0				
		SW-8 (1.5')				
		E504253-06				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	yst: BA		Batch: 2517115
Benzene	ND	0.0250	1	04/25/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/25/25	04/25/25	
Toluene	ND	0.0250	1	04/25/25	04/25/25	
p-Xylene	ND	0.0250	1	04/25/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/25/25	04/25/25	
Total Xylenes	ND	0.0250	1	04/25/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		102 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	yst: BA		Batch: 2517115
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/25/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		98.3 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Anal	yst: NV		Batch: 2517110
Diesel Range Organics (C10-C28)	ND	25.0	1	04/25/25	04/26/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/25/25	04/26/25	
Surrogate: n-Nonane		98.1 %	61-141	04/25/25	04/26/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	yst: DT		Batch: 2517109
Chloride	ND	20.0	1	04/25/25	04/25/25	

	25	ample D	ลเล			
Carmona Resources 310 West Wall St. Suite 415	Project Name: Project Numbe		on Gold 31-19 Fe 58-0007	ed Com 212H		Reported:
Midland TX, 79701	Project Manag		ton Thielke			4/29/2025 1:57:09PN
	5	SW-9 (1.5')				
]	E504253-07				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: BA		Batch: 2517115
Benzene	ND	0.0250	1	04/25/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/25/25	04/25/25	
Toluene	ND	0.0250	1	04/25/25	04/25/25	
p-Xylene	ND	0.0250	1	04/25/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/25/25	04/25/25	
Total Xylenes	ND	0.0250	1	04/25/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		103 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: BA		Batch: 2517115
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/25/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		99.5 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: NV		Batch: 2517110
Diesel Range Organics (C10-C28)	ND	25.0	1	04/25/25	04/26/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/25/25	04/26/25	
Surrogate: n-Nonane		96.3 %	61-141	04/25/25	04/26/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: DT		Batch: 2517109
Chloride	ND	20.0	1	04/25/25	04/25/25	

	6	ampic D	ala			
Carmona Resources 310 West Wall St. Suite 415 Midland TX, 79701	Project Name Project Numb Project Manaş	er: 010	on Gold 31-19 F 58-0007 ton Thielke	ed Com 212H		Reported: 4/29/2025 1:57:09PM
	5	SW-10 (1.5')				
		E504253-08				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	vst: BA		Batch: 2517115
Benzene	ND	0.0250	1	04/25/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/25/25	04/25/25	
Toluene	ND	0.0250	1	04/25/25	04/25/25	
p-Xylene	ND	0.0250	1	04/25/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/25/25	04/25/25	
Total Xylenes	ND	0.0250	1	04/25/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		101 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	yst: BA		Batch: 2517115
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/25/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		98.1 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	yst: NV		Batch: 2517110
Diesel Range Organics (C10-C28)	ND	25.0	1	04/25/25	04/26/25	
Oil Range Organics (C28-C36)	ND	50.0	1	04/25/25	04/26/25	
Surrogate: n-Nonane		96.7 %	61-141	04/25/25	04/26/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	yst: DT		Batch: 2517109
Chloride	ND	20.0	1	04/25/25	04/25/25	

	5	ampie D	ala			
Carmona Resources 310 West Wall St. Suite 415 Midland TX, 79701	Project Name Project Numb Project Manaş	oer: 010	on Gold 31-19 Fe 58-0007 ton Thielke	ed Com 212H		Reported: 4/29/2025 1:57:09PM
	9	SW-11 (1.5')				
		E504253-09				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: BA		Batch: 2517115
Benzene	ND	0.0250	1	04/25/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/25/25	04/25/25	
Toluene	ND	0.0250	1	04/25/25	04/25/25	
p-Xylene	ND	0.0250	1	04/25/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/25/25	04/25/25	
Fotal Xylenes	ND	0.0250	1	04/25/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		103 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: BA		Batch: 2517115
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/25/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		97.9 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: NV		Batch: 2517110
Diesel Range Organics (C10-C28)	ND	25.0	1	04/25/25	04/26/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/25/25	04/26/25	
Surrogate: n-Nonane		98.6 %	61-141	04/25/25	04/26/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: DT		Batch: 2517109
Chloride	ND	20.0	1	04/25/25	04/25/25	

	0	ampie D	ala			
Carmona Resources 310 West Wall St. Suite 415 Midland TX, 79701	Project Name Project Numb Project Manaş	oer: 010	on Gold 31-19 F 58-0007 ton Thielke	Fed Com 212H		Reported: 4/29/2025 1:57:09PM
	\$	SW-12 (1.5')				
		E504253-10				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Anal	yst: BA		Batch: 2517115
Benzene	ND	0.0250	1	04/25/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/25/25	04/25/25	
Toluene	ND	0.0250	1	04/25/25	04/25/25	
p-Xylene	ND	0.0250	1	04/25/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/25/25	04/25/25	
Fotal Xylenes	ND	0.0250	1	04/25/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		103 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	yst: BA		Batch: 2517115
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/25/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		98.5 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Anal	yst: NV		Batch: 2517110
Diesel Range Organics (C10-C28)	ND	25.0	1	04/25/25	04/26/25	
Oil Range Organics (C28-C36)	ND	50.0	1	04/25/25	04/26/25	
Surrogate: n-Nonane		95.9 %	61-141	04/25/25	04/26/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	yst: DT		Batch: 2517109
Chloride	1950	40.0	2	04/25/25	04/25/25	

	b	ampie D	ala			
Carmona Resources 310 West Wall St. Suite 415 Midland TX, 79701	Project Name Project Numb Project Mana	ber: 010	on Gold 31-19 F 58-0007 ton Thielke	ed Com 212H		Reported: 4/29/2025 1:57:09PM
,	5	SW-13 (1.5')				
	I	E504253-11				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: BA		Batch: 2517115
Benzene	ND	0.0250	1	04/25/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/25/25	04/25/25	
oluene	ND	0.0250	1	04/25/25	04/25/25	
-Xylene	ND	0.0250	1	04/25/25	04/25/25	
o,m-Xylene	ND	0.0500	1	04/25/25	04/25/25	
Total Xylenes	ND	0.0250	1	04/25/25	04/25/25	
urrogate: 4-Bromochlorobenzene-PID		103 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: BA		Batch: 2517115
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/25/25	04/25/25	
urrogate: 1-Chloro-4-fluorobenzene-FID		97.9 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: NV		Batch: 2517110
Diesel Range Organics (C10-C28)	ND	25.0	1	04/25/25	04/26/25	
Dil Range Organics (C28-C36)	ND	50.0	1	04/25/25	04/26/25	
urrogate: n-Nonane		101 %	61-141	04/25/25	04/26/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: DT		Batch: 2517109
Chloride	2080	40.0	2	04/25/25	04/25/25	

.

Page 15 of 24

	56	imple D	ala			
Carmona Resources 310 West Wall St. Suite 415 Midland TX, 79701	Project Name: Project Numbe Project Manag	er: 0103	on Gold 31-19 Fe 58-0007 ton Thielke	d Com 212H		Reported: 4/29/2025 1:57:09PM
	S	W-14 (1.5')				
	-	E504253-12				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: BA		Batch: 2517115
Benzene	ND	0.0250	1	04/25/25	04/25/25	
Ethylbenzene	ND	0.0250	1	04/25/25	04/25/25	
Toluene	ND	0.0250	1	04/25/25	04/25/25	
p-Xylene	ND	0.0250	1	04/25/25	04/25/25	
p,m-Xylene	ND	0.0500	1	04/25/25	04/25/25	
Fotal Xylenes	ND	0.0250	1	04/25/25	04/25/25	
Surrogate: 4-Bromochlorobenzene-PID		101 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: BA		Batch: 2517115
Gasoline Range Organics (C6-C10)	ND	20.0	1	04/25/25	04/25/25	
Surrogate: 1-Chloro-4-fluorobenzene-FID		96.6 %	70-130	04/25/25	04/25/25	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: NV		Batch: 2517110
Diesel Range Organics (C10-C28)	ND	25.0	1	04/25/25	04/26/25	
Oil Range Organics (C28-C36)	ND	50.0	1	04/25/25	04/26/25	
Surrogate: n-Nonane		99.5 %	61-141	04/25/25	04/26/25	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: DT		Batch: 2517109
Chloride	2390	40.0	2	04/25/25	04/25/25	

QC Summary Data

Carmona Resources 310 West Wall St. Suite 415 Midland TX, 79701		Project Name: Project Number: Project Manager:	01	ukon Gold 31- 1058-0007 shton Thielke		n 212H			Reported: 4/29/2025 1:57:09PM
		Volatile O	rganics l	oy EPA 802	21B				Analyst: BA
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2517115-BLK1)							Prepared: 0	4/25/25 A	nalyzed: 04/25/25
Benzene	ND	0.0250							
Ethylbenzene	ND	0.0250							
Toluene	ND	0.0250							
p-Xylene	ND	0.0250							
o,m-Xylene	ND	0.0500							
Fotal Xylenes	ND	0.0250							
Surrogate: 4-Bromochlorobenzene-PID	7.83		8.00		97.9	70-130			
LCS (2517115-BS1)							Prepared: 0	4/25/25 A	analyzed: 04/25/25
Benzene	5.18	0.0250	5.00		104	70-130			
Ethylbenzene	5.12	0.0250	5.00		102	70-130			
Foluene	5.16	0.0250	5.00		103	70-130			
o-Xylene	5.02	0.0250	5.00		100	70-130			
o,m-Xylene	10.3	0.0500	10.0		103	70-130			
Total Xylenes	15.3	0.0250	15.0		102	70-130			
Surrogate: 4-Bromochlorobenzene-PID	8.09		8.00		101	70-130			
Matrix Spike (2517115-MS1)				Source:	E504253-11	l	Prepared: 0	4/25/25 A	analyzed: 04/25/25
Benzene	5.38	0.0250	5.00	ND	108	70-130			
Ethylbenzene	5.29	0.0250	5.00	ND	106	70-130			
Foluene	5.35	0.0250	5.00	ND	107	70-130			
p-Xylene	5.19	0.0250	5.00	ND	104	70-130			
p,m-Xylene	10.7	0.0500	10.0	ND	107	70-130			
Total Xylenes	15.8	0.0250	15.0	ND	106	70-130			
Surrogate: 4-Bromochlorobenzene-PID	8.30		8.00		104	70-130			
Matrix Spike Dup (2517115-MSD1)				Source:	E504253-11	1	Prepared: 0	4/25/25 A	analyzed: 04/25/25
Benzene	4.61	0.0250	5.00	ND	92.2	70-130	15.3	27	
Ethylbenzene	4.55	0.0250	5.00	ND	91.1	70-130	15.1	26	
Toluene	4.59	0.0250	5.00	ND	91.8	70-130	15.3	20	
p-Xylene	4.46	0.0250	5.00	ND	89.1	70-130	15.3	25	
o,m-Xylene	9.17	0.0500	10.0	ND	91.7	70-130	15.0	23	
	12.6	0.0250	15.0	ND	00.0	70 120	15.1	26	
Total Xylenes	13.6	0.0250	15.0	ND	90.8	70-130	15.1	26	

QC Summary Data

		L = 10	•	ary Dun	-				
Carmona Resources 310 West Wall St. Suite 415		Project Name: Project Number:	0	rukon Gold 31-)1058-0007	19 Fed Co	om 212H			Reported:
Midland TX, 79701		Project Manager:	A	Ashton Thielke					4/29/2025 1:57:09PM
	Noi	nhalogenated (Organics	by EPA 80	15D - GI	RO			Analyst: BA
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2517115-BLK1)							Prepared: 0	4/25/25 A	analyzed: 04/25/25
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.80		8.00		97.5	70-130			
LCS (2517115-BS2)							Prepared: 0	4/25/25 A	analyzed: 04/25/25
Gasoline Range Organics (C6-C10)	37.2	20.0	50.0		74.4	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.89		8.00		98.6	70-130			
Matrix Spike (2517115-MS2)				Source:	E504253-	11	Prepared: 0	4/25/25 A	analyzed: 04/25/25
Gasoline Range Organics (C6-C10)	38.4	20.0	50.0	ND	76.9	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.89		8.00		98.7	70-130			
Matrix Spike Dup (2517115-MSD2)				Source:	E504253-	11	Prepared: 0	4/25/25 A	analyzed: 04/25/25
Gasoline Range Organics (C6-C10)	40.3	20.0	50.0	ND	80.6	70-130	4.75	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.85		8.00		98.1	70-130			

QC Summary Data

		τ υ ~	••••••	ary Duc					
Carmona Resources 310 West Wall St. Suite 415 Midland TX, 79701		Project Name: Project Number:	0	/ukon Gold 31- 1058-0007 Ashton Thielke	-19 Fed Co	om 212H			Reported: 4/29/2025 1:57:09PM
Midland 1X, 79701		Project Manager	: P	Ishton I hielke					4/29/2023 1:3/:09PM
	Nonha	logenated Org	ganics by	EPA 8015I) - DRO	/ORO			Analyst: NV
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2517110-BLK1)							Prepared: 0	4/25/25 A	nalyzed: 04/25/25
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	48.9		50.0		97.7	61-141			
LCS (2517110-BS1)							Prepared: 0	4/25/25 A	analyzed: 04/25/25
Diesel Range Organics (C10-C28)	274	25.0	250		110	66-144			
Surrogate: n-Nonane	49.3		50.0		98.7	61-141			
Matrix Spike (2517110-MS1)				Source:	E504129-	03	Prepared: 0	4/25/25 A	analyzed: 04/25/25
Diesel Range Organics (C10-C28)	436	25.0	250	133	121	56-156			
Surrogate: n-Nonane	61.1		50.0		122	61-141			
Matrix Spike Dup (2517110-MSD1)				Source:	E504129-	03	Prepared: 0	4/25/25 A	analyzed: 04/25/25
Diesel Range Organics (C10-C28)	477	25.0	250	133	138	56-156	8.95	20	
Surrogate: n-Nonane	61.9		50.0		124	61-141			

QC Summary Data

		C	-							
Carmona Resources		Project Name:	Y	Yukon Gold 31	-19 Fed Co	m 212H			Reported:	
310 West Wall St. Suite 415		Project Number:	(01058-0007					-	
Midland TX, 79701		Project Manager	: 4	Ashton Thielke					4/29/2025 1:57:0	09PM
		Anions	by EPA	300.0/90564	4				Analyst: DT	
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes	
Blank (2517109-BLK1)							Prepared:	04/25/25	Analyzed: 04/25/2	25
Chloride	ND	20.0								
LCS (2517109-BS1)							Prepared:	04/25/25	Analyzed: 04/25/2	25
Chloride	249	20.0	250		99.4	90-110				
Matrix Spike (2517109-MS1)				Source:	E504253-0)3	Prepared:	04/25/25	Analyzed: 04/25/2	25
Chloride	266	20.0	250	ND	107	80-120				
Matrix Spike Dup (2517109-MSD1)				Source:	E504253-0)3	Prepared:	04/25/25	Analyzed: 04/25/2	25
Chloride	268	20.0	250	ND	107	80-120	0.494	20		

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Carmona Resources	Project Name:	Yukon Gold 31-19 Fed Com 212H	
310 West Wall St. Suite 415	Project Number:	01058-0007	Reported:
Midland TX, 79701	Project Manager:	Ashton Thielke	04/29/25 13:57

- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- RPD Relative Percent Difference
- DNI Did Not Ignite
- DNR Did not react with the addition of acid or base.
- Note (1): Methods marked with ** are non-accredited methods.
- Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Vboteu Of Custody

.00 j 00 po	Wighted							- 1														
yinO sel	1 qe1			ə	wi Tim			976Q		Received by: (Signature)				ete	u	(d by: (Signature	oədziupni				
.syeb trau	bəsqns										-											
no J°ð nsrit szel	tud 0 svode				Tim			əteÜ			(Received by: (Signature	əmiT	9160	1	(anstengi2) :yd b	podrinpni				
ey are sampled or ey are sampled or				GIŠ	5 -	52	SZ	4	N	N	111	Received by Stansure	16:45	016 4-24-25 1ime 16:45		JOZUO	D alladi	W.				
ust be received on					, miT	07		T Date		an							Parting by Contraction (2007) Parting by Contraction Parting Contrection Parting Contraction Parting Contracti					
lemnant aniniup			57	[,] 91	miT	90	-74-	əteQ A	1		ZUOĽ) OUOUUS (Signature OUOUUN	re 16:45 16:45 Received by: (Si			al (Signature) (Signature)						
	.noitzs legal	oj spunoj8 a	xq Aeus pue	busil be	onsbiznoo	o si noito	elloo to	e emit r	o əteb ,	noisesol	ajdwes a	ant guiledelzim yllanoitnetn	i no džiw gninegm <i>st t</i> sdž e	newe me talqmes zint t	o ytixitnedtus	pue Aupilev	et), attest to the	- :Yd belqn Yqmss blei				
																:50	al Instruction	enoitibl				
	1.1					X	x	x		0	1		(,S'T) ZT-MS		τ	lio2	\$707/77					
	48					X	x	х		k	•		(,s.t) tt-ws		τ	lio2	\$202/\$2/\$					
	OZ					X	x	x		8			(,S'T) 0T-MS		τ	lio2	SZ0Z/7Z/7					
	0'G					X	x	x		L	•		(,s·t) 6-MS		τ	lio2	\$202/\$2/\$					
	58					X	x	x		Ø,			(,S'T) 8-MS		τ	lio2	\$702/\$7					
	hi					X	x	x		Č	,		(,s·t) Z-MS		τ	lio2	\$707/\$7					
	6.0					X	x	х		ŀ	,		(,s.t) a-w2		τ	lio2	\$Z0Z/#Z/#					
	5.0					X	x	x		Ş			(,s.t) s-ws		τ	lioS	\$202/\$2/\$					
	9.0					X	x	x		2			CS-14 (1.5')		τ	lio2	\$202/\$2/\$					
	16.Z					Х	x	x		1			(.s.13 (1.s.)		τ	lio2	\$707/5052					
Kemarks	Samle Temp					BTEX 80218	Chloride 300	TPH 2015M (GRO + DRO MRO)		nmber Lab	Filter		OI sigme2		No. 01 Znametno)	xintsM	Date Sampled	Time belqmi				
						218	l ä	Ň.					noiten	Sample Inform								
	# DISW9							ö		_												
e V or N	Complianci							掦						<u></u>	o <u>urces.co</u>		neD@Asilair					
								•		⊢			Miscellaneous:				8868-518-25					
CWA RCRA	AWD2		ليبل						Щ			moɔ.nvb@		-			elbiM :qiZ,9					
mergor9 A	Eb		poq	J9M b	ue sis/	vienA							7-288-272 :9nod9				310 West W					
	тыг			-ta	a û	TA7		~ 7				Interest NM 88220					Aanager: Ash					
			77 77		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	JUC	5	22		COMPANY: Devon Energy Lab Work And Address: 5315 Buena Vista Dr.					rolect Name: Yukon Gold 31-19 Fed Com							
CO UT TX		45 02 0		ii			l PSU d		HOW	461					· · · ·	Client: Carmona Resources						
State		TAT										noitemrofni sa										

Note: Samples are discarded 14 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at the client expense. The report for the analysis of the above

Received by: (Signature)

Container Type: 8 - glass, p - poly/plastic, ag - amber glass, v - VOA

əteQ

əmiT

samples is applicable only to those area of the laboratory with this COC. The lisbility of the laboratory is limited to the amount paid for on the report.

əmil

Sample Matrix: 5 - Soil, 5d - Solid, 5g - Studge, A - Aqueous, O - Other

91sQ

Relinquished by: (Signature)

Received on ice:

L of Page

Chain of Custody

Page <u>2</u> of <u>2</u>

		nt Inforn	nation		Inv	oice Information			Lab Use Only							TA				
	Carmona Re		-		Company: Devo			La	bΨ	VO#		,	Job Nu	mber	-	1D	2D	3D St	NN E	/ CO
	Name: Yukor			<u>om 212H</u>	Address: 5315			μE	Б	CH 2	5.	2	005	l.ar	2			X	×	
	Manager: As					Carlsbad, NM 88220			_											
	310 West W			<u>xo</u>	Phone: 575-68				F				Analys	is and	Me	thod			_	PA P
	te, Zip: Midla		<u>is 79701</u>		<u>Email: jim.ra</u>	ey@dvn.com	@dvn.com												SDWA	C1
-	432-813-898	-			Miscellaneous:					ģ										
<u>Email: T</u>	hielkeA@Car	monaRe	sources.c	om															Complia	_
									_	e		8							PWSID #	4—
Time				Sample Infe			.	Lab	-	3		tde 3	8021						Samle	
Sampled	Date Sampled	Matrix	No. ol Containers		Sample ID 🗄 🗄 Nu			Numbe	er	No Herr	MRO)	Chloride 300	BTEX 8021B						Te Sa	
8	4/24/2025	Soil	1		SW-13 (1.5')			11			x	х	x						3.4	
	4/24/2025	Soil	1		SW-14 (1.5')			12			x	х	x						2.9	Τ
				†					+	+										+
				<u> </u>					╉	_				-	-	-				+
				<u> </u>					+	_	-		_	_						+
									+		_								<u> </u>	_
																				Γ
_															1				\mathbf{T}	\uparrow
									╉		-		+							\uparrow
Addition	al Instruction	ns:	I	<u>I</u> .			I						I		L	L	L		1	
		validity and	authenticity	of this sample. I am a	ware that tampering with	or intentionally mislabeling t	he sam	ple locatio	on, di	ate or t	ime (of colle	ction is c	onsidere	d fraud	and m	iay be f	grounds for	legal action.	
Sampled by Relinguish	nd hu: (Signature	e)		Date	Time	Received by: (Signatur	e)			D	ate			Time					Samples	requir
	Riley Ploy	zger		4-24-25	16:45	Received by: (Signatur MICHEUE	Gor	izale	S		4	-24	·25		16:	45		Dr	eservation	•
Relinquish	<i>Riley Plog</i> ed by (Signatur ICHEUR (ค์ กก <i>หรภ</i> เ	105	Date 4-24-25	Time 16:45	Received by: Mighatur		111	r	D	ate	x	-25		15				e the day ceived pac	
Relinquish	ed by: (Signature	e)		Date	Time	Received by: (Signatur		~~		D	ate			Time					above 0 bi	
Relinquish	ed by: (Signature	e)		Date	Time	Received by: (Signatur	e)			Þ	ate			Time					Lal	b Use
Relinquish	ed by: (Signature	e)		Date	Time	Time Received by: (Signature)			Date Tim					Time	Time					eived Ø
	rix: S - Soil, Sd - So												oly/plas					┝╼┠─		

Released to Imaging: 7/7/2025 9:20:25 AM

.

Received by OCD: 5/13/2025 11:42:19 AM

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Client:	Carmona Resources Dat	e Received:	04/25/25 08	8:15	Work Order ID: E504253
Phone:	(432) 813-6823 Dat	e Logged In:	04/25/25 08	8:21	Logged In By: Caitlin Mars
Email:		e Date:	04/29/25 17	7:00 (2 day TAT)	
Chain of	Custody (COC)				
1. Does t	he sample ID match the COC?		Yes		
2. Does the	he number of samples per sampling site location match the	he COC	Yes		
3. Were s	amples dropped off by client or carrier?		Yes	Carrier: C	Courier
4. Was th	e COC complete, i.e., signatures, dates/times, requested a	analyses?	No	_	
5. Were a	Ill samples received within holding time? Note: Analysis, such as pH which should be conducted in the i.e, 15 minute hold time, are not included in this disucssion.	field,	Yes		Comments/Resolution
Sample 7	<u>Furn Around Time (TAT)</u>				
6. Did the	e COC indicate standard TAT, or Expedited TAT?		Yes		Time sampled and sampled by not
Sample (Cooler				provided on COC.
7. Was a	sample cooler received?		Yes		
8. If yes,	was cooler received in good condition?		Yes		
9. Was th	e sample(s) received intact, i.e., not broken?		Yes		
10. Were	custody/security seals present?		No		
11. If yes	, were custody/security seals intact?		NA		
12. Was th	ne sample received on ice? Note: Thermal preservation is not required, if samples are rece		Yes		
		eived within			
12 8 0	15 minutes of sampling				
	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C		e recorded in	a comments.	
Sample (15 minutes of sampling COC for individual sample temps. Samples outside of 0°C <u>Container</u>			n comments.	
<u>Sample (</u> 14. Are a	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C <u>Container</u> queous VOC samples present?		No	a comments.	
<u>Sample (</u> 14. Are a 15. Are V	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C Container queous VOC samples present? /OC samples collected in VOA Vials?		No NA	n comments.	
Sample (14. Are a 15. Are V 16. Is the	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C <u>Container</u> queous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)?		No NA NA	n comments.	
Sample (14. Are a 15. Are V 16. Is the 17. Was a	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C <u>Container</u> queous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses?		No NA NA NA	n comments.	
Sample (14. Are a 15. Are V 16. Is the 17. Was a 18. Are n	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C <u>Container</u> queous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers?	C-6°C will be	No NA NA Yes	n comments.	
Sample (14. Are a 15. Are V 16. Is the 17. Was a 18. Are n 19. Is the	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C <u>Container</u> queous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers of	C-6°C will be	No NA NA NA	n comments.	
Sample (14. Are a 15. Are V 16. Is the 17. Was a 18. Are n 19. Is the Field La	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C <u>Container</u> queous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers of <u>bel</u>	C-6°C will be	No NA NA Yes	a comments.	
Sample (14. Are a 15. Are V 16. Is the 17. Was a 18. Are n 19. Is the Field Lat 20. Were	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C <u>Container</u> queous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers of <u>bel</u> field sample labels filled out with the minimum information	C-6°C will be	No NA NA Yes Yes	n comments.	
Sample (14. Are a 15. Are V 16. Is the 17. Was a 18. Are n 19. Is the Field Lat 20. Were S	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C <u>Container</u> queous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers of <u>bel</u>	C-6°C will be	No NA NA Yes Yes	n comments.	
Sample (14. Are a 15. Are V 16. Is the 17. Was a 18. Are n 19. Is the Field Lat 20. Were S	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C Container queous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers of bel field sample labels filled out with the minimum information ample ID?	C-6°C will be	No NA NA Yes Yes	n comments.	
Sample (14. Are a 15. Are V 16. Is the 17. Was a 18. Are n 19. Is the Field Lal 20. Were S C	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C Container queous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers of bel field sample labels filled out with the minimum information ample ID? Date/Time Collected?	C-6°C will be	No NA NA Yes Yes Yes No	n comments.	
Sample (14. Are a 15. Are V 16. Is the 17. Was a 18. Are n 19. Is the Field Lal 20. Were S C Sample H 21. Does	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C Container queous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers of bel field sample labels filled out with the minimum information ample ID? Date/Time Collected? Collectors name? Preservation the COC or field labels indicate the samples were preser	C-6°C will be collected? tion:	No NA NA Yes Yes No No	n comments.	
Sample (14. Are a 15. Are V 16. Is the 17. Was a 18. Are n 19. Is the Field Lal 20. Were S C Sample H 21. Does 22. Are s	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C <u>Container</u> queous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers of <u>bel</u> field sample labels filled out with the minimum information ample ID? Date/Time Collected? Collectors name? <u>Preservation</u> the COC or field labels indicate the samples were preser ample(s) correctly preserved?	C-6°C will be collected? tion: ved?	No NA NA Yes Yes No No	a comments.	
Sample (14. Are a 15. Are V 16. Is the 17. Was a 18. Are n 19. Is the Field Lal 20. Were S C Sample H 21. Does 22. Are s	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C Container queous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers of bel field sample labels filled out with the minimum information ample ID? Date/Time Collected? Collectors name? Preservation the COC or field labels indicate the samples were preser	C-6°C will be collected? tion: ved?	No NA NA Yes Yes No No	n comments.	
Sample (14. Are a 15. Are V 16. Is the 17. Was a 18. Are n 19. Is the Field Lal 20. Were S C Sample H 21. Does 22. Are sa 24. Is lab	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C <u>Container</u> queous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers of <u>bel</u> field sample labels filled out with the minimum information ample ID? Date/Time Collected? Collectors name? <u>Preservation</u> the COC or field labels indicate the samples were preser ample(s) correctly preserved?	C-6°C will be collected? tion: ved?	No NA NA Yes Yes No No No	n comments.	
Sample (14. Are a 15. Are V 16. Is the 17. Was a 18. Are n 19. Is the Field Lal 20. Were 20. Were 20. Were 21. Does 22. Are sa 24. Is lab Multipha 26. Does	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C Container queous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers of bel field sample labels filled out with the minimum information ample ID? Date/Time Collected? Collectors name? Preservation the COC or field labels indicate the samples were preser ample(s) correctly preserved? filtration required and/or requested for dissolved metals? ase Sample Matrix the sample have more than one phase, i.e., multiphase?	C-6°C will be collected? tion: ved? ?	No NA NA Yes Yes No No No	n comments.	
Sample (14. Are a 15. Are V 16. Is the 17. Was a 18. Are n 19. Is the Field Lal 20. Were 20. Were 20. Were 21. Does 22. Are s 24. Is lab Multipha 26. Does	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C Container queous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers of bel field sample labels filled out with the minimum information ample ID? Date/Time Collected? Collectors name? Preservation the COC or field labels indicate the samples were preser ample(s) correctly preserved? filtration required and/or requested for dissolved metals? ase Sample Matrix.	C-6°C will be collected? tion: ved? ?	No NA NA Yes Yes No No No NA No	n comments.	
Sample (14. Are a 15. Are V 16. Is the 17. Was a 18. Are n 19. Is the Field Lal 20. Were S C Sample I 21. Does 22. Are s: 24. Is lab Multipha 26. Does Subconti	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C Container queous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers of bel field sample labels filled out with the minimum information ample ID? Date/Time Collected? Collectors name? Preservation the COC or field labels indicate the samples were preser ample(s) correctly preserved? filtration required and/or requested for dissolved metals? ase Sample Matrix the sample have more than one phase, i.e., multiphase? s, does the COC specify which phase(s) is to be analyzed? ract Laboratory.	C-6°C will be collected? tion: ved? ?	No NA NA Yes Yes No No No No	n comments.	
Sample (14. Are a 15. Are V 16. Is the 17. Was a 18. Are n 19. Is the Field Lal 20. Were S 20. Were S 21. Does 22. Are s 24. Is lab Multipha 26. Does 27. If yes Subconti 28. Are s	15 minutes of sampling COC for individual sample temps. Samples outside of 0°C Container queous VOC samples present? /OC samples collected in VOA Vials? head space less than 6-8 mm (pea sized or less)? a trip blank (TB) included for VOC analyses? ion-VOC samples collected in the correct containers? appropriate volume/weight or number of sample containers of bel field sample labels filled out with the minimum information ample ID? Date/Time Collected? Collectors name? Preservation the COC or field labels indicate the samples were preser ample(s) correctly preserved? ifiltration required and/or requested for dissolved metals? ase Sample Matrix the sample have more than one phase, i.e., multiphase? a, does the COC specify which phase(s) is to be analyzed	C-6°C will be collected? tion: ved? ?	No NA NA Yes Yes No No No No	n comments.	

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

•

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 348 of 354

QUESTIONS

Action 461521

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	461521
	Action Type:
	[C-141] Deferral Request C-141 (C-141-v-Deferral)

QUESTIONS

nAPP2504240482
NAPP2504240482 YUKON GOLD 31 CTB 2 @ 0
Produced Water Release
Deferral Request Received
[fAPP2123652649] YUKON GOLD 31 CTB 2

Location of Release Source

Please	answer	all the	questions in	this group.	

Site Name	YUKON GOLD 31 CTB 2
Date Release Discovered	02/09/2025
Surface Owner	Federal

Incident Details

Please answer all the questions in this group.		
Incident Type	Produced Water Release	
Did this release result in a fire or is the result of a fire	No	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	No	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No	

Nature and Volume of Release

Crude Oil Released (bbls) Details	Not answered.
Produced Water Released (bbls) Details	Cause: Corrosion Valve Produced Water Released: 6 BBL Recovered: 0 BBL Lost: 6 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Pinhole developed on 3" ball valve on water dump line of 3 phase and released 5.7 bbls of produced water onto pad surface.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 349 of 354

QUESTIONS, Page 2

Action 461521

QUESTIONS	(continued)	
QUEUNONU	(containaca)	

Operator:		OGRID:
DEVON ENERGY PROD	UCTION COMPANY, LP	6137
333 West Sheridan Ave.		Action Number:
Oklahoma City, OK 7310	2	461521
		Action Type:
		[C-141] Deferral Request C-141 (C-141-v-Deferral)

QUESTIONS

Nature and Volume of Release (continued)		
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.	
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No	
Reasons why this would be considered a submission for a notification of a major release	Unavailable.	
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.		

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.		
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
	Not answered. ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of	
actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of Subsection A of 19.15.29.11 NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: James Raley Title: EHS Professional Email: jim.raley@dvn.com Date: 05/13/2025	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	461521
	Action Type:
	[C-141] Deferral Request C-141 (C-141-v-Deferral)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approva ct office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 51 and 75 (ft.)
What method was used to determine the depth to ground water	Direct Measurement
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release ar	nd the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Between 1 and 5 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)
Any other fresh water well or spring	Greater than 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Greater than 5 (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Low
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	No

Remediation Plan

Please answer all the questions	that apply or are indicated. This information must be provided to	the appropriate district office no later than 90 days after the release discovery date.
Requesting a remediation	n plan approval with this submission	Yes
Attach a comprehensive report d	emonstrating the lateral and vertical extents of soil contamination	n associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Have the lateral and vertic	al extents of contamination been fully delineated	Yes
Was this release entirely	contained within a lined containment area	No
Soil Contamination Samplin	g: (Provide the highest observable value for each, in m	illigrams per kilograms.)
Chloride	(EPA 300.0 or SM4500 CI B)	1960
TPH (GRO+DRO+MRO)	(EPA SW-846 Method 8015M)	0
GRO+DRO	(EPA SW-846 Method 8015M)	0
BTEX	(EPA SW-846 Method 8021B or 8260B)	0
Benzene	(EPA SW-846 Method 8021B or 8260B)	0
	NMAC unless the site characterization report includes completed melines for beginning and completing the remediation.	d efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,
On what estimated date will the remediation commence		04/22/2025
On what date will (or did) the final sampling or liner inspection occur		04/25/2025
On what date will (or was) the remediation complete(d)		05/12/2025
What is the estimated surface area (in square feet) that will be reclaimed		0
What is the estimated volume (in cubic yards) that will be reclaimed		0
What is the estimated surface area (in square feet) that will be remediated		316
What is the estimated volume (in cubic yards) that will be remediated		12
		e time of submission and may (be) change(d) over time as more remediation efforts are completed.
The OCD researchings that propag	ad remediation measures may have to be minimally adjusted in	anardanan with the physical realities approximatered during remediation. If the responsible party has any need to

1	and beyond). This information must be provided to the appropriate distric
	Between 51 and 75 (ft.)
	Direct Measurement

QUESTIONS, Page 3

Page 350 of 354

Action 461521

tion. If the responsible party has any need to idju phys ing i significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 351 of 354

QUESTIONS, Page 4

Action 461521

QUESTIONS (continued)	
Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	461521
	Action Type:
	[C-141] Deferral Request C-141 (C-141-v-Deferral)

QUESTIONS

Remediation Plan (continued)

Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the		
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:		
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes	
Which OCD approved facility will be used for off-site disposal	HALFWAY DISPOSAL AND LANDFILL [fEEM0112334510]	
OR which OCD approved well (API) will be used for off-site disposal	Not answered.	
OR is the off-site disposal site, to be used, out-of-state	Not answered.	
OR is the off-site disposal site, to be used, an NMED facility	Not answered.	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.	
(In Situ) Soil Vapor Extraction	Not answered.	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.	
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.	
OTHER (Non-listed remedial process)	Not answered.	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed ef which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,	
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or	
I hereby agree and sign off to the above statement	Name: James Raley Title: EHS Professional Email: jim.raley@dvn.com	

Date: 05/13/2025 The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 352 of 354

QUESTIONS, Page 5

Action 461521

QUESTIONS	(continued)
QUESTIONS	(COntinueu)

Operator:		OGRID:
DEVON ENERGY PRODUCTIO	ON COMPANY, LP	6137
333 West Sheridan Ave.		Action Number:
Oklahoma City, OK 73102		461521
		Action Type:
		[C-141] Deferral Request C-141 (C-141-v-Deferral)

QUESTIONS

Deferral Requests Only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of	the following items must be confirmed as part of any request for deferral of remediation.
Requesting a deferral of the remediation closure due date with the approval of this submission	Yes
Have the lateral and vertical extents of contamination been fully delineated	Yes
Is the remaining contamination in areas immediately under or around production equipment where remediation could cause a major facility deconstruction	Yes
Please list or describe the production equipment and how (re)moving the equipment would cause major facility deconstruction	A 6"-8" buffer zone on each side of Devons' equipment, and underneath the equipment, on site will be deferred per 19.15.29.12.C.2 NMAC. To remove all contaminated material, major facility deconstruction would have to take place. Removing soil within that buffer zone could potentially cause structural instability and might result in additional releases in the future as backfill material can shift and settle over time. The deferred areas are defined by the following composite confirmation sidewall samples: SW-1 through SW-3, SW-6, and SW-7. Approximately 1,098 square feet, 41 cubic yards, of contamination was left in place under the site equipment.
What is the remaining surface area (in square feet) that will still need to be remediated if a deferral is granted	1098
What is the remaining volume (in cubic yards) that will still need to be remediated if a deferral is granted	41.1
Per Paragraph (2) of Subsection C of 19.15.29.12 NMAC if contamination is located in areas immediately under or around production equipment such as production tanks, wellheads and pipelines where remediation could cause a major facility deconstruction, the remediation, restoration and reclamation may be deferred with division written approval until the equipment is removed during other operations the well or facility is plugged or abandoned, whichever comes first.	
Enter the facility ID (f#) on which this deferral should be granted	YUKON GOLD 31 CTB 2 [fAPP2123652649]
Enter the well API (30-) on which this deferral should be granted	Not answered.
Contamination does not cause an imminent risk to human health, the environment, or groundwater	True
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed eff which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	nowledge and understand that pursuant to OCD rules and regulations all operators are required ses which may endanger public health or the environment. The acceptance of a C-141 report by idequately investigate and remediate contamination that pose a threat to groundwater, surface does not relieve the operator of responsibility for compliance with any other federal, state, or

I hereby agree and sign off to the above statement	Name: James Raley Title: EHS Professional
Thereby agree and sign on to the above statement	Email: jim.raley@dvn.com
	Date: 05/13/2025

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Page 353 of 354

Action 461521

QUESTIONS (continued)

Operator:	OGRID:	
DEVON ENERGY PRODUCTION COMPANY, LP	6137	
333 West Sheridan Ave.	Action Number:	
Oklahoma City, OK 73102	461521	
	Action Type:	
	[C-141] Deferral Request C-141 (C-141-v-Deferral)	

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	452783
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	04/23/2025
What was the (estimated) number of samples that were to be gathered	12
What was the sampling surface area in square feet	650

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.
Requesting a remediation closure approval with this submission
No

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:	
DEVON ENERGY PRODUCTION COMPANY, LP	6137	
333 West Sheridan Ave.	Action Number:	
Oklahoma City, OK 73102	461521	
	Action Type:	
	[C-141] Deferral Request C-141 (C-141-v-Deferral)	

CONDITIONS		
Created By	Condition	Condition Date
nvelez	Deferral is approved. Remediation Due date will be left open until the site has been plugged and abandoned or a major facility deconstruction takes place.	7/7/2025

CONDITIONS

Page 354 of 354

Action 461521