

April 23, 2025

New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Site Summary Report and Closure Request CA McAdams C 2E Hilcorp Energy Company NMOCD Incident No: nAPP2505937309

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this *Site Summary Report and Closure Request* associated with a produced water release at the CA McAdams C 2E natural gas production well (Site, Figure 1). The Site is located on surface managed by the Bureau of Land Management (BLM) in Unit F, Section 5, Township 27 North, Range 10 West, in San Juan County, New Mexico (36.607172°, -107.923134°).

SITE BACKGROUND

On February 27, 2025, Hilcorp personnel discovered a release of 10 barrels (bbls) of produced water at the Site. Specifically, while conducting a routine Site inspection, a Hilcorp operator observed small pools of produced water on the witness liner within the below grade tank (BGT) cribbing and noted the BGT was mostly empty. Upon discovery, Hilcorp inspected and repaired the BGT tank to prevent potential future releases. Due to no obvious leaks on the outside of the BGT, it was determined a hole formed on the bottom of the tank, likely due to corrosion. The spilled fluids did not migrate horizontally outside of secondary containment; however, fluids were not recovered and were absorbed by soils underlying the BGT. Hilcorp notified the New Mexico Oil Conservation Division (NMOCD) within 15 days of discovery and submitted an initial *Notification of Release* on February 28, 2025. NMOCD assigned the Site Incident Number nAPP2505937309.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

As part of the Site investigation, local geology/hydrogeology and nearby sensitive receptors were assessed in accordance with Title 19, Chapter 15, Part 29, Sections 11 and 12 (19.15.29.11 and 12) of the New Mexico Administrative Code (NMAC).

In the report titled "Hydrogeology and Water Resources of San Juan Basin, New Mexico" (Stone, et. al., 1983), the Nacimiento Formation is characterized by interbedded black carbonaceous mudstones and white, coarse-grained sandstones. This formation ranges in thickness from 418 feet to 2,232 feet. The Nacimiento Formation is underlain by the Ojo Alamo sandstone (Stone et. al., 1983). The hydrogeologic properties of the Nacimiento Formation display variable hydrogeologic properties dependent on location.

The closest significant watercourse is an unnamed dry wash located 115 feet south of the Site. The Site is greater than 200 feet from any lakebed, sinkhole, or playa lake, and is approximately 115 feet from a wetland (Figure 1, shown to the south of Site). The nearest fresh-water well is New Mexico Office of the State Engineer (NMOSE) permitted well SJ-00032 (Appendix A), located approximately 5,427 feet south of the Site. The recorded depth to water on the NMOSE database is 60 feet below ground surface (bgs). No wellhead protection areas, springs, or domestic/stock wells are located within a ½-mile radius from the Site. The Site is not within a 100-year floodplain, overlying a subsurface mine, or located within an area underlain by unstable geology (area designated as no potential karst by the BLM). Schools, hospitals, institutions, churches, and/or other occupied permanent residence or structures are not located within 300 feet of the Site.

SITE CLOSURE CRITERIA

Based on the information presented above and in accordance with *Table I, Closure Criteria for Soils Impacted by a Release* (19.15.29.12 NMAC), the following Closure Criteria for constituents of concern (COCs) should be applied to the Site:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH) as a combination of gasoline range organics (GRO), diesel range organics (DRO), and motor oil range organics (MRO): 100 mg/kg
- Chloride: 600 mg/kg

SITE ASSESSMENT ACTIVITIES

To assess potential soil impacts from the release, Ensolum advanced five hand auger borings (HA-01 through HA-05) on March 24, 2025 (Figure 2). The NMOCD was notified at least two business days prior to commencing on-Site activities (Appendix B). Because the base of the BGT was set at a depth of approximately 6 feet bgs, all hand auger borings were advanced to depths of 8 feet bgs, with soil field screened for petroleum hydrocarbon staining, odors, and chloride crusting during advancement. Soil samples were additionally field screened for the presence of organic vapors using a calibrated photoionization detector (PID) and chloride using Hach[®] QuanTab[®] test strips, with results recorded in the field notes and PID results summarized in Table 1. Of note, chloride field screening results were less than the minimum test strip limits, therefore sampling depth intervals were based on PID results.

Two soil samples were collected from each boring for laboratory analysis; one sample from the depth interval indicating the highest field screening results and one from the terminus of the boring. Samples were collected directly into laboratory-provided jars, immediately placed on ice, and submitted to Eurofins Environment Testing in Albuquerque, New Mexico for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B, TPH-GRO, TPH-DRO, and TPH-MRO following EPA Method 8015D, and chloride following EPA Method 300.0. Field indications of petroleum hydrocarbons and/or chloride, including staining, odors, elevated PID readings and/or chloride crusting, were not observed in any of the samples during the field work. Photographs taken during field activities are attached as Appendix C.

Laboratory analytical results indicated BTEX, TPH, and chloride were not detected above the NMOCD Table I Closure Criteria in any of the soil samples collected during the March 2025 assessment. Soil sample analytical results are summarized in Table 1 and Figure 2, with complete laboratory analytical reports attached as Appendix D.

Hilcorp Energy Company Site Summary Report and Closure Request CA McAdams C 2E

CONCLUSIONS AND CLOSURE REQUEST

Based on the soil sampling activities and analytical results described above, petroleum hydrocarbon and/or chloride contaminants were not detected in any of the samples collected at the Site above the NMOCD Table I Closure Criteria. The Site appears to be absent of soil impacts and waste-containing soil. As such, Site conditions appear to be protective of human health, the environment, and groundwater, and Hilcorp respectfully requests closure for Incident Number nAPP2505937309.

REFERENCES

Stone, W., Lyford, F., Frenzel, P., Mizell, N., & Padgett, E. (1983). Hydrogeology and Water Resources of San Juan Basin, New Mexico. New Mexico Bureau of Mines & Mineral Resources.

We appreciate the opportunity to provide this document to the NMOCD. If you should have any questions or comments regarding this document, please contact the undersigned.

Sincerely, Ensolum, LLC

Tracy Dembrowski Project Geologist (720) 989-6175 tdembrowski@ensolum.com

Daniel R. Moir, PG (licensed in WY & TX) Senior Managing Geologist (303) 887-2946 dmoir@ensolum.com

Attachments:

- Figure 1: Site Receptor Map
- Figure 2: Soil Sample Location Map
- Table 1:Soil Sample Analytical Results
- Appendix A: NMOSE Point of Diversion Summary
- Appendix B: Agency Sampling Notification
- Appendix C: Photographic Log
- Appendix D: Laboratory Analytical Reports

Page 3

FIGURES

Released to Imaging: 7/7/2025 4:29:16 PM

Received by OCD: 4/23/2025 9:22:12 AM

Released to Imaging: 7/7/2025 4:29:16 PM

Sources: Google Earth (2019) *

TABLES

Released to Imaging: 7/7/2025 4:29:16 PM

						TABL SAMPLE ANAL CA McAdar Hilcorp Energy San Juan County	YTICAL RES ns C 2E / Company						
Sample Identification	Date	Depth (feet bgs)	PID (ppm)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH MRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Closure	Criteria for Soils Release	Impacted by a	NE	10	NE	NE	NE	50	NE	NE	NE	100	600
HA-01@6-7'	3/24/2025	6-7	0.3	<0.025	<0.050	<0.050	<0.10	<0.10	<5.0	<9.3	<46	<46	<60
HA-01@7-8'	3/24/2025	7-8	0.2	<0.023	<0.046	<0.046	<0.092	<0.092	<4.6	<9.5	<47	<47	<60
HA-02@2-3'	3/24/2025	2-3	0.6	<0.024	<0.049	<0.049	<0.097	<0.097	<4.9	<9.6	<48	<48	<60
HA-02@7-8'	3/24/2025	7-8	0.4	<0.024	<0.048	<0.048	<0.097	<0.097	<4.8	<9.3	<47	<47	<60
HA-03@4-5'	3/24/2025	4-5	0.7	<0.025	<0.050	<0.050	<0.099	<0.099	<5.0	<9.2	<46	<46	<60
HA-03@7-8'	3/24/2025	7-8	0.1	<0.025	<0.050	<0.050	<0.099	<0.099	<5.0	<9.2	<46	<46	<60
HA-04@0-1'	3/24/2025	0-1	0.7	<0.025	<0.049	<0.049	<0.098	<0.098	<4.9	<9.3	<46	<46	130
HA-04@7-8'	3/24/2025	7-8	0.0	<0.025	<0.050	<0.050	<0.10	<0.10	<5.0	<9.8	<49	<49	<60
HA-05@6-7'	3/24/2025	6-7	0.0	<0.024	<0.049	<0.049	<0.097	<0.097	<4.9	<9.9	<50	<50	<60
HA-05@7-8'	3/24/2025	7-8	0.1	<0.024	<0.048	<0.048	<0.096	<0.096	<4.8	<9.2	<46	<46	<60

Notes:

bgs: Below ground surface BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes mg/kg: Milligrams per kilogram ppm: Parts per million NE: Not Established NMOCD: New Mexico Oil Conservation Division PID: Photoionization detector GRO: Gasoline Range Organics

DRO: Diesel Range Organics

MRO: Motor Oil/Lube Oil Range Organics

TPH: Total Petroleum Hydrocarbon

': Feet

<: Indicates result less than the stated laboratory reporting limit (RL)

Concentrations in **bold** and shaded exceed the New Mexico Oil Conservation Division Table I Closure Criteria for Soils Impacted by a Release

ENSOLUM

.

APPENDIX A

NMOSE Point of Diversion Summary

Released to Imaging: 7/7/2025 4:29:16 PM

Page 10 of 52

Έ.

221826

Peak Water Well #3

(This form is to be executed in triplicate)

Received by OCD: 4/23/2025 9:22:12 AM

WELL RECORD

1					Marine services		Permit No. 🗯	SER
Name	of permitee,		Pago Nati	nal Cas	Company			
Street or]	P. O. DOX	.997		······	City and Sta	te Parm	ington, No.	Merico
1. Well lo	ocation and d	lescription	The sha	llow well	is located in	SW	¥4.	NE y
N	F		(shallow or		711			
	₩	Section	e , T	ownship	(A , R	ange 1	; Elev	ation of top (
casing	above sea le	vel, 5962	Gr. fee	t; diameter	of hole,	2 inche	s; total depth,	235. fee
depth i	to water upon	n completi	on, 60	feet; dri	lling was con	nmenced	7-5	, 19.5
and co	mpleted	7-1	1	19.53; nan	ne of drilling	contractor	Conl	ey Cox
	Box 7	85 : Ad	ldress.	ztec, N.	М.	: Driller's	License No.	85-010659
9 Princin	oal Water-be				:			
2, Filliolp	Depth in			lickness		·	· . · · · · · · · · · · · · · · · · · ·	····
	From	To					ter-bearing Format	30 0
No. 1	55	67	12	2	buff me	d, gr. s	d. v. little	water
No. 2	165	195	3()	W, to l	uff med.	gr. sd.	
No. 3								
No. 4	Ī					1	:	: : :
No. 5			· ·····			·····	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	<u>I</u>						line and the second s	
3. Casing	Record:	····· · •·			4 6	· ··· ·· ·	· · · · · · · · · · · · · · · · · · ·	ny na anitra di secondo de la secondo de la seconda de
Diameter in inches	Pounds per ft.	Threads	Depth of Casi		Feet of Casing	Type of Sho		erforation
8-5/8	. –	per inch	Тор	Bottom		Type of Sho	From	To to
0-570			••••••		235		>>	Of
*****	· · · · · · · · · · · · · ·	• •••••					165	145
	·	 		···· ····	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · =· ·· · ··
		• ••••••••	· · · · · · · · · · · · · · · · · · ·			··		
	· · · · · · · · · · · · · · · · · · ·	• ••••			<u></u>	·		ning 1 1 1 - Alan Annala Ionaig ang ang
								1
4. If above	e constructio	n replaces	old well to I	be abandone		ion:	1⁄4,	
	ion	, Townsh	ip	, Range		name and a	ddress of plug	ging contracto
					and the second	•		a Tani yang seren
				· · · · · · · · · · · · · · · · · · ·				

Received by OCD: 4/23/2025 9:22:12 AM

1.12

of Woll.

Page 11 of 52

Depth From	in Feet To	Thickness in feet	Description of Formation
· · · · · · · · · · · · · · · · · · ·	1)	1)	Alluvium.
		11	
11	52	45	W. med. gr. sd.
56	87	31	Buff med. gr. sd. (Water).
	90	3	Sdy. sh.
90	128	38	Med. to fn. gr. sd. w/sh. streaks.
128	., 201	73	Med. gr. sd. (Water).
201	235	34	W. to buff med. gr. sd. (Water).
The April 1	รมริษัทษามาก จ.ชาวสรริก		
1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	a (an an a		anna an an an ann an anna ann an ann an
<u></u>			
		. <u>.</u>	
		an ann aite an is an an dù than	and a set of the construction of a second on an one of a second of the second of the second of the second of the
		······································	
	<u></u>	·	
		al alam an 197 ann an 197	
·			
the later of			
112		under de Regela.	godist stream, sjald so a slavat slevat af
····· · · · · · · · · · · · · · · · ·			
	1 1 1 A		
1911 - 1911 - 19 1			
		· ··· · ·	
· · · · · · · · · · · · · · · · · · ·			
i i i i i i i i i i i i i i i i i i i	n an an an an Anna an A Anna an Anna an An Anna an Anna	•	Aller and the second second state of the second s
hanarbeann ann	and in 1997.		
anna ann Sta	na postani i della d Na segunda della	Part of a second se	$\sum_{i=1}^{n} f_i - f_i = \sum_{i=1}^{n} f_i$

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well. Released to Imaging: 7/7/2025 4:29:16 PM

APPENDIX B

Agency Sampling Notification

From:	OCDOnline@state.nm.us
To:	Stuart Hyde
Subject:	The Oil Conservation Division (OCD) has accepted the application, Application ID: 443516
Date:	Tuesday, March 18, 2025 10:28:42 AM

EXTERNAL EMAIL]

To whom it may concern (c/o Stuart Hyde for HILCORP ENERGY COMPANY),

The OCD has received the submitted *Notification for (Final) Sampling of a Release* (C-141N), for incident ID (n#) nAPP2505937309.

The sampling event is expected to take place:

When: 03/24/2025 @ 09:00 **Where:** F-05-27N-10W 1560 FNL 1530 FWL (36.60729,-107.92215)

Additional Information: Contact PM Stuart Hyde, 970-903-1607

Additional Instructions: C A McAdams C 2E well pad, coordinates 36.607288, -107.923126

An OCD representative may be available onsite at the date and time reported. In the absence or presence of an OCD representative, sampling pursuant to 19.15.29.12.D NMAC is required. Sampling must be performed following an approved sampling plan or pursuant to 19.15.29.12.D.(1).(c) NMAC. Should there be a change in the scheduled date and time of the sampling event, then another notification should be resubmitted through OCD permitting as soon as possible.

• Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.

If you have any questions regarding this application, or don't know why you have received this email, please contact us.

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

APPENDIX C

Photographic Log

Released to Imaging: 7/7/2025 4:29:16 PM

APPENDIX D

Laboratory Analytical Reports

Received by OCD: 4/23/2025 9:22:12 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mitch Killough Hilcorp Energy PO BOX 4700 Farmington, New Mexico 87499 Generated 4/1/2025 2:45:23 PM

JOB DESCRIPTION

CA McAdams

JOB NUMBER

885-22001-1

ËOL

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Juhelle Garcia

Generated 4/1/2025 2:45:23 PM

Authorized for release by Michelle Garcia, Project Manager michelle.garcia@et.eurofinsus.com (505)345-3975

Laboratory Job ID: 885-22001-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	16
QC Association Summary	19
Lab Chronicle	22
Certification Summary	26
Chain of Custody	27
Receipt Checklists	28

Percent Recovery

These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

Client: Hilcorp Energy Project/Site: CA McAdams

Glossary Abbreviation

₽ %R Job ID:

	1
885-22001-1	
	3
	5
	8
	9

,	
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Case Narrative

Job ID: 885-22001-1

Client: Hilcorp Energy Project: CA McAdams

Job ID: 885-22001-1

Eurofins Albuquerque

1 2 3 4 5 6 7 8 9 10

Page 21 of 52

Eurofins Albuque

Job Narrative 885-22001-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/25/2025 7:10 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.2°C.

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 885-22001-1

Lab Sample ID: 885-22001-1

Project/Site: CA McAdams

Client: Hilcorp Energy

Client Sample ID: HA-01@6-7'

Date Collected: 03/24/25 11:00 Date Received: 03/25/25 07:10

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		5.0	mg/Kg		03/25/25 17:15	03/28/25 16:38	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		35 - 166			03/25/25 17:15	03/28/25 16:38	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		03/25/25 17:15	03/27/25 20:08	1
Ethylbenzene	ND		0.050	mg/Kg		03/25/25 17:15	03/27/25 20:08	1
Toluene	ND		0.050	mg/Kg		03/25/25 17:15	03/27/25 20:08	1
Xylenes, Total	ND		0.10	mg/Kg		03/25/25 17:15	03/27/25 20:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		48 - 145			03/25/25 17:15	03/27/25 20:08	1
Method: SW846 8015M/D - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.3	mg/Kg		03/27/25 07:45	03/27/25 12:20	1
Motor Oil Range Organics [C28-C40]	ND		46	mg/Kg		03/27/25 07:45	03/27/25 12:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	122		62 - 134			03/27/25 07:45	03/27/25 12:20	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
					_			
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Matrix: Solid

Job ID: 885-22001-1

Lab Sample ID: 885-22001-2

Project/Site: CA McAdams

Client: Hilcorp Energy

Client Sample ID: HA-01@7-8'

Date Collected: 03/24/25 11:10 Date Received: 03/25/25 07:10

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		4.6	mg/Kg		03/25/25 17:15	03/28/25 17:01	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		35 - 166			03/25/25 17:15	03/28/25 17:01	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.023	mg/Kg		03/25/25 17:15	03/27/25 21:14	1
Ethylbenzene	ND		0.046	mg/Kg		03/25/25 17:15	03/27/25 21:14	1
Toluene	ND		0.046	mg/Kg		03/25/25 17:15	03/27/25 21:14	1
Xylenes, Total	ND		0.092	mg/Kg		03/25/25 17:15	03/27/25 21:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		48 - 145			03/25/25 17:15	03/27/25 21:14	1
Method: SW846 8015M/D - Diese	l Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.5	mg/Kg		03/27/25 07:45	03/27/25 12:55	1
Motor Oil Range Organics [C28-C40]	ND		47	mg/Kg		03/27/25 07:45	03/27/25 12:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	104		62 - 134			03/27/25 07:45	03/27/25 12:55	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
	Decult	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Quaimer		Unit		ricpuicu	Analyzeu	Dirrac

Eurofins Albuquerque

Matrix: Solid

Job ID: 885-22001-1

Lab Sample ID: 885-22001-3

Project/Site: CA McAdams

Client: Hilcorp Energy

Client Sample ID: HA-02@2-3'

Date Collected: 03/24/25 11:20 Date Received: 03/25/25 07:10

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		4.9	mg/Kg		03/25/25 17:15	03/28/25 17:25	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		35 - 166			03/25/25 17:15	03/28/25 17:25	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.024	mg/Kg		03/25/25 17:15	03/27/25 21:35	1
Ethylbenzene	ND		0.049	mg/Kg		03/25/25 17:15	03/27/25 21:35	1
Toluene	ND		0.049	mg/Kg		03/25/25 17:15	03/27/25 21:35	1
Xylenes, Total	ND		0.097	mg/Kg		03/25/25 17:15	03/27/25 21:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		48 - 145			03/25/25 17:15	03/27/25 21:35	1
Method: SW846 8015M/D - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.6	mg/Kg		03/27/25 07:45	03/27/25 13:07	1
Motor Oil Range Organics [C28-C40]	ND		48	mg/Kg		03/27/25 07:45	03/27/25 13:07	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)			62 - 134			03/27/25 07:45	03/27/25 13:07	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
					-	- ·		
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Matrix: Solid

Job ID: 885-22001-1

Project/Site: CA McAdams

Client: Hilcorp Energy

Client Sample ID: HA-02@7-8'

Date Collected: 03/24/25 11:30 Date Received: 03/25/25 07:10

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		4.8	mg/Kg		03/25/25 17:15	03/28/25 17:49	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		35 - 166			03/25/25 17:15	03/28/25 17:49	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.024	mg/Kg		03/25/25 17:15	03/27/25 21:57	1
Ethylbenzene	ND		0.048	mg/Kg		03/25/25 17:15	03/27/25 21:57	1
Toluene	ND		0.048	mg/Kg		03/25/25 17:15	03/27/25 21:57	1
Xylenes, Total	ND		0.097	mg/Kg		03/25/25 17:15	03/27/25 21:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		48 - 145			03/25/25 17:15	03/27/25 21:57	1
Method: SW846 8015M/D - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.3	mg/Kg		03/27/25 07:45	03/27/25 13:19	1
Motor Oil Range Organics [C28-C40]	ND		47	mg/Kg		03/27/25 07:45	03/27/25 13:19	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	113		62 - 134			03/27/25 07:45	03/27/25 13:19	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
					-			
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Lab Sample ID: 885-22001-4

5

Matrix: Solid

Job ID: 885-22001-1

Lab Sample ID: 885-22001-5

Project/Site: CA McAdams

Client: Hilcorp Energy

Client Sample ID: HA-03@4-5'

Date Collected: 03/24/25 11:40 Date Received: 03/25/25 07:10

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		5.0	mg/Kg		03/25/25 17:15	03/28/25 18:13	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Bromofluorobenzene (Surr)	100		35 - 166			03/25/25 17:15	03/28/25 18:13	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		03/25/25 17:15	03/27/25 22:19	1
Ethylbenzene	ND		0.050	mg/Kg		03/25/25 17:15	03/27/25 22:19	1
Toluene	ND		0.050	mg/Kg		03/25/25 17:15	03/27/25 22:19	1
Xylenes, Total	ND		0.099	mg/Kg		03/25/25 17:15	03/27/25 22:19	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		48 - 145			03/25/25 17:15	03/27/25 22:19	1
Method: SW846 8015M/D - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.2	mg/Kg		03/27/25 07:45	03/27/25 13:30	1
Motor Oil Range Organics [C28-C40]	ND		46	mg/Kg		03/27/25 07:45	03/27/25 13:30	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	108		62 - 134			03/27/25 07:45	03/27/25 13:30	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
	Desult	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Quaimer	RL	Unit		ricparca	Analyzeu	Dirrac

Eurofins Albuquerque

Matrix: Solid

Job ID: 885-22001-1

Lab Sample ID: 885-22001-6

Project/Site: CA McAdams

Client: Hilcorp Energy

Client Sample ID: HA-03@7-8'

Date Collected: 03/24/25 11:50 Date Received: 03/25/25 07:10

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		5.0	mg/Kg		03/25/25 17:15	03/28/25 18:36	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		35 - 166			03/25/25 17:15	03/28/25 18:36	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		03/25/25 17:15	03/27/25 22:41	1
Ethylbenzene	ND		0.050	mg/Kg		03/25/25 17:15	03/27/25 22:41	1
Toluene	ND		0.050	mg/Kg		03/25/25 17:15	03/27/25 22:41	1
Xylenes, Total	ND		0.099	mg/Kg		03/25/25 17:15	03/27/25 22:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		48 - 145			03/25/25 17:15	03/27/25 22:41	1
Method: SW846 8015M/D - Diese	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.2	mg/Kg		03/27/25 07:45	03/27/25 13:42	1
Motor Oil Range Organics [C28-C40]	ND		46	mg/Kg		03/27/25 07:45	03/27/25 13:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	109		62 - 134			03/27/25 07:45	03/27/25 13:42	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Albuquerque

Matrix: Solid

5

Released to Imaging: 7/7/2025 4:29:16 PM

Job ID: 885-22001-1

Lab Sample ID: 885-22001-7

Project/Site: CA McAdams

Client: Hilcorp Energy

Client Sample ID: HA-04@0-1'

Date Collected: 03/24/25 12:00 Date Received: 03/25/25 07:10

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		4.9	mg/Kg		03/25/25 17:15	03/28/25 19:00	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Bromofluorobenzene (Surr)	102		35 - 166			03/25/25 17:15	03/28/25 19:00	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		03/25/25 17:15	03/27/25 23:03	1
Ethylbenzene	ND		0.049	mg/Kg		03/25/25 17:15	03/27/25 23:03	1
Toluene	ND		0.049	mg/Kg		03/25/25 17:15	03/27/25 23:03	1
Xylenes, Total	ND		0.098	mg/Kg		03/25/25 17:15	03/27/25 23:03	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		48 - 145			03/25/25 17:15	03/27/25 23:03	1
Method: SW846 8015M/D - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	, RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.3	mg/Kg		03/27/25 07:45	03/27/25 14:06	1
Motor Oil Range Organics [C28-C40]	ND		46	mg/Kg		03/27/25 07:45	03/27/25 14:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	108		62 - 134			03/27/25 07:45	03/27/25 14:06	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
Awahata	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Regult	Q		•				

005 00004 4

Matrix: Solid

Job ID: 885-22001-1

Matrix: Solid

Project/Site: CA McAdams

Client: Hilcorp Energy

Client Sample ID: HA-04@7-8'

Date Collected: 03/24/25 12:10 Date Received: 03/25/25 07:10

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		5.0	mg/Kg		03/25/25 17:15	03/28/25 19:24	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		35 - 166			03/25/25 17:15	03/28/25 19:24	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		03/25/25 17:15	03/27/25 23:24	1
Ethylbenzene	ND		0.050	mg/Kg		03/25/25 17:15	03/27/25 23:24	1
Toluene	ND		0.050	mg/Kg		03/25/25 17:15	03/27/25 23:24	1
Xylenes, Total	ND		0.10	mg/Kg		03/25/25 17:15	03/27/25 23:24	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		48 - 145			03/25/25 17:15	03/27/25 23:24	1
Method: SW846 8015M/D - Diese	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.8	mg/Kg		03/27/25 07:45	03/27/25 14:17	1
Motor Oil Range Organics [C28-C40]	ND		49	mg/Kg		03/27/25 07:45	03/27/25 14:17	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	109		62 - 134			03/27/25 07:45	03/27/25 14:17	1
	Chromatogram	ohy						
Method: EPA 300.0 - Anions, Ion	e in ennate gi ap							
Method: EPA 300.0 - Anions, Ion Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Albuquerque

Lab Sample ID: 885-22001-8

Job ID: 885-22001-1

Matrix: Solid

5

Lab Sample ID: 885-22001-9

Project/Site: CA McAdams

Client: Hilcorp Energy

Client Sample ID: HA-05@6-7'

Date Collected: 03/24/25 12:20 Date Received: 03/25/25 07:10

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		4.9	mg/Kg		03/25/25 17:15	03/28/25 19:48	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Bromofluorobenzene (Surr)	100		35 - 166			03/25/25 17:15	03/28/25 19:48	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.024	mg/Kg		03/25/25 17:15	03/27/25 23:46	1
Ethylbenzene	ND		0.049	mg/Kg		03/25/25 17:15	03/27/25 23:46	1
Toluene	ND		0.049	mg/Kg		03/25/25 17:15	03/27/25 23:46	1
Xylenes, Total	ND		0.097	mg/Kg		03/25/25 17:15	03/27/25 23:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		48 - 145			03/25/25 17:15	03/27/25 23:46	1
Method: SW846 8015M/D - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.9	mg/Kg		03/27/25 07:45	03/27/25 14:29	1
Motor Oil Range Organics [C28-C40]	ND		50	mg/Kg		03/27/25 07:45	03/27/25 14:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)			62 - 134			03/27/25 07:45	03/27/25 14:29	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
						Dura a suc al	A	B F
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Albuquerque

Job ID: 885-22001-1

Lab Sample ID: 885-22001-10

Project/Site: CA McAdams

Client: Hilcorp Energy

Client Sample ID: HA-05@7-8'

Date Collected: 03/24/25 12:30 Date Received: 03/25/25 07:10

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		4.8	mg/Kg		03/25/25 17:15	03/28/25 20:11	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Bromofluorobenzene (Surr)	102		35 - 166			03/25/25 17:15	03/28/25 20:11	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.024	mg/Kg		03/25/25 17:15	03/28/25 00:29	1
Ethylbenzene	ND		0.048	mg/Kg		03/25/25 17:15	03/28/25 00:29	1
Toluene	ND		0.048	mg/Kg		03/25/25 17:15	03/28/25 00:29	1
Xylenes, Total	ND		0.096	mg/Kg		03/25/25 17:15	03/28/25 00:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		48 - 145			03/25/25 17:15	03/28/25 00:29	1
Method: SW846 8015M/D - Diese	l Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.2	mg/Kg		03/27/25 07:45	03/27/25 14:41	1
Motor Oil Range Organics [C28-C40]	ND		46	mg/Kg		03/27/25 07:45	03/27/25 14:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)			62 - 134			03/27/25 07:45	03/27/25 14:41	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Quaimer	RL	Unit		ricparca	Analyzea	Dirrac

Matrix: Solid

Lab Sample ID: MB 885-23060/1-A

QC Sample Results

RL

5.0

Limits

35 - 166

Unit

mg/Kg

D

Prepared

03/25/25 17:15

Prepared

03/25/25 17:15

Analysis Batch: 23303

Gasoline Range Organics

4-Bromofluorobenzene (Surr)

4-Bromofluorobenzene (Surr)

Matrix: Solid

(GRO)-C6-C10

Analyte

Surrogate

Method: 8015M/D - Gasoline Range Organics (GRO) (GC)

MB MB

MB MB %Recovery Qualifier

ND

102

200

Result Qualifier

Dil Fac

Dil Fac

1

1

Job ID: 885-22001-1

Prep Type: Total/NA

Prep Batch: 23060

2 3 4 5 6 7 8 9

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 23060

Client Sample ID: Method Blank

Analyzed

03/28/25 15:03

Analyzed

03/28/25 15:03

Lab Sample ID: LCS 885-23060/2-A Matrix: Solid Analysis Batch: 23303

			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10			25.0	25.4		mg/Kg		102	70 - 130	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							

35 - 166

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid	A								Chefft 38	Imple ID: Meth Prep Type:	
Analysis Batch: 23236										Prep Bate	
	N	B MB									
Analyte	Resi	ılt Qualifier	RL		Unit		D	Pr	repared	Analyzed	Dil Fac
Benzene	N	D	0.025		mg/K	g		03/25	5/25 17:15	03/27/25 18:42	1
Ethylbenzene	Ν	D	0.050		mg/K	g		03/2	5/25 17:15	03/27/25 18:42	1
Toluene	Ν	D	0.050		mg/K	g		03/25	5/25 17:15	03/27/25 18:42	1
Xylenes, Total	Ν	D	0.10		mg/K	g		03/2	5/25 17:15	03/27/25 18:42	1
	N	IB MB									
Surrogate	%Recove	ry Qualifier	Limits					Pi	repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		95	48 - 145				-	03/2	5/25 17:15	03/27/25 18:42	1
-											
Lab Sample ID: LCS 885-23060/3-	- A						CI	lient	Sample	ID: Lab Contro	l Sample
Lab Sample ID: LCS 885-23060/3 Matrix: Solid	-A						CI	lient	Sample	ID: Lab Contro Prep Type:	
Matrix: Solid	- A						CI	lient	Sample	Prep Type:	Total/NA
-	- A		Spike	LCS	LCS		СІ	lient	Sample		Total/NA
Matrix: Solid	-A		Spike Added		LCS Qualifier	Unit	CI	lient D	Sample	Prep Type: Prep Bate	Total/NA
Matrix: Solid Analysis Batch: 23236	-A		•			- <mark>Unit</mark> mg/Kg	CI			Prep Type: Prep Bate %Rec	Total/NA
Matrix: Solid Analysis Batch: 23236 Analyte	- A		Added	Result			CI		%Rec	Prep Type: Prep Bate %Rec Limits	Total/NA
Matrix: Solid Analysis Batch: 23236 Analyte Benzene	- A		Added	Result 0.994		mg/Kg	CI		%Rec	Prep Type: Prep Bate %Rec Limits 70 - 130	Total/NA
Matrix: Solid Analysis Batch: 23236 Analyte Benzene Ethylbenzene	-A		Added	Result 0.994 0.988		mg/Kg mg/Kg	CI		%Rec 99 99	Prep Type: Prep Bate %Rec Limits 70 - 130 70 - 130	Total/NA
Matrix: Solid Analysis Batch: 23236 Analyte Benzene Ethylbenzene Toluene	- A 		Added 1.00 1.00 1.00	Result 0.994 0.988 0.980		mg/Kg mg/Kg mg/Kg	CI		%Rec 99 99 98	Prep Type: Prep Bate %Rec Limits 70 - 130 70 - 130 70 - 130	Total/NA
Matrix: Solid Analysis Batch: 23236 Analyte Benzene Ethylbenzene Toluene Xylenes, Total	LCS L		Added 1.00 1.00 1.00	Result 0.994 0.988 0.980		mg/Kg mg/Kg mg/Kg	CI		%Rec 99 99 98	Prep Type: Prep Bate %Rec Limits 70 - 130 70 - 130 70 - 130	Total/NA

Released to Imaging: 7/7/2025 4:29:16 PM

Lab Sample ID: 885-22001-1 MS

QC Sample Results

MS MS

1.00

0.997

0.991

2.98

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

%Rec

101

101

100

100

Spike

Added

0.991

0.991

0.991

2.97

Limits

48 - 145

Analysis Batch: 23236

4-Bromofluorobenzene (Surr)

Matrix: Solid

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Surrogate

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

ND

ND

ND

ND

95

MS MS %Recovery Qualifier

Result Qualifier

Job ID: 885-22001-1

Prep Type: Total/NA

Prep Batch: 23060

Client Sample ID: HA-01@6-7'

%Rec

Limits

70 - 130

70 - 130

70 - 130

70 - 130

6

-7 NA

Lab Sample ID: 885-22001-1 Matrix: Solid	I MSD							Clien		Type: To	tal/NA
Analysis Batch: 23236	Sample	Sample	Spike	MSD	MSD				Prep %Rec	Batch:	23060 RPD
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.995	0.979		mg/Kg		98	70 - 130	2	20
Ethylbenzene	ND		0.995	0.974		mg/Kg		98	70 - 130	2	20
Toluene	ND		0.995	0.975		mg/Kg		98	70 - 130	2	20
Xylenes, Total	ND		2.99	2.94		mg/Kg		99	70 - 130	1	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	95		48 - 145								

Method: 8015M/D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 885-23155/1-A Matrix: Solid Analysis Batch: 23150	A.										Client Sa	imple ID: Me Prep Tyj Prep B	oe: To	
	_		MB						_	_				
Analyte	Re	sult	Qualifier		RL		Unit		<u>D</u>	Р	repared	Analyzed		Dil Fac
Diesel Range Organics [C10-C28]		ND			10		mg/K	(g		03/2	7/25 07:45	03/27/25 11:	57	1
Motor Oil Range Organics [C28-C40]		ND			50		mg/K	ģ		03/2	7/25 07:45	03/27/25 11:	57	1
		ΜВ	МВ											
Surrogate	%Reco	/ery	Qualifier	Lim	its					P	repared	Analyzed	1	Dil Fac
Di-n-octyl phthalate (Surr)		109		62 -	134				-	03/2	7/25 07:45	03/27/25 11	:57	1
Lab Sample ID: LCS 885-23155/2-	A								CI	ient	Sample	ID: Lab Con		
Matrix: Solid												Prep Тур		
Analysis Batch: 23150												Prep B	atch	: 23155
				Spike		LCS	LCS					%Rec		
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits		
Diesel Range Organics				50.0		39.1		mg/Kg		_	78	60 - 135		
[C10-C28]														
	LCS	LCS												
Surrogate	%Recovery	Quali	ifier	Limits										
Di-n-octyl phthalate (Surr)	90			62 - 134										

QC Sample Results

Client: Hilcorp Energy Project/Site: CA McAdams

Method: 8015M/D - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid									Prep 1	Type: To	tal/NA
Analysis Batch: 23150									Prep	Batch:	23155
-	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Diesel Range Organics	ND		48.8	38.7		mg/Kg		79	44 - 136		
[C10-C28]											
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
Di-n-octyl phthalate (Surr)	98		62 - 134								
Lab Sample ID: 885-22001	-1 MSD							Clien	t Sample II Prop 1		<u> </u>
Lab Sample ID: 885-22001- Matrix: Solid	-1 MSD							Clien	Prep 1	Type: To	tal/NA
Lab Sample ID: 885-22001- Matrix: Solid		Sample	Snike	MSD	MSD			Clien	Prep 1 Prep		tal/NA 23155
Lab Sample ID: 885-22001 Matrix: Solid Analysis Batch: 23150	Sample	Sample Qualifier	Spike Added	MSD Result	MSD Qualifier	Unit	D	Clien %Rec	Prep 1	Type: To	tal/NA 23155 RPD
Lab Sample ID: 885-22001 Matrix: Solid Analysis Batch: 23150 Analyte	Sample	-	-			_ <mark>Unit</mark>	<u>D</u>		Prep 1 Prep %Rec	Type: To Batch:	tal/NA 23155 RPD Limit
Lab Sample ID: 885-22001- Matrix: Solid Analysis Batch: 23150 Analyte Diesel Range Organics [C10-C28]	Sample Result	-	Added	Result			<u>D</u>	%Rec	Prep 1 Prep %Rec Limits	Type: To Batch: 	tal/NA
Lab Sample ID: 885-22001 Matrix: Solid Analysis Batch: 23150 Analyte Diesel Range Organics	Sample Result	Qualifier	Added	Result			D	%Rec	Prep 1 Prep %Rec Limits	Type: To Batch: 	tal/NA 23155 RPD Limit
Lab Sample ID: 885-22001 Matrix: Solid Analysis Batch: 23150 Analyte Diesel Range Organics	Sample Result_ ND	Qualifier MSD	Added	Result			<u> </u>	%Rec	Prep 1 Prep %Rec Limits	Type: To Batch: 	tal/NA 23155 RPD Limit

ιc.		

Lab Sample ID: MRL 885-23156/3 Matrix: Solid								Clien	t Sample	ID: Lab Cont Prep Typ	rol Sample e: Total/NA
Analysis Batch: 23156											
			Spike		MRL	MRL				%Rec	
Analyte			Added		Result	Qualifier	Unit	D	%Rec	Limits	
Chloride			0.500		0.527		mg/L		105	50 - 150	
Lab Sample ID: MB 885-23193/1-A									Client S	ample ID: Me	thod Blank
Matrix: Solid										Prep Typ	e: Total/NA
Analysis Batch: 23156										Prep Ba	atch: 23193
-	МВ	MB									
Analyte	Result	Qualifier		RL		Unit		D	Prepared	Analyzed	Dil Fac
Chloride	ND			1.5		mg/k	g	03/	27/25 12:09	03/27/25 14:3	33 1
Lab Sample ID: LCS 885-23193/2-A								Clien	t Sample	ID: Lab Cont	rol Sample
Matrix: Solid										Prep Typ	e: Total/NA
Analysis Batch: 23156										Prep Ba	atch: 23193
			Spike		LCS	LCS				%Rec	
Analyte			Added		Result	Qualifier	Unit	D	%Rec	Limits	
Chloride			15.0		15.2		mg/Kg		101	90 - 110	

Page 34 of 52

5 6 7

Job ID: 885-22001-1

QC Association Summary

Client: Hilcorp Energy Project/Site: CA McAdams Page 35 of 52

GC VOA Prep Batch: 23060

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-22001-1	HA-01@6-7'	Total/NA	Solid	5030C	
885-22001-2	HA-01@7-8'	Total/NA	Solid	5030C	
885-22001-3	HA-02@2-3'	Total/NA	Solid	5030C	
885-22001-4	HA-02@7-8'	Total/NA	Solid	5030C	
885-22001-5	HA-03@4-5'	Total/NA	Solid	5030C	
885-22001-6	HA-03@7-8'	Total/NA	Solid	5030C	
885-22001-7	HA-04@0-1'	Total/NA	Solid	5030C	
885-22001-8	HA-04@7-8'	Total/NA	Solid	5030C	
885-22001-9	HA-05@6-7'	Total/NA	Solid	5030C	
885-22001-10	HA-05@7-8'	Total/NA	Solid	5030C	
MB 885-23060/1-A	Method Blank	Total/NA	Solid	5030C	
LCS 885-23060/2-A	Lab Control Sample	Total/NA	Solid	5030C	
LCS 885-23060/3-A	Lab Control Sample	Total/NA	Solid	5030C	
885-22001-1 MS	HA-01@6-7'	Total/NA	Solid	5030C	
885-22001-1 MSD	HA-01@6-7'	Total/NA	Solid	5030C	

Analysis Batch: 23236

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-22001-1	HA-01@6-7'	Total/NA	Solid	8021B	23060
885-22001-2	HA-01@7-8'	Total/NA	Solid	8021B	23060
885-22001-3	HA-02@2-3'	Total/NA	Solid	8021B	23060
885-22001-4	HA-02@7-8'	Total/NA	Solid	8021B	23060
885-22001-5	HA-03@4-5'	Total/NA	Solid	8021B	23060
885-22001-6	HA-03@7-8'	Total/NA	Solid	8021B	23060
885-22001-7	HA-04@0-1'	Total/NA	Solid	8021B	23060
885-22001-8	HA-04@7-8'	Total/NA	Solid	8021B	23060
885-22001-9	HA-05@6-7'	Total/NA	Solid	8021B	23060
885-22001-10	HA-05@7-8'	Total/NA	Solid	8021B	23060
MB 885-23060/1-A	Method Blank	Total/NA	Solid	8021B	23060
LCS 885-23060/3-A	Lab Control Sample	Total/NA	Solid	8021B	23060
885-22001-1 MS	HA-01@6-7'	Total/NA	Solid	8021B	23060
885-22001-1 MSD	HA-01@6-7'	Total/NA	Solid	8021B	23060

Analysis Batch: 23303

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-22001-1	HA-01@6-7'	Total/NA	Solid	8015M/D	23060
885-22001-2	HA-01@7-8'	Total/NA	Solid	8015M/D	23060
885-22001-3	HA-02@2-3'	Total/NA	Solid	8015M/D	23060
885-22001-4	HA-02@7-8'	Total/NA	Solid	8015M/D	23060
885-22001-5	HA-03@4-5'	Total/NA	Solid	8015M/D	23060
885-22001-6	HA-03@7-8'	Total/NA	Solid	8015M/D	23060
885-22001-7	HA-04@0-1'	Total/NA	Solid	8015M/D	23060
885-22001-8	HA-04@7-8'	Total/NA	Solid	8015M/D	23060
885-22001-9	HA-05@6-7'	Total/NA	Solid	8015M/D	23060
885-22001-10	HA-05@7-8'	Total/NA	Solid	8015M/D	23060
MB 885-23060/1-A	Method Blank	Total/NA	Solid	8015M/D	23060
LCS 885-23060/2-A	Lab Control Sample	Total/NA	Solid	8015M/D	23060

QC Association Summary

Client: Hilcorp Energy Project/Site: CA McAdams Job ID: 885-22001-1

Page 36 of 52 3 4 5 6 7 8 9 10 11

Analysis Batch: 23150

GC Semi VOA

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-22001-1	HA-01@6-7'	Total/NA	Solid	8015M/D	23155
885-22001-2	HA-01@7-8'	Total/NA	Solid	8015M/D	23155
885-22001-3	HA-02@2-3'	Total/NA	Solid	8015M/D	23155
885-22001-4	HA-02@7-8'	Total/NA	Solid	8015M/D	23155
885-22001-5	HA-03@4-5'	Total/NA	Solid	8015M/D	23155
885-22001-6	HA-03@7-8'	Total/NA	Solid	8015M/D	23155
885-22001-7	HA-04@0-1'	Total/NA	Solid	8015M/D	23155
885-22001-8	HA-04@7-8'	Total/NA	Solid	8015M/D	23155
885-22001-9	HA-05@6-7'	Total/NA	Solid	8015M/D	23155
885-22001-10	HA-05@7-8'	Total/NA	Solid	8015M/D	23155
MB 885-23155/1-A	Method Blank	Total/NA	Solid	8015M/D	23155
LCS 885-23155/2-A	Lab Control Sample	Total/NA	Solid	8015M/D	23155
885-22001-1 MS	HA-01@6-7'	Total/NA	Solid	8015M/D	23155
885-22001-1 MSD	HA-01@6-7'	Total/NA	Solid	8015M/D	23155

Prep Batch: 23155

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-22001-1	HA-01@6-7'	Total/NA	Solid	SHAKE	
885-22001-2	HA-01@7-8'	Total/NA	Solid	SHAKE	
885-22001-3	HA-02@2-3'	Total/NA	Solid	SHAKE	
885-22001-4	HA-02@7-8'	Total/NA	Solid	SHAKE	
885-22001-5	HA-03@4-5'	Total/NA	Solid	SHAKE	
885-22001-6	HA-03@7-8'	Total/NA	Solid	SHAKE	
885-22001-7	HA-04@0-1'	Total/NA	Solid	SHAKE	
885-22001-8	HA-04@7-8'	Total/NA	Solid	SHAKE	
885-22001-9	HA-05@6-7'	Total/NA	Solid	SHAKE	
885-22001-10	HA-05@7-8'	Total/NA	Solid	SHAKE	
MB 885-23155/1-A	Method Blank	Total/NA	Solid	SHAKE	
LCS 885-23155/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	
885-22001-1 MS	HA-01@6-7'	Total/NA	Solid	SHAKE	
885-22001-1 MSD	HA-01@6-7'	Total/NA	Solid	SHAKE	

HPLC/IC

Analysis Batch: 23156

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-22001-1	HA-01@6-7'	Total/NA	Solid	300.0	23193
885-22001-2	HA-01@7-8'	Total/NA	Solid	300.0	23193
885-22001-3	HA-02@2-3'	Total/NA	Solid	300.0	23193
885-22001-4	HA-02@7-8'	Total/NA	Solid	300.0	23193
885-22001-5	HA-03@4-5'	Total/NA	Solid	300.0	23193
885-22001-6	HA-03@7-8'	Total/NA	Solid	300.0	23193
885-22001-7	HA-04@0-1'	Total/NA	Solid	300.0	23193
885-22001-8	HA-04@7-8'	Total/NA	Solid	300.0	23193
885-22001-9	HA-05@6-7'	Total/NA	Solid	300.0	23193
885-22001-10	HA-05@7-8'	Total/NA	Solid	300.0	23193
MB 885-23193/1-A	Method Blank	Total/NA	Solid	300.0	23193
LCS 885-23193/2-A	Lab Control Sample	Total/NA	Solid	300.0	23193
MRL 885-23156/3	Lab Control Sample	Total/NA	Solid	300.0	
QC Association Summary

Client: Hilcorp Energy Project/Site: CA McAdams Job ID: 885-22001-1

Page 37 of 52

HPLC/IC

Prep Batch: 23193

.ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
385-22001-1	HA-01@6-7'	Total/NA	Solid	300_Prep	
385-22001-2	HA-01@7-8'	Total/NA	Solid	300_Prep	
385-22001-3	HA-02@2-3'	Total/NA	Solid	300_Prep	
885-22001-4	HA-02@7-8'	Total/NA	Solid	300_Prep	
85-22001-5	HA-03@4-5'	Total/NA	Solid	300_Prep	
85-22001-6	HA-03@7-8'	Total/NA	Solid	300_Prep	
85-22001-7	HA-04@0-1'	Total/NA	Solid	300_Prep	
85-22001-8	HA-04@7-8'	Total/NA	Solid	300_Prep	
85-22001-9	HA-05@6-7'	Total/NA	Solid	300_Prep	
85-22001-10	HA-05@7-8'	Total/NA	Solid	300_Prep	
/IB 885-23193/1-A	Method Blank	Total/NA	Solid	300_Prep	
CS 885-23193/2-A	Lab Control Sample	Total/NA	Solid	300_Prep	

Client Sample ID: HA-01@6-7'

Job ID: 885-22001-1

Lab Sample ID: 885-22001-1 Matrix: Solid

Date Collected: 03/24/25 11:00 Date Received: 03/25/25 07:10

Client: Hilcorp Energy

Project/Site: CA McAdams

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			23060	AT	EET ALB	03/25/25 17:15
Total/NA	Analysis	8015M/D		1	23303	JP	EET ALB	03/28/25 16:38
Total/NA	Prep	5030C			23060	AT	EET ALB	03/25/25 17:15
Total/NA	Analysis	8021B		1	23236	AT	EET ALB	03/27/25 20:08
Total/NA	Prep	SHAKE			23155	MI	EET ALB	03/27/25 07:45
Total/NA	Analysis	8015M/D		1	23150	EM	EET ALB	03/27/25 12:20
Total/NA	Prep	300_Prep			23193	DL	EET ALB	03/27/25 12:09
Total/NA	Analysis	300.0		20	23156	ES	EET ALB	03/27/25 15:00

Client Sample ID: HA-01@7-8'

Date Collected: 03/24/25 11:10 Date Received: 03/25/25 07:10

Batch Dilution Batch Batch Prepared or Analyzed Prep Type Туре Method Run Factor Number Analyst Lab Total/NA 5030C EET ALB 03/25/25 17:15 Prep 23060 AT Total/NA 8015M/D 03/28/25 17:01 Analysis 1 23303 JP EET ALB Total/NA 5030C 03/25/25 17:15 Prep 23060 AT EET ALB Total/NA Analysis 8021B 1 23236 AT EET ALB 03/27/25 21:14 Total/NA SHAKE EET ALB 03/27/25 07:45 Prep 23155 MI 03/27/25 12:55 Total/NA Analysis 8015M/D 1 23150 EM EET ALB Total/NA EET ALB Prep 300_Prep 23193 DL 03/27/25 12:09 Total/NA Analysis 300.0 20 23156 ES EET ALB 03/27/25 15:41

Client Sample ID: HA-02@2-3'

Date Collected: 03/24/25 11:20 Date Received: 03/25/25 07:10

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			23060	AT	EET ALB	03/25/25 17:15
Total/NA	Analysis	8015M/D		1	23303	JP	EET ALB	03/28/25 17:25
Total/NA	Prep	5030C			23060	AT	EET ALB	03/25/25 17:15
Total/NA	Analysis	8021B		1	23236	AT	EET ALB	03/27/25 21:35
Total/NA	Prep	SHAKE			23155	МІ	EET ALB	03/27/25 07:45
Total/NA	Analysis	8015M/D		1	23150	EM	EET ALB	03/27/25 13:07
Total/NA	Prep	300_Prep			23193	DL	EET ALB	03/27/25 12:09
Total/NA	Analysis	300.0		20	23156	ES	EET ALB	03/27/25 15:55

Client Sample ID: HA-02@7-8' Date Collected: 03/24/25 11:30 Date Received: 03/25/25 07:10

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			23060	AT	EET ALB	03/25/25 17:15
Total/NA	Analysis	8015M/D		1	23303	JP	EET ALB	03/28/25 17:49

Eurofins Albuquerque

Lab Sample ID: 885-22001-2

Matrix: Solid

Lab Sample ID: 885-22001-3

Lab Sample ID: 885-22001-4

Matrix: Solid

Matrix: Solid

Job ID: 885-22001-1

Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Sample ID: 885-22001-4

Lab Sample ID: 885-22001-5

Lab Sample ID: 885-22001-6

Client Sample ID: HA-02@7-8' Date Collected: 03/24/25 11:30

Date Received: 03/25/25 07:10

Client: Hilcorp Energy

Project/Site: CA McAdams

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			23060	AT	EET ALB	03/25/25 17:15
Total/NA	Analysis	8021B		1	23236	AT	EET ALB	03/27/25 21:57
Total/NA	Prep	SHAKE			23155	MI	EET ALB	03/27/25 07:45
Total/NA	Analysis	8015M/D		1	23150	EM	EET ALB	03/27/25 13:19
Total/NA	Prep	300_Prep			23193	DL	EET ALB	03/27/25 12:09
Total/NA	Analysis	300.0		20	23156	ES	EET ALB	03/27/25 16:08

Client Sample ID: HA-03@4-5' Date Collected: 03/24/25 11:40 Date Received: 03/25/25 07:10

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			23060	AT	EET ALB	03/25/25 17:15
Total/NA	Analysis	8015M/D		1	23303	JP	EET ALB	03/28/25 18:13
Total/NA	Prep	5030C			23060	AT	EET ALB	03/25/25 17:15
Total/NA	Analysis	8021B		1	23236	AT	EET ALB	03/27/25 22:19
Total/NA	Prep	SHAKE			23155	MI	EET ALB	03/27/25 07:45
Total/NA	Analysis	8015M/D		1	23150	EM	EET ALB	03/27/25 13:30
Total/NA	Prep	300_Prep			23193	DL	EET ALB	03/27/25 12:09
Total/NA	Analysis	300.0		20	23156	ES	EET ALB	03/27/25 16:22

Client Sample ID: HA-03@7-8' Date Collected: 03/24/25 11:50 Date Received: 03/25/25 07:10

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			23060	AT	EET ALB	03/25/25 17:15
Total/NA	Analysis	8015M/D		1	23303	JP	EET ALB	03/28/25 18:36
Total/NA	Prep	5030C			23060	AT	EET ALB	03/25/25 17:15
Total/NA	Analysis	8021B		1	23236	AT	EET ALB	03/27/25 22:41
Total/NA	Prep	SHAKE			23155	MI	EET ALB	03/27/25 07:45
Total/NA	Analysis	8015M/D		1	23150	EM	EET ALB	03/27/25 13:42
Total/NA	Prep	300_Prep			23193	DL	EET ALB	03/27/25 12:09
Total/NA	Analysis	300.0		20	23156	ES	EET ALB	03/27/25 16:36

Client Sample ID: HA-04@0-1' Date Collected: 03/24/25 12:00 Date Received: 03/25/25 07:10

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			23060	AT	EET ALB	03/25/25 17:15
Total/NA	Analysis	8015M/D		1	23303	JP	EET ALB	03/28/25 19:00
Total/NA	Prep	5030C			23060	AT	EET ALB	03/25/25 17:15
Total/NA	Analysis	8021B		1	23236	AT	EET ALB	03/27/25 23:03

Matrix: Solid

Lab Sample ID: 885-22001-7

Eurofins Albuquerque

Lab Chronicle

Job ID: 885-22001-1

Client: Hilcorp Energy Project/Site: CA McAdams

Client Sample ID: HA-04@0-1' Date Collected: 03/24/25 12:00

Date Received: 03/25/25 07:10

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	SHAKE			23155	MI	EET ALB	03/27/25 07:45
Total/NA	Analysis	8015M/D		1	23150	EM	EET ALB	03/27/25 14:06
Total/NA	Prep	300_Prep			23193	DL	EET ALB	03/27/25 12:09
Total/NA	Analysis	300.0		20	23156	ES	EET ALB	03/27/25 17:17

Client Sample ID: HA-04@7-8' Date Collected: 03/24/25 12:10 Date Received: 03/25/25 07:10

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			23060	AT	EET ALB	03/25/25 17:15
Total/NA	Analysis	8015M/D		1	23303	JP	EET ALB	03/28/25 19:24
Total/NA	Prep	5030C			23060	AT	EET ALB	03/25/25 17:15
Total/NA	Analysis	8021B		1	23236	AT	EET ALB	03/27/25 23:24
Total/NA	Prep	SHAKE			23155	MI	EET ALB	03/27/25 07:45
Total/NA	Analysis	8015M/D		1	23150	EM	EET ALB	03/27/25 14:17
Total/NA	Prep	300_Prep			23193	DL	EET ALB	03/27/25 12:09
Total/NA	Analysis	300.0		20	23156	ES	EET ALB	03/27/25 17:30

Client Sample ID: HA-05@6-7' Date Collected: 03/24/25 12:20

Date Received: 03/25/25 07:10

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			23060	AT	EET ALB	03/25/25 17:15
Total/NA	Analysis	8015M/D		1	23303	JP	EET ALB	03/28/25 19:48
Total/NA	Prep	5030C			23060	AT	EET ALB	03/25/25 17:15
Total/NA	Analysis	8021B		1	23236	AT	EET ALB	03/27/25 23:46
Total/NA	Prep	SHAKE			23155	MI	EET ALB	03/27/25 07:45
Total/NA	Analysis	8015M/D		1	23150	EM	EET ALB	03/27/25 14:29
Total/NA	Prep	300_Prep			23193	DL	EET ALB	03/27/25 12:09
Total/NA	Analysis	300.0		20	23156	ES	EET ALB	03/27/25 17:44

Client Sample ID: HA-05@7-8'

Date Collected: 03/24/25 12:30 Date Received: 03/25/25 07:10

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			23060	AT	EET ALB	03/25/25 17:15
Total/NA	Analysis	8015M/D		1	23303	JP	EET ALB	03/28/25 20:11
Total/NA	Prep	5030C			23060	AT	EET ALB	03/25/25 17:15
Total/NA	Analysis	8021B		1	23236	AT	EET ALB	03/28/25 00:29
Total/NA	Prep	SHAKE			23155	MI	EET ALB	03/27/25 07:45
Total/NA	Analysis	8015M/D		1	23150	EM	EET ALB	03/27/25 14:41

Lab Sample ID: 885-22001-9 Matrix: Solid

Lab Sample ID: 885-22001-8

Matrix: Solid

Lab Sample ID: 885-22001-10

Matrix: Solid

Eurofins Albuquerque

 Job ID: 885-22001-1
 2

 Lab Sample ID: 885-22001-7
 3

 Matrix: Solid
 4

 Prepared
 5

 03/27/25 07:45
 6

 03/27/25 14:06
 6

 03/27/25 14:06
 7

8

Lab Chronicle

Job ID: 885-22001-1

Matrix: Solid

Lab Sample ID: 885-22001-10

Project/Site: CA McAdams Client Sample ID: HA-05@7-8'

Date Collected: 03/24/25 12:30 Date Received: 03/25/25 07:10

Client: Hilcorp Energy

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	300_Prep			23193	DL	EET ALB	03/27/25 12:09
Total/NA	Analysis	300.0		20	23156	ES	EET ALB	03/27/25 17:58

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Accreditation/Certification Summary

Client: Hilcorp Energy Project/Site: CA McAdams

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Prog	ram	Identification Number	Expiration Date
ew Mexico	State		NM9425, NM0901	02-27-26
The following analytes	are included in this report, b	out the laboratory is not certi	fied by the governing authority. This lis	st may include analyte
for which the agency o	oes not offer certification.			
Analysis Method	Prep Method	Matrix	Analyte	
300.0	300_Prep	Solid	Chloride	
8015M/D	5030C	Solid	Gasoline Range Organics	(GRO)-C6-C10
8015M/D	SHAKE	Solid	Diesel Range Organics [C	10-C28]
8015M/D	SHAKE	Solid	Motor Oil Range Organics	[C28-C40]
8021B	5030C	Solid	Benzene	
8021B	5030C	Solid	Ethylbenzene	
8021B	5030C	Solid	Toluene	
8021B	5030C	Solid	Xylenes, Total	
regon	NEL	7b	NM100001	02-26-26

Job ID: 885-22001-1

1

Login Sample Receipt Checklist

Client: Hilcorp Energy

Login Number: 22001 List Number: 1

Creator: Dominguez, Desiree

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins Albuquerque

Job Number: 885-22001-1

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 45 of 52

QUESTIONS

Action 454620

QUESTION	IS

Operator:	OGRID:	
HILCORP ENERGY COMPANY	372171	I
1111 Travis Street	Action Number:	I
Houston, TX 77002	454620	I
	Action Type:	I
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	1

QUESTIONS

Prerequisites		
Incident ID (n#)	nAPP2505937309	
Incident Name	NAPP2505937309 C A MCADAMS C 2E @ 30-045-24664	
Incident Type	Produced Water Release	
Incident Status	Remediation Closure Report Received	
Incident Well	[30-045-24664] C A MCADAMS C #002E	

Location of Release Source

Please answer all the questions in this group.	
--	--

Site Name	C A McAdams C 2E		
Date Release Discovered	02/27/2025		
Surface Owner	Federal		

Incident Details

Please answer all the questions in this group.		
Incident Type	Produced Water Release	
Did this release result in a fire or is the result of a fire	No	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	No	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No	

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.				
Crude Oil Released (bbls) Details	Not answered.			
Produced Water Released (bbls) Details	Cause: Equipment Failure Tank (Any) Produced Water Released: 10 BBL Recovered: 0 BBL Lost: 10 BBL.			
Is the concentration of chloride in the produced water >10,000 mg/l	No			
Condensate Released (bbls) Details	Not answered.			
Natural Gas Vented (Mcf) Details	Not answered.			
Natural Gas Flared (Mcf) Details	Not answered.			
Other Released Details	Not answered.			
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	On 2/27/2025 at 1:25 pm (MT), an operator pulled up on location during a routine visit to conduct the AVO inspection and gauge the oil storage tank. While conducting the AVO inspection, the operator discovered small pockets of pooled produced water on the witness liner and pit liquids lower than normal. Due to no obvious leaks on the outside of the pit tank, operations believes that a hole (most likely due to corrosion) formed on the bottom of the tank. No fluid could be recovered and was absorbed by the soils underlying the pit tank. No spilled product migrated horizontally outside of secondary containment.			

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 454620

QUESTIONS (continued)

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	454620
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Γ.

Nature and Volume of Release (continued)		
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.	
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No	
Reasons why this would be considered a submission for a notification of a major release	Unavailable.	
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.		

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.		
The source of the release has been stopped True		
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
If all the actions described above have not been undertaken, explain why Not answered. Per Paragraph (4) of Subsection B of 19.15.29.8 NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of Subsection A of 19.15.29.11 NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: Stuart Hyde Title: Senior Geologist Email: shyde@ensolum.com Date: 04/23/2025	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	454620
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)
What method was used to determine the depth to ground water	NM OSE iWaters Database Search
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release an	nd the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Between 100 and 200 (ft.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1 and 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)
Any other fresh water well or spring	Between 1 and 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between 100 and 200 (ft.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	None
A 100-year floodplain	Between 1 and 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	No

Remediation Plan

Please answer all the questions th	at apply or are indicated. This information must be provided to	the appropriate district office no later than 90 days after the release discovery date.
Requesting a remediation	plan approval with this submission	Yes
Attach a comprehensive report der	nonstrating the lateral and vertical extents of soil contaminatio	n associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Have the lateral and vertica	l extents of contamination been fully delineated	Yes
Was this release entirely co	ontained within a lined containment area	No
Soil Contamination Sampling	: (Provide the highest observable value for each, in m	illigrams per kilograms.)
Chloride	(EPA 300.0 or SM4500 CI B)	130
TPH (GRO+DRO+MRO)	(EPA SW-846 Method 8015M)	0
GRO+DRO	(EPA SW-846 Method 8015M)	0
BTEX	(EPA SW-846 Method 8021B or 8260B)	0
Benzene	(EPA SW-846 Method 8021B or 8260B)	0
	MAC unless the site characterization report includes complete elines for beginning and completing the remediation.	d efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,
On what estimated date will	I the remediation commence	03/24/2025
On what date will (or did) the final sampling or liner inspection occur		03/24/2025
On what date will (or was) the remediation complete(d)		03/24/2025
What is the estimated surface area (in square feet) that will be reclaimed		0
What is the estimated volume (in cubic yards) that will be reclaimed		0
What is the estimated surfa	ce area (in square feet) that will be remediated	0
What is the estimated volur	ne (in cubic yards) that will be remediated	0
These estimated dates and measur	rements are recognized to be the best guess or calculation at th	ne time of submission and may (be) change(d) over time as more remediation efforts are completed.
The OCD recognized that propage	d remediation management have to be minimally adjusted in	appardance with the physical realities appauntared during remediation. If the reasonable party has any need to

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

QUESTIONS, Page 3

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTI	ONS (continued)	
Operator: HILCORP ENERGY COMPANY	OGRID: 372171	
1111 Travis Street Houston, TX 77002	Action Number: 454620	
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
QUESTIONS		
Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the		
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:	
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Not answered.	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.	
(In Situ) Soil Vapor Extraction	Not answered.	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.	
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.	
OTHER (Non-listed remedial process)	Yes	
Other Non-listed Remedial Process. Please specify	No remediation needed	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed ef- which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,	
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or	
I hereby agree and sign off to the above statement	Name: Stuart Hyde Title: Senior Geologist Email: shyde@ensolum.com Date: 04/23/2025	

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

QUESTIONS, Page 4

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)		
Operator: HILCORP ENERGY COMPANY	OGRID: 372171	
1111 Travis Street Houston, TX 77002	Action Number: 454620	
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
OUESTIONS		

QU	ESI	IONS	

Deferral Requests Only		
Only answer the questions in this group if seeking a deferral up	on approval this submission. Each of	the following items must be confirmed as part of any request for deferral of remediation.
Requesting a deferral of the remediation closure due submission	e date with the approval of this	No

Page 49 of 52

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	454620
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	443516
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	03/24/2025
What was the (estimated) number of samples that were to be gathered	10
What was the sampling surface area in square feet	1000

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	0	
What was the total volume (cubic yards) remediated	0	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	0	
What was the total volume (in cubic yards) reclaimed	0	
Summarize any additional remediation activities not included by answers (above)	N/A	
	closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of	
to report and/or file certain release notifications and perform corrective actions for release the OCD does not relieve the operator of liability should their operations have failed to water, human health or the environment. In addition, OCD acceptance of a C-141 report	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface it does not relieve the operator of responsibility for compliance with any other federal, state, or ially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ing notification to the OCD when reclamation and re-vegetation are complete.	
	Name: Stuart Hyde	

the sector constraints and a low off to the scheme statements	Name: Stuart Hyde Title: Senior Geologist
I hereby agree and sign off to the above statement	Email: shyde@ensolum.com
	Date: 04/23/2025

QUESTIONS, Page 6

Page 50 of 52

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	454620
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	

QUESTIONS Reclamation Report

Reclamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	
Requesting a reclamation approval with this submission	No

QUESTIONS, Page 7

Action 454620

Page 51 of 52

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:	
HILCORP ENERGY COMPANY	372171	
1111 Travis Street	Action Number:	
Houston, TX 77002	454620	
	Action Type:	
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	

CONDITIONS		
Created By	Condition	Condition Date
scott.rodgers	This Remediation Closure Report is approved. Areas reasonably needed for production or subsequent drilling operations will need to be reclaimed and revegetated as soon as they are no longer reasonably needed. A report for reclamation and revegetation will need to be submitted and approved prior to this incident receiving the final status of "Restoration Complete".	7/7/2025

CONDITIONS