

Incident Number: nAPP2513334879

Closure Report

PLU 23 DTD CVB

Section 14, 24 South, 30 East 32.210654, -103.854381 API/Facility ID: fAPP2325847913 County: Eddy, New Mexico Vertex File Number: 25A-02616

Prepared for: ExxonMobil Upstream Company

Prepared by: Vertex Resource Services Inc.

Date: June 2025 ExxonMobil Upstream Company PLU 23 DTD CVB Closure Report June 2025

Closure Report PLU 23 DTD CVB Section 14, 24 South, 30 East 32.210654 -103.854381 API/Facility ID: fAPP2325847913 County: Eddy, New Mexico

Prepared for: **ExxonMobil Upstream Company** 3104 East Greene Street Carlsbad, New Mexico, 88220

Bureau of Land Management 508 West Texas Avenue Artesia, New Mexico, 88210

Prepared by: Vertex Resource Services Inc. 3101 Boyd Drive Carlsbad, New Mexico, 88220

Riley Arnold , FIELD TECHNICIAN, REPORTING

Chad Hensley, B.Sc. GCNR, REPORT REVIEW

ExxonMobil Upstream Company	Closure Report
PLU 23 DTD CVB	June 2025

Table of Contents

1.0	Introduction	1
2.0	Incident Description	2
3.0	Site Characteristics	3
4.0	Closure Criteria Determination	4
5.0	Remedial Actions Taken	6
6.0	Closure Request	7
7.0	References	8
8.0	Limitations	9

•

ExxonMobil Upstream Company PLU 23 DTD CVB

Closure Report June 2025

Table of Appendices

- Appendix A. Figures
- Appendix B. Tables
- Appendix C. Closure Criteria Research Documentation
- Appendix D. Daily Field and Sampling Report(s)
- Appendix E. Laboratory Data Report(s) and Chain of Custody Form(s)

PLU 23 DTD CVB June 202	ExxonMobil Upstream Company	Closure Report
	PLU 23 DTD CVB	June 2025

1.0 Introduction

ExxonMobil Upstream Company (ExxonMobil) retained Vertex Resource Services Inc. (Vertex) to conduct a Closure Report for a produced water release that occurred on March 12, 2025, at PLU 23 DTD CVB API fAPP2325847913 (hereafter referred to as the "site"). ExxonMobil submitted an initial C-141 Release Notification to New Mexico Oil Conservation Division (NMOCD) on May 13, 2025. Incident ID number nAPP2513334879 was assigned to this incident.

This report provides a description of the release assessment and remediation activities associated with the site. The information presented demonstrates that closure criteria established in Table I of 19.15.29.12 of the *New Mexico Administrative Code* (NMAC; New Mexico Oil Conservation Division, 2018) related to NMOCD has been met and all applicable regulations are being followed. This document is intended to serve as a final report to obtain approval from NMOCD for closure of this release, with the understanding that restoration of the release site will be completed at such time as all oil and gas activities are terminated and the site is reclaimed as per NMAC 19.15.29.13.

ExxonMobil Upstream Company	Closure Report
PLU 23 DTD CVB	June 2025

2.0 Incident Description

The release occurred on March 12, 2025, due to the loss of power at the battery resulting in condensate coming out the flair. The incident was reported on March 12, 2025 and involved the release of approximately 9 barrels (bbl.) of produced water. Approximately 0 bbl. of free fluid was removed during initial clean-up. Additional details relevant to the release are presented in the C-141 Report.

Page 7 of 158

3.0 Site Characteristics

Site Direction	19 miles east of Malaga, New Mexico
Section #, Township, Range	Section 14, 24 South and 30 East
Site Location	Rural, Eddy New Mexico
Release Area	on pad
Site Surface Geology	Qa
Predominant Soil Texture	Loamy Sand
Site Current Use	Tank Battery
Surrounding Landscape	uplands, plains, dunes
Elevation	2,800 to 5,000 feet
Climate	8 to 13 inches of precipitation with 221 days frost free
Vegetation	Little to no vegetation
Soil Type	Loamy Sand
Drainage Class	Well drained
Runoff Class	Low
Karst Geology	Low

An aerial photograph and site schematic are presented in Appendices A.

Closure Report June 2025

4.0 Closure Criteria Determination

Table 1. Closure Criteria Determination					
Site Specific Conditions	Value				
Site Name: PLU 23 DTD CVB					
Spill Coordinates: 32.210654, -103.854381					
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)				
What method was used to determine the depth to ground water?	NM OSE iWaters Database Search				
Did this release impact groundwater or surface water	No				
A continuously flowing watercourse or any other significant watercourse	Greater than 5 miles				
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1 and 5 mile				
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 mile				
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 miles				
Any other fresh water well or spring	Greater than 5 miles				
Incorporated municipal boundaries or a defined municipal fresh water well field	Between 1 and 5 mile				
A wetland	Between 1 and 5 mile				
A subsurface mine	Greater than 5 miles				
An (non-karst) unstable area	Greater than 5 miles				
Categorize the risk of this well / site being in a karst geology	Low				
A 100-year floodplain	Greater than 5 miles				
Did the release impact areas not on an exploration, development, production, or storage site	No				
Requesting a remediation plan approval with this submission	Yes				

The closure criteria determined for the site are associated with the following constituent concentration limits as presented in Table 2.

Closure Report June 2025

Fable 2. Closure Criteria for Soils Impacted by a Release							
Minimum depth below any point within the horizontal boundary of the release to groundwater less than 10,000 mg/l TDS	Constituent	Limit					
	Chloride	20,000 mg/kg					
	TPH (GRO+DRO+MRO)	2,500 mg/kg					
	GRO+DRO	1,000 mg/kg					
> 100 feet	BTEX	50 mg/kg					
	Benzene	10 mg/kg					

TDS – total dissolved solids

TPH – total petroleum hydrocarbons, GRO – gas range organics, DRO – diesel range organics, MRO – motor oil range organics

BTEX – benzene, toluene, ethylbenzene and xylenes

ExxonMobil Upstream Company	Closure Report
PLU 23 DTD CVB	June 2025

5.0 Remedial Actions Taken

An initial site inspection of the release area was completed on May 12, 2025, which identified the area of the release specified in the initial C-141 Report. The impacted area was determined to be on pad; the total affected area is 1675 square feet. The Daily Field Report associated with the site inspection is included in Appendix E.

Remediation efforts began on June 11, 2025, and were finalised on June 13, 2025, Vertex Personnel supervised the excavation of impacted soils. Impacted soil was transported by a licensed waste hauler and disposed of at an approved waste management facility as stipulated by the Form C-138 Request for Approval to Accept Solid Waste.

Notification that confirmatory samples were being collected on June 13, 2025, was provided to the NMOCD. Confirmatory composite samples were collected from the base and walls of the excavation in 200 square foot increments. A total of 10 samples were collected for laboratory analysis following NMOCD soil sampling procedures. Samples were submitted to Cardinal Laboratory under chain-of-custody protocols and analyzed for BTEX (EPA Method 8021B), total petroleum hydrocarbons (GRO, DRO, MRO – EPA Method 8015D) and total chlorides (EPA Method 300.0). Laboratory results are presented in Table 4, Appendix B, and the laboratory data reports are included in Appendix F. The release area was excavated to 3 inches with a combination of hand digging and mechanical excavation to remediate it in compliance with NMAC 19.15.29.12. All confirmatory samples collected and analysed were below closure criteria for the site.

Exxonmobil Opstream Company	Closure Report
PLU 23 DTD CVB	June 2025

6.0 Closure Request

The release area was fully delineated and remediated by June 13, 2025. Confirmatory samples were analyzed by the laboratory and found to be below allowable concentrations as per the NMAC Closure Criteria for Soils Impacted by a Release location >100 feet to groundwater.

Based on these findings, Vertex Resource on behalf of ExxonMobil Upstream Company requests that this release be closed.

Should you have any questions or concerns, please do not hesitate to contact Chad Hensley at 575.200.6167 or chensley@vertexresource.com.

ExxonMobil Upstream Company	Closure Report
PLU 23 DTD CVB	June 2025

7.0 References

Google Inc. (2025). *Google Earth Pro (Version 7.3.3)* [Software]. Retrieved from https://earth.google.com

New Mexico Bureau of Geology and Mineral Resources. (2025). *Interactive Geologic Map*. Retrieved from https://maps.nmt.edu/

New Mexico Department of Surface Water Quality Bureau. (2025). *Assessed and Impaired Waters of New Mexico*. Retrieved from https://gis.web.env.nm.gov/oem/?map=swqb

New Mexico Energy, Minerals and Natural Resources Department. (2025). *OCD Permitting - Spill Search*. Retrieved from https://wwwapps.emnrd.nm.gov/ocd/ocdpermitting/Data/Spills/Spills.aspx

New Mexico Mining and Minerals Division. (2025). *Coal Mine Resources in New Mexico*. Retrieved from https://nm-emnrd.maps.arcgis.com/apps/webappviewer/index.html?id=5f80f3b0faa545e58fe747cc7b037a93

New Mexico Office of the State Engineer. (2025a). *Point of Diversion Location Report - New Mexico Water Rights Reporting System*. Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/ wellSurfaceDiversion.html

New Mexico Office of the State Engineer. (2025b). *Water Column/Average Depth to Water Report - New Mexico Water Rights Reporting System*. Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/waterColumn.html

New Mexico Office of the State Engineer. (2025c). *Well Log/Meter Information Report - New Mexico Water Rights Reporting System*. Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/meterReport.html

New Mexico Oil Conservation Division. (2018). *New Mexico Administrative Code – Natural Resources and Wildlife Oil and Gas Releases*. Santa Fe, New Mexico.

United States Department of Agriculture, Natural Resources Conservation Service. (2025). *Web Soil Survey*. Retrieved from https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx

United States Department of Homeland Security, Federal Emergency Management Agency. (2025). *FEMA Flood Map Service: Search by Address*. Retrieved from https://msc.fema.gov/portal/search?AddressQuery=malaga% 20new%20mexico#searchresultsanchor

United States Department of Homeland Security, Federal Emergency Management Agency. (2025). *FEMA Flood Map Service: Search by Address*. Retrieved from https://msc.fema.gov/portal/search?AddressQuery=malaga% 20new%20mexico#searchresultsanchor

United States Department of the Interior, Bureau of Land Management. (2018). *New Mexico Cave/ Karst*. Retrieved from https://www.nm.blm.gov/shapeFiles/cfo/carlsbad_spatial_data.html

United States Fish and Wildlife Service. (2025). *National Wetland Inventory - Surface Waters and Wetlands*. Retrieved from https://fwsprimary.wim.usgs.gov/wetlands/apps/wetlands-mapper/

United States Geological Survey. (2025). *National Water Information System: Web Interface*. Retrieved from https://waterdata.usgs.gov/nwis

ExxonMobil Upstream Company	Closure Report
PLU 23 DTD CVB	June 2025

8.0 Limitations

This report has been prepared for the sole benefit of ExxonMobil Upstream Company.This document may not be used by any other person or entity, with the exception of the New Mexico Oil Conservation Division and the Bureau of Land Management, without the express written consent of Vertex Resource Services Inc. (Vertex) and ExxonMobil Upstream Company. Any use of this report by a third party, or any reliance on decisions made based on it, or damages suffered as a result of the use of this report are the sole responsibility of the user.

The information and conclusions contained in this report are based upon work undertaken by trained professional and technical staff in accordance with generally accepted scientific practices current at the time the work was performed. The conclusions and recommendations presented represent the best judgement of Vertex based on the data collected during the assessment. Due to the nature of the assessment and the data available, Vertex cannot warrant against undiscovered environmental liabilities. Conclusions and recommendations presented in this report should not be considered legal advice.

APPENDIX A: Figures

Released to Imaging: 7/8/2025 11:20:46 AM

APPENDIX B: Tables

Client Name: ExxonMobil Upstream Company Site Name: PLU 23 DTD CVB NMOCD Tracking #: NAPP2513334879 Project #: 25A-02616 Lab Report(sX): H253081

Table 3. Initial Characterization Sample and Laboratory Results										
Sample Description			Petroleum Hydrocarbons							
			Vola	atile			Extractable			Inorganic
Sample ID	Depth (ft)	Sample Date	eue Bezue (mg/kg)	(mg/ga/gareal)	() () () () () () () () () () () () () (ad Diesel Range Organics	(MRO) (MRO) (MRO)	(OXO + OXS) (mg/kg)) Total Petroleum ଅନ୍ଧ୍ୟ Hydrocarbons (TPH)	(mg/kg) (gay/gancentration
	0	May 19, 2025	ND	ND	ND	74		74	ND	16
BH25-01	2	May 19, 2025	ND	ND	ND	47	ND	47	ND	48
	0	May 19, 2025	ND	ND	ND	31	ND	31	ND	48
BH25-02	1	May 19, 2025	ND	ND	ND	19	ND	19	ND	48
BU 25 02	0	May 19, 2025	ND	ND	ND	13	ND	13	ND	80
BH25-03	1	May 19, 2025	ND	ND	ND	38	ND	38	ND	512
	0	May 20, 2025	ND	ND	ND	12	ND	12	ND	ND
BHZ2-04	2	May 20, 2025	ND	ND	ND	ND	ND	ND	ND	80
BH25-05	0	May 20, 2025	ND	ND	ND	ND	ND	ND	ND	32
БП25-05	1	May 20, 2025	ND	ND	ND	ND	ND	ND	ND	80
BH25-06	0	May 21, 2025	ND	ND	ND	ND	ND	ND	ND	32
BH25-00	1	May 21, 2025	ND	ND	ND	ND	ND	ND	ND	80
BH25-07	0.25	May 21, 2025	ND	ND	ND	ND	ND	ND	ND	12000
BH25-08	0.25	May 21, 2025	ND	ND	ND	ND	ND	ND	ND	10400
SS25-01	0	May 20, 2025	ND	ND	ND	ND	ND	ND	ND	21600
SS25-02	0	May 20, 2025	ND	ND	ND	ND	ND	ND	ND	23600
SS25-03	0	May 20, 2025	ND	ND	ND	ND	ND	ND	ND	15800
SS25-04	0	May 20, 2025	ND	ND	ND	ND	ND	ND	ND	22800
SS25-05	0	May 20, 2025	ND	ND	ND	ND	ND	ND	ND	56800
SS25-06	0	May 21, 2025	ND	ND	ND	ND	ND	ND	ND	24800

"ND" Not Detected at the Reporting Limit

"-" indicates not analyzed/assessed

Bold and grey shaded indicates exceedance outside of NMOCD Closure Criteria (on-pad)

.

Client Name: ExxonMobil Upstream Company Site Name: PLU 23 DTD CVB NMOCD Tracking #: NAPP2513334879 Project #: 25A-02616 Lab Report(sX): H253545

Table 4. Confirmatory Sample and Laboratory Results											
S	Sample Descrip	otion			Petrole	eum Hydrod	arbons				
			Vola	atile			Extractable	:		Inorganic	
Sample ID	Depth (ft)	Sample Date	Benzene	BTEX (Total)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics (MRO)	(ORO + DRO)	Total Petroleum Hydrocarbons (TPH)	Chloride Concentration	
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
					Depth	to Ground	water > 100) feet bgs			
BS25-01	0.25	June 13, 2025	ND	ND	ND	35	ND	35	35	1550	
BS25-02	0.25	June 13, 2025	ND	ND	ND	281	60	281	341	384	
BS25-03	0.25	June 13, 2025	ND	ND	ND	73	16	73	89	1920	
BS25-04	0.25	June 13, 2025	ND	ND	ND	20	ND	ND	ND	288	
BS25-05	0.25	June 13, 2025	ND	ND	ND	ND	ND	ND	ND	5040	
BS25-06	0.25	June 13, 2025	ND	ND	ND	16	ND	16	16	1790	
BS25-07	0.25	June 13, 2025	ND	ND	ND	ND	ND	ND	ND	10700	
BS25-08	0.25	June 13, 2025	ND	ND	ND	ND	ND	ND	ND	8640	
BS25-09	0.25	June 13, 2025	ND	ND	ND	ND	ND	ND	ND	11200	
WS25-01	0-0.25	June 13, 2025	ND	ND	ND	ND	ND	ND	ND	144	

"ND" Not Detected at the Reporting Limit

"-" indicates not analyzed/assessed

Bold and grey shaded indicates exceedance outside of NMOCD Closure Criteria (on-pad)

.

APPENDIX C: Closure Criteria Research Documentation

•

Closure Cr	iteria Determination		
Site Name	: PLU 23 DTD CVB	X. CO70C4 82	V. 2564260.99
Spill Coord	inates: 32.210654, -103.854381	X: 607964.83	1: 3564360.88
Site Specif		value	Unit
	Depth to Groundwater (nearest reference)	>105	feet
1	Distance between release and nearest DTGW reference	1,508	niloc
	Date of pagrect DTGW reference measurement	U.20	1 2022
<u> </u>	Within 200 fast of any continuously flowing watercourse	January 2.	I, 2022
2	or any other significant watercourse	2,721	feet
3	Within 200 feet of any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark)	47,949	feet
4	Within 300 feet from an occupied residence, school, hospital, institution or church	67,395	feet
5	i) Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or	4,633	feet
	ii) Within 1000 feet of any fresh water well or spring	4,633	feet
6	Within incorporated municipal boundaries or within a defined municipal fresh water field covered under a municipal ordinance adopted pursuant to Section 3-27-3 NMSA 1978 as amended, unless the municipality specifically approves	No	feet
7	Within 300 feet of a wetland	1,194	feet
	Within the area overlying a subsurface mine	No	feet
8	Distance between release and nearest registered mine	52,869	feet
9	Within an unstable area (Karst Map)	Low	Critical High Medium Low
	Distance between release and nearest unstable area	25,344	feet
	Within a 100-year Floodplain	100-500	year
10	Distance between release and nearest FEMA Zone A (100- year Floodplain)	2,504	feet
11	Soil Type	Bernio Co	omplex
12	Ecological Classification	Loamy	Sand
13	Geology	Qep)
	NMAC 19.15.29.12 E (Table 1) Closure Criteria	>100'	<50' 51-100' >100'

01. PLU 23 DTD CVB 0.28mi from the DTGW Well

PAGE 1 OF 2

MOI

WELL TAG ID NO.

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

05E 011 JAN 24 2022 M3:00

www.ose.state.nm.us

WEL	D Energy (H	ME(S) Kyle Lit	ttrell)					PHONE (OPTIO	ONAL)		
WEL 6401	L OWNER MA	AILING A Hill Dr.	ADDRESS					CITY Midland		state TX 79707	ZIP
LC (FF	WELL OCATION ROM GPS)	LATT	DE FUDE SITUDE	GREES 32 103	MINUTES 12 50	SECONDS 38.03 58.70	N W	ACCURACY DATUM REC	REQUIRED: ONE TEN QUIRED: WGS 84	TH OF A SECOND	
DES NW	NE Sec. 2	ELATING 3 T24S	WELL LOCATION TO R30E, NMPM) STREET ADDRES	S AND COMMO	N LANDMARK	S – PLS	S (SECTION, TO	WNSHJIP, RANGE) WH	ERE AVAILABLE	
LICE	INSE NO. 1249		NAME OF LICENSED	DRILLER	kie D. Atkins	5			NAME OF WELL DR Atkins Eng	ILLING COMPANY ineering Associates, 1	inc.
DRIL	LING START 1-4-2022	ED	DRILLING ENDED 1-4-2022	DEPTH OF COM temporar	PLETED WELL (F y well materi	T) BO al	RE HO	le depth (FT) 105	DEPTH WATER FIR:	ST ENCOUNTERED (FT) n/a	1
сом	IPLETED WEI	LL IS:	ARTESIAN	I DRY HOLE	SHALLO	OW (UNCONFIN	NED)		STATIC WATER LEV	/EL IN COMPLETED WI n/a	ELL (FT
DRIL DRIL	LING FLUID:	DD:	AIR ROTARY	MUD HAMMER		VES - SPECIFY	OTHE	R – SPECIFY:	Hollo	w Stem Auger	
D	DEPTH (feet bgl) BORE HOLD FROM TO DIAM		BORE HOLE DIAM (inches)	CASING MATERIAL AND/OR GRADE (include each casing string, and note sections of screen)			C/ CONI	ASING NECTION TYPE	CASING INSIDE DIAM.	CASING WALL THICKNESS (inches)	SL SI (inc
(0	105	±8.5	note sec Bo	tions of screen pring- HSA) (ad	ld coup	ling diameter) 	-		
	EPTH (feet	hgl)		1107	ANNUI AD C				AMOUNT		
FR	OM	TO	DIAM. (inches)	GRAVI	EL PACK SIZE	E-RANGE BY	INTE	ERVAL	(cubic feet)	PLACE	MENT
											_

LOCATION

1

245-30E-22

	DEPTH (feet bgl)	1	COLOR AND TYPE OF MATERIAL ENCOUNTERED -	WATER	ESTIMATED
	FROM TO	THICKNESS (feet)	INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES (attach supplemental sheets to fully describe all units)	WATER BEARING? (YES / NO)	YIELD FOR WATER- BEARING ZONES (gpm)
	0 1	1	Caliche, White, Dry	Y √N	
	1 20	19	Sand, very fine grained, well graded, with caliche, Reddish Brown-Light Brow	m Y N	
	20 30	20	Caliche, consolidated with silt and some gravel, Off-White, Dry	Y √N	
	30 50	20	Sand, very fine grained, well graded, with gravel, Light Brown	Y √N	
	50 75	25	Sand, very fine grained, well graded, with gravel, Reddish Brown, slight mois	t Y √N	
	75 105	30	Sand, very fine grained, poorly graded, Reddish Brown, slight moist	Y √N	
				Y N	
				Y N	
				Y N	
				Y N	
				Y N	
				Y N	
				Y N	
				Y N	
				Y N	
				Y N	
				Y N	
				Y N	
				Y N	1
		-		Y N	
				Y N	
	METHOD USED TO	ESTIMATE VIEL	OF WATER-BEARING STRATA	TAL ESTIMATED	
		AIR LIFT	BAILER OTHER - SPECIFY:	ELL YIELD (gpm):	0.00
	WELL TEST TES	T RESULTS - AT RT TIME, END T	TACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLU IME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER	DING DISCHARGE N THE TESTING PERIO	IETHOD, D.
5	MISCELLANEOUS I	NFORMATION: T fi L	emporary well materials removed and the soil boring backfilled using of the bet below ground surface, then hydrated bentonite chips from ten feet bo ogs adapted from WSP on-site geologist.	rill cuttings from tot low ground surface	al depth to ten to surface.
	PRINT NAME(S) OF Shane Eldridge, Carr	DRILL RIG SUPE	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTI nelo Trevino	UCTION OTHER TH	AN LICENSEF
	PRINT NAME(S) OF Shane Eldridge, Cam THE UNDERSIGNEL CORRECT RECORD AND THE PERMIT H	DRILL RIG SUPE eron Pruitt, Carr HEREBY CERTI OF THE ABOVE IOLDER WITHIN	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTI- nelo Trevino FIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL REC 30 DAYS AFTER COMPLETION OF WELL DRILLING:	UCTION OTHER TH , THE FOREGOING IS ORD WITH THE STA	AN LICENSEE S A TRUE ANI TE ENGINEEI
	PRINT NAME(S) OF Shane Eldridge, Cam THE UNDERSIGNEE CORRECT RECORD AND THE PERMIT H Qack Atken	DRILL RIG SUPE eron Pruitt, Carr HEREBY CERTI OF THE ABOVE OLDER WITHIN	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTI- nelo Trevino FIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL REC 30 DAYS AFTER COMPLETION OF WELL DRILLING: Jackie D. Atkins	UCTION OTHER TH THE FOREGOING IS ORD WITH THE STA 1/21/2022	AN LICENSEE S A TRUE ANI TE ENGINEEI
	PRINT NAME(S) OF Shane Eldridge, Carr THE UNDERSIGNED CORRECT RECORD AND THE PERMIT H Qack Atten SIGNA	DRILL RIG SUPE eron Pruitt, Carri HEREBY CERTI OF THE ABOVE IOLDER WITHIN MA	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTI- nelo Trevino FIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL REC 30 DAYS AFTER COMPLETION OF WELL DRILLING: Jackie D. Atkins ER / PRINT SIGNEE NAME	UCTION OTHER TH , THE FOREGOING IS ORD WITH THE STA 1/21/2022 DATE	AN LICENSEF
	PRINT NAME(S) OF Shane Eldridge, Carr THE UNDERSIGNED CORRECT RECORD AND THE PERMIT H Jack Atken SIGNA	DRILL RIG SUPE eron Pruitt, Carrier O HEREBY CERTI OF THE ABOVE IOLDER WITHIN THE TURE OF DRILL	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTI- nelo Trevino FIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL REC 30 DAYS AFTER COMPLETION OF WELL DRILLING: Jackie D. Atkins ER / PRINT SIGNEE NAME WR-20 WELL	UCTION OTHER TH , THE FOREGOING I ORD WITH THE STA 1/21/2022 DATE RECORD & LOG (Ver	AN LICENSER S A TRUE ANI TE ENGINEE

MON

OSE_Well Record and Log_-forsign

Final Audit Report

Created:	2022-01-21
By:	Lucas Middleton (lucas@atkinseng.com)
Status:	Signed
Transaction ID:	CBJCHBCAABAAHFW29aZiQH1D931B0LxyAz3o1wYi88ri

"OSE_Well Record and Log_-forsign" History

- Document created by Lucas Middleton (lucas@atkinseng.com) 2022-01-21 - 10:47:34 PM GMT- IP address: 69.21.248.123
- Document emailed to Jack Atkins (jack@atkinseng.com) for signature 2022-01-21 - 10:48:19 PM GMT
- Email viewed by Jack Atkins (jack@atkinseng.com) 2022-01-21 - 10:49:13 PM GMT- IP address: 64.90.153.232
- Document e-signed by Jack Atkins (jack@atkinseng.com) Signature Date: 2022-01-22 - 0:16:23 AM GMT - Time Source: server- IP address: 64.90.153.232
- Agreement completed. 2022-01-22 - 0:16:23 AM GMT

OSE 011 JAN 24 2022 PM3:00

2022-01-22

			quarters quar	are 1=NW 2=N ers are smallest	E 3=SW 4=SI to largest				NAD83 UTM	in meters		
Well Tag	POD	Nbr	Q64	Q16	Q4	Sec	Tws	Rng	х	Y	Мар)
NA	C 045	75 POD1	NW	NW	NE	23	24S	30E	608411.9	3564355.7	•	
* UTM locatio	on was de	rived from I	PLSS - see	Help								
Driller Lice	ense:	1249	Dr	iller Compaı	יאי: אי	ATKINS E	NGINEE	RING A	SSOC. INC.			
Driller Na	me:	ATKINS,	JACKIE D	UELENER								
Drill Start	Date:	2022-01	-04 D r	ill Finish Dat	t e: 2	2022-01-	04			Plug Date:		2022-01-21
Log File D	ate:	2022-01	-24 PC	W Rcv Date	•					Source:		
Pump Typ	e:		Pi	pe Discharge	e Size:					Estimated Y	ield:	0
Cocing Siz	o .	0.00	D	nth Mall		0E				Dawth Wet		

Casing Perforations:

Тор	Bottom
-----	--------

0 105

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/16/25 4:20 PM MST

Point of Diversion Summary

©2024 New Mexico Office of the State Engineer, All Rights Reserved. | Disclaimer | Contact Us | Help | Home |

<u>get imag</u> <u>list</u>

Water Right Summary

WR File Number:	C 04575	Subbasin:	CUB	Cross Reference:
Primary Purpose:	MON MONITORING WELL			
Primary Status:	PMT Permit			
Total Acres:		Subfile:		Header:
Total Diversion:	0.000	Cause/Case:		
Owner:	XTO ENERGY INC	Owner Class:	Agent	
Contact:	ADRIAN BAKER			
Owner:	WSP USA	Owner Class:	User	
Contact:	KALEI JENNINGS			

Documents on File

(acre-fee

Transaction Images	Trn #	Doc	File/Act	Status 1	Status 2	Transaction Desc.	From/To	Acres	Diversion
🛞 <u>get images</u>	<u>709414</u>	EXPL	2021-10-06	PMT	LOG	C 04575 POD1	Т	0.000	0.000
•									•

Current Points of Diversion

ag Source	Q64	Q16	Q4	Sec	Tws	Rng	x	Y	Мар	Other Location Desc
٨A	NW	NW	NE	23	24S	30E	608411.9	3564355.7	•	BH01
V	ag Source A	ag Source Q64 A NW	ag Source Q64 Q16 A NW NW	A NW NW NE	agSourceQ64Q16Q4SecANWNWNWNE23	agSourceQ64Q16Q4SecTwsANWNWNE2324S	ag Source Q64 Q16 Q4 Sec Tws Rng A NW NW NE 23 24S 30E	ag Source Q64 Q16 Q4 Sec Tws Rng X A NW NW NE 23 24S 30E 608411.9	ag Source Q64 Q16 Q4 Sec Tws Rng X Y A NW NW NE 23 24S 30E 608411.9 3564355.7	ag Source Q64 Q16 Q4 Sec Tws Rng X Y Map A NW NW NE 23 24S 30E 608411.9 3564355.7 O

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/16/25 4:20 PM MST

Water Rights Summary

©2024 New Mexico Office of the State Engineer, All Rights Reserved. | Disclaimer | Contact Us | Help | Home |

Received by OCD: 6/27/2025 12:14:42 PM

U.S. Fish and Wildlife Service

National Wetlands Inventory

PLU 23 DTD CVB Watercourse 2,721ft

Page 28 of 158

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Released to Imaging: 7/8/2025 11:20:46 AM

National Wetlands Inventory (NWI) This page was produced by the NWI mapper

National Wetlands Inventory

PLU 23 DTD CVB Lake 47,949ft

Released to Imaging: 7/8/2025 11:20:46 AM

National Wetlands Inventory (NWI) This page was produced by the NWI mapper

Page 29 of 158

Received by OCD: 6/27/2025 12:14:42 PM PLU 23 DID CVB Distance to Nearest Residence: 67,395ft

tillide a

. 🗆

oving

Malaga

Legender 30 of 158

Line Measure

Resident

and the second second

PLU 23 DTD CVB

5 mi

Mar Ser

N

Google Earth Released to Imaging: 7/8/2025 11:20:46 AM

Received by OCD: 6/27/2025 12:14:42 PM

Active & Inactive Points of Diversion

(with Ownership Information)

			(acre ft per annum)					(R=PO and no C=the	D has been replaced longer serves this file, file is closed)		(quart (quart	ers are 1 ers are s	I=NW 2 mallest	=NE 3=: to large	SW 4=SE st))	(NAD83 UTN	(in meters)		(meters)
WR File Nbr	Sub basin	Use	Diversion	Owner	County	POD Number	Well Tag	Code	Grant	Source	q64	q16	q4	Sec	Tws	Range	x	Y	Мар	Distance
<u>C 04575</u>	CUB	MON	0.000	XTO ENERGY INC	ED	<u>C 04575 POD1</u>	NA				NW	NW	NE	23	24S	30E	608411.9	3564355.7	•	447.1
<u>C 02780</u>	CUB	MON	0.000	U.S. DEPT. OF ENERGY - WIPP	ED	<u>C 02780</u>					NE	SW	NE	23	24S	30E	608535.0	3563857.0 *	•	760.9
<u>C 02781</u>	CUB	MON	0.000	U.S. DEPT. OF ENERGY - WIPP	ED	<u>C 02781</u>					SE	SW	NE	23	24S	30E	608535.0	3563657.0 *	•	905.8
<u>C 02782</u>	CUB	MON	0.000	U.S. BUREAU OF LAND MANAGEMENT	ED	<u>C 02782</u>					SE	SW	NE	23	245	30E	608535.0	3563657.0 *	•	905.8
<u>C 04911</u>	CUB	MON	0.000	XTO ENERGY, INC	ED	<u>C 04911 POD1</u>	NA				NE	NW	NE	22	245	30E	606954.0	3564161.5	•	1,030.3
<u>C 02110</u>	CUB	STK	3.000	CLARENCE W. MCDONALD	ED	<u>C 02110</u>						SE	SW	23	245	30E	608036.0	3562950.0 *	•	1,412.7
<u>C 04761</u>	CUB	MON	0.000	XTO ENERGY INC.	ED	<u>C 04761 POD1</u>	NA				NE	NW	NE	27	245	30E	606924.0	3562659.3	•	1,994.7
<u>C 03702</u>	CUB	MON	0.000	BOPCO, LP	ED	<u>C 03702 POD1</u>					SE	NW	SE	24	245	30E	610092.2	3563204.1	•	2,421.5
<u>C 01934</u>	с	PRO	0.000	PERRY R BASS	ED	<u>C 01934</u>					NE	NE	NE	16	24S	30E	605664.0	3565821.0 *	•	2,725.0
<u>C 03893</u>	CUB	CPS	0.000	DARRELL CRASS DRILLING COMPANY	ED	<u>C 03893 POD1</u>					NW	NW	NE	21	245	30E	605162.5	3564162.8	•	2,809.3
<u>C 02107</u>	с	DOL	0.000	M & M CATTLE CO.	ED	<u>C 02107</u>						SW	NE	21	245	30E	605174.0	3563706.0 *	•	2,866.6
<u>C 03960</u>	с	STK	3.000	BUREAU OF LAND MANAGEMENT	ED	<u>C 03960 POD1</u>				Shallow	NW	SW	NE	21	245	30E	605061.9	3563712.7	•	2,974.4
<u>C 03558</u>	CUB	EXP	0.000	BOPCO, LP	ED	<u>C 03558 POD1</u>					NW	NE	NE	25	245	30E	610412.5	3562651.7	•	2,985.4
					ED	<u>C 03558 POD2</u>					NW	NE	NE	25	245	30E	610412.5	3562651.7	•	2,985.4
					ED	C 03558 POD3					NW	NE	NE	25	24S	30E	610412.5	3562651.7	•	2,985.4
					ED	C 03558 POD4					NW	NE	NE	25	24S	30E	610412.5	3562651.7	•	2,985.4
					ED	<u>C 03558 POD5</u>					NW	NE	NE	25	24S	30E	610412.5	3562651.7	•	2,985.4
<u>C 04478</u>	CUB	MON	0.000	XTO ENERGY INC	ED	<u>C 04478 POD1</u>	NA				SW	SW	NE	25	245	30E	610077.4	3562041.1	•	3,137.6
<u>C 04759</u>	CUB	MON	0.000	XTO ENERGY, INC	ED	<u>C 04759 POD1</u>	NA				SE	NE	NW	19	24S	31E	611452.0	3564087.8	•	3,497.8
<u>C 04474</u>	CUB	MON	0.000	XTO ENERGY INC	ED	<u>C 04474 POD1</u>	NA				NW	NW	NW	34	245	30E	605829.5	3561045.8	•	3,943.3
C 04520	с	SAN	1.000	DOUBLE E PIPELINE LLC	ED	C 04520 POD1	20E1C			Shallow	SW	SW	SE	35	245	30E	608454.0	3559687.6	•	4,698.8

Record Count: 21

Filters Applied:

UTM Filters (in meters): Easting: 607964.83 Northing: 3564360.88 Radius: 5000.0

Sorted By: Distance

* UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/16/25 4:16 PM MST

©2024 New Mexico Office of the State Engineer, All Rights Reserved. | Disclaimer | Contact Us | Help | Home |

•

Active & Inactive Points of Diversion

Water Right Summary

Z	WR File Number:	C 02110	Subbasin:	CUB	Cross Reference:
<u>get image</u>	Primary Purpose:	STK 72-12-1 LIVESTOCK WATERING			
<u>IISL</u>	Primary Status:	DCL Declaration			
	Total Acres:	0.000	Subfile:		Header:
	Total Diversion:	3.000	Cause/Case:		
	Owner:	CLARENCE W. MCDONALD	Owner Class:	Owner	
	Contact:				

Documents on File

(acre-feet per

Transaction Images	Trn #	Doc	File/Act	Status 1	Status 2	Transaction Desc.	From/To	Acres	Diversion	C
	<u>199332</u>	DCL	1984-03-01	DCL	PRC	C 02110	Т	0.000	3.000	
•										▶

Current Points of Diversion

POD Number	Well Tag	Source	Q64	Q16	Q4	Sec	Tws	Rng	x	Y	Мар	Other Location Desc	
<u>C 02110</u>				SE	SW	23	24S	30E	608036.0	3562950.0 *	•		
* UTM locat	ion was d	erived from	PLSS - se	e Help									

Place of Use

0.000 3.000 STK DCL NO PLACE OF USE GIVEN.	Q256	Q64	Q16	Q 4	Sec	Tws	Rng	Acres	Diversion	CU	Use	Priority	Status	Other Location Desc
								0.000	3.000		STK		DCL	NO PLACE OF USE GIVEN.

Source

Acres	Diversion	CU	Use	Priority	Source	Description
0.000	3.000		STK		GW	

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Released to Imaging: 7/8/2025 11:20:46 AM

5/16/25 4:17 PM MST

.

©2024 New Mexico Office of the State Engineer, All Rights Reserved. | Disclaimer | Contact Us | Help | Home |

7/2025 12.14.42 DW Received by OCD

U.S. Fish and Wildlife Service

National Wetlands Inventory

PLU 23 DTD CVB Watercourse 2,721ft

Page 34 of 158

May 16, 2025

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Freshwater Pond

Lake Other Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

> National Wetlands Inventory (NWI) This page was produced by the NWI mapper

Released to Imaging: 7/8/2025 11:20:46 AM

Received by OCD: 6/27/2025 12:14:42 PM

PLU 23 DTD CVB Mine 52,869ft

- × Aggregate, Stone etc.
- × Aggregate, Stone etc.

Potash

Esri, NASA, NGA, USGS, Sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, \circledcirc OpenStreetMap contributors, and the GIS User Community

3

1.5

0

6 km

Received by OCD: 6/27/2025 12:14:42 PM

Released to Imaging: 7/8/2025 11:20:46 AM

Received by OCD: 6/27/2025 12:14:42 PM National Flood Hazard Layer FIRMette

Legend

Page 38 of 158

Release 40 Imaging: 7/8/2025 1.9.20:46 AM 1,500 2,000

Basemap Imagery Source: USGS National Map 2023

regulatory purposes.

PLU 23 DTD CVB Geology

- Playa—Alluvium and evaporite deposits (Holocene)
- Water-Perenial standing water
 - Qa—Alluvium (Holocene to upper Pleistocene)

Esri, NASA, NGA, USGS, USGS The National Map: National Boundaries Dataset, 3DEP Elevation Program, Geographic Names Information System, National Hydrography Dataset, National Land Cover Database, National Structures Dataset, and National Transportation Dataset; USGS Global Ecosystems; U.S. Census Bureau TIGER/Line data; USFS Road data;

Ecological site R070BD003NM Loamy Sand

Accessed: 06/18/2025

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

Associated sites

R070BD004NM	Sandy Sandy
R070BD005NM	Deep Sand Deep Sand

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	Not specified

Physiographic features

This site is on uplands, plains, dunes, fan piedmonts and in inter dunal areas. The parent material consists of mixed alluvium and or eolian sands derived from sedimentary rock. Slope range on this site range from 0 to 9 percent with the average of 5 percent.

Low stabilized dunes may occur occasionally on this site. Elevations range from 2,800 to 5,000 feet.

Table 2. Representative physiographic features

Landforms	(1) Fan piedmont (2) Alluvial fan (3) Dune
Elevation	2,800–5,000 ft
Slope	0–9%
Aspect	Aspect is not a significant factor

Climatic features

The average annual precipitation ranges from 8 to 13 inches. Variations of 5 inches, more or less, are common. Over 80 percent of the precipitation falls from April through October. Most of the summer precipitation comes in the form of high intensity-short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes. The average annual temperature is 61 degrees with extremes of 25 degrees below zero in the winter to 112 degrees in the summer. The average frost-free season is 207 to 220 days. The last killing frost being late March or early April and the first killing frost being in later October or early November. Temperature and rainfall both favor warm season perennial plant growth. In years of abundant spring moisture, annual forbs and cool season grasses can make up an important component of this site. Strong winds blow from the southwest from January through June, which accelerates soil drying during a critical period for cool season plant growth.

Climate data was obtained from http://www.wrcc.sage.dri.edu/summary/climsmnm.html web site using 50% probability for freeze-free and frost-free seasons using 28.5 degrees F and 32.5 degrees F respectively.

Table 3. Representative climatic features

Frost-free period (average)	221 days
Freeze-free period (average)	240 days
Precipitation total (average)	13 in

Influencing water features

This site is not influenced from water from wetlands or streams.

Soil features

Soils are moderately deep or very deep. Surface textures are loamy fine sand, fine sandy loam, loamy very fine sand or gravelly sandy loam.

Subsurface is a loamy fine sand, coarse sandy loam, fine sandy loam or loam that averages less than 18 percent clay and less than 15 percent carbonates.

Substratum is a fine sandy loam or gravelly fine sandy loam with less than 15 percent gravel and with less than 40 percent calcium carbonate. Some layers high in lime or with caliche fragments may occur at depths of 20 to 30 inches.

These soils, if unprotected by plant cover and organic residue, become wind blown and low hummocks are formed.

Minimum and maximum values listed below represent the characteristic soils for this site.

Characteristic soils are: Maljamar Berino Parjarito Palomas Wink Pyote

Surface texture	(1) Fine sand(2) Fine sandy loam(3) Loamy fine sand
Family particle size	(1) Sandy
Drainage class	Well drained to somewhat excessively drained
Permeability class	Moderate to moderately rapid
Soil depth	40–72 in
Surface fragment cover <=3"	0–10%
Surface fragment cover >3"	0%
Available water capacity (0-40in)	5–7 in
Calcium carbonate equivalent (0-40in)	3–40%
Electrical conductivity (0-40in)	2–4 mmhos/cm

Table 4. Representative soil features

Received by OCD: 6/27/2025 12:14:42 PM

Sodium adsorption ratio (0-40in)	0–2
Soil reaction (1:1 water) (0-40in)	6.6–8.4
Subsurface fragment volume <=3" (Depth not specified)	4–12%
Subsurface fragment volume >3" (Depth not specified)	0%

Ecological dynamics

Overview

The Loamy Sand site intergrades with the Deep Sand and Sandy sites (SD-3). These sites can be differentiated by surface soil texture and depth to a textural change. Loamy Sand and Deep Sand sites have coarse textured (sands and loamy sand) surface soils while Sandy sites have moderately coarse textured (sandy loam and fine sandy loam) surfaces. Although Loamy Sand and Deep Sand sites have similar surface textures, the depth to a textural change is different—Loamy Sand sub-surface textures typically increase in clay at approximately 20 to 30 inches, and Deep Sand sites not until around 40 inches.

The historic plant community of Loamy Sand sites is dominated by black grama (Bouteloua eriopoda), dropseeds (Sporobolus flexuosus, S. contractus, S. cryptandrus), and bluestems (Schizachyrium scoparium and Andropogon hallii), with scattered shinnery oak (Quercus havardii) and sand sage (Artemisia filifolia). Perennial and annual forb abundance and distribution are dependent on precipitation. Litter and to a lesser extent, bare ground, are a significant proportion of ground cover while grasses compose the remainder. Decreases in black grama indicate a transition to either a grass/shrub or shrub-dominated state. The grass/shrub state is composed of grasses/honey mesquite (Prosopis glandulosa), grasses/broom snakeweed (Gutierrezia sarothrae), or grasses/sand sage. The shrub-dominated state occurs after a severe loss of grass cover and a prevalence of sand sage with secondary shinnery oak and mesquite. Heavy grazing intensity and/or drought are influential drivers in decreasing black grama and bluestems and subsequently increasing shrub cover, erosion, and bare patches. Historical fire suppression also encourages shrub pervasiveness and a competitive advantage over grass species (McPherson 1995). Brush and grazing management, however, may reverse grass/shrub and shrub-dominated states toward the grassland-dominated historic plant community.

State and transition model

1a. Drought, over grazing, fire suppression.

1b. Brush control, prescribed grazing

Severe loss of grass cover, fire suppression, erosion.
 Brush control, seeding, prescribed grazing.

3. Continued loss of grass cover, erosion.

State 1 Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community

Released to Imaging: 7/8/2025 11:20:46 AM

Grassland: The historic plant community is a uniformly distributed grassland dominated by black grama, dropseeds, and bluestems. Sand sage and shinnery oak are evenly dispersed throughout the grassland due to the coarse soil surface texture. Perennial and annual forbs are common but their abundance and distribution are reflective of precipitation. Bluestems initially, followed by black grama, decrease with drought and heavy grazing intensity. Historical fire frequency is unknown but likely occurred enough to remove small shrubs to the competitive advantage of grass species. Fire suppression, drought conditions, and excessive grazing drive most grass species out of competition with shrub species. Diagnosis: Grassland dominated by black grama, dropseeds, and bluestems. Shrubs, such as sand sage, shinnery oak, and mesquite are dispersed throughout the grassland. Forbs are present and populations fluctuate with precipitation variability.

Table 5. Annual production by plant type

Plant Type	Low (Lb/Acre)	Representative Value (Lb/Acre)	High (Lb/Acre)
Grass/Grasslike	442	833	1224
Forb	110	208	306
Shrub/Vine	98	184	270
Total	650	1225	1800

Table 6. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	28%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	50%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	22%

Figure 5. Plant community growth curve (percent production by month). NM2803, R042XC003NM-Loamy Sand-HCPC. SD-3 Loamy Sand - Warm season plant community .

J	an	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0		0	3	5	10	10	25	30	12	5	0	0

State 2 Grass/Shrub

Community 2.1 Grass/Shrub

Grass/Shrub

 Black grame/Mesquite community, with some dropseeds, threesoms, and scattered sund shimony oak
 Ones cover low to moderate

Grass/Shrub State: The grass/shrub state is dominated by communities of grasses/mesquite, grasses/snakeweed, or grasses/sand sage. Decreases in black grama and bluestem species lead to an increase in bare patches and mesquite which further competes with grass species. An increase of dropseeds and threeawns occurs. Grass distribution becomes more patchy with an absence or severe decrease in black grama and bluestems. Mesquite provides nitrogen and soil organic matter to co-dominant grasses (Ansley and Jacoby 1998, Ansley et al. 1998). Mesquite mortality when exposed

Received by OCD: 6/27/2025 12:14:42 PM

to fire is low due to aggressive resprouting abilities. Herbicide application combined with subsequent prescribed fire may be more effective in mesquite reduction (Britton and Wright 1971). Diagnosis: This state is dominated by an increased abundance of communities including grass/mesquite, grass/snakeweed, or grass/sand sage. Dropseeds and threeawns have a patchy distribution. Transition to Grass/Shrub State (1a): The historic plant community begins to shift toward the grass/shrub state as drivers such as drought, fire suppression, interspecific competition, and excessive grazing contribute to alterations in soil properties and herbaceous cover. Cover loss and surface soil erosion are initial indicators of transition followed by a decrease in black grama with a subsequent increase of dropseeds, threeawns, mesquite, and snakeweed. Snakeweed has been documented to outcompete black grama especially under conditions of fire suppression and drought (McDaniel et al. 1984). Key indicators of approach to transition: • Loss of black grama cover • Surface soil erosion • Bare patch expansion • Increased dropseed/threeawn and mesquite, snakeweed, or sand sage abundances Transition to Historic Plant Community (1b): Brush and grazing management may restore the grassland component and reverse shrub or grass/shrub dominated states back toward the historic plant community.

State 3 Shrub Dominated

Community 3.1 Shrub Dominated

Shrub-Dominated State: The shrub-dominated state results from a severe loss of grass cover. This state's primary species is sand sage. Shinnery oak and mesquite also occur; however, grass cover is limited to intershrub distribution. Sand sage stabilizes light sandy soils from wind erosion, which enhances protected grass/forb cover (Davis and Bonham 1979). However, shinnery oak also responds to the sandy soils with dense stands due to an aggressive rhizome system. Shinnery oak's extensive root system promotes competitive exclusion of grasses and forbs. Sand sage, shinnery oak, and mesquite can be controlled with herbicide (Herbel et al. 1979, Pettit 1986). Transition to Shrub-Dominated (2a): Severe loss of grass species with increased erosion and fire suppression will result in a transition to a shrub-dominated state with sand sage, Shin oak, and honey mesquite directly from the grassland-dominated state. Key indicators of approach to transition: • Severe loss of grass species cover • Surface soil erosion • Bare patch expansion • Increased sand sage, shinnery oak, and mesquite abundance Transition to Historic Plant Community (2b): Brush and grazing management may restore the grassland component and reverse shrub or grass/shrub dominated states back toward the historic plant community. In addition, seeding with native grass species will augment the transition to a grassland-dominated state. Transition to Shrub-Dominated (3): If the grass/shrub site continues to lose grass cover with soil erosion, the site will transition to a shrub-dominated state with sand sage, shinnery oak, and honey mesquite. Key indicators of approach to transition: • Continual loss of dropseeds/threeawns cover • Surface soil erosion • Bare patch expansion • Increased sand sage, shinnery oak, and mesquite/dropseed/threeawn

•

and mesquite/snakeweed abundance

Additional community tables

Table 7. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Lb/Acre)	Foliar Cover (%)
Grass	/Grasslike	•	I		
1	Warm Season	61–123			
	little bluestem	SCSC	Schizachyrium scoparium	61–123	_
2	Warm Season			37–61	
	sand bluestem	ANHA	Andropogon hallii	37–61	_
3	Warm Season			37–61	
	cane bluestem	BOBA3	Bothriochloa barbinodis	37–61	_
	silver bluestem	BOSA	Bothriochloa saccharoides	37–61	_
4	Warm Season		•	123–184	
	black grama	BOER4	Bouteloua eriopoda	123–184	_
	bush muhly	MUPO2	Muhlenbergia porteri	123–184	_
5	Warm Season			123–184	
	thin paspalum	PASE5	Paspalum setaceum	123–184	_
	plains bristlegrass	SEVU2	Setaria vulpiseta	123–184	-
	fringed signalgrass	URCI	Urochloa ciliatissima	123–184	_
6	Warm Season			123–184	
	spike dropseed	SPCO4	Sporobolus contractus	123–184	_
	sand dropseed	SPCR	Sporobolus cryptandrus	123–184	_
	mesa dropseed	SPFL2	Sporobolus flexuosus	123–184	-
7	Warm Season			61–123	
	hooded windmill grass	CHCU2	Chloris cucullata	61–123	_
	Arizona cottontop	DICA8	Digitaria californica	61–123	-
9	Other Perennial Grasses			37–61	
	Grass, perennial	2GP	Grass, perennial	37–61	-
Shrub	/Vine				
8	Warm Season			37–61	
	New Mexico feathergrass	HENE5	Hesperostipa	37–61	_

Received by OCD: 6/27/2025 12:14:42 PM

			neomexicana		
	giant dropseed	SPGI	Sporobolus giganteus	37–61	-
10	Shrub			61–123	
	sand sagebrush	ARFI2	Artemisia filifolia	61–123	_
	Havard oak	QUHA3	Quercus havardii	61–123	_
11	Shrub			34–61	
	fourwing saltbush	ATCA2	Atriplex canescens	37–61	_
	featherplume	DAFO	Dalea formosa	37–61	_
12	Shrub			37–61	
	jointfir	EPHED	Ephedra	37–61	_
	littleleaf ratany	KRER	Krameria erecta	37–61	_
13	Other Shrubs			37–61	
	Shrub (>.5m)	2SHRUB	Shrub (>.5m)	37–61	_
Forb)				
14	Forb			61–123	
	leatherweed	CRPOP	Croton pottsii var. pottsii	61–123	_
	Indian blanket	GAPU	Gaillardia pulchella	61–123	_
	globemallow	SPHAE	Sphaeralcea	61–123	_
15	Forb			12–37	
	woolly groundsel	PACA15	Packera cana	12–37	_
16	Forb			61–123	
	touristplant	DIWI2	Dimorphocarpa wislizeni	61–123	_
	woolly plantain	PLPA2	Plantago patagonica	61–123	_
17	Other Forbs	•		37–61	
	Forb (herbaceous, not grass nor grass-like)	2FORB	Forb (herbaceous, not grass nor grass-like)	37–61	_

Animal community

This Ecological Site provides habitat which supports a resident animal community that is characterized by pronghorn antelope, desert cottontail, spotted ground squirrel, black-tailed prairie dog, yellow faced pocket gopher, Ord's kangaroo rat, northern grasshopper mouse, southern plains woodrat, badger, roadrunner, meadowlark, burrowing owl, white necked raven, lesser prairie chicken, morning dove, scaled quail, Harris hawk, side blotched lizard, marbled whiptail, Texas horned lizard, western diamondback rattlesnake, dusty hognose snake and ornate box turtle.

Where mesquite has invaded, most resident birds and scissor-tailed flycatcher, morning dove and Swainson's hawk, nest. Vesper and grasshopper sparrows utilize the site during migration.

Hydrological functions

The runoff curve numbers are determined by field investigations using hydraulic cover conditions and hydrologic soil groups. Hydrologic Interpretations Soil Series Hydrologic Group Berino B Kinco A Maljamar B Pajarito B Palomas B Wink B Pyote A

Recreational uses

This site offers recreation potential for hiking, borseback riding, nature observation, photography and hunting. During years of abundant spring moisture, this site displays a colorful array of wildflowers during May and June.

Wood products

This site has no potential for wood products.

Other products

This site is suitable for grazing by all kinds and classes of livestock at any time of year. In cases where this site has been invaded by brush species it is especially suited for goats. Mismanagement of this site will cause a decrease in species such as the bluestems, blsck grama, bush muhly, plains bristlegrass, New Mexico feathergrass, Arizona cottontop and fourwing saltbush. A corresponding increase in the dropseeds, windmill grass, fall witchgrass, silver bluestem, sand sagebrush, shinery oak and ephedra will occur. This will also cause an increase in bare ground which will increase soil erodibility. This site will respond well to a system of management that rotates the season of use.

Other information

Guide to Suggested Initial Stocking Rate Acres per Animal Unit Month Similarity Index Ac/AUM 100 - 762.3 - 3.5 75 - 513.0 - 4.5

50 – 26 4.6 – 9.0 25 – 0 9.1 +

Inventory data references

Data collection for this site was done in conjunction with the progressive soil surveys within the Southern Desertic Basins, Plains and Mountains, Major Land Resource Areas of New Mexico. This site has been mapped and correlated with soils in the following soil surveys. Eddy County, Lea County, and Chaves County.

Other references

Literature Cited:

Ansley, R. J.; Jacoby, P. W. 1998. Manipulation of fire intensity to achieve mesquite management goals in north Texas. In: Pruden, Teresa L.; Brennan, Leonard A., eds. Fire in ecosystem management: shifting the paradigm from suppression to prescription: Proceedings, Tall Timbers fire ecology conference; 1996 May 7-10; Boise, ID. No. 20. Tallahassee, FL: Tall Timbers Research Station: 195-204.

Ansley, R. J.; Jones, D. L.; Tunnell, T. R.; [and others]. 1998. Honey mesquite canopy responses to single winter fires: relation to herbaceous fuel, weather and fire temperature. International Journal of Wildland Fire 8(4):241-252.

Britton, Carlton M.; Wright, Henry A. 1971. Correlation of weather and fuel variables to mesquite damage by fire. Journal of Range Management 24:136-141.

Davis, Joseph H., III and Bonham, Charles D. 1979. Interference of sand sagebrush canopy with needleandthread. Journal of Range Management 32(5):384-386.

Herbel, C. H, Steger, R, Gould, W. L. 1974. Managing semidesert ranges of the Southwest Circular 456. Las Cruces, NM: New Mexico State University, Cooperative Extension Service. 48 p.

McDaniel, Kirk C.; Pieper, Rex D.; Loomis, Lyn E.; Osman, Abdelgader A. 1984. Taxonomy and ecology of perennial snakeweeds in New Mexico. Bulletin 711. Las Cruces, NM: New Mexico State University, Agricultural Experiment Station. 34 p.

McPherson, Guy R. 1995. The role of fire in the desert grasslands. In: McClaran, Mitchel P.; Van Devender, Thomas R., eds. The desert grassland. Tucson, AZ: The University of Arizona Press: 130-151.

Pettit, Russell D. 1986. Sand shinnery oak: control and management. Management Note 8. Lubbock, TX: Texas Tech University, College of Agricultural Sciences, Department of Range and Wildlife Management. 5 p.

Contributors

Don Sylvester Quinn Hodgson

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	
Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills:
- 2. Presence of water flow patterns:
- 3. Number and height of erosional pedestals or terracettes:
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
- 5. Number of gullies and erosion associated with gullies:

- 6. Extent of wind scoured, blowouts and/or depositional areas:
- 7. Amount of litter movement (describe size and distance expected to travel):
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values):
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant:

Sub-dominant:

Other:

Additional:

13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):

- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production):
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
- 17. Perennial plant reproductive capability:

Department of Agriculture

Natural Resources Conservation Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Eddy Area, New Mexico

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Eddy Area, New Mexico	13
BB—Berino complex, 0 to 3 percent slopes, eroded	13
References	

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

.

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Released to Imaging: 7/8/2025 11:20:46 AM

Page 63 of 158

.

Custom Soil Resource Report

MAP L	EGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI)	Spoil AreaStony Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soils Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Special Point Features Blowout	 Very Stony Spot Wet Spot Other Special Line Features Water Features	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.
 Borrow Pit Clay Spot Closed Depression Gravel Pit Gravelly Spot Landfill 	Transportation +++ Rails ~ Interstate Highways ~ US Routes ~ Major Roads ~ Local Roads	Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator
 Lava Flow Marsh or swamp Mine or Quarry Miscellaneous Water 	Background Aerial Photography	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as
 Perennial Water Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot 		Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 20, Sep 3, 2024 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
 Sinkhole Slide or Slip Sodic Spot 		Date(s) aerial images were photographed: Feb 7, 2020—May 12, 2020 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
BB	Berino complex, 0 to 3 percent slopes, eroded	6.0	100.0%
Totals for Area of Interest		6.0	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Eddy Area, New Mexico

BB—Berino complex, 0 to 3 percent slopes, eroded

Map Unit Setting

National map unit symbol: 1w43 Elevation: 2,000 to 5,700 feet Mean annual precipitation: 5 to 15 inches Mean annual air temperature: 57 to 70 degrees F Frost-free period: 180 to 260 days Farmland classification: Not prime farmland

Map Unit Composition

Berino and similar soils: 60 percent Pajarito and similar soils: 25 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Berino

Setting

Landform: Plains, fan piedmonts Landform position (three-dimensional): Riser Down-slope shape: Convex Across-slope shape: Linear Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 17 inches: fine sand H2 - 17 to 58 inches: sandy clay loam H3 - 58 to 60 inches: loamy sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Very slightly saline to slightly saline (2.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Moderate (about 8.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: R070BD003NM - Loamy Sand Hydric soil rating: No

Description of Pajarito

Setting

Landform: Dunes, plains, interdunes Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear Across-slope shape: Convex, linear Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 9 inches: loamy fine sand *H2 - 9 to 72 inches:* fine sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Moderate (about 8.0 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Ecological site: R070BD003NM - Loamy Sand Hydric soil rating: No

Minor Components

Pajarito

Percent of map unit: 4 percent Ecological site: R070BD003NM - Loamy Sand Hydric soil rating: No

Wink

Percent of map unit: 4 percent Ecological site: R070BD003NM - Loamy Sand Hydric soil rating: No

Cacique

Percent of map unit: 4 percent Ecological site: R070BD004NM - Sandy Hydric soil rating: No

Kermit

Percent of map unit: 3 percent Ecological site: R070BD005NM - Deep Sand Hydric soil rating: No

•

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

APPENDIX D: Daily Field and Sampling Report(s)

Client: Site Location Name:	XTO Energy Inc. (US) PLU 23 DTD CVB	API #:	
Inspection Date:	5/12/2025		
		Summary of Times	
Arrived at Site	5/12/2025 11:00 AM		
Departed Site	5/12/2025 3:45 PM		

VERTEX

Field Notes

- 15:21 Arrived on site and completed saftey paperwork
- 15:21 Received authorization before beginning on site
- **15:22** Completed background research in the location to properly identify the current release
- 15:22 Identified the current release on the correct location and characterized the extent
- 15:23 Kicked up the materiel and identified a hard layer about 3 inches deep coinciding with less saturated soil
- 15:24 Release began near V-80303 and spread southwest
- 15:24 4 stakes were set for an 811

Next Steps & Recommendations

Site Photos Viewing Direction: South Viewing Direction: South Release flowed in between V-80303 and V-Release at the origin 710301 Viewing Direction: Southwest Viewing Direction: Northeast Looking over the equipment at the southwest Looking at the release area from the southwest area of the release most corner

Run on 5/13/2025 2:16 PM UTC

Page 76 of 158

Daily Site Visit Signature

Inspector: Katrina Taylor	A/q
Signature:	Signature

Client:	XTO Energy Inc. (US)	Incident ID #:	
Site Location Name:	PLU 23 DTD CVB	API #:	
Inspection Date:	5/19/2025		
		Summary of Times	
Arrived at Site	5/19/2025 9:15 AM		
Departed Site	5/19/2025 2:58 PM		

VERTEX

Page 79 of 158

Field Notes

10:01 Completed saftey paperwork upon arrival and received work authorization

10:01 Laid out points on field maps

10:01 Began with 4 cardinal directions

10:06 A secondary sweep was completed in the location of each borehole before bore-holing

Next Steps & Recommendations

1

Site Photos Viewing Direction: South Viewing Direction: West was hit at 1ft. BH25-01 to 2' as the northern cardinal BH25-02 down to 1ft. Refusal was hit at 1ft. At the eastern extent of the visible release borehole Viewing Direction: North BH25-03 to 1'. Refusal was hit at 1'. This borehole is the southern extent

Run on 5/19/2025 10:01 PM UTC

Daily Site Visit Signature

Inspector: Katrina Taylor Signature:

Client:	XTO Energy Inc. (US)	Incident ID #:		
Site Location Name:	PLU 23 DTD CVB	API #:		
Inspection Date:	5/20/2025	_		
		Summary of T	imes	
Arrived at Site	5/20/2025 9:29 AM			
Departed Site	5/20/2025 2:55 PM			
		Field Note	S	

10:30 Completed saftey paperwork and received work authorization upon arrival

10:30 Continued with horizontal boreholes

14:02 Each borehole had a secondary sweep done on it before beginning

Next Steps & Recommendations

1

Site Photos Viewing Direction: East Viewing Direction: South SS25-01, a surface sample just inside the BH25-04 to two feet. Western most borehole. Hit refusal at 2ft release area from BH25-01 Viewing Direction: West Viewing Direction: North SS25-02, a surface sample just inside the SS25-03, a surface sample just inside the release area from BH25-02 release area from BH25-03

Run on 5/20/2025 10:46 PM UTC

SS25-04, a surface sample just inside the release area from BH25-04

BH25-05 to 1'. Hit refusal at 1'. A horizontal delineation borehole to the north of the southern section of the release

SS25-05 just inside the release area from of BH25-05

Daily Site Visit Signature

Inspector: Katrina Taylor

Signature:

	incluent ID #:		
DTD CVB	API #:		
)25			
	Summary of Ti	mes	
025 9:28 AM			
025 1:45 PM			
	DTD CVB 025 025 9:28 AM 025 1:45 PM	DTD CVB API #: 025 Summary of Ti 025 9:28 AM 025 1:45 PM	DTD CVB API #: 025 Summary of Times 025 9:28 AM 25 1:45 PM

Field Notes

9:38 Completed safety paperwork and received work authorization before beginning

13:39 Collected one horizontal and two verticals

13:42 All boreholes were covered before leaving site. A secondary sweep was conducted at each borehole

Next Steps & Recommendations

1

Site Photos Viewing Direction: West Viewing Direction: North 1, Åö. Hit refusal at 1, Åö. Hortz 5 10:26:49 AM ing:-103,854511 BH25-06 to 1'. Hit refusal at 1'. Horizontal BH25-07 to .5'. This sample is a vertical in the southwest area of the release Viewing Direction: South Viewing Direction: East BH25-08 to .5'. This sample is a vertical in the SS25-06 step into the release area from BS25northeastern area of the release 06

Run on 5/22/2025 2:01 PM UTC

Daily Site Visit Signature

Inspector: Katrina Taylor

Signature:

Client:	XTO Energy Inc. (US)	Incident ID #:	
Site Location Name:	Hat Mesa 31 State 002	API #:	
Inspection Date:	6/5/2025		
		Summary of Times	
Arrived at Site	6/5/2025 9:00 AM		
Departed Site	6/5/2025 4:00 PM		

VERTEX

Field Notes

10:19 811 flags were staked and gps coordinates collected

10:24 NW: 32.535225, -103.696513 NE: 32.535255, - 103.695766 SW:32.534825, -103. 696528

SE: 32.534832, -103.695714

10:24 Drilling rig was repaired and drilling continued

15:12 105' depth was reached/ measurements were taken to prove well depth

Next Steps & Recommendations

1 Detect for ground water after 72hr wait period

2 Plug well

Site Photos

Viewing Direction: North	Viewing Direction: North
With the second se	
Bore depth 109 and 6/10 with casing above	Length of casing above surface
ground	3' and 8/10th
Viewing Direction: West	Viewing Direction: North
	Descriptive Proto - 1 Service Control of Proto - 1 Service Contr
Total well depth 105.8'	Lithology

Borehole secured

Daily Site Visit Signature

Inspector: Riley Arnold

Signature:

Run on 6/5/2025 10:25 PM UTC

Client:	XTO Energy Inc. (US)	Incident ID #:		
Site Location Name:	PLU 23 DTD CVB	API #:		
Inspection Date:	6/10/2025	_		
		Summary of Ti	mes	
Arrived at Site	6/10/2025 9:35 AM			
Departed Site	6/10/2025 10:42 AM			
		Field Notes		

9:36 Completed safety paperwork and received work authorization upon arrival

9:36 Marked the site out in white and with flagging for the areas that need to be excavated

10:42 Checked that that stakes for the 811 are still in place and that the coordinates are correct

Next Steps & Recommendations

1

Site Photos

Run on 6/10/2025 6:27 PM UTC

Area in north of release area flagged with white flags

Daily Site Visit Signature

Inspector: Katrina Taylor Signature: |V|Signature

Client:	XTO Energy Inc. (US)	Incident ID #:		
Site Location Name:	PLU 23 DTD CVB	API #:		
Inspection Date:	6/10/2025	_		
		Summary of T	imes	
Arrived at Site	6/10/2025 9:35 AM			
Departed Site	6/10/2025 10:42 AM			
		Field Note	c	

9:36 Completed safety paperwork and received work authorization upon arrival

9:36 Marked the site out in white and with flagging for the areas that need to be excavated

10:42 Checked that that stakes for the 811 are still in place and that the coordinates are correct

Next Steps & Recommendations

1

Site Photos Viewing Direction: North Viewing Direction: East Area flagged with whit flags Area flagged with white flags Viewing Direction: Southeast Viewing Direction: Southwest Area flagged with white flags Area in north of release area flagged with white flags

Area in north of release area flagged with white flags

Daily Site Visit Signature

Inspector: Katrina Taylor Signature: Signature

Client:	XTO Energy Inc. (US)	Incident ID #:	
Site Location Name:	PLU 23 DTD CVB	API #:	
Inspection Date:	6/12/2025	_	
		Summary of T	imes
Arrived at Site	6/12/2025 9:00 AM		
Departed Site	6/12/2025 3:57 PM		

Field Notes

10:18 Completed safety paperwork, had a safety meeting, and received work authorization before arrival

10:18 Crew continued hand digging the release area

10:19 Field screened the area hand dug the day prior to determine if adequate remediation has commenced

15:38 Samples were field screened in the same locations that confirmation samples intend to be taken to confirm the grids are clean

15:38 Area was fully excavated and all sections were field screened

15:42 Areas under equipment were able to be effectively scraped due to the equipment being raised and the release being shallow. Therefore deferral will not be needed

Next Steps & Recommendations

1

Site Photos Viewing Direction: Southwest Viewing Direction: Southwest BS25-07 at .25'. BS25-08 at .25'. Viewing Direction: South Viewing Direction: South BS25-09 at .25'. WS25-03 0-2.5. Around base samples 7-9

Run on 6/13/2025 1:48 PM UTC

Page 105 of 158

Daily Site Visit Signature

Inspector: Katrina Taylor Signature: 7

Client:	XTO Energy Inc. (US)	Incident ID #:	
Site Location Name:	PLU 23 DTD CVB	API #:	
Inspection Date:	6/13/2025		
		Summary of T	imes
Arrived at Site	6/13/2025 11:30 AM		
Departed Site	6/13/2025 2:03 PM		

Field Notes

- 13:41 Completed saftey paperwork and received work authorization upon arrival
- 13:41 Collected base samples 1-13 and wall sample 1
- 13:42 Due to the shallow excavation, the square-footage of wall is <200sq ft, therefore only one wall sample is needed
- 13:43 BS25-06 was taken underneath the scraped equipment, demonstrating the scrape was effective and no deferral is needed
- **13:44** Full photographs of the final remediation excavation are included
- **15:34** Dropped samples off directly at cardinal

Next Steps & Recommendations

1
Daily Site Visit Report

Site Photos Viewing Direction: East Viewing Direction: East BS25-06 taken underneath the equipment Base Samples 1-5 Viewing Direction: Southwest Viewing Direction: South th and west of the release point a BS25-07 taken west of the release separator BS25-08 taken north and west of the release point separator

Daily Site Visit Report

Southern excavation scrape

Run on 6/13/2025 11:20 PM UTC

Daily Site Visit Report

Daily Site Visit Signature

Inspector: Katrina Taylor Signature: Signature

•

APPENDIX E: Laboratory Data Report(s) and Chain of Custody Form(s)

May 29, 2025

CHAD HENSLEY VERTEX RESOURCE

3101 BOYD DRIVE

CARLSBAD, NM 88220

RE: PLU 23 DTD CVB

Enclosed are the results of analyses for samples received by the laboratory on 05/22/25 14:00.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C25-00101. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celeg D. Keine

Celey D. Keene Lab Director/Quality Manager

		VERTEX RES CHAD HENS	SOURCE SLEY		
		CARLSBAD	NM, 88220		
		Fax To:	NA		
Received:	05/22/2025			Sampling Date:	05/19/2025
Reported:	05/29/2025			Sampling Type:	Soil
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez
Project Location:	EXXON MOBIL				

Sample ID: BH25 - 01 @ 0' (H253081-01)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.03	101	2.00	1.89	
Toluene*	<0.050	0.050	05/23/2025	ND	2.14	107	2.00	2.49	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	2.11	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.47	108	6.00	2.22	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/27/2025	ND	432	108	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	213	107	200	1.79	
DRO >C10-C28*	74.4	10.0	05/23/2025	ND	198	99.2	200	0.0192	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	104 9	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	106 9	40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX R CHAD HEN	ESOURCE NSLEY						
		CARLSBAD	CARLSBAD NM 88220						
		Fax To:	NA						
Received:	05/22/2025			Sampling Date:	05/19/2025				
Reported:	05/29/2025			Sampling Type:	Soil				
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact				
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez				
Project Location:	EXXON MOBIL								

Sample ID: BH25 - 01 @ 2' (H253081-02)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.03	101	2.00	1.89	
Toluene*	<0.050	0.050	05/23/2025	ND	2.14	107	2.00	2.49	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	2.11	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.47	108	6.00	2.22	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	05/27/2025	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	213	107	200	1.79	
DRO >C10-C28*	46.5	10.0	05/23/2025	ND	198	99.2	200	0.0192	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	105 %	6 44.4-14	5						
Surrogate: 1-Chlorooctadecane	107 %	6 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX R CHAD HEN 3101 BOY	esource NSLEY D DRIVE						
		CARLSBAD	CARLSBAD NM, 88220						
		Fax To:	NA						
Received:	05/22/2025			Sampling Date:	05/19/2025				
Reported:	05/29/2025			Sampling Type:	Soil				
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact				
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez				
Project Location:	EXXON MOBIL								

Sample ID: BH25 - 02 @ 0' (H253081-03)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.03	101	2.00	1.89	
Toluene*	<0.050	0.050	05/23/2025	ND	2.14	107	2.00	2.49	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	2.11	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.47	108	6.00	2.22	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	05/27/2025	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	213	107	200	1.79	
DRO >C10-C28*	31.0	10.0	05/23/2025	ND	198	99.2	200	0.0192	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	102 %	6 44.4-14	5						
Surrogate: 1-Chlorooctadecane	102 %	6 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX R CHAD HEN	ESOURCE NSLEY						
		3101 BOY	D DRIVE						
		CARLSBAD	CARLSBAD NM, 88220						
		Fax To:	NA						
Received:	05/22/2025			Sampling Date:	05/19/2025				
Reported:	05/29/2025			Sampling Type:	Soil				
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact				
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez				
Project Location:	EXXON MOBIL								

Sample ID: BH25 - 02 @ 1' (H253081-04)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.03	101	2.00	1.89	
Toluene*	<0.050	0.050	05/23/2025	ND	2.14	107	2.00	2.49	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	2.11	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.47	108	6.00	2.22	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	05/27/2025	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	213	107	200	1.79	
DRO >C10-C28*	19.4	10.0	05/23/2025	ND	198	99.2	200	0.0192	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	85.0 %	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	85.9 %	40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX R CHAD HEN 3101 BOY	esource NSLEY D DRIVE						
		CARLSBAD	CARLSBAD NM, 88220						
		Fax To:	NA						
Received:	05/22/2025			Sampling Date:	05/19/2025				
Reported:	05/29/2025			Sampling Type:	Soil				
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact				
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez				
Project Location:	EXXON MOBIL								

Sample ID: BH25 - 03 @ 0' (H253081-05)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.03	101	2.00	1.89	
Toluene*	<0.050	0.050	05/23/2025	ND	2.14	107	2.00	2.49	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	2.11	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.47	108	6.00	2.22	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	05/27/2025	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	213	107	200	1.79	
DRO >C10-C28*	12.7	10.0	05/23/2025	ND	198	99.2	200	0.0192	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	97.3 %	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	97.8 %	40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX R CHAD HEN	ESOURCE NSLEY						
		CARLSBAD	CARLSBAD NM 88220						
		Fax To:	NA						
Received:	05/22/2025			Sampling Date:	05/19/2025				
Reported:	05/29/2025			Sampling Type:	Soil				
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact				
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez				
Project Location:	EXXON MOBIL								

Sample ID: BH25 - 03 @ 1' (H253081-06)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.09	105	2.00	4.42	
Toluene*	<0.050	0.050	05/23/2025	ND	2.09	104	2.00	3.82	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	4.86	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.60	110	6.00	4.38	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/	mg/kg Analyzed By:		d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	512	16.0	05/27/2025	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	213	107	200	1.79	
DRO >C10-C28*	38.0	10.0	05/23/2025	ND	198	99.2	200	0.0192	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	91.9 9	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	93.1 9	40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX R CHAD HEN 3101 BOY	esource NSLEY D DRIVE		
		CARLSBAD	D NM, 88220		
		Fax To:	NA		
Received:	05/22/2025			Sampling Date:	05/20/2025
Reported:	05/29/2025			Sampling Type:	Soil
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez
Project Location:	EXXON MOBIL				_

Sample ID: BH25 - 04 @ 0' (H253081-07)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.09	105	2.00	4.42	
Toluene*	<0.050	0.050	05/23/2025	ND	2.09	104	2.00	3.82	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	4.86	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.60	110	6.00	4.38	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/	mg/kg Analyzed By: AC		d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	05/27/2025	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	213	107	200	1.79	
DRO >C10-C28*	11.7	10.0	05/23/2025	ND	198	99.2	200	0.0192	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	102 %	6 44.4-14	5						
Surrogate: 1-Chlorooctadecane	103 %	6 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX R	ESOURCE		
		CHAD HEN	NSLEY		
		3101 BOY	D DRIVE		
		CARLSBAD	D NM, 88220		
		Fax To:	NA		
Received:	05/22/2025			Sampling Date:	05/20/2025
Reported:	05/29/2025			Sampling Type:	Soil
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez
Project Location:	EXXON MOBIL				

Sample ID: BH25 - 04 @ 2' (H253081-08)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.09	105	2.00	4.42	
Toluene*	<0.050	0.050	05/23/2025	ND	2.09	104	2.00	3.82	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	4.86	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.60	110	6.00	4.38	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/	mg/kg Analyzed By: A		d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	05/27/2025	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	213	107	200	1.79	
DRO >C10-C28*	<10.0	10.0	05/23/2025	ND	198	99.2	200	0.0192	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	113 %	6 44.4-14	5						
Surrogate: 1-Chlorooctadecane	115 %	6 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX R CHAD HEN 3101 BOY	esource NSLEY D DRIVE		
		CARLSBAD	D NM, 88220		
		Fax To:	NA		
Received:	05/22/2025			Sampling Date:	05/20/2025
Reported:	05/29/2025			Sampling Type:	Soil
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez
Project Location:	EXXON MOBIL				_

Sample ID: BH25 - 05 @ 0' (H253081-09)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.09	105	2.00	4.42	
Toluene*	<0.050	0.050	05/23/2025	ND	2.09	104	2.00	3.82	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	4.86	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.60	110	6.00	4.38	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/	mg/kg Analyzed By: AC		d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/27/2025	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	213	107	200	1.79	
DRO >C10-C28*	<10.0	10.0	05/23/2025	ND	198	99.2	200	0.0192	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	112 %	6 44.4-14	5						
Surrogate: 1-Chlorooctadecane	113 %	6 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX R CHAD HEN 3101 BOY CARLSBAL	esource NSLEY D DRIVE D NM, 88220		
		Fax To:	NA		
Received:	05/22/2025			Sampling Date:	05/20/2025
Reported:	05/29/2025			Sampling Type:	Soil
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez
Project Location:	EXXON MOBIL				. –

Sample ID: BH25 - 05 @ 1' (H253081-10)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.09	105	2.00	4.42	
Toluene*	<0.050	0.050	05/23/2025	ND	2.09	104	2.00	3.82	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	4.86	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.60	110	6.00	4.38	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/	mg/kg Analyzed By: A		d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	05/27/2025	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	213	107	200	1.79	
DRO >C10-C28*	<10.0	10.0	05/23/2025	ND	198	99.2	200	0.0192	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	114 %	6 44.4-14	5						
Surrogate: 1-Chlorooctadecane	116 %	6 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX R CHAD HEN 3101 BOY CARLSBAL	esource NSLEY D Drive D NM, 88220		
		Fax To:	NA		
Received:	05/22/2025			Sampling Date:	05/20/2025
Reported:	05/29/2025			Sampling Type:	Soil
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez
Project Location:	EXXON MOBIL				

Sample ID: SS 25 - 01 (H253081-11)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.09	105	2.00	4.42	
Toluene*	<0.050	0.050	05/23/2025	ND	2.09	104	2.00	3.82	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	4.86	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.60	110	6.00	4.38	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 %	6 71.5-13-	4						
Chloride, SM4500Cl-B	mg/	mg/kg Analyzed By: AC		d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	21600	16.0	05/27/2025	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	213	107	200	1.79	
DRO >C10-C28*	<10.0	10.0	05/23/2025	ND	198	99.2	200	0.0192	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	111 %	6 44.4-14.	5						
Surrogate: 1-Chlorooctadecane	113 %	6 40.6-15.	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX R CHAD HEN 3101 BOY	esource NSLEY D DRIVE		
		CARLSBAD	D NM, 88220		
		Fax To:	NA		
Received:	05/22/2025			Sampling Date:	05/20/2025
Reported:	05/29/2025			Sampling Type:	Soil
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez
Project Location:	EXXON MOBIL				_

Sample ID: SS 25 - 02 (H253081-12)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.09	105	2.00	4.42	
Toluene*	<0.050	0.050	05/23/2025	ND	2.09	104	2.00	3.82	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	4.86	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.60	110	6.00	4.38	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	71.5-13	4						
Chloride, SM4500Cl-B	mg/	mg/kg Analyzed By: AC							
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	23600	16.0	05/27/2025	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	213	107	200	1.79	
DRO >C10-C28*	<10.0	10.0	05/23/2025	ND	198	99.2	200	0.0192	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	105 9	% 44.4-14.	5						
Surrogate: 1-Chlorooctadecane	104 9	40.6-15.	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX R CHAD HEN 3101 BOY	ESOURCE NSLEY D DRIVE		
		CARLSBAD	D NM, 88220		
		Fax To:	NA		
Received:	05/22/2025			Sampling Date:	05/20/2025
Reported:	05/29/2025			Sampling Type:	Soil
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez
Project Location:	EXXON MOBIL				

Sample ID: SS 25 - 03 (H253081-13)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.09	105	2.00	4.42	
Toluene*	<0.050	0.050	05/23/2025	ND	2.09	104	2.00	3.82	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	4.86	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.60	110	6.00	4.38	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/	mg/kg Analyzed		d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	15800	16.0	05/27/2025	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	213	107	200	1.79	
DRO >C10-C28*	70.7	10.0	05/23/2025	ND	198	99.2	200	0.0192	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	106 %	6 44.4-14	5						
Surrogate: 1-Chlorooctadecane	109 %	6 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX R CHAD HEN 3101 BOY	esource NSLEY D DRIVE		
		CARLSBAD	D NM, 88220		
		Fax To:	NA		
Received:	05/22/2025			Sampling Date:	05/20/2025
Reported:	05/29/2025			Sampling Type:	Soil
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez
Project Location:	EXXON MOBIL				_

Sample ID: SS 25 - 04 (H253081-14)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.09	105	2.00	4.42	
Toluene*	<0.050	0.050	05/23/2025	ND	2.09	104	2.00	3.82	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	4.86	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.60	110	6.00	4.38	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 9	108 % 71.5-134							
Chloride, SM4500Cl-B	mg/	mg/kg Analyzed By: A							
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	22800	16.0	05/27/2025	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	182	90.8	200	1.65	
DRO >C10-C28*	<10.0	10.0	05/23/2025	ND	175	87.5	200	2.85	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	101 9	% 44.4-14.	5						
Surrogate: 1-Chlorooctadecane	108 9	40.6-15.	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX R	ESOURCE		
		CHAD HEN	NSLEY		
		3101 BOY	D DRIVE		
		CARLSBAD	D NM, 88220		
		Fax To:	NA		
Received:	05/22/2025			Sampling Date:	05/20/2025
Reported:	05/29/2025			Sampling Type:	Soil
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez
Project Location:	EXXON MOBIL				

Sample ID: SS 25 - 05 (H253081-15)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.09	105	2.00	4.42	
Toluene*	<0.050	0.050	05/23/2025	ND	2.09	104	2.00	3.82	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	4.86	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.60	110	6.00	4.38	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	107 % 71.5-134							
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	56800	16.0	05/27/2025	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	182	90.8	200	1.65	
DRO >C10-C28*	10.3	10.0	05/23/2025	ND	175	87.5	200	2.85	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	95.3 9	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	101 %	40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX R	ESOURCE		
		CHAD HEN	ISLEY		
		3101 BOY	D DRIVE		
		CARLSBAD	D NM, 88220		
		Fax To:	NA		
Received:	05/22/2025			Sampling Date:	05/21/2025
Reported:	05/29/2025			Sampling Type:	Soil
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez
Project Location:	EXXON MOBIL				

Sample ID: BH25 - 06 @ 0' (H253081-16)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.09	105	2.00	4.42	
Toluene*	<0.050	0.050	05/23/2025	ND	2.09	104	2.00	3.82	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	4.86	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.60	110	6.00	4.38	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/27/2025	ND	432	108	400	3.64	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	182	90.8	200	1.65	
DRO >C10-C28*	<10.0	10.0	05/23/2025	ND	175	87.5	200	2.85	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	97.4 9	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	101 %	6 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX R CHAD HEN 3101 BOY CARLSBAL	esource NSLEY D Drive D NM, 88220		
		Fax To:	NA		
Received:	05/22/2025			Sampling Date:	05/21/2025
Reported:	05/29/2025			Sampling Type:	Soil
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez
Project Location:	EXXON MOBIL				

Sample ID: BH25 - 06 @ 1' (H253081-17)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.09	105	2.00	4.42	
Toluene*	<0.050	0.050	05/23/2025	ND	2.09	104	2.00	3.82	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	4.86	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.60	110	6.00	4.38	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	05/27/2025	ND	432	108	400	3.64	
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	182	90.8	200	1.65	
DRO >C10-C28*	<10.0	10.0	05/23/2025	ND	175	87.5	200	2.85	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	106 %	6 44.4-14	5						
Surrogate: 1-Chlorooctadecane	110 %	6 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX R CHAD HEN 3101 BOY	esource NSLEY D DRIVE		
		CARLSBAD	D NM, 88220		
		Fax To:	NA		
Received:	05/22/2025			Sampling Date:	05/21/2025
Reported:	05/29/2025			Sampling Type:	Soil
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez
Project Location:	EXXON MOBIL				

Sample ID: BH25 - 07 @ 0.25' (H253081-18)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.09	105	2.00	4.42	
Toluene*	<0.050	0.050	05/23/2025	ND	2.09	104	2.00	3.82	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	4.86	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.60	110	6.00	4.38	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	12000	16.0	05/27/2025	ND	432	108	400	3.64	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	182	90.8	200	1.65	
DRO >C10-C28*	<10.0	10.0	05/23/2025	ND	175	87.5	200	2.85	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	97.3 9	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	100 %	40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX R	ESOURCE		
		CHAD HEN	ISLEY		
		3101 BOY	D DRIVE		
		CARLSBAD	D NM, 88220		
		Fax To:	NA		
Received:	05/22/2025			Sampling Date:	05/21/2025
Reported:	05/29/2025			Sampling Type:	Soil
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez
Project Location:	EXXON MOBIL				

Sample ID: BH25 - 08 @ 0.25' (H253081-19)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.09	105	2.00	4.42	
Toluene*	<0.050	0.050	05/23/2025	ND	2.09	104	2.00	3.82	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	4.86	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.60	110	6.00	4.38	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	10400	16.0	05/27/2025	ND	432	108	400	3.64	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	182	90.8	200	1.65	
DRO >C10-C28*	<10.0	10.0	05/23/2025	ND	175	87.5	200	2.85	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	90.9 9	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	93.69	40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Vertex R Chad Hen	ESOURCE NSLEY		
		3101 BOY	D DRIVE		
		CARLSBAD	D NM, 88220		
		Fax To:	NA		
Received:	05/22/2025			Sampling Date:	05/21/2025
Reported:	05/29/2025			Sampling Type:	Soil
Project Name:	PLU 23 DTD CVB			Sampling Condition:	Cool & Intact
Project Number:	25A - 02616			Sample Received By:	Shalyn Rodriguez
Project Location:	EXXON MOBIL				

Sample ID: SS 25 - 06 0' (H253081-20)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/23/2025	ND	2.09	105	2.00	4.42	
Toluene*	<0.050	0.050	05/23/2025	ND	2.09	104	2.00	3.82	
Ethylbenzene*	<0.050	0.050	05/23/2025	ND	2.11	106	2.00	4.86	
Total Xylenes*	<0.150	0.150	05/23/2025	ND	6.60	110	6.00	4.38	
Total BTEX	<0.300	0.300	05/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 %	% 71.5-134	4						
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	24800	16.0	05/27/2025	ND	432	108	400	3.64	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/23/2025	ND	182	90.8	200	1.65	
DRO >C10-C28*	<10.0	10.0	05/23/2025	ND	175	87.5	200	2.85	
EXT DRO >C28-C36	<10.0	10.0	05/23/2025	ND					
Surrogate: 1-Chlorooctane	106 %	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	110 %	40.6-153	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 23 of 25

Laborat
ARDI
PDI Orat
ЩС
QZ

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Froject Manager: Chad Hen slev Address: 3/01 Boyd d_r City: Cardsbad MM state: N/M.Zij Phone #: on Alk Fax #: Foroject Owner: Project Name: PLU 2.3 DTD CVR Project Location: Sampler Name: Making Info Info Sampler Name: Making Info Total Info Info For UAB USE ONLY Sample I.D. Sample I.D. Sample I.D. Lab I.D. SH2.5 - OH OI G BH2.5 - OH 2.1 Info Info S.2.5 - OS 1' Info Info Sold Syles - ol Info Info Info Sy	# CONTAINERS P: %200 3ROUNDWATER MATRIX P: VASTEWATER MATRIX Phone 3OIL DIL State: DIL PRESERV. State: City: Prone #: Pip: VGID/BASE: PRESERV. Site: CE / COOL State: Zip: DTHER : Sampling Date	GRO, DRO, MEO Chlorides BTEX
Project Manager Ver Hox Mounce Unr	ONP BILL TO	ANALYSIS REQUE
Project Manager: Chad Hen sley	P.O. #:	
Address: 3101 Bound dr	Company: MAN form	Ltd sta
city: Carlsbad KM state: N/MZin	p: RR200 Attn: Att	
Phone #: On CK Fax #:	Address: A Pit	
Project #: 25A-02616 Project Owner:	City:	0
Project Name: PLU 23 DTD CUR	State: Zip:	1 E
Project Location:	Phone #:	N
Sampler Name: Kalman Gila	, note it.	
Sampler Name: Makina (14/01	Fax #:	20,00
FOR LAB USE ONLY	MATRIX PRESERV SAMPLING	de
Lab I.D. Sample I.D.	NERS WATER ATER E: L	Eo, 1 nlorid Ex
(G)RAB C	# CONTA 3ROUNE WASTEW 301L 3LUDGE 3LUDGE THER : ACID/BAS CE / COC 3THER :	₽
7 3425 04 01 G		
8 BH25 -04 21	1 × × × × 5/70 h:	N X X 00
9 BH 25-05 Q1		
10 8H2 5- 05 11		
11 5325-01		×
12 35 2 5 - 02	7 x x x 5/20 10:1	
C0-2700 (1)	1 x x x x x x x x 10:1 10:2 10:2 10:2	
	10:1 10:2 10:2 10:2 10:2 10:2 10:2 10:2	
N 10-575641	1 1 1 <td></td>	
15 SS 2 5-05	10:2 10:2	X X X
PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any daim analyses. All clients including those for negligence and any other cause whatsoever shall be demond service. In no event shall Cardinal be liable for inclodential or consequential damages, including without affiliates or successors anising out of or related to the performance of services here under the Cardinal.	1 1	00 X X X 10 X X X 10 X X X 10 X X X 10 X X
PLEASE NOTE: Labelity and Damages. Cardina's liability and client's exclusive tennedy for any claim analyzes. Al claims including those for negligence and any other cause whatboover shall be deemed service. In no event shall Cardinal the tegifigence and any other cause whatboover shall be deemed affiliates or successor anise out of or related to the partomance of services hereunder by Cardinal affiliates or successor anise out of or related to the partomance of services hereunder by Cardinal. Relinpartished By: S122 Ref	Solution business interruptions, loss of uses of politic investigations of the based upon any of the above stated reasons or other.	00 X X 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 11 Yes No Add'I Phone #:
PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim analyses. All clients including those for negligence and any other cause whatsoever shall be downed service. In no event shall Cardinal be liable for incidential or consequential damages, including without affiliates or successors anising out of or related to the performance of services here under by Cardinal. Relingatished By: Without of an related to the performance of services here under by Cardinal. Time: State	1 1	00 X X 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 11 1 1 12 1 1 13 1 1 14 1 1 15 1 1 10 1 1 10 1 1 14 1 1 15 1 1 16 1 1 17 1 1 18 1 1 19 1 1 10 1 1 10
PLEASE NOTE: Lability and Damages. Cardinal's liability and client's exclusive remedy for any claim analyses. Al claims including those for negligence and any other cause whatsoever shall be downed service. In one were shall Cardinal be liable for incidental or consequential damages, including without affiliates or successors anising out of or related to the performance of services here under by Cardinal. Relinguished By: Relinquished By: Date: 1400 Rec	A X S/20 10:1 A X S/20 10:1 I I I0:2 10:2 I I0:3 I0:3 10:3 I I0:4 I0:3 I0:3 I I0:4 I0:3 I0:4 I I0:4 I0:3 I0:4 I I0:4 I1:16 I0:3 I I0:4 I1:16 I0:3 I II:16 II:16 I0:3 I II:16 II:16 II:16 II:16 III:16	00 X X 10 1 1 11 1 1 10 1 1 10 1 1 11 1 1 12 1 13 1 14 1 14 1 15 1 16 1 17 1 18 1 19 1 10 1 10 1 <t< td=""></t<>
PLEASE NOTE: Liability and Damages. Cardina's liability and clients acclusive remedy for any claim analyzes. Al claims including those for negligence and any other cause whatboever shall be doemed service. In no event shall Cardinal be liable for including without atflittee or successor arring out of or reliated to the performance of services, including without atflittee or successor arring out of or reliated to the performance of services, including without atflittee or successor arring out of or reliated to the performance of services, including without atflittee or successor arring out of or reliated to the performance of services, including without atflittee or successor arring out of or reliated to the performance of services. Including without atflittee or successor arring out of or reliated to the performance of services. Including without atflittee or successor arring out of or reliated to the performance of services. Including without Relinquished By: Relinquished By: Date: Time:	Stand Wetter Buside in writing and norwhed by Calent is sub- regardless of writefore such claim is based upon any of the above stated or test, shall be limited to the annount paid by the claim waved of writefore such claim is based upon any of the above stated or test. Stand Without Claim is based upon any of the above stated regardless regardless of Wetter Bay: Stand Without Claim is based upon any of the above stated regardless Stand Without Claim is based upon any of the above stated regardless Stand Without Claim is based upon any of the above stated regardless Stand Without Claim is based upon any of the above stated regardless Stand Without Claim is based upon any of the above stated regardless Stand Without Claim is based upon any of the above stated regardless Stand Without Claim is based upon any of the above stated regardless Stand Without Claim is based upon any of the above stated regardless Stand Without Claim is based upon any of the above stated regardless Stand Without Claim is based upon any of the above stated regardless Stand Without Claim is based upon any of the above stated regardless Stand Without Claim is based upon any of the above stated regardless	00 X X 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 11 1 1 11 10 1 11 10 1 11 10 1 11 10 1 12 10 1 13 10 1 14 1 1 15 10 16 10 17 10 18 10 19 10 10 10 10 10 <

	2	
101		0
East Ma	bo	
arland, H	Ta	Ū
lobbs, N	tor	Z
IM 8824	ies	P

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Receive	ed by (OCD:	6/27/20	<u>25 12:1</u>	4:42 PM							
	Sampler - UPS - B	Delivered By: (Cir	Relinquished By	afiliates or successors ansin Relinquished By	PLEASE NOTE: Liability an analyses. All claims includin	20	19	11	H233681	Lab I.D.	FOR LAB USE ONLY	Sampler Name
5 3 1 1010112 1	Bus - Other: C.	rcle One) 0	laylor	rdinal be liable for incidental or com g out of or related to the performan	d Damages. Cardinal's liability and a g those for negligence and any other	3525-06	BH 25-07	8H25-06 BH25-06		Sample	NO+PHD	Valama 7

and any other

shall be deemed dy for

payers

made in writing and

Ag pavaoa

130 days after

etion of the ap

and by the

0.25 0

4

4

4

←

12:00 11:30

<

4

4

Project Location: Project Name:

Taylor

MATRIX

PRESERV

SAMPLING

Giro, Dro, MRO

Chlorides

BTEX

Sample I.D.

G)RAB OR (C)OMP

CONTAINERS GROUNDWATER

WASTEWATER

5

XSOIL OIL SLUDGE

OTHER

X ICE / COOL

OTHER

DATE

TIME

5/21

10:06

×

× x

11:00 10:30 ACID/BASE

0.20

City:

Address:

3101

boyd

dr

Chad Hensley

Project Manager:

Company Name:

Vertex resource Greeve (bill to Exam

(575) 393-2326 FAX (575) 393-2476

Project #:

25A-02616

Project Owner:

Fax #:

State: NM

Zip:

02288

Attn:

Colton Brown

Company: 2XXXX Madai

Address

P.O. #:

BILL TO

ANALYSIS

REQUES

PLU 23 OTD CVB

State: City:

Zip:

onfile

(TPH)

Phone #: Fax #:

Phone #:

Carlsbad on file

Time: Time: Time: ATTN: 6/fon.S. brown & Some Condition ampler - UPS - Bus - Other: Observed Temp.*C/r/L Sample Condition CHECKED BY: Turnaround Time: Standard Bacteria (only) Sample Condition ampler - UPS - Bus - Other: Corrected Temp.*C/r/L Ool Intact Intact Intact Turnaround Time: Standard Bacteria (only) Sample Condition TORM UND RESERVED Corrected Temp.*C/r/L Intact Intact Intact UN No No </th <th>Relinquished By: Date: 5 / 22 Received By: Verbal Result Result</th>	Relinquished By: Date: 5 / 22 Received By: Verbal Result Result
--	--

June 19, 2025

CHAD HENSLEY VERTEX RESOURCE

VENTEX RESOURCE

3101 BOYD DRIVE

CARLSBAD, NM 88220

RE: PLU 23 DTD CVB

Enclosed are the results of analyses for samples received by the laboratory on 06/13/25 15:27.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C25-00101. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celeg D. Keine

Celey D. Keene Lab Director/Quality Manager

		VERTEX R	ESOURCE					
		CHAD HEN	NSLEY					
		3101 BOYD DRIVE						
		CARLSBAD	D NM, 88220					
		Fax To:	NA					
Received:	06/13/2025			Sampling Date:	06/13/2025			
Reported:	06/19/2025			Sampling Type:	Soil			
Project Name:	PLU 23 DTD CVB			Sampling Condition:	** (See Notes)			
Project Number:	25A - 02616			Sample Received By:	Alyssa Parras			
Project Location:	EXXON MOBIL - ED	DY CO.						

Sample ID: BS25 - 01 0.25' (H253545-01)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/16/2025	ND	2.10	105	2.00	3.83	
Toluene*	<0.050	0.050	06/16/2025	ND	2.10	105	2.00	3.61	
Ethylbenzene*	<0.050	0.050	06/16/2025	ND	2.08	104	2.00	3.41	
Total Xylenes*	<0.150	0.150	06/16/2025	ND	6.40	107	6.00	3.54	
Total BTEX	<0.300	0.300	06/16/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13-	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1550	16.0	06/16/2025	ND	448	112	400	3.64	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/16/2025	ND	187	93.7	200	3.61	
DRO >C10-C28*	35.2	10.0	06/16/2025	ND	185	92.3	200	2.46	
EXT DRO >C28-C36	<10.0	10.0	06/16/2025	ND					
Surrogate: 1-Chlorooctane	102 9	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	102 9	40.6-15.	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX RE	SOURCE					
	CHAD HENSLEY							
	3101 BOYD DRIVE							
		CARLSBAD NM, 88220						
		Fax To:	NA					
Received:	06/13/2025			Sampling Date:	06/13/2025			
Reported:	06/19/2025			Sampling Type:	Soil			
Project Name:	PLU 23 DTD CVB			Sampling Condition:	** (See Notes)			
Project Number:	25A - 02616			Sample Received By:	Alyssa Parras			
Project Location:	EXXON MOBIL - EDD	Y CO.						

Sample ID: BS25 - 02 0.25' (H253545-02)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/16/2025	ND	2.10	105	2.00	3.83	
Toluene*	<0.050	0.050	06/16/2025	ND	2.10	105	2.00	3.61	
Ethylbenzene*	<0.050	0.050	06/16/2025	ND	2.08	104	2.00	3.41	
Total Xylenes*	<0.150	0.150	06/16/2025	ND	6.40	107	6.00	3.54	
Total BTEX	<0.300	0.300	06/16/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	384	16.0	06/16/2025	ND	448	112	400	3.64	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/16/2025	ND	187	93.7	200	3.61	
DRO >C10-C28*	281	10.0	06/16/2025	ND	185	92.3	200	2.46	
EXT DRO >C28-C36	60.4	10.0	06/16/2025	ND					
Surrogate: 1-Chlorooctane	96.1 9	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	103 %	6 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX RE	SOURCE					
	CHAD HENSLEY							
	3101 BOYD DRIVE							
		CARLSBAD NM, 88220						
		Fax To:	NA					
Received:	06/13/2025			Sampling Date:	06/13/2025			
Reported:	06/19/2025			Sampling Type:	Soil			
Project Name:	PLU 23 DTD CVB			Sampling Condition:	** (See Notes)			
Project Number:	25A - 02616			Sample Received By:	Alyssa Parras			
Project Location:	EXXON MOBIL - EDD	Y CO.						

Sample ID: BS25 - 03 0.25' (H253545-03)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/16/2025	ND	2.10	105	2.00	3.83	
Toluene*	<0.050	0.050	06/16/2025	ND	2.10	105	2.00	3.61	
Ethylbenzene*	<0.050	0.050	06/16/2025	ND	2.08	104	2.00	3.41	
Total Xylenes*	<0.150	0.150	06/16/2025	ND	6.40	107	6.00	3.54	
Total BTEX	<0.300	0.300	06/16/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1920	16.0	06/16/2025	ND	448	112	400	3.64	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/16/2025	ND	187	93.7	200	3.61	
DRO >C10-C28*	72.6	10.0	06/16/2025	ND	185	92.3	200	2.46	
EXT DRO >C28-C36	16.3	10.0	06/16/2025	ND					
Surrogate: 1-Chlorooctane	92.5 9	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	93.9 9	40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX RE	SOURCE					
	CHAD HENSLEY							
	3101 BOYD DRIVE							
		CARLSBAD NM, 88220						
		Fax To:	NA					
Received:	06/13/2025			Sampling Date:	06/13/2025			
Reported:	06/19/2025			Sampling Type:	Soil			
Project Name:	PLU 23 DTD CVB			Sampling Condition:	** (See Notes)			
Project Number:	25A - 02616			Sample Received By:	Alyssa Parras			
Project Location:	EXXON MOBIL - EDD	Y CO.						

Sample ID: BS25 - 04 0.25' (H253545-04)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/16/2025	ND	1.88	94.1	2.00	1.14	
Toluene*	<0.050	0.050	06/16/2025	ND	1.91	95.3	2.00	0.999	
Ethylbenzene*	<0.050	0.050	06/16/2025	ND	1.85	92.5	2.00	0.923	
Total Xylenes*	<0.150	0.150	06/16/2025	ND	5.76	96.0	6.00	0.221	
Total BTEX	<0.300	0.300	06/16/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	06/16/2025	ND	448	112	400	3.64	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/16/2025	ND	187	93.7	200	3.61	
DRO >C10-C28*	20.4	10.0	06/16/2025	ND	185	92.3	200	2.46	
EXT DRO >C28-C36	<10.0	10.0	06/16/2025	ND					
Surrogate: 1-Chlorooctane	92.4 %	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	93.6%	40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX RE	SOURCE					
	CHAD HENSLEY							
	3101 BOYD DRIVE							
		CARLSBAD NM, 88220						
		Fax To:	NA					
Received:	06/13/2025			Sampling Date:	06/13/2025			
Reported:	06/19/2025			Sampling Type:	Soil			
Project Name:	PLU 23 DTD CVB			Sampling Condition:	** (See Notes)			
Project Number:	25A - 02616			Sample Received By:	Alyssa Parras			
Project Location:	EXXON MOBIL - EDD	Y CO.						

Sample ID: BS25 - 05 0.25' (H253545-05)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/16/2025	ND	1.88	94.1	2.00	1.14	
Toluene*	<0.050	0.050	06/16/2025	ND	1.91	95.3	2.00	0.999	
Ethylbenzene*	<0.050	0.050	06/16/2025	ND	1.85	92.5	2.00	0.923	
Total Xylenes*	<0.150	0.150	06/16/2025	ND	5.76	96.0	6.00	0.221	
Total BTEX	<0.300	0.300	06/16/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.1 9	71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5040	16.0	06/16/2025	ND	448	112	400	3.64	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/16/2025	ND	187	93.7	200	3.61	
DRO >C10-C28*	<10.0	10.0	06/16/2025	ND	185	92.3	200	2.46	
EXT DRO >C28-C36	<10.0	10.0	06/16/2025	ND					
Surrogate: 1-Chlorooctane	99.5 %	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	99.2 9	40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX RE	SOURCE					
	CHAD HENSLEY							
	3101 BOYD DRIVE							
		CARLSBAD NM, 88220						
		Fax To:	NA					
Received:	06/13/2025			Sampling Date:	06/13/2025			
Reported:	06/19/2025			Sampling Type:	Soil			
Project Name:	PLU 23 DTD CVB			Sampling Condition:	** (See Notes)			
Project Number:	25A - 02616			Sample Received By:	Alyssa Parras			
Project Location:	EXXON MOBIL - EDD	Y CO.						

Sample ID: BS25 - 06 0.25' (H253545-06)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/16/2025	ND	1.88	94.1	2.00	1.14	
Toluene*	<0.050	0.050	06/16/2025	ND	1.91	95.3	2.00	0.999	
Ethylbenzene*	<0.050	0.050	06/16/2025	ND	1.85	92.5	2.00	0.923	
Total Xylenes*	<0.150	0.150	06/16/2025	ND	5.76	96.0	6.00	0.221	
Total BTEX	<0.300	0.300	06/16/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1790	16.0	06/16/2025	ND	448	112	400	3.64	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/16/2025	ND	187	93.7	200	3.61	
DRO >C10-C28*	15.9	10.0	06/16/2025	ND	185	92.3	200	2.46	
EXT DRO >C28-C36	<10.0	10.0	06/16/2025	ND					
Surrogate: 1-Chlorooctane	90.8 9	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	91.2 9	40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX RE	SOURCE		
		CHAD HENS	SLEY		
		3101 BOYD	DRIVE		
		CARLSBAD	NM, 88220		
		Fax To:	NA		
Received:	06/13/2025			Sampling Date:	06/13/2025
Reported:	06/19/2025			Sampling Type:	Soil
Project Name:	PLU 23 DTD CVB			Sampling Condition:	** (See Notes)
Project Number:	25A - 02616			Sample Received By:	Alyssa Parras
Project Location:	EXXON MOBIL - EDD	Y CO.			

Sample ID: BS25 - 07 0.25' (H253545-07)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/16/2025	ND	1.88	94.1	2.00	1.14	
Toluene*	<0.050	0.050	06/16/2025	ND	1.91	95.3	2.00	0.999	
Ethylbenzene*	<0.050	0.050	06/16/2025	ND	1.85	92.5	2.00	0.923	
Total Xylenes*	<0.150	0.150	06/16/2025	ND	5.76	96.0	6.00	0.221	
Total BTEX	<0.300	0.300	06/16/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	10700	16.0	06/16/2025	ND	448	112	400	3.64	
TPH 8015M	H 8015M mg/kg		Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/16/2025	ND	187	93.7	200	3.61	
DRO >C10-C28*	<10.0	10.0	06/16/2025	ND	185	92.3	200	2.46	
EXT DRO >C28-C36	<10.0	10.0	06/16/2025	ND					
Surrogate: 1-Chlorooctane	85.4 %	6 44.4-14	5						
Surrogate: 1-Chlorooctadecane	85.4 %	40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose of use, or loss of profits incurred by client, its subsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX RE	SOURCE		
		CHAD HEN	SLEY		
		3101 BOYD	DRIVE		
		CARLSBAD	NM, 88220		
		Fax To:	NA		
Received:	06/13/2025			Sampling Date:	06/13/2025
Reported:	06/19/2025			Sampling Type:	Soil
Project Name:	PLU 23 DTD CVB			Sampling Condition:	** (See Notes)
Project Number:	25A - 02616			Sample Received By:	Alyssa Parras
Project Location:	EXXON MOBIL - EDD	DY CO.			

Sample ID: BS25 - 08 0.25' (H253545-08)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/16/2025	ND	1.88	94.1	2.00	1.14	
Toluene*	<0.050	0.050	06/16/2025	ND	1.91	95.3	2.00	0.999	
Ethylbenzene*	<0.050	0.050	06/16/2025	ND	1.85	92.5	2.00	0.923	
Total Xylenes*	<0.150	0.150	06/16/2025	ND	5.76	96.0	6.00	0.221	
Total BTEX	<0.300	0.300	06/16/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.8 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	8640	16.0	06/16/2025	ND	448	112	400	3.64	
TPH 8015M mg/kg		kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/16/2025	ND	187	93.7	200	3.61	
DRO >C10-C28*	<10.0	10.0	06/16/2025	ND	185	92.3	200	2.46	
EXT DRO >C28-C36	<10.0	10.0	06/16/2025	ND					
Surrogate: 1-Chlorooctane	90.9 9	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	94.5 %	40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose of use, or loss of profits incurred by client, its subsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX RE	SOURCE		
		CHAD HENS	SLEY		
		3101 BOYD	DRIVE		
		CARLSBAD	NM, 88220		
		Fax To:	NA		
Received:	06/13/2025			Sampling Date:	06/13/2025
Reported:	06/19/2025			Sampling Type:	Soil
Project Name:	PLU 23 DTD CVB			Sampling Condition:	** (See Notes)
Project Number:	25A - 02616			Sample Received By:	Alyssa Parras
Project Location:	EXXON MOBIL - EDD	Y CO.			

Sample ID: BS25 - 09 0.25' (H253545-09)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/16/2025	ND	1.88	94.1	2.00	1.14	
Toluene*	<0.050	0.050	06/16/2025	ND	1.91	95.3	2.00	0.999	
Ethylbenzene*	<0.050	0.050	06/16/2025	ND	1.85	92.5	2.00	0.923	
Total Xylenes*	<0.150	0.150	06/16/2025	ND	5.76	96.0	6.00	0.221	
Total BTEX	<0.300	0.300	06/16/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	11200	16.0	06/16/2025	ND	448	112	400	3.64	
TPH 8015M	FPH 8015M mg/kg		Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/16/2025	ND	187	93.7	200	3.61	
DRO >C10-C28*	<10.0	10.0	06/16/2025	ND	185	92.3	200	2.46	
EXT DRO >C28-C36	<10.0	10.0	06/16/2025	ND					
Surrogate: 1-Chlorooctane	95.5 %	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	98.6%	40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		VERTEX R CHAD HEN	ESOURCE ISLEY		
			J NM, 00220		
		Fax To:	NA		
Received:	06/13/2025			Sampling Date:	06/13/2025
Reported:	06/19/2025			Sampling Type:	Soil
Project Name:	PLU 23 DTD CVB			Sampling Condition:	** (See Notes)
Project Number:	25A - 02616			Sample Received By:	Alyssa Parras
Project Location:	EXXON MOBIL - EDI	DY CO.			

Sample ID: WS25 - 01 0-0.25' (H253545-10)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/16/2025	ND	1.88	94.1	2.00	1.14	
Toluene*	<0.050	0.050	06/16/2025	ND	1.91	95.3	2.00	0.999	
Ethylbenzene*	<0.050	0.050	06/16/2025	ND	1.85	92.5	2.00	0.923	
Total Xylenes*	<0.150	0.150	06/16/2025	ND	5.76	96.0	6.00	0.221	
Total BTEX	<0.300	0.300	06/16/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 %	71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	06/16/2025	ND	448	112	400	3.64	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/16/2025	ND	187	93.7	200	3.61	
DRO >C10-C28*	<10.0	10.0	06/16/2025	ND	185	92.3	200	2.46	
EXT DRO >C28-C36	<10.0	10.0	06/16/2025	ND					
Surrogate: 1-Chlorooctane	92.3 9	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	92.69	40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose of use, or loss of profits incurred by client, its subsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

- Released to Imaging: 7/8/2025 11:20:46 AM

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 151 of 158

QUESTIONS

Action 479806

QUESTIONS					
Operator:	OGRID:				
XTO ENERGY, INC	5380				
6401 Holiday Hill Road	Action Number:				
Midland, TX 79707	479806				
	Action Type:				
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)				

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2513334879
Incident Name	NAPP2513334879 PLU 23 DTD CVB @ 0
Incident Type	Produced Water Release
Incident Status	Remediation Closure Report Received

Location of Release Source

Please answer all the questions in this group.		
Site Name	PLU 23 DTD CVB	
Date Release Discovered	05/12/2025	
Surface Owner	Federal	

Incident Details

Please answer all the questions in this group.		
Incident Type	Produced Water Release	
Did this release result in a fire or is the result of a fire	No	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	No	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No	

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.

Crude Oil Released (bbls) Details	Not answered.
Produced Water Released (bbls) Details	Cause: Corrosion Other (Specify) Produced Water Released: 9 BBL Recovered: 0 BBL Lost: 9 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Leak on a waterline of the test separator

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page	<i>152</i>	of 158

QUESTIONS, Page 2

Action 479806

QUESTIONS (continued)		
Operator:	OGRID:	
XTO ENERGY, INC	5380	
6401 Holiday Hill Road	Action Number:	
Midland, TX 79707	479806	
	Action Type:	
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	

QUESTIONS

.

	Nature and Volume of Release (continued)		
Is this a gas only submission (i.e. only significant Mcf values reported) No, according to supplied volumes this does not appear to be a "gas only" report.	Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.	
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC No	Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No	
Reasons why this would be considered a submission for a notification of a major release Unavailable.	Reasons why this would be considered a submission for a notification of a major release	Unavailable.	
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.			

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.		
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
If all the actions described above have not been undertaken, explain why	Not answered.	
Per Paragraph (4) of Subsection B of 19.15.29.8 NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of Subsection A of 19.15.29.1 NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: Colton Brown Title: Environmental Advisor Email: colton.s.brown@exxonmobil.com	

Date: 06/27/2025

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	479806
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)	
What method was used to determine the depth to ground water	NM OSE iWaters Database Search	
Did this release impact groundwater or surface water	No	
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:		
A continuously flowing watercourse or any other significant watercourse	Between ½ and 1 (mi.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)	
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)	
Any other fresh water well or spring	Between 1 and 5 (mi.)	
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)	
A wetland	Between 1000 (ft.) and ½ (mi.)	
A subsurface mine	Greater than 5 (mi.)	
An (non-karst) unstable area	Greater than 5 (mi.)	
Categorize the risk of this well / site being in a karst geology	Low	
A 100-year floodplain	Between 1000 (ft.) and ½ (mi.)	
Did the release impact areas not on an exploration, development, production, or storage site	No	

Remediation Plan

Please answer all the questions th	nat apply or are indicated. This information must be provided to	the appropriate district office no later than 90 days after the release discovery date.
Requesting a remediation	plan approval with this submission	Yes
Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.		associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Have the lateral and vertica	I extents of contamination been fully delineated	Yes
Was this release entirely c	ontained within a lined containment area	No
Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.)		
Chloride	(EPA 300.0 or SM4500 CI B)	56800
TPH (GRO+DRO+MRO)	(EPA SW-846 Method 8015M)	74
GRO+DRO	(EPA SW-846 Method 8015M)	74
BTEX	(EPA SW-846 Method 8021B or 8260B)	0
Benzene	(EPA SW-846 Method 8021B or 8260B)	0
Per Subsection B of 19.15.29.11 I which includes the anticipated tim	IMAC unless the site characterization report includes completed elines for beginning and completing the remediation.	efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,
On what estimated date wi	II the remediation commence	06/11/2025
On what date will (or did) the	ne final sampling or liner inspection occur	06/13/2025
On what date will (or was)	the remediation complete(d)	06/13/2025
What is the estimated surfa	ace area (in square feet) that will be reclaimed	0
What is the estimated volume (in cubic yards) that will be reclaimed		0
What is the estimated surfa	ace area (in square feet) that will be remediated	1740
What is the estimated volume (in cubic yards) that will be remediated		16.1
These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed.		

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Released to Imaging: 7/8/2025 11:20:46 AM

Action 479806

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Daga	151	of	158
1 uge	134	U	130

QUESTIONS, Page 4

Action 479806

QUESTIONS (continued)		
Operator:	OGRID:	
XTO ENERGY, INC	5380	
6401 Holiday Hill Road	Action Number:	
Midland, TX 79707	479806	
	Action Type:	
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	

QUESTIONS

Remediation Plan (continued)

Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:
(Select all answers below that apply.)	
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes
Which OCD approved facility will be used for off-site disposal	HALFWAY DISPOSAL AND LANDFILL [FEEM0112334510]
OR which OCD approved well (API) will be used for off-site disposal	Not answered.
OR is the off-site disposal site, to be used, out-of-state	Not answered.
OR is the off-site disposal site, to be used, an NMED facility	Not answered.
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.
(In Situ) Soil Vapor Extraction	Not answered.
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.
OTHER (Non-listed remedial process)	Not answered.
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.	
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.	
I hereby agree and sign off to the above statement	Name: Colton Brown Title: Environmental Advisor

Date: 06/27/2025 The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Email: colton.s.brown@exxonmobil.com

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page	155	of 158

QUESTIONS, Page 5

Action 479806

QUESTIONS (continued)	
Operator: XTO ENERGY, INC	OGRID: 5380
6401 Holiday Hill Road Midland, TX 79707	Action Number: 479806
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS	,
-----------	---

Deferral Requests Only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of	the following items must be confirmed as part of any request for deferral of remediation.
Requesting a deferral of the remediation closure due date with the approval of this submission	Νο

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Page 156 of 158

Action 479806

QUESTIONS (continued)	
	OGRID:

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	479806
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	473128
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	06/16/2025
What was the (estimated) number of samples that were to be gathered	13
What was the sampling surface area in square feet	1750

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	1740	
What was the total volume (cubic yards) remediated	16.1	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	0	
What was the total volume (in cubic yards) reclaimed	0	
Summarize any additional remediation activities not included by answers (above)	n/a	
The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.		

	Name: Colton Brown
I hereby agree and sign off to the above statement	Title: Environmental Advisor
Thereby agree and sign on to the above statement	Email: colton.s.brown@exxonmobil.com
	Date: 06/27/2025

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 479806

.

Page 157 of 158

QUESTIONS (continued)	
Operator: XTO ENERGY, INC	OGRID: 5380
6401 Holiday Hill Road Midland, TX 79707	Action Number: 479806
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Reclamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	
Requesting a reclamation approval with this submission	No

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 158 of 158

CONDITIONS

Action 479806

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	479806
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

Created By	Condition	Condition Date
michael.buchanan	The remediation closure report is approved.	7/8/2025
michael.buchanan	The reclamation report will need to include: Executive Summary of the reclamation activities; Scaled Site Map including sampling locations; Analytical results including, but not limited to, results showing that any remaining impacts meet the reclamation standards and results to prove the backfill is non-waste containing; At least one (1) representative 5-point composite sample will need to be collected from the backfill material that will be used for the reclamation of the top four feet of the excavation. The OCD reserves the right to request additional sampling if needed; pictures of the backfilled areas showing that the area is back, as nearly as practical, to the original condition or the final land use and maintain those areas to control dust and minimize erosion to the extent practical; pictures of the top layer, which is either the background thickness of topsoil or one foot of suitable material to establish vegetation at the site, whichever is greater; and a revegetation plan.	7/8/2025
michael.buchanan	A reclamation report will not be accepted until reclamation of the release area, including areas reasonably needed for production or drilling activities, is complete and meet the requirements of 19.15.29.13 NMAC. Areas not reasonably needed for production or drilling activities will still need to be reclaimed and revegetated as early as practicable.	7/8/2025
michael.buchanan	A revegetation report will not be accepted until revegetation of the release area, including areas reasonably needed for production or drilling activities, is complete and meet the requirements of 19.15.29.13 NMAC. Areas not reasonably needed for production or drilling activities will still need to be reclaimed and revegetated as early as practicable.	7/8/2025
michael.buchanan	All revegetation activities will need to be documented and included in the revegetation report. The revegetation report will need to include: An executive summary of the revegetation activities including: Seed mix, Method of seeding, dates of when the release area was reseeded, information pertinent to inspections, information about any amendments added to the soil, information on how the vegetative cover established meets the life-form ratio of plus or minus fifty percent of pre-disturbance levels and a total percent plant cover of at least seventy percent of pre-disturbance levels, excluding noxious weeds per 19.15.29.13 D.(3) NMAC, and any additional information; a scaled Site Map including area that was revegetated in square feet; and pictures of the revegetated areas during reseeding activities, inspections, and final pictures when revegetation is achieved.	7/8/2025
michael.buchanan	Per 19.15.29.13 E. NMAC, if a reclamation and revegetation report has been submitted to the surface owner, it may be used if the requirements of the surface owner provide equal or better protection of freshwater, human health, and the environment. A copy of the approval of the reclamation and revegetation report from the surface owner and a copy of the approved reclamation and revegetation report will need to be submitted to the OCD via the Permitting website.	7/8/2025