

2024 ANNUAL GROUNDWATER MONITORING REPORT

LANGLIE MATTIX PENROSE SAND UNIT TRASH PIT NTO1427254875 (1RP-3360) UNIT O, SECTION 27, TOWNSHIP 22S, RANGE 37E EDDY COUNTY, NEW MEXICO 32.357998, -103.147318

PREPARED FOR:

TEAM OPERATING
P.O. BOX 835
PINEHURST, TEXAS 77362

PREPARED BY:

RANGER ENVIRONMENTAL SERVICES, LLC P.O. BOX 201179 AUSTIN, TEXAS 78720

MARCH 31, 2025

Patrick K. Finn, P.G. (TX)
Project Geoscientist

William Kierdorf, REM Project Manager

TABLE OF CONTENTS

1.0	SITE LOCATION AND BACKGROUND	. 1
2.0	GROUNDWATER MONITORING	. 2
2.1	Historical Results Summary	. 2
2.2	2024 Groundwater Monitoring	. 3
	2.2.1 2024 Groundwater Sampling Methodologies	. 3
	2.2.2 2024 Well Gauging Results	. 4
	2.2.3 2024 Groundwater Analytical Results	. 4
3.0	CONCLUSIONS AND RECOMMENDATIONS	. 5
3.1	Conclusions	. 5
3.2	Recommendations	. 5

FIGURES

- Topographic Map
- Area Map
- Site Map
- Groundwater Gradient Maps
- Groundwater Chloride, TDS and Sulfate Isoconcentration Maps

TABLES

- Cumulative Well Gauging Data
- Cumulative Groundwater Analytical Summary Table

ATTACHMENTS

- Attachment 1 Site Photographs
- Attachment 2 Laboratory Analytical Reports
- Attachment 3 NMOCD Correspondence

ANNUAL GROUNDWATER MONITORING REPORT LANGLIE MATTIX PENROSE SAND UNIT TRASH PIT NTO1427254875 (1RP-3360)
UNIT O, SECTION 27, TOWNSHIP 22S, RANGE 37E LEA COUNTY, NEW MEXICO 32.357998, -103.147318

1.0 SITE LOCATION AND BACKGROUND

The Langlie Mattix Penrose Sand Unit Trash Pit ("subject site") is a historic oil and gas location situated approximately 5.5 miles south-southeast of Eunice, in Lea County, New Mexico. The Site is situated in Unit O, Section 27, Township 22 South, Range 27 East, at approximate GPS coordinates 32.357998, -103.147318.

In May 2011, the New Mexico Oil Conservation Division (NMOCD) issued a letter to the current and past operators of the subject site that referenced a complaint from a nearby landowner that burial of miscellaneous refuse and debris had occurred at the Site. In response to the notification, the operator at the time (Legacy) initiated investigation activities at the site. From 2011 to 2014 site assessment and soil excavation activities were completed at the subject site and on August 1, 2014, the OCD District 1 office approved of the closure of the site excavations.

Groundwater assessment activities were conducted at the site during 2013–2014 and a total of four monitoring wells were installed (MW's 1-4). Between 2014 and 2023, a total of 35 groundwater monitoring events were conducted at the Site which documented chloride, TDS, and sulfate in the site groundwater in excess of the 20.6.2.3103 NMAC standards. The 2014-2023 data were indicative of stable to potentially declining groundwater conditions.

In the 2023 1st Semi-Annual (January-June) Groundwater Monitoring Report, dated July 24, 2023, Larson proposed to reduce the site groundwater monitoring frequency from quarterly to semi-annual. In a September 14, 2023 email, the NMOCD approved of the proposed reduction in monitoring frequency from quarterly to semi-annual and a reduction in sample constituent analysis since the groundwater plume had been documented to be stable.

In November 2023, Ranger Environmental Services, LLC (Ranger) was retained by Team Operating, LLC in to assist with the semi-annual groundwater monitoring activities at the subject site. Ranger personnel completed the second 2023 sampling event in December 2023 and subsequently prepared the April 26, 2024 *Annual Groundwater Monitoring Report* which documented the results of the 2023 groundwater monitoring activities. The report also contained a proposal to modify sampling techniques to passive sampling techniques. On June 12, 2024, the NMOCD approved of the annual report with conditions of approval that included the continuation of semi-annual groundwater monitoring and the changing of the sampling techniques. The NMOCD also requested a proposal for the remediation of the elevated groundwater total dissolved solids and chloride concentrations.

Semi-annual groundwater monitoring activities were continued at the Site in 2024 with monitoring events conducted by Ranger on June 25, 2024 and December 9, 2024. This 2024 Annual

STATE OF TEXAS PROFESSIONAL GEOSCIENTIST FIRM NO. 50140 • STATE OF TEXAS PROFESSIONAL ENGINEERING FIRM NO. F-6160

Groundwater Monitoring Report has been prepared to document the completion and results of the 2024 site groundwater monitoring activities.

Attached are a *Topographic Map* and aerial *Area Map* which illustrate the location of the subject site and surrounding areas. Also attached is a *Site Map* which illustrates pertinent site features and the locations of the monitoring wells installed at the subject site.

2.0 GROUNDWATER MONITORING

2.1 Historical Results Summary

As summarized above, between 2014 and 2023, a total of 35 groundwater monitoring events were conducted at the Site. The 2014-2023 data were indicative of stable groundwater conditions. Monitor well MW-1 was documented to be the most affected site monitoring well with reported concentrations of chloride and total dissolved solids (TDS) exceeding the 20.6.2.3103 NMAC standards during every sampling event. Sulfate concentrations in this well were also found to frequently exceed the 20.6.2.3103 NMAC standards. The chloride concentrations in MW-1 were primarily documented to range from 1,550 to 3,230 mg/L, while the TDS concentrations were primarily documented to range from 3,830 to 9,820 mg/L.

The 2014-2023 data for upgradient monitor well MW-2 was not found to be in exceedance of the 20.6.2.3103 NMAC standards. The chloride concentrations in MW-2 were documented to range from 57.8 to 194 mg/L, while the TDS concentrations were documented to range from 560 to 923 mg/L. The June 27, 2022 Larson "2022 Semi-Annual (January-June) Groundwater Monitoring Report" noted that the groundwater analytical data for upgradient monitor well MW-2 appeared to be representative of background groundwater conditions.

Upgradient monitor well MW-3 was documented to contain chloride and TDS concentrations exceeding the 20.6.2.3103 NMAC standards during every 2014-2023 sampling event except one. However, the chloride and TDS concentrations were found to be significantly lower than in monitor well MW-1, primarily ranging from 327 to 483 mg/L chloride and 1,050 to 1,530 mg/L TDS which were not significantly in excess of the applicable 20.6.2.3103 NMAC standards. The June 27, 2022 Larson "2022 Semi-Annual (January-June) Groundwater Monitoring Report" speculated that the chloride and TDS concentrations in MW-3 appeared to be associated with an up-gradient source or variable background groundwater quality.

Lastly, downgradient monitor well MW-4 was documented to contain exceedances of the 20.6.2.3103 NMAC standards for either chloride, TDS, and/or sulfate during 13 of the 2014-2023 monitoring events. The chloride and TDS results in this well were generally similar to the results documented in monitor well MW-3 with chloride concentrations ranging from 140 to 320 mg/L and TDS concentrations ranging from 780 to 1,510 mg/L.

Lastly, Ranger notes that the previously reported January 4, 2021 groundwater TDS and chloride concentrations all appear anomalous, and Ranger does not consider them valid. It appears to Ranger that there may have been a sample jar labeling issue or something similar. The reported MW-1 TDS and chloride concentrations were consistent with the historical results from MW-3. The reported MW-2 TDS and chloride concentrations were consistent with the historical results from MW-4. The reported MW-3 TDS and chloride concentrations were consistent with the historical results from MW-2. And, finally, the reported MW-4 TDS and chloride concentrations were consistent with the historical results from MW-1.

2.2 2024 Groundwater Monitoring

Groundwater monitoring events were conducted at the subject site on June 25, 2024 and December 9, 2024. As detailed above, the 2023 annual report included a proposal for altering the sampling techniques to a passive sampling methodology, which was approved by the NMOCD. However, upon review of the available options and concerns regarding data consistency, Team Operating opted to continue sampling utilizing low-flow techniques for the 2024 sampling events.

Cumulative summary tables of the site well gauging and groundwater analytical data are attached. Also attached are groundwater gradient and chloride, sulfate and TDS isoconcentration maps for both 2024 sampling events, as well as copies of the laboratory analytical reports for the 2024 sampling events.

2.2.1 2024 Groundwater Sampling Methodologies

Upon arrival at the Site, the monitor wells were opened and allowed to equilibrate for approximately 30 minutes prior to the performance of any well gauging or sampling activities. Prior to sampling the groundwater in each monitor well, the wells were first gauged with a decontaminated interface probe to determine the depth to groundwater in each monitor well, and light nonaqueous phase liquid (LNAPL) thicknesses, if any. This data was utilized to determine the site groundwater flow direction and gradient.

Groundwater samples were subsequently collected using low-flow sampling techniques. The wells were purged and sampled using a low flow rate (0.026 to 0.264 gpm) that minimized drawdown. The pump-intake was located in the middle or slightly above the middle of the saturated screened interval. The monitoring wells were purged until the field water quality parameters (i.e., pH, temperature, and conductivity) stabilized. Parameters were considered to have stabilized if, over three consecutive readings, the following criteria were met:

- pH ±0.1 unit
- Temperature within 3%
- Conductivity within 3%

All sample containers were filled with minimal turbulence. Due to sample turbidity, the samples collected for dissolved metals analysis were first field-filtered through a 10-micron pore size filter. Ranger personnel wore new nitrile gloves while handling each sample in order to prevent cross-contamination of samples.

For QA/QC purposes, duplicate samples were collected during the June and December 2024 monitoring events from monitor well MW-2.

All samples were containerized using properly selected and cleaned containers, which were preserved by the laboratory as needed for the particular analysis to be performed. All VOC sample vials were filled completely to minimize head space. The samples were subsequently sealed in one or more ziplock bags and stored in a sample shuttle containing ice until arrival at the laboratory for chemical analysis. All sample containers were labeled with the project name, sample identification, date of sample collection, samplers' initials, and time sampled collected. Chain-of-custody forms were completed to document sample transport to the analytical laboratory.

The groundwater samples were subsequently submitted to Hall Environmental Analysis Laboratory, Inc. in Albuquerque, New Mexico for chemical analysis. The samples were analyzed for BTEX using EPA Method 8021B, dissolved metals (calcium, magnesium, potassium, and sodium) using EPA Method 6010B, anions (chloride and sulfate) using EPA Method 300, alkalinity utilizing Method SM-2320B, and total dissolved solids (TDS) utilizing Method SM-2540C.

All purge water generated during the sampling event was placed in a sealed and labeled container and was temporarily stored on-site pending off-site disposal.

2.2.2 2024 Well Gauging Results

No LNAPL was documented to be present in the site monitoring wells during the June and December 2024 sampling events. During 2024, the depth to groundwater in the site monitoring wells was documented to range from approximately 39.71' below ground surface (bgs) in MW-4 to 42.44' bgs in MW-3. As illustrated on the attached groundwater gradient maps, the 2024 site groundwater gradient and flow direction was documented to be approximately 0.001 ft/ft to the southeast, consistent with historical observations.

2.2.3 2024 Groundwater Analytical Results

Primary Site COCs (Chloride, Sulfate, TDS)

The 2024 chloride, sulfate and TDS concentrations were generally similar to the historical groundwater analytical results and are indicative of stable groundwater conditions. During 2024, concentrations of chloride, sulfate and/or TDS in exceedance of the 20.6.2.3103 NMAC standards were documented in monitor wells MW-1 and MW-3. Consistent with historical results, monitor well MW-1 was the most highly affected site monitoring well with chloride concentrations ranging from 1,700 to 1,900 mg/L and TDS concentrations ranging from 4,200 to 4,600 mg/L. The chloride and TDS concentrations in monitor well MW-3 were found to be significantly lower than in monitor well MW-1, ranging from 470 to 480 mg/L chloride and 1,400 mg/L TDS which were not significantly in excess of the applicable 20.6.2.3103 NMAC standards.

Other Analytes

Consistent with historical results, there were no exceedances of the 20.6.2.3103 NMAC standards for the other target site analytes including calcium, magnesium, potassium, sodium, BTEX, and alkalinity.

As summarized above, duplicate samples were collected during the June and December 2024 monitoring events from monitor well MW-2. The results from the duplicate samples were generally consistent with the MW-2 results and indicate that the data are usable and valid.

In summary, the 2024 groundwater analytical results again documented chloride, sulfate and TDS to be the primary site COCs. The analytical data are indicative of stable groundwater conditions. There does not appear to be a need for continued sampling of the other target analytes (calcium, magnesium, potassium, sodium, BTEX, and alkalinity) since none of these have been found to exceed the 20.6.2.3103 NMAC standards since monitoring activities were initiated in 2014 (over 35 events).

3.0 CONCLUSIONS AND RECOMMENDATIONS

3.1 Conclusions

- Groundwater monitoring events were conducted at the subject site on June 25, 2024 and December 9, 2024. No LNAPL was detected in the site monitoring wells. The 2024 groundwater gradient and flow direction was documented to be approximately 0.001 ft/ft to the southeast, consistent with historical observations.
- The 2024 chloride, sulfate and TDS concentrations were generally similar to the historical groundwater analytical results and are indicative of stable groundwater conditions. Concentrations of chloride, sulfate and/or TDS in exceedance of the 20.6.2.3103 NMAC standards were documented in monitor wells MW-1 and MW-3. Consistent with historical results, monitor well MW-1 was the most highly affected site monitoring well. The chloride and TDS concentrations in monitor well MW-3 were found to be significantly lower than in monitor well MW-1 and were not significantly in excess of the applicable 20.6.2.3103 NMAC standards.
- Consistent with historical results, there were no exceedances of the 20.6.2.3103 NMAC standards for the other target groundwater analytes including calcium, magnesium, potassium, sodium, BTEX, and alkalinity.
- The 2024 chloride and TDS concentrations in upgradient monitor well MW-3 were again found to be significantly lower than in monitor well MW-1 and were not significantly in excess of the applicable 20.6.2.3103 NMAC standards. The MW-3 chloride and TDS concentrations continue to appear to be associated with either an up-gradient source or variable background groundwater quality. The site is located in the northeastern portion of the Pecos Valley Aquifer, which has been documented to contain highly variable water quality including high levels of naturally occurring chlorides, TDS, and sulfates.

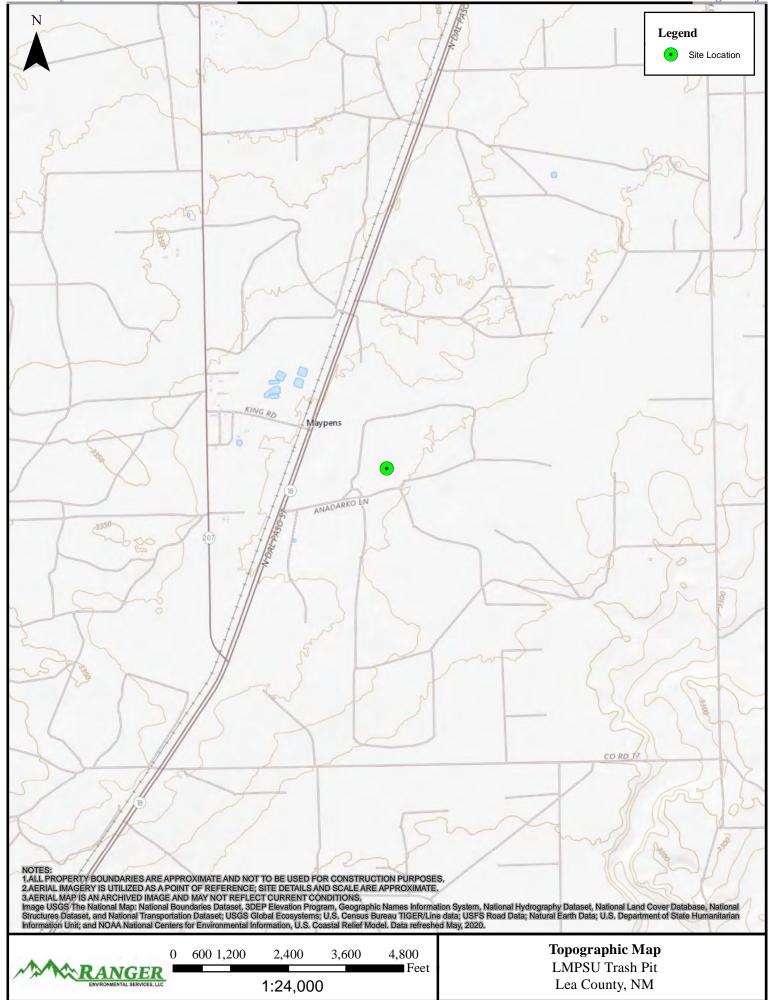
3.2 Recommendations

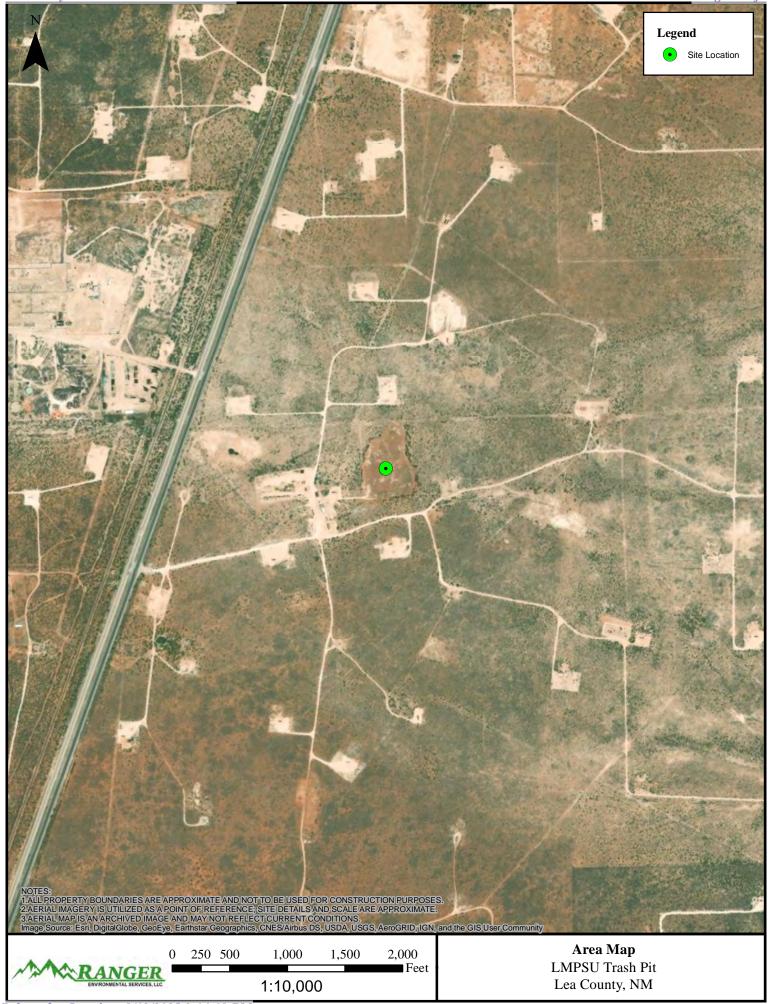
- Ranger recommends the continuation of the approved semi-annual groundwater monitoring and annual reporting program. The annual groundwater monitoring report documenting the results of the 2025 groundwater sampling activities will be prepared and submitted to the NMOCD no later than April 1, 2026.
- With regard to the June 12, 2024 NMOCD request for a remediation proposal to address the elevated groundwater TDS and chloride concentrations, Ranger respectfully recommends that the area background groundwater quality conditions be investigated first in order to gather data regarding whether or not there is variability in the area background groundwater quality as speculated by Larson and indicated in literature. In addition to review of published data, Ranger will determine if there are any nearby water wells completed in the Pecos Valley Aquifer that might be available for sampling. The collection of area background groundwater quality data could potentially impact any proposed target cleanup levels or areas requiring remediation. Ranger recommends that this information

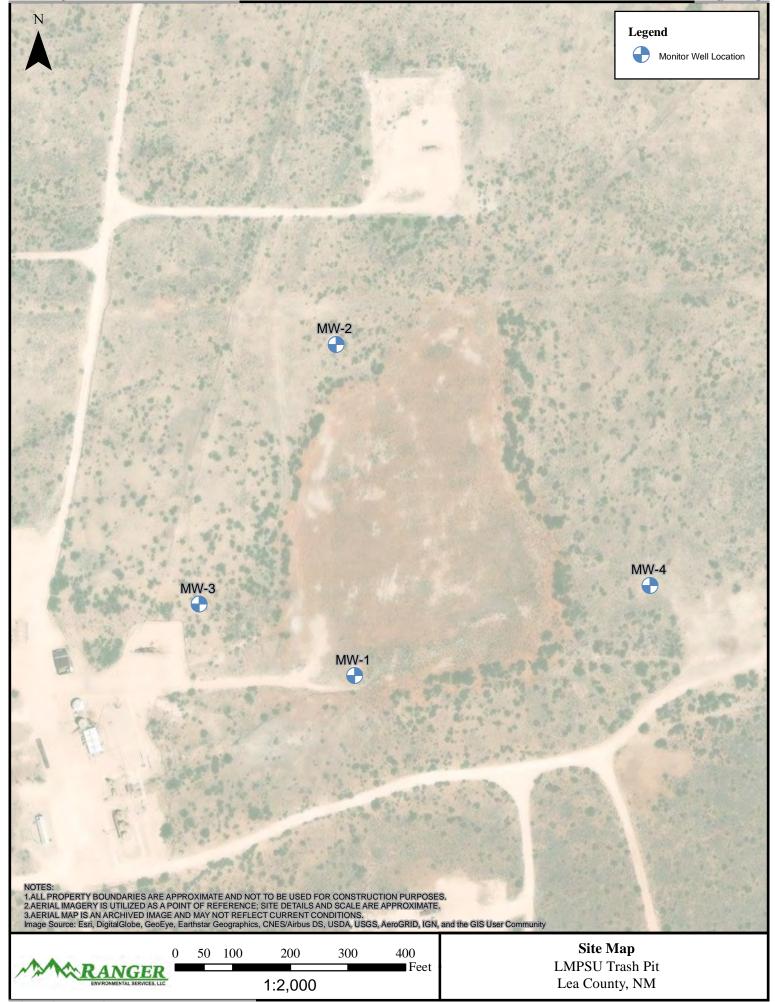
be included in the 2025 annual report along with appropriate recommendations for continued site actions.

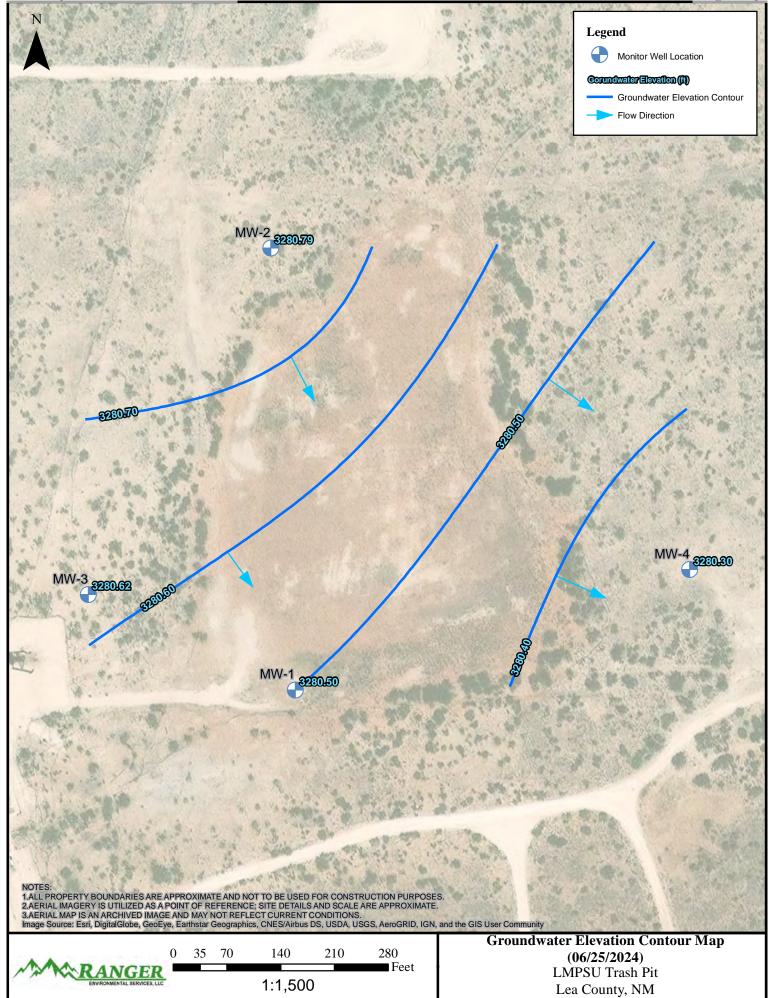
• Since the 2024 groundwater analytical results continued to document chloride, sulfate and TDS to be the primary site COCs, and since the analytical data continued to document stable groundwater conditions, there does not appear to be a need for continued sampling of the other target analytes (calcium, magnesium, potassium, sodium, BTEX, and alkalinity) since none of these have been found to exceed the 20.6.2.3103 NMAC standards since monitoring activities were initiated in 2014 (over 35 events). Ranger therefore recommends that groundwater analyses in the future be limited to chloride, sulfate and TDS.

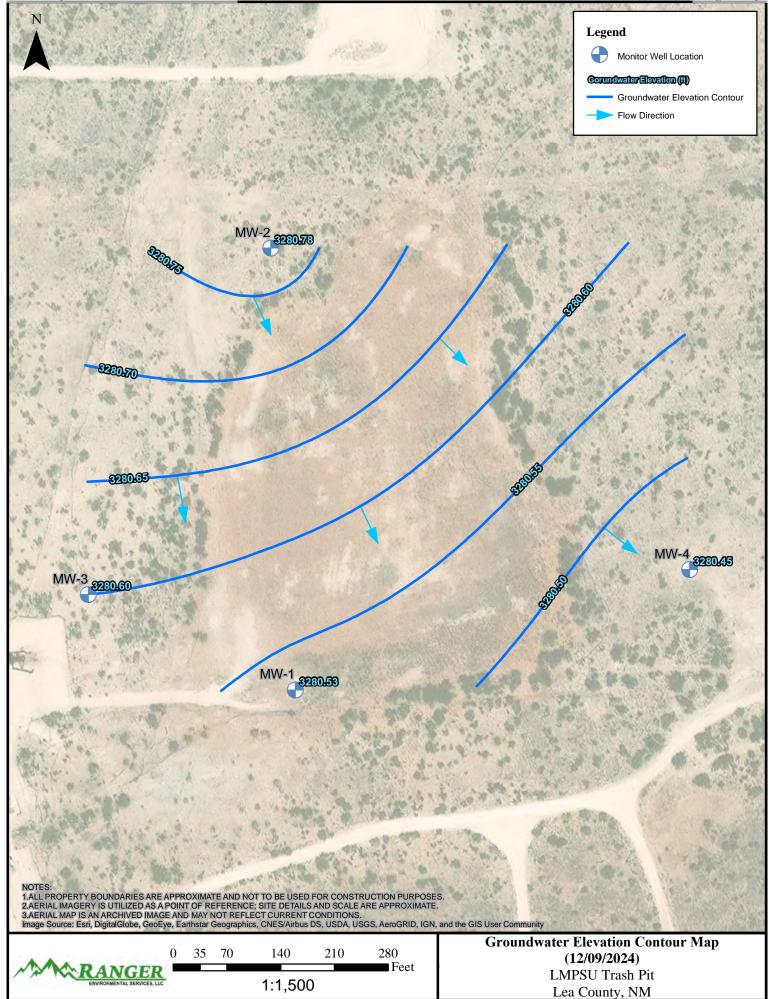
FIGURES

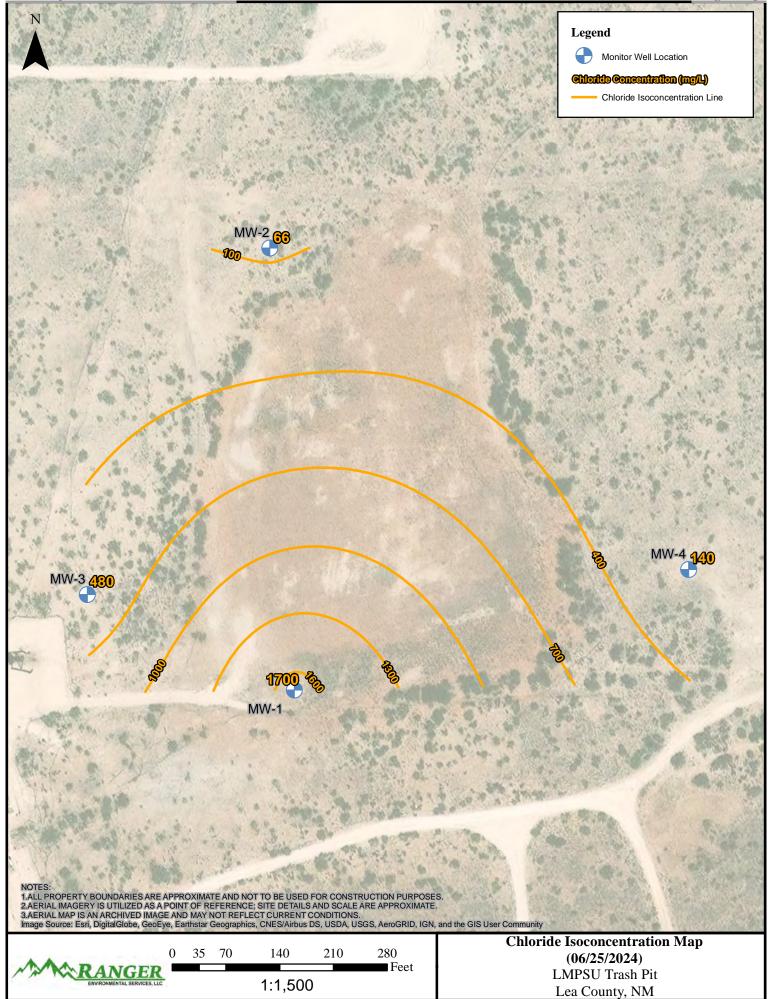

Topographic Map

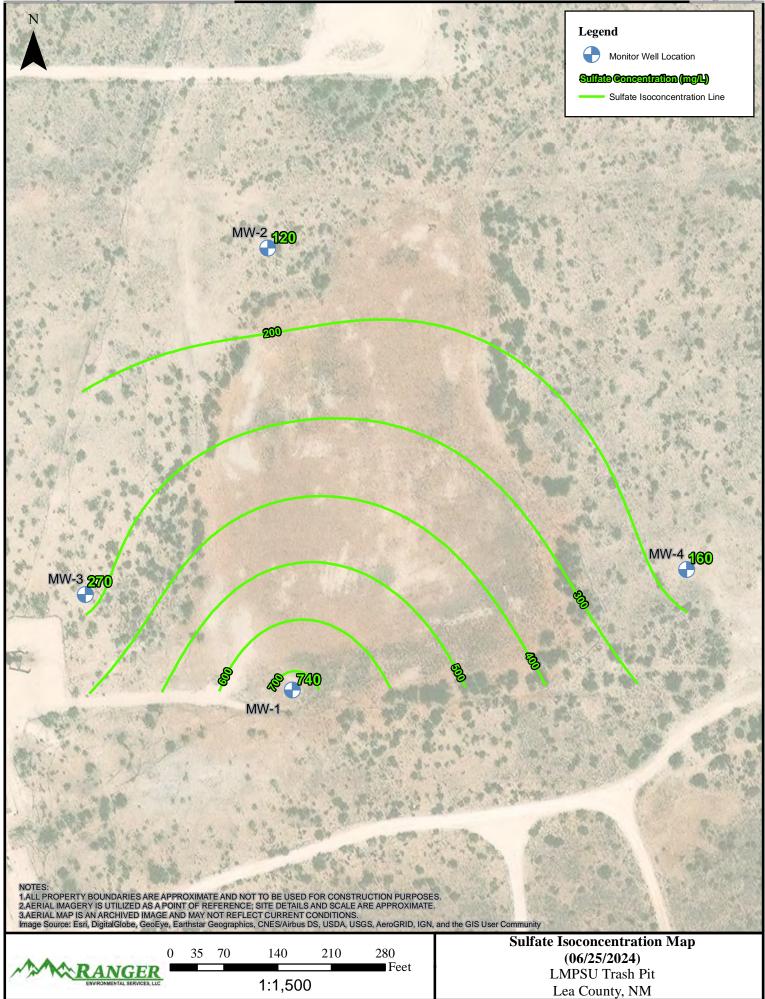

Area Map

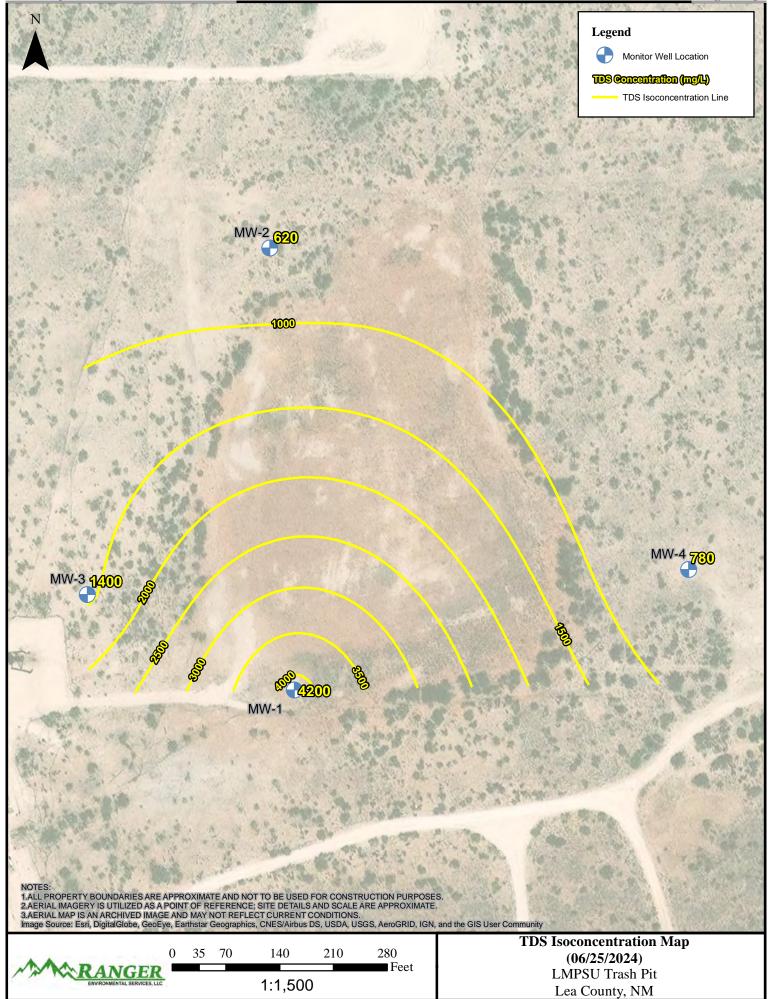

Site Map

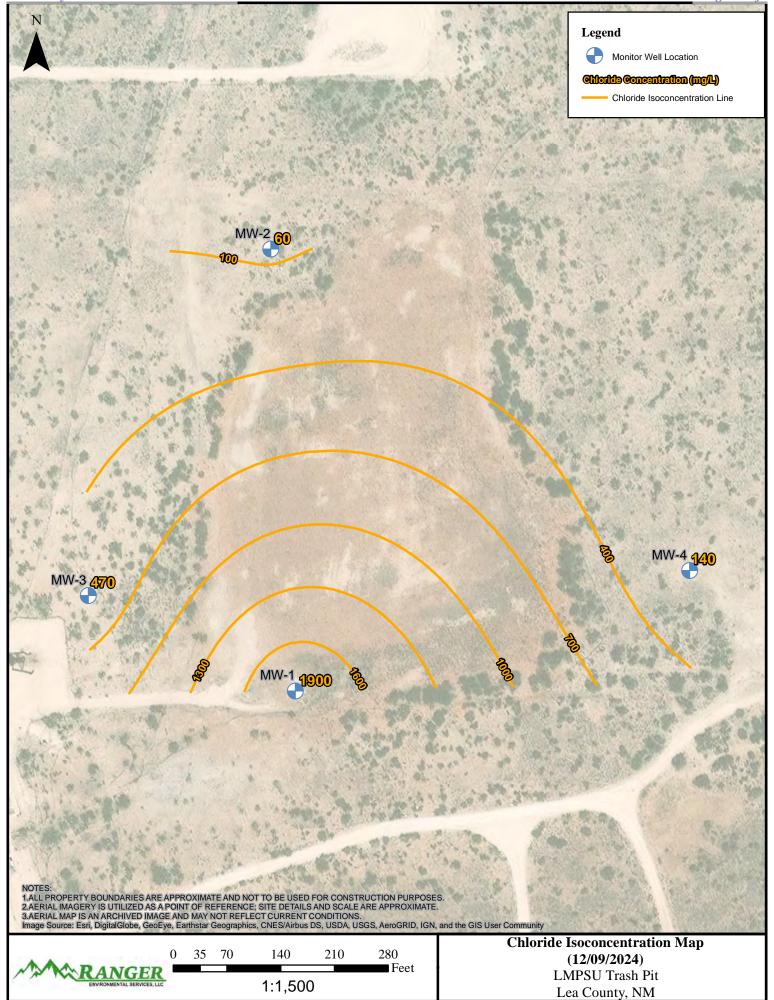

Groundwater Gradient Maps

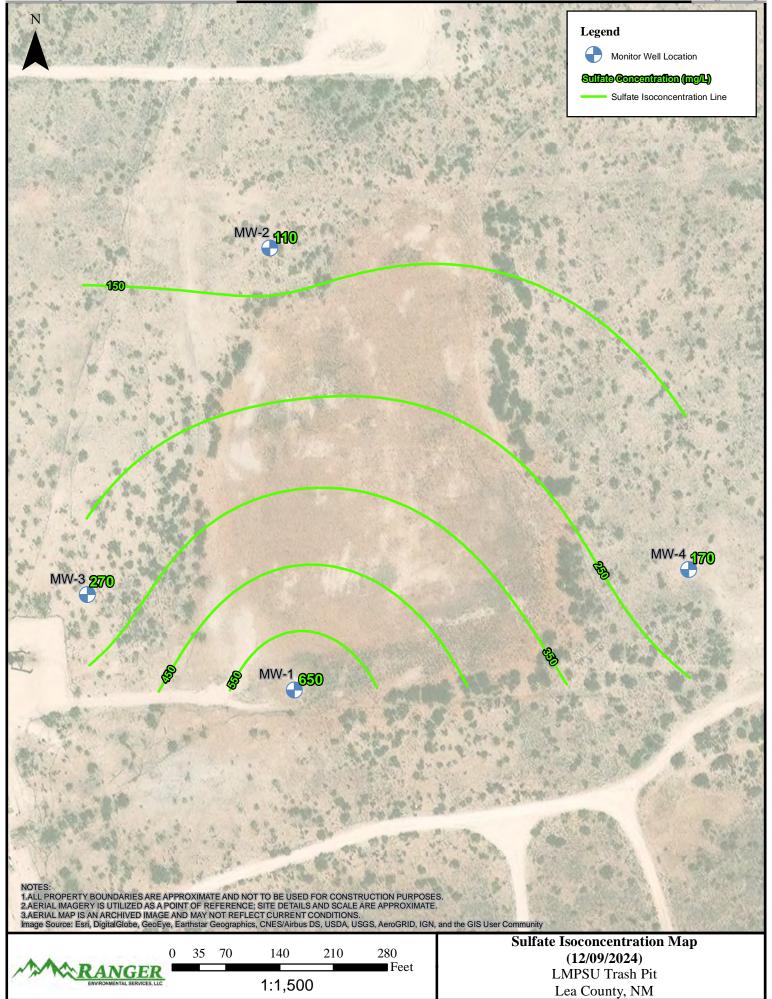

Groundwater Chloride, TDS and sulfate Isoconcentration Maps

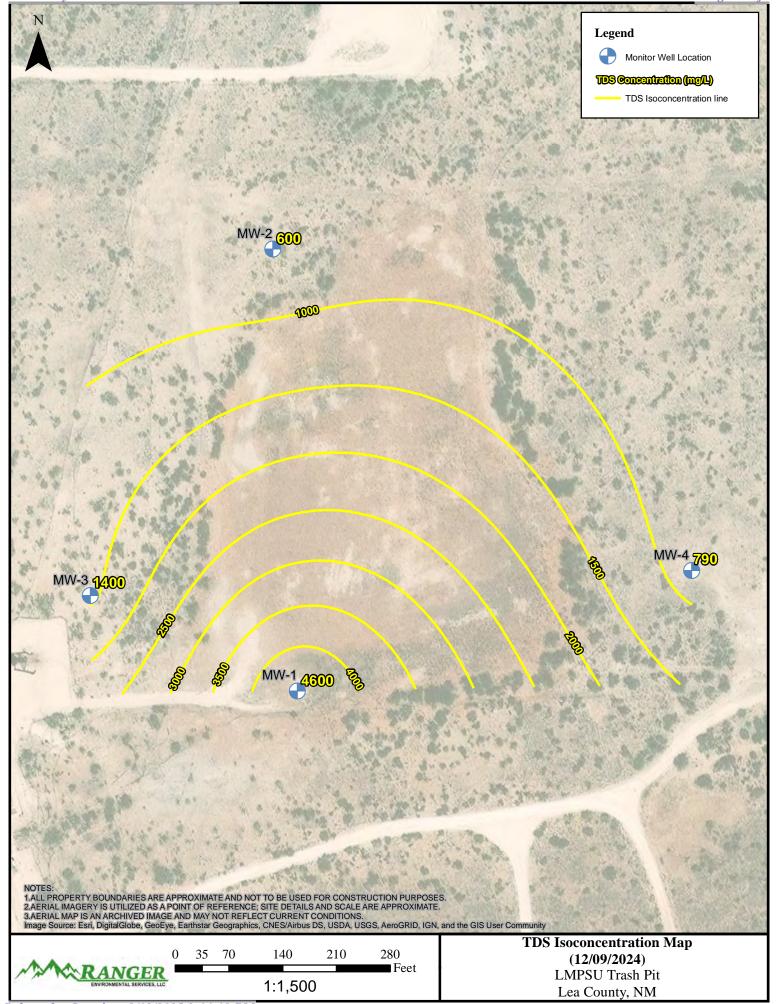












TABLES

Cumulative Well Gauging Data Cumulative Groundwater Analytical Summary Table

WELL NUMBER	DATE	CASING ELEV. (FT)	DEPTH TO WATER (FT-BTOC)	LNAPL THICKNESS (FT)	GW ELEVATION (FT)	SCREENED INTERVAL (FT-BGS)
MW-1	1/28/2015	3324.09	43.79	0.00	3280.30	
MW-1	6/1/2015	3324.09	43.69	0.00	3280.40	
MW-1	8/18/2015	3324.09	46.60	0.00	3277.49	
MW-1	9/11/2015	3324.09	43.60	0.00	3280.49	
MW-1	12/3/2015	3324.09	42.55	0.00	3281.54	
MW-1	3/17/2016	3324.09	43.45	0.00	3280.64	
MW-1	7/19/2016	3324.09	43.46	0.00	3280.63	
MW-1	8/26/2016	3324.09	43.46	0.00	3280.63	
MW-1	10/18/2016	3324.09	43.33	0.00	3280.76	
MW-1	1/18/2017	3324.09	43.35	0.00	3280.74	
MW-1	4/25/2017	3324.09	43.47	0.00	3280.62	
MW-1	9/13/2017	3324.09	43.28	0.00	3280.81	
MW-1	12/19/2017	3324.09	43.28	0.00	3280.81	
MW-1	2/26/2018	3324.09	43.28	0.00	3280.81	
MW-1	5/7/2018	3324.09	43.28	0.00	3280.81	
MW-1	8/2/2018	3324.09	43.33	0.00	3280.76	
MW-1	12/10/2018	3324.09	44.39	0.00	3279.70	
MW-1	2/18/2019	3324.09	43.55	0.00	3280.54	
MW-1	5/7/2019	3324.09	43.35	0.00	3280.74	
MW-1	8/1/2019	3324.09	43.40	0.00	3280.69	
MW-1	12/5/2019	3324.09	43.37	0.00	3280.72	
MW-1	2/17/2020	3324.09	43.90	0.00	3280.19	
MW-1	5/4/2020	3324.09	43.30	0.00	3280.79	
MW-1	8/12/2020	3324.09	43.40	0.00	3280.69	
MW-1	10/5/2020	3324.09	43.45	0.00	3280.64	
MW-1	1/4/2021	3324.09	45.19	0.00	3278.90	
MW-1	2/1/2021	3324.09	43.50	0.00	3280.59	
MW-1	4/30/2021	3324.09	43.46	0.00	3280.63	
MW-1	8/9/2021	3324.09	43.41	0.00	3280.68	
MW-1	11/19/2021	3324.09	43.40	0.00	3280.69	
MW-1	2/25/2022	3324.09	43.43	0.00	3280.66	
MW-1	5/18/2022	3324.09	43.41	0.00	3280.68	

	T	l I				T
WELL NUMBER	DATE	CASING ELEV. (FT)	DEPTH TO WATER (FT-BTOC)	LNAPL THICKNESS (FT)	GW ELEVATION (FT)	SCREENED INTERVAL (FT-BGS)
MW-1	8/19/2022	3324.09	43.50	0.00	3280.59	
MW-1	12/19/2022	3324.09	43.49	0.00	3280.60	
MW-1	3/17/2023	3324.09	43.49	0.00	3280.60	
MW-1	6/8/2023	3324.09	43.49	0.00	3280.60	
MW-1	12/20/2023	3324.09	43.54	0.00	3280.55	
MW-1	6/25/2024	3324.09	43.59	0.00	3280.50	
MW-1	12/9/2024	3324.09	43.56	0.00	3280.53	
MW-2	1/28/2015	3325.18	43.79	0.00	3281.39	38.17 - 57.77
MW-2	6/1/2015	3325.18	49.88	0.00	3275.30	38.17 - 57.78
MW-2	8/18/2015	3325.18	44.75	0.00	3280.43	38.17 - 57.79
MW-2	9/11/2015	3325.18	44.50	0.00	3280.68	38.17 - 57.80
MW-2	12/3/2015	3325.18	44.65	0.00	3280.53	38.17 - 57.81
MW-2	3/17/2016	3325.18	44.66	0.00	3280.52	38.17 - 57.82
MW-2	7/19/2016	3325.18	44.35	0.00	3280.83	38.17 - 57.83
MW-2	8/26/2016	3325.18	44.35	0.00	3280.83	38.17 - 57.77
MW-2	10/18/2016	3325.18	44.25	0.00	3280.93	38.17 - 57.78
MW-2	1/18/2017	3325.18	44.31	0.00	3280.87	38.17 - 57.79
MW-2	4/25/2017	3325.18	43.15	0.00	3282.03	38.17 - 57.80
MW-2	9/13/2017	3325.18	44.17	0.00	3281.01	38.17 - 57.81
MW-2	12/19/2017	3325.18	44.18	0.00	3281.00	38.17 - 57.82
MW-2	2/26/2018	3325.18	44.16	0.00	3281.02	38.17 - 57.83
MW-2	5/7/2018	3325.18	44.16	0.00	3281.02	38.17 - 57.84
MW-2	8/2/2018	3325.18	44.18	0.00	3281.00	38.17 - 57.85
MW-2	12/10/2018	3325.18	44.25	0.00	3280.93	38.17 - 57.86
MW-2	2/18/2019	3325.18	44.22	0.00	3280.96	38.17 - 57.87
MW-2	5/7/2019	3325.18	44.20	0.00	3280.98	38.17 - 57.88
MW-2	8/1/2019	3325.18	44.21	0.00	3280.97	38.17 - 57.89
MW-2	12/5/2019	3325.18	44.21	0.00	3280.97	38.17 - 57.90
MW-2	2/17/2020	3325.18	44.30	0.00	3280.88	38.17 - 57.77
MW-2	5/4/2020	3325.18	44.18	0.00	3281.00	38.17 - 57.78
MW-2	8/12/2020	3325.18	44.30	0.00	3280.88	38.17 - 57.79
MW-2	10/5/2020	3325.18	44.30	0.00	3280.88	38.17 - 57.80
MW-2	1/4/2021	3325.18	41.59	0.00	3283.59	38.17 - 57.81
MW-2	2/1/2021	3325.18	44.35	0.00	3280.83	38.17 - 57.82
MW-2	4/30/2021	3325.18	44.34	0.00	3280.84	38.17 - 57.83
MW-2	8/9/2021	3325.18	44.30	0.00	3280.88	38.17 - 57.84

	I					I
WELL NUMBER	DATE	CASING ELEV. (FT)	DEPTH TO WATER (FT-BTOC)	LNAPL THICKNESS (FT)	GW ELEVATION (FT)	SCREENED INTERVAL (FT-BGS)
MW-2	11/19/2021	3325.18	44.26	0.00	3280.92	38.17 - 57.85
MW-2	2/25/2022	3325.18	44.31	0.00	3280.87	38.17 - 57.86
MW-2	5/18/2022	3325.18	44.29	0.00	3280.89	38.17 - 57.87
MW-2	8/19/2022	3325.18	44.36	0.00	3280.82	38.17 - 57.88
MW-2	12/19/2022	3325.18	44.36	0.00	3280.82	38.17 - 57.89
MW-2	3/17/2023	3325.18	44.36	0.00	3280.82	38.17 - 57.90
MW-2	6/8/2023	3325.18	44.32	0.00	3280.86	38.17 - 57.77
MW-2	12/20/2023	3325.18	44.38	0.00	3280.80	38.17 - 57.77
MW-2	6/25/2024	3325.18	44.39	0.00	3280.79	38.17 - 57.77
MW-2	12/9/2024	3325.18	44.40	0.00	3280.78	38.17 - 57.77
						•
MW-3	4/15/2015	3325.87	46.00	0.00	3279.87	34.69 - 54.75
MW-3	6/1/2015	3325.87	45.53	0.00	3280.34	34.69 - 54.76
MW-3	8/18/2015	3325.87	45.42	0.00	3280.45	34.69 - 54.77
MW-3	9/11/2015	3325.87	45.40	0.00	3280.47	34.69 - 54.78
MW-3	12/3/2015	3325.87	45.21	0.00	3280.66	34.69 - 54.79
MW-3	3/17/2016	3325.87	45.35	0.00	3280.52	34.69 - 54.80
MW-3	7/19/2016	3325.87	45.12	0.00	3280.75	34.69 - 54.81
MW-3	8/26/2016	3325.87	45.13	0.00	3280.74	34.69 - 54.75
MW-3	10/18/2016	3325.87	45.01	0.00	3280.86	34.69 - 54.76
MW-3	1/18/2017	3325.87	45.07	0.00	3280.80	34.69 - 54.77
MW-3	4/25/2017	3325.87	44.93	0.00	3280.94	34.69 - 54.78
MW-3	9/13/2017	3325.87	44.90	0.00	3280.97	34.69 - 54.79
MW-3	12/19/2017	3325.87	44.94	0.00	3280.93	34.69 - 54.80
MW-3	2/26/2018	3325.87	44.94	0.00	3280.93	34.69 - 54.81
MW-3	5/7/2018	3325.87	44.94	0.00	3280.93	34.69 - 54.82
MW-3	8/2/2018	3325.87	45.02	0.00	3280.85	34.69 - 54.83
MW-3	12/10/2018	3325.87	45.09	0.00	3280.78	34.69 - 54.84
MW-3	2/18/2019	3325.87	45.10	0.00	3280.77	34.69 - 54.85
MW-3	5/7/2019	3325.87	45.02	0.00	3280.85	34.69 - 54.86
MW-3	8/1/2019	3325.87	45.09	0.00	3280.78	34.69 - 54.87
MW-3	12/5/2019	3325.87	45.07	0.00	3280.80	34.69 - 54.88
MW-3	2/17/2020	3325.87	45.00	0.00	3280.87	34.69 - 54.75
MW-3	5/4/2020	3325.87	45.05	0.00	3280.82	34.69 - 54.76
MW-3	8/12/2020	3325.87	45.10	0.00	3280.77	34.69 - 54.77
MW-3	10/5/2020	3325.87	45.15	0.00	3280.72	34.69 - 54.78
MW-3	1/4/2021	3325.87	44.34	0.00	3281.53	34.69 - 54.79

	T					<u> </u>
WELL NUMBER	DATE	CASING ELEV. (FT)	DEPTH TO WATER (FT-BTOC)	LNAPL THICKNESS (FT)	GW ELEVATION (FT)	SCREENED INTERVAL (FT-BGS)
MW-3	2/1/2021	3325.87	45.20	0.00	3280.67	34.69 - 54.80
MW-3	4/30/2021	3325.87	45.20	0.00	3280.67	34.69 - 54.81
MW-3	8/9/2021	3325.87	45.11	0.00	3280.76	34.69 - 54.82
MW-3	11/19/2021	3325.87	45.11	0.00	3280.76	34.69 - 54.83
MW-3	2/25/2022	3325.87	45.15	0.00	3280.72	34.69 - 54.84
MW-3	5/18/2022	3325.87	45.14	0.00	3280.73	34.69 - 54.85
MW-3	8/19/2022	3325.87	45.19	0.00	3280.68	34.69 - 54.86
MW-3	12/19/2022	3325.87	45.21	0.00	3280.66	34.69 - 54.87
MW-3	3/17/2023	3325.87	45.24	0.00	3280.63	34.69 - 54.88
MW-3	6/8/2023	3325.87	45.21	0.00	3280.66	34.69 - 54.75
MW-3	12/20/2023	3325.87	45.27	0.00	3280.60	34.69 - 54.75
MW-3	6/25/2024	3325.87	45.25	0.00	3280.62	34.69 - 54.75
MW-3	12/9/2024	3325.87	45.27	0.00	3280.60	34.69 - 54.75
MW-4	4/15/2015	3322.16	42.08	0.00	3280.08	38.31 - 57.77
MW-4	6/1/2015	3322.16	42.35	0.00	3279.81	38.31 - 57.78
MW-4	8/18/2015	3322.16	42.20	0.00	3279.96	38.31 - 57.79
MW-4	9/11/2015	3322.16	42.00	0.00	3280.16	38.31 - 57.80
MW-4	12/3/2015	3322.16	41.77	0.00	3280.39	38.31 - 57.81
MW-4	3/17/2016	3322.16	42.02	0.00	3280.14	38.31 - 57.82
MW-4	7/19/2016	3322.16	41.65	0.00	3280.51	38.31 - 57.83
MW-4	8/26/2016	3322.16	41.64	0.00	3280.52	38.31 - 57.77
MW-4	10/18/2016	3322.16	41.51	0.00	3280.65	38.31 - 57.78
MW-4	1/18/2017	3322.16	41.54	0.00	3280.62	38.31 - 57.79
MW-4	4/25/2017	3322.16	41.47	0.00	3280.69	38.31 - 57.80
MW-4	9/13/2017	3322.16	41.39	0.00	3280.77	38.31 - 57.81
MW-4	12/19/2017	3322.16	41.43	0.00	3280.73	38.31 - 57.82
MW-4	2/26/2018	3322.16	41.44	0.00	3280.72	38.31 - 57.83
MW-4	5/7/2018	3322.16	41.41	0.00	3280.75	38.31 - 57.84
MW-4	8/2/2018	3322.16	41.48	0.00	3280.68	38.31 - 57.85
MW-4	12/10/2018	3322.16	41.49	0.00	3280.67	38.31 - 57.86
MW-4	2/18/2019	3322.16	41.49	0.00	3280.67	38.31 - 57.87
MW-4	5/7/2019	3322.16	41.45	0.00	3280.71	38.31 - 57.88
MW-4	8/1/2019	3322.16	41.50	0.00	3280.66	38.31 - 57.89
MW-4	12/5/2019	3322.16	41.49	0.00	3280.67	38.31 - 57.90
MW-4	2/17/2020	3322.16	42.50	0.00	3279.66	38.31 - 57.77
MW-4	5/4/2020	3322.16	41.45	0.00	3280.71	38.31 - 57.78

WELL NUMBER	DATE	CASING ELEV. (FT)	DEPTH TO WATER (FT-BTOC)	LNAPL THICKNESS (FT)	GW ELEVATION (FT)	SCREENED INTERVAL (FT-BGS)
MW-4	8/12/2020	3322.16	41.50	0.00	3280.66	38.31 - 57.79
MW-4	10/5/2020	3322.16	41.49	0.00	3280.67	38.31 - 57.80
MW-4	1/4/2021	3322.16	43.47	0.00	3278.69	38.31 - 57.81
MW-4	2/1/2021	3322.16	41.60	0.00	3280.56	38.31 - 57.82
MW-4	4/30/2021	3322.16	41.60	0.00	3280.56	38.31 - 57.83
MW-4	8/9/2021	3322.16	41.44	0.00	3280.72	38.31 - 57.84
MW-4	11/19/2021	3322.16	41.49	0.00	3280.67	38.31 - 57.85
MW-4	2/25/2022	3322.16	41.54	0.00	3280.62	38.31 - 57.86
MW-4	5/18/2022	3322.16	41.56	0.00	3280.60	38.31 - 57.87
MW-4	8/19/2022	3322.16	41.61	0.00	3280.55	38.31 - 57.88
MW-4	12/19/2022	3322.16	41.61	0.00	3280.55	38.31 - 57.89
MW-4	3/17/2023	3322.16	41.59	0.00	3280.57	38.31 - 57.90
MW-4	6/8/2023	3322.16	41.57	0.00	3280.59	38.31 - 57.77
MW-4	12/20/2023	3322.16	41.66	0.00	3280.50	38.31 - 57.77
MW-4	6/5/2024	3322.16	41.86	0.00	3280.30	38.31 - 57.77
MW-4	12/9/2024	3322.16	41.71	0.00	3280.45	38.31 - 57.77

Notes:

- 1. Elevations referenced to a temporary on-site benchmark.
- 2. BTOC = below top of casing
- 3. All depth-to-water infomraiton prior to the 12/2023 data was collected by a previous consultant.
- 4. All well survey data was collected by other parties and not verified by Ranger. The presented groundwater elevation data is based on information provided to Ranger.

Page 27 of 89

CUMULATIVE GROUNDWATER ANALYTICAL SUMMARY TABLE LMPSU TRASH PIT LEA COUNTY, NEW MEXICO 1RP-3360

All Values Presented in Parts Per Million (mg/L) unless otherwise noted

OAMBI E ID	DATE	B	T-1	F4111	W. d	0-1-1		Barrandan	0 - 41	Obligation	0	A 11 12 14 -	Minaria	
SAMPLE ID	DATE	Benzene	Toluene	Ethylbenzene	Xylenes	Calcium	Magnesium	Potassium	Sodium	Chloride	Sulfate	Alkalinity	Nitrate	TD
MW-1	12/11/2014	-				186	242	22.3	913	1,600	543	888	<0.100	5,33
MW-1	1/28/2015					610	437	32.5	1,430	3,230	947	417	<0.100	6,20
MW-1	6/1/2015	<0.001	< 0.001	<0.001	<0.001	201	270	27.6	950	1,560	446	653	<0.2	3,9
MW-1	8/18/2015	<0.0008	< 0.002	< 0.002	< 0.003	152	224	21.5	820	1,600	433	723	<0.10	3,8
MW-1	12/3/2015	<0.0008	< 0.002	< 0.002	< 0.003	310	258	22.6	930	1,820	431	727	<0.1	4,2
MW-1	3/17/2016	<0.002	<0.006	<0.006	< 0.009	184	283	22.7	982	1,920	432		<0.500	4,1
MW-1	7/19/2016	<0.002	<0.006	<0.006	< 0.009	185	292	21.6	1,020	2,040	478	714	<0.500	4,6
MW-1	8/29/2016	<0.002	<0.006	<0.006	< 0.009	166	278	19.9	986	1,840	450	721	<0.500	5,1
MW-1	10/18/2016	<0.002	<0.006	<0.006	< 0.009	2,030	318	25	1,040	2,030	406	739	<0.500	5,0
MW-1	1/18/2017	<0.002	<0.006	<0.006	<0.006	212	333	22.9	1,130	2,080	454	766	<0.500	5,5
MW-1	4/25/2017	<0.002	< 0.006	<0.006	<0.006	313	366	26.6	1,290	2,840	852	439	<0.500	9,8
MW-1	9/13/2017	<0.002	< 0.006	<0.006	<0.006	217	329	21.8	1,070	1,920	361	811	<1.00	4,9
MW-1	12/19/2017	<0.002	<0.006	< 0.006	<0.006	214	325	21.9	1,070	2,170	521	734	<0.0800	4,9
MW-1	2/26/2018	<0.002	<0.006	< 0.006	<0.006	217	336	21.3	1,160	2,190	559	751	<0.0500	4,9
MW-1	5/7/2018	<0.002	<0.006	< 0.006	<0.006	218	338	20.5	1,150	2,170	643	725	<0.0500	5,0
MVV-1	8/2/2018	<0.00200	<0.00600	< 0.00600	<0.00600	227	329	22.4	1,080	2,040	693	726	< 0.0500	5,0
MW-1	12/10/2018	<0.00200	<0.00600	< 0.00600	<0.00600	219	341	20.4	1,100	1,980	696	714	< 0.0500	5,3
MW-1	2/18/2019	<0.00200	<0.00600	<0.00600	<0.00600					2,610				-
MW-1	5/7/2019	<0.00200	<0.00600	< 0.00600	<0.00600					2,570				-
MW-1	8/1/2019	<0.00200	<0.00600	< 0.00600	<0.00600					2,010				-
MW-1	12/5/2019	<0.00200	<0.00600	< 0.00600	<0.00600					2,110				-
MW-1	2/17/2020	<0.00200	<0.00600	< 0.00600	<0.00600					1,950				-
MW-1	5/4/2020	< 0.00200	<0.00600	< 0.00600	<0.00600			-		2,240				1 -
MW-1	1/4/2021	<0.00200	<0.00600	< 0.00600	<0.00600	63.5	71.4	9.76	288	449	261	204		1,4
MW-1	2/1/2021	<0.00200	<0.00600	<0.00600	<0.00600	196	325	19.7	1,130	2,130	652	694		5,0
MW-1	4/30/2021	<0.000800	<0.00200	<0.00200	< 0.00200	207	314	19.1	1,100	2,120	750	657		4,9
MW-1	8/9/2021	<0.000800	< 0.00200	<0.00200	< 0.00200	192	297	18.5	1,090	1,930	737	646		4,8
MW-1	11/19/2021	<0.000800	<0.00200	<0.00200	<0.00200	191	288	18	1,000	1,950	724	613		4,7
MW-1	2/25/2022	<0.000800	< 0.00200	<0.00200	< 0.00200	170	278	18.2	1,100	1,930	690	638		4,5
MW-1	5/18/2022	<0.000800	< 0.00200	<0.00200	< 0.00200	183	269	17.8	1,000	1,980	703	566		4,5
MW-1	8/19/2022	<0.000800	<0.00200	<0.00200	<0.00200	155	258	18.7	1,080	1,890	675	670		4,6
MW-1	12/19/2022	<0.000800	<0.00200	<0.00200	<0.00200	166	254	18.8	1,040	1,890	713	620		4,4
MW-1	3/17/2023	<0.000800	<0.00200	<0.00200	<0.00200	153	254	18.7	1,080	2,130	741	706		5,0
MW-1	6/9/2023	<0.000800	<0.00200	<0.00200	<0.00200	175	246	18.6	987	1,630	631	620		4,3
MW-1	12/20/2023	<0.001	<0.001	<0.001	<0.002	160	240	24	1,200	1,500	540	611.1		3,8
MW-1	6/25/2024	0.0012	0.005	0.0012	0.0048	230	270	21	1,100	1,700	740	590		4,2
MW-1	12/9/2024	<0.001	<0.001	<0.001	<0.002	190	240	20	980	1,900	650	620		4,6

CUMULATIVE GROUNDWATER ANALYTICAL SUMMARY TABLE LMPSU TRASH PIT LEA COUNTY, NEW MEXICO 1RP-3360

All Values Presented in Parts Per Million (mg/L) unless otherwise noted

SAMPLE ID	DATE	Benzene	Toluene	Ethylhonzona	Vulonos	Calcium	Magnesium	Potassium	Sodium	Chloride	Sulfate	Alkalinity	Nitrate	тр
SAMPLE ID	DATE	Benzene	loluene	Ethylbenzene	Xylenes	Calcium	wagnesium	Potassium	Sodium	Chioride	Suitate	Alkalinity	Nitrate	11
MW-2	12/11/2014					64.5	34.9	8.29	116	71.8	119	361	1.42	61
MW-2	1/28/2015					91.1	36.6	7.3	126	71.3	112	288	1.36	57
MW-2	6/1/2015	<0.001	<0.001	<0.001	<0.001	54.9	34.6	<10	117	57.8	112	281	1.63	57
MW-2	8/18/2015	<0.0008	< 0.002	< 0.002	< 0.003	118	32.6	6.01	104	73.9	114	274	1.35	58
MW-2	12/3/2015	<0.0008	< 0.002	< 0.002	< 0.003	214	31.8	6.22	106	67	112	247	1.23	58
MW-2	3/17/2016	<0.002	< 0.006	<0.006	< 0.009	45	27.2	6.02	99	63.8	114		1.57	56
MW-2	7/19/2016	<0.002	< 0.006	<0.006	< 0.009	42.6	28	5.69	109	65.6	113	221	1.44	60
MW-2	8/29/2016	<0.002	< 0.006	<0.006	< 0.009	45.8	28.1	5.99	107	61.5	109	262	1.53	92
MW-2	10/18/2016	<0.002	<0.006	<0.006	< 0.009	45.6	28.6	6.4	103	59.8	105	241	1.52	57
MW-2	1/18/2017	<0.002	<0.006	<0.006	<0.006	45.7	28.3	5.79	107	60	109	246	1.53	59
MW-2	4/25/2017	<0.002	<0.006	<0.006	<0.006	44.4	28.7	5.55	108	59.9	112	248	1.43	64
MW-2	9/13/2017	<0.002	<0.006	<0.006	<0.006	49.3	28.4	6.15	102	61.2	111	256	1.58	57
MW-2	12/19/2017	<0.002	<0.006	<0.006	<0.006	46.3	28.3	5.55	104	63	106	298	1.39	57
MW-2	2/26/2018	< 0.002	< 0.006	< 0.006	<0.006	46.3	28.3	5.75	107	64.6	111	301	1.34	59
MW-2	5/7/2018	<0.002	<0.006	<0.006	<0.006	49.2	29.1	5.64	109	63.2	125	257	1.45	58
MW-2	8/2/2018	<0.00200	<0.00600	<0.00600	<0.00600	51.7	28.4	5.72	106	68.8	120	274	1.21	61
MW-2	12/10/2018	<0.00200	<0.00600	<0.00600	<0.00600	46.4	28.4	5.54	109	65.4	112	260	1.33	60
MW-2	2/18/2019	<0.00200	<0.00600	<0.00600	<0.00600					67				-
MW-2	5/7/2019	<0.00200	<0.00600	<0.00600	<0.00600					67.1				
MW-2	8/1/2019	<0.00200	<0.00600	<0.00600	<0.00600					72.2				
MW-2	12/5/2019	<0.00200	<0.00600	<0.00600	<0.00600			-		58.2				-
MW-2	2/17/2020	< 0.00200	<0.00600	<0.00600	<0.00600			-		67.6				-
MW-2	5/4/2020	<0.00200	<0.00600	<0.00600	<0.00600		-			68.4				-
MW-2	1/4/2021	<0.00200	<0.00600	<0.00600	<0.00600	69.8	45.3	8.07	169	194	207	244		91
MW-2	2/1/2021	<0.00200	<0.00600	<0.00600	<0.00600	56.2	45.1	6.4	135	73	258	274		82
MW-2	4/30/2021	<0.000800	<0.00200	<0.00200	<0.00200	52.7	28	5.36	107	61.4	126	258		60
MW-2	8/9/2021	<0.000800	<0.00200	<0.00200	<0.00200	50.0	29.4	5.39	114	65.4	121	269		60
MW-2	11/19/2021	<0.000800	<0.00200	<0.00200	<0.00200	50.5	27.6	5.4	101	65.5	118	257		59
MW-2	2/25/2022	<0.000800	<0.00200	<0.00200	<0.00200	50.4	29.8	5.74	118	73.7	124	264		63
MW-2	5/18/2022	<0.000800	<0.00200	<0.00200	<0.00200	53.1	28.1	5.31	109	78.5	131	270		65
MW-2	8/19/2022	<0.000800	<0.00200	<0.00200	<0.00200	54.5	31.7	5.44	126	73.5	121	284		64
MW-2	12/19/2022	<0.000800	<0.00200	<0.00200	<0.00200	50.6	28.1	6.03	112	68.6	116	247		58
MW-2	3/17/2023	<0.000800	<0.00200	<0.00200	<0.00200	48.4	28.8	5.91	110	63.6	114	256		60
MW-2	6/9/2023	<0.000800	<0.00200	<0.00200	<0.00200	52.6	27.9	5.33	102	63.6	111	262		58
MW-2	12/20/2023	<0.001	<0.001	<0.001	<0.002	51.0	28	5.9	99	62	110	254.8		59
MW-2	6/25/2024	<0.001	0.0015	<0.001	<0.002	53	30	5.5	110	66	120	270		62
MW-2	12/9/2024	< 0.001	<0.001	< 0.001	<0.002	49	29	5.7	110	60	110	260		60

Page 29 of 89

CUMULATIVE GROUNDWATER ANALYTICAL SUMMARY TABLE LMPSU TRASH PIT LEA COUNTY, NEW MEXICO 1RP-3360

All Values Presented in Parts Per Million (mg/L) unless otherwise noted

SAMPLE ID	DATE	Benzene	Toluene	Ethylbenzene	Xylenes	Calcium	Magnesium	Potassium	Sodium	Chloride	Sulfate	Alkalinity	Nitrate	TD
MW-3	6/1/2015	<0.001	<0.001	<0.001	<0.001	57.6	60.5	10.7	324	399	234	290	2.19	1,18
MW-3	8/18/2015	<0.0008	<0.002	<0.002	<0.003	147	51.5	8.22	284	405	239	230	1.5	1,3
MW-3	12/3/2015	<0.0008	< 0.002	< 0.002	< 0.003	221	51.9	8.48	284	350	222	232	1.19	1,2
MW-3	3/17/2016	<0.002	< 0.006	< 0.006	< 0.009	49.2	47.9	8.58	284	334	232		1.85	1,0
MW-3	7/19/2016	<0.002	< 0.006	< 0.006	< 0.009	41.5	47.7	7.93	301	349	233	244	1.75	1,2
MW-3	8/29/2016	<0.002	<0.006	< 0.006	< 0.009	51.9	47.4	7.78	277	327	252	230	1.83	1,2
MW-3	10/18/2016	<0.002	<0.006	< 0.006	< 0.009	49.6	56.4	9.32	324	340	223	219	1.78	1,2
MW-3	1/18/2017	<0.002	<0.006	< 0.006	<0.006	45.7	51.8	8.54	312	342	240	215	1.75	1,3
MW-3	4/25/2017	<0.002	<0.006	< 0.006	<0.006	50.0	62.5	9.6	392	342	223	220	1.6	1,5
MW-3	9/13/2017	<0.002	<0.006	< 0.006	<0.006	49.6	54.2	9.22	314	380	227	218	1.91	1,4
MW-3	12/19/2017	<0.002	<0.006	< 0.006	<0.006	52.9	56.2	9.21	304	379	243	207	1.81	1,2
MW-3	2/26/2018	<0.002	<0.006	< 0.006	<0.006	49.7	53.7	8.66	296	378	216	218	2.13	1,2
MW-3	5/7/2018	<0.002	<0.006	< 0.006	<0.006	53.7	56.6	8.85	311	414	249	204	2.21	1,3
MW-3	8/2/2018	<0.00200	<0.00600	< 0.00600	<0.00600	55.8	54.2	9.09	283	388	256	210	2.13	1,3
MW-3	12/10/2018	< 0.00200	< 0.00600	< 0.00600	<0.00600	53.6	59.2	8.66	298	391	251	207	1.81	1,3
MW-3	2/18/2019	<0.00200	<0.00600	< 0.00600	<0.00600			-		421				-
MW-3	5/7/2019	<0.00200	<0.00600	< 0.00600	<0.00600			-		432				-
MW-3	8/1/2019	<0.00200	<0.00600	< 0.00600	<0.00600			-		421				-
MW-3	12/5/2019	<0.00200	<0.00600	< 0.00600	<0.00600					429			-	-
MW-3	2/17/2020	<0.00200	<0.00600	<0.00600	<0.00600			-		424				-
MW-3	5/4/2020	<0.00200	<0.00600	< 0.00600	<0.00600			-		451				-
MW-3	1/4/2021	<0.00200	<0.00600	<0.00600	<0.00600	48.7	27.7	5.67	106	65.9	108	259		59
MW-3	2/1/2021	<0.00200	<0.00600	<0.00600	<0.00600	64.4	74.2	9.8	295	452	262	197		1,4
MW-3	4/30/2021	<0.000800	<0.00200	<0.00200	<0.00200	65.3	70.1	10	300	483	269	195		1,4
MW-3	8/9/2021	<0.000800	<0.00200	<0.00200	<0.00200	65.3	72.1	9.81	294	447	278	194	-	1,3
MW-3	11/19/2021	<0.000800	<0.00200	<0.00200	<0.00200	70.4	70.2	9.34	266	457	484	193		1,4
MW-3	2/25/2022	<0.000800	<0.00200	<0.00200	<0.00200	65.4	72.3	9.75	296	453	266	195		1,4
MW-3	5/18/2022	<0.000800	<0.00200	<0.00200	<0.00200	75.7	73.2	9.85	278	470	277	194		1,3
MW-3	8/19/2022	<0.000800	<0.00200	<0.00200	<0.00200	69.2	76.4	10.1	304	461	274	190		1,4
MW-3	12/19/2022	<0.000800	<0.00200	<0.00200	<0.00200	71.2	74.4	10.1	290	475	289	191		1,4
MW-3	3/17/2023	<0.000800	<0.00200	<0.00200	<0.00200	70.6	77.2	9.94	294	448	285	189		1,5
MW-3	6/9/2023	<0.000800	<0.00200	<0.00200	<0.00200	76.2	76.6	9.9	274	432	258	198		1,4
MW-3	12/20/2023	<0.001	<0.001	<0.001	<0.002	82.0	74	9.8	260	440	280	204.5		1,3
MW-3	6/25/2024	<0.001	<0.001	<0.001	<0.002	75	80	10	270	480	270	200		1,4
MW-3	12/9/2024	<0.001	<0.001	< 0.001	<0.002	75	83	10	290	470	270	200		1,4

Page 30 of 89

CUMULATIVE GROUNDWATER ANALYTICAL SUMMARY TABLE LMPSU TRASH PIT LEA COUNTY, NEW MEXICO 1RP-3360

All Values Presented in Parts Per Million (mg/L) unless otherwise noted

SAMPLE ID	DATE	Benzene	Toluene	Ethylbenzene	Xylenes	Calcium	Magnesium	Potassium	Sodium	Chloride	Sulfate	Alkalinity	Nitrate	1
MW-4	6/1/2015	<0.001	<0.001	<0.001	0.0015	83	58.6	10.1	186	190	251	236	2.34	9
MW-4	8/18/2015	<0.0008	< 0.002	<0.002	< 0.003	70.6	52.8	8.28	160	213	251	256	1.54	9
MW-4	12/3/2015	<0.0008	< 0.002	<0.002	< 0.003	93.5	54.7	8.91	190	218	239	266	1.19	1
MW-4	3/17/2016	< 0.002	< 0.006	<0.006	< 0.009	83.9	57.2	10.7	171	214	252		1.76	
MW-4	7/19/2016	< 0.002	< 0.006	<0.006	< 0.009	80.6	58.7	8.75	213	259	273	252	1.61	1
MW-4	8/29/2016	<0.002	<0.006	<0.006	< 0.009	81.8	57.2	9.25	202	247	276	266	1.72	1
MW-4	10/18/2016	<0.002	<0.006	<0.006	< 0.009	81.8	55.8	8.85	205	255	264	248	1.7	1
MW-4	1/18/2017	<0.002	<0.006	<0.006	< 0.006	86.2	58.9	8.93	203	262	279	245	1.66	1
MW-4	4/25/2017	< 0.002	<0.006	<0.006	<0.006	86.8	61.9	9.24	213	285	279	239	1.51	1
MW-4	9/13/2017	<0.002	<0.006	<0.006	< 0.006	99.3	65	11.1	213	288	278	236	1.78	1
MW-4	12/19/2017	< 0.002	<0.006	<0.006	<0.006	95.6	64.2	9.33	209	298	296	226	1.73	1
MW-4	2/26/2018	< 0.002	< 0.006	<0.006	< 0.006	91.8	62.5	9.32	211	320	306	239	1.93	1
MW-4	5/7/2018	< 0.002	< 0.006	<0.006	< 0.006	96.2	64.2	9.6	214	296	299	234	1.9	1
MW-4	8/2/2018	< 0.00200	<0.00600	<0.00600	<0.00600	90.1	54.6	9.23	189	254	277	245	1.95	1
MW-4	12/10/2018	< 0.00200	<0.00600	<0.00600	<0.00600	77.9	53.6	8.49	195	223	243	249	1.79	1
MW-4	2/18/2019	< 0.00200	<0.00600	<0.00600	<0.00600					231				
MW-4	5/7/2019	< 0.00200	<0.00600	<0.00600	<0.00600					215				
MW-4	8/1/2019	< 0.00200	<0.00600	<0.00600	<0.00600					213				
MW-4	12/5/2019	< 0.00200	<0.00600	<0.00600	<0.00600					211				
MW-4	2/17/2020	< 0.00200	<0.00600	<0.00600	<0.00600					195				
MW-4	5/4/2020	< 0.00200	<0.00600	<0.00600	< 0.00600					211	-		-	
MW-4	1/4/2021	< 0.00200	< 0.00600	<0.00600	< 0.00600	210	323	18.9	1100	2,160	686	665	1	4
MW-4	2/1/2021	< 0.00200	< 0.00600	<0.00600	< 0.00600	68.7	46.4	8.1	168	192	221	246	1	
MW-4	4/30/2021	<0.000800	< 0.00200	<0.00200	< 0.00200	75.3	44.5	8.41	158	179	209	244	1	
MW-4	8/9/2021	<0.000800	<0.00200	< 0.00200	<0.00200	65.0	43.5	7.98	165	181	211	243		
MW-4	11/19/2021	<0.000800	<0.00200	< 0.00200	<0.00200	70.4	70.2	9.34	266	169	208	243		
MW-4	2/22/2022	<0.000800	< 0.00200	<0.00200	<0.00200	62	42.7	7.83	165	176	200	256	-	
MW-4	5/18/2022	<0.000800	< 0.00200	<0.00200	<0.00200	67	40.8	7.85	156	175	194	247	-	
MW-4	8/19/2022	<0.000800	<0.00200	<0.00200	<0.00200	65	42.6	8.13	162	163	189	247	-	
MW-4	12/19/2022	<0.000800	< 0.00200	<0.00200	<0.00200	63	41.2	8.02	157	166	195	246	-	
MW-4	3/17/2023	<0.000800	< 0.00200	<0.00200	<0.00200	62	43	7.79	160	245	189	245	-	
MW-4	6/9/2023	<0.000800	<0.00200	<0.00200	<0.00200	65	41.6	7.73	148	145	170	246	-	
MW-4	12/20/2023	<0.001	<0.001	<0.001	<0.002	68	43	8.2	140	160	180	244.8		
MW-4	6/25/2024	<0.001	0.0021	<0.001	<0.002	59	40	7.7	150	140	160	260		1
MW-4	12/9/2024	< 0.001	< 0.001	<0.001	< 0.002	59	42	7.7	140	140	170	250	-	7

Page 31 of 89

Received by OCD: 3/31/2025 3:39:59 PM

CUMULATIVE GROUNDWATER ANALYTICAL SUMMARY TABLE LMPSU TRASH PIT LEA COUNTY, NEW MEXICO 1RP-3360

All Values Presented in Parts Per Million (mg/L) unless otherwise noted

SAMPLE ID	DATE	Benzene	Toluene	Ethylbenzene	Xylenes	Calcium	Magnesium	Potassium	Sodium	Chloride	Sulfate	Alkalinity	Nitrate	TDS
Dup-1 (MW-1)	2/17/2020	<0.00200	<0.00600	<0.00600	<0.00600									2,200
Dup-1 (MW-3)	5/4/2020	<0.00200	<0.00600	<0.00600	<0.00600									449
Dup-1 (MW-2)	1/4/2021	<0.00200	<0.00600	<0.00600	<0.00600	69	45	8.00	166	191	204	247	-	927
Dup-1 (MW-2)	2/1/2021	<0.00200	<0.00600	<0.00600	<0.00600	56	49	6.50	145	74	285	269		860
Dup-1 (MW-2)	4/30/2021	<0.000800	< 0.00200	<0.00200	<0.00200	53	28	5.30	106	60	125	262		612
Dup-1 (MW-2)	8/9/2021	<0.000800	< 0.00200	<0.00200	<0.00200	65	44	7.98	165	181	211	243		877
Dup-1 (MW-2)	11/19/2021	<0.000800	< 0.00200	<0.00200	<0.00200	47	27	5.38	98	65	118	244		594
Dup-1 (MW-2)	2/25/2022	<0.000800	< 0.00200	<0.00200	<0.00200	48	28	5.61	113	71	118	254		598
Dup-1 (MW-2)	5/18/2022	<0.000800	< 0.00200	<0.00200	<0.00200	54	29	5.09	111	78	129	265		650
Dup-1 (MW-2)	8/19/2022	<0.00800	< 0.00200	<0.00200	< 0.00200	51	29	5.27	117	73	120	278	-	651
DUP-1 (MW-2)	12/19/2022	<0.000800	< 0.00200	<0.00200	<0.00200	49	28	5.97	112	68	115	248		586
DUP-1 (MW-2)	3/17/2023	<0.000800	< 0.00200	<0.00200	<0.00200	50	29	5.92	112	63	112	257		602
DUP-1 (MW-2)	6/9/2023	<0.000800	< 0.00200	<0.00200	<0.00200	53	28	5.52	104	62	109	257		604
Duplicate (MW-2)	12/20/2024	<0.001	<0.001	<0.001	< 0.002	54	28	6.00	100	61	110	253.8		603
MW-A Duplicate (MW-2)	6/25/2024	<0.001	0.0015	<0.001	< 0.002	52	30	5.5	110	62	110	270		610
FIELD DUP. (MW-2)	12/9/2024	<0.001	<0.001	<0.001	< 0.002	47	29	5.8	100	62	110	260		590

20.6.2.3103 NMAC GW STANDARDS (<10,000 mg/L) A. Human Health Standards 0.005 0.7 0.62 250 600 10 ¹ 1,000 B. Other Standards for Domestic Water Supply

C. Standards for Irrigation Use

Notes:

1. This standarad is for nitrate. The nitrite standard is 1.0 mg/L.

2. Exceedances of the listed closure criteria highlighted in hold, red type.

PHOTOGRAPH NO. 1 – A general view of the low-flow sampling methodology at monitor well MW-4 on June 25, 2024.

PHOTOGRAPH NO. 2-A current view of the former Langlie Mattix Penrose Sand Unit Trash Pit. The view is towards the north

(Approximate GPS Coordinates: 32.357423, -103.147517)

ATTACHMENT 2 - LABORATORY ANALYTICAL REPORTS

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Max Cook Ranger Environmental Services, Inc 7215 McNeil Drive PO BOX 201179 Austin, Texas 78729

Generated 7/27/2024 10:18:38 AM

JOB DESCRIPTION

LMPSU Trash Pit

JOB NUMBER

885-7029-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 7/27/2024 10:18:38 AM

Authorized for release by Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com (505)345-3975 __

3

4

5

9

10

4

Laboratory Job ID: 885-7029-1

Client: Ranger Environmental Services, Inc Project/Site: LMPSU Trash Pit

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	11
QC Association Summary	17
Lab Chronicle	19
Certification Summary	21
Chain of Custody	22
Receipt Checklists	24

2

5

4

6

8

9

10

Definitions/Glossary

Client: Ranger Environmental Services, Inc Job ID: 885-7029-1

Project/Site: LMPSU Trash Pit

Qualifiers

HPLC/IC
Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Qualifier Description

E Result exceeded calibration range.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery

CFL Contains Free Liquid

CFU Colony Forming Unit

CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Albuquerque

Case Narrative

Client: Ranger Environmental Services, Inc

Project: LMPSU Trash Pit

Job ID: 885-7029-1

Eurofins Albuquerque

Job ID: 885-7029-1

Job Narrative 885-7029-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 6/27/2024 10:58 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.3°C.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

Method 200.7 - Dissolved: Spike compounds were inadvertently omitted during the extraction process for the matrix spike/matrix spike duplicate (MS/MSD); therefore, matrix spike recoveries are unavailable for analytical batch 885-8038. The associated laboratory control sample (LCS) met acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 2540C_Calcd: The analysis volume selected for the following sample produced a base result greater than 200mg before calculation of the final result: MW-1 (885-7029-1). Reanalysis could not be performed due to holding time exceedance. Visual inspection shows no signs of trapped moisture, report as is The reference method specifies that no more than 200mg of weight be recovered for a chosen sample analysis volume in order to produce the best data precision. As such, these data have been qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Albuquerque

3

6

a

10

Client: Ranger Environmental Services, Inc

Project/Site: LMPSU Trash Pit

Lab Sample ID: 885-7029-1

Job ID: 885-7029-1

Client Sample ID: MW-1 Date Collected: 06/25/24 12:54 Date Received: 06/27/24 10:58

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.2		1.0	ug/L			07/08/24 11:10	1
Ethylbenzene	1.2		1.0	ug/L			07/08/24 11:10	1
Toluene	5.0		1.0	ug/L			07/08/24 11:10	1
Xylenes, Total	4.8		2.0	ug/L			07/08/24 11:10	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		43 - 158		-		07/08/24 11:10	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1700		100	mg/L			07/23/24 19:34	200
Sulfate	740		10	mg/L			07/20/24 02:12	20
Method: EPA 200.7 Rev 4.4 - Met	als (ICP) - Diss	olved						
		olved Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte			RL 5.0	Unit mg/L	<u>D</u> _	Prepared	Analyzed 07/08/24 13:21	
Analyte Calcium	Result				<u>D</u> -	Prepared		5
Analyte	Result 230		5.0	mg/L	D -	Prepared	07/08/24 13:21	Dil Fac 5 5
•	230 270		5.0 5.0	mg/L	<u>D</u> -	Prepared	07/08/24 13:21 07/08/24 13:21	5
Analyte Calcium Magnesium Potassium	Result 230 270 21		5.0 5.0 1.0	mg/L mg/L mg/L	<u>D</u> .	Prepared	07/08/24 13:21 07/08/24 13:21 07/08/24 13:19	5 5 1
Analyte Calcium Magnesium Potassium Sodium General Chemistry	Result 230 270 21 1100		5.0 5.0 1.0	mg/L mg/L mg/L	D -	Prepared	07/08/24 13:21 07/08/24 13:21 07/08/24 13:19	5 5 1
Analyte Calcium Magnesium Potassium Sodium General Chemistry Analyte Total Alkalinity as CaCO3 (SM	Result 230 270 21 1100	Qualifier	5.0 5.0 1.0 20	mg/L mg/L mg/L mg/L			07/08/24 13:21 07/08/24 13:21 07/08/24 13:19 07/09/24 14:22	5 5 1 20
Analyte Calcium Magnesium Potassium Sodium General Chemistry Analyte Total Alkalinity as CaCO3 (SM 2320B) Bicarbonate Alkalinity as CaCO3	230 270 21 1100	Qualifier	5.0 5.0 1.0 20	mg/L mg/L mg/L mg/L			07/08/24 13:21 07/08/24 13:21 07/08/24 13:19 07/09/24 14:22 Analyzed	5 5 1 20 Dil Fac
Analyte Calcium Magnesium Potassium Sodium General Chemistry Analyte Total Alkalinity as CaCO3 (SM 2320B) Bicarbonate Alkalinity as CaCO3 (SM 2320B) Carbonate Alkalinity as CaCO3 (SM	Result 230 270 21 1100 Result 590	Qualifier	5.0 5.0 1.0 20 RL 20	mg/L mg/L mg/L mg/L mg/L			07/08/24 13:21 07/08/24 13:21 07/08/24 13:19 07/09/24 14:22 Analyzed	5 5 5 1 20 Dil Fac 1 1
Analyte Calcium Magnesium Potassium Sodium	Result 230 270 21 1100 Result 590 590	Qualifier	5.0 5.0 1.0 20 RL 20	mg/L mg/L mg/L mg/L mg/L mg/L			07/08/24 13:21 07/08/24 13:21 07/08/24 13:19 07/09/24 14:22 Analyzed 07/08/24 15:21	5 5 1 20 Dil Fac

Client: Ranger Environmental Services, Inc

Project/Site: LMPSU Trash Pit

Client Sample ID: MW-2 Date Collected: 06/25/24 15:20

Date Received: 06/27/24 10:58

Matrix: Water

Job ID: 885-7029-1

Lab Sample	D: 885-7029-2
------------	---------------

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	ug/L			07/08/24 11:33	1
Ethylbenzene	ND		1.0	ug/L			07/08/24 11:33	1
Toluene	1.5		1.0	ug/L			07/08/24 11:33	1
Xylenes, Total	ND		2.0	ug/L			07/08/24 11:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84		43 - 158		-		07/08/24 11:33	1
Method: EPA 300.0 - Anions, I	on Chromatograp	ohy						
Amaluta	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte			10	mg/L			07/20/24 02:37	20
Analyte Chloride	66							

Method: EPA 200.7 Rev 4.4 -	Metals (ICP) - Dissolved						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	53	1.0	mg/L			07/08/24 13:30	1
Magnesium	30	1.0	mg/L			07/08/24 13:30	1
Potassium	5.5	1.0	mg/L			07/08/24 13:30	1
Sodium	110	5.0	mg/L			07/08/24 13:32	5

General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Alkalinity as CaCO3 (SM 2320B)	270		20	mg/L			07/09/24 15:33	1
Bicarbonate Alkalinity as CaCO3 (SM 2320B)	270		20	mg/L			07/09/24 15:33	1
Carbonate Alkalinity as CaCO3 (SM 2320B)	ND		2.0	mg/L			07/09/24 15:33	1
Hydroxide Alkalinity as CaCO3 (SM 2320B)	ND		12	mg/L			07/09/24 15:33	1
Total Dissolved Solids (SM 2540C)	620		50	mg/L			07/01/24 17:49	1

Client: Ranger Environmental Services, Inc

Released to Imaging: 8/12/2025 3:16:19 PM

Project/Site: LMPSU Trash Pit

Client Sample ID: MW-3

Date Collected: 06/25/24 14:51

Date Received: 06/27/24 10:58

Lab S

Matrix: Water

Job ID: 885-7029-1

Samp	le ID:	88	5-7	029-3	

Method: SW846 8021B - Volati	ile Organic Compounds ((GC)					
Analyte	Result Qualifier	r RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	1.0	ug/L			07/08/24 11:56	1
Ethylbenzene	ND	1.0	ug/L			07/08/24 11:56	1
Toluene	ND	1.0	ug/L			07/08/24 11:56	1
Xylenes, Total	ND	2.0	ug/L			07/08/24 11:56	1
Surrogate	%Recovery Qualifie	r Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86	43 - 158				07/08/24 11:56	1

Method: EPA 300.0 - Anions, Ion	Chromatography						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	480	25	mg/L			07/23/24 19:49	50
Sulfate	270	10	mg/L			07/20/24 03:51	20

Method: EPA 200.7 Rev 4.4 -	Metals (ICP) - Dissolved						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	75	1.0	mg/L			07/09/24 13:56	1
Magnesium	80	1.0	mg/L			07/09/24 13:56	1
Potassium	10	1.0	mg/L			07/09/24 13:56	1
Sodium	270	5.0	mg/L			07/09/24 13:58	5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Alkalinity as CaCO3 (SM 2320B)	200		20	mg/L			07/09/24 15:46	1
Bicarbonate Alkalinity as CaCO3 (SM 2320B)	200		20	mg/L			07/09/24 15:46	1
Carbonate Alkalinity as CaCO3 (SM 2320B)	ND		2.0	mg/L			07/09/24 15:46	1
Hydroxide Alkalinity as CaCO3 (SM 2320B)	ND		12	mg/L			07/09/24 15:46	1
Total Dissolved Solids (SM 2540C)	1400		50	mg/L			07/01/24 17:49	1

Client: Ranger Environmental Services, Inc

Project/Site: LMPSU Trash Pit

Job ID: 885-7029-1

Client Sample ID: MW-4

Lab Sample ID: 885-7029-4

Matrix: Water

Date Collected: 06/25/24 10:10 Date Received: 06/27/24 10:58

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	ug/L			07/08/24 12:20	1
Ethylbenzene	ND		1.0	ug/L			07/08/24 12:20	1
Toluene	2.1		1.0	ug/L			07/08/24 12:20	1
Xylenes, Total	ND		2.0	ug/L			07/08/24 12:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		43 - 158		-		07/08/24 12:20	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	140		10	mg/L			07/20/24 04:15	20
Sulfate	160		10	mg/L			07/20/24 04:15	20
	. ,	olved Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Calcium Magnesium Potassium	Result 59 40 7.7		1.0 1.0 1.0	mg/L mg/L mg/L	<u>D</u> _	Prepared	07/09/24 14:00 07/09/24 14:00 07/09/24 14:00	1 1 1
Method: EPA 200.7 Rev 4.4 - Meta Analyte Calcium Magnesium Potassium Sodium	Result 59 40		1.0 1.0	mg/L mg/L	<u>D</u> .	Prepared	07/09/24 14:00 07/09/24 14:00	1 1 1
Analyte Calcium Magnesium Potassium	Result 59 40 7.7		1.0 1.0 1.0	mg/L mg/L mg/L	D -	Prepared	07/09/24 14:00 07/09/24 14:00 07/09/24 14:00	1 1 1
Analyte Calcium Magnesium Potassium Sodium General Chemistry	Result 59 40 7.7 150		1.0 1.0 1.0	mg/L mg/L mg/L	<u>D</u>	Prepared Prepared	07/09/24 14:00 07/09/24 14:00 07/09/24 14:00	1 1 1 5
Analyte Calcium Magnesium Potassium Sodium General Chemistry Analyte Total Alkalinity as CaCO3 (SM	Result 59 40 7.7 150	Qualifier	1.0 1.0 1.0 5.0	mg/L mg/L mg/L mg/L			07/09/24 14:00 07/09/24 14:00 07/09/24 14:00 07/09/24 14:02	1 1 1 5 Dil Fac
Analyte Calcium Magnesium Potassium Sodium General Chemistry Analyte Total Alkalinity as CaCO3 (SM 2320B) Bicarbonate Alkalinity as CaCO3	Result 59 40 7.7 150 Result	Qualifier	1.0 1.0 1.0 5.0	mg/L mg/L mg/L mg/L			07/09/24 14:00 07/09/24 14:00 07/09/24 14:00 07/09/24 14:02 Analyzed	1 1 1 5 5 Dil Fac
Analyte Calcium Magnesium Potassium Sodium General Chemistry Analyte Total Alkalinity as CaCO3 (SM 2320B) Bicarbonate Alkalinity as CaCO3 (SM 2320B) Carbonate Alkalinity as CaCO3 (SM	Result 59 40 7.7 150 Result 260	Qualifier	1.0 1.0 1.0 5.0 RL 20	mg/L mg/L mg/L mg/L mg/L			07/09/24 14:00 07/09/24 14:00 07/09/24 14:00 07/09/24 14:02 Analyzed 07/09/24 15:56	1 1 5 5 Dil Fac 1
Analyte Calcium Magnesium Potassium Sodium	Result 59 40 7.7 150 Result 260 260	Qualifier	1.0 1.0 1.0 5.0 RL 20	mg/L mg/L mg/L dnit mg/L mg/L			07/09/24 14:00 07/09/24 14:00 07/09/24 14:00 07/09/24 14:02 Analyzed 07/09/24 15:56	Dil Fac 1 1 5 Dil Fac 1 1 1 1 1 1

Client: Ranger Environmental Services, Inc

Matrix: Water

C	ient	Sample	e ID:	MW-A	Duplica	te
---	------	--------	-------	------	---------	----

Date Collected: 06/25/24 15:30 Date Received: 06/27/24 10:58

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	ug/L			07/08/24 12:43	1
Ethylbenzene	ND		1.0	ug/L			07/08/24 12:43	1
Toluene	1.5		1.0	ug/L			07/08/24 12:43	1
Xylenes, Total	ND		2.0	ug/L			07/08/24 12:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		43 - 158		-		07/08/24 12:43	1
Method: EPA 300.0 - Anions, Ion	• •	•						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	62		10	mg/L			07/20/24 04:40	20
Sulfate	110		10	mg/L			07/20/24 04:40	20
-								
Method: EPA 200.7 Rev 4.4 - Meta Analyte	· /		RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	olved Qualifier	RL	Unit mg/L	<u>D</u> -	Prepared	Analyzed 07/08/24 14:11	Dil Fac
Analyte Calcium	· /			<mark>Unit</mark> mg/L mg/L	<u>D</u> _	Prepared		Dil Fac
Analyte Calcium Magnesium	Result 52		1.0	mg/L	<u> </u>	Prepared	07/08/24 14:11	Dil Fac 1 1
Analyte	Result 52 30		1.0	mg/L mg/L	<u> </u>	Prepared	07/08/24 14:11 07/08/24 14:11	1
Analyte Calcium Magnesium Potassium	Result 52 30 5.5		1.0 1.0 1.0	mg/L mg/L mg/L	<u> </u>	Prepared	07/08/24 14:11 07/08/24 14:11 07/08/24 14:11	1 1 1
Analyte Calcium Magnesium Potassium Sodium General Chemistry	Result 52 30 5.5 110		1.0 1.0 1.0	mg/L mg/L mg/L	D -	Prepared Prepared	07/08/24 14:11 07/08/24 14:11 07/08/24 14:11	1 1 1
Analyte Calcium Magnesium Potassium Sodium General Chemistry Analyte Total Alkalinity as CaCO3 (SM	Result 52 30 5.5 110	Qualifier	1.0 1.0 1.0 5.0	mg/L mg/L mg/L mg/L			07/08/24 14:11 07/08/24 14:11 07/08/24 14:11 07/08/24 14:13	1 1 1 5 Dil Fac
Analyte Calcium Magnesium Potassium Sodium General Chemistry Analyte Total Alkalinity as CaCO3 (SM 2320B) Bicarbonate Alkalinity as CaCO3	Result 52 30 5.5 110 Result	Qualifier	1.0 1.0 1.0 5.0	mg/L mg/L mg/L mg/L			07/08/24 14:11 07/08/24 14:11 07/08/24 14:11 07/08/24 14:13 Analyzed	1 1 1 5 5 Dil Fac
Analyte Calcium Magnesium Potassium Sodium General Chemistry Analyte Total Alkalinity as CaCO3 (SM 2320B) Bicarbonate Alkalinity as CaCO3 (SM 2320B) Carbonate Alkalinity as CaCO3 (SM	Result 52 30 5.5 110 Result 270	Qualifier	1.0 1.0 1.0 5.0 RL 20	mg/L mg/L mg/L mg/L mg/L			07/08/24 14:11 07/08/24 14:11 07/08/24 14:11 07/08/24 14:13 Analyzed 07/09/24 16:09	1 1 1 5 5 Dil Fac
Analyte Calcium Magnesium Potassium Sodium	Result 52 30 5.5 110 Result 270	Qualifier	1.0 1.0 1.0 5.0 RL 20	mg/L mg/L mg/L dnit mg/L mg/L			07/08/24 14:11 07/08/24 14:11 07/08/24 14:11 07/08/24 14:13 Analyzed 07/09/24 16:09 07/09/24 16:09	1 1 1 5 Dil Fac

Job ID: 885-7029-1 Project/Site: LMPSU Trash Pit Lab Sample ID: 885-7029-5

Client: Ranger Environmental Services, Inc

Project/Site: LMPSU Trash Pit

Job ID: 885-7029-1

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 885-8062/20

Matrix: Water Analysis Batch: 8062 Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MR						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	ug/L			07/08/24 10:46	1
Ethylbenzene	ND		1.0	ug/L			07/08/24 10:46	1
Toluene	ND		1.0	ug/L			07/08/24 10:46	1
Xylenes, Total	ND		2.0	ug/L			07/08/24 10:46	1

MB MB

MD MD

Qualifier Limits Prepared Dil Fac Surrogate %Recovery Analyzed 4-Bromofluorobenzene (Surr) 89 43 - 158 07/08/24 10:46

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 8062

Matrix: Water

Lab Sample ID: LCS 885-8062/19

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	20.0	18.3	-	ug/L		91	70 - 130	
Ethylbenzene	20.0	17.1		ug/L		86	70 - 130	
m&p-Xylene	40.0	34.5		ug/L		86	70 - 130	
o-Xylene	20.0	17.1		ug/L		85	70 - 130	
Toluene	20.0	17.1		ug/L		85	70 - 130	
Xylenes, Total	60.0	51.5		ug/L		86	70 - 130	

LCS LCS

%Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 90 43 - 158

Lab Sample ID: 885-7029-2 MS

Matrix: Water

Analysis Batch: 8062

Client Sample ID: MW-2 Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		20.0	18.1		ug/L		88	70 - 130	
Ethylbenzene	ND		20.0	17.2		ug/L		83	70 - 130	
m&p-Xylene	1.1		40.0	35.2		ug/L		85	70 - 130	
o-Xylene	ND		20.0	17.1		ug/L		83	70 - 130	
Toluene	1.5		20.0	18.5		ug/L		85	70 - 130	
Xylenes, Total	ND		60.0	52.3		ug/L		84	70 - 130	

MS MS

%Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 92 43 - 158

Lab Sample ID: 885-7029-2 MSD

Matrix: Water

Analysis Batch: 8062

Analysis Daten. 0002											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		20.0	17.3		ug/L		84	70 - 130	5	20
Ethylbenzene	ND		20.0	16.7		ug/L		81	70 - 130	3	20
m&p-Xylene	1.1		40.0	34.4		ug/L		83	70 - 130	2	20
o-Xylene	ND		20.0	16.9		ug/L		82	70 - 130	1	20
Toluene	1.5		20.0	17.6		ug/L		81	70 - 130	5	20

Eurofins Albuquerque

Client Sample ID: MW-2

Prep Type: Total/NA

Page 11 of 24

Spike

Added

60.0

Client: Ranger Environmental Services, Inc

Project/Site: LMPSU Trash Pit

Lab Sample ID: 885-7029-2 MSD

Job ID: 885-7029-1

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

Qualifier

Result

ND

Matrix: Water

Analysis Batch: 8062

Client Sample ID: MW-2 Prep Type: Total/NA

%Rec RPD %Rec Limits **RPD** Limit

70 - 130

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

MSD MSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 90 43 - 158

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 885-8831/4 Client Sample ID: Method Blank

MSD MSD

Qualifier

Result

51.3

Matrix: Water

Analyte

Xylenes, Total

Analysis Batch: 8831

Prep Type: Total/NA

Unit

ug/L

D

83

мв мв Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride ND 0.50 07/19/24 12:31 mg/L Sulfate ND 0.50 07/19/24 12:31 mg/L

Lab Sample ID: MB 885-8831/67

Matrix: Water

Analysis Batch: 8831

MB MB Analyte Result Qualifier RLUnit D Dil Fac Prepared Analyzed Chloride 0.50 ND mg/L 07/20/24 01:10 Sulfate ND 0.50 mg/L 07/20/24 01:10

Lab Sample ID: LCS 885-8831/68

Matrix: Water

Analysis Batch: 8831

/ maryone Datem coo :							
	Spik	e LCS	LCS				%Rec
Analyte	Adde	d Resulf	t Qualifier	Unit	D	%Rec	Limits
Chloride	5.0	0 4.96	;	mg/L		99	90 - 110
Sulfate	10	0 10.1	Į	mg/L		101	90 - 110

Lab Sample ID: MRL 885-8831/3

Matrix: Water

Analysis Batch: 8831

Analysis Baton. 6001							
	Spike	MRL	MRL				%Rec
Analyte	Added R	Result	Qualifier	Unit	D	%Rec	Limits
Chloride	0.500	0.513		mg/L		103	50 - 150
Sulfate	0.500	∩ 487	1	ma/l		97	50 150

Lab Sample ID: MB 885-9027/30

Matrix: Water

Analysis Batch: 9027

Client Sample ID:	Method Blank
Pren	Type: Total/NA

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	mg/L			07/23/24 18:34	1
Sulfate	ND		0.50	mg/L			07/23/24 18:34	1

Eurofins Albuquerque

Client: Ranger Environmental Services, Inc

Project/Site: LMPSU Trash Pit

Job ID: 885-7029-1

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

90 - 110

Client Sample ID: Lab Control Sample

95

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 885-9027/4

Matrix: Water Analysis Batch: 9027

	MB I	MB						
Analyte	Result (Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	mg/L			07/23/24 12:00	1
Sulfate	ND		0.50	mg/L			07/23/24 12:00	1

Lab Sample ID: LCS 885-9027/31

Matrix: Water

Analysis Batch: 9027							
	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier	Unit D	%Rec	Limits	
Chloride	5.00	4.71		mg/L	94	90 - 110	

9.55

mg/L

10.0

Lab Sample ID: MRL 885-9027/3

Matrix: Water

Sulfate

Analysis Batch: 9027

	Spike	MRL	MRL				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	0.500	0.523		mg/L		105	50 - 150	
Sulfate	0.500	0.537		mg/L		107	50 - 150	

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 885-8038/62

Matrix: Water

Analysis Batch: 8038

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	ND		1.0	mg/L			07/08/24 12:18	1
Magnesium	ND		1.0	mg/L			07/08/24 12:18	1
Potassium	ND		1.0	mg/L			07/08/24 12:18	1
Sodium	ND		1.0	mg/L			07/08/24 12:18	1

Lab Sample ID: LCS 885-8038/64

Matrix: Water

Analysis Batch: 8038

-	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	50.0	54.4		mg/L		109	85 - 115	
Magnesium	50.0	51.6		mg/L		103	85 - 115	
Potassium	50.0	50.8		mg/L		102	85 - 115	
Sodium	50.0	53.5		mg/L		107	85 - 115	

Lab Sample ID: LLCS 885-8038/63

Matrix: Water

Analysis Batch: 8038

Alialysis Batch. 0030								
	Spike	LLCS	LLCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	0.500	0.544	J	mg/L		109	50 - 150	
Magnesium	0.500	0.511	J	mg/L		102	50 - 150	
Potassium	0.500	0.454	J	mg/L		91	50 - 150	
Sodium	0.500	0.626	J	mg/L		125	50 - 150	

Eurofins Albuquerque

Page 13 of 24

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client: Ranger Environmental Services, Inc

Project/Site: LMPSU Trash Pit

Job ID: 885-7029-1

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Dil Fac

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MRL 885-8038/13 **Matrix: Water**

Analysis Batch: 8038

•	Spike	MRL	MRL				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Calcium	0.500	0.538	J	mg/L		108	50 - 150
Magnesium	0.500	0.526	J	mg/L		105	50 - 150
Potassium	0.500	0.518	J	mg/L		104	50 - 150
Sodium	0.500	0.527	J	mg/L		105	50 - 150

Lab Sample ID: MB 885-8111/17

Matrix: Water

Analysis Batch: 8111

MR MR

Analyte Qualifier RL Unit D Prepared Analyzed Result ND 1.0 07/09/24 13:51 Calcium mg/L Magnesium ND 1.0 mg/L 07/09/24 13:51

Potassium ND 1.0 mg/L 07/09/24 13:51 ND 1.0 07/09/24 13:51 Sodium mg/L

Lab Sample ID: LCS 885-8111/19

Matrix: Water

Analysis Batch: 8111

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	50.0	52.4		mg/L		105	85 - 115	
Magnesium	50.0	52.2		mg/L		104	85 - 115	
Potassium	50.0	51.4		mg/L		103	85 - 115	
Sodium	50.0	52.4		mg/L		105	85 - 115	

Lab Sample ID: LLCS 885-8111/18

Matrix: Water

Analysis Batch: 8111

	Spike	LLCS	LLCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Calcium	0.500	0.492	J	mg/L		98	50 - 150
Magnesium	0.500	0.491	J	mg/L		98	50 - 150
Potassium	0.500	0.427	J	mg/L		85	50 - 150
Sodium	0.500	0.453	J	mg/L		91	50 - 150

Lab Sample ID: MRL 885-8111/14

Matrix: Water

Analysis Batch: 8111

•	Spike	MRL	MRL				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Calcium	0.500	0.529	J	mg/L		106	50 - 150
Magnesium	0.500	0.526	J	mg/L		105	50 - 150
Potassium	0.500	0.456	J	mg/L		91	50 - 150
Sodium	0.500	0.567	J	mg/L		113	50 - 150

Eurofins Albuquerque

Client: Ranger Environmental Services, Inc

Project/Site: LMPSU Trash Pit

Job ID: 885-7029-1

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 885-8149/2

Matrix: Water Analysis Batch: 8149 Client Sample ID: Method Blank

92

90 - 110

Prep Type: Total/NA

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Alkalinity as CaCO3	ND		20	mg/L			07/08/24 13:19	1
Bicarbonate Alkalinity as CaCO3	ND		20	mg/L			07/08/24 13:19	1
Carbonate Alkalinity as CaCO3	ND		2.0	mg/L			07/08/24 13:19	1
Hydroxide Alkalinity as CaCO3	ND		12	mg/L			07/08/24 13:19	1

Lab Sample ID: LCS 885-8149/3 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

84.8

Matrix: Water

Analyte

Analysis Batch: 8149

LCS LCS %Rec Spike Added Result Qualifier Limits Unit %Rec

mg/L

77.8

Lab Sample ID: MRL 885-8149/1 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Total Alkalinity as CaCO3

Analysis Batch: 8149

	Spike	MKL	MKL				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Alkalinity as CaCO3	 21.2	24.7		mg/L		117	50 - 150	

Lab Sample ID: 885-7029-1 DU Client Sample ID: MW-1 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 8149

	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	R	PD	Limit
Total Alkalinity as CaCO3	590		589		mg/L			0.2	20
Bicarbonate Alkalinity as CaCO3	590		589		mg/L			0.2	
Carbonate Alkalinity as CaCO3	ND		ND		mg/L		1	NC	
Hydroxide Alkalinity as CaCO3	ND		ND		mg/L			NC	

Lab Sample ID: MB 885-8150/2 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 8150

	MB MB						
Analyte	Result Qua	alifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Alkalinity as CaCO3	ND ND	20	mg/L			07/09/24 12:46	1
Bicarbonate Alkalinity as CaCO3	ND	20	mg/L			07/09/24 12:46	1
Carbonate Alkalinity as CaCO3	ND	2.0	mg/L			07/09/24 12:46	1
Hydroxide Alkalinity as CaCO3	ND	12	mg/L			07/09/24 12:46	1

Lab Sample ID: MB 885-8150/25 Client Sample ID: Method Blank **Matrix: Water**

Analysis Batch: 8150

MD MD

Released to Imaging: 8/12/2025 3:16:19 PM

Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
)	20	mg/L			07/09/24 17:48	1
)	20	mg/L			07/09/24 17:48	1
)	2.0	mg/L			07/09/24 17:48	1
)	12	mg/L			07/09/24 17:48	1
))	20	mg/L mg/L				07/09/24 17:48 07/09/24 17:48

Eurofins Albuquerque

Client: Ranger Environmental Services, Inc

Project/Site: LMPSU Trash Pit

Job ID: 885-7029-1

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: SM 2320B - Alkalinity (Continued)

Lab Sample ID: LCS 885-8150/26

Analysis Batch: 8150

Matrix: Water

ı	7 manyono Batom o 100									
			Spike	LCS	LCS				%Rec	
	Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Total Alkalinity as CaCO3		84.8	80.4		mg/L		95	90 - 110	

Lab Sample ID: LCS 885-8150/3 **Client Sample ID: Lab Control Sample Matrix: Water**

Analysis Batch: 8150

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Alkalinity as CaCO3	84.8	79.6		mg/L	_	94	90 - 110	

Lab Sample ID: MRL 885-8150/1 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 8150

7 maryoro Batom o roc								
	Spike	MRL	MRL				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Alkalinity as CaCO3	21.2	23.0		mg/L		108	50 - 150	

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 885-7731/1

Matrix: Water

Analysis Batch: 7731

мв мв

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND	50	mg/L			07/01/24 17:49	1

Lab Sample ID: LCS 885-7731/2

Matrix: Water

Analysis Batch: 7731

		Spike	LCS	LCS				%Rec		
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits		
Total Dissolved Solids		1000	1030		mg/L		102	80 - 120		-

Lab Sample ID: MRL 885-7731/3

Matrix: Water

Analysis Batch: 7731

	Spike	MRL	MRL				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Total Dissolved Solids	 50.0	56.0		mg/L		112	50 - 150

Eurofins Albuquerque

QC Association Summary

Client: Ranger Environmental Services, Inc

Project/Site: LMPSU Trash Pit

Job ID: 885-7029-1

GC VOA

Analysis Batch: 8062

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-7029-1	MW-1	Total/NA	Water	8021B	
885-7029-2	MW-2	Total/NA	Water	8021B	
885-7029-3	MW-3	Total/NA	Water	8021B	
885-7029-4	MW-4	Total/NA	Water	8021B	
885-7029-5	MW-A Duplicate	Total/NA	Water	8021B	
MB 885-8062/20	Method Blank	Total/NA	Water	8021B	
LCS 885-8062/19	Lab Control Sample	Total/NA	Water	8021B	
885-7029-2 MS	MW-2	Total/NA	Water	8021B	
885-7029-2 MSD	MW-2	Total/NA	Water	8021B	

HPLC/IC

Analysis Batch: 8831

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
885-7029-1	MW-1	Total/NA	Water	300.0	
885-7029-2	MW-2	Total/NA	Water	300.0	
885-7029-3	MW-3	Total/NA	Water	300.0	
885-7029-4	MW-4	Total/NA	Water	300.0	
885-7029-5	MW-A Duplicate	Total/NA	Water	300.0	
MB 885-8831/4	Method Blank	Total/NA	Water	300.0	
MB 885-8831/67	Method Blank	Total/NA	Water	300.0	
LCS 885-8831/68	Lab Control Sample	Total/NA	Water	300.0	
MRL 885-8831/3	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 9027

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-7029-1	MW-1	Total/NA	Water	300.0	
885-7029-3	MW-3	Total/NA	Water	300.0	
MB 885-9027/30	Method Blank	Total/NA	Water	300.0	
MB 885-9027/4	Method Blank	Total/NA	Water	300.0	
LCS 885-9027/31	Lab Control Sample	Total/NA	Water	300.0	
MRL 885-9027/3	Lab Control Sample	Total/NA	Water	300.0	

Metals

Analysis Batch: 8038

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-7029-1	MW-1	Dissolved	Water	200.7 Rev 4.4	
885-7029-1	MW-1	Dissolved	Water	200.7 Rev 4.4	
885-7029-2	MW-2	Dissolved	Water	200.7 Rev 4.4	
885-7029-2	MW-2	Dissolved	Water	200.7 Rev 4.4	
885-7029-5	MW-A Duplicate	Dissolved	Water	200.7 Rev 4.4	
885-7029-5	MW-A Duplicate	Dissolved	Water	200.7 Rev 4.4	
MB 885-8038/62	Method Blank	Total/NA	Water	200.7 Rev 4.4	
LCS 885-8038/64	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	
LLCS 885-8038/63	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	
MRL 885-8038/13	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	

Analysis Batch: 8111

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-7029-1	MW-1	Dissolved	Water	200.7 Rev 4.4	
885-7029-3	MW-3	Dissolved	Water	200.7 Rev 4.4	

Eurofins Albuquerque

3

_

8

9

QC Association Summary

Client: Ranger Environmental Services, Inc

Project/Site: LMPSU Trash Pit

Job ID: 885-7029-1

Metals (Continued)

Analysis Batch: 8111 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-7029-3	MW-3	Dissolved	Water	200.7 Rev 4.4	
885-7029-4	MW-4	Dissolved	Water	200.7 Rev 4.4	
885-7029-4	MW-4	Dissolved	Water	200.7 Rev 4.4	
MB 885-8111/17	Method Blank	Total/NA	Water	200.7 Rev 4.4	
LCS 885-8111/19	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	
LLCS 885-8111/18	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	
MRL 885-8111/14	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	

General Chemistry

Analysis Batch: 7731

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-7029-1	MW-1	Total/NA	Water	SM 2540C	<u> </u>
885-7029-2	MW-2	Total/NA	Water	SM 2540C	
885-7029-3	MW-3	Total/NA	Water	SM 2540C	
885-7029-4	MW-4	Total/NA	Water	SM 2540C	
885-7029-5	MW-A Duplicate	Total/NA	Water	SM 2540C	
MB 885-7731/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 885-7731/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MRL 885-7731/3	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 8149

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-7029-1	MW-1	Total/NA	Water	SM 2320B	
MB 885-8149/2	Method Blank	Total/NA	Water	SM 2320B	
LCS 885-8149/3	Lab Control Sample	Total/NA	Water	SM 2320B	
MRL 885-8149/1	Lab Control Sample	Total/NA	Water	SM 2320B	
885-7029-1 DU	MW-1	Total/NA	Water	SM 2320B	

Analysis Batch: 8150

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-7029-2	MW-2	Total/NA	Water	SM 2320B	_
885-7029-3	MW-3	Total/NA	Water	SM 2320B	
885-7029-4	MW-4	Total/NA	Water	SM 2320B	
885-7029-5	MW-A Duplicate	Total/NA	Water	SM 2320B	
MB 885-8150/2	Method Blank	Total/NA	Water	SM 2320B	
MB 885-8150/25	Method Blank	Total/NA	Water	SM 2320B	
LCS 885-8150/26	Lab Control Sample	Total/NA	Water	SM 2320B	
LCS 885-8150/3	Lab Control Sample	Total/NA	Water	SM 2320B	
MRL 885-8150/1	Lab Control Sample	Total/NA	Water	SM 2320B	

Eurofins Albuquerque

6

4

6

<u>۾</u>

9

10

Lab Sample ID: 885-7029-1

Matrix: Water

Job ID: 885-7029-1

Client Sample ID: MW-1

Date Collected: 06/25/24 12:54 Date Received: 06/27/24 10:58

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8021B		1	8062	JP	EET ALB	07/08/24 11:10
Total/NA	Analysis	300.0		200	9027	JT	EET ALB	07/23/24 19:34
Total/NA	Analysis	300.0		20	8831	RC	EET ALB	07/20/24 02:12
Dissolved	Analysis	200.7 Rev 4.4		1	8038	VP	EET ALB	07/08/24 13:19
Dissolved	Analysis	200.7 Rev 4.4		5	8038	VP	EET ALB	07/08/24 13:21
Dissolved	Analysis	200.7 Rev 4.4		20	8111	VP	EET ALB	07/09/24 14:22
Total/NA	Analysis	SM 2320B		1	8149	DL	EET ALB	07/08/24 15:21
Total/NA	Analysis	SM 2540C		1	7731	KS	EET ALB	07/01/24 17:49

Client Sample ID: MW-2 Lab Sample ID: 885-7029-2

Date Collected: 06/25/24 15:20 Matrix: Water

Date Received: 06/27/24 10:58

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8021B		1	8062	JP	EET ALB	07/08/24 11:33
Total/NA	Analysis	300.0		20	8831	RC	EET ALB	07/20/24 02:37
Dissolved	Analysis	200.7 Rev 4.4		1	8038	VP	EET ALB	07/08/24 13:30
Dissolved	Analysis	200.7 Rev 4.4		5	8038	VP	EET ALB	07/08/24 13:32
Total/NA	Analysis	SM 2320B		1	8150	DL	EET ALB	07/09/24 15:33
Total/NA	Analysis	SM 2540C		1	7731	KS	EET ALB	07/01/24 17:49

Lab Sample ID: 885-7029-3 **Client Sample ID: MW-3** Date Collected: 06/25/24 14:51 **Matrix: Water**

Date Received: 06/27/24 10:58

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8021B		1	8062	JP	EET ALB	07/08/24 11:56
Total/NA	Analysis	300.0		50	9027	JT	EET ALB	07/23/24 19:49
Total/NA	Analysis	300.0		20	8831	RC	EET ALB	07/20/24 03:51
Dissolved	Analysis	200.7 Rev 4.4		1	8111	VP	EET ALB	07/09/24 13:56
Dissolved	Analysis	200.7 Rev 4.4		5	8111	VP	EET ALB	07/09/24 13:58
Total/NA	Analysis	SM 2320B		1	8150	DL	EET ALB	07/09/24 15:46
Total/NA	Analysis	SM 2540C		1	7731	KS	EET ALB	07/01/24 17:49

Client Sample ID: MW-4 Lab Sample ID: 885-7029-4

Date Collected: 06/25/24 10:10 Date Received: 06/27/24 10:58

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8021B		1	8062	JP	EET ALB	07/08/24 12:20
Total/NA	Analysis	300.0		20	8831	RC	EET ALB	07/20/24 04:15
Dissolved	Analysis	200.7 Rev 4.4		1	8111	VP	EET ALB	07/09/24 14:00
Dissolved	Analysis	200.7 Rev 4.4		5	8111	VP	EET ALB	07/09/24 14:02

Eurofins Albuquerque

Matrix: Water

Client: Ranger Environmental Services, Inc

Project/Site: LMPSU Trash Pit

Lab Sample ID: 885-7029-4

Matrix: Water

Job ID: 885-7029-1

Client Sample ID: MW-4 Date Collected: 06/25/24 10:10 Date Received: 06/27/24 10:58

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	SM 2320B		1	8150	DL	EET ALB	07/09/24 15:56
Total/NA	Analysis	SM 2540C		1	7731	KS	EET ALB	07/01/24 17:49

Client Sample ID: MW-A Duplicate Lab Sample ID: 885-7029-5

Date Collected: 06/25/24 15:30 Matrix: Water

Date Received: 06/27/24 10:58

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8021B		1	8062	JP	EET ALB	07/08/24 12:43
Total/NA	Analysis	300.0		20	8831	RC	EET ALB	07/20/24 04:40
Dissolved	Analysis	200.7 Rev 4.4		1	8038	VP	EET ALB	07/08/24 14:11
Dissolved	Analysis	200.7 Rev 4.4		5	8038	VP	EET ALB	07/08/24 14:13
Total/NA	Analysis	SM 2320B		1	8150	DL	EET ALB	07/09/24 16:09
Total/NA	Analysis	SM 2540C		1	7731	KS	EET ALB	07/01/24 17:49

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Accreditation/Certification Summary

Client: Ranger Environmental Services, Inc Job ID: 885-7029-1

Project/Site: LMPSU Trash Pit

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		Identification Number	Expiration Date				
Oregon	NELA	NELAP		02-26-25				
The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.								
0 ,								
Analysis Method	Prep Method	Matrix	Analyte					
0 ,		Matrix Water	Analyte Bicarbonate Alkalinity as C	CaCO3				
Analysis Method								

- - -

4

5

ŏ

9

Received by OCD: 3/31/2025	3:39:59 PM	Page 56 of 8
AL RY		
		eport.
FLA	See A Hached Sheet	The analytical r
40 0	Total Coliform (Present/Absent)	- lited on
IALL ENVIRCANALYSIS LA www.hallenvironmental.cms NE - Albuquerque, Nus.ng - Analysis Reques	(AOV-ima2) 07S8	Ty note
HALL ENVI ANALYSIS www.hallenvironme kins NE - Albuquer 845-3975 Fax 50 Analysis Re	(AOV) 09S8	B Clear
allenv - All	CI, F, Br, NO3, NO2, PO4, SO4	y I I I I I I I I I I I I I I I I I I I
HALL ANAL www.ha Hawkins NE 505-345-3975	PCRA 8 Metals	led dat
AN ww kins 345-	SMIS0728 to 0188 yd aHA9	ontract
ANA ANA www.h. www.h.	EDB (Method 504.1)	998
4901	TPH:8015D(GRO \ DRO \ MRO) 8081 Pesticides/8082 PCB's	ks: ks:
4	BTEX / MTBE / TMB's (8021)	Remarks:
		g sitt
	7093 (°C)	Time Time Time
	HEA HEA	Date Date Date This serves
- Rush Trash P	Preservative Five	ANOS IN PROPERTY OF THE PROPER
lě l' l		Via: Via: Via: accredited labor
Turn-Around Ti	Project Manager: MM COUK Sampler: J. Mark. On Ice: Ares # of Coolers: Cooler Temp(including cF): Container Preserva Type and # Type	
		Plicate I I I I I I I I I I I I I I I I I I I
Chain-of-Custody Record "Kanger Environment Services 19 Address of Box 201179 Austra Tx, 18720 6#: 512-335-1785	arge Env.co M □ Level 4 (Full Validation) πpliance	MW-3 MW-3 MW-4 Duplicate by: by: ted to Hall Environmental may be subo
15tod	Az Compliance Other Sample	ed by:
Client: Ranger Environment Se Mailing Address of Box 20179 Austra TX, 7872 Phone #: 512-335-1785	email or Fax#: Max @ Ranger Env. co	H20 Relinquished by: (MULLULL) samples submitted
Sample Address	email or Fax#: / QA/QC Package: Standard Accreditation: NELAC EDD (Type)	
Client: Railing A		age 22 of 24 7/27/2024

7/27/2024

Please have all samples analyzed for the following constituents

Test	Method
BTEX	8021B
Anions ::	
including Chloride & Sulfate	300
Dissolved Metals ::	
including Calcium, Magnesium, Potassium, Sodium	6020B
Alkalinity ::	
including Bicarbonate, Carbonate, Hydroxide, Total Alkalinity	M2320B
TDS	M2540C

Ranger-Lmpsu Trash Pit

Login Sample Receipt Checklist

Client: Ranger Environmental Services, Inc Job Number: 885-7029-1

Login Number: 7029 List Source: Eurofins Albuquerque

List Number: 1

Creator: McQuiston, Steven

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
TCEQ Mtd 1005 soil sample was frozen/delivered for prep within 48H of sampling.	N/A	

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Will Kierdorf Ranger Environmental Services, Inc 7215 McNeil Drive PO BOX 201179 Austin, Texas 78729

Generated 12/19/2024 5:19:00 PM

JOB DESCRIPTION

Lmpsu Trash Pit

JOB NUMBER

885-16882-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Released to Imaging: 8/12/2025 3:16:19 PM

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 12/19/2024 5:19:00 PM

Authorized for release by Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com (505)345-3975

Laboratory Job ID: 885-16882-1

Client: Ranger Environmental Services, Inc Project/Site: Lmpsu Trash Pit

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	12
QC Association Summary	17
Lab Chronicle	19
Certification Summary	21
Chain of Custody	22
Receipt Checklists	24

Definitions/Glossary

Client: Ranger Environmental Services, Inc Job ID: 885-16882-1

Project/Site: Lmpsu Trash Pit

Qualifiers

Metals

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier **Qualifier Description**

F Result exceeded calibration range.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis ġ.

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

Estimated Detection Limit (Dioxin) EDL LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present Practical Quantitation Limit POL

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Albuquerque

Case Narrative

Client: Ranger Environmental Services, Inc

Project: Lmpsu Trash Pit

Job ID: 885-16882-1

Eurofins Albuquerque

Job ID: 885-16882-1

Job Narrative 885-16882-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 12/12/2024 7:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.7°C.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_OF_28D_PREC: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 885-17579 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 2540C_SingleDry: The analysis volume selected for the following sample produced a base result greater than 200mg before calculation of the final result: MW-1 (885-16882-1). Reanalysis could not be performed due to holding time exceedance. Visual inspection by analyst shows no signs of trapped moisture, report as is. The reference method specifies that no more than 200mg of weight be recovered for a chosen sample analysis volume in order to produce the best data precision. As such, these data have been qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Albuquerque

2

2

1

5

7

10

Client: Ranger Environmental Services, Inc

Project/Site: Lmpsu Trash Pit Client Sample ID: MW-1

Date Collected: 12/09/24 15:17

Date Received: 12/12/24 07:45

2320B)

Lab Sample ID: 885-16882-1

Job ID: 885-16882-1

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	ug/L			12/18/24 06:42	1
Ethylbenzene	ND		1.0	ug/L			12/18/24 06:42	1
Toluene	ND		1.0	ug/L			12/18/24 06:42	1
Xylenes, Total	ND		2.0	ug/L			12/18/24 06:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		43 - 158		-		12/18/24 06:42	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1900		100	mg/L			12/13/24 19:29	200
Sulfate	650		50	mg/L			12/12/24 17:24	100
Method: EPA 200.7 Rev 4.4 - Meta	, ,				_	_		
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	190		10	mg/L			12/19/24 07:46	10
Magnesium	240		10	mg/L			12/19/24 07:46	10
Potassium	20		1.0	mg/L			12/19/24 07:44	1
Sodium	980		10	mg/L			12/19/24 07:46	10
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	4600	E	100	mg/L			12/16/24 12:09	1
Total Alkalinity as CaCO3 (SM	620		20	mg/L			12/13/24 18:14	1
2320B)								
Bicarbonate Alkalinity as CaCO3 (SM 2320B)	620		20	mg/L			12/13/24 18:14	1
							40/40/04 40 44	
Carbonate Alkalinity as CaCO3 (SM 2320B)	ND		2.0	mg/L			12/13/24 18:14	1

Client: Ranger Environmental Services, Inc

Method: EPA 300.0 - Anions, Ion Chromatography

Project/Site: Lmpsu Trash Pit

Lab Sample ID: 885-16882-2

12/19/24 07:48

Job ID: 885-16882-1

Matrix: Water

Client Sampl	e ID:	MW-2
Date Collected:	12/09	/24 13:01

Potassium

Date Rec	eived: 12/12/24 07:45			
Method	SW846 8021B - Volatile Org	janic Compounds (GC)		
Analyte		Result Qualifier	RL	Unit

5.7

Method: SW846 8021B - Volatil	le Organic Compo	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	ug/L			12/18/24 07:04	1
Ethylbenzene	ND		1.0	ug/L			12/18/24 07:04	1
Toluene	ND		1.0	ug/L			12/18/24 07:04	1
Xylenes, Total	ND		2.0	ug/L			12/18/24 07:04	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		43 - 158		-		12/18/24 07:04	1

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	60	10	mg/L			12/12/24 17:46	20
Sulfate	110	10	mg/L			12/12/24 17:46	20
Method: EPA 200.7 Rev 4.4 - Meta Analyte	als (ICP) - Dissolved Result Qualifier	RL	Unit	D	Prepared	Analyzed	
			•	_		Analyzou	Dil Fac
Calcium	49	1.0	mg/L	— <u> </u>		12/19/24 07:48	Dil Fac

1.0

mg/L

Sodium	110	10	mg/L			12/19/24 07:49	10
General Chemistry							
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	600	50	mg/L			12/16/24 12:09	1
Total Alkalinity as CaCO3 (SM 2320B)	260	20	mg/L			12/13/24 18:42	1
Bicarbonate Alkalinity as CaCO3 (SM 2320B)	260	20	mg/L			12/13/24 18:42	1
Carbonate Alkalinity as CaCO3 (SM 2320B)	ND	2.0	mg/L			12/13/24 18:42	1
Hydroxide Alkalinity as CaCO3 (SM 2320B)	ND	12	mg/L			12/13/24 18:42	1

Released to Imaging: 8/12/2025 3:16:19 PM

Client: Ranger Environmental Services, Inc

Project/Site: Lmpsu Trash Pit **Client Sample ID: MW-3**

Date Collected: 12/09/24 14:33

Date Received: 12/12/24 07:45

Hydroxide Alkalinity as CaCO3 (SM

2320B)

Lab Sample ID: 885-16882-3

Matrix: Water

Job ID: 885-16882-1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	ug/L			12/18/24 07:25	1
Ethylbenzene	ND		1.0	ug/L			12/18/24 07:25	1
Toluene	ND		1.0	ug/L			12/18/24 07:25	1
Xylenes, Total	ND		2.0	ug/L			12/18/24 07:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		43 - 158		_		12/18/24 07:25	1
- Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	470		25	mg/L			12/13/24 19:39	50
Sulfate	270		10	mg/L			12/12/24 18:30	20
Method: EPA 200.7 Rev 4.4 - Meta	ale (ICB) Dies	olyod						
Analyte	. ,	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	75		1.0	mg/L			12/19/24 07:51	1
Magnesium	83		1.0	mg/L			12/19/24 07:51	1
Potassium	10		1.0	mg/L			12/19/24 07:51	1
Sodium	290		10	mg/L			12/19/24 07:53	10
- General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	1400	-	50	mg/L			12/16/24 12:09	1
Total Alkalinity as CaCO3 (SM	200		20	mg/L			12/13/24 18:55	1
•								
2320B) Bicarbonate Alkalinity as CaCO3 (SM 2320B)	200		20	mg/L			12/13/24 18:55	1

12

mg/L

ND

12/13/24 18:55

Job ID: 885-16882-1

Client Sample Results

Client: Ranger Environmental Services, Inc

Project/Site: Lmpsu Trash Pit

Client Sample ID: MW-4 Lab Sample ID: 885-16882-4

Date Collected: 12/09/24 13:50 Matrix: Water
Date Received: 12/12/24 07:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		1.0	ug/L			12/18/24 08:29	
Ethylbenzene	ND		1.0	ug/L			12/18/24 08:29	
Toluene	ND		1.0	ug/L			12/18/24 08:29	,
Xylenes, Total	ND		2.0	ug/L			12/18/24 08:29	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	101		43 - 158		-		12/18/24 08:29	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	140		10	mg/L			12/12/24 18:53	20
Sulfate	170		10	mg/L			12/12/24 18:53	20
Method: EPA 200.7 Rev 4.4 - Meta	als (ICP) - Diss	olved						
		olved Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte			RL	Unit mg/L	<u>D</u> .	Prepared	Analyzed 12/19/24 08:00	
Analyte Calcium	Result				D -	Prepared	- <u> </u>	10
Analyte Calcium Magnesium	Result 59		10	mg/L	<u> </u>	Prepared	12/19/24 08:00	10
Method: EPA 200.7 Rev 4.4 - Meta Analyte Calcium Magnesium Potassium Sodium	Result 59 42		10 1.0	mg/L mg/L	<u>D</u> .	Prepared	12/19/24 08:00 12/19/24 08:02	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Analyte Calcium Magnesium Potassium	Result 59 42 7.7		10 1.0 1.0	mg/L mg/L mg/L	<u>D</u> .	Prepared	12/19/24 08:00 12/19/24 08:02 12/19/24 08:02	10 1 1
Analyte Calcium Magnesium Potassium Sodium General Chemistry	Result 59 42 7.7 140		10 1.0 1.0	mg/L mg/L mg/L	<u>D</u> _	Prepared	12/19/24 08:00 12/19/24 08:02 12/19/24 08:02	10 1 1
Analyte Calcium Magnesium Potassium Sodium General Chemistry Analyte	Result 59 42 7.7 140	Qualifier	10 1.0 1.0 10	mg/L mg/L mg/L mg/L			12/19/24 08:00 12/19/24 08:02 12/19/24 08:02 12/19/24 08:00	10 1 1
Analyte Calcium Magnesium Potassium Sodium General Chemistry Analyte Total Dissolved Solids (SM 2540C) Total Alkalinity as CaCO3 (SM	Result 59 42 7.7 140 Result	Qualifier	10 1.0 1.0 10	mg/L mg/L mg/L mg/L			12/19/24 08:00 12/19/24 08:02 12/19/24 08:02 12/19/24 08:00 Analyzed	10 1 10 Dil Fac
Analyte Calcium Magnesium Potassium Sodium General Chemistry Analyte Total Dissolved Solids (SM 2540C) Total Alkalinity as CaCO3 (SM 2320B) Bicarbonate Alkalinity as CaCO3	Result	Qualifier	10 1.0 1.0 10 RL 50	mg/L mg/L mg/L mg/L mg/L			12/19/24 08:00 12/19/24 08:02 12/19/24 08:02 12/19/24 08:00 Analyzed 12/16/24 12:09	10 11 10 Dil Fac
Analyte Calcium Magnesium Potassium Sodium	Result 59 42 7.7 140 Result 790 250	Qualifier	10 1.0 1.0 10 RL 50 20	mg/L mg/L mg/L mg/L mg/L mg/L			12/19/24 08:00 12/19/24 08:02 12/19/24 08:02 12/19/24 08:00 Analyzed 12/16/24 12:09 12/13/24 19:06	10 1 1 10 Dil Fac

2

4

6

9

10

Client: Ranger Environmental Services, Inc

Project/Site: Lmpsu Trash Pit

Lab Sample ID: 885-16882-5

Job ID: 885-16882-1

Client Sample ID: FIELD DUP.

Matrix: Water

Date Collected: 12/09/24 13:02 Date Received: 12/12/24 07:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	ug/L			12/18/24 08:51	1
Ethylbenzene	ND		1.0	ug/L			12/18/24 08:51	1
Toluene	ND		1.0	ug/L			12/18/24 08:51	1
Xylenes, Total	ND		2.0	ug/L			12/18/24 08:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		43 - 158		-		12/18/24 08:51	1
Method: EPA 300.0 - Anions, Ion	Chromatogran	ohv						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	62		10	mg/L			12/12/24 19:37	20
Sulfate	110		10	mg/L			12/12/24 19:37	20
Method: EPA 200.7 Rev 4.4 - Meta	als (ICP) - Diss	olved						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	47		10	mg/L			12/19/24 08:13	10
Magnesium	29		1.0	mg/L			12/19/24 08:07	1
Potassium	5.8		1.0	mg/L			12/19/24 08:07	1
Sodium	100		10	mg/L			12/19/24 08:13	10
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Discolor d Callida (OM 05400)	590		50	mg/L			12/16/24 12:09	1
lotal Dissolved Solids (SW 2540C)			20	mg/L			12/13/24 19:18	1
· · · · · · · · · · · · · · · · · · ·	260		20					
Total Alkalinity as CaCO3 (SM 2320B)								
Total Alkalinity as CaCO3 (SM 2320B) Bicarbonate Alkalinity as CaCO3	260 260		20	mg/L			12/13/24 19:18	1
Total Dissolved Solids (SM 2540C) Total Alkalinity as CaCO3 (SM 2320B) Bicarbonate Alkalinity as CaCO3 (SM 2320B) Carbonate Alkalinity as CaCO3 (SM 2320B)				mg/L mg/L			12/13/24 19:18	1

Client: Ranger Environmental Services, Inc

Project/Site: Lmpsu Trash Pit

Lab Sample ID: 885-16882-6

Matrix: Water

Job ID: 885-16882-1

Client Sample ID: TRIP BLAN	K
Date Collected: 12/09/24 00:00	

Date Received: 12/12/24 07:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	ug/L			12/18/24 09:12	1
Ethylbenzene	ND		1.0	ug/L			12/18/24 09:12	1
Toluene	ND		1.0	ug/L			12/18/24 09:12	1
Xylenes, Total	ND		2.0	ug/L			12/18/24 09:12	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		43 - 158		_		12/18/24 09:12	1

Client: Ranger Environmental Services, Inc

Project/Site: Lmpsu Trash Pit

Job ID: 885-16882-1

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 885-17965/56

Matrix: Water Analysis Batch: 17965 Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Benzene ND 1.0 ug/L 12/18/24 06:21 Ethylbenzene ND 1.0 ug/L 12/18/24 06:21 ug/L ND 12/18/24 06:21 Toluene 1.0 Xylenes, Total ND 2.0 ug/L 12/18/24 06:21

> MB MB Qualifier Limits %Recovery

Prepared Dil Fac Analyzed 12/18/24 06:21

Lab Sample ID: LCS 885-17965/55 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

43 - 158

Analysis Batch: 17965

4-Bromofluorobenzene (Surr)

Surrogate

LCS LCS Spike %Rec Analyte Added %Rec Limits Result Qualifier Unit D Benzene 20.0 18.9 94 70 - 130 ug/L Ethylbenzene 20.0 97 70 - 130 19.3 ug/L m&p-Xylene 40.0 37.6 ug/L 94 70 - 130 ug/L o-Xylene 20.0 19.2 96 70 - 130 Toluene 20.0 19.1 ug/L 96 70 - 130 Xylenes, Total 60.0 56.8 ug/L 70 - 130

LCS LCS

100

%Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 101 43 - 158

Lab Sample ID: 885-16882-3 MS

Matrix: Water

Analysis Batch: 17965

•	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		20.0	18.1		ug/L		91	70 - 130	
Ethylbenzene	ND		20.0	18.7		ug/L		93	70 - 130	
m&p-Xylene	ND		40.0	36.9		ug/L		92	70 - 130	
o-Xylene	ND		20.0	18.7		ug/L		94	70 - 130	
Toluene	ND		20.0	18.6		ug/L		93	70 - 130	
Xylenes, Total	ND		60.0	55.6		ug/L		93	70 - 130	

MS MS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 99 43 - 158

Lab Sample ID: 885-16882-3 MSD

Matrix: Water

Analysis Ratch: 17965

Analysis Datch. 17905											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		20.0	17.8		ug/L		89	70 - 130	2	20
Ethylbenzene	ND		20.0	18.5		ug/L		92	70 - 130	1	20
m&p-Xylene	ND		40.0	36.5		ug/L		91	70 - 130	1	20
o-Xylene	ND		20.0	18.5		ug/L		93	70 - 130	1	20
Toluene	ND		20.0	18.3		ug/L		92	70 - 130	2	20

Eurofins Albuquerque

Client Sample ID: MW-3

Prep Type: Total/NA

Page 12 of 24

Client Sample ID: MW-3

60.0

Client: Ranger Environmental Services, Inc

Project/Site: Lmpsu Trash Pit

Job ID: 885-16882-1

Client Sample ID: MW-3

92

70 - 130

Lab Sample ID: 885-16882-3 MSD

ND

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Water Analysis Batch: 17965

Prep Type: Total/NA Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit D

ug/L

55 1

MSD MSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 96 43 - 158

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 885-17579/51 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analyte

Xylenes, Total

Analysis Batch: 17579

MB MB Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride ND 0.50 12/12/24 16:29 mg/L Sulfate ND 0.50 12/12/24 16:29 mg/L

Lab Sample ID: LCS 885-17579/52 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 17579

Spike LCS LCS %Rec Analyte Added Result Qualifier %Rec Limits Unit D Chloride 5.00 4.84 mg/L 97 90 - 110 Sulfate 10.0 9.60 mg/L 96 90 - 110

Lab Sample ID: MRL 885-17579/3 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 17579

MRL MRL Spike %Rec Qualifier Added %Rec Analyte Result Unit Limits Chloride 0.500 0.518 104 50 - 150 mg/L Sulfate 0.500 0.524 mg/L 105 50 - 150

Lab Sample ID: MB 885-17697/61 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 17697

MB MB Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride ND 0.50 mg/L 12/13/24 18:37 ND Sulfate 0.50 12/13/24 18:37 mg/L

Lab Sample ID: LCS 885-17697/62 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 17697

7 man, 010 = atom 11 001									
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	 5.00	4.94		mg/L		99	90 - 110		
Sulfate	10.0	9.86		mg/L		99	90 - 110		

Eurofins Albuquerque

20

Client: Ranger Environmental Services, Inc

Project/Site: Lmpsu Trash Pit

Job ID: 885-16882-1

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MRL 885-17697/3

Matrix: Water

Analysis Batch: 17697

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike MRL MRL %Rec Analyte Added Result Qualifier %Rec Limits Unit Chloride 0.500 0.528 mg/L 106 50 - 150 Sulfate 0.500 0.518 mg/L 104 50 - 150

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 885-18081/30

Matrix: Water

Analysis Batch: 18081

Client Sample ID: Method Blank Prep Type: Total/NA

мв мв Result Qualifier RL Unit Prepared Analyzed Dil Fac ND 1.0 mg/L 12/19/24 07:12 Magnesium ND 1.0 mg/L 12/19/24 07:12 Potassium ND 1.0 mg/L 12/19/24 07:12 ND 12/19/24 07:12 1.0 mg/L

Lab Sample ID: LCS 885-18081/32 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analyte

Calcium

Sodium

Analysis Batch: 18081

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	50.0	52.2	-	mg/L		104	85 - 115	
Magnesium	50.0	52.8		mg/L		106	85 - 115	
Potassium	50.0	52.7		mg/L		105	85 - 115	
Sodium	50.0	54.3		ma/L		109	85 - 115	

Lab Sample ID: LLCS 885-18081/35 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 18081

	Spike	LLCS	LLCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	0.500	0.505	J	mg/L		101	50 - 150	
Magnesium	0.500	0.526	J	mg/L		105	50 - 150	
Potassium	0.500	0.403	J	mg/L		81	50 - 150	
Sodium	0.500	0.673	J	mg/L		135	50 - 150	

Lab Sample ID: MRL 885-18081/27 Client Sample ID: Lab Control Sample **Matrix: Water**

Analysis Batch: 18081

MRL MRL %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits Calcium 0.500 0.511 J mg/L 102 50 - 150 Magnesium 0.500 0.504 J mg/L 101 50 - 150 Potassium 0.500 0.406 J mg/L 81 50 - 150 Sodium 0.500 0.357 J mg/L 71 50 - 150

Eurofins Albuquerque

QC Sample Results

Client: Ranger Environmental Services, Inc

Project/Site: Lmpsu Trash Pit

Job ID: 885-16882-1

Client Sample ID: MW-4

Client Sample ID: FIELD DUP.

Client Sample ID: FIELD DUP.

Prep Type: Dissolved

Prep Type: Dissolved

Prep Type: Dissolved

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: 885-16882-4 MS

Matrix: Water

Analysis Batch: 18081

Client Sample ID: MW-4 **Prep Type: Dissolved**

Sample Sample Spike MS MS %Rec Result Qualifier Analyte babbA Result Qualifier D %Rec Limits Unit Magnesium 42 50.0 92.8 mg/L 101 70 - 130 Potassium 7.7 50.0 56.8 mg/L 98 70 - 130

Lab Sample ID: 885-16882-4 MSD

Matrix: Water

Analysis Batch: 18081

MSD MSD RPD Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 42 50.0 90.2 96 70 - 130 20 Magnesium 3 mg/L Potassium 7.7 50.0 56.6 mg/L 98 70 - 130 0 20

Lab Sample ID: 885-16882-5 MS

Matrix: Water

Analysis Batch: 18081

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Unit D %Rec Limits Magnesium 29 50.0 79.1 70 - 130 mg/L 100 50.0 Potassium 5.8 54 2 mg/L 97 70 - 130

Lab Sample ID: 885-16882-5 MSD

Matrix: Water

Analysis Batch: 18081

	Sample	Sample	Spike	MSD	MSD				%Rec			RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	ſ	RPD	Limit
Magnesium	29		50.0	79.3		mg/L	_	101	70 - 130		0	20
Potassium	5.8		50.0	55.1		mg/L		99	70 - 130		2	20

Method: 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 885-17842/1

Matrix: Water

Analysis Batch: 17842

мв мв

Analyte Result Qualifier RL Unit D Dil Fac Prepared Analyzed Total Dissolved Solids ND 50 mq/L 12/16/24 12:09

Lab Sample ID: LCS 885-17842/2

Matrix: Water

Analysis Batch: 17842

Spike LCS LCS %Rec Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 1000 1040 104 80 - 120 mg/L

Lab Sample ID: 885-16882-5 DU

Matrix: Water

Analysis Batch: 17842									
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Total Dissolved Solids	590		583		mg/L			1	10

Eurofins Albuquerque

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Page 15 of 24

QC Sample Results

Client: Ranger Environmental Services, Inc

Project/Site: Lmpsu Trash Pit

Job ID: 885-16882-1

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 885-17794/2

Matrix: Water

Analysis Batch: 17794

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Dil Fac Analyte Result Qualifier RLUnit D Prepared Analyzed Total Alkalinity as CaCO3 ND20 mg/L 12/13/24 15:56 Bicarbonate Alkalinity as CaCO3 ND 20 mg/L 12/13/24 15:56 Carbonate Alkalinity as CaCO3 ND 2.0 mg/L 12/13/24 15:56 Hydroxide Alkalinity as CaCO3 ND 12/13/24 15:56 12 mg/L

Lab Sample ID: LCS 885-17794/3 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 17794

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Alkalinity as CaCO3	84.8	78.4		mg/L	_	92	90 - 110	

Lab Sample ID: MRL 885-17794/1 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 17794

	Spike	MRL	MRL				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Alkalinity as CaCO3	21.2	22.7		mg/L	_	107	50 - 150	

Released to Imaging: 8/12/2025 3:16:19 PM

QC Association Summary

Client: Ranger Environmental Services, Inc

Project/Site: Lmpsu Trash Pit

Job ID: 885-16882-1

GC VOA

Analysis Batch: 17965

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-16882-1	MW-1	Total/NA	Water	8021B	
885-16882-2	MW-2	Total/NA	Water	8021B	
885-16882-3	MW-3	Total/NA	Water	8021B	
885-16882-4	MW-4	Total/NA	Water	8021B	
885-16882-5	FIELD DUP.	Total/NA	Water	8021B	
885-16882-6	TRIP BLANK	Total/NA	Water	8021B	
MB 885-17965/56	Method Blank	Total/NA	Water	8021B	
LCS 885-17965/55	Lab Control Sample	Total/NA	Water	8021B	
885-16882-3 MS	MW-3	Total/NA	Water	8021B	
885-16882-3 MSD	MW-3	Total/NA	Water	8021B	

HPLC/IC

Analysis Batch: 17579

[<u>a</u>	011 40 4 15				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
885-16882-1	MW-1	Total/NA	Water	300.0	
885-16882-2	MW-2	Total/NA	Water	300.0	
885-16882-3	MW-3	Total/NA	Water	300.0	
885-16882-4	MW-4	Total/NA	Water	300.0	
885-16882-5	FIELD DUP.	Total/NA	Water	300.0	
MB 885-17579/51	Method Blank	Total/NA	Water	300.0	
LCS 885-17579/52	Lab Control Sample	Total/NA	Water	300.0	
MRL 885-17579/3	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 17697

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
885-16882-1	MW-1	Total/NA	Water	300.0	
885-16882-3	MW-3	Total/NA	Water	300.0	
MB 885-17697/61	Method Blank	Total/NA	Water	300.0	
LCS 885-17697/62	Lab Control Sample	Total/NA	Water	300.0	
MRL 885-17697/3	Lab Control Sample	Total/NA	Water	300.0	

Metals

Analysis Batch: 18081

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-16882-1	MW-1	Dissolved	Water	200.7 Rev 4.4	
885-16882-1	MW-1	Dissolved	Water	200.7 Rev 4.4	
885-16882-2	MW-2	Dissolved	Water	200.7 Rev 4.4	
885-16882-2	MW-2	Dissolved	Water	200.7 Rev 4.4	
885-16882-3	MW-3	Dissolved	Water	200.7 Rev 4.4	
885-16882-3	MW-3	Dissolved	Water	200.7 Rev 4.4	
885-16882-4	MW-4	Dissolved	Water	200.7 Rev 4.4	
885-16882-4	MW-4	Dissolved	Water	200.7 Rev 4.4	
885-16882-5	FIELD DUP.	Dissolved	Water	200.7 Rev 4.4	
885-16882-5	FIELD DUP.	Dissolved	Water	200.7 Rev 4.4	
MB 885-18081/30	Method Blank	Total/NA	Water	200.7 Rev 4.4	
LCS 885-18081/32	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	
LLCS 885-18081/35	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	
MRL 885-18081/27	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	
885-16882-4 MS	MW-4	Dissolved	Water	200.7 Rev 4.4	
885-16882-4 MSD	MW-4	Dissolved	Water	200.7 Rev 4.4	

Eurofins Albuquerque

Page 17 of 24

2

_

3

8

9

10

11

QC Association Summary

Client: Ranger Environmental Services, Inc

Project/Site: Lmpsu Trash Pit

Job ID: 885-16882-1

Metals (Continued)

Analysis Batch: 18081 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-16882-5 MS	FIELD DUP.	Dissolved	Water	200.7 Rev 4.4	
885-16882-5 MSD	FIELD DUP.	Dissolved	Water	200.7 Rev 4.4	

General Chemistry

Analysis Batch: 17794

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-16882-1	MW-1	Total/NA	Water	SM 2320B	
885-16882-2	MW-2	Total/NA	Water	SM 2320B	
885-16882-3	MW-3	Total/NA	Water	SM 2320B	
885-16882-4	MW-4	Total/NA	Water	SM 2320B	
885-16882-5	FIELD DUP.	Total/NA	Water	SM 2320B	
MB 885-17794/2	Method Blank	Total/NA	Water	SM 2320B	
LCS 885-17794/3	Lab Control Sample	Total/NA	Water	SM 2320B	
MRL 885-17794/1	Lab Control Sample	Total/NA	Water	SM 2320B	

Analysis Batch: 17842

Released to Imaging: 8/12/2025 3:16:19 PM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-16882-1	MW-1	Total/NA	Water	2540C	
885-16882-2	MW-2	Total/NA	Water	2540C	
885-16882-3	MW-3	Total/NA	Water	2540C	
885-16882-4	MW-4	Total/NA	Water	2540C	
885-16882-5	FIELD DUP.	Total/NA	Water	2540C	
MB 885-17842/1	Method Blank	Total/NA	Water	2540C	
LCS 885-17842/2	Lab Control Sample	Total/NA	Water	2540C	
885-16882-5 DU	FIELD DUP.	Total/NA	Water	2540C	

Eurofins Albuquerque

A

5

7

8

9

Job ID: 885-16882-1

Client: Ranger Environmental Services, Inc Project/Site: Lmpsu Trash Pit

Client Sample ID: MW-1

Lab Sample ID: 885-16882-1

Sample ID. 005-10002-1

Matrix: Water

Date Collected: 12/09/24 15:17 Date Received: 12/12/24 07:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8021B		1	17965	AT	EET ALB	12/18/24 06:42
Total/NA	Analysis	300.0		100	17579	EH	EET ALB	12/12/24 17:24
Total/NA	Analysis	300.0		200	17697	EH	EET ALB	12/13/24 19:29
Dissolved	Analysis	200.7 Rev 4.4		1	18081	VP	EET ALB	12/19/24 07:44
Dissolved	Analysis	200.7 Rev 4.4		10	18081	VP	EET ALB	12/19/24 07:46
Total/NA	Analysis	2540C		1	17842	KS	EET ALB	12/16/24 12:09
Total/NA	Analysis	SM 2320B		1	17794	DL	EET ALB	12/13/24 18:14

Lab Sample ID: 885-16882-2

Matrix: Water

Date Collected: 12/09/24 13:01 Date Received: 12/12/24 07:45

Client Sample ID: MW-2

Γ	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8021B			17965	AT	EET ALB	12/18/24 07:04
Total/NA	Analysis	300.0		20	17579	EH	EET ALB	12/12/24 17:46
Dissolved	Analysis	200.7 Rev 4.4		1	18081	VP	EET ALB	12/19/24 07:48
Dissolved	Analysis	200.7 Rev 4.4		10	18081	VP	EET ALB	12/19/24 07:49
Total/NA	Analysis	2540C		1	17842	KS	EET ALB	12/16/24 12:09
Total/NA	Analysis	SM 2320B		1	17794	DI	FFT ALB	12/13/24 18:42

Client Sample ID: MW-3

Lab Sample ID: 885-16882-3

Matrix: Water

Date Collected: 12/09/24 14:33 Date Received: 12/12/24 07:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8021B		1	17965	AT	EET ALB	12/18/24 07:25
Total/NA	Analysis	300.0		20	17579	EH	EET ALB	12/12/24 18:30
Total/NA	Analysis	300.0		50	17697	EH	EET ALB	12/13/24 19:39
Dissolved	Analysis	200.7 Rev 4.4		1	18081	VP	EET ALB	12/19/24 07:51
Dissolved	Analysis	200.7 Rev 4.4		10	18081	VP	EET ALB	12/19/24 07:53
Total/NA	Analysis	2540C		1	17842	KS	EET ALB	12/16/24 12:09
Total/NA	Analysis	SM 2320B		1	17794	DL	EET ALB	12/13/24 18:55

Client Sample ID: MW-4 Lab Sample ID: 885-16882-4

Date Collected: 12/09/24 13:50

Matrix: Water

Date Received: 12/12/24 07:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8021B		1	17965	AT	EET ALB	12/18/24 08:29
Total/NA	Analysis	300.0		20	17579	EH	EET ALB	12/12/24 18:53
Dissolved	Analysis	200.7 Rev 4.4		10	18081	VP	EET ALB	12/19/24 08:00
Dissolved	Analysis	200.7 Rev 4.4		1	18081	VP	EET ALB	12/19/24 08:02
Total/NA	Analysis	2540C		1	17842	KS	EET ALB	12/16/24 12:09

Eurofins Albuquerque

2

2

7

Q

10

11

.

Lab Chronicle

Client: Ranger Environmental Services, Inc

Project/Site: Lmpsu Trash Pit

Client Sample ID: MW-4

Lab Sample ID: 885-16882-4

Matrix: Water

Job ID: 885-16882-1

Date Collected: 12/09/24 13:50 Date Received: 12/12/24 07:45

		Batch	Batch		Dilution	Batch			Prepared
	Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
l	Total/NA	Analysis	SM 2320B		1	17794	DL	EET ALB	12/13/24 19:06

Client Sample ID: FIELD DUP. Lab Sample ID: 885-16882-5

Date Collected: 12/09/24 13:02 Matrix: Water

Date Received: 12/12/24 07:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8021B		1	17965	AT	EET ALB	12/18/24 08:51
Total/NA	Analysis	300.0		20	17579	EH	EET ALB	12/12/24 19:37
Dissolved	Analysis	200.7 Rev 4.4		1	18081	VP	EET ALB	12/19/24 08:07
Dissolved	Analysis	200.7 Rev 4.4		10	18081	VP	EET ALB	12/19/24 08:13
Total/NA	Analysis	2540C		1	17842	KS	EET ALB	12/16/24 12:09
Total/NA	Analysis	SM 2320B		1	17794	DL	EET ALB	12/13/24 19:18

Client Sample ID: TRIP BLANK Lab Sample ID: 885-16882-6

Date Collected: 12/09/24 00:00 **Matrix: Water**

Date Received: 12/12/24 07:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8021B		1	17965	AT	EET ALB	12/18/24 09:12

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Accreditation/Certification Summary

Client: Ranger Environmental Services, Inc

Project/Site: Lmpsu Trash Pit

Job ID: 885-16882-1

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date	
Oregon	NELAI	P	NM100001	02-25-25	
The following analytes for which the agency do		it the laboratory is not certif	fied by the governing authority. This lis	st may include analyte	
Analysis Method	Prep Method	Matrix	Analyte		
0 ,		Matrix Water	Analyte Bicarbonate Alkalinity as 0	CaCO3	
Analysis Method					

4

5

6

8

9

10

Eurofins Albuquerque

PAGE OF

885-16882 COC SAMPLE COTTLES: 3x40 ML MCL VOOS, 2x500 ML PUSTE LA PRESCE If necessary, samples submitted to Hall Environmental may be subcontracted to the accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report HALL ENVIRONMENT **ANALYSIS LABORAT** 4901 Hawkins NE - Albuquerque, NM 87109 Fax 505-345-4107 **Analysis Request** + 1 x 125 ML MO3P PLOSTEL Tel. 505-345-3975 See Attached List X Chloride (EPA 300) TPH:8015D(GRO / DRO / MRO) BTEX (8021) JULY Mala pictor 3 Time Time HEAL NO. 11 0 J 12/1/34 Date 2 0 Project Manager: W. Kierdorf 3 □ Rush Preservative SEK MARS Sampler: W. KZEROOPF からんだが Project #: 5375, 6875 Project Name: Lmpsw_Trask_pz7 Cooler Temp(including CF): 五く匠 80十四 Type Turn-Around Time <u>S</u> Culmuru X Standard # of Coolers: Type and # 2x HULVARS SEE MORS Received by: Received by: Container On Ice: Level 4 (Full Validation) Chain-of-Custody Record Time | Matrix | Sample Name Mailing Address: PO Box 201179, Austin TX 78720 ong. TREP BLANK イ·~w NW-A MW-3 1-WM email or Fax#: Will@RangerEnv.com FIELD ☐ Az Compliance Relinquished by: Relinquished by: □ Other 7 Phone #: 521-335-1785 Excel AR Client: Ranger Env. 861 10/11/ 9/2024 ■ EDD (Type) QA/QC Package 1433 1302 1350 1517 1301 Accreditation: 1153 rime: ■ Standard Time: ■ NELAC ege 22 of 24 12/11/21

Released to Imaging: 8/12/2025 3:16:19 PM

1

12/19/2024

Please have all samples analyzed for the following constituents

Test	Method
BTEX	8021B
Anions ::	
including Chloride & Sulfate	300
Dissolved Metals ::	
including Calcium, Magnesium, Potassium, Sodium	6020B
Alkalinity ::	
including Bicarbonate, Carbonate, Hydroxide, Total Alkalinity	M2320B
TDS	M2540C

Ranger-Lmpsu Trash Pit

Login Sample Receipt Checklist

Client: Ranger Environmental Services, Inc Job Number: 885-16882-1

Login Number: 16882 List Source: Eurofins Albuquerque

List Number: 1

Creator: McQuiston, Steven

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
TCEQ Mtd 1005 soil sample was frozen/delivered for prep within 48H of sampling.	N/A	

ge 02 0j 07

1

3

4

6

8

9

10

11

Will Kierdorf <will@rangerenv.com>

Legacy Reserves LMPSU Trash Pit (nTO1427254875) Groundwater Sampling Notice

2 messages

Will Kierdorf <will@rangerenv.com>

Tue, Jun 18, 2024 at 4:36 PM

To: ocd.enviro@emnrd.nm.gov, michael.buchanan@emnrd.nm.gov, "Velez, Nelson, EMNRD" <nelson.velez@emnrd.nm.gov> Cc: Max Cook <max@rangerenv.com>, Chris Kowalski <chris.kowalski@teamoperating.com>

On behalf of Team Operating, LLC, please let this email service as notification that personnel from Ranger Environmental Services will be at the LMPSU (nTO1427254875) on Tuesday June 25, 2024, at approximately 8:00 AM MST to collect groundwater samples from the four monitoring wells associated with the site.

If you have any questions please do not hesitate to contact me.

Thank you!

--

Will Kierdorf, REM
Project Manager
Ranger Environmental Services, LLC
P.O. Box 201179
Austin, TX 78720
Phone: 512-335-1785

Phone: 512-335-1785 Fax: 512-335-0527

Wells, Shelly, EMNRD <Shelly.Wells@emnrd.nm.gov>

Tue, Jun 18, 2024 at 4:55 PM

To: Will Kierdorf <will@rangerenv.com>, "Buchanan, Michael, EMNRD" <Michael.Buchanan@emnrd.nm.gov>, "Velez, Nelson, EMNRD" <Nelson.Velez@emnrd.nm.gov>

Cc: Max Cook <max@rangerenv.com>, Chris Kowalski <chris.kowalski@teamoperating.com>

Good afternoon Will,

Thank you for providing notice to the OCD of the upcoming groundwater sampling at NTO1427254875 LANGLIE MATTIX PENROSE SAND UNIT TRASH PIT. This notice has been received and noted in the incident events of the site.

Kind regards,

Shelly

Shelly Wells * Environmental Specialist-Advanced

Environmental Bureau

EMNRD-Oil Conservation Division

1220 S. St. Francis Drive|Santa Fe, NM 87505

Released to Imaging: 8/12/2025 3:16:19 PM

(505)469-7520|Shelly.Wells@emnrd.nm.gov

http://www.emnrd.state.nm.us/OCD/

From: Will Kierdorf < will@rangerenv.com>

Sent: Tuesday, June 18, 2024 3:36 PM

To: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov>; Buchanan, Michael, EMNRD

<Michael.Buchanan@emnrd.nm.gov>; Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov> Cc: Max Cook <max@rangerenv.com>; Chris Kowalski <chris.kowalski@teamoperating.com>

Subject: [EXTERNAL] Legacy Reserves LMPSU Trash Pit (nTO1427254875) Groundwater Sampling Notice

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

[Quoted text hidden]

Will Kierdorf <will@rangerenv.com>

Legacy Reserves LMPSU Trash Pit (nTO1427254875) Groundwater Sampling Notice

4 messages

Will Kierdorf <will@rangerenv.com>

Tue, Nov 26, 2024 at 9:02 AM

To: ocd.enviro@emnrd.nm.gov, michael.buchanan@emnrd.nm.gov, "Velez, Nelson, EMNRD" <nelson.velez@emnrd.nm.gov> Cc: Ty Thompson <ty.thompson@teamoperating.com>

Good morning,

On behalf of Team Operating, LLC, please let this email service as notification that personnel from Ranger Environmental Services will be at the LMPSU (nTO1427254875) on Monday December 9, 2024, at approximately 12:00 PM MST to collect groundwater samples from the four monitoring wells associated with the site.

If you have any questions please do not hesitate to contact me.

Thank you!

--

Will Kierdorf, REM
Project Manager
Ranger Environmental Services, LLC
P.O. Box 201179
Austin, TX 78720
Phone: 512-335-1785

Phone: 512-335-1785 Fax: 512-335-0527

Buchanan, Michael, EMNRD < Michael. Buchanan@emnrd.nm.gov>

Tue, Nov 26, 2024 at 9:15 AM

To: Will Kierdorf <will@rangerenv.com>, "Enviro, OCD, EMNRD" <OCD.Enviro@emnrd.nm.gov>, "Velez, Nelson, EMNRD" <Nelson.Velez@emnrd.nm.gov>

Cc: Ty Thompson <ty.thompson@teamoperating.com>

Good morning, Will. Thank you for the notification, it has been received.

Mike

From: Will Kierdorf < will@rangerenv.com> Sent: Tuesday, November 26, 2024 8:02 AM

To: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov>; Buchanan, Michael, EMNRD

<Michael.Buchanan@emnrd.nm.gov>; Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>

Cc: Ty Thompson <ty.thompson@teamoperating.com>

Subject: [EXTERNAL] Legacy Reserves LMPSU Trash Pit (nTO1427254875) Groundwater Sampling Notice

You don't often get email from will@rangerenv.com. Learn why this is important

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening

2	tt	2	\sim	h	m	\sim	n	٠	0	
a	LL	а	u	ш		ᆮ		ш	0	

[Quoted text hidden]

Buchanan, Michael, EMNRD < Michael. Buchanan@emnrd.nm.gov>

Tue, Nov 26, 2024 at 9:16 AM

To: Will Kierdorf <will@rangerenv.com>, "Velez, Nelson, EMNRD" <Nelson.Velez@emnrd.nm.gov>

Cc: Ty Thompson <ty.thompson@teamoperating.com>

Good morning, Will

The groundwater sampling notification has been received. Thank you.

From: Will Kierdorf < will@rangerenv.com> Sent: Tuesday, November 26, 2024 8:02 AM

To: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov >; Buchanan, Michael, EMNRD

<Michael.Buchanan@emnrd.nm.gov>; Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>

Cc: Ty Thompson <ty.thompson@teamoperating.com>

Subject: [EXTERNAL] Legacy Reserves LMPSU Trash Pit (nTO1427254875) Groundwater Sampling Notice

You don't often get email from will@rangerenv.com. Learn why this is important

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good morning,

[Quoted text hidden]

Wells, Shelly, EMNRD <Shelly.Wells@emnrd.nm.gov>

Tue, Nov 26, 2024 at 9:52 AM

To: Will Kierdorf <will@rangerenv.com>

Cc: Ty Thompson <ty.thompson@teamoperating.com>, "Velez, Nelson, EMNRD" <Nelson.Velez@emnrd.nm.gov>, "Buchanan, Michael, EMNRD" <Michael.Buchanan@emnrd.nm.gov>, "Bratcher, Michael, EMNRD" <mike.bratcher@emnrd.nm.gov>

Good morning Will,

Your message has been received and the incident events updated to reflect this.

Kind regards,

Shelly

Shelly Wells * Environmental Specialist-Advanced

Environmental Bureau

EMNRD-Oil Conservation Division

1220 S. St. Francis Drive|Santa Fe, NM 87505

(505)469-7520|Shelly.Wells@emnrd.nm.gov

http://www.emnrd.state.nm.us/OCD/

From: Will Kierdorf < will@rangerenv.com> Sent: Tuesday, November 26, 2024 8:02 AM

To: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov>; Buchanan, Michael, EMNRD

<Michael.Buchanan@emnrd.nm.gov>; Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>

Cc: Ty Thompson <ty.thompson@teamoperating.com>

Subject: [EXTERNAL] Legacy Reserves LMPSU Trash Pit (nTO1427254875) Groundwater Sampling Notice

You don't often get email from will@rangerenv.com. Learn why this is important

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good morning,

[Quoted text hidden]

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 447410

CONDITIONS

Operator:	OGRID:
TEAM OPERATING, L.L.C.	332148
PO Box 835	Action Number:
Pinehurst, TX 77362	447410
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By		Condition Date
shanna.smith	Provide groundwater samples from all 4 monitor wells for constituents listed under 20.6.2.3103 NMAC	8/12/2025
shanna.smith	Fully delineate extent of the contamination plume.	8/12/2025