Location:	Big Eddy Unit DI 29			
Spill Date:	6/27/2025			
Incident #:	NAPP2518149545			
	Area 1			
Approximate Area	=	1564	sq. ft.	
Average Saturation	n (or depth) of spill =	2.00	inches	
Average Porosity Factor = 0.25				
	VOLUME OF LEAK			
Total Crude Oil =		9.00	bbls	
Total Produced Wa	Total Produced Water = 1.00			
	TOTAL VOLUME OF LEAK			
Total Crude Oil =		9.00	bbls	
Total Produced Water = 1.0				
	TOTAL VOLUME RECOVERED			
Total Crude Oil =		0.00	bbls	
Total Produced W	ater =	0	bbls	

Incident Number: NAPP2518149545

Release Assessment and Incident Closure

Big Eddy Unit DI 29 Battery

Section 21, Township 20 South, Range 32 East

Facility: FAPP2123046227

County: Lea

Coordinates: 32.56479, -103.77798 Vertex File Number: 25A-03635

Prepared for:

ExxonMobil Production Company

Prepared by:

Vertex Resource Services Inc.

Date:

October 2025

Release Assessment and Incident Closure October 2025

Big Eddy Unit DI 29 Battery

Section 21, Township 20 South, Range 32 East

Facility: FAPP2123046227

County: Lea

Coordinates: 32.56479, -103.77798

Prepared for:

ExxonMobil Production Company 3104 East Greene Street

Carlsbad, New Mexico 88220

New Mexico Oil Conservation Division - District 1

508 West Texas Avenue Artesia, New Mexico 88210

Prepared by:

Vertex Resource Services Inc.

3101 Boyd Drive

Carlsbad, New Mexico 88220

Stephanis McCarty
Stephanie McCarty, B.Sc.

ENVIRONMENTAL SPECIALIST, REPORTING

October 3, 2025

Date

Chad Hensley, B.Sc. GCNR

SENIOR PROJECT MANAGER, REPORT REVIEW

October 3, 2025

Date

Table of Contents

5.0

6.0

Release Assessment and Incident Closure October 2025

1.0	Introduction	1
2.0	Incident Description	1
3.0	Site Characteristics	1
4.0	Closure Criteria Determination	2

Release Assessment and Incident Closure October 2025

In-text Tables

- Table 1. Closure Criteria Determination
- Table 2. Closure Criteria for Soils Impacted by a Release DTGW ≤50 ft bgs

List of Figures

- Figure 1. Characterization Sampling Site Schematic
- Figure 2. Confirmation Sampling Site Schematic

List of Tables

- Table 3. Initial Characterization Laboratory Results Depth to Groundwater < 50 feet bgs
- Table 4. Confirmation Sample Laboratory Results Depth to Groundwater < 50 feet bgs

List of Appendices

- Appendix A. Closure Criteria Research Documentation
- Appendix B. Daily Field and Sampling Reports
- Appendix C. Laboratory Data Reports and Chain of Custody Forms

Release Assessment and Incident Closure October 2025

1.0 Introduction

ExxonMobil Production Company (Exxon) retained Vertex Resource Services Inc. (Vertex) to conduct an Incident Closure for a crude oil and produced water release that occurred on June 26, 2025, at Big Eddy Unit DI 29 Battery, Facility: FAPP2123046227 (hereafter referred to as the "site"). Exxon submitted a Notification of Release to New Mexico Oil Conservation Division (NMOCD) District 1 on June 30, 2025. On July 3, 2025, Exxon then submitted an initial C-141 that was accepted and incident ID number nAPP2518149545 was assigned to this incident.

This report provides a description of the release assessment and remediation activities associated with the site. The information presented demonstrates that closure criteria established in Table I of 19.15.29.12 of the *New Mexico Administrative Code* (NMAC; New Mexico Oil Conservation Division, 2018) related to NMOCD has been met and all applicable regulations are being followed. This document is intended to serve as a final report to obtain approval from NMOCD for closure of this release, with the understanding that restoration of the release site will be deferred until such time as all oil and gas activities are terminated and the site is reclaimed as per NMAC 19.15.29.13.

2.0 Incident Description

The release occurred on June 26, 2025, due to equipment failure and resulted in a flare fire. The incident was initially reported on June 30, 2025, and involved the release of approximately 9 barrels (bbl) of crude oil and 1 bbl of produced water on the pad site. During initial clean-up, 0 bbl of free fluid was removed. Additional details relevant to the release are presented in the C-141 Report.

3.0 Site Characteristics

The site is located approximately 25.5 miles northeast of Carlsbad New Mexico. The legal location for the site is Section 21, Township 20 South and Range 32 East in Lea County, New Mexico (32.56479, -103.77798). The release area is located on Bureau of Land Management property. An aerial photograph and site schematic are presented on Figure 1.

The Geological Map of New Mexico (New Mexico Bureau of Geology and Mineral Resources, 2025) indicates the site's surface geology primarily comprises Qp – piedmont alluvial deposits of the upper and middle quaternary. Predominant soil texture on the site is Shallow Sandy. Additional soil characteristics include a drainage class of well drained with a runoff class of very high. The karst geology potential for the site is medium (United States Department of the Interior, Bureau of Land Management, 2018).

The location is typical of oil and gas exploration and production sites in the Permian Basin and is currently used for oil and gas storage and production. The following sections specifically describe the release area around the flare on the constructed pad (Figure 1).

The surrounding landscape is associated with plains with elevations ranging between 2,842 and 4,500 feet. The climate is semiarid with average annual precipitation ranging between 8 and 13 inches. Using information from the United States Department of Agriculture, the dominant vegetation was determined to be grasses, specifically black grama, but are notably characterized by the presence of shrubs such as mesquite, creosote bush or broom snakeweed. Black grama

Release Assessment and Incident Closure October 2025

dominate the historical plant community (United States Department of Agriculture, Natural Resources Conservation Service, 2025). Limited to no vegetation is sanctioned to grow on the compacted production pad.

4.0 Closure Criteria Determination

The nearest depth to groundwater reference to the site is CP-01891-POD1, a plugged New Mexico Office of the State Engineer monitoring well located approximately 0.14 miles north of the site. Data from 2021 shows the United States Geological Survey borehole recorded a depth to groundwater of 33 feet below ground surface (bgs). Information pertaining to the depth to ground water determination is included in Appendix A.

There is no surface water present at the site. The nearest significant watercourse, as defined in Subsection P of 19.15.17.7 NMAC, is an intermittent stream located 0.15 miles north of the release (National Wetlands Inventory) located (United States Fish and Wildlife Service, 2025).

At the site, there are no continuously flowing watercourses or significant watercourses, lakebeds, sinkholes, playa lakes or other critical water or community features as outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC.

Coo	rdinates: 32.56479, -103.7779	X: 614724.36	Y: 3603699.82
Spec	ific Conditions	Value	Unit
	Depth to Groundwater (nearest reference)	33	feet
1	Distance between release and nearest DTGW reference	764	feet
1	Distance between release diffu fleatest DTOW reference	0.14	miles
	Date of nearest DTGW reference measurement	Octobe	er 26, 2021
2	Within 300 feet of any continuously flowing watercourse or any other significant watercourse	810	feet
3	Within 200 feet of any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark)	1,823	feet
4	Within 300 feet from an occupied residence, school, hospital, institution or church	14,657	feet
5	i) Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or	162,906	feet
	ii) Within 1000 feet of any fresh water well or spring	162,906	feet
6	Within incorporated municipal boundaries or within a defined municipal fresh water field covered under a municipal ordinance adopted pursuant to Section 3-27-3 NMSA 1978 as amended, unless the municipality specifically approves	No	(Y/N)
7	Within 300 feet of a wetland	600	feet
	Within the area overlying a subsurface mine	No	(Y/N)
8	Distance between release and nearest registered mine	8,302	feet
9	Within an unstable area (Karst Map)	Medium	Critical High Medium Low
	Distance between release and nearest unstable area	0	feet
	Within a 100-year Floodplain	Undetermined	year
10	Distance between release and nearest FEMA Zone A (100-year Floodplain)	50,925	feet
11	Soil Type	Simona-Upt	on association
12	Ecological Classification	Shallo	ow Sandy
13	Geology	Qp - Piedm	nont Deposits
	NMAC 19.15.29.12 E (Table 1) Closure Criteria	<50'	<50' 51-100' >100'

The closure criteria determined for the site are associated with the following constituent concentration limits as presented in Table 2.

Table 2. Closure Criteria for Soils Impacted by a Release DTGW ≤ 50 feet bgs						
Minimum depth below any point within the horizontal boundary of the release to groundwater	Countition	I too ta				
less than 10,000 mg/l TDS	Constituent	Limit				
	Chloride	600 mg/kg				
≤ 50 feet	TPH (GRO+DRO+MRO)	100 mg/kg				
≤ 50 Teet	ВТЕХ	50 mg/kg				
	Benzene	10 mg/kg				

DTGW - depth to groundwater

bgs - below ground surface

TDS - total dissolved solids

TPH – total petroleum hydrocarbons, GRO – gas range organics, DRO – diesel range organics, MRO – motor oil range organics

BTEX – benzene, toluene, ethylbenzene, and xylenes

5.0 Remedial Actions Taken

An initial site assessment of the release area was concluded on July 16, 2025, which identified an area of interest containing staining as specified in the initial C-141 Report. Due to safety concerns about prolonged work near an active flare, delineation sampling was limited, and a stop work was issued to shut in the well for a safer work environment. Returning on September 22, 2025, after the well was shut in, a further detailed delineation was conducted. Delineation of the release area was completed during excavation and confirmation sampling. In total, eight sample points were established, one borehole with at least two discrete samples, for each cardinal direction. Eighteen delineation samples were collected and submitted for laboratory analysis. Daily Field Reports including site photographs are included in Appendix B. Laboratory results are presented in Table 3 and the laboratory data reports are included in Appendix C. Sample locations and release area are presented on Figure 1.

Remediation efforts began on September 22, 2025, and were finalized on September 25, 2025. Vertex personnel guided the excavation of impacted soils. Field screening was completed on sample points to guide the excavation and consisted of analysis using a Dexsil Petroflag using EPA SW-846 Method 9074 (extractable hydrocarbons) and silver nitrate (chlorides). Field screening results were used to identify areas requiring further remediation. Soils were removed to a depth of 1.1 to 1.2 feet bgs. Impacted soil was transported by a licensed waste hauler and disposed of at an approved waste management facility. Daily Field Reports containing site photographs documenting various phases of the remediation are included in Appendix B. A total of three confirmation samples were collected and submitted for laboratory analysis. The sample for BS25-01 exceeded closure criteria and was recollected utilizing a rock bar on September 25, 2025. Notification that confirmatory samples were being collected was provided to the NMOCD at least 48 hours in advance, on September 19, 2025, for all sampling events. Confirmatory composite samples were collected from the base and walls of the excavation in 200 square foot increments. Samples were submitted to Cardinal Laboratories under chain-of-custody protocols and analyzed for BTEX (EPA Method 8021B), total petroleum hydrocarbons (GRO, DRO, MRO – EPA Method 8015D) and total chlorides (EPA Method 300.0). Laboratory results are

Release Assessment and Incident Closure October 2025

presented in Table 4, and the laboratory data reports are included in Appendix C. Confirmation sampling and remediation areas are presented on Figure 2.

6.0 Closure Request

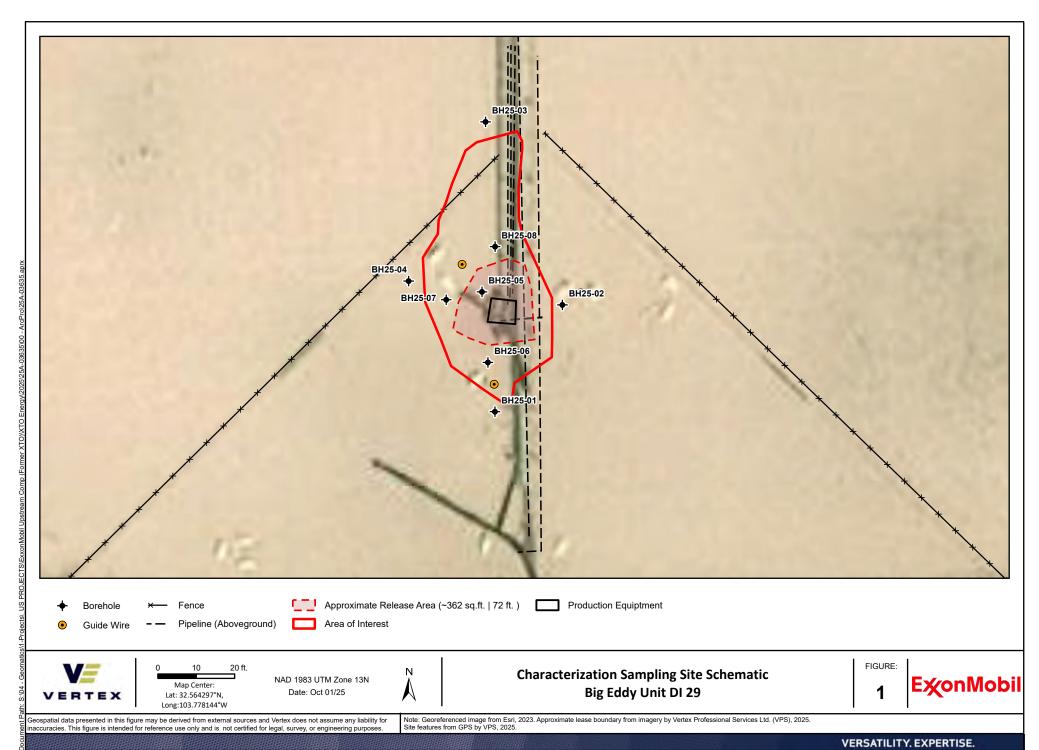
The release area was fully delineated and remediated by September 25, 2025. Confirmatory samples were analyzed by the laboratory and found to be below allowable concentrations as per the NMAC Closure Criteria for Soils Impacted by a Release location "under 50 feet to groundwater". Based on these findings, Exxon requests that this release be closed.

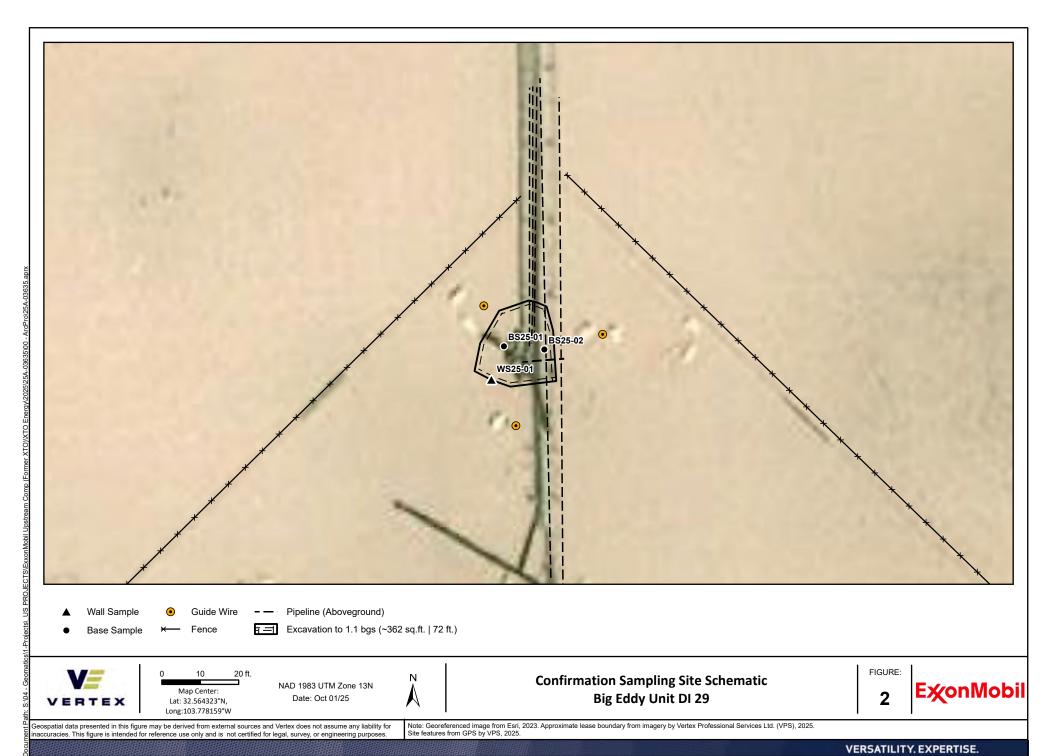
Should you have any questions or concerns, please do not hesitate to contact Chad Hensley at 575.200.6167 or CHensley@vertex.ca.

7.0 References

- Google Inc. (2025). Google Earth Pro (Version 7.3.3) [Software]. Retrieved from https://earth.google.com
- New Mexico Bureau of Geology and Mineral Resources. (2025). *Interactive Geologic Map*. Retrieved from https://maps.nmt.edu/
- New Mexico Department of Surface Water Quality Bureau. (2025). Assessed and Impaired Waters of New Mexico.

 Retrieved from https://gis.web.env.nm.gov/oem/?map=swqb
- New Mexico Energy, Minerals and Natural Resources Department. (2025). *OCD Permitting Spill Search*. Retrieved from https://wwwapps.emnrd.nm.gov/ocd/ocdpermitting/Data/Spills/Spills.aspx
- New Mexico Office of the State Engineer. (2025a). *Point of Diversion Location Report New Mexico Water Rights Reporting System*. Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/wellSurfaceDiversion.html
- New Mexico Office of the State Engineer. (2025b). Water Column/Average Depth to Water Report New Mexico Water Rights Reporting System. Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/waterColumn.html
- New Mexico Office of the State Engineer. (2025c). Well Log/Meter Information Report New Mexico Water Rights Reporting System. Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/meterReport.html
- New Mexico Oil Conservation Division. (2018). *New Mexico Administrative Code Natural Resources and Wildlife Oil and Gas Releases*. Santa Fe, New Mexico.
- United States Department of Agriculture, Natural Resources Conservation Service. (2025). *Web Soil Survey*. Retrieved from https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx
- United States Department of Homeland Security, Federal Emergency Management Agency. (2025). *FEMA Flood Map Service: Search by Address*. Retrieved from https://msc.fema.gov/portal/search?AddressQuery=malaga% 20new%20mexico#searchresultsanchor
- United States Department of the Interior, Bureau of Land Management. (2018). *New Mexico Cave/Karst*. Retrieved from https://www.nm.blm.gov/shapeFiles/cfo/carlsbad spatial data.html
- United States Fish and Wildlife Service. (2025). *National Wetland Inventory Surface Waters and Wetlands*. Retrieved from https://fwsprimary.wim.usgs.gov/wetlands/apps/wetlands-mapper/


Release Assessment and Incident Closure October 2025


8.0 Limitations

This report has been prepared for the sole benefit of ExxonMobil Production Company. This document may not be used by any other person or entity, with the exception of the New Mexico Oil Conservation Division and the Bureau of Land Management, without the express written consent of Vertex Resource Services Inc. (Vertex) and ExxonMobil Production Company. Any use of this report by a third party, or any reliance on decisions made based on it, or damages suffered as a result of the use of this report are the sole responsibility of the user.

The information and conclusions contained in this report are based upon work undertaken by trained professional and technical staff in accordance with generally accepted scientific practices current at the time the work was performed. The conclusions and recommendations presented represent the best judgement of Vertex based on the data collected during the assessment. Due to the nature of the assessment and the data available, Vertex cannot warrant against undiscovered environmental liabilities. Conclusions and recommendations presented in this report should not be considered legal advice.

FIGURES

TABLES

Client Name: ExxonMobil Production Company

Site Name: Big Eddy Unit DI 29 Battery NMOCD Tracking #:nAPP2518149545

Project #: 25A-03635

Lab Reports: H254368, H254105, & H255969

Table 3. Initial Characterization Laboratory Results										
		Petroleum Hydrocarbons								
		Vol	atile			Extractable)		Inorganic	
Sample ID	Depth (ft)	Sample Date	Benzene	BTEX (Total)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics (MRO)	(GRO + DRO)	Total Petroleum Hydrocarbons (TPH)	Chloride Concentration
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) oundwater	(mg/kg)	(mg/kg)	(mg/kg)
	0	Il. 0 2025	ND	ND	ND	ND ND	ND ND	ND	ND	ND
BH25-01	0	July 9, 2025	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	32
	1R	July 15, 2025								
DU2E 02	0	July 9, 2025	ND ND	ND	ND	ND	ND	ND	ND	32
BH25-02	1R	July 16, 2025	ND ND	ND	ND	ND 15	ND	ND 15	ND 15	32
	1	September 23, 2025	ND ND	ND ND	ND ND	ND	ND ND	15 ND	ND	32 48
BH25-03	0	July 9, 2025								
	1R	July 16, 2025	ND	ND	ND	ND	ND	ND	ND	48
BH25-04	0	July 9, 2025	ND	ND	ND	ND	ND	ND	ND	32
	1R	July 16, 2025	ND	ND	ND	ND	ND	ND 40.200	ND 25.010	16
DU 25 05	0	July 9, 2025	ND	ND	ND	19,200	7,710	19,200	26,910	112
BH25-05	0.5	July 9, 2025	ND	ND	ND	1,210	466	1,210	1,676	48
	1R	July 9, 2025	ND	ND	ND	84	36	84	120	144
BH25-06	0	September 23, 2025	ND	ND	ND	ND	ND	ND	ND	ND 46
	1	September 23, 2025	ND	ND	ND	ND	ND	ND	ND	16
BH25-07	0	September 23, 2025	ND	ND	ND	ND	ND	ND	ND	32
	1	September 23, 2025	ND	ND	ND	ND	ND	ND	ND	16
BH25-08	0	September 23, 2025	ND	ND	ND	13 ND	ND	13 ND	13	32
	1	September 23, 2025	ND	ND	ND	ND	ND	ND	ND	16

[&]quot;ND" Not Detected at the Reporting Limit

Bold and grey shaded indicates exceedance outside of NMOCD Closure Criteria (on-pad)

[&]quot;R" indicates refusal with hand tools

[&]quot;-" indicates not analyzed/assessed

Client Name: ExxonMobil Production Company

Site Name: Big Eddy Unit DI 29 Battery NMOCD Tracking #:nAPP2518149545

Project #: 25A-03635

Lab Reports: H255969 and H256105

Table 4. Confirmation Sample Laboratory Results										
	Sample Des	cription			Petrole	eum Hydro	carbons			
			Vol	atile			Extractable	!		Inorganic
Sample ID	Depth (ft)	Sample Date	Benzene	BTEX (Total)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics (MRO)	(GRO + DRO)	Total Petroleum Hydrocarbons (TPH)	Chloride Concentration
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
			Depth to Groundwater <50							
BS25-01	1.1	September 23, 2025	ND	ND	ND	90.3	47.5	90.3	137.8	64
B325-U1	1.2	September 25, 2025	ND	ND	ND	26.1	10.7	26.1	36.8	48
BS25-02	1.1	September 23, 2025	ND	ND	ND	24.7	ND	24.7	24.7	16
WS25-01	0-1.1	September 23, 2025	ND	ND	ND	ND	ND	ND	ND	16

[&]quot;ND" Not Detected at the Reporting Limit

Bold and grey shaded indicates exceedance outside of NMOCD Closure Criteria (on-pad)

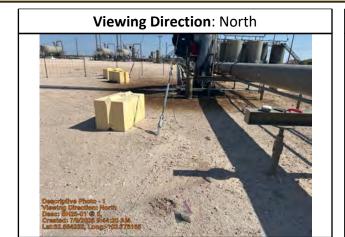
[&]quot;-" indicates not analyzed/assessed

APPENDIX B – Daily Field and Sampling Reports

	V	V		4	
V	E	B	T	E	×

Client:	ExxonMobil	Incident ID #:	
Site Location Name:	Big Eddy Unit DI 29	API #:	
Inspection Date:	7/9/2025		
		Summary of Times	
Arrived at Site	7/9/2025 8:45 AM		
Departed Site	7/9/2025 1:30 PM		

Field Notes


- **9:07** Travel to site/ safety paperwork
- 9:07 Production equipment was mapped out
- 9:08 BH25-01 through BH25-05 were collected at 0' and field screened
- 12:53 BH25-05 was collected at 0.5' and 1'R
- 12:55 All samples were jarred, labeled, and coc's were created

Next Steps & Recommendations

- 1 Complete delineation
- 2 Create work plan
- 3 Excavation

Site Photos

BH25-01 @ 0'

Viewing Direction: East

Descriptive Spicito: 2
Viewing Direction: East
Descriptive Spicito: 2
Viewing Direction: East
Descriptive Spicito 344
City 222, Sept. 2018
City 222, Sep

BH25-04 @ 0'

BH25-05 @ 0'

BH25-05 @ 0.5'

BH25-05 @ 1'R

Daily Site Visit Signature

Inspector: Riley Arnold

Signature:

Departed Site

Daily Site Visit Report

7/16/2025 1:45 PM

	V	V		4	
V	E	B	T	E	×

Client:	ExxonMobil	Incident ID #:			
Site Location Name:	Big Eddy Unit DI 29	API #:			
Inspection Date:	7/16/2025				
Summary of Times					
Arrived at Site	7/16/2025 9:30 AM				

Field Notes

- 9:39 BH25-01 through BH25-04 were collected at 1' refusal
- 9:39 Samples were field screened
- 9:40 Samples were jarred and labeled / coc's were created
- 12:18 Map edits were made

Next Steps & Recommendations

- 1 Send to lab for further analysis
- 2 Creat scope of work

Site Photos

BH25-04 @ 1'R

Viewing Direction: North

BH25-01 @ 1'R

BH25-03 @ 1'R

Daily Site Visit Signature

Inspector: Riley Arnold

Signature:

	V	V		4	
V	E	B	T	E	×

Client:	ExxonMobil	Incident ID #:	
Site Location Name:	Big Eddy Unit DI 29	API#:	
Inspection Date:	9/22/2025		
		Summary of Times	
Arrived at Site	9/22/2025 7:55 AM		
Departed Site	9/22/2025 2:15 PM		

Field Notes

- 9:03 Completed saftey paperwork upon arrival and met with Kent Retz
- 9:02 Marked out the release area for the Hydrovac
- 9:02 Started out 1ft out from around the stained area and 1ft down
- 14:00 The ground contained an excessive amount of rocky material making it difficult for the Hydrovac to break through
- 14:15 Excavation area was already contained inside fencing

Next Steps & Recommendations

1

Site Photos

Viewing Direction: South

Hydrovacced caliche reveals hard packed material

Viewing Direction: Southwest

Excavation area at end of day

Viewing Direction: Northeast

Large boulders are in the release area around what's being Hydrovaced

Viewing Direction: Northeast

Excavation area at end of day

Excavation area at end of day

Daily Site Visit Signature

Inspector: Katrina Taylor

Signature:

Departed Site

Daily Site Visit Report

9/23/2025 5:30 PM

	V			4	
V	E	B	T	E	×

Client:	ExxonMobil	Incident ID #:				
Site Location Name:	Big Eddy Unit DI 29	API #:				
Inspection Date:	9/23/2025					
Summary of Times						
Arrived at Site	9/23/2025 8:10 AM					

Field Notes

- 9:51 Completed safety paperwork, had a safety meeting, received work authorization, and confirmed the flare was shut off before starting work
- 9:51 Continued hydrovaccing to start then began breaking up some of the bolders with rock bars
- 17:27 Base is at refusal for hand excavation and hydrovaccing at end of day. Field screened indicated that the base was clean
- 17:27 BS25-01, BS25-02, WS25-01 and the remainder of delineation was collected
- 17:28 The extent of the excavation was to 1ft past the visible stain

Next Steps & Recommendations

1

Site Photos

Bolders broken up with rock bar

BH25-07 0-1 west of the excavation

BH25-08 0-1 north of the excavation

BH25-06 0-1 south of the excavation

BH25-02 0-1 east of the excavation

Excavation at end of day

Excavation at end of day

Excavation at end of day

Excavation at end of day

Daily Site Visit Signature

Inspector: Katrina Taylor

Signature:

Departed Site

Daily Site Visit Report

9/25/2025 1:40 PM

	V			4	
V	E	B	T	E	×

Client:	ExxonMobil	Incident ID #:		
Site Location Name:	Big Eddy Unit DI 29	API #:		
Inspection Date:	9/25/2025			
		Summary of Ti	mes	
Arrived at Site	9/25/2025 12:31 PM			

Field Notes

- 12:32 Completed saftey paperwork upon arrival
- 12:34 Conducting a site visit to recollect BS25-01
- 12:35 Sample is located around the north and west areas of the flair and was field screened on location for TPH

Next Steps & Recommendations

1

Site Photos

Run on 9/26/2025 3:49 PM UTC Powered by www.krinkleldar.com Page 4 of 5

Daily Site Visit Signature

Inspector: Katrina Taylor

Signature:

APPENDIX C – Laboratory Data Reports and Chain of Custody Forms

July 24, 2025

CHAD HENSLEY

VERTEX RESOURCE

3101 BOYD DRIVE

CARLSBAD, NM 88220

RE: BEU DI 29 CTB

Enclosed are the results of analyses for samples received by the laboratory on 07/21/25 12:35.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C25-00101. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Celey D. Keine

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

VERTEX RESOURCE CHAD HENSLEY 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 07/21/2025 Reported: 07/24/2025

Project Name: BEU DI 29 CTB Project Number: 25A - 03635 Project Location: **EXXON MOBIL**

Sampling Date: 07/16/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Alyssa Parras

Sample ID: BH 25-01 @ 1' R (H254368-01)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/23/2025	ND	2.09	104	2.00	1.20	
Toluene*	<0.050	0.050	07/23/2025	ND	2.13	106	2.00	1.37	
Ethylbenzene*	<0.050	0.050	07/23/2025	ND	2.07	104	2.00	0.618	
Total Xylenes*	<0.150	0.150	07/23/2025	ND	6.08	101	6.00	0.542	
Total BTEX	<0.300	0.300	07/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/22/2025	ND	400	100	400	7.69	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/23/2025	ND	200	100	200	0.347	
DRO >C10-C28*	<10.0	10.0	07/23/2025	ND	193	96.7	200	0.386	
EXT DRO >C28-C36	<10.0	10.0	07/23/2025	ND					
Surrogate: 1-Chlorooctane	82.7	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	76.6	% 40.6-15	3						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

VERTEX RESOURCE **CHAD HENSLEY** 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 07/21/2025 Reported:

07/24/2025 BEU DI 29 CTB 25A - 03635

Project Location: **EXXON MOBIL**

Project Name:

Project Number:

Sampling Date: 07/16/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Alyssa Parras

Sample ID: BH 25-02 @ 1' R (H254368-02)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/23/2025	ND	2.09	104	2.00	1.20	
Toluene*	<0.050	0.050	07/23/2025	ND	2.13	106	2.00	1.37	
Ethylbenzene*	<0.050	0.050	07/23/2025	ND	2.07	104	2.00	0.618	
Total Xylenes*	<0.150	0.150	07/23/2025	ND	6.08	101	6.00	0.542	
Total BTEX	<0.300	0.300	07/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/22/2025	ND	400	100	400	7.69	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/23/2025	ND	200	100	200	0.347	
DRO >C10-C28*	<10.0	10.0	07/23/2025	ND	193	96.7	200	0.386	
EXT DRO >C28-C36	<10.0	10.0	07/23/2025	ND					
Surrogate: 1-Chlorooctane	80.7	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	76.2	% 40.6-15	3						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

VERTEX RESOURCE CHAD HENSLEY 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 07/21/2025 Reported: 07/24/2025

07/24/2025 BEU DI 29 CTB 25A - 03635

mg/kg

Project Location: EXXON MOBIL

Sampling Date: 07/16/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Alyssa Parras

Sample ID: BH 25-03 @ 1' R (H254368-03)

Project Name:

BTEX 8021B

Project Number:

	9/	9	7	,					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/23/2025	ND	2.09	104	2.00	1.20	
Toluene*	<0.050	0.050	07/23/2025	ND	2.13	106	2.00	1.37	
Ethylbenzene*	<0.050	0.050	07/23/2025	ND	2.07	104	2.00	0.618	
Total Xylenes*	<0.150	0.150	07/23/2025	ND	6.08	101	6.00	0.542	
Total BTEX	<0.300	0.300	07/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.0	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/22/2025	ND	400	100	400	7.69	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/23/2025	ND	200	100	200	0.347	
DRO >C10-C28*	<10.0	10.0	07/23/2025	ND	193	96.7	200	0.386	
EXT DRO >C28-C36	<10.0	10.0	07/23/2025	ND					
Surrogate: 1-Chlorooctane	76.5	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	70.5	% 40.6-15	3						

Analyzed By: JH

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey & Keene

Analytical Results For:

VERTEX RESOURCE **CHAD HENSLEY** 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 07/21/2025 Reported:

07/24/2025 BEU DI 29 CTB 25A - 03635

EXXON MOBIL

Project Location:

Project Name:

Project Number:

Sampling Date: 07/16/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Alyssa Parras

Sample ID: BH 25-04 @ 1' R (H254368-04)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/23/2025	ND	2.09	104	2.00	1.20	
Toluene*	<0.050	0.050	07/23/2025	ND	2.13	106	2.00	1.37	
Ethylbenzene*	<0.050	0.050	07/23/2025	ND	2.07	104	2.00	0.618	
Total Xylenes*	<0.150	0.150	07/23/2025	ND	6.08	101	6.00	0.542	
Total BTEX	<0.300	0.300	07/23/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.0	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	07/22/2025	ND	400	100	400	7.69	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/23/2025	ND	200	100	200	0.347	
DRO >C10-C28*	<10.0	10.0	07/23/2025	ND	193	96.7	200	0.386	
EXT DRO >C28-C36	<10.0	10.0	07/23/2025	ND					
Surrogate: 1-Chlorooctane	79.8	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	73.9	% 40.6-15	3						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Page 7 of

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

roject Manager	Vertex Resource				В	ILL TO					ANALYS	IS REQU	EST	
hone #: 575	-700-6167 Fav #.		88220	Co Att	on #: 2 (0825 Exxon eyncas	Mobil Reenest							
oject #: 25A	EU DI 29 CTB	wner:		Sta	Y: Cast	56ad Zip: 88								
or LAB USE ONLY	Riley Arnold			Fax									1 1	
IN DAS USE UNLY	•	۵	MATRIX		PRESERV.	SAM	PLING	1		Se				
-ab I.D.	Sample I.D.	(G)RAB OR (C)OM	GROUNDWATER WASTEWATER SOIL	SLUDGE	ACID/BASE ICE / COOLC OTHER	DATE	TIME	BTEX	TPH	Chlorid				
2 8	H25-01 D 1'R H25-02 D 1'R SH25-03 D 1'R SH25-04 D 1'R	GII	X		X	7.16.25	10:20	X	X	X				
4 2	SH25-04 2011				-		10:50 11:22	1	1					
NOTE: Liability and Dam	ragés. Cardinal's liability and client's exclusive remady.									+				
s. All chains including those in no svent shall Cardinal I or successors arrang out o nodis hear By;	e for negligence and any other cause whatsoever shall be liable for incidental or consequental damages, inch of or related to the performance of services hereunder Date:	the deemed waive ding without limital by Cardinal regard Receiv	ig whether based in contract of unless made in writing at tion, business interruptions, dless of whether such claim (ed By:	icss of use	by Cardinal with or loss of profit	is incurred by clie bove stated reas	ompletion of the : nt. Its subsidianes ons or otherwise							
In Mus	Truell Time:	S	ed by.				Verbal Results a	ult: [are ema	Yes	☐ No lease prov	Add'l Phone # ide Email addre	: SS:		

Chensley a Vestexresource.com Time: Delivered By: (Circle One) Sample Condition CHECKED BY: Turnaround Time: Standard Bacteria (only) Sample Condition Cool Intact ampler - UPS - Bus - Other: (Initials) Yes Yes Cool Intact Observed Temp, °C Thermometer ID 137140 ☐Yes ☐ Yes

July 17, 2025

CHAD HENSLEY

VERTEX RESOURCE

3101 BOYD DRIVE

CARLSBAD, NM 88220

RE: BEU DI 29 CTB

Enclosed are the results of analyses for samples received by the laboratory on 07/10/25 13:40.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C25-00101. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Celey D. Keine

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

VERTEX RESOURCE CHAD HENSLEY 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 07/10/2025 Reported: 07/17/2025

Project Name: BEU DI 29 CTB Project Number: 25A - 03635

Project Location: **EXXON MOBIL** Sampling Date: 07/09/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

Sample ID: BH 25 - 01 @ 0' (H254105-01)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/11/2025	ND	1.68	84.0	2.00	10.5	
Toluene*	<0.050	0.050	07/11/2025	ND	1.73	86.6	2.00	10.2	
Ethylbenzene*	<0.050	0.050	07/11/2025	ND	1.72	86.0	2.00	10.1	
Total Xylenes*	<0.150	0.150	07/11/2025	ND	5.06	84.3	6.00	10.3	
Total BTEX	<0.300	0.300	07/11/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.4	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: KH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	07/11/2025	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/16/2025	ND	203	101	200	0.281	
DRO >C10-C28*	<10.0	10.0	07/16/2025	ND	226	113	200	0.266	
EXT DRO >C28-C36	<10.0	10.0	07/16/2025	ND					
Surrogate: 1-Chlorooctane	113 %	6 44.4-14	5						
Surrogate: 1-Chlorooctadecane	114 %	6 40.6-15	3						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

VERTEX RESOURCE CHAD HENSLEY 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 07/10/2025 Reported: 07/17/2025

Project Name: BEU DI 29 CTB
Project Number: 25A - 03635
Project Location: EXXON MOBIL

Sampling Date: 07/09/2025

Sampling Type:

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Soil

Sample ID: BH 25 - 02 @ 0' (H254105-02)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/11/2025	ND	1.68	84.0	2.00	10.5	
Toluene*	<0.050	0.050	07/11/2025	ND	1.73	86.6	2.00	10.2	
Ethylbenzene*	<0.050	0.050	07/11/2025	ND	1.72	86.0	2.00	10.1	
Total Xylenes*	<0.150	0.150	07/11/2025	ND	5.06	84.3	6.00	10.3	
Total BTEX	<0.300	0.300	07/11/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.2	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/11/2025	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/11/2025	ND	203	101	200	0.281	
DRO >C10-C28*	<10.0	10.0	07/11/2025	ND	226	113	200	0.266	
EXT DRO >C28-C36	<10.0	10.0	07/11/2025	ND					
Surrogate: 1-Chlorooctane	96.5	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	97.0	% 40.6-15	3						

Applyzod By: 14

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

VERTEX RESOURCE **CHAD HENSLEY** 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 07/10/2025 Reported:

07/17/2025 BEU DI 29 CTB 25A - 03635

Project Location: **EXXON MOBIL** Sampling Date: 07/09/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

Sample ID: BH 25 - 03 @ 0' (H254105-03)

Project Name:

Project Number:

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/11/2025	ND	1.68	84.0	2.00	10.5	
Toluene*	<0.050	0.050	07/11/2025	ND	1.73	86.6	2.00	10.2	
Ethylbenzene*	<0.050	0.050	07/11/2025	ND	1.72	86.0	2.00	10.1	
Total Xylenes*	<0.150	0.150	07/11/2025	ND	5.06	84.3	6.00	10.3	
Total BTEX	<0.300	0.300	07/11/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.2	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/11/2025	ND	400	100	400	3.92	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/11/2025	ND	203	101	200	0.281	
DRO >C10-C28*	<10.0	10.0	07/11/2025	ND	226	113	200	0.266	
EXT DRO >C28-C36	<10.0	10.0	07/11/2025	ND					
Surrogate: 1-Chlorooctane	97.7	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	97.8	% 40.6-15	3						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

VERTEX RESOURCE CHAD HENSLEY 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 07/10/2025 Reported: 07/17/2025

Project Name: BEU DI 29 CTB
Project Number: 25A - 03635
Project Location: EXXON MOBIL

Sampling Date: 07/09/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: BH 25 - 04 @ 0' (H254105-04)

RTFY 8021R

B1EX 8021B	mg/	кg	Апануге	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/11/2025	ND	1.68	84.0	2.00	10.5	
Toluene*	<0.050	0.050	07/11/2025	ND	1.73	86.6	2.00	10.2	
Ethylbenzene*	<0.050	0.050	07/11/2025	ND	1.72	86.0	2.00	10.1	
Total Xylenes*	<0.150	0.150	07/11/2025	ND	5.06	84.3	6.00	10.3	
Total BTEX	<0.300	0.300	07/11/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/11/2025	ND	400	100	400	3.92	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/11/2025	ND	203	101	200	0.281	
DRO >C10-C28*	<10.0	10.0	07/11/2025	ND	226	113	200	0.266	
EXT DRO >C28-C36	<10.0	10.0	07/11/2025	ND					
Surrogate: 1-Chlorooctane	97.4	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	97.4	% 40.6-15	3						

Applyzod By: 14

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Frence

Analytical Results For:

VERTEX RESOURCE **CHAD HENSLEY** 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 07/10/2025 Reported: 07/17/2025

Project Name: BEU DI 29 CTB Project Number: 25A - 03635 **EXXON MOBIL**

Project Location:

Sampling Date: 07/09/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

Sample ID: BH 25 - 05 @ 0' (H254105-05)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/11/2025	ND	1.68	84.0	2.00	10.5	
Toluene*	<0.050	0.050	07/11/2025	ND	1.73	86.6	2.00	10.2	
Ethylbenzene*	<0.050	0.050	07/11/2025	ND	1.72	86.0	2.00	10.1	
Total Xylenes*	<0.150	0.150	07/11/2025	ND	5.06	84.3	6.00	10.3	
Total BTEX	<0.300	0.300	07/11/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	91.9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	07/11/2025	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<50.0	50.0	07/11/2025	ND	203	101	200	0.281	
DRO >C10-C28*	19200	50.0	07/11/2025	ND	226	113	200	0.266	
EXT DRO >C28-C36	7710	50.0	07/11/2025	ND					
Surrogate: 1-Chlorooctane	113 %	6 44.4-14	5						
Surrogate: 1-Chlorooctadecane	861 9	40.6-15	3						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

VERTEX RESOURCE **CHAD HENSLEY** 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 07/10/2025 Reported: 07/17/2025

Project Name: BEU DI 29 CTB Project Number: 25A - 03635 Project Location: **EXXON MOBIL**

Sampling Date: 07/09/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

Sample ID: BH 25 - 05 @ 0.5' (H254105-06)

BTEX 8021B	mg	/kg	Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/11/2025	ND	1.75	87.6	2.00	9.38	
Toluene*	<0.050	0.050	07/11/2025	ND	1.82	91.0	2.00	9.55	
Ethylbenzene*	<0.050	0.050	07/11/2025	ND	1.81	90.4	2.00	9.60	
Total Xylenes*	<0.150	0.150	07/11/2025	ND	5.31	88.5	6.00	10.0	
Total BTEX	<0.300	0.300	07/11/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.2	% 71.5-13	4						
Chloride, SM4500CI-B	mg	/kg	Analyzed By: KH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/11/2025	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/11/2025	ND	203	101	200	0.281	
DRO >C10-C28*	1210	10.0	07/11/2025	ND	226	113	200	0.266	
EXT DRO >C28-C36	466	10.0	07/11/2025	ND					
Surrogate: 1-Chlorooctane	102	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	146	% 40.6-15	3						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keene

Analytical Results For:

VERTEX RESOURCE **CHAD HENSLEY** 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 07/10/2025 Reported:

07/17/2025 BEU DI 29 CTB 25A - 03635

Project Location: **EXXON MOBIL**

Project Name:

Project Number:

Sampling Date: 07/09/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

Sample ID: BH 25 - 05 @ 1' (H254105-07)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/11/2025	ND	1.75	87.6	2.00	9.38	
Toluene*	<0.050	0.050	07/11/2025	ND	1.82	91.0	2.00	9.55	
Ethylbenzene*	<0.050	0.050	07/11/2025	ND	1.81	90.4	2.00	9.60	
Total Xylenes*	<0.150	0.150	07/11/2025	ND	5.31	88.5	6.00	10.0	
Total BTEX	<0.300	0.300	07/11/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	Analyzed By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	07/11/2025	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/11/2025	ND	203	101	200	0.281	
DRO >C10-C28*	83.5	10.0	07/11/2025	ND	226	113	200	0.266	
EXT DRO >C28-C36	35.7	10.0	07/11/2025	ND					
Surrogate: 1-Chlorooctane	92.9	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	95.4	% 40.6-15	3						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Notes and Definitions

S-06 The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits inclured by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Received by OCD: 10/3/2025

Page 10 of 10

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

Company Name	· Vestex Resource			BI	LL TO		ANALYSI	S REQUEST
Project wanage	Chad Hensley			P.O. #: 2 (8251001			
Address: 316	ol Boyd drive			Company: 6	exxonmobil	1		
City: Carls	bad State: N/	M Zip:	88220	Attn: ASG 1	V Masee			
Phone #: 57	5-200-6167 Fax#:			Address: 3/	ey Measee HEGsoone St			
Project #: 25	A-03635 Project Own	er:		City: Carls			1 1 1	
Project Name:	8EU DI 29 CTB				Zip: 88220			
Project Location	n·			Phone #:	. 00000			
Sampler Name:	Riley Arnold			Fax #:				
FOR LAB USE ONLY	/ .	LI	MATRIX	PRESERV.	SAMPLING		3	
Lab I.D.	Sample I.D.	G)(G)RAB OR (C)OMF	# CONTAINERS GROUNDWATER WASTEWATER SOIL OIL	OTHER: ACID/BASE: ICE / COOL	DATE TIME	STEX TPH	Chiolic	
1	BH25-0120'	G	1 X	X	7.9.25 9:15	XXX		
2	BH25-02200'	111	1 1	1	1 9:26	1 1 1		
1800 A	BH25-0320'	Ш			9:42			
4	BH25-04 DO'	111			9:59			
9	BH25-01 20' BH25-02 20' BH25-03 20' BH25-04 20' BH25-05 20' BH25-05 20' BH25-05 20'	Ш	1	\Box	10:20			
9	BH25-05 W 0.5	111	H - H - H		10:45	\Box		
	DH25-05 W 1	111	1	1	1 11:30	1 1 1	+	
PLEASE NOTE: Liability and	d Damages. Cardinal's liability and client's exclusive remedy for	any claim ar	ising whether based in contract	or fort, shall be limited to	the amount paid by the client for t	he		

analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise.

Relinquished By: Relinquished By:	7-10-28 Time: 340	yed By:	Udsty	Verbal Result: Yes All Results are emailed. Che Asley as REMARKS: Raine	Please provi	de Ema	
Delivered By: (Circle One) Sampler - UPS - Bus - Other:	Observed Temp. °C 00	Sample Condition Cool Intact Yes Yes	CHECKED BY: (Initials)	Turnaround Time: Thermometer ID #140	Standard Rush		Bacteria (only) Sample Condition Cool Intact Observed Temp. °C Yes Yes
FORM-000 R 3.9 02/12/23		No No	V	Correction Factor +0.3°C			☐ No ☐ No Corrected Temp. °C

September 25, 2025

CHAD HENSLEY

VERTEX RESOURCE

3101 BOYD DRIVE

CARLSBAD, NM 88220

RE: BEU DI 29 CTB

Enclosed are the results of analyses for samples received by the laboratory on 09/24/25 11:05.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C25-00101. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Celey D. Keine

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

VERTEX RESOURCE CHAD HENSLEY 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 09/24/2025 Reported: 09/25/2025

Project Name: BEU DI 29 CTB
Project Number: 25A - 03635
Project Location: EXXON MOBIL

Sampling Date: 09/23/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: BS25 - 01 1.1 (H255969-01)

DTEV 0021D

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/24/2025	ND	1.97	98.7	2.00	1.26	
Toluene*	< 0.050	0.050	09/24/2025	ND	1.93	96.4	2.00	0.643	
Ethylbenzene*	<0.050	0.050	09/24/2025	ND	1.87	93.4	2.00	0.378	
Total Xylenes*	<0.150	0.150	09/24/2025	ND	5.46	91.0	6.00	0.485	
Total BTEX	<0.300	0.300	09/24/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	89.3 %	6 70.4-14	1						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: KH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	09/24/2025	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/24/2025	ND	196	97.9	200	2.20	
DRO >C10-C28*	90.3	10.0	09/24/2025	ND	209	104	200	4.64	QM-07
EXT DRO >C28-C36	47.5	10.0	09/24/2025	ND					
Surrogate: 1-Chlorooctane	89.2 9	52.4-13	0						
Surrogate: 1-Chlorooctadecane	95.5 9	39.9-14	1						

Applyand By 14

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

VERTEX RESOURCE CHAD HENSLEY 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 09/24/2025 Reported: 09/25/2025

Project Name: BEU DI 29 CTB
Project Number: 25A - 03635

Project Location: EXXON MOBIL

Sampling Date: 09/23/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: BS25 - 02 1.1 (H255969-02)

BTEX 8021B	mg	/kg	Analyze	ed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/24/2025	ND	1.97	98.7	2.00	1.26	
Toluene*	<0.050	0.050	09/24/2025	ND	1.93	96.4	2.00	0.643	
Ethylbenzene*	<0.050	0.050	09/24/2025	ND	1.87	93.4	2.00	0.378	
Total Xylenes*	<0.150	0.150	09/24/2025	ND	5.46	91.0	6.00	0.485	
Total BTEX	<0.300	0.300	09/24/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	89.2	% 70.4-14	1						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	09/24/2025	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/24/2025	ND	196	97.9	200	2.20	
DRO >C10-C28*	24.7	10.0	09/24/2025	ND	209	104	200	4.64	
EXT DRO >C28-C36	<10.0	10.0	09/24/2025	ND					
Surrogate: 1-Chlorooctane	83.7	% 52.4-13	0						
Surrogate: 1-Chlorooctadecane	86.6	% 39.9-14	1						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

VERTEX RESOURCE **CHAD HENSLEY** 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 09/24/2025

Reported: Project Name: BEU DI 29 CTB Project Number: 25A - 03635

09/25/2025

Project Location: **EXXON MOBIL** Sampling Date: 09/23/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

Sample ID: WS25 - 01 0-1.1 (H255969-03)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/24/2025	ND	1.97	98.7	2.00	1.26	
Toluene*	<0.050	0.050	09/24/2025	ND	1.93	96.4	2.00	0.643	
Ethylbenzene*	<0.050	0.050	09/24/2025	ND	1.87	93.4	2.00	0.378	
Total Xylenes*	<0.150	0.150	09/24/2025	ND	5.46	91.0	6.00	0.485	
Total BTEX	<0.300	0.300	09/24/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	88.6	% 70.4-14	1						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	09/24/2025	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/24/2025	ND	196	97.9	200	2.20	
DRO >C10-C28*	<10.0	10.0	09/24/2025	ND	209	104	200	4.64	
EXT DRO >C28-C36	<10.0	10.0	09/24/2025	ND					
Surrogate: 1-Chlorooctane	83.3	% 52.4-13	0						
Surrogate: 1-Chlorooctadecane	85.6	% 39.9-14	1						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

VERTEX RESOURCE CHAD HENSLEY 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 09/24/2025 Reported:

09/25/2025 Project Name: BEU DI 29 CTB Project Number: 25A - 03635

Project Location: **EXXON MOBIL** Sampling Date: 09/23/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

Sample ID: BH25 - 02 1 (H255969-04)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/24/2025	ND	1.97	98.7	2.00	1.26	
Toluene*	<0.050	0.050	09/24/2025	ND	1.93	96.4	2.00	0.643	
Ethylbenzene*	<0.050	0.050	09/24/2025	ND	1.87	93.4	2.00	0.378	
Total Xylenes*	<0.150	0.150	09/24/2025	ND	5.46	91.0	6.00	0.485	
Total BTEX	<0.300	0.300	09/24/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	88.7	% 70.4-14	1						
Chloride, SM4500CI-B	mg/	/kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	09/24/2025	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/24/2025	ND	196	97.9	200	2.20	
DRO >C10-C28*	15.2	10.0	09/24/2025	ND	209	104	200	4.64	
EXT DRO >C28-C36	<10.0	10.0	09/24/2025	ND					
Surrogate: 1-Chlorooctane	78.9	% 52.4-13	0						
Surrogate: 1-Chlorooctadecane	81.2	% 39.9-14	1						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

VERTEX RESOURCE CHAD HENSLEY 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 09/24/2025 Reported: 09/25/2025

09/25/2025 BEU DI 29 CTB 25A - 03635

Project Location: EXXON MOBIL

Sampling Date: 09/23/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: BH25 - 06 0 (H255969-05)

Project Name:

BTEX 8021B

Project Number:

DILX GOZID	mg/ kg		Andryzo	u by. 511					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/24/2025	ND	1.97	98.7	2.00	1.26	
Toluene*	<0.050	0.050	09/24/2025	ND	1.93	96.4	2.00	0.643	
Ethylbenzene*	<0.050	0.050	09/24/2025	ND	1.87	93.4	2.00	0.378	
Total Xylenes*	<0.150	0.150	09/24/2025	ND	5.46	91.0	6.00	0.485	
Total BTEX	<0.300	0.300	09/24/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	89.7	% 70.4-14	1						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	09/24/2025	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/24/2025	ND	196	97.9	200	2.20	
DRO >C10-C28*	<10.0	10.0	09/24/2025	ND	209	104	200	4.64	
EXT DRO >C28-C36	<10.0	10.0	09/24/2025	ND					
Surrogate: 1-Chlorooctane	86.0	% 52.4-13	0						
Surrogate: 1-Chlorooctadecane	88.7	% 39.9-14	1						

Analyzed By: JH

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

VERTEX RESOURCE **CHAD HENSLEY** 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 09/24/2025 Reported:

09/25/2025

Project Name: BEU DI 29 CTB Project Number: 25A - 03635 Project Location: **EXXON MOBIL**

Sampling Date: 09/23/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

Sample ID: BH25 - 06 1 (H255969-06)

BTEX 8021B	mg	/kg	Analyze	ed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/24/2025	ND	1.97	98.7	2.00	1.26	
Toluene*	<0.050	0.050	09/24/2025	ND	1.93	96.4	2.00	0.643	
Ethylbenzene*	<0.050	0.050	09/24/2025	ND	1.87	93.4	2.00	0.378	
Total Xylenes*	<0.150	0.150	09/24/2025	ND	5.46	91.0	6.00	0.485	
Total BTEX	<0.300	0.300	09/24/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	90.4	% 70.4-14	1						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	09/24/2025	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/24/2025	ND	196	97.9	200	2.20	
DRO >C10-C28*	<10.0	10.0	09/24/2025	ND	209	104	200	4.64	
EXT DRO >C28-C36	<10.0	10.0	09/24/2025	ND					
Surrogate: 1-Chlorooctane	85.6	% 52.4-13	0						
Surrogate: 1-Chlorooctadecane	88.1	% 39.9-14	1						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

VERTEX RESOURCE CHAD HENSLEY 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 09/24/2025 Reported:

09/25/2025 BEU DI 29 CTB

Project Location:

Project Name:

BTEX 8021B

Project Number:

Surrogate: 1-Chlorooctadecane

25A - 03635

EXXON MOBIL

Sampling Date:

09/23/2025

Sampling Type:

Soil

Sampling Condition: Sample Received By: Cool & Intact Tamara Oldaker

Sample ID: BH25 - 07 0 (H255969-07)

	91	9							
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/24/2025	ND	1.97	98.7	2.00	1.26	
Toluene*	<0.050	0.050	09/24/2025	ND	1.93	96.4	2.00	0.643	
Ethylbenzene*	<0.050	0.050	09/24/2025	ND	1.87	93.4	2.00	0.378	
Total Xylenes*	<0.150	0.150	09/24/2025	ND	5.46	91.0	6.00	0.485	
Total BTEX	<0.300	0.300	09/24/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	88.8	% 70.4-14	1						
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	09/24/2025	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/24/2025	ND	196	97.9	200	2.20	
DRO >C10-C28*	<10.0	10.0	09/24/2025	ND	209	104	200	4.64	
EXT DRO >C28-C36	<10.0	10.0	09/24/2025	ND					
Surrogate: 1-Chlorooctane	82.8	% 52.4-13	0						

Analyzed By: JH

Cardinal Laboratories

84.6 %

39.9-141

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

VERTEX RESOURCE CHAD HENSLEY 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 09/24/2025

Reported: 09/25/2025
Project Name: BEU DI 29 CTB
Project Number: 25A - 03635
Project Location: EXXON MOBIL

Sampling Date: 09/23/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: BH25 - 07 1 (H255969-08)

RTFY 8021R

B1EX 8021B	mg	/кд	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/24/2025	ND	1.76	88.2	2.00	8.47	
Toluene*	<0.050	0.050	09/24/2025	ND	1.88	93.9	2.00	6.74	
Ethylbenzene*	<0.050	0.050	09/24/2025	ND	1.92	95.8	2.00	4.68	
Total Xylenes*	<0.150	0.150	09/24/2025	ND	5.94	98.9	6.00	4.13	
Total BTEX	<0.300	0.300	09/24/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	113	% 70.4-14	1						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: KH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	09/24/2025	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/24/2025	ND	196	97.9	200	2.20	
DRO >C10-C28*	<10.0	10.0	09/24/2025	ND	209	104	200	4.64	
EXT DRO >C28-C36	<10.0	10.0	09/24/2025	ND					
Surrogate: 1-Chlorooctane	86.4	% 52.4-13	0						
Surrogate: 1-Chlorooctadecane	88.4	% 39.9-14	1						

Applyzod By: 14

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

VERTEX RESOURCE CHAD HENSLEY 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 09/24/2025 Reported: 09/25/2025

09/25/2025 BEU DI 29 CTB

25A - 03635

EXXON MOBIL

Project Location:

Project Name:

Project Number:

Sampling Date: 09/23/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: BH25 - 08 0 (H255969-09)

BTEX 8021B Analyte	mg/kg		Analyzed By: JH						
	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/24/2025	ND	1.76	88.2	2.00	8.47	
Toluene*	<0.050	0.050	09/24/2025	ND	1.88	93.9	2.00	6.74	
Ethylbenzene*	<0.050	0.050	09/24/2025	ND	1.92	95.8	2.00	4.68	
Total Xylenes*	<0.150	0.150	09/24/2025	ND	5.94	98.9	6.00	4.13	
Total BTEX	<0.300	0.300	09/24/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 70.4-14	1						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: KH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	09/24/2025	ND	432	108	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/24/2025	ND	196	97.9	200	2.20	
DRO >C10-C28*	12.4	10.0	09/24/2025	ND	209	104	200	4.64	
EXT DRO >C28-C36	<10.0	10.0	09/24/2025	ND					
Surrogate: 1-Chlorooctane	87.2	% 52.4-13	0						
Surrogate: 1-Chlorooctadecane	90.1	% 39.9-14	1						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

VERTEX RESOURCE CHAD HENSLEY 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 09/24/2025 Reported: 09/25/2025

09/25/2025 BEU DI 29 CTB 25A - 03635

EXXON MOBIL

Project Number: Project Location:

Project Name:

Sampling Date: 09/23/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: BH25 - 08 1 (H255969-10)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/24/2025	ND	1.76	88.2	2.00	8.47	
Toluene*	<0.050	0.050	09/24/2025	ND	1.88	93.9	2.00	6.74	
Ethylbenzene*	< 0.050	0.050	09/24/2025	ND	1.92	95.8	2.00	4.68	
Total Xylenes*	<0.150	0.150	09/24/2025	ND	5.94	98.9	6.00	4.13	
Total BTEX	<0.300	0.300	09/24/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	114	% 70.4-14	1						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: KH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	09/24/2025	ND	432	108	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/24/2025	ND	196	97.9	200	2.20	
DRO >C10-C28*	<10.0	10.0	09/24/2025	ND	209	104	200	4.64	
EXT DRO >C28-C36	<10.0	10.0	09/24/2025	ND					
Surrogate: 1-Chlorooctane	84.0	% 52.4-13	0						
Surrogate: 1-Chlorooctadecane	84.9	% 39.9-14	1						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Frence

Notes and Definitions

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

ecovery.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Celey D. Keene, Lab Director/Quality Manager

Company Name:

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

Engrave Vertex Resource (Bill to Exxon)

Company Name:	Engrava Vertex	Resource (B	111 40	FEX	exem)			BI	LL TO					AN	ALYS	IS RE	QUEST		
Project Manager:	CHAID HENS!	-EY				- 14	P.C). #:								T			
Address: 3/01	BOYD DR						Cor	mpany:	XXVO A	(idol)	1								
City: CARLSB	(AD	State: NM	Zip:	88	220			-	WOODA		1								
Phone #:		Fax #:					Add	dress:											
Project #:		Project Owner	r:				City	<i>i</i> :			1								
Project Name: B	EU DI 29						Sta		Zip:		1								
Project Location:							Pho	one #:			1	-				1 1		4	
Sampler Name:	KATRINA TAY	LOR					Fax	#:				MRO					- 1		
FOR LAB USE ONLY			П	T	MATE	RIX.		PRESERV.	SAM	PLING	1	Z							
Lab I.D.	Sample I.		(G)RAB OR (C)OMP	# CONTAINERS GROUNDWATER	WASTEWATER	SLUDGE	OTHER	ACID/BASE ICE / COOL OTHER	DATE	TIME	Chloride	GRO, DRO,	ВТЕХ						
	3925-01 1:		c	1	X			×	9123	12:00	X	X	X						
	3525-02 1-1				1)	12:30		1	1						
	WS 25-01 0-1.1		1							13:00									
	BH25-02 1		G							13:30	$\parallel \parallel \parallel$								
	BH25-06 0			1	1	14	1			14:00									
	3H2S-06 2		H	1		44	1		-	14:30	Ш								
	3H25-07 0		Н	1		++	1	-11	-	15:00	H	\perp	11		1				
	3H25-07 1 3H25-08 0		Н	1	1	+	+	+		15:30	H	\perp	11	-	+	\vdash	_		
	1425-08 1		7			+	+	1-1	-	16:00	1	4	1	-	-	\vdash	-	+	
EASE NOTE: Liability and Di	amages: Cardinal's liability and client	's exclusive remedy for any use whatspever shall be de	,	sing wh	ether based in o	contract or	tort, si	half be limited to	the amount paid	16:30 by the client for	the	•	4		_				
rvice. In no event shall Cardin States or successors arising or relinquished By:	nai be liable for moderital or consequiul of or related to the performance of	ental damages, including viservices hereunder by Ca Date: 9-2425	without im rdinal, reg	itation, i	business interrus of whether such	ptions, less n claim is b	s of us	e or loss of prolupon any of the	min 30 days after fits incurred by di above stated res	r completion of the fient, its subsidiari asons or otherwise Verbal Res All Results		☐ Yes	□ No	Add'	1 Phone	#:			
M. Mana Luy elinquished By:	6	Date:	Rece	ived	By:	CU	(de	dage	Jek .	CHENS! REMARKS	-646	DVE	LTEX.	1A. KA	TENA		R ONE	rtex.C	А
Delivered By: (Circle ampler - UPS - Bus		erved Tamp. °C			Sample Co Cool Int. Yes	ondition act Yes No	2	CHECKE	ED BY:	Turnaround +0.3 Thermomete Correction F	er ID #1		Standar Rush 24hr		Cool I	ria (only Intact Yes	Observ	Condition ed Temp.	°C

BILL TO

October 01, 2025

CHAD HENSLEY

VERTEX RESOURCE

3101 BOYD DRIVE

CARLSBAD, NM 88220

RE: BEU DI 29 CTB

Enclosed are the results of analyses for samples received by the laboratory on 09/30/25 13:05.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C25-00101. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

VERTEX RESOURCE CHAD HENSLEY 3101 BOYD DRIVE CARLSBAD NM, 88220 Fax To: NA

Received: 09/30/2025 Reported: 10/01/2025

Project Name: BEU DI 29 CTB
Project Number: 25A - 03635
Project Location: EXXON MOBIL

Sampling Date: 09/25/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: BS25 - 01 1.2' (H256105-01)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/30/2025	ND	1.73	86.7	2.00	1.21	
Toluene*	<0.050	0.050	09/30/2025	ND	1.78	88.8	2.00	0.604	
Ethylbenzene*	<0.050	0.050	09/30/2025	ND	1.75	87.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/30/2025	ND	5.11	85.2	6.00	1.13	
Total BTEX	<0.300	0.300	09/30/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	91.1	% 70.4-14	1						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	09/30/2025	ND	448	112	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/30/2025	ND	216	108	200	2.24	
DRO >C10-C28*	26.1	10.0	09/30/2025	ND	217	109	200	2.93	
EXT DRO >C28-C36	10.7	10.0	09/30/2025	ND					
Surrogate: 1-Chlorooctane	88.3	% 52.4-13	0						
Surrogate: 1-Chlorooctadecane	90.6	% 39.9-14	1						

A I J D. ... 711

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey & Keene

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

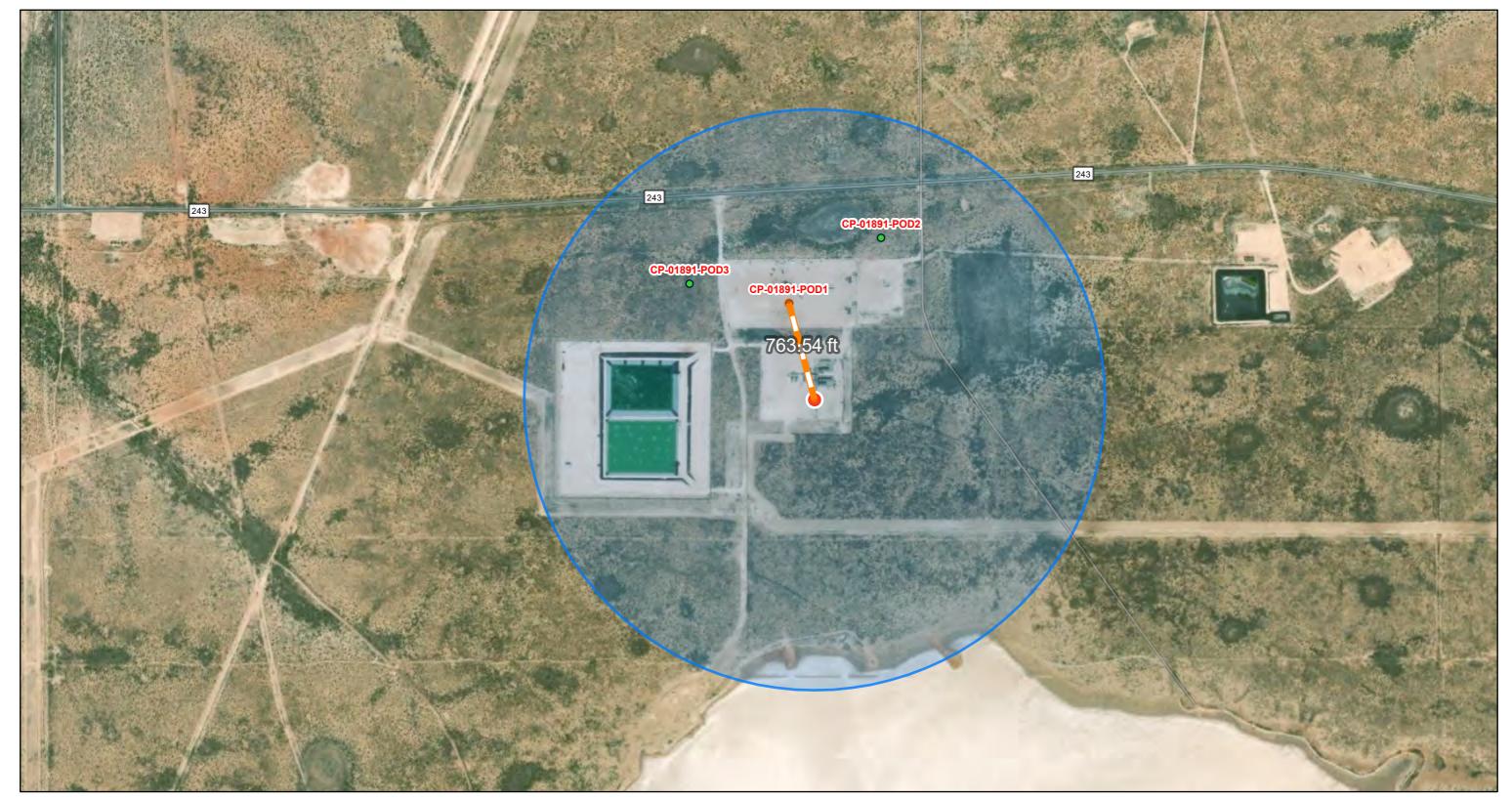
Celey D. Keene, Lab Director/Quality Manager

Received by OCD: 10/3/2025

Page 4 of

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

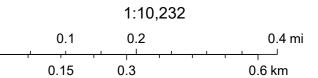
101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476


Company Name: VERTEX RESOURCE SERVICES	BILL TO		ANALYSIS REQUEST
Project Manager: CHAD HENSLEY	P.O. #:		
Address: 3101 BOYD DR	Company: Exxon Mobil		
City: CARLS BAD State: NM Zip: 88220	Attn: PALE WOODALE		
Phone #: 575-725- Soo \ Fax #:	Address:		
Project #: 25-03635 Project Owner: Chaol Hensly	City:		
Project Name: BEU DI 29	State Zip:		
Project Location:	Phone #:		
Samplef Name: KATRINA TAYLOR	Fax #:		
FOR AS LISE DNL. MATRIX	PRESERV. SAMPLING	5	
Lab I.D. Sample I.D. H2576/05 1 B.5 25 ~ \$\psi 1 \langle 1.\frac{1}{2}\rangle C \times \text{ x} your limits of the first part of	DATE TIME x 9/25/35 /5/35	K Chloride R BTEX	

are where All plants including those or heightighness and any other traces where the plants including those or heightighness and any other traces where the plants including those or heightighness and any other traces where the plants are received and any other traces where the plants are received to the plants of the applicable where the plants of th

Relinquished By:	Date: Recei	Ved By:	Aldaky	Verbal Result: Yes No Add'! Phone #: All Results are emailed. Please provide Email address: CHENS LEY OVERLEX. CO.) KATRINA. TAYLOROVERTEX. CA REMARKS. G.F.C.M.: 4860 5000, Cost Code: 210 8251001 NAPP 2518149545
Delivered By: (Circle One)	OBERTVAN TARE OF 3,4	Sample Condition	CHECKED BY:	Turnaround Time: Standard Bacteria (only) Sample Condition
Sampler - UPS - Bus - Other:	Comesses Tems *0 3.7	Ves Yes	(Initials)	Thermometer ID 113 244 Cool Intact Observed Temp. °C

	e: Big Eddy Unit DI 29	I	
•	dinates: 32.56479, -103.7779	X: 614724.36	Y: 3603699.82
ite Spec	fic Conditions	Value	Unit
	Depth to Groundwater (nearest reference)	33	feet
1	Distance between release and nearest DTGW reference	764	feet
	D. I. C. I. DTCH. (0.14	miles
	Date of nearest DTGW reference measurement	Octobe	r 26, 2021
2	Within 300 feet of any continuously flowing watercourse	810	feet
	or any other significant watercourse		
3	Within 200 feet of any lakebed, sinkhole or playa lake	1,823	feet
	(measured from the ordinary high-water mark)		
4	Within 300 feet from an occupied residence, school,	14,657	feet
•	hospital, institution or church	= 1,007	
	i) Within 500 feet of a spring or a private, domestic fresh		
	water well used by less than five households for	162,906	feet
5	domestic or stock watering purposes, or		
	ii) Within 1000 feet of any fresh water well or spring	162,906	feet
	in with 1999 rect of any fresh water well of spring	102,300	rect
	Within incorporated municipal boundaries or within a		
	defined municipal fresh water field covered under a		
6	municipal ordinance adopted pursuant to Section 3-27-3	No	(Y/N)
	NMSA 1978 as amended, unless the municipality		
	specifically approves		
7	Within 300 feet of a wetland	600	feet
	Within the area overlying a subsurface mine	No	(Y/N)
8	Distance hot was a value of and a second as interest was	0.202	foot
	Distance between release and nearest registered mine	8,302	feet
			Critical
	Within an unstable area (Varst Man)	Medium	High
9	Within an unstable area (Karst Map)	iviedium	Medium
			Low
	Distance between release and nearest unstable area	0	feet
	Within a 100-year Floodplain	Undetermined	year
10	Distance between release and nearest FEMA Zone A (100-	50,925	foot
	year Floodplain)	30,323	feet
11	Soil Type	Simona-Unt	on association
11	Son Type	Simona Opt	
12	Ecological Classification	Shallo	ow Sandy
		5	
13	Geology	Qp - Piedn	nont Deposits
			<50'
	NMAC 19.15.29.12 E (Table 1) Closure Criteria	<50'	51-100'
			>100'


OSE POD Locations Map

6/28/2025, 10:41:05 AM GIS WATERS PODs

Pending

Plugged

Sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, (c) OpenStreetMap contributors, and the GIS User Community, Maxar

Point of Diversion Summary

quarters are 1=NW 2=NE 3=SW 4=SE quarters are smallest to largest

NAD83 UTM in meters

Well Tag	POD Nbr	Q64	Q16	Q4	Sec	Tws	Rng	X	Υ	Мар
NA	CP 01891 POD1	SW	SW	SW	16	20S	32E	614636.4	3603890.9	

* UTM location was derived from PLSS - see Help

Casing Size:		Depth Well:	55	Depth Water:	33
Pump Type:		Pipe Discharge Size:		Estimated Yield:	
Log File Date:	2021-11-29	PCW Rcv Date:		Source:	Shallow
Drill Start Date:	2021-10-26	Drill Finish Date:	2021-10-26	Plug Date:	2021-11-01
Driller Name:	ATKINS, JACK	(IE D.UELENER			
Driller License:	1249	Driller Company:	ATKINS ENGINEERING ASSOC. INC.		

Water Bearing Stratifications:

Тор	Bottom	Description
26	36	Sandstone/Gravel/Conglomerate
36	49	Sandstone/Gravel/Conglomerate
49	55	Sandstone/Gravel/Conglomerate

Casing Perforations:

Тор	Bottom
0	55

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

6/28/25 10:31 AM MST

Point of Diversion Summary

©2024 New Mexico Office of the State Engineer, All Rights Reserved. | Disclaimer | Contact Us | Help | Home |

Water Right Summary

get image list WR File Number: CP 01891 Subbasin: CP Cross Reference:

Primary Purpose: MON MONITORING WELL

Primary Status: PMT Permit

Total Acres: Subfile: Header:

Total Diversion: 0.000 Cause/Case:

Owner: XTO ENERGY INC Owner Class: Agent

Contact: ADRIAN BAKER

Owner: WSP USA Owner Class: User

Contact: KALEI JENNINGS

Documents on File

(acre-fee

Page 82 of 136

Transaction Images	Trn #	Doc	File/Act	Status 1	Status 2	Transaction Desc.	From/To	Acres	Diversion
get images	<u>709444</u>	EXPL	2021-10-06	PMT	LOG	CP 01891 POD1-3	Т	0.000	0.000

Current Points of Diversion

POD Number	Well Tag	Source	Q64	Q16	Q4	Sec	Tws	Rng	X	Y	Мар	Other Location Desc
<u>CP 01891 POD1</u>	NA	Shallow	SW	SW	SW	16	20S	32E	614636.4	3603890.9	6	BH01
<u>CP 01891 POD2</u>	NA		NE	SW	SW	16	20S	32E	614850.3	3604045.5		BG01
<u>CP 01891 POD3</u>	NA		SE	SE	SE	17	20S	32E	614404.0	3603933.5	6	BG02

* UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

6/28/25 10:28 AM MST Water Rights Summary

©2024 New Mexico Office of the State Engineer, All Rights Reserved. | Disclaimer | Contact Us | Help | Home |

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

-	POD1 (BH-0 WELL OWNER N	AME(S)			n/a		-	CP-1891 PHONE (OPTIO	ONAL)		
1	XTO Energy (AILING	ADDRESS					CITY		STATE	ZIP
	6401 Holiday	Hill D	r.					Midland		TX 79707	
	WELL	LAT	DI	egrees 32	MINUTES 33	59.48		• ACCURACY	REQUIRED: ONE TEN	TH OF A SECOND	
	(FROM GPS)	LON	NGITUDE	103	46	41.34	w	* DATUM REC	QUIRED: WGS 84		
Ī			G WELL LOCATION TO T20S R32E, NMF		ESS AND COMMO	N LANDMAI	KS – PL	SS (SECTION, TO	WNSHJIP, RANGE) WH	ERE AVAILABLE	
+	LICENSE NO.		NAME OF LICENSED	DRILLER					NAME OF WELL DR	ILLING COMPANY	
	1249		Traville of Excellent		ackie D. Atkin	s			The state of the s	gineering Associates,	Inc.
Ì	DRILLING STAR 10/26/202		DRILLING ENDED 10/26/2021		MPLETED WELL (BORE HO	LE DEPTH (FT)	DEPTH WATER FIR	ST ENCOUNTERED (FT ±33)
Ì	COMPLETED WE	LL IS:	ARTESIAN	DRY HOLI	E SHALL	OW (UNCON	FINED)		STATIC WATER LEV	VEL IN COMPLETED W. 33.20	ELL (FT)
t	DRILLING FLUID	:	AIR	MUD	ADDITI	VES - SPECI	FY:				
t	DRILLING METH	OD:	ROTARY	HAMMER	CABLE	TOOL	✓ OTHE	ER – SPECIFY:	Hollo	ow Stem Auger	
F	DEPTH (fee	bgl)	BORE HOLE	CASING N	MATERIAL AN	D/OR			CASING	CASDIC WALL	T
1	FROM	то	DIAM (inches)	(include e	GRADE ach casing string ections of screen	g, and	CON	ASING NECTION TYPE	INSIDE DIAM.	CASING WALL THICKNESS (inches)	SLO' SIZI (inche
	0	55	±8.5		Boring- HSA	1)	(add coup	oling diameter)			-
1				-		-					-
t											
-											
ŀ											-
<u> </u>	DEPTH (fee	t bgl)	BORE HOLE	LIS	T ANNULAR S	SEAL MAT	ERIAL	AND	AMOUNT	метно	OD OF
t	FROM	то	DIAM. (inches)	4.0747	VEL PACK SIZ				(cubic feet)	PLACE	
									200 200 200 200 200 200 200		
1		_							USE DII NA	U 29 2021 PM41	02
ŀ											
İ											
1											O.S.
2	OSE INTERNA	USE	COL						7.0	& LOG (Version 06/	30/17)
	NO.	_	1691		POD N	iO.		TRN		144	

	DEPTH (feet bgl)		Total Control	COLOR AND TYPE OF MATERIA		NCOUNTERED -		WATER	ESTIMATED			
	FROM	то	THICKNESS (feet)	INCLUDE WATE	R-BEARING CAVITIES O	R FRACTURE ZON	ES	BEARING? (YES / NO)	YIELD FOR WATER- BEARING ZONES (gpm)			
	0	4	4	Ca	Y /N							
	4	8	4	Sand, fine	Y ✓N							
	8	16	8	Sand, fine-very grai	Y ✓N							
	16	20	4	Sand, fine-very grained	d, poorly graded, with clayer	gravel, Light Brown	n, moist	y ✓n				
	20	26	6	Clayey Sand, very fi	Y ✓N							
7	26	36	10	Clayey Sand, med-fin	✓Y N							
4. HYDROGEOLOGIC LOG OF WELL	36	49	13	Sandstone, mod con	solidated, with increasing cl	✓Y N						
OF	49	55	6	Claystone,	✓Y N							
507								Y N				
3IC I								Y N				
TO								Y N				
GEC								Y N				
)RO								Y N				
HXI								Y N				
4								Y N				
								Y N				
								Y N				
								Y N				
1.50								Y N				
								Y N				
								Y N				
	METHOD US		_	OF WATER-BEARING	G STRATA: HER – SPECIFY:			AL ESTIMATED LL YIELD (gpm):	0.00			
NO	WELL TEST	WELL TEST TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.										
TEST; RIG SUPERVISION	MISCELLANEOUS INFORMATION: Temporary well materials removed and the soil boring plugged using Type I/II neat cement from total depth to surface with augers as tremie. Logs adapted from WSP on-site geologist.											
5. TES	PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE: Shane Eldridge											
6. SIGNATURE	THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGING AND THE PERMIT HOLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING: Jack Atkins 11/16/2021											
EO	OSE INTERN	AT LIEP				WD 00 W	CII DE	CORD & LOC OL	06/20/2017			
	R OSE INTERN E NO.	AL USE			POD NO.	TRN NO.	ELL KE	CORD & LOG (Ve	ersion 06/30/2017)			
LO	CATION					WELL TAG ID NO).		PAGE 2 OF 2			
									-			

02 Big Eddy Unit DI 29 Intermittent Stream - 810ft

June 28, 2025

Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Lake

Freshwater Forested/Shrub Wetland

Other

Riverine

Freshwater Pond

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Big Eddy Unit DI 29_Lake_1,823 ft

June 28, 2025

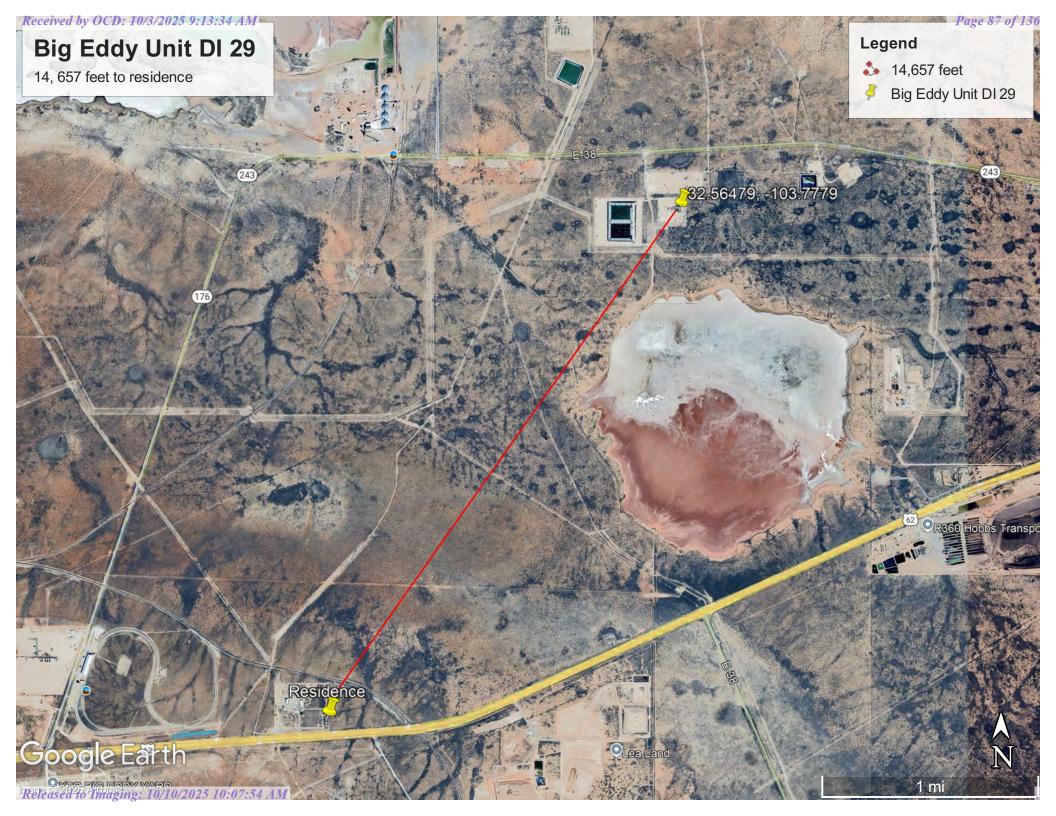
Wetlands

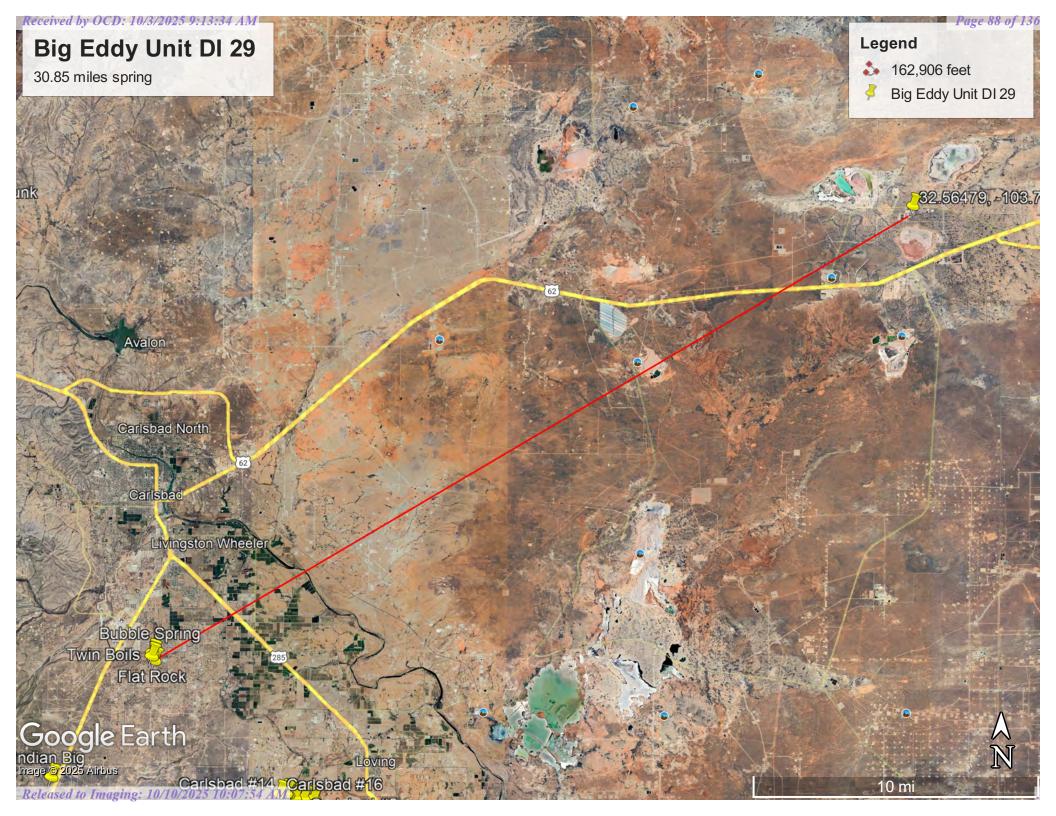
Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland


Freshwater Pond


Lake

Other

Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Received by OCD: 10/3/2025 9:13:34 AM

Water Right Summary

<u>list</u>

WR File Number: CP 01891 Subbasin: CP Cross Reference:

Primary Purpose: MON MONITORING WELL

Primary Status: PMT Permit

Total Acres: Subfile: Header:

Total Diversion: 0.000 **Cause/Case:**

Owner: XTO ENERGY INC Owner Class: Agent

Contact: ADRIAN BAKER

Owner: WSP USA Owner Class: User

Contact: KALEI JENNINGS

Documents on File

(acre-fee

Transaction Images	Trn #	Doc	File/Act	Status 1	Status 2	Transaction Desc.	From/To	Acres	Diversion
get images	709444	EXPL	2021-10-06	PMT	LOG	CP 01891 POD1-3	Т	0.000	0.000

Current Points of Diversion

POD Number	Well Tag	Source	Q64	Q16	Q4	Sec	Tws	Rng	X	Υ	Map	Other Location Desc
<u>CP 01891 POD1</u>	NA	Shallow	SW	SW	SW	16	20S	32E	614636.4	3603890.9		BH01
CP 01891 POD2	NA		NE	SW	SW	16	20S	32E	614850.3	3604045.5		BG01
CP 01891 POD3	NA		SE	SE	SE	17	20S	32E	614404.0	3603933.5	•	BG02

* UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

6/28/25 9:13 AM MST Water Rights Summary

©2024 New Mexico Office of the State Engineer, All Rights Reserved. | Disclaimer | Contact Us | Help | Home |

Active & Inactive Points of Diversion

(with Ownership Information)

(acre ft per annum)

(R=POD has been replaced and no longer serves this file, C=the file is closed)

WR File Nbr	Sub basin	Use	Diversion	Owner	County	POD Number	Well Tag	Code	Grant	Source
<u>CP 01891</u>	СР	MON	0.000	XTO ENERGY INC	LE	<u>CP 01891 POD1</u>	NA			Shallow
					LE	<u>CP 01891 POD2</u>	NA			
					LE	<u>CP 01891 POD3</u>	NA			

Record Count: 3

Filters Applied:

UTM Filters (in meters):

Easting: 614724.36 **Northing:** 3603699.82

Radius: 1610

Sorted By: Distance

* UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

6/28/25 9:11 AM MST Active & Inactive Points of Diversion

©2024 New Mexico Office of the State Engineer, All Rights Reserved. | Disclaimer | Contact Us | Help | Home |

07_Big Eddy Unit DI 29_Wetland_600ft

June 28, 2025

Wetlands

Estuarine and Marine Deepwater

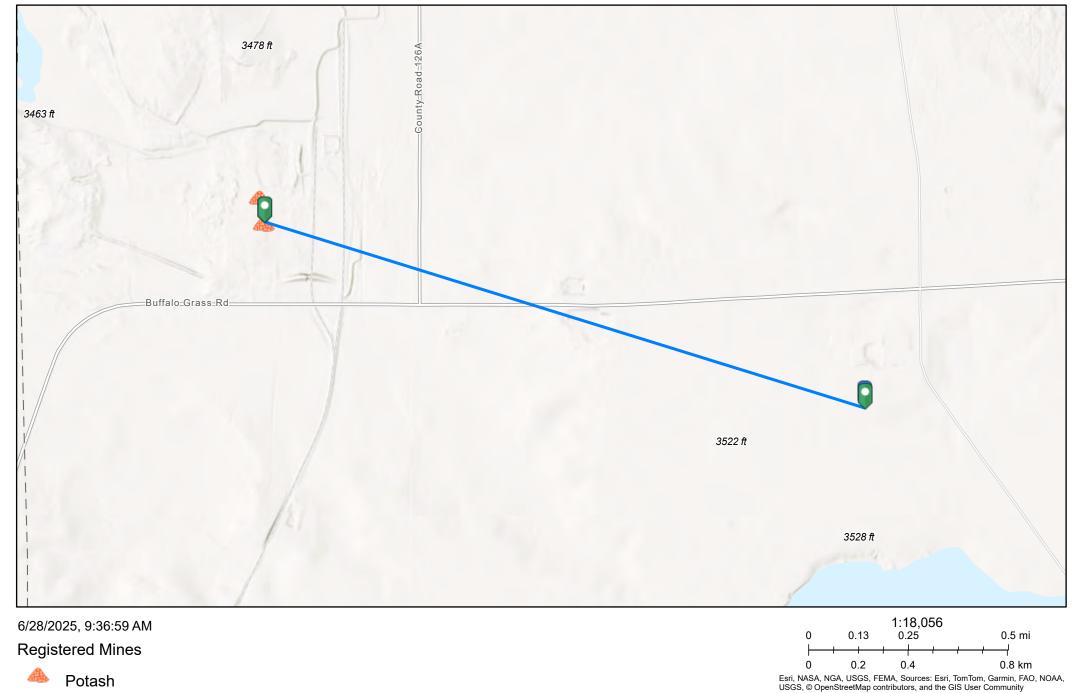
Estuarine and Marine Wetland

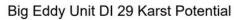
Freshwater Emergent Wetland

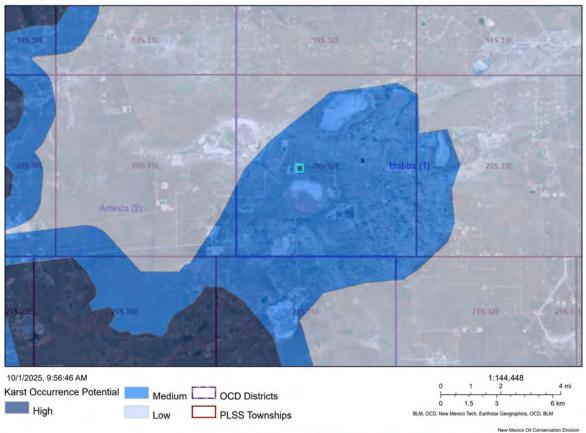
Lake

Freshwater Forested/Shrub Wetland

Other


Freshwater Pond




Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Big Eddy Unit DI 29_Mine_8,302 ft



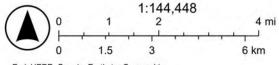
New Mexico Oil Conservation Divis

Big Eddy Unit DI 29 Karst Potential

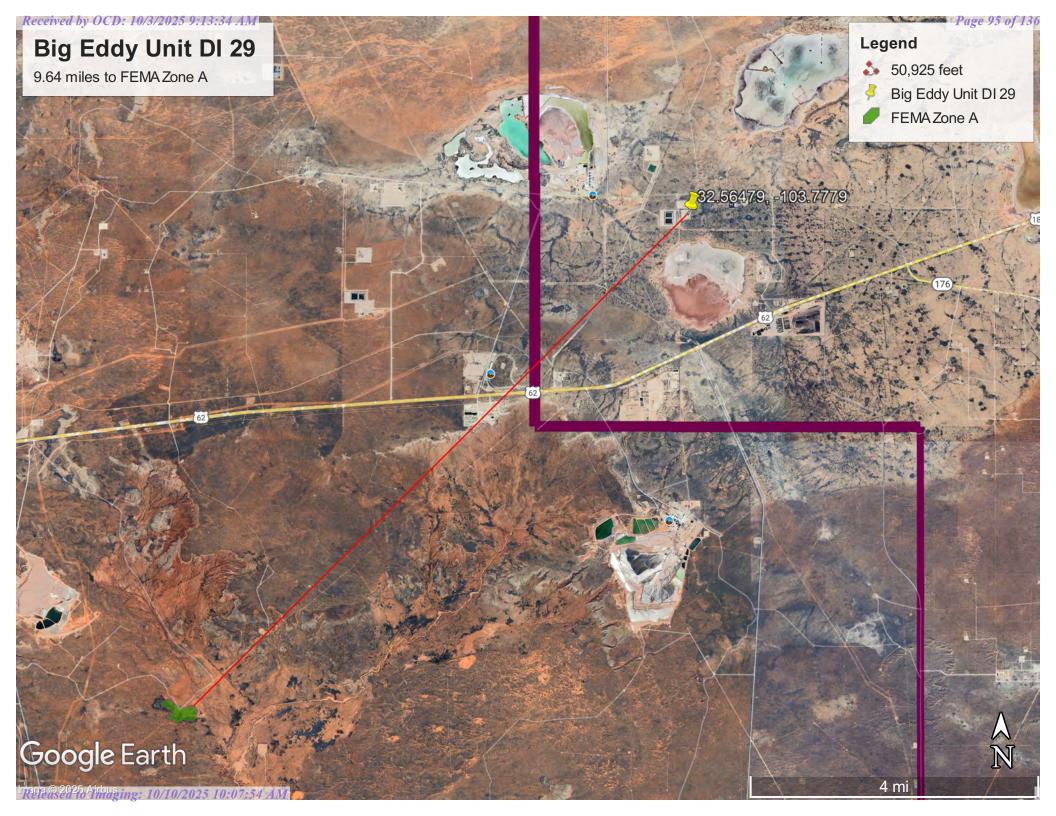
World_Boundaries_and_Places BLM NM Carlsbad Field Office Karst Potential Areas

High - Survey Required

Not Karst


World Imagery Low Resolution 15m Imagery

Medium


High Resolution 60cm Imagery

High Resolution 30cm Imagery Citations

38m Resolution Metadata

Esri, HERE, Garmin, Earthstar Geographics

Received by OCD: 10/3/2025 9:13:34 AM National Flood Hazard Layer FIRMette

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS Regulatory Floodway 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X **Future Conditions 1% Annual** Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF Area with Flood Risk due to Levee Zone D FLOOD HAZARD NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D GENERAL - - - Channel, Culvert, or Storm Sewer STRUCTURES | LILLILL Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation **Coastal Transect** Base Flood Elevation Line (BFE) Limit of Study Jurisdiction Boundary --- Coastal Transect Baseline OTHER **Profile Baseline FEATURES** Hydrographic Feature Digital Data Available No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate

> This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

point selected by the user and does not represent

an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 6/28/2025 at 3:40 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

2,000

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Lea County, New Mexico

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	
Lea County, New Mexico	13
SR—Simona-Upton association	
References	

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

Custom Soil Resource Report

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.


After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report

MAP LEGEND

å

Ŷ

Δ

Water Features

Transportation

00

Background

Spoil Area

Stony Spot

Wet Spot

Other

Rails

US Routes

Major Roads

Local Roads

Very Stony Spot

Special Line Features

Streams and Canals

Interstate Highways

Aerial Photography

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

ဖ

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water Perennial Water

Rock Outcrop

Saline Spot Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 21, Sep 3, 2024

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Feb 7, 2020—May 12. 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
SR	Simona-Upton association	51.7	100.0%
Totals for Area of Interest		51.7	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Custom Soil Resource Report

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lea County, New Mexico

SR—Simona-Upton association

Map Unit Setting

National map unit symbol: dmr3 Elevation: 3,000 to 4,400 feet

Mean annual precipitation: 10 to 16 inches Mean annual air temperature: 58 to 62 degrees F

Frost-free period: 190 to 205 days

Farmland classification: Not prime farmland

Map Unit Composition

Simona and similar soils: 50 percent Upton and similar soils: 35 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Simona

Setting

Landform: Ridges

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Rise

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: gravelly fine sandy loam Bk - 8 to 16 inches: fine sandy loam Bkm - 16 to 26 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 7 to 20 inches to petrocalcic

Drainage class: Well drained Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 50 percent

Gypsum, maximum content: 1 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 2.0

Available water supply, 0 to 60 inches: Very low (about 1.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: R070BD002NM - Shallow Sandy

Hydric soil rating: No

Description of Upton

Setting

Landform: Ridges

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Rise

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: gravelly loam

Bkm - 8 to 18 inches: cemented material BCk - 18 to 60 inches: very gravelly loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 7 to 20 inches to petrocalcic

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 75 percent

Gypsum, maximum content: 1 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 2.0

Available water supply, 0 to 60 inches: Very low (about 0.9 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: R070BC025NM - Shallow

Hydric soil rating: No

Minor Components

Kimbrough

Percent of map unit: 6 percent

Ecological site: R077CY037TX - Very Shallow 16-21" PZ

Hydric soil rating: No

Stegall

Percent of map unit: 5 percent

Ecological site: R077CY028TX - Limy Upland 16-21" PZ

Hydric soil rating: No

Slaughter

Percent of map unit: 4 percent

Ecological site: R077CY028TX - Limy Upland 16-21" PZ

Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Ecological site R070BD002NM Shallow Sandy

Accessed: 06/28/2025

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

Associated sites

R070BD004NM	Sandy
	Sandy sites often occur in association or in a complex with Shallow Sandy
	Sites.

Similar sites

R070BD004NM	Sandy
	Sandy ecological sites are similar to Shallow Sandy sites in species
	composition and Transition pathways.

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	Not specified

Physiographic features

This site occures on plains, alluvial fans, uplands, or fan piedmonts. The parent material consists of mixed loamy alluvium or eolian material derived from igneous and sedimentory bedrock. The petrocalcic layer is at a depth of 10 to 25 inches and undulating.

Slopes are nearly level to undulating, usually less than 9 percent. Elevations range from 2,842 to 4,500 feet.

Table 2. Representative physiographic features

Landforms	(1) Plain(2) Fan piedmont(3) Alluvial fan
Elevation	2,842–4,500 ft
Slope	1–9%
Aspect	Aspect is not a significant factor

Climatic features

The average annual precipitation ranges from 8 to 13 inches. Variations of 5 inches, more or less, are common. Over 80 percent of the precipitation falls from April through October. Most of the summer precipitation comes in the form of high intensity – short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes. The average annual temperature is 61 degrees with extremes of 25 degrees below zero in the winter to 112 degrees in the summer. The average frost-free season is from 207 to 220 days. The last killing frost is in late March or early April, and the first killing frost is in late October or early November. Temperature and rainfall both favor warm season perennial plant growth. In years of abundant spring moisture, annual forbs and cool season grasses can make up an important component of the site. The vegetation of this site can take advantage of the moisture and the time it falls. Because of the soil profile, little moisture can be stored in the soil for any length of time. Moisture is readily available to the plants from the time it falls. Strong winds from the southwest blow from January through June which rapidly dries out the soil profile during a critical period for plant growth.

Climate data was obtained from http://www.wrcc.sage.dri.edu/summary/climsmnm.html web site using 50% probability for freeze-free and frost-free seasons using 28.5 degrees F and 32.5 degrees F respectively.

Table 3. Representative climatic features

Frost-free period (average)	221 days
Freeze-free period (average)	240 days
Precipitation total (average)	13 in

Influencing water features

This site is not influenced from water from wetlands or streams.

Soil features

Soils are very shallow to shallow, less than 20 inches in depth. Surface and subsurface textures are gravelly loamy sand, gravelly fine sandy loam or fine sandy loam.

An indurated calache layer occurs at depths of 6 to 25 inches and is at an average of 15 inches from the surface. Underlying material textures are very gravelly fine sandy loam, very gravelly sandy loam, gravelly fine sandy loam. Gravels are calcium carbonate concretions, calcium carbonate content ranges from 30 to 65 percent.

The indurated caliche layer typically holds water up in the profile for short periods within the root zone of plants. These soils will blow if left unprotected by vegetation.

Minimum and maximum values listed below represent the characteristic soils for this site.

Characteristic soils are:

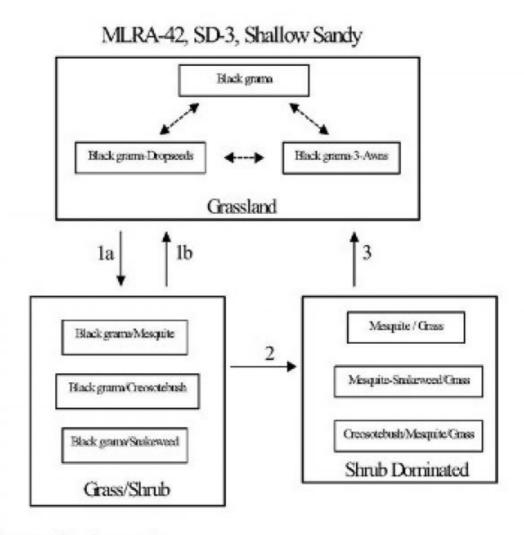
Simona

Jerag

Table 4. Representative soil features

Surface texture	(1) Fine sandy loam (2) Loamy fine sand (3) Gravelly fine sandy loam
Family particle size	(1) Loamy
Drainage class	Well drained to moderately well drained
Permeability class	Moderately slow to moderate
Soil depth	7–24 in
Surface fragment cover <=3"	5–25%
Surface fragment cover >3"	0%
Available water capacity (0-40in)	1–2 in
Calcium carbonate equivalent (0-40in)	5–15%
Electrical conductivity (0-40in)	0–4 mmhos/cm

Sodium adsorption ratio (0-40in)	0
Soil reaction (1:1 water) (0-40in)	7.4–8
Subsurface fragment volume <=3" (Depth not specified)	5–25%
Subsurface fragment volume >3" (Depth not specified)	0%


Ecological dynamics

Overview

The Shallow Sandy site occurs on upland plains, and tops of low ridges and mesas, associated with Sandy, Loamy Sand, and Shallow sites. Coarse to moderately coarse soil surface textures, shallow depth (<20 inches) to an indurated caliche layer (petrocalcic horizon), and an overwhelming dominance by black grama help to distinguish this site. The historic plant community of the Shallow Sandy site is a black grama dominated grassland sparsely dotted with shrubs. Shrubs, especially mesquite and creosotebush can increase or colonize due to the dispersal of shrub seeds by livestock or wildlife. This increase in mesquite and colonization of creosotebush may be enhanced by proximity to areas with existing high shrub densities. Fire suppression, and the loss of grass cover due to overgrazing or drought may facilitate the increase and encroachment of shrubs. Persistent loss of grass cover, competition for resources by shrubs, and periods of climate with increased winter precipitation and dry summers, may initiate the transition to a shrubdominated state.

State and transition model

Plant Communities and Transitional Pathways (diagram)

- la. Seed dispersal, drought, overgrazing, fire suppression.
- Prescribed fire, brush control, prescribed grazing.
- Persistent loss of grass cover, resource competition, increased winter precipitation.
- 3. Brush control, range seeding, prescribed grazing.

State 1 Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community

Grassland: This site responds well to management and is resistant to state change, due to the shallow depth to petrocalcic horizon and sandy surface textures. The sandy surface textures allow rapid water infiltration and the petrocalcic horizon helps to keep water

perched and available to shallow rooted grasses. Black grama is the dominant species in the historic plant community, averaging 50 to 60 percent of the total production for this site. Bush muhly, blue grama, and dropseeds are present as sub-dominants. Typically, yucca, javalinabush, range ratany, prickly pear, and mesquite are sparsely dotted across the landscape. Leatherweed croton, cutleaf happlopappus, wooly groundsel, and threadleaf groundsel are common forbs. Continuous heavy grazing or extended periods of drought will cause a loss of grass cover characterized by a decrease in black grama, bush muhly, blue and sideoats grama, plains bristlegrass, and Arizona cottontop. Dropseeds and or threeawns may increase and become sub-dominant to black grama. Continued loss of grass cover in conjunction with dispersal of shrub seeds and fire suppression is believed to cause the transition to a state with increased amounts of shrubs (Grass/Shrub state). Diagnosis: Black grama is the dominant grass species. Grass cover uniformly distributed. Shrubs are a minor component averaging only two to five percent canopy cover. Litter cover is high (40-50 percent of area), and litter movement is limited to smaller size class litter and short distances (<. 5m). Other grasses that could appear on this site would include: six-weeks grama, fluffgrass, false-buffalograss, hairy grama, little bluestem, bristle panicum, cane bluestem, Indian ricegrass, tridens spp., and red lovegrass. Other woody plants include: pricklypear, cholla, fourwing saltbush, catclaw mimosa, winterfat, American tarbush and mesquite. Other forbs include: globemallow, verbena, desert holly, senna, plains blackfoot, trailing fleabane, fiddleneck, deerstongue, wooly Indianwheat, and locoweed.

Table 5. Annual production by plant type

Plant Type	Low (Lb/Acre)	Representative Value (Lb/Acre)	High (Lb/Acre)
Grass/Grasslike	474	652	830
Forb	78	107	136
Shrub/Vine	48	66	84
Total	600	825	1050

Table 6. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	30-35%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	40-50%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%

Bedrock	0%
Water	0%
Bare ground	15-25%

Figure 5. Plant community growth curve (percent production by month). NM2802, R042XC002NM-Shallow Sandy-HCPC. SD-3 Shallow Sandy - Warm season plant community.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	3	5	10	10	25	30	12	5	0	0

State 2 Grass/Shrub

Community 2.1 Grass/Shrub

Grass/Shrub: This state is characterized by the notable presence of shrubs, especially mesquite, broom snakeweed, and/or creosotebush, however grasses remain as the dominant species. Black grama is the dominant grass species. Threeawns and or dropseeds are sub-dominant. The susceptibility of the Shallow Sandy site to shrub encroachment may be higher when located adjacent to other sites with high densities of mesquite or creosotebush. Retrogression within this site is characterized by decreases in grass cover and increasing densities of shrubs. Diagnosis: Black grama remains as the dominant grass species. Grass cover varies in response to the amount of shrub increase, ranging from uniform to patchy. Shrubs are found at increased densities relative to the grassland state, especially mesquite, creosotebush, or broom snakeweed. Transition to Grass/Shrub (1a) Historically fire may have kept mesquite and other shrubs in check by completely killing some species and disrupting seed production cycles and suppressing the establishment of shrub seedlings in others. Fire suppression combined with seed dispersal by livestock and wildlife is believed to be the factors responsible for the establishment and increase in shrubs.1, 3 Loss of grass cover due to overgrazing, prolonged periods of drought, or their combination, reduces fire fuel loads and increases the susceptibility of the site to shrub establishment. Key indicators of approach to transition: Increase in the relative abundance of dropseeds and threeawns Presence of shrub seedlings Loss of organic matter—evidenced by an increase in physical soil crusts 8 Transition back to Grassland (1b) Brush control is necessary to initiate the transition back to the grassland state. If adequate fuel loads remain, possibly the reintroduction of fire as a management tool will assist in the transition back, however, mixed results have been observed concerning the effects of fire on black grama grasslands.6 Prescribed grazing will help ensure adequate rest following brush control and will assist in the establishment and maintenance of grass cover capable of sustaining fire.

State 3 Shrub Dominated

Community 3.1 Shrub Dominated

Shrub-Dominated: Across the range of soil types included in the Shallow Sandy site, mesquite is typically the dominant shrub, but it does occur as a co-dominant or subdominant species with creosotebush or broom snakeweed. Mesquite tends to dominate when the Shallow Sandy site occurs as part of a complex or in association with Sandy or Loamy Sand sites. Creosotebush tends to dominate on Shallow Sandy sites that occur as part of, or adjacent to Shallow Sites. Broom snakeweed increases in response to heavy grazing, but tends to cycle in and out depending on timing of rainfall. However, once the site is dominated by shrubs and snakeweed becomes well established, it tends to remain as a major component in the shrub dominated state. Diagnosis: Mesquite, creosotebush, or snakeweed cover is high, exceeding that of grasses. Grass cover is patchy with large connected bare areas present. Black grama, threeawns, or dropseeds may be the dominant grass. Evidence of accelerated wind erosion in the form of pedestalling of plants, and soil deposition around shrub bases may be common. Transition to Shrub-Dominated (2) Persistent loss of grass cover and the resulting increased competition between shrubs and remaining grasses for dwindling resources (especially soil moisture) may drive this transition.5 Additionally periods of increased winter precipitation may facilitate periodic episodes of shrub expansion and establishment. 4 Key indicators of approach to transition: Increase in size and frequency of bare patches. Loss of grass cover in shrub interspaces. Increased signs of erosion, evidenced by pedestalling of plants, and soil and litter deposition on leeward side of plants. 7 Transition back to Grassland (3) Brush control is necessary to reduce competition from shrubs and reestablish grasses. Range seeding may be necessary if insufficient grasses remain, The benefits, and costs, will vary depending upon the degree of site degradation, and adequate precipitation following seeding.

Additional community tables

Table 7. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Lb/Acre)	Foliar Cover (%)
Grass	/Grasslike				
1	Warm Season			413–495	
	black grama	BOER4	Bouteloua eriopoda	413–495	_
2	Warm Season			41–83	
	bush muhly	MUPO2	Muhlenbergia porteri	41–83	-
3	Warm Season			41–83	

	blue grama	BOGR2	Bouteloua gracilis	41–83	_
4	Warm Season			25–41	
	sideoats grama	BOCU	Bouteloua curtipendula	25–41	_
5	Warm Season			41–83	
	spike dropseed	SPCO4	Sporobolus contractus	41–83	_
	sand dropseed	SPCR	Sporobolus cryptandrus	41–83	-
	mesa dropseed	SPFL2	Sporobolus flexuosus	41–83	_
6	Warm Season			17–41	
	threeawn	ARIST	Aristida	17–41	_
7	Warm Season	•		41–83	
	Arizona cottontop	DICA8	Digitaria californica	41–83	-
	plains bristlegrass	SEVU2	Setaria vulpiseta	41–83	-
8	Warm Season			41–83	
	mat sandbur	CELO3	Cenchrus longispinus	41–83	-
	hooded windmill grass	CHCU2	Chloris cucullata	41–83	_
9	Other Perennial Grass	es		25–41	
	Grass, perennial	2GP	Grass, perennial	25–41	_
Shru	ıb/Vine				
10	Shrub			8–25	
	javelina bush	COER5	Condalia ericoides	8–25	_
11	Shrub			8–25	
	yucca	YUCCA	Yucca	8–25	_
12	Shrub			8–25	
	jointfir	EPHED	Ephedra	8–25	_
	littleleaf ratany	KRER	Krameria erecta	8–25	_
13	Shrub			8–25	
	featherplume	DAFO	Dalea formosa	8–25	_
14	Shrub			8–25	
	broom snakeweed	GUSA2	Gutierrezia sarothrae	8–25	_
15	Other Shrubs			25–41	
	Shrub (>.5m)	2SHRUB	Shrub (>.5m)	25–41	_
Forb)				
16	Forb			17–41	
	leatherweed	CRPOP	Croton pottsii var. pottsii	17–41	_
<u> </u>	I		į.	· ·	· ·

	Goodding's tansyaster	MAPIG2	Machaeranthera pinnatifida ssp. gooddingii var. gooddingii	17–41	-
17	Forb			17–41	
	woolly groundsel	PACA15	Packera cana	17–41	_
	threadleaf ragwort	SEFLF	Senecio flaccidus var. flaccidus	17–41	1
18	Forb			8–25	
	whitest evening primrose	OEAL	Oenothera albicaulis	8–25	1
19	Other Forbs			8–25	
	Forb (herbaceous, not grass nor grass-like)	2FORB	Forb (herbaceous, not grass nor grass-like)	8–25	-

Animal community

This site provides habitats which support a resident animal community that is characterized by pronghorn antelope, swift fox, black-tailed jackrabbit, spotted ground squirrel, Ord's kangaroo rat, northern grasshopper mouse, coyote, horned lark, meadowlark, lark bunting, scaled quail, morning dove, side-blotched lizard, round-tailed horned lizard, marbled whiptail, prairie rattlesnake and ornate box turtle.

Hydrological functions

The runoff curve numbers are determined by field investigations using hydraulic cover conditions and hydrologic soil groups.

Hydrologic Interpretations Soil Series Hydrologic Group Jarag D Simona D

Recreational uses

This site offers recreation for hiking, horseback riding, nature observation and photography, and quail and dove hunting. During years of abundant spring moisture, this site displays a riot of color from wildflowers during May and June. A few summer and fall flowers also occur.

Wood products

The natural potential plant community of this site affords little or no wood products. Where the site has been invaded by mesquite or cholla cactus the roots and stems of these plants provide attractive material for a variety of curiosities, such as lamps and small furniture.

Other products

This site is suitable for grazing by all kinds and classes of livestock during all seasons of the year. Because of the sandy textures and shallow profile, this site will respond rapidly to management. As this site deteriorates, plants such as black grama, bush muhly, blue and sideoats grama, plains bristlegrass and Arizona cottontop, will decrease and be replaced by plants such as threeawns, mesquite, creosote bush, and broom snakeweed. This also causes a decrease in ground cover, leaving the soil to blow. This site responds best to a system of management that rotates the season of use.

Other information

Guide to Suggested Initial Stocking Rate Acres per Animal Unit Month Similarity Index Ac/AUM

100 - 762.5 - 3.5

75 - 513.2 - 4.6

50 - 264.5 - 7.5

25 - 07.6 +

Inventory data references

Data collection for this site was done in conjunction with the progressive soil surveys within the Southern Desertic Basins, Plains and Mountains, Major Land Resource Areas of New Mexico. This site has been mapped and correlated with soils in the following soil surveys. Eddy County, Lea County, and Chaves County.

Other references

Literature References:

- 1. Brooks, M.L. and D.A. Pyke. 2001. Invasive plants and fire in the deserts of North America. Pages 1–14 in K.E.M. Galley and T.P. Wilson (eds.). Proceedings of the Invasive Species Workshop: the Role of Fire in the Control and Spread of Invasive Species.
- 2. Hennessy, J.T., R.P. Gibbens, J.M. Tromble, and M. Cardenas. 1983. Water properties of caliche. J. Range Manage. 36: 723-726.
- 3. Humphrey, R.R. 1974. Fire in the deserts and desert grassland of North America. In:

Kozlowski, T. T.; Ahlgren, C. E., eds. Fire and ecosystems. New York: Academic Press: 365-400.

- 4. Moir, W.H., and J. A. Ludwig. 1991. Plant succession and changing land features in desert grasslands. P. 15-18. In P.F. Ffolliott and W.T. Swank (eds.) People and the temperate region: a summary of research from the United States Man and the Biosphere Program 1991. U.S. Dept. State, Publ No. 9839, Nat. Tech. Info. Serv., U.S. Dept. Commerce, Springfield, Illinois. 63 p.
- 5. Tiedemann, A. R. and J. O. Klemmedson. 1977. Effect of mesquite trees on vegetation and soils in the desert grassland. J. Range Manage. 30: 361-367.
- 6. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (2002, September). Fire Effects Information System, [Online]. Available: http://www.fs.fed.us/database/feis/ [accessed 2/10/03].
- 7. U.S. Department of Agriculture, Natural Resources Conservation Service. 2001. Soil Quality Information Sheets. Rangeland Soil Quality—Wind Erosion. Rangeland Sheet 10 [Online]. Available: http://www.statlab.iastate.edu/survey/SQI/range.html
- 8. U.S. Department of Agriculture, Natural Resources Conservation Service. 2001. Soil Quality Information Sheets. Rangeland Soil Quality—Physical and Biological Soil Crusts. Rangeland Sheet 7 [Online]. Available: http://www.statlab.iastate.edu/survey/SQI/range.html

Contributors

David Trujillo
Don Sylvester

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	

Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

1.	Number and extent of rills:
2.	Presence of water flow patterns:
3.	Number and height of erosional pedestals or terracettes:
4.	Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
5.	Number of gullies and erosion associated with gullies:
6.	Extent of wind scoured, blowouts and/or depositional areas:
7.	Amount of litter movement (describe size and distance expected to travel):
8.	Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values):
9.	Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):

10.	groups) and spatial distribution on infiltration and runoff:
11.	Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
12.	Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):
	Dominant:
	Sub-dominant:
	Other:
	Additional:
13.	Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
14.	Average percent litter cover (%) and depth (in):
15.	Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production):
16.	Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing

what is NOT expected in the reference state for the ecological site:

17. Perennial plant reproductive capability:

Sante Fe Main Office Phone: (505) 476-3441 General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 511987

QUESTIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	511987
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2518149545
Incident Name	NAPP2518149545 BIG EDDY UNIT DI 29 BATTERY @ D-21-20S-32E
Incident Type	Oil Release
Incident Status	Remediation Closure Report Received

Location of Release Source		
Please answer all the questions in this group.		
Site Name	BIG EDDY UNIT DI 29 BATTERY	
Date Release Discovered	06/26/2025	
Surface Owner	Federal	

Incident Details		
Please answer all the questions in this group.		
Incident Type	Oil Release	
Did this release result in a fire or is the result of a fire	Yes	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	No	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No	

lature and Volume of Release	
laterial(s) released, please answer all that apply below. Any calculations or specific justifications t	Ţ
Crude Oil Released (bbls) Details	Cause: Equipment Failure Well Crude Oil Released: 9 BBL Recovered: 0 BBL Lost: 9 BBL.
Produced Water Released (bbls) Details	Cause: Equipment Failure Well Produced Water Released: 1 BBL Recovered: 0 BBL Lost: 1 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 511987

QUESTI	ONS (continued)
Operator: XTO ENERGY, INC 6401 Holiday Hill Road Midland, TX 79707	OGRID: 5380 Action Number: 511987 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	•
Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (2) an unauthorized release of a volume that: (a) results in a fire or is the result of a fire.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e.	e. gas only) are to be submitted on the C-129 form.
Initial Response	refers beyond that yould recult in injury
The responsible party must undertake the following actions immediately unless they could create a s The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	I ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releathe OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are require ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Robert Woodall Title: Environmental Analyst Email: robert.d.woodall@exxonmobil.com Date: 10/03/2025

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116

Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 511987

QUESTIONS (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	511987
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization	
Please answer all the questions in this group (only required when seeking remediation plan approva release discovery date.	l and beyond). This information must be provided to the appropriate district office no later than 90 days after the
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 26 and 50 (ft.)
What method was used to determine the depth to ground water	NM OSE iWaters Database Search
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:	
A continuously flowing watercourse or any other significant watercourse	Between 500 and 1000 (ft.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1000 (ft.) and ½ (mi.)
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)
Any other fresh water well or spring	Greater than 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between 500 and 1000 (ft.)
A subsurface mine	Between 1 and 5 (mi.)
An (non-karst) unstable area	Zero feet, overlying, or within area
Categorize the risk of this well / site being in a karst geology	Medium
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	No

Remediation Plan		
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
Requesting a remediation plan approval with this submission	Yes	
Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination as	sociated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area No		
Soil Contamination Sampling: (Provide the highest observable value for each, in millig	rams per kilograms.)	
Chloride (EPA 300.0 or SM4500 Cl B)	144	
TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M)	26910	
GRO+DRO (EPA SW-846 Method 8015M)	19200	
BTEX (EPA SW-846 Method 8021B or 8260B)	0	
Benzene (EPA SW-846 Method 8021B or 8260B)	0	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.		
On what estimated date will the remediation commence	09/22/2025	
On what date will (or did) the final sampling or liner inspection occur	09/25/2025	
On what date will (or was) the remediation complete(d)	09/25/2025	
What is the estimated surface area (in square feet) that will be reclaimed	362	
What is the estimated volume (in cubic yards) that will be reclaimed	15	
What is the estimated surface area (in square feet) that will be remediated	362	
What is the estimated volume (in cubic yards) that will be remediated	15	
These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed.		
The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.		

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 511987

QUESTIONS (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	511987
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:		
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes	
Which OCD approved facility will be used for off-site disposal	fEEM0112334510 HALFWAY DISPOSAL AND LANDFILL	
OR which OCD approved well (API) will be used for off-site disposal	Not answered.	
OR is the off-site disposal site, to be used, out-of-state	Not answered.	
OR is the off-site disposal site, to be used, an NMED facility	Not answered.	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.	
(In Situ) Soil Vapor Extraction	Not answered.	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.	
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.	
OTHER (Non-listed remedial process)	Not answered.	

Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC which includes the anticipated timelines for beginning and completing the remediation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

I hereby agree and sign off to the above statement

Name: Robert Woodall Title: Environmental Analyst

Email: robert.d.woodall@exxonmobil.com

Date: 10/03/2025

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 511987

QUESTIONS (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	511987
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Deferral Requests Only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.	
Requesting a deferral of the remediation closure due date with the approval of this submission	No

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116

Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 511987

QUESTIONS (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	511987
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded 507494	
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	09/26/2025
What was the (estimated) number of samples that were to be gathered	9
What was the sampling surface area in square feet	1750

Remediation Closure Request		
Only answer the questions in this group if seeking remediation closure for this release because all re	Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.	
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	362	
What was the total volume (cubic yards) remediated	15	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	362	
What was the total volume (in cubic yards) reclaimed	15	
Summarize any additional remediation activities not included by answers (above)	see report	

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Name: Robert Woodall

Title: Environmental Analyst
Email: robert.d.woodall@exxonmobil.com

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 511987

QUESTIONS (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	511987
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Reclamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	
Requesting a reclamation approval with this submission	No

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 511987

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	511987
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

Created By	Condition	Condition Date
scwells	None	10/10/2025