<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

Depth to Ground water

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form C-101 August 1, 2011

Permit 309548

Distance to nearest surface water

			APPLIC	ATION FO	OR PERMIT	TO DRII	L, R	E-ENTER, DEE	PEN, PLUGBA	ACK, OR AD	DAZ	ONE		
1. Operate		e and Address OPERATING, LL0	С								2. C	OGRID Number 371838		
		ad 3263 c, NM 87410									3. A	PI Number 30-043-2	21493	
4. Propert	y Code 3324			5. Property	Name Lybrook D16-	2207					6. V	Vell No. 004H		
							7. S	urface Location						
UL - Lot		Section	Township	Ran	ge	Lot Idn		Feet From	N/S Line	Feet From		E/W Line	County	
	D	16	22	N	07W			1277	N	363	3	W		Sandoval
						8. Pro	pose	d Bottom Hole Loc	ation					
UL - Lot		Section	Township	Ran	ge	Lot Idn		Feet From	N/S Line	Feet From		E/W Line	County	
	Α	16	22	N	07W		Α	967	N	33	0	E		Sandoval
							9. F	Pool Information						
RUSTY	GALLI	JP								52860)			
						Ac	lditio	nal Well Informatio	n					
11. Work	Гуре		12. Well Type		13. Ca	ble/Rotary			14. Lease Ty	pe	15. Grd	ound Level Eleva	ition	
	New	Well	OI	_		-			Si	tate		6823		
16. Multip	ole		17. Proposed	Depth	18. Fo	rmation			19. Contracto	or	20. Spt	ud Date		
-	N		. 00	55		Gallun	Form	ation				10/27/2023		

■ We will be using a closed-loop system in lieu of lined pits

21. Proposed Casing and Cement Program

Distance from nearest fresh water well

Туре	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC
Surf	12.25	9.625	36	350	109	0
Int1	8.75	7	26	5290	613	0
Prod	6.125	4.5	11.6	9955	415	5004

Casing/Cement Program: Additional Comments

22. Proposed Blowout Prevention Program									
Туре	Working Pressure	Test Pressure	Manufacturer						
Double Ram	3	5	Cameron						

23. I hereby certify that the information given above is true and complete to the best of my knowledge and belief. I further certify I have complied with 19.15.14.9 (A) NMAC ☒ and/or 19.15.14.9 (B) NMAC ☒, if applicable.				OIL CONSERVATI	ON DIVISION	
Signature:						
Printed Name:	Electronically filed by Dave Brow	n	Approved By:	Katherine Pickford		
Title:	Manager of Governement and Re	egulatory Affairs	Title:	Geoscientist		
Email Address:	ail Address: dbrown@djrllc.com			3/1/2022 Expiration Date: 3/1/2024		
Date:	2/25/2022	Phone: 303-887-3695	Conditions of Appr	roval Attached		

<u>DISTRICT I</u> 1625 N. French Dr., Hobbs, N.M. 88240 Phone: (675) 393-6161 Fax: (675) 393-0720 DISTRICT II 811 S. First St., Artesia, N.M. 86210 Phone: (575) 748-1283 Fax: (675) 748-9720 DISTRICT. III 1000 Rio Brazos Rd., Aztec, N.M. 87410 Phone: (505) 334-8178 Fax: (505) 334-6170 DISTRICT IV 1220 S. St. Francis Dr., Santa Fe, N.M. 67505 Phone: (505) 476–3460 Fax: (505) 476–3462

State of New Mexico Energy, Minerals & Natural Resources Department

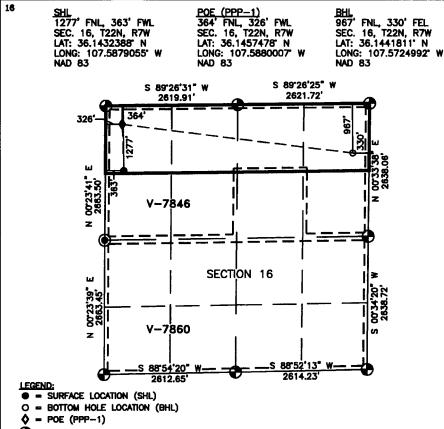
> OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, N.M. 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number	*Pool Code	*Poc	ol Name
30-043-21493	52860	RUSTY GALI	LUP OIL POOL
⁴ Property Code	*Property	Name	Well Number
332464	LYBROOM	0 4H	
OGRID No.	¹ Operator	Name	* Elevation
371838	DJR OPERAT	TING, LLC	6823

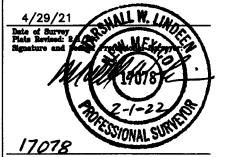

¹⁰ Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	Rest/West line	County
D	16	22 N	7 W		1277	NORTH	363	WEST	SANDOVAL

¹¹ Bottom Hole Location If Different From Surface

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
Α	16	22 N	7 W		967	NORTH	330	EAST	SANDOVAL
Dedicated Acre SEC. 16=N/2N/2 TOTAL = 160 ACR	-				¹⁸ Joint or Infill	¹⁴ Consolidation. Code	²⁸ Order No.		

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION


17 OPERATOR CERTIFICATION

well at this location pursuant to a contract with an er of such a m rest or to a ry pooli red by the division

Shaw-Marie Ford 02/17/22 Signature Shaw-Marie Ford Printed Name

sford@djrllc.com E-mail Address

18 SURVEYOR CERTIFICATION

Certificate M

= FOUND BRASS CAP USGLO 1948

16

FOUND ALUM. CAP LS 110141 2002

Form APD Conditions

Permit 309548

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

PERMIT CONDITIONS OF APPROVAL

Operate	or Name and Address:	API Number:
	DJR OPERATING, LLC [371838]	30-043-21493
	1 Road 3263	Well:
	Aztec, NM 87410	Lybrook D16-2207 #004H
OCD	Condition	
Review	er	
kpickf	ord Notify OCD 24 hours prior to casing & cement	
kpickf	ord Will require a File As Drilled C-102 and a Directional Survey with the C-104	
kpickf	ord The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud	

kpickford Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh

kpickford Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud,

water zone or zones and shall immediately set in cement the water protection string kpickford Cement is required to circulate on both surface and intermediate1 strings of casing

drilling fluids and solids must be contained in a steel closed loop system

Company: DJR Operating Project: Lybrook Area Site: D16 2207 Pad Well: # 04H Wellbore: Original drilling Design: APD

PROJECT DETAILS: Lybrook Area

Geodetic System: US State Plane 1983
Datum: North American Datum 1983
Ellipsoid: GRS 1980 Zone: New Mexico Western Zone System Datum: Mean Sea Level Local North: True

Received by OCD

Azimuths to True No Magnetic North: 10.2

Created By: Janie Collins Date: 12:32, February 17 2022

2

Longitude -107.58790549

Latittude 36.14323877

Northing Easting 1871526.87 2795554.69

+E/-W 0

8-/N+ 0

+N/-S 913 343

TVD 4800 4829

Name 04H heel 04H toe

GL 6823' & RKB 14' @ 6837ft WELL DETAILS: # 04H

SECTION DETAILS

Plan: APD (# 04H/Original drilling)

+E/-W 0 0 -93 -661 -28 4549

Magnetic Fed Strength: 51199 31 Dip Angle: 63 33 Date: 12/31/24 Model: IGRF200

	DETAI	
	CASING	

IAILS	
G DET,	
CASING	
Ö	

CASING DETAILS	9
CASII	:

DETAILS	
CASING D	
CAS	

DETAILS	
CASING E	9

	-
LAILS	
DETA	
1	
CASING	MD

DETAILS	N	Surf	Intermed
CASING DETAILS	MD	350	5290
	TVD	350	4798

DETAILS	Na	Intermed
CASING DETAILS	MD	5290
		~

Intel		
5290		

	i
FORMATION DETAILS	
	17 - G-G/ CE

	ш
DETAILS	
FORMATION	MDPath
	/DPath

		FORMATION DETAILS	ETAILS
	TVDPath	MDPath	Formation
	662	662	Ojo Alamo
	716	717	Kirtland
	965	896	Fruitland
	1201	1211	Pictured Cliffs
# OAL!	1310	1325	Lewis
#04r1/Original diming	1972	2023	Chacra
	2717	2808	Menefee
g	3623	3763	Point Lookout
S	3750	3897	Mancos
04H 100	4038	4200	Mancos Silt
	4516	4712	Gallup A
	4586	4802	Gallup B
	4699	4979	Gallup C

04H heel

(ni\text{i'1} 002\text{1}) (+)\text{ihoN\(-)\text{ihoS}}
\frac{\gamma}{\gamma} \frac{\ga

Intermediate

Surface

3750

West(-)/East(+) (1500 ft/in)

-1500-

True Vertical Depth (1500 ft/in)

04H/Original drilling/APD

0008

4000

04H toe

04H heel

Intermediate

4500

5250-

Page 4 of 3.

12750

12000

11250

10500

9750

0006

8250

7500

6750

Vertical Section at 85.68° (1500 ft/in)

4500

3750

3000

2250

1500

750

-750

-1500

2250-

-750

DJR Operating

Lybrook Area D16 2207 Pad # 04H - Slot 2

Original drilling

Plan: APD

Standard Planning Report

17 February, 2022

Lonestar Consulting, LLC

Planning Report

Grand Junction Database: **DJR** Operating Company: Lybrook Area Project:

D16 2207 Pad Site: Well: # 04H Original drilling **Local Co-ordinate Reference**

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well # 04H - Slot 2

GL 6823' & RKB 14' @ 6837ft GL 6823' & RKB 14' @ 6837ft

True

Minimum Curvature

Lybrook Area **Project**

Wellbore:

Map Zone:

Design:

US State Plane 1983 Map System: North American Datum 1983 Geo Datum:

APD

New Mexico Western Zone

System Datum:

Mean Sea Level

D16 2207 Pad Site

Northing: 1,871,526.89 usft Latitude: 36.14323897 Site Position: Lat/Long 2,795,534.66 usft -107.58797333 From: Easting: Longitude: Position Uncertainty: Slot Radius: 13.20 in **Grid Convergence:**

0.14°

Well # 04H - Slot 2

0 ft 1,871,526.87 usft 36.14323877 +N/-S **Well Position** Northing: Latitude: 20 ft +E/-W Easting: 2,795,554.69 usft Longitude: -107.58790549

0 ft 6823 ft **Position Uncertainty** Wellhead Elevation: **Ground Level:**

Original drilling Wellbore Declination Field Strength Magnetics **Model Name** Sample Date **Dip Angle** (nT) IGRF2000 12/31/2004 10.78 63.19 51,199.59739346

APD Design **Audit Notes:** PLAN 0 Version: Phase: Tie On Depth: Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (ft) (ft) (ft) (°) 0 0 0 85.68

5/20/2021 Plan Survey Tool Program Date

Depth From Depth To Survey (Wellbore) **Tool Name** Remarks (ft) (ft)

0 MWD+IGRF 9955 APD (Original drilling)

OWSG MWD + IGRF or WMM

Plan Sections										
Measured	Inglination	A =: 4 la	Vertical	IN/ C	+E/-W	Dogleg	Build	Turn		
Depth (ft)	Inclination (°)	Azimuth (°)	Depth (ft)	+N/-S (ft)	(ft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)	TFO (°)	Target
0	0.00	0.00	0	0	0	0.00	0.00	0.00	0.00	
425	0.00	0.00	425	0	0	0.00	0.00	0.00	0.00	
1347	18.45	320.98	1331	114	-93	2.00	2.00	0.00	320.98	
4201	18.45	320.98	4038	816	-661	0.00	0.00	0.00	0.00	
5343	89.64	97.10	4800	913	-28	9.00	6.23	11.91	134.69	04H heel
9955	89.64	97.10	4829	343	4549	0.00	0.00	0.00	0.00	04H toe

DJR Operating

Lonestar Consulting, LLC

Planning Report

Database: Company:

Project:

Grand Junction
DJR Operating
Lybrook Area
D16 2207 Pad

Site: D16 2207 Pad
Well: # 04H
Wellbore: Original drilling

Design: APD

Local Co-ordinate Reference

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well # 04H - Slot 2

GL 6823' & RKB 14' @ 6837ft GL 6823' & RKB 14' @ 6837ft

True

Minimum Curvature

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100usft)	(°/100usft)	(°/100usft)
0	0.00	0.00	0	0	0	0	0.00	0.00	0.00
100	0.00	0.00	100	0	0	0	0.00	0.00	0.00
200	0.00	0.00	200	0	0	0	0.00	0.00	0.00
300	0.00	0.00	300	0	0	0	0.00	0.00	0.00
400	0.00	0.00	400	0	0	0	0.00	0.00	0.00
425	0.00	0.00	425	0	0	0	0.00	0.00	0.00
500	1.50	320.98	500	1	-1	-1	2.00	2.00	0.00
600	3.50	320.98	600	4	-3	-3	2.00	2.00	0.00
700	5.50	320.98	700	10	-8	-8	2.00	2.00	0.00
800	7.50	320.98	799	19	-0 -15	-14	2.00	2.00	0.00
800									
900	9.50	320.98	898	31	-25	-22	2.00	2.00	0.00
1000	11.50	320.98	996	45	-36	-33	2.00	2.00	0.00
1100	13.50	320.98	1094	62	-50	-45	2.00	2.00	0.00
1200	15.50	320.98	1191	81	-66	-59	2.00	2.00	0.00
1300	17.50	320.98	1286	103	-83	-75	2.00	2.00	0.00
1347	18.45	320.98	1331	114	-93	-84	2.00	2.00	0.00
1400	18.45	320.98	1381	127	-103	-93	0.00	0.00	0.00
1500	18.45	320.98	1476	152	-103	-93 -111	0.00	0.00	0.00
		320.98		176	-123			0.00	
1600 1700	18.45 18.45	320.98	1571 1666	201	-143 -163	-129 -147	0.00 0.00	0.00	0.00 0.00
						-147			
1800	18.45	320.98	1761	226	-183	-165	0.00	0.00	0.00
1900	18.45	320.98	1856	250	-203	-183	0.00	0.00	0.00
2000	18.45	320.98	1951	275	-223	-201	0.00	0.00	0.00
2100	18.45	320.98	2045	299	-243	-219	0.00	0.00	0.00
2200	18.45	320.98	2140	324	-263	-237	0.00	0.00	0.00
2300	18.45	320.98	2235	349	-282	-255	0.00	0.00	0.00
2400	18.45	320.98	2330	373	-302	-273	0.00	0.00	0.00
2500	18.45	320.98	2425	398	-322	-273	0.00	0.00	0.00
2600	18.45	320.98	2520	422	-342	-309	0.00	0.00	0.00
2700	18.45	320.98	2615	447	-342	-327	0.00	0.00	0.00
	10.45								
2800	18.45	320.98	2710	471	-382	-345	0.00	0.00	0.00
2900	18.45	320.98	2804	496	-402	-363	0.00	0.00	0.00
3000	18.45	320.98	2899	521	-422	-381	0.00	0.00	0.00
3100	18.45	320.98	2994	545	-442	-399	0.00	0.00	0.00
3200	18.45	320.98	3089	570	-462	-417	0.00	0.00	0.00
3300	18.45	320.98	3184	594	-482	-435	0.00	0.00	0.00
		320.98 320.98	3184 3279	594 619	-482 -502			0.00	
3400 3500	18.45	320.98 320.98	3279 3374	644		-454 -472	0.00		0.00
	18.45				-521		0.00	0.00	0.00
3600	18.45	320.98	3468	668	-541	-490	0.00	0.00	0.00
3700	18.45	320.98	3563	693	-561	-508	0.00	0.00	0.00
3800	18.45	320.98	3658	717	-581	-526	0.00	0.00	0.00
3900	18.45	320.98	3753	742	-601	-544	0.00	0.00	0.00
4000	18.45	320.98	3848	766	-621	-562	0.00	0.00	0.00
4100	18.45	320.98	3943	791	-641	-580	0.00	0.00	0.00
4201	18.45	320.98	4038	816	-661	-598	0.00	0.00	0.00
4300	13.66		4134	840	-673	-608	9.00	-4.80	28.07
		348.92							
4400	13.83	27.47	4231	862	-670	-603	9.00	0.16	38.55
4500	18.84	54.60	4327	882	-651	-583	9.00	5.01	27.13
4600	26.03	68.98	4420	899	-617	-548	9.00	7.19	14.38
4700	34.05	77.21	4506	913	-570	-499	9.00	8.02	8.23
4800	42.43	82.55	4585	924	-509	-438	9.00	8.38	5.34
4900	50.99	86.40	4653	931	-436	-365	9.00	8.56	3.85
5000	59.64	89.41	4710	933	-354	-283	9.00	8.65	3.01

DJR Operating

Lonestar Consulting, LLC

Planning Report

Database: Grand Junction
Company: DJR Operating

 Project:
 Lybrook Area

 Site:
 D16 2207 Pad

 Well:
 # 04H

Wellbore: Original drilling
Design: APD

Local Co-ordinate Reference

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well # 04H - Slot 2

GL 6823' & RKB 14' @ 6837ft GL 6823' & RKB 14' @ 6837ft

True

Minimum Curvature

anned Survey									
Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100usft)	(°/100usft)	(°/100usft)
5100	68.35	91.92	4754	932	-264	-194	9.00	8.71	2.51
5200	77.10	94.15	4784	927	-169	-99	9.00	8.75	2.23
						-2			
5300 5343	85.86 89.64	96.23 97.10	4798 4800	918 913	-71 -28	-2 41	9.00 9.00	8.76 8.77	2.07 2.03
5400	89.64	97.10	4800	906	-28 28	97	0.00	0.00	0.00
5500	89.64	97.10	4801	894	128	195	0.00	0.00	0.00
5600	89.64	97.10	4802	882	227	293	0.00	0.00	0.00
5700	89.64	97.10	4802	869	326	391	0.00	0.00	0.00
5800	89.64	97.10	4803	857	425	489	0.00	0.00	0.00
5900	89.64	97.10	4804	845	525	587	0.00	0.00	0.00
6000	89.64	97.10	4804	832	624	685	0.00	0.00	0.00
6100	89.64	97.10	4805	820	723	783	0.00	0.00	0.00
6200	89.64	97.10	4805	807	822	881	0.00	0.00	0.00
6300	89.64	97.10	4806	795	921	979	0.00	0.00	0.00
6400	89.64	97.10	4807	783	1021	1077	0.00	0.00	0.00
6500	89.64	97.10	4807	770	1120	1175	0.00	0.00	0.00
6600	89.64	97.10	4808	758	1219	1273	0.00	0.00	0.00
6700	89.64	97.10	4809	746	1318	1371	0.00	0.00	0.00
6800	89.64	97.10	4809	733	1418	1469	0.00	0.00	0.00
6900	89.64	97.10	4810	733 721	1517	1567	0.00	0.00	0.00
7000	89.64	97.10	4810	709	1616	1665	0.00	0.00	0.00
7100	89.64	97.10	4811	696	1715	1763	0.00	0.00	0.00
7200	89.64	97.10	4812	684	1815	1861	0.00	0.00	0.00
7300	89.64	97.10	4812	672	1914	1959	0.00	0.00	0.00
7400	89.64	97.10	4813	659	2013	2057	0.00	0.00	0.00
7500	89.64	97.10	4814	647	2112	2155	0.00	0.00	0.00
7600	89.64	97.10	4814	634	2211	2253	0.00	0.00	0.00
7700	89.64	97.10	4815	622	2311	2351	0.00	0.00	0.00
7800	89.64	97.10	4815	610	2410	2449	0.00	0.00	0.00
7900	89.64	97.10	4816	597	2509	2547	0.00	0.00	0.00
8000	89.64	97.10	4817	585	2608	2645	0.00	0.00	0.00
8100	89.64	97.10	4817	573	2708	2743	0.00	0.00	0.00
8200	89.64	97.10	4818	560	2807	2841	0.00	0.00	0.00
8300	89.64	97.10	4819	548	2906	2939	0.00	0.00	0.00
8400	89.64	97.10	4819	536	3005	3037	0.00	0.00	0.00
8500	89.64	97.10	4820	523	3105	3135	0.00	0.00	0.00
8600	89.64	97.10	4820	511	3204	3233	0.00	0.00	0.00
8700	89.64	97.10	4821	499	3303	3331	0.00	0.00	0.00
8800	89.64	97.10	4822	486	3402	3429	0.00	0.00	0.00
8900	89.64	97.10	4822	474	3502	3527	0.00	0.00	0.00
9000	89.64	97.10	4823	461	3601	3625	0.00	0.00	0.00
9100	89.64	97.10	4824	449	3700	3723	0.00	0.00	0.00
9200	89.64	97.10	4824	437	3799	3821	0.00	0.00	0.00
9300	89.64	97.10	4825	424	3898	3919	0.00	0.00	0.00
9400	89.64	97.10	4826	412	3998	4017	0.00	0.00	0.00
9500	89.64	97.10	4826	400	4097	4115	0.00	0.00	0.00
9600	89.64	97.10	4827	387	4196	4213	0.00	0.00	0.00
9700	89.64	97.10	4827	375	4295	4311	0.00	0.00	0.00
9800	89.64	97.10	4828	363	4395	4409	0.00	0.00	0.00
9900	89.64	97.10	4829	350	4494	4507	0.00	0.00	0.00
	00.01	97.10	4829	343	4549	4562	0.00	0.00	0.00

Lonestar Consulting, LLC

Planning Report

Database: Grand Junction
Company: DJR Operating
Project: Lybrook Area

Site:

Well:

Lybrook Area D16 2207 Pad # 04H

Wellbore: Original drilling
Design: APD

Local Co-ordinate Reference

TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Well # 04H - Slot 2

GL 6823' & RKB 14' @ 6837ft GL 6823' & RKB 14' @ 6837ft

True

Minimum Curvature

Design Targets									
Target Name - hit/miss target	Dip Angle	Dip Dir.	TVD	+N/-S	+E/-W	Northing	Easting		
- Shape	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
04H heel - plan hits target cent - Circle (radius 50)	0.00 er	0.00	4800	913	-28	1,872,440.13	2,795,524.27	36.14574780	-107.58800070
04H toe - plan hits target cent - Circle (radius 100)	0.00 er	0.00	4829	343	4549	1,871,881.75	2,800,102.52	36.14418110	-107.57249920

Casing Points							
	Measured	Vertical			Casing	Hole	
	Depth	Depth			Diameter	Diameter	
	(ft)	(ft)		Name	(in)	(in)	
	350	350	Surface		9.62	12.25	
	5290	4798	Intermediate		7.00	8.75	

Formations							
	Measured Depth (ft)	Vertical Depth (ft)	Name	Lithology	Dip (°)	Dip Direction (°)	
	662	662	Ojo Alamo		0.00	0.00	
	717	716	Kirtland		0.00	0.00	
	968	965	Fruitland		0.00	0.00	
	1211	1201	Pictured Cliffs		0.00	0.00	
	1325	1310	Lewis		0.00	0.00	
	2023	1972	Chacra		0.00	0.00	
	2808	2717	Menefee		0.00	0.00	
	3763	3623	Point Lookout		0.00	0.00	
	3897	3750	Mancos		0.00	0.00	
	4200	4038	Mancos Silt		0.00	0.00	
	4712	4516	Gallup A		0.00	0.00	
	4802	4586	Gallup B		0.00	0.00	
	4979	4699	Gallup C		0.00	0.00	

DJR Operating

Lybrook Area D16 2207 Pad # 04H

Original drilling APD

Anticollision Report

17 February, 2022

Lonestar Consulting, LLC

Anticollision Report

DJR Operating Company: Lybrook Area Project:

D16 2207 Pad Reference Site: 0 ft Site Error: # 04H Reference Well:

0 ft

Reference Wellbore Original drilling APD Reference Design:

Local Co-ordinate Reference

Well # 04H - Slot 2 GL 6823' & RKB 14' @ 6837ft TVD Reference: GL 6823' & RKB 14' @ 6837ft MD Reference:

North Reference:

Minimum Curvature **Survey Calculation Method:**

Output errors are at Database:

Offset TVD Reference:

2.00 sigma **Grand Junction** Reference Datum

Closest Approach 3D

ISCWSA

Pedal Curve

APD Reference

Well Error:

NO GLOBAL FILTER: Using user defined selection & filtering criteria Filter type:

MD Interval 100ft Interpolation Method Error Model:

Depth Range: Scan Method: Maximum centre distance of 2000ft Error Surface: Results Limited by:

2.00 Sigma Not applied Warning Levels Evaluated at: Casing Method:

2/17/2022 **Survey Tool Program** Date

> То From

Survey (Wellbore) (ft) (ft) **Tool Name** Description

MWD+IGRF OWSG MWD + IGRF or WMM 0 9955 APD (Original drilling)

Summary						
Site Name Offset Well - Wellbore - Design	Referenc e Measure	Offset Measure d	Dista Between Centres	nce Between Ellipses	Separatio n	Warning
D16 2207 Pad						
# 01H - Original drilling - APD # 01H - Original drilling - APD # 02H - Original drilling - APD # 02H - Original drilling - APD # 02H - Original drilling - APD	516 600 306 400 600	516 599 306 400 600	20 21 20 20 24	17 17 18 18 20	6.100 CC, ES 5.514 SF 11.195 CC 8.128 ES 6.142 SF	

rvey Progr		/WD+IGRF								Rule Assi	gned:		Offset Well Error:	0
Refei Neasured	rence Vertical	Off: Measured	set Vertical	Semi I Reference	Major Axis Offset	Highside	Offset Wellbe	ore Centre	Dist Between	tance Between	Minimum	Separation	Warning	
Depth	Depth	Depth	Depth			Toolface	+N/-S	+E/-W	Centres	Ellipses	Separation	Factor		
(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(°)	(ft)	(ft)	(ft)	(ft)	(ft)			
0	0	0	0	0	0	-89.79	0	-20	20					
100	100	100	100	0	0	-89.79	0	-20	20	20	0.31	64.973		
200	200	200	200	1	1	-89.79	0	-20	20	19	1.03	19.537		
300	300	300	300	1	1	-89.79	0	-20	20	18	1.74	11.497		
400	400	400	400	1	1	-89.79	0	-20	20	18	2.46	8.145		
500	500	500	500	2	2	-57.84	-2	-20	20	17	3.16	6.319		
516	516	516	516	2	2	-60.56	-2	-21	20	17	3.27	6.100 CC, E	S	
600	600	599	599	2	2	-81.49	-7	-22	21	17	3.85	5.514 SF		
700	700	697	697	2	2	-109.22	-15	-24	30	25	4.55	6.491		
800	799	794	792	3	3	-126.57	-26	-26	47	42	5.26	8.926		
900	898	888	886	3	3	-135.65	-40	-29	72	66	5.97	12.068		
1000	996	980	976	4	3	-140.59	-57	-33	104	97	6.67	15.531		
1100	1094	1069	1063	4	4	-143.47	-76	-38	141	134	7.37	19.146		
1200	1191	1154	1146	5	4	-145.22	-96	-42	184	176	8.06	22.838		
1300	1286	1236	1224	5	5	-146.28	-118	-48	232	224	8.75	26.552		
1400	1381	1314	1299	6	5	-147.23	-141	-53	285	276	9.43	30.228		
1500	1476	1390	1370	6	6	-147.97	-165	-58	340	330	10.09	33.722		
1600	1571	1465	1441	7	6	-148.38	-191	-64	397	387	10.76	36.918		
1700	1666	1547	1517	8	7	-148.68	-219	-71	455	443	11.52	39.483		
1800	1761	1629	1594	8	7	-148.91	-247	-78	513	500	12.30	41.694		
1900	1856	1710	1670	9	8	-149.09	-276	-84	570	557	13.08	43.616		

SDJR Operating

Lonestar Consulting, LLC

Anticollision Report

Company: DJR Operating
Project: Lybrook Area

Project: Lybrook Area
Reference Site: D16 2207 Pad

Site Error: 0 ft
Reference Well: # 04H
Well Error: 0 ft

Reference Wellbore Original drilling

Reference Design: APD

Local Co-ordinate Reference

TVD Reference: MD Reference:

North Reference: Survey Calculation Method:

Output errors are at

Database: Offset TVD Reference: Well # 04H - Slot 2

GL 6823' & RKB 14' @ 6837ft GL 6823' & RKB 14' @ 6837ft

True

Minimum Curvature

2.00 sigma
Grand Junction
Reference Datum

	0.1	****											Offset Site Error:	01
urvey Progr Refei		/IWD+IGRF Offs	et	Semi N	laior Axis		Offset Wellbo	ore Centre	Dis	Rule Assi tance	gned:		Offset Well Error:	0
Measured	Vertical	Measured	Vertical	Reference	Offset	Highside			Between	Between	Minimum	Separation	Warning	
Depth	Depth	Depth	Depth	(60)	(ft)	Toolface (°)	+N/-S (ft)	+E/-W (ft)	Centres	Ellipses	Separation	Factor		
(ft) 2000	(ft) 1951	(ft) 1792	(ft) 1746	(ft)	(IL) 8	-149.24	-304	-91	(ft) 628	(ft) 614	(ft) 13.87	45.297		
2100	2045	1874	1822	10	9	-149.37	-333	-98	686	671	14.66	46.778		
2200	2140	1955	1899	11	10	-149.47	-361	-104	744	728	15.46	48.090		
2300	2235	2037	1975	12	10	-149.56	-390	-111	801	785	16.27	49.260		
2400	2330	2119	2051	12	11	-149.64	-418	-118	859	842	17.08	50.308		
2500	2425	2200	2127	13	12	-149.71	-447	-124	917	899	17.89	51.253		
2222	0500	2000	2004		40	440.77	475	404	075	050	40.70	50.400		
2600	2520	2282	2204	14	12	-149.77	-475	-131	975	956	18.70	52.106		
2700	2615	2364	2280	14	13	-149.82	-503	-137	1032	1013	19.52	52.882		
2800 2900	2710 2804	2445 2527	2356 2432	15	13	-149.87 -149.91	-532 -560	-144	1090	1070	20.34	53.589 54.237		
3000	2804 2899	2527 2608	2432 2508	16 17	14 15	-149.91 -149.95	-560 -589	-151 -157	1148 1206	1127 1184	21.16 21.99	54.23 <i>1</i> 54.831		
3000	2099	2000	2506	17	15	-149.95	-509	-157	1200	1104	21.99	34.031		
3100	2994	2690	2585	17	15	-149.99	-617	-164	1263	1240	22.81	55.378		
3200	3089	2772	2661	18	16	-150.02	-646	-171	1321	1297	23.64	55.884		
3300	3184	2853	2737	19	16	-150.05	-674	-177	1379	1354	24.47	56.352		
3400	3279	2935	2813	19	17	-150.08	-702	-184	1437	1411	25.30	56.786		
3500	3374	3017	2890	20	18	-150.10	-731	-190	1494	1468	26.13	57.191		
3600	3468	3098	2966	21	18	-150.12	-759	-197	1552	1525	26.96	57.568		
3700	3563	3180	3042	21	19	-150.15	-788	-204	1610	1582	27.79	57.921		
3800	3658	3262	3118	22	20	-150.17	-816	-210	1667	1639	28.63	58.251		
3900	3753	3343	3195	23	20	-150.19	-845	-217	1725	1696	29.46	58.561		
4000	3848	3425	3271	24	21	-150.20	-873	-224	1783	1753	30.30	58.852		
4100	3943	3507	3347	24	21	-150.22	-902	-230	1841	1810	31.13	59.126		
4200	4038	3588	3423	25	22	-150.23	-930	-237	1898	1866	31.97	59.384		
4300	4134	3671	3500	26	23	177.36	-959	-244	1954	1922	32.74	59.694		

DJR Operating

Lonestar Consulting, LLC

Anticollision Report

DJR Operating Company:

Lybrook Area Project: D16 2207 Pad Reference Site:

0 ft Site Error: # 04H Reference Well: 0 ft Well Error:

Original drilling Reference Wellbore

APD Reference Design:

Local Co-ordinate Reference

TVD Reference: MD Reference:

North Reference:

Minimum Curvature **Survey Calculation Method:**

Output errors are at

Database:

Offset TVD Reference:

Well # 04H - Slot 2

GL 6823' & RKB 14' @ 6837ft GL 6823' & RKB 14' @ 6837ft

2.00 sigma **Grand Junction** Reference Datum

													Offset Site Error:	
y Progr Refe		MWD+IGRF Offs	set	Semi N	lajor Axis		Offset Wellbe	ore Centre	Dist	Rule Assi tance	gned:		Offset Well Error:	
sured pth ft)	Vertical Depth (ft)	Measured Depth (ft)	Vertical Depth (ft)	Reference (ft)	Offset (ft)	Highside Toolface (°)	+N/-S (ft)	+E/-W (ft)	Between Centres (ft)	Between Ellipses (ft)	Minimum Separation (ft)	Separation Factor	Warning	
0	0	0	0	0	0	90.16	0	20	20					
100	100	100	100	0	0	90.16	0	20	20	20	0.31	64.778		
200	200	200	200	1	1	90.16	0	20	20	19	1.03	19.479		
300	300	300	300	1	1	90.16	0	20	20	18	1.74	11.463		
306	306	306	306	1	1	90.16	0	20	20	18	1.78	11.195 CC		
400	400	400	400	1	1	89.85	0	20	20	18	2.46	8.128 ES		
500	500	500	500	2	2	126.29	2	20	21	18	3.17	6.580		
600	600	600	600	2	2	130.31	4	21	24	20	3.89	6.142 SF		
700	700	700	700	2	2	138.31	5	21	29	25	4.61	6.398		
800	799	799	799	3	3	146.72	7	21	38	33	5.33	7.191		
900	898	898	898	3	3	153.70	9	21	51	45	6.06	8.390		
1000	996	997	997	4	3	158.98	11	22	67	60	6.78	9.874		
1100	1094	1095	1094	4	4	162.85	13	22	87	79	7.51	11.556		
1200	1191	1192	1192	5	4	165.71	14	22	110	102	8.23	13.374		
1300	1286	1288	1288	5	4	167.84	16	22	137	128	8.96	15.288		
1400	1381	1383	1383	6	5	169.51	18	23	167	157	9.68	17.223		
1500	4.470	4470	4.470	•	_	170.70	20	20	407	107	40.40	10.045		
1500 1600	1476 1571	1479 1574	1478 1574	6 7	5 5	170.73 171.62	20 21	23 23	197 227	187 216	10.40 11.12	18.945 20.443		
1700	1666	1669	1669	8	6	171.62	23	23	227 258	216	11.12	21.756		
1800 1900	1761 1856	1764 1859	1764 1859	8 9	6 6	172.85 173.29	25 27	24 24	288 318	275 305	12.57 13.30	22.915 23.944		
2000 2100	1951 2045	1955 2050	1954 2050	10 10	7 7	173.65 173.95	28 30	24 25	349 379	335 364	14.03 14.76	24.864 25.691		
2200			2145		7		32	25 25		394				
2300	2140 2235	2145 2240	2145	11 12	8	174.21 174.43	32 34	25 25	410 440	424	15.50 16.23	26.437 27.114		
2400	2330	2336	2335	12	8	174.43	35	25	471	454	16.23	27.731		
2500 2600	2425 2520	2431 2526	2431 2526	13 14	9 9	174.79 174.94	37 39	26 26	501 531	483 513	17.71 18.44	28.296 28.814		
2700	2615	2621	2621	14	9	175.08	41	26	562	543	19.18	29.292		
2800	2710	2717	2716	15	10		42	26	592	572	19.10	29.733		
2900	2804	2812	2811	16	10	175.20 175.31	44	27	623	602	20.66	30.141		
3000 3100	2899 2994	2907 3002	2907 3002	17 17	10 11	175.41 175.50	46 48	27 27	653 684	632 662	21.40 22.15	30.521 30.875		
3200	3089	3002	3002	17	11	175.50	46 49	27	714	691	22.15	31.205		
3300			3097 3192		11		49 51	28						
3400	3184 3279	3193 3288	3192	19 19	11	175.65 175.72	53	28 28	745 775	721 751	23.63 24.37	31.514 31.804		
3500	3374	3383	3383	20	12	175.79	55	28	806	780	25.11	32.076		
3600	3468	3479	3478	21	12	175.85	56	28	836	810	25.86	32.333		
3700	3563	3574	3573	21	13	175.90	58	29	867	840	26.60	32.574		
3800 3900	3658 3753	3669 3764	3669 3764	22 23	13 13	175.95 176.00	60 62	29 29	897 927	870 899	27.35 28.09	32.802 33.018		
3300	3133	3704	3/04		13	170.00	UZ		921	099	20.09			
4000	3848	3860	3859	24	14	176.05	63	30	958	929	28.83	33.222		
4100	3943	3955	3954	24	14	176.09	65	30	988	959	29.58	33.416		
4200	4038	4050	4049	25	14	176.13	67	30	1019	989	30.32	33.600		
4300 4400	4134 4231	4143 4181	4142 4180	26 26	15 15	148.03 109.88	69 69	30 31	1044 1060	1013 1029	31.03 31.25	33.637 33.919		
-1-100	4231	4101	+100	20	10	103.00	US	31	1000	1029	31.20	55.518		
4500	4327	4217	4216	26	15	83.69	67	34	1070	1039	31.33	34.159		
4600	4420	4250	4249	26	15	70.73	64	37	1074	1043	31.27	34.355		
4700	4506	4300	4298	26	15	64.85	58	44	1073	1042	31.38	34.207		
4800	4585	4318	4315	26	15	61.56	55	47	1066	1035	31.10	34.288		
4900	4653	4350	4346	26	15	60.68	48	54	1055	1024	31.13	33.892		

SDJR Operating

Lonestar Consulting, LLC

Anticollision Report

Company: DJR Operating
Project: Lybrook Area

Project: Lybrook Area
Reference Site: D16 2207 Pad

Site Error: 0 ft
Reference Well: # 04H
Well Error: 0 ft

Reference Wellbore Original drilling

Reference Design: APD

Local Co-ordinate Reference

TVD Reference:

North Reference:

Survey Calculation Method:

Output errors are at

Database:

Offset TVD Reference:

Well # 04H - Slot 2

GL 6823' & RKB 14' @ 6837ft GL 6823' & RKB 14' @ 6837ft

True

Minimum Curvature

2.00 sigma
Grand Junction
Reference Datum

													Offset Site Error:	0
urvey Progra Refer		/IWD+IGRF Offs	set	Semi N	Major Axis		Offset Wellb	ore Centre	Dis	Rule Assi tance	gned:		Offset Well Error:	0
Measured	Vertical	Measured	Vertical	Reference	Offset	Highside			Between	Between	Minimum	Separation	Warning	
Depth	Depth	Depth	Depth		1813	Toolface	+N/-S (ft)	+E/-W (ft)	Centres	Ellipses	Separation	Factor		
(ft) 5000	(ft) 4710	(ft) 4376	(ft) 4371	(ft) 26	(ft) 15	(°) 60.93	42	60	(ft) 1040	(ft) 1008	(ft) 31.30	33.219		
5100	4710	4400	4393	26	16	62.08	36	67	1040	989	31.78	32.133		
5200	4784	4400	4415	25	16	64.04	30	74	1021	969	32.69	30.595		
5300	4798	4450	4438	25	16	66.68	22	82	978	944	34.07	28.707		
5400	4800	4450	4438	25	16	67.38	22	82	957	922	35.36	27.067		
5500	4801	4479	4464	26	16	69.01	12	91	945	907	37.38	25.271		
3300	4001	4473	4404	20	10	09.01	12	31	343	301	37.30	25.271		
5579	4801	4500	4482	27	16	70.17	5	99	942	903	39.01	24.141		
5600	4802	4500	4482	27	16	70.17	5	99	942	903	39.32	23.958		
5700	4802	4521	4500	29	16	71.33	-3	107	949	908	41.24	23.011		
5800	4803	4550	4524	30	16	72.88	-15	119	965	922	43.19	22.351		
5900	4804	4573	4542	32	16	74.10	-25	129	990	945	44.88	22.065		
6000	4804	4600	4563	34	16	75.46	-37	141	1023	977	46.44	22.028		
6100	4805	4638	4591	37	16	77.33	-55	159	1063	1014	48.05	22.115		
6200	4805	4677	4618	39	17	79.09	-74	178	1108	1058	49.51	22.379		
6300	4806	4720	4646	41	17	80.90	-98	201	1158	1107	50.95	22.732		
6400	4807	4768	4675	43	17	82.71	-125	228	1212	1160	52.44	23.116		
6500	4807	4821	4703	46	18	84.45	-157	260	1269	1215	54.05	23.483		
6600	4808	4880	4729	48	18	86.04	-195	297	1328	1273	55.84	23.790		
6700	4809	4943	4753	50	19	87.37	-237	338	1389	1331	57.86	24.009		
6800	4809	5011	4771	53	20	88.36	-284	384	1451	1391	60.14	24.127		
6900	4810	5082	4782	55	21	88.96	-334	432	1513	1451	62.64	24.157		
7000	4810	5155	4786	58	22	89.15	-386	483	1576	1511	65.31	24.130		
7100	4811	5233	4786	60	23	89.15	-442	537	1639	1570	68.29	23.995		
7200	4812	5310	4786	63	25	89.16	-498	591	1701	1630	71.38	23.837		
7300	4812	5388	4785	65	26	89.16	-554	645	1764	1690	74.57	23.659		
7400	4813	5466	4785	68	27	89.17	-610	699	1827	1749	77.86	23.468		
7500	4814	5544	4785	70	29	89.17	-666	753	1890	1809	81.21	23.272		
7600 7600	4814 4814	5622	4785 4785	70	30	89.17 89.17	-000 -722	753 807	1953	1868	84.62	23.272		

SDJR Operating

Lonestar Consulting, LLC

Anticollision Report

Company: DJR Operating
Project: Lybrook Area
Reference Site: D16 2207 Pad

Site Error: 0 ft
Reference Well: # 04H
Well Error: 0 ft

Reference Wellbore Original drilling

Reference Design: APD

Local Co-ordinate Reference

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Output errors are at Database:

Database:
Offset TVD Reference:

Well # 04H - Slot 2

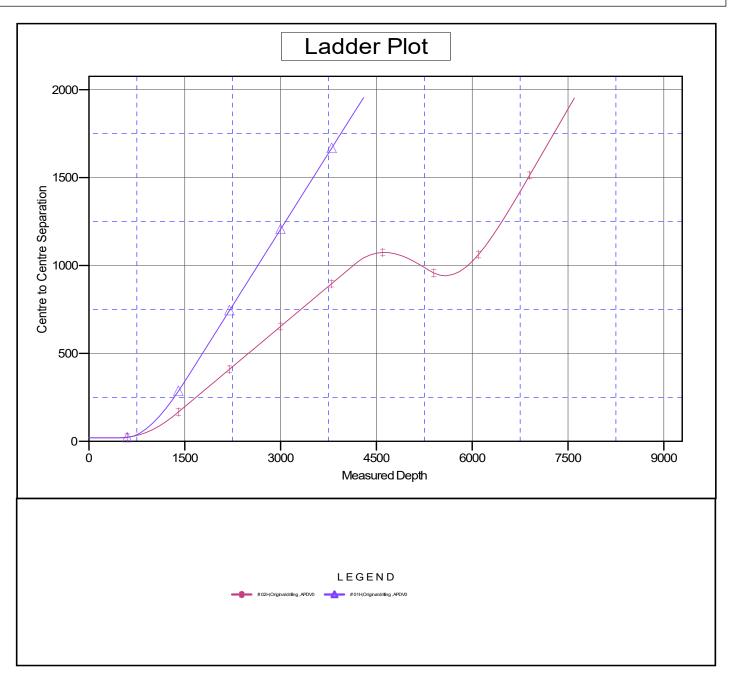
GL 6823' & RKB 14' @ 6837ft GL 6823' & RKB 14' @ 6837ft

True

Minimum Curvature

2.00 sigma
Grand Junction
Reference Datum

Reference Depths are relative to GL 6823' & RKB 14' @ 6837ft


Offset Depths are relative to Offset Datum

Central Meridian is -107.83333333

Coordinates are relative to: # 04H - Slot 2

Coordinate System is US State Plane 1983, New Mexico Western Zone

Grid Convergence at Surface is: 0.14°

DJR Operating

Lonestar Consulting, LLC

Anticollision Report

DJR Operating Company: Lybrook Area Project: D16 2207 Pad Reference Site:

0 ft Site Error: # 04H Reference Well: 0 ft Well Error:

Reference Wellbore Original drilling

Offset Depths are relative to Offset Datum

Reference Depths are relative to GL 6823' & RKB 14' @ 6837ft

APD Reference Design:

Local Co-ordinate Reference

TVD Reference: MD Reference:

North Reference:

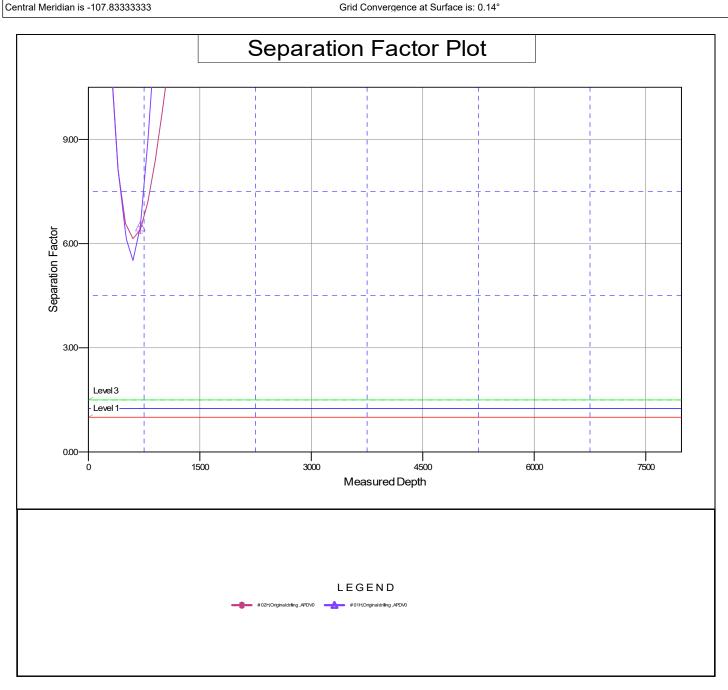
Survey Calculation Method:

Output errors are at Database:

Offset TVD Reference:

Well # 04H - Slot 2

GL 6823' & RKB 14' @ 6837ft GL 6823' & RKB 14' @ 6837ft


Minimum Curvature

2.00 sigma **Grand Junction** Reference Datum

Coordinates are relative to: # 04H - Slot 2

Coordinate System is US State Plane 1983, New Mexico Western Zone

Grid Convergence at Surface is: 0.14°

DISTRICT I
1625 N. French Dr., Hobbe, N.M. 88240
Phone: (575) 393-6161 Fax: (575) 393-0720
DISTRICT II
811 S. First St., Artesia, N.M. 88210
Phone: (575) 748-1283 Fax: (576) 748-9720
DISTRICT III
1000 Rio Brazos Rd., Axtec, N.M. 87410
Phone: (505) 334-6178 Fax: (505) 334-6170
DISTRICT IV
1220 S. St. Francis Dr., Santa Fe, N.M. 87505
Phone: (506) 476-3460 Fax: (505) 476-3462

State of New Mexico
Energy, Minerals & Natural Resources Department

OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, N.M. 87505 Form C-102

Revised August 1, 2011

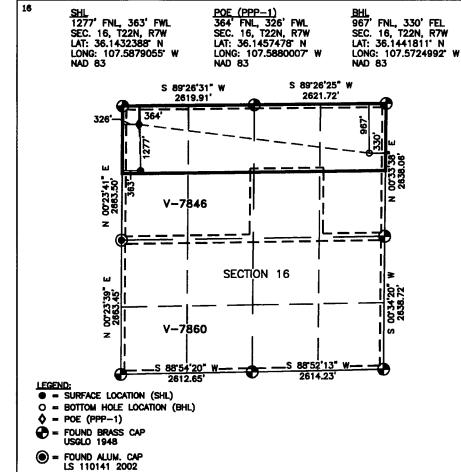
Submit one copy to appropriate

District Office

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number	² Pool Code	³ Pool Name			
	52860 RUSTY GALLUP				
⁴ Property Code	*Property	Name	Well Number		
	LYBR00I	K D 16 -2207	0 4H		
OGRED No.	* Operator	Name	• Elevation		
371838	DJR OPERAT	TING, LLC	6823		


¹⁰ Surface Location

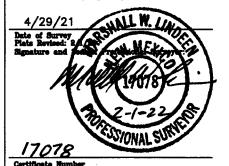
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	Rest/West line	County
D	16	22 N	7 W		1277	NORTH	363	WEST	SANDOVAL

11 Bottom Hole Location If Different From Surface

UL or lot no.	Section.	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
Α	16	22 N	7 W		967	NORTH	330	EAST	SANDOVAL
Dedicated Acre SEC. 16=N/2N/2 TOTAL = 160 ACR					¹⁸ Joint or Infill	¹⁴ Consolidation, Code	¹⁵ Order No.		

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

17 OPERATOR CERTIFICATION


I hereby certify that the information contained herein is true and complete to the best of my hneutedge and belief, and that this organization either some a working interest or unleased meneral informat in the land including the proposed bottom hole location or has a right to drill this well at this location pursuent to a contract with an corner of such a mineral or working interest, or to a voluntary pooling agreement or a compulsery pooling order heretafure entered by the division.

Shaw-Maric Ford 02/17/22
Shaw-Marie Ford
Printed Name
sford@djrllc.com

E-mail Address

18 SURVEYOR CERTIFICATION

I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and cerrent to the best of my bolist.

Rev 0

DRILLING PLAN Lybrook D16 2207 04H Sandoval County, New Mexico

Surface Location

365-ft FWL & 1278-ft FNL Sec 16 T22 R7 Graded Elevation 6823' MSL RKB Elevation 6837' (14' KB)

Kick Off Point for Horizontal Build Curve

4201-ft MD 4038-ft TVD

Heel Location (Pay zone entry)

327-ft FWL & 364-ft FNL

Sec 16 T22 R7

Bottom Hole Location (TD)

325-ft FEL & 970-ft FNL

Sec 16 T22 R7

SHL Geographical Coordinates (NAD-83)

Latitude 36.1432388° N Longitude 107.5879055° W

Local Coordinates (from SHL)

816-ft North 661-ft West

Heel Geographical Coordinates (NAD-83)

36.1457478° N Latitude Longitude 107.58800070° W

BHL Geographical Coordinates (NAD-83)

36.1441811° N Latitude Longitude 107.5724992° W

Well objectives

This well is planned as a 4600-ft lateral in the Gallup C sand.

Bottom Hole temperature and pressure

The temperature in the Gallup C horizontal objective is 135°F. Bottom hole pressure in the Gallup C is forecast to be 1985 psi.

Formation Tops (Sd = Sand; Sh = Shale; Siltstone = Slt, Coal = C; W = water; O = oil; G = gas; NP = no penetration)

Name	MD (ft)	TVD (ft)	Lithology	Pore fluid	Expected Pore Pressure (ppg)	Planned Mud Weight (ppg)
Ojo Alamo	662	662	Sd	W	8.3	8.4 - 8.8
Kirtland	717	716	Sh	-	8.3	8.4 - 8.8
Fruitland	968	965	С	G	8.3	9.0 - 9.5
Pictured Cliffs	1211	1201	Sd	W	8.3	9.0 - 9.5
Lewis	1325	1310	Sh	-		9.0 - 9.5
Chacra	2023	1972	Sd	-	8.3	9.0 - 9.5
Menefee	2808	2717	Sd, C	G	8.3	9.0 - 9.5
Point Lookout	3763	3623	Sd	-	8.3	9.0 - 9.5
Mancos	3897	3750	Sh	-		9.0 - 9.5
Mancos Silt	4200	4038	Slt	O/G	6.6	9.0 - 9.5
Gallup A	4712	4516	Slt	O/G	6.6	9.0 - 9.5
Gallup B	4802	4586	Sd	O/G	6.6	8.8 -9.0
Gallup C	4979	4699	Sd	O/G	6.6	8.8 -9.0
Target	5343	4800	Sd	O/G	6.6	8.8 -9.0

Casing Program

Casing	Hole	Weight			MD	MD	TVD	TVD	Top of Cement
OD	Size	(#/ft)	Grade	Coupling	Top	Bottom	Top	Bottom	·
9-5/8"	12-1/4"	36	K-55	STC	surf	350	surf	350	surface
7"	8-3/4"	26	K-55	LTC	surf	5290	surf	4798	surface
4-1/2"	6-1/8"	11.6	P-110	BTC	5004	9955	4712	4829	5004

Note: all casing will be new

Rev 0

Casing Design Load Cases

			Casing String	
			, , ,	4-1/2"
		9-5/8"	7"	Production
	Description	Surface	Intermediate	Liner
Collapse	Full internal evacuation ¹	✓	✓	~
	Cementing	~	~	~
Burst	Pressure test	✓2	✓2	✓
	Gas kick		✓3	
	Fracture at shoe, 1/3 BHP at surface		✓ 4	
	Injection down casing			✓ 5
Axial	Dynamic load on casing coupling ⁶	~	/	✓
Axial	Overpull ⁷	✓	✓	✓

Note

- Fluid level at shoe, air column to surface, pore pressure outside
- 2 Tested to 80% of minimum internal yield with freshwater inside, pore pressure outside
- 50 bbl kick at TD, 0.50 ppg intensity, 4" drill pipe, 9.0 ppg mud, fracture gradient at shoe 2060 psi BHP, 687 psi surface pressure, 12.5 ppg EMW shoe integrity
- 4 5 Surface stimulation pressure of 8000 psi on 8.3 ppg fluid column. Stimulation will be down frac string, so load does not apply to 7" intermediate casing.
- 6 Shock load from abrupt pipe deceleration, evaluated against coupling rating
- Overpull values as follows: Surface casing 20,000 lbs, Intermediate & Production 100,000 lbs

Casing Design Factors

			Design	Factors	
Casing string	Casing OD	Burst	Collapse	Axial	Triaxial
Surface	9-5/8"	1.25	13.38	8.16	1.56
Intermediate	7"	1.25	1.50	1.68	1.34
Production liner	4-1/2"	1.37	3.68	1.88	1.69

Cement Design

9-5/8" Surface Casing	<u>Lead</u>
Name	Redi-Mix
Туре	1-11
Planned top	Surface
Density (ppg)	14.50
Yield (cf/sx)	1.61
Mix water (gal/sx)	7.41
Volume (sx)	114
Volume (bbls)	33
Volume (cu. ft.)	185
Excess %	50

7" Intermediate Casing	<u>Lead</u>	<u>Tail</u>
	BJ Services	BJ Services
Type	III	Poz/G
Planned top	Surface	3701-ft
Density (ppg)	12.30	13.50
Yield (cf/sx)	2.34	1.50
Mix water (gal/sx)	13.26	7.20
Volume (sx)	359	254
Volume (bbls)	149	68
Volume (cu.ft.)	839	379
Excess %	55	55

Rev 0

4-1/2" Production Liner

	BJ Services
Type	Poz/G
Planned top	5004-ft
Density (ppg)	13.3
Yield (cf/sx)	1.56
Mix water (gal/sx)	7.71
Volume (sx)	415
Volume (bbls)	116
Volume (cu.ft)	649
Excess %	40

Wellhead & Pressure Control

The well head will be an 11" 5M multi-bowl system. A 3M BOPE conforming to Onshore Order #2 will be installed on the surface casing. The BOP and accumulator will meet API 16D and 16E respectively.

A PVT mud monitoring system and a trip tank will be rigged up and operational for all hole intervals. An electronic geolograph will be employed to monitor and record drilling data (ROP, WOB, SPM, Pressure, RPM and torque).

Mud Program

Surface hole will be drilled with a fresh water, native mud system. In intermediate hole, a low weight 7% KCI LSND drilling fluid will be used, with KCI providing chemical stability for the young shales and clays present in the interval. In production hole a LSND system with polymer and lubricant additives is programmed. Sufficient drill water and mud additives will be on hand to maintain adequate pit volumes and maintain well control.

Hole Section	Fluid type	Interval (MD)	Density (ppg)	Funnel Viscosity	Yield Point	Fluid Loss (cc/30 min)
Surface	Fresh water spud mud	0 – 350	8.4 - 8.8	32 – 44	2 – 12	NC
Intermediate	7% KCl Low solids, non- dispersed	350 – 5290	9.0 – 9.5	38 – 45	8 – 14	<20
Production	Low solids, non-dispersed	5290 – 9955	8.8 - 9.2	34 – 38	6 – 8	6 – 8

Cores, tests and logs

Wellbore surveying: Drift (inclination only) surveys will be obtained in surface hole. MWD directional surveys will be taken in intermediate and production hole.

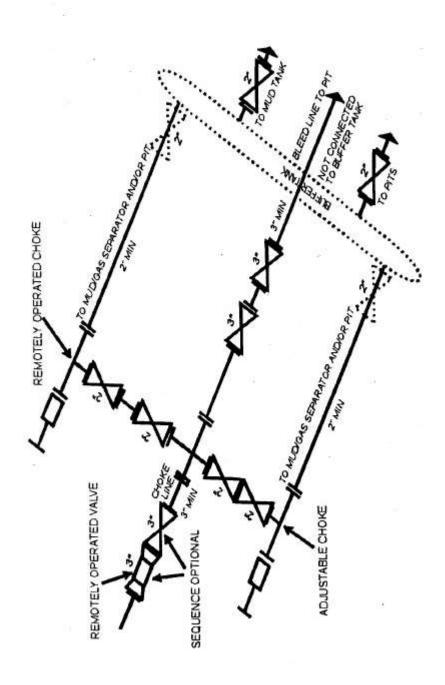
Logging while drilling: None in surface hole. MWD GR in intermediate and production hole.

Mud logging: a two-person mud logging unit with C1-C4 gas analysis will be operational in intermediate and production hole.

Electric logging: No open hole electric logs are programmed. A cased hole GR/CCL will be run during completions for perforating depth control.

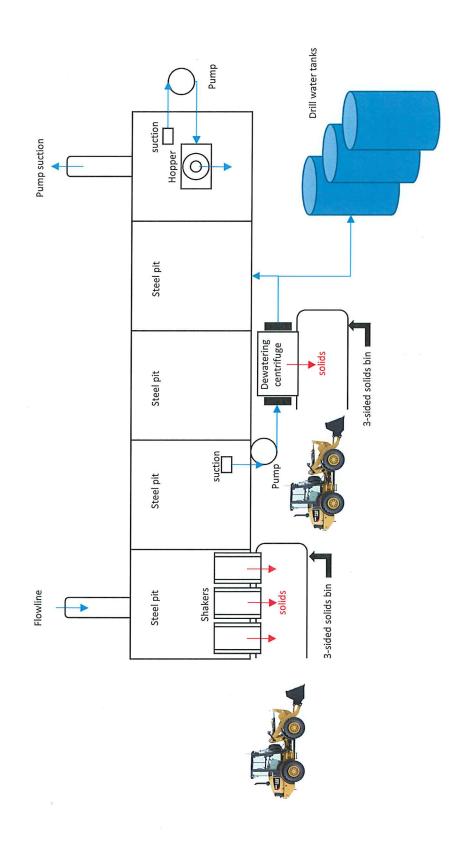
Cuttings and drilling fluids management

A closed loop, steel tank-based circulating system will be used. In addition to the rig solids control equipment, a dewatering centrifuge and chemical flocculation system will be operational to strip solids from the whole mud. All solids will be collected in 3-sided bins and will then be put into transports with a bucket loader. Drying agents will be used if necessary. The solids will be taken to a licensed commercial disposal facility. Whole mud will be dewatered back to drill water and used as make up for subsequent wells or hauled off for disposal. A diagram of the closed loop system is included.


Completion

It is envisioned that this well will be completed with a multi-stage sand frac, using the plug and perf technique. After drilling out the plugs, the current plan is to install a 2-7/8" plunger-assisted gas lift tubing string. The stimulation and completion plan will be sundried at a later date.

Double gate with integral choke/kill outlets


Choke Manifold Actual system to conform with Onshore Order 2

Page 23 of 33

Closed Loop Mud System

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

[See 19.15.27.9(D)(1) NMAC]

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: _DJR Operating, LLC OGRID: _371838 Date: _02_/_25_/_2022_							
II. Type: ⊠ Original □ A	mendmen	t due to □ 19.15.27	7.9.D(6)(a) NMAC □ 19.1	5.27.9.D(6)(b)) NMAC \square Othe	r.	
If Other, please describe:							
III. Well(s): Provide the follower recompleted from a single				or set of wells	proposed to be d	Irilled or proposed to	
Well Name	API	ULSTR	Footages	Anticipated	Anticipated	Anticipated	
				Oil BBL/D	Gas MCF/D	Produced Water BBL/D	
Lybrook D16-2207 01H	TBD	D-16-22N-07W	1277 FNL x 343 FWL	401	598	143	
Lybrook D16-2207 02H	TBD	D-16-22N-07W	1278 FNL x 383 FWL	257	384	92	
Lybrook D16-2207 04H	TBD	D-16-22N-07W	1277 FNL x 363 FWL	224	335	80	
-							
_			_				
·		·	·	·			

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

IV. Central Delivery Point Name: Ignacio Natural Gas Processing Plant

Well Name	API	Spud Date	TD Reached	Completion	Initial Flow	First Production
			Date	Commencement Date	Back Date	Date
Lybrook D16-2207 01H	TBD	11/03/2023	11/13/2023	03/18/2024	04/15/2024	04/15/2024
Lybrook D16-2207 02H	TBD	10/18/2023	10/28/2023	03/10/2024	04/15/2024	04/15/2024
Lybrook D16-2207 04H	TBD	10/27/2023	11/06/2023	03/14/2024	04/15/2024	04/15/2024

- VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.
- VII. Operational Practices:

 Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.
- VIII. Best Management Practices:

 Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

		EFFECTIV	E APRIL 1, 2022		
Beginning April 1, 20 reporting area must co			with its statewide natural g	as capture requirement for the applicable	
☐ Operator certifies capture requirement for			tion because Operator is in	compliance with its statewide natural gas	
IX. Anticipated Natu	ıral Gas Producti	on:			
Wel	1	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF	
X. Natural Gas Gath	nering System (NC	GGS):			
Operator	System	ULSTR of Tie-in	Anticipated Gathering Available Maximum Daily Capacity Start Date of System Segment Tie-in		
production operations the segment or portion XII. Line Capacity. production volume from XIII. Line Pressure. natural gas gathering and Attach Operator's XIV. Confidentiality Section 2 as provided	to the existing or part of the natural gas gas. The natural gas gas om the well prior to Operator Operator does by system(s) described plan to manage provers: Operator ass in Paragraph (2) o	blanned interconnect of the gathering system(s) to we thering system will be the date of first product does not anticipate the dabove will continue to be duction in response to the there is confidentiality pursuant to the system.	he natural gas gathering systewhich the well(s) will be considered will not have capacity to getion. At its existing well(s) connect meet anticipated increases in the increased line pressure. uant to Section 71-2-8 NMS 27.9 NMAC and attaches a few which is the increased of the context of the increased line pressure.	nticipated pipeline route(s) connecting the em(s), and the maximum daily capacity of nected. gather 100% of the anticipated natural gas ted to the same segment, or portion, of the n line pressure caused by the new well(s). SA 1978 for the information provided in full description of the specific information	

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal: 🗵 Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system: or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan.

Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: power generation on lease; (a) power generation for grid; (b) compression on lease; (c) (d) liquids removal on lease; reinjection for underground storage; (e) **(f)** reinjection for temporary storage; **(g)** reinjection for enhanced oil recovery; fuel cell production; and (h) other alternative beneficial uses approved by the division. (i)

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Shaw-Maris Ford
Printed Name: Shaw-Marie Ford
Title: Regulatory Specialist
E-mail Address: sford@djrllc.com
Date: 02/25/2022
Phone: 505-716-3297
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

SEPARATION EQUIPMENT

DJR Operating, LLC (DJR) has pulled representative pressurized samples from wells in the same producing formation. DJR has utilized these samples in process simulations to determine the amount of gas anticipated in each stage of the process and utilized this information with a safety factor to size the equipment listed below:

Separation equipment will be set as follows:

- o Individual 3 phase separators will be set for each individual well.
- The separators will be sized based on the anticipated volume of the well and the pressure of the lines utilized for oil, gas, and water takeaway.
- o The 3 phase production separators will each be equipped with a 0.75 MMBtu/hr indirect fired heater.

Heater treaters will be set as follows:

- o Individual heater treaters will be set for each individual well.
- o The heater treaters are sized based on the anticipated combined volume of oil and produced water predicted to come from the initial 3 phase separators.
- Oil will be separated from the produced water and the produced water will be sent to its respective tanks.
- o The combined oil and natural gas stream is routed to the Vapor Recovery Tower.

Vapor Recovery Equipment will be set as follows:

- The Vapor Recovery Tower has been sized, based on the anticipated volume of gas from the heater treater and oil and water tanks.
- The Vapor Recovery Unit has been sized, based on the anticipated volume of gas from the heater treater and oil and water tanks. The Vapor Recovery Unit is utilized to push the recovered gas into the sales pipeline.

Production storage tanks will be set as follows:

- The oil and produced water tanks utilize a closed vent capture system to ensure all breathing, working, and flashing losses are routed to the Vapor Recovery Tower and Vapor Recovery Unit.
- Each of the production storage tanks will be equipped with a 0.5 MMBtu/hr indirect heater.

VENTING and FLARING

DJR Operating, LLC (DJR) has a natural gas system available prior to startup of completion operations. DJR utilizes a Vapor Recovery Unit System and sells all natural gas except during periods of startup, shutdown, maintenance, or malfunction for the gas capturing equipment, including the vapor recovery tower, vapor recovery unit, storage tanks, and pipelines.

Currently, DJR utilizes the following from list A-I of Section 3 for its operations to minimize flaring:

- a) DJR utilizes natural gas powered generators to power it's leases where grid power isn't available.
- b) When electrical grid power is unavailable, natural gas generators will be used for major equipment onsite.
- c) DJR's in service compression will be natural gas powered.
- d) Should liquids removal, such as dehydration be required, units will be powered by natural gas.

DJR will only flare gas during the following times:

- o Scheduled maintenance for gas capturing equipment including:
 - Vapor Recovery Tower
 - Vapor Recovery Unit
 - Storage tanks
 - o Pipelines
 - o Emergency flaring

OPERATIONAL PRACTICES

19.15.27.8 A. Venting and Flaring of Natural Gas

DJR Operating, LLC (DJR) understands the requirements of NMAC 19.15.27.8 which states that the venting and flaring of natural gas during drilling, completion or production that constitutes waste as defined in 19.15.2 are prohibited.

19.15.27.8 B. Venting and flaring during drilling operations

- o DJR shall capture or combust natural gas if technically feasible during drilling operations using best industry practices.
- A flare stack with a 100% capacity for expected volumes will be set on location of the facility at least 100 feet from the nearest surface hole location, well heads, and storage tanks.
- o In the event of an emergency, DJR will vent natural gas in order to avoid substantial impact. DJR shall report the vented or flared gas to the NMOCD.

19.15.27.8 E. Venting and flaring during completion or recompletion operations

During Completion Operations, DJR utilizes the following:

- o DJR facilities are built and ready from day 1 of Flowback.
- o Individual well test separators will be set to properly separate gas and liquids. Temporary test separator will be utilized initially to process volumes. In addition, separators will be tied into flowback tanks which will be tied into the gas processing equipment for sales down a pipeline. See Separation Equipment for details.
- Should the facility not yet be capable of processing gas, or the gas does not meet quality standards, then storage tanks will be set that are tied into gas busters or temporary flare to manage natural gas. This flare would meet the following requirements:
 - 1) An appropriately sized flare stack with an automatic igniter.
 - 2) DJR analyzes the natural gas samples twice per week.
 - 3) DJR routes the natural gas into a gathering pipeline as soon as the pipeline specifications are met.
 - 4) DJR provides the NMOCD with pipeline specifications and natural gas data.

19.15.27.8 D. Venting and flaring during production operations

During Production Operations DJR will not vent or flare natural gas except under the following circumstances:

- 1. During an emergency or malfunction
- 2. To unload or clean-up liquid holdup in a well to atmospheric pressure, provided:
 - a. DJR does not vent after the well achieves a stabilized rate and pressure.
 - b. DJR will remain present on-site during liquids unloading by manual purging and tall all reasonable actions to achieve a stabilized rate and pressure at the earliest practical time.
 - c. DJR will optimize the system to minimize natural gas venting on any well equipped with a plunger lift or auto control system.
 - d. Best Management Practices will be used during downhole well maintenance.
- 3. During the first year of production from an exploratory well provided:
 - a. DJR receives approval from the NMOCD.
 - b. DJR remains in compliance with the NM gas capture requirements.
 - c. DJR submits an updated C-129 form to the NMOCD.
- 4. During the following activities unless prohibited:
 - a. Gauging or sampling a storage tank or low-pressure production vessel.
 - b. Loading out liquids from a storage tank.
 - c. Repair and maintenance.
 - d. Normal operation of gas activated pneumatic controller or pump.
 - e. Normal operation of a storage tank but not including venting from a thief hatch.
 - f. Normal operation of dehydration units.
 - g. Normal operations of compressors, compressor engines, turbines, valves, flanges, and connectors.
 - h. During a bradenhead, packer leakage test, or production test lasting less than 24-hours.
 - i. When natural gas does not meet the gathering pipeline specifications.
 - j. Commissioning of pipelines, equipment, or facilities only for as long as necessary to purge introduced impurities.

19.15.27.8 E. Performance standards

- 1. DJR has utilized process simulations with a safety factor to design all separation and storage equipment. The equipment is routed to a Vapor Recovery System and utilizes a flare as back up for periods of startup, shutdown, maintenance, or malfunction of the VRU System.
- 2. DJR will install a flare that designed to handle the full volume of vapors from the facility in case of the VRU failure and it its designed with an auto ignition system.
- 3. Flare stacks will appropriately sized and designed to ensure proper combustion efficiency.

- a. Flare stacks installed or replaced will be equipped with an automatic ignitor or continuous pilot.
- b. Previously installed flare stacks will be retrofitted with an automatic ignitor, continuous pilot, or technology that alerts DJR of flare malfunction within 18 months after May 25, 2021.
- c. Flare stacks replaced after May 25, 2021, will be equipped with an automatic ignitor or continuous pilot if located at a well or facility with average daily production of 60,000 cubic feet of natural gas or less.
- d. Flare stacks will be located at least 100 feet from the well and storage tanks and securely anchored.
- 4. DJR will conduct an AVO inspection on all components for leaks and defects on a weekly basis.
- 5. DJR will make and keep records of AVO inspections which will be available to the NMOCD for at least 5 years.
- 6. DJR may use a remote or automated monitoring technology to detect leaks and releases in lieu of AVO inspections with prior NMOCD approval.
- 7. Facilities will be designed to minimize waste.
- 8. DJR will resolve emergencies as promptly as possible.

19.15.27.8 F. Measurement or estimation of vented and flared natural gas

- 1. DJR will have meters on both the low- and high-pressure sides of the flares and the volumes will be recorded in DJR's SCADA system.
- 2. DJR will install equipment to measure the volume of flared natural gas that has an average daily production of 60,000 cubic feet or greater of natural gas.
- 3. DJR's measuring equipment will conform to the industry standards.
- 4. The measurement system is designed such that it cannot be bypassed except for inspections and servicing meters.
- 5. DJR will estimate the volume of vented or flared natural gas using a methodology that can be independently verified if metering is not practicable due to low flow rate or pressure.
- 6. DJR will estimate the volume of flared and vented natural gas based on the results of an annual GOR test for wells that do not require measuring equipment reported on Form C-116.
- 7. DJR will install measuring equipment whenever the NMOCD determines that metering is necessary.

BEST MANAGEMENT PRACTICES

DJR Operating, LLC (DJR) utilizes the following Best Management Practices to minimize venting during active and planned maintenance.

DJR has a closed vent capture system to route emissions from the heater treater, tanks, and vapor recovery to the vapor recovery unit with an enclosed combustion device (ECD) for backup. The system is designed such that if the vapor recovery unit is taken out of service for any reason, the vapors will be routed to the ECD for combustion.

DJR will isolate and attempt to route all vapors to the vapor recovery unit or ECD prior to opening any lines for maintenance to minimize venting from the equipment.

DJR shall notify the NMOCD of venting or flaring that exceeds 50 MCF but less than 500 MCF in volume that either resulted from an emergency or malfunction, or an event lasting over eight hours or more cumulatively within any 24-hour period from a single event by filing a form C-129 no later than 15 days following the discovery or commencement of venting or flaring.

DJR shall notify the NMOCD verbally or by e-mail within 24-hours following discovery or commencement of venting or flaring that exceeds 500 MCF in volume or otherwise qualifies as a major release as defined in 19.15.29.7 NMAC from a single event and provide the information required in form C-129 to the NMOCD no later than 15 days that verifies, updates, or corrects the verbal or e-mail notification.

DJR will install measuring equipment to conform to industry standards such as American Petroleum Institute (API) Manual of Petroleum Measurement Standards (MPMS) Chapter 14.10 Measurement of Flow to Flares.

DJRs measuring equipment shall not be designed or equipped with a manifold that allows the diversion of natural gas around the metering element except for the sole purpose of inspecting and servicing the measurement equipment.

DJR shall report the volume of vented and flared natural gas for each well or facility at which venting or flaring occurred on a monthly basis.