Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. NMNM19848 **BUREAU OF LAND MANAGEMENT** APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. **✓** DRILL REENTER 1a. Type of work: 1b. Type of Well: ✓ Gas Well Oil Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing ✓ Single Zone Multiple Zone LAGUNA GRANDE 29 FEDERAL 17H 2. Name of Operator 9. API Well No. CIMAREX ENERGY COMPANY OF COLORADO 30-015-49521 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory PURPLE SAGE; WOLFCAMP (GAS)/PUF 600 N MARIENFELD STREET SUITE 600, MIDLAND, TX (432) 571-7800 11. Sec., T. R. M. or Blk. and Survey or Area 4. Location of Well (Report location clearly and in accordance with any State requirements.*) SEC 29/T23S/R29E/NMP At surface SESW / 390 FSL / 1330 FWL / LAT 32.26967 / LONG -104.01122 At proposed prod. zone NWNW / 330 FNL / 990 FWL / LAT 32.282263 / LONG -104.012325 12. County or Parish 14. Distance in miles and direction from nearest town or post office* 13. State **FDDY** NM 5 miles 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well 390 feet location to nearest property or lease line, ft. 320.0 (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, 20 feet 9911 feet / 14295 feet FED: NMB001188 applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 2970 feet 07/31/2020 30 days 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the BLM. 25. Signature Name (Printed/Typed) Date (Electronic Submission) AMITHY CRAWFORD / Ph: (432) 620-1936 04/20/2020 Title Regulatory Analyst Approved by (Signature) Date Name (Printed/Typed) (Electronic Submission) Cody Layton / Ph: (575) 234-5959 09/30/2021 Title Office Assistant Field Manager Lands & Minerals Carlsbad Field Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. ## **Additional Operator Remarks** #### **Location of Well** 0. SHL: SESW / 390 FSL / 1330 FWL / TWSP: 23S / RANGE: 29E / SECTION: 29 / LAT: 32.26967 / LONG: -104.01122 (TVD: 0 feet, MD: 0 feet) PPP: SWSW / 620 FSL / 990 FWL / TWSP: 23S / RANGE: 29E / SECTION: 29 / LAT: 32.269675 / LONG: -104.012319 (TVD: 9830 feet, MD: 9930 feet) BHL: NWNW / 330 FNL / 990 FWL / TWSP: 23S / RANGE: 29E / SECTION: 29 / LAT: 32.282263 / LONG: -104.012325 (TVD: 9911 feet, MD: 14295 feet) #### **BLM Point of Contact** Name: JORDAN NAVARRETTE Title: LIE Phone: (575) 234-5972 Email: jnavarrette@blm.gov District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462 # State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office ☐ AMENDED REPORT WELL LOCATION AND ACREAGE DEDICATION PLAT | ¹ API Number
30-015-49521 | ² Pool Code
98220 | np (Gas) | | |---|---------------------------------------|---------------------------------|---| | 4 Property Code | ⁵ Property
LAGUNA GRANI | ⁶ Well Number
17H | | | ⁷ OGRID №.
162683 | ⁸ Operator
CIMAREX EI | r Name
NERGY CO. of Colorado | ⁹ Elevation
2969,8 ¹ | Surface Location | | East/West line County WEST EDDY | |--|---------------------------------| |--|---------------------------------| "Bottom Hole Location If Different From Surface | UL or lot no. | Section
29 | Township
23S | Range
29E | Lot Idn | Feet from the 330 | North/South line NORTH | Feet from the
990 | East/West line
WEST | County
EDDY | |--------------------------|---------------|-----------------|--------------|----------------|-------------------|------------------------|----------------------|------------------------|----------------| | 12 Dedicated Acre
320 | es 13 , | Joint or Infill | 14 Conso | olidation Code | 15 Order No. | | | | | No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division. ## State of New Mexico Energy, Minerals and Natural Resources Department Submit Electronically Via E-permitting Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 # NATURAL GAS MANAGEMENT PLAN This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well. ## Section 1 – Plan Description Effective May 25, 2021 | I. Operator: Cimarex End | ergy Company | | _ OGRID: _2' | 5099 | | _ Date:/_ | 2 / 2022 | |--|--|-----------------------------------|------------------|-----------------------|-----------------|------------------------|---------------------------------| | II.Type* ☑ Original ☐ | Amendmen | t due to □ 19.15.27.9. | D(6)(a) NMAC | E □ 19.15.27.9.D(| 6)(b) NM | AC □ Other. | | | If Other, please describe: | | | | | | | | | III. Well(s): Provide the be recompleted from a sin | | | | | wells pro | posed to be dri | lled or proposed to | | Well Name | API | ULSTR | Footages | Anticipated Oil BBL/D | Antici
Gas M | | Anticipated roduced Water BBL/D | | Laguna Grande 29 Fed 17H | | N, Sec 29, T23S, R29E | 390 FSL/1330 F | WL 1000 | 250 | 00 | 4000 | | V. Anticipated Schedule proposed to be recompleted. Well Name | | ngle well pad or conn | | | 1 | Initial Flow Back Date | First Production Date | | Laguna Grande 29 Fed 17H | | 12/15/2025 | 12/30/2025 | 3/1/2026 | | 4/1/20026 | 4/1/2026 | | VII. Operational Practi
Subsection A through F of
VIII. Best Management
during active and planned | ces: ☑ Atta
of 19.15.27.8
• Practices: | ach a complete descrip
3 NMAC. | otion of the act | ions Operator wil | ll take to | comply with t | he requirements of | # Section 2 – Enhanced Plan | | | | E APRIL 1, 2022 | | | |--|--|---|---|----------------------------|--| | Beginning April 1, 2 reporting area must co | | | with its statewide natural g | as cap | oture requirement for the applicable | | ➤ Operator certifies capture requirement f | | | tion because Operator is in | compl | liance with its statewide natural gas | | IX. Anticipated Nati | ural Gas Producti | on: | | | | | We | 11 | API | Anticipated Average
Natural Gas Rate MCF/E |) | Anticipated Volume of Natural Gas for the First Year MCF | | | | | | | | | X. Natural Gas Gatl | hering System (NC | GGS): | | | | | Operator | System | ULSTR of Tie-in | Anticipated Gathering
Start Date | Av | ailable Maximum Daily Capacity
of System Segment Tie-in | | | | | | | | | production operations the segment or portio XII. Line Capacity. production volume from | s to the existing or performance of the natural gas. The natural gas gas om the well prior to | blanned interconnect of the gathering system will thereing system will to the date of first product | he natural gas gathering systewhich the well(s) will be con will not have capacity to gotion. | em(s),
nected
gather | 100% of the anticipated natural gas | | | - | - | • , , | | the same segment, or portion, of the pressure caused by the new well(s). | | ☐ Attach Operator's | plan to manage pro | oduction in response to the | ne increased line pressure. | | | | Section 2 as provided | in Paragraph (2) o | | 27.9 NMAC, and attaches a f | | 978 for the information provided in escription of the specific information | | | | | | | | | | | | | | | # Section 3 - Certifications Effective May 25, 2021 | Operator certifies that, af | ter reasonable inquiry and based on the available information at the time of submittal: | |--
--| | one hundred percent of t | to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport he anticipated volume of natural gas produced from the well(s) commencing on the date of first production, urrent and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering | | hundred percent of the arinto account the current a | able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one atticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. <i>box, Operator will select one of the following:</i> | | Well Shut-In. □ Operate D of 19.15.27.9 NMAC; | or will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection or | | alternative beneficial use | an. Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential s for the natural gas until a natural gas gathering system is available, including: | | (a) | power generation on lease; | | (b) | power generation for grid;
compression on lease; | | (c)
(d) | liquids removal on lease; | | (a)
(e) | reinjection for underground storage; | | (f) | reinjection for temporary storage; | | (g) | reinjection for enhanced oil recovery; | | (h) | fuel cell production; and | | (i) | other alternative beneficial uses approved by the division. | # **Section 4 - Notices** - 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud: - (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or - (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement. - 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud. I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act. | Signature: Larah Jordan | |---| | Printed Name: Sarah Jordan | | Title: Regulatory Analyst | | E-mail Address: sarah.jordan@coterra.com | | Date: 5/2/2022 | | Phone: 432/620-1909 | | OIL CONSERVATION DIVISION | | (Only applicable when submitted as a standalone form) | | Approved By: | | Title: | | Approval Date: | | Conditions of Approval: | | | | | | | | | #### From State of New Mexico, Natural Gas Management Plan **VI. Separation Equipment:** Attach a complete description of how Operator will size separation equipment to optimize gas capture. #### **XEC Standard Response** Standard facility gas process flow begins at the inlet separator. These vessels are designed based off of forecasted rates and residence times in accordance with, and often greater than, API 12J. The separated gas is then routed to an additional separation vessel (ie sales scrubber) in order to extract liquids that may have carried over or developed due to the decrease in pressure. The sales scrubber is sized based on API 521. From the sales scrubber, the gas leaves the facility and enters the gas midstream gathering network. # **Cimarex** # **VII. Operational Practices** Cimarex values the sustainable development of New Mexico's natural resources. Venting and flaring of natural gas is a source of waste in the industry, and Cimarex will ensure that its values are aligned with those of NMOCD. As such, Cimarex plans to take pointed steps to ensure compliance with Subsection A through F of 19.15.27.8 NMAC. Specifically, below are the steps Cimarex will plan to follow under routine well commissioning and operations. - 1. Capture or combust natural gas during drilling operations where technically feasible, using the best industry practices and control technologies. - a. All flares during these operations will be a minimum of 100ft away from the nearest surface-hole location. - 2. All gas present during post-completion drill-out and flow back will be routed through separation equipment, and, if technically feasible, flare unsellable vapors rather than vent. Lastly, formal sales separator commissioning to process well-stream fluids and send gas to a gas flow line/collection system or use the gas for on-site fuel or beneficial usage, gas as soon as is safe and technically feasible. - 3. Cimarex will ensure the flare or combustion equipment is properly sized to handle expected flow rates, ensure this equipment is equipped with an automatic or continuous ignition source, and ensure this equipment is designed for proper combustion efficiency. - 4. If Cimarex must flare because gas is not meeting pipeline specifications, Cimarex will limit flaring to <60 days, analyze gas composition at least twice per week, and route gas into a gathering pipeline as soon as pipeline specifications are met. - 5. Under routine production operations, Cimarex will not flare/vent unless: - a. Venting or flaring occurs due to an emergency or equipment malfunction. - b. Venting or flaring occurs as a result of unloading practices, and an operator is onsite (or within 30 minutes of drive time and posts contact information at the wellsite) until the end of unloading practice. - c. The venting or flaring occurs during automated plungerlift operations, in which case the Cimarex operator will work to optimize the plungerlift system to minimize venting/flaring. - d. The venting or flaring occurs during downhole well maintenance, in which case Cimarex will work to minimize venting or flaring operations to the extent that it does not pose a risk to safe operations. - e. The well is an exploratory well, the division has approved the well as an exploratory well, venting or flaring is limited to 12 months, as approved by the division, and venting/flaring does not cause Cimarex to breach its State-wide 98% gas capture requirement. - f. Venting or flaring occurs because the stock tanks or other low-pressure vessels are being gauged, sampled, or liquids are being loaded out. - g. The venting or flaring occurs because pressurized vessels are being maintained and are being blown-down or depressurized. - h. Venting or flaring occurs as a result of normal dehydration unit operations. - i. Venting or flaring occurs as a result of bradenhead testing. - j. Venting or flaring occurs as a result of normal compressor operations, including general compressor operations, compressor engines and turbines. - k. Venting or flaring occurs as a result of a packer leakage test. - 1. Venting or flaring occurs as a result of a production test lasting less than 24 hours unless otherwise approved by the division. - m. Venting or flaring occurs as a result of new equipment commissioning and is necessary to purge impurities from the pipeline or production equipment. - 6. Cimarex will maintain its equipment in accordance with its Operations and Maintenance Program, to ensure venting or flaring events are minimized and that equipment is properly functioning. - 7. Cimarex will install automatic tank gauging equipment on all production facilities constructed after May 25, 2021, to ensure minimal emissions from tank gauging practices. - 8. By November 25, 2022, all Cimarex facilities equipped with flares or combustors will be equipped with continuous pilots or automatic igniters, and technology to ensure proper function, i.e. thermocouple, fire-eye, etc... - 9. Cimarex will perform AVO (audio, visual, olfactory) facility inspections in accordance with NMOCD requirements. Specifically, Cimarex will: - a. Perform weekly inspections during the first year of production, and so long as production is greater than 60 MCFD. - b. If production is less than 60 MCFD, Cimarex will perform weekly AVO inspections when an operator is present on location, and inspections at least once per calendar month with at least 20 calendar days between inspections. - 10. Cimarex will measure or estimate the volume of vented, flared or beneficially used natural gas, regardless of the reason or authorization for such venting or flaring. - 11. On all facilities constructed after May 25, 2021,
Cimarex will install metering where feasible and in accordance with available technology and best engineering practices, in an effort to measure how much gas could have been vented or flared. - a. In areas where metering is not technically feasible, such as low-pressure/low volume venting or flaring applications, engineering estimates will be used such that the methodology could be independently verified. - 12. Cimarex will fulfill the division's requirements for reporting and filing of venting or flaring that exceeds 50 MCF in volume or last eight hours or more cumulatively within any 24-hour period. # VIII. Best Management Practices to minimize venting during active and planned maintenance Cimarex strives to ensure minimal venting occurs during active and planned maintenance activities. Below is a description of common maintenance practices, and the steps Cimarex takes to limit venting exposure. #### Workovers: - o Always strive to kill well when performing downhole maintenance. - o If vapors or trapped pressure is present and must be relieved then: - Initial blowdown to production facility: - Route vapors to LP flare if possible/applicable - Blowdown to portable gas buster tank: - Vent to existing or portable flare if applicable. ## • Stock tank servicing: - o Minimize time spent with thief hatches open. - When cleaning or servicing via manway, suck tank bottoms to ensure minimal volatiles exposed to atmosphere. - Connect vacuum truck to low pressure flare while cleaning bottoms to limit venting. - o Isolate the vent lines and overflows on the tank being serviced from other tanks. #### • Pressure vessel/compressor servicing and associated blowdowns: - o Route to flare where possible. - o Blow vessel down to minimum available pressure via pipeline, prior to venting vessel. - Preemptively changing anodes to reduce failures and extended corrosion related servicing. - When cleaning or servicing via manway, suck vessel bottoms to ensure minimal volatiles exposed to atmosphere. #### • Flare/combustor maintenance: - Minimize downtime by coordinating with vendor and Cimarex staff travel logistics. - Utilizing preventative and predictive maintenance programs to replace high wear components before failure. - Because the flare/combustor is the primary equipment used to limit venting practices, ensure flare/combustor is properly maintained and fully operational at all times via routine maintenance, temperature telemetry, onsite visual inspections. The Cimarex expectation is to limit all venting exposure. Equipment that may not be listed on this document is still expected to be maintained and associated venting during such maintenance minimized. U.S. Department of the Interior BUREAU OF LAND MANAGEMENT # Drilling Plan Data Report 12/07/2021 **APD ID:** 10400053869 **Submission Date:** 04/20/2020 Operator Name: CIMAREX ENERGY COMPANY OF COLORADO Well Name: LAGUNA GRANDE 29 FEDERAL Well Number: 17H Well Type: CONVENTIONAL GAS WELL Well Work Type: Drill Highlighted data reflects the most recent changes **Show Final Text** # **Section 1 - Geologic Formations** | Formation ID | Formation Name | Elevation | True Vertical
Depth | Measured
Depth | Lithologies | Mineral Resources | Producing | |--------------|-----------------|-----------|------------------------|-------------------|------------------|-------------------|-----------| | 657511 | RUSTLER | 0 | 115 | 115 | ANHYDRITE | USEABLE WATER | N | | 679704 | SALADO | -559 | 559 | 559 | ANHYDRITE, SALT | NONE | N | | 679704 | SALADO | -559 | 559 | 559 | ANHIDRITE, SALT | NONE | IN IN | | 679705 | CASTILE | -2573 | 2573 | 2573 | ANHYDRITE, SALT | NONE | N | | 679706 | BELL CANYON | -2788 | 2788 | 2788 | SANDSTONE | NONE | N | | 679707 | CHERRY CANYON | -3660 | 3660 | 3664 | SANDSTONE | NATURAL GAS, OIL | N | | 679708 | BRUSHY CANYON | -4940 | 4940 | 4952 | SANDSTONE | NATURAL GAS, OIL | N | | 679709 | BONE SPRING | -6570 | 6570 | 6588 | LIMESTONE | NATURAL GAS, OIL | N | | 679710 | BONE SPRING 1ST | -7550 | 7550 | 7568 | SANDSTONE | NATURAL GAS, OIL | N | | 679711 | BONE SPRING 2ND | -8330 | 8330 | 8348 | SANDSTONE | NATURAL GAS, OIL | N | | 679712 | BONE SPRING 3RD | -9490 | 9490 | 9508 | SANDSTONE | NATURAL GAS | N | | 679713 | WOLFCAMP | -9830 | 9830 | 9930 | SANDSTONE, SHALE | NATURAL GAS, OIL | Y | #### **Section 2 - Blowout Prevention** Pressure Rating (PSI): 2M Rating Depth: 2783 **Equipment:** A BOP consisting of three rams, including one blind ram and two pipe rams and one annular preventer. An accumulator that meets the requirements in Onshore Order #2 for the pressure rating of the BOP stack. A rotating head may be installed as needed. A Kelly clock will be installed and maintained in operable condition and a drill string safety valve in the open position will be available on the rig floor. Requesting Variance? YES Variance request: Co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used. Variance to include Hammer Union connections on lines downstream of the buffer tank only. Techniq Pro Evalure: A AN ANCHORE System will be utilized. After running the 13-3/8" surface casing, a 13 5/8 BOP/BOPE system with a minimum working pressure of 2000 psi will be installed on the wellhead system and will be Well Name: LAGUNA GRANDE 29 FEDERAL Well Number: 17H pressure tested to 250 psi low followed by a 2000 psi test. Annular will be tested to 100% of working pressure. The pressure test will be repeated at least every 30 days, as per Onshore Order No. 2. The multi-bowl wellhead will be installed by vendors representative. A copy of the installation instructions has been sent to the BLM field office. The wellhead will be installed by a third-party welder, monitored by the wellhead vendor representative. All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type. A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 2000 psi. The surface casing string will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater. The casing strings utilizing steel body pack-off will be tested to 70% of casing burst. If well conditions dictate conventional slips will be set and BOPE will be tested to appropriate pressures based on permitted pressure requirements. #### **Choke Diagram Attachment:** Laguna Grande 29 Federal 17H 2M Choke 20200305134453.pdf #### **BOP Diagram Attachment:** Laguna Grande 29 Federal 17H 2M BOP 20200305134501.pdf Pressure Rating (PSI): 5M Rating Depth: 14295 **Equipment:** A BOP consisting of three rams, including one blind ram and two pipe rams and one annular preventer. An accumulator that meets the requirements in Onshore Order #2 for the pressure rating of the BOP stack. A rotating head may be installed as needed. A Kelly clock will be installed and maintained in operable condition and a drill string safety valve in the open position will be available on the rig floor. Requesting Variance? YES Variance request: Co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used. Variance to include Hammer Union connections on lines downstream of the buffer tank only. Testing Procedure: A multi-bowl wellhead system will be utilized. After running the 13-3/8" surface casing, a 13 5/8 BOP/BOPE system with a minimum working pressure of 5000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 5000 psi test. Annular will be tested to 100% of working pressure. The pressure test will be repeated at least every 30 days, as per Onshore Order No. 2. The multi-bowl wellhead will be installed by vendors representative. A copy of the installation instructions has been sent to the BLM field office. The wellhead will be installed by a third-party welder, monitored by the wellhead vendor representative. .All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type. A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi. Slips will be utilized after running and cementing the production casing. After installation of the slips and wellhead on the production casing, a 13 5/8 BOP/BOPE system with a minimum working pressure of 5000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 5000 psi test. Annular will be tested to 50% of working pressure. The pressure test will be repeated at least every 30 days, as per Onshore Order No. 2. The surface casing string will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater. The casing string utilizing steel body pack-off will be tested to 70% of casing burst. If well conditions dictate conventional slips will be set and BOPE will be tested to appropriate pressures based on permitted pressure requirements. #### **Choke Diagram Attachment:** Laguna_Grande_29_Federal_17H_5M_Choke_20200305134641.pdf #### **BOP Diagram Attachment:** Laguna Grande 29 Federal 17H 5M BOP 6.125 20200305134649.pdf Well Name: LAGUNA GRANDE 29 FEDERAL Well Number: 17H Pressure Rating (PSI): 5M Rating Depth: 10064 **Equipment:** A BOP consisting of three rams, including one blind ram and two pipe rams and one annular preventer. An accumulator that meets the requirements in Onshore Order #2 for the pressure rating of the BOP stack. A rotating head may be installed as needed. A Kelly clock will be
installed and maintained in operable condition and a drill string safety valve in the open position will be available on the rig floor. Requesting Variance? YES Variance request: Co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used. Variance to include Hammer Union connections on lines downstream of the buffer tank only. Testing Procedure: A multi-bowl wellhead system will be utilized. After running the 13-3/8" surface casing, a 13 5/8 BOP/BOPE system with a minimum working pressure of 5000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 5000 psi test. Annular will be tested to 100% of working pressure. The pressure test will be repeated at least every 30 days, as per Onshore Order No. 2. The multi-bowl wellhead will be installed by vendors representative. A copy of the installation instructions has been sent to the BLM field office. The wellhead will be installed by a third-party welder, monitored by the wellhead vendor representative. .All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type. A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi. Slips will be utilized after running and cementing the production casing. After installation of the slips and wellhead on the production casing, a 13 5/8 BOP/BOPE system with a minimum working pressure of 5000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 5000 psi test. Annular will be tested to 50% of working pressure. The pressure test will be repeated at least every 30 days, as per Onshore Order No. 2. The surface casing string will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater. The casing string utilizing steel body pack-off will be tested to 70% of casing burst. If well conditions dictate conventional slips will be set and BOPE will be tested to appropriate pressures based on permitted pressure requirements. #### **Choke Diagram Attachment:** Laguna_Grande_29_Federal_17H_5M_Choke_20200305134559.pdf #### **BOP Diagram Attachment:** Laguna Grande 29 Federal 17H 5M BOP 8.75 20200305134605.pdf # **Section 3 - Casing** | | Casing ID | String Type | Hole Size | Csg Size | Condition | Standard | Tapered String | Top Set MD | Bottom Set MD | Top Set TVD | Bottom Set TVD | Top Set MSL | Bottom Set MSL | Calculated casing length MD | Grade | Weight | Joint Type | Collapse SF | Burst SF | Joint SF Type | Joint SF | Body SF Type | Body SF | |---|-----------|------------------|-----------|------------------|---------------|-----------------|----------------|------------|---------------|-------------|----------------|-------------|----------------|-----------------------------|-------|--------|------------|-------------|-----------|---------------|-----------|--------------|---------------| | | 1 | SURFACE | 17.5 | 13.375 | NEW | API | N | 0 | 500 | 0 | 500 | 2970 | 2470 | 500 | J-55 | 48 | ST&C | 3.42 | 10.9
7 | BUOY | 18.0
4 | BUOY | 18.0
4 | | | | INTERMED
IATE | 12.2
5 | 9.625 | NEW | API | N | 0 | 2738 | 0 | 2738 | 2970 | 232 | 2738 | J-55 | 36 | ST&C | 1.38 | 2.4 | BUOY | 4 | BUOY | 4 | | | | PRODUCTI
ON | 8.75 | 7.0 | NEW | API | N | 0 | 8540 | 0 | 8540 | 2970 | -5570 | 8540 | L-80 | 26 | LT&C | 1.37 | 1.83 | BUOY | 1.99 | BUOY | 1.99 | | 1 | | on | gins | 7. <u>5</u> /9/2 | 4 €₹√9 | : <u>Q</u> B; 4 | QAN | 8540 | 10064 | 8540 | 9882 | -5570 | -6912 | 1524 | L-80 | 26 | BUTT | 1.18 | 1.59 | BUOY | 17.3
1 | BUOY | 17.3 - | Well Name: LAGUNA GRANDE 29 FEDERAL Well Number: 17H | Casing ID | String Type | Hole Size | Csg Size | Condition | Standard | Tapered String | Top Set MD | Bottom Set MD | Top Set TVD | Bottom Set TVD | Top Set MSL | Bottom Set MSL | Calculated casing
length MD | Grade | Weight | Joint Type | Collapse SF | Burst SF | Joint SF Type | Joint SF | Body SF Type | Body SF | |-----------|--------------------------|-----------|----------|-----------|----------|----------------|------------|---------------|-------------|----------------|-------------|----------------|--------------------------------|-----------|--------|------------|-------------|----------|---------------|-----------|--------------|-----------| | | COMPLETI
ON
SYSTEM | 6.12
5 | 4.5 | NEW | API | N | 8440 | 14295 | 8440 | 9911 | -5470 | -6941 | | P-
110 | 11.6 | BUTT | 1.4 | 1.98 | BUOY | 21.5
1 | BUOY | 21.5
1 | #### **Casing Attachments** Casing ID: 1 String Type: SURFACE **Inspection Document:** **Spec Document:** **Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Laguna_Grande_29_Fed_17H_Casing_Assumptions_20200305134932.pdf Casing ID: 2 String Type: INTERMEDIATE **Inspection Document:** **Spec Document:** **Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Laguna_Grande_29_Fed_17H_Casing_Assumptions_20200305135142.pdf Well Name: LAGUNA GRANDE 29 FEDERAL Well Number: 17H | | Casing | Attachment | S | |--|--------|-------------------|---| |--|--------|-------------------|---| Casing ID: 3 String Type: PRODUCTION **Inspection Document:** **Spec Document:** **Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Laguna_Grande_29_Fed_17H_Casing_Assumptions_20200305141123.pdf Casing ID: 4 String Type: PRODUCTION **Inspection Document:** **Spec Document:** **Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Laguna_Grande_29_Fed_17H_Casing_Assumptions_20200305141227.pdf Casing ID: 5 String Type: COMPLETION SYSTEM **Inspection Document:** **Spec Document:** **Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Laguna_Grande_29_Fed_17H_Casing_Assumptions_20200305141345.pdf Well Name: LAGUNA GRANDE 29 FEDERAL Well Number: 17H | String Type | Lead/Tail | Stage Tool
Depth | Top MD | Bottom MD | Quantity(sx) | Yield | Density | Cu Ft | Excess% | Cement type | Additives | |-------------|-----------|---------------------|--------|-----------|--------------|-------|---------|-------|---------|-------------|-----------| | SURFACE | Lead | | 0 | 500 | 325 | 1.34 | 14.8 | 435 | 25 | Class C | LCM | | INTERMEDIATE | Lead | 0 | 2738 | 523 | 1.88 | 12.9 | 983 | 44 | 35:65 (POZ C) | Salt Bentonite | |----------------------|------|------|-----------|-----|------|------|------|----|---------------|---| | INTERMEDIATE | Tail | 0 | 2738 | 159 | 1.36 | 14.8 | 216 | 44 | Class C | Retarder | | PRODUCTION | Lead | 0 | 1006
4 | 359 | 3.64 | 10.3 | 1307 | 25 | Tuned Light | LCM | | PRODUCTION | Tail | 0 | 1006
4 | 80 | 1.3 | 14.2 | 104 | 25 | 50:50 (POz H) | Salt, Bentonite, Fluid
Loss, Dispersant, SMS | | PRODUCTION | Lead | 0 | 1006
4 | 359 | 3.64 | 10.3 | 1307 | 25 | Tuned Light | LCM | | PRODUCTION | Tail | 0 | 1006
4 | 80 | 1.3 | 14.2 | 104 | 25 | 50:50 (Poz H) | Salt, Bentonite, Fluid
Loss, Dispersant, SMS | | COMPLETION
SYSTEM | Lead | 8440 | 1429
5 | 354 | 1.3 | 14.2 | 460 | 10 | 50:50 (Poz H) | Salt, Bentonite, Fluid
Loss, Dispersant, SMS | # **Section 5 - Circulating Medium** Mud System Type: Closed Will an air or gas system be Used? NO Description of the equipment for the circulating system in accordance with Onshore Order #2: Diagram of the equipment for the circulating system in accordance with Onshore Order #2: **Describe what will be on location to control well or mitigate other conditions:** Sufficient mud materials will be kept on location at all times in order to combat lost circulation or unexpected kicks. In order to run DSTs, open hole logs, and casing, the viscosity and water loss may have to be adjusted in order to meet these needs. Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring # **Circulating Medium Table** Well Name: LAGUNA GRANDE 29 FEDERAL Well Number: 17H | Top Depth | Bottom Depth | Mud Type | Min Weight (lbs/gal) | Max Weight (lbs/gal) | Density (lbs/cu ft) | Gel Strength (lbs/100 sqft) | НА | Viscosity (CP) | Salinity (ppm) | Filtration (cc) | Additional Characteristics | |-----------|--------------|-----------------------------|----------------------|----------------------|---------------------|-----------------------------|----|----------------|----------------|-----------------|----------------------------| | 0 | 500 | OTHER : Fresh
Water | 7.83 | 8.33 | | | | | | | | | 500 | 2738 | SALT
SATURATED | 9.8 | 10.3 | | | | | | 6 | | | 2738 | 1006
4 | OTHER : Cut
Brine or OBM | 8.4 | 8.9 | | | | | 1 | | | | 1006
4 | 1429
5 | OIL-BASED
MUD | 10 | 10.5 | | | | | | | | # **Section 6 - Test, Logging, Coring** List of production tests including testing procedures, equipment and safety measures: No DST Planned List of open and cased hole logs run in the well: GAMMA RAY LOG, COMPENSATED NEUTRON LOG, DIRECTIONAL SURVEY, Coring operation description for the well: N/A #### Section 7 - Pressure Anticipated Bottom Hole Pressure: 5411 Anticipated Surface Pressure: 3230 Anticipated Bottom Hole Temperature(F): 169 Anticipated abnormal pressures, temperatures, or potential geologic hazards? YES Describe: Lost circulation may be encountered in the Delaware mountain group. Abnormal pressure as well as hole stability issues may be encountered in the Wolfcamp. Contingency Plans geoharzards description: Lost circulation material will be available, as well as additional drilling fluid along with the fluid volume in the drilling rig pit system. Drilling fluid can be mixed on location or mixed in vendor mud plant and trucked to location if needed. Sufficient barite will be available to maintain appropriate mud weight for the
Wolfcamp interval. **Contingency Plans geohazards attachment:** Hydrogen Sulfide drilling operations plan required? YES Hydrogen sulfide drilling operations plan: Well Name: LAGUNA GRANDE 29 FEDERAL Well Number: 17H ## **Section 8 - Other Information** #### Proposed horizontal/directional/multi-lateral plan submission: Laguna_Grande_29_Federal_17H_Directional_20200305143242.pdf Laguna_Grande_29_Federal_17H_AC_Report_20200305143249.pdf #### Other proposed operations facets description: #### Other proposed operations facets attachment: Laguna_Grande_29_Fed_17H_Gas_Capture_Plan_20200305143326.pdf Laguna_Grande_29_Federal_17H_Drilling_Plan_20210203071400.pdf #### Other Variance attachment: Laguna_Grande_29_Fedeal_17H_Multibowl_20200305143443.pdf ## 1. Geological Formations TVD of target 9,911 Pilot Hole TD N/A MD at TD 14,295 Deepest expected fresh water | Formation | Depth (TVD) from KB | Water/Mineral Bearing/Target Zone | Hazards | |-----------------|---------------------|-----------------------------------|---------| | Rustler | 115 | Useable Water | | | Salado | 559 | N/A | | | Castille | 2573 | N/A | | | Bell Canyon | 2788 | N/A | | | Cherry Canyon | 3660 | Hydrocarbons | | | Brushy Canyon | 4940 | Hydrocarbons | | | Bone Spring | 6570 | Hydrocarbons | | | 1st Bone Spring | 7550 | Hydrocarbons | | | 2nd Bone Spring | 8330 | Hydrocarbons | | | 3rd Bone Spring | 9490 | Hydrocarbons | | | Wolfcamp | 9830 | Hydrocarbons | | #### 2. Casing Program | Hole
Size | Casing
Depth From | _ | _ | Casing
Size | Weight
(lb/ft) | Grade | Conn. | SF Collapse | SF Burst | SF Tension | |--------------|----------------------|-------|------|----------------|-------------------|---------------|--------------|-------------|----------|--------------------| | 17 1/2 | 0 | 500 | 500 | 13-3/8" | 48.00 | J-55 | ST&C | 3.42 | 10.97 | 18.04 | | 12 1/4 | 0 | 2738 | 2738 | 9-5/8" | 36.00 | J-55 | ST&C | 1.38 | 2.40 | 4.00 | | 8 3/4 | 0 | 8540 | 8540 | 7" | 26.00 | L-80 | LT&C | 1.37 | 1.83 | 1.99 | | 8 3/4 | 8540 | 10064 | 9882 | 7" | 26.00 | L - 80 | ВТ&С | 1.18 | 1.59 | 17.31 | | 6 1/8 | 8440 | 14295 | 9911 | 4-1/2" | 11.60 | P-110 | BT&C | 1.40 | 1.98 | 21.51 | | | | | | | BLM | Minimum S | afety Factor | 1.125 | 1 | 1.6 Dry
1.8 Wet | TVD was used on all calculations. All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h | | Y or N | |--|--------| | Is casing new? If used, attach certification as required in Onshore Order #1 | Υ | | Does casing meet API specifications? If no, attach casing specification sheet. | Y | | Is premium or uncommon casing planned? If yes attach casing specification sheet. | N | | Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria). | Y | | Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing? | Y | | Is well located within Capitan Reef? | N | | If yes, does production casing cement tie back a minimum of 50' above the Reef? | N | | Is well within the designated 4 string boundary. | N | | Is well located in SOPA but not in R-111-P? | N | | If yes, are the first 2 strings cemented to surface and 3rd string cement tied back 500' into previous casing? | N | | Is well located in R-111-P and SOPA? | N | | If yes, are the first three strings cemented to surface? | N | | Is 2nd string set 100' to 600' below the base of salt? | N | | Is well located in high Cave/Karst? | N | | If yes, are there two strings cemented to surface? | N | | (For 2 string wells) If yes, is there a contingency casing if lost circulation occurs? | N | | Is well located in critical Cave/Karst? | N | | If yes, are there three strings cemented to surface? | N | | Is AC Report included? | N | #### 3. Cementing Program | Casing | # Sks | | Y l d
ft3/sack | H2O
gal/sk | 500# Comp.
Strength
(hours) | Slurry Description | |-------------------|-------|-------|--------------------------|---------------|-----------------------------------|--| | Surface | 325 | 14.80 | 1.34 | 9.15 | 9.5 | Tail: Class C + LCM | | | | | | | | | | Intermediate | 523 | 12.90 | 1.88 | 9.65 | 12 | Lead: 35:65 (Poz:C) + Salt + Bentonite | | | 159 | 14.80 | 1.36 | 6.57 | 9.5 | Tail: Class C + Retarder | | | | | | | | | | Production | 359 | 10.30 | 3.64 | 22.18 | | Lead: Tuned Light + LCM | | | 80 | 14.20 | 1.30 | 5.86 | 14:30 | Tail: 50:50 (Poz:H) + Salt + Bentonite + Fluid Loss + Dispersant + SMS | | | | | | | | | | Completion System | 354 | 14.20 | 1.30 | 5.86 | 14:30 | Tail: 50:50 (Poz:H) + Salt + Bentonite + Fluid Loss + Dispersant + SMS | | | | | | | | | DV tool depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. Lab reports with the 500 psi compressive strength time for the cement will be onsite for review. | Casing String | тос | % Excess | |-------------------|------|----------| | Surface | 0 | 25 | | Intermediate | 0 | 44 | | Production | 2500 | 24 | | Completion System | 9864 | 10 | Cimarex request the ability to perform casing integrity tests after plug bump of cement job. #### 4. Pressure Control Equipment A variance is requested for the use of a diverter on the surface casing. See attached for schematic. | BOP installed and tested before drilling which hole? | Size | Min Required WP | Туре | | Tested To | |--|--------|-----------------|------------|---|-----------| | 12 1/4 | 13 5/8 | 2M | Annular | Х | | | | | | Blind Ram | | | | | | | Pipe Ram | | 2M | | | | | Double Ram | Х | | | | | | Other | | | | 8 3/4 | 13 5/8 | 5M | Annular | Х | | | | | | Blind Ram | | | | | | | Pipe Ram | Х | 5M | | | | | Double Ram | Х | | | | | | Other | | | | 6 1/8 | 13 5/8 | 5M | Annular | Х | | | | | | Blind Ram | | | | | | | Pipe Ram | Х | 5M | | | | | Double Ram | Х | | | | | | Other | | | BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics. Formation integrity test will be performed per Onshore Order #2. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i. A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart. N Are anchors required by manufacturer? #### 5. Mud Program | Depth | Туре | Weight (ppg) | Viscosity | Water Loss | |------------------|------------------|---------------|-----------|------------| | 0' to 500' | Fresh Water | 7.83 - 8.33 | 28 | N/C | | 500' to 2738' | Brine Water | 9.80 - 10.30 | 30-32 | N/C | | | | | | N/C | | 2738'-10064' | Cut Brine or OBM | 8.40 - 8.90 | 27-70 | N/C | | 10064' to 14295' | ОВМ | 10.00 - 10.50 | 50-70 | N/C | Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. | What will be used to monitor the loss or gain of fluid? | PVT/Pason/Visual Monitoring | |---|-----------------------------| | | | #### 6. Logging and Testing Procedures | Logg | Logging, Coring and Testing | | | | | | | | |------|--|--|--|--|--|--|--|--| | | Will run GR/CNL fromTD to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM. | | | | | | | | | Х | No logs are planned based on well control or offset log information. | | | | | | | | | | Drill stem test? | | | | | | | | | | Coring? | | | | | | | | | Additional Logs Planned | Interval | |-------------------------|----------| #### 7. Drilling Conditions | Condition | | |----------------------------|----------| | BH Pressure at deepest TVD | 5411 psi | | Abnormal Temperature | No | Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM. H2S is present H2S plan is attached #### 8. Other Facets of Operation #### 9. Wellhead A multi-bowl wellhead system will be utilized. After running the 13-3/8" surface casing, a 13 5/8" BOP/BOPE system with a minimum working pressure of 5000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 5000 psi test. Annular will be tested to 100% of working pressure. The pressure test will be repeated at least every 30 days, as per Onshore Order No. 2. The multi-bowl wellhead will be installed by vendor's representative. A copy of the installation instructions
has been sent to the BLM field office. The wellhead will be installed by a third-party welder while being monitored by the wellhead vendor representative. All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type. A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi. A solid steel body pack-off will be utilized after running and cementing the production casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi. All casing strings will be tested as per Onshore Order No.2 to atleast 0.22 psi/ft or 1,500 whichever is greater and not to exceed 70% of casing burst. If well conditions dictate conventional slips will be set and BOPE will be tested to appropriate pressures based on permitted pressure requirements. #### Schlumberger #### Cimarex Laguna Grande 29 Federal #17H Rev0 RM 10Feb20 Proposal **Geodetic Report** Latitude (N/S ° ' ") Longitude (E/W ° ' ") Easting (ftUS) (ftUS) (Non-Def Plan) VSEC (ft) TVD (ft) (°) Report Date: Client: February 12, 2020 - 04:16 PM Cimarex Energy Field: NM Eddy County (NAD 83) Cimarex Laguna Grande 29 Federal #17H / New Slot Laguna Grande 29 Federal #17H Structure / Slot: Well: Borehole: Laguna Grande 29 Federal #17H UWI / API#: Unknown / Unknown Survey Name: Cimarex Laguna Grande 29 Federal #17H Rev0 RM 10Feb20 February 10, 2020 103.233 ° / 4919.987 ft / 5.864 / 0.495 Survey Date: Tort / AHD / DDI / ERD Ratio: Coordinate Reference System: Location Lat / Long: NAD83 New Mexico State Plane, Eastern Zone, US Feet N 32° 16' 10.81305", W 104° 0' 40.39050" Location Grid N/E Y/X: N 461988.480 ftUS, E 640895.790 ftUS (ft) 0.1720 CRS Grid Convergence Angle: Grid Scale Factor: Version / Patch: 2.10.787.0 Comments SHL [390' ESI 0.99992044 Magnetic Declination Model: North Reference: Grid Convergence Used: Total Corr Mag North->Grid Local Coord Referenced To: (ft) Grid North 0.1720° 6.7978 Well Head (°/100ft) EW (ft) Survey / DLS Computation: Vertical Section Azimuth: Minimum Curvature / Lubinski 359.807 ° (Grid North) Vertical Section Origin: 0.000 ft, 0.000 ft TVD Reference Datum: RKB TVD Reference Elevation: 2995.800 ft above MSL Seabed / Ground Elevation: 2969.800 ft above MSL 6.970 $^{\circ}$ Magnetic Declination: Total Gravity Field Strength: 998.4720mgn (9.80665 Based) **Gravity Model:** GARM Total Magnetic Field Strength: 47837.649 nT Magnetic Dip Angle: Declination Date: 59.983 ° February 10, 2020 HDGM 2019 | SHL [390' FSL,
1330' FWL] | 0.00 | 0.00 | 347.49 | 0.00 | 0.00 | 0.00 | 0.00 | N/A | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | |-------------------------------|--------------------|--------------|--------|--------------------|--------------|------|--------------------|--------------|------------------------|------------------------|--| | | 100.00 | 0.00 | 270.10 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | Rustler | 115.00 | 0.00 | 270.10 | 115.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 200.00 | 0.00 | 270.10 | 200,00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 300.00 | 0.00 | 270.10 | 300.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10 81 W 104 0 40 39 | | | 400.00 | 0.00 | 270.10 | 400.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 500.00 | 0.00 | 270.10 | 500.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | Salado (Top | 559.00 | 0.00 | 270.10 | 559.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | Salt) | | | | | | | | | | | | | | 600.00 | 0.00 | 270.10 | 600.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 700.00 | 0.00 | 270.10 | 700.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 800.00 | 0.00 | 270.10 | 800.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 900.00 | 0.00 | 270.10 | 900.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 1000.00 | 0.00 | 270.10 | 1000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 1100.00 | 0.00 | 270.10 | 1100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 1200.00 | 0.00 | 270.10 | 1200.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 1300.00 | 0.00 | 270.10 | 1300.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 1400.00 | 0.00 | 270.10 | 1400.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 1500.00 | 0.00 | 270.10 | 1500.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 1600.00 | 0.00 | 270.10 | 1600.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 1700.00 | 0.00 | 270.10 | 1700.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 1800.00 | 0.00 | 270.10 | 1800.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 1900.00 | 0.00 | 270.10 | 1900.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 2000.00 | 0.00 | 270.10 | 2000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 2100.00 | 0.00 | 270.10 | 2100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 2200.00 | 0.00 | 270.10 | 2200.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895,79 | N 32 16 10.81 W 104 0 40.39 | | | 2300.00 | 0.00 | 270.10 | 2300.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 2400.00 | 0.00 | 270.10 | 2400.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 2500.00 | 0.00 | 270.10 | 2500.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | Castille (Base | 2573.00 | 0.00 | 270.10 | 2573.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | Salt) | 2600.00 | 0.00 | 270.10 | 2600.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | | 2700.00 | 0.00 | 270.10 | 2700.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | Bell Canyon
(Top Delaware) | 2788.00 | 0.00 | 270.10 | 2788.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | Nudge 2°/100' | 2800.00 | 0.00 | 270.10 | 2800.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 W 104 0 40.39 | | DLS | 2900.00 | 2.00 | 270.10 | 2899.98 | 0.01 | 0.00 | -1.75 | 2.00 | 461988.48 | 640894.04 | N 32 16 10.81 W 104 0 40.41 | | | 3000.00 | 4.00 | 270.10 | 2999.84 | 0.04 | 0.01 | -6.98 | 2.00 | 461988.49 | 640888.81 | N 32 16 10.81 W 104 0 40.47 | | | 3100.00 | 6.00 | 270.10 | 3099.45 | 0.08 | 0.03 | -15.69 | 2.00 | 461988.51 | 640880.10 | N 32 16 10.81 W 104 0 40.57 | | Hold Nudge | 3123.37 | 6.47 | 270.10 | 3122.68 | 0.09 | 0.03 | -18.23 | 2.00 | 461988.51 | 640877.56 | N 32 16 10.81 W 104 0 40.60 | | riola riaago | 3200.00 | 6.47 | 270.10 | 3198.83 | 0.14 | 0.04 | -26.86 | 0.00 | 461988.52 | 640868.93 | N 32 16 10.81 W 104 0 40.70 | | | 3300.00 | 6.47 | 270.10 | 3298.19 | 0.19 | 0.06 | -38.13 | 0.00 | 461988.54 | 640857.67 | N 32 16 10.81 W 104 0 40.83 | | | 3400.00 | 6.47 | 270.10 | 3397.55 | 0.25 | 80.0 | 49.39 | 0.00 | 461988.56 | 640846.40 | N 32 16 10.82 W 104 0 40.97 | | | 3500.00 | 6.47 | 270.10 | 3496.92 | 0.30 | 0.10 | -60.65 | 0.00 | 461988.58 | 640835.14 | N 32 16 10.82 W 104 0 41.10 | | | 3600.00 | 6.47 | 270.10 | 3596.28 | 0.36 | 0.12 | 71.92 | 0.00 | 461988.60 | 640823.88 | N 32 16 10.82 W 104 0 41.23 | | Cherry Canyon | 3664.13 | 6.47 | 270.10 | 3660.00 | 0.40 | 0.13 | -79.14 | 0.00 | 461988.61 | 640816.66 | N 32 16 10.82 W 104 0 41.31 | | Cherry Carryon | 3700.00 | 6.47 | 270.10 | 3695.64 | 0.42 | 0.14 | -83.18 | 0.00 | 461988.62 | 640812.62 | N 32 16 10.82 W 104 0 41.36 | | | 3800.00 | 6.47 | 270.10 | 3795.01 | 0.47 | 0.16 | 94.45 | 0.00 | 461988.64 | 640801.35 | N 32 16 10.82 W 104 0 41.49 | | | 3900.00 | 6.47 | 270.10 | 3894.37 | 0.53 | 0.18 | -105.71 | 0.00 | 461988.66 | 640790.09 | N 32 16 10.82 W 104 0 41.43 | | | 4000.00 | 6.47 | 270.10 | 3993.73 | 0.59 | 0.19 | -116.97 | 0.00 | 461988.67 | 640778.83 | N 32 16 10.82 W 104 0 41.75 | | | 4100.00 | 6.47 | 270.10 | 4093.10 | 0.64 | 0.19 | -128.24 | 0.00 | 461988.69 | 640767.56 | N 32 16 10.82 W 104 0 41.73 | | | 4200.00 | 6.47 | 270.10 | 4192.46 | 0.70 | 0.23 | -139.50 | 0.00 | 461988.71 | 640756.30 | N 32 16 10.82 W 104 0 41.88 | | | | | | | | 0.25 | | | | 640745.04 | | | | 4300.00 | 6.47 | 270.10 | 4291.83 | 0.76 | | -150.76 | 0.00 | 461988.73 | | | | | 4400.00 | 6.47 | 270.10 | 4391.19 | 0.81
0.87 | 0.27 | -162.03 | 0.00 | 461988.75
461988.77 | 640733.78 | N 32 16 10.82 W 104 0 42.28
N 32 16 10.82 W 104 0 42.41 | | | 4500.00
4600.00 | 6.47
6.47 | 270.10 | 4490.55
4589.92 | 0.93 | 0.29 | -173.29
-184.56 | 0.00
0.00 | | 640722.51
640711.25 | | | | | | 270.10 | | | 0.31 | -195.82 | | 461988.79
461988.80 | | | | | 4700.00 | 6.47 | 270.10 | 4689.28 | 0.98 | 0.32 | | 0.00 | | 640699.99 | N 32 16 10.82 W 104 0 42.67 | | | 4800.00 | 6.47 | 270.10 | 4788.64 | 1.04 | 0.34 | -207.08 | 0.00 | 461988.82 | 640688.72 | N 32 16 10.82 W 104 0 42.80 | | | 4900.00 | 6.47 | 270.10 | 4888.01 | 1.10 | 0.36 | -218.35 | 0.00 | 461988.84 | 640677.46 | N 32 16 10.82 W 104 0 42.93 | | Brushy Canyon | 4952.33 | 6.47 | 270.10 | 4940.00 | 1.13 | 0.37 | -224.24 | 0.00 |
461988.85 | 640671.57 | N 32 16 10.82 W 104 0 43.00 | | | 5000.00 | 6.47 | 270.10 | 4987.37 | 1.15 | 0.38 | -229.61 | 0.00 | 461988.86 | 640666.20 | N 32 16 10.82 W 104 0 43.06 | | | 5100.00 | 6.47 | 270.10 | 5086.73 | 1.21 | 0.40 | -240.87 | 0.00 | 461988.88 | 640654.94 | N 32 16 10.82 W 104 0 43.20 | | | 5200.00 | 6.47 | 270.10 | 5186.10 | 1.27 | 0.42 | -252.14 | 0.00 | 461988.90 | 640643.67 | N 32 16 10.82 W 104 0 43.33 | | | 5300.00 | 6.47 | 270.10 | 5285.46 | 1.32 | 0.44 | -263.40 | 0.00 | 461988.92 | 640632.41 | N 32 16 10.83 W 104 0 43.46 | | | 5400.00 | 6.47 | 270.10 | 5384.83 | 1.38 | 0.46 | -274.67 | 0.00 | 461988.94 | 640621.15 | N 32 16 10.83 W 104 0 43.59 | | | 5500.00 | 6.47 | 270.10 | 5484.19 | 1.44 | 0.47 | -285.93 | 0.00 | 461988.95 | 640609.88 | N 32 16 10.83 W 104 0 43.72 | | | 5600.00 | 6.47 | 270.10 | 5583.55 | 1.49 | 0.49 | -297.19 | 0.00 | 461988.97 | 640598.62 | N 32 16 10.83 W 104 0 43.85 | | | 5700.00 | 6.47 | 270.10 | 5682.92 | 1.55 | 0.51 | -308.46 | 0.00 | 461988.99 | 640587.36 | N 32 16 10.83 W 104 0 43.98 | | | 5800.00 | 6.47 | 270.10 | 5782.28 | 1.61 | 0.53 | -319.72 | 0.00 | 461989.01 | 640576.10 | N 32 16 10 83 W 104 0 44 11 | | Drop to Vertical | 5817.83 | 6.47 | 270.10 | 5800.00 | 1.62 | 0.53 | -321.73 | 0.00 | 461989.01 | 640574.09 | N 32 16 10.83 W 104 0 44.14 | | 2°/100' DLS | 5900.00 | 4.82 | 270.10 | 5881.77 | 1.66 | 0.55 | -329.81 | 2.00 | 461989.03 | 640566.00 | N 32 16 10.83 W 104 0 44.23 | | | 6000.00 | 2.82 | 270.10 | 5981.54 | 1.69 | 0.56 | 336.48 | 2.00 | 461989.04 | 640559.34 | N 32 16 10.83 W 104 0 44.23 | | | 6100.00 | 0.82 | 270.10 | 6081.48 | 1.71 | 0.56 | -339.66 | 2.00 | 461989.04 | 640556.15 | N 32 16 10.83 W 104 0 44.35 | | Hold Vertical | 6141.20 | 0.00 | 270.10 | 6122.68 | 1.71 | 0.56 | -339.96 | 2.00 | 461989.04 | 640555.86 | N 32 16 10.83 W 104 0 44.35 | | . Ioid verdeal | 6200.00 | 0.00 | 270.10 | 6181.48 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 | N 32 16 10.83 W 104 0 44.35 | Drilling Office 2.10.787.0 | Comments | MD
(ft) | Incl
(°) | Azim Grid | TVD
(ft) | VSEC
(ft) | NS
(ft) | EW
(ft) | DLS
(°/100ft) | Northing
(ftUS) | Easting Latitude Longitude (ftUS) (N/S ° ' ") (E/W ° ' ") | |----------------------------|----------------------|----------------|------------------|--------------------|--------------------|--------------------|--------------------|------------------|------------------------|--| | | 6300.00 | 0.00 | 270.10 | 6281.48 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35 | | | 6400.00
6500.00 | 0.00
0.00 | 270.10
270.10 | 6381.48
6481.48 | 1.71
1.71 | 0.56
0.56 | -339.96
-339.96 | 0.00
0.00 | 461989.04
461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35
640555.86 N 32 16 10.83 W 104 0 44.35 | | op Bone | 6588.52 | 0.00 | 270.10 | 6570.00 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35 | | pring | 6600.00 | 0.00 | 270.10 | 6581.48 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35 | | | 6700.00 | 0.00 | 270.10 | 6681.48 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35 | | | 6800.00 | 0.00 | 270.10 | 6781.48 | 1.71 | 0.56
0.56 | -339.96
-339.96 | 0.00 | 461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35
640555.86 N 32 16 10.83 W 104 0 44.35 | | | 6900.00
7000.00 | 0.00
0.00 | 270.10
270.10 | 6881.48
6981.48 | 1.71
1.71 | 0.56 | -339.96 | 0.00
0.00 | 461989.04
461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35
640555.86 N 32 16 10.83 W 104 0 44.35 | | | 7100.00 | 0.00 | 270.10 | 7081.48 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35 | | | 7200.00
7300.00 | 0.00 | 270.10
270.10 | 7181.48
7281.48 | 1.71
1.71 | 0.56
0.56 | -339.96
-339.96 | 0.00
0.00 | 461989.04
461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35
640555.86 N 32 16 10.83 W 104 0 44.35 | | | 7400.00 | 0.00 | 270.10 | 7381.48 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35 | | op 1st BSPG | 7500.00 | 0.00 | 270.10 | 7481.48 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35 | | S | 7568.52 | 0.00 | 270.10 | 7550.00 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35 | | | 7600.00
7700.00 | 0.00
0.00 | 270.10
270.10 | 7581.48
7681.48 | 1.71
1.71 | 0.56
0.56 | -339.96
-339.96 | 0.00
0.00 | 461989.04
461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35
640555.86 N 32 16 10.83 W 104 0 44.35 | | | 7800.00 | 0.00 | 270.10 | 7781.48 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.3 | | | 7900.00
8000.00 | 0.00 | 270.10
270.10 | 7881.48
7981.48 | 1.71
1.71 | 0.56
0.56 | -339.96
-339.96 | 0.00
0.00 | 461989.04
461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35
640555.86 N 32 16 10.83 W 104 0 44.35 | | | 8100.00 | 0.00 | 270.10 | 8081.48 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.3 | | | 8200.00
8300.00 | 0.00
0.00 | 270.10
270.10 | 8181.48
8281.48 | 1.71
1.71 | 0.56
0.56 | -339.96
-339.96 | 0.00
0.00 | 461989.04
461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.3
640555.86 N 32 16 10.83 W 104 0 44.3 | | op 2nd BSPG | 8348.52 | 0.00 | 270.10 | 8330.00 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35 | | S | 8400.00 | 0.00 | 270.10 | 8381.48 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35 | | | 8500.00 | 0.00 | 270.10 | 8481.48 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35 | | | 8600.00 | 0.00 | 270.10 | 8581.48 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35
640555.86 N 32 16 10.83 W 104 0 44.35 | | | 8700.00
8800.00 | 0.00
0.00 | 270.10
270.10 | 8681.48
8781.48 | 1.71
1.71 | 0.56
0.56 | -339.96
-339.96 | 0.00
0.00 | 461989.04
461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35
640555.86 N 32 16 10.83 W 104 0 44.35 | | | 8900.00 | 0.00 | 270.10 | 8881.48 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.39 | | op Harkey SS | 9000.00
9018.52 | 0.00
0.00 | 270.10
270.10 | 8981.48
9000.00 | 1.71
1.71 | 0.56
0.56 | -339.96
-339.96 | 0.00
0.00 | 461989.04
461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35
640555.86 N 32 16 10.83 W 104 0 44.35 | | -, | 9100.00 | 0.00 | 270.10 | 9081.48 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.39 | | | 9200.00
9300.00 | 0.00
0.00 | 270.10
270.10 | 9181.48
9281.48 | 1.71
1.71 | 0.56
0.56 | -339.96
-339.96 | 0.00
0.00 | 461989.04
461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.3
640555.86 N 32 16 10.83 W 104 0 44.3 | | | 9400.00 | 0.00 | 270.10 | 9381.48 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.3 | | OP - Build
2°/100' DLS | 9439.54 | 0.00 | 270.10 | 9421.02 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 N 32 16 10.83 W 104 0 44.35 | | | 9500.00 | 7.26 | 359.81 | 9481.32 | 5.53 | 4.39 | -339.97 | 12.00 | 461992.87 | 640555.84 N 32 16 10.87 W 104 0 44.35 | | op 3rd BSPG
S | 9508.76 | 8.31 | 359.81 | 9490.00 | 6.72 | 5.57 | -339.98 | 12.00 | 461994.05 | 640555.84 N 32 16 10.88 W 104 0 44.35 | | 5 | 9600.00 | 19.26 | 359,81 | 9578.48 | 28,42 | 27,27 | -340.05 | 12,00 | 462015.75 | 640555.77 N 32 16 11.09 W 104 0 44.3 | | | 9700.00 | 31.26 | 359.81 | 9668.75 | 71.01 | 69.86 | -340.19 | 12.00 | 462058.34 | 640555.62 N 32 16 11 51 W 104 0 44 3 | | | 9800.00
9900.00 | 43.26
55.26 | 359.81
359.81 | 9748.20
9813.35 | 131.43
207.06 | 130.29
205.91 | -340.40
-340.65 | 12.00
12.00 | 462118.76
462194.38 | 640555.42 N 32 16 12.11 W 104 0 44.35
640555.17 N 32 16 12.86 W 104 0 44.35 | | p Wolfcamp | 9930.65 | 58.93 | 359.81 | 9830.00 | 232.79 | 231.64 | -340.74 | 12.00 | 462220.10 | 640555.08 N 32 16 13.12 W 104 0 44.35 | | uild 4°/100' | 10000.00 | 67.26 | 359.81 | 9861.35 | 294.58 | 293.43 | -340.95 | 12.00 | 462281.89 | 640554.87 N 32 16 13.73 W 104 0 44.35 | | LS | 10064.54 | 75.00 | 359.81 | 9882.21 | 355.60 | 354.45 | -341.15 | 12.00 | 462342.90 | 640554.67 N 32 16 14.33 W 104 0 44.35 | | | 10100.00
10200.00 | 76.42
80.42 | 359.81
359.81 | 9890.97
9911.04 | 389.96
487.91 | 388.82
486.76 | -341.27
-341.60 | 4.00
4.00 | 462377.26
462475.20 | 640554.55 N 32 16 14.67 W 104 0 44.35
640554.22 N 32 16 15.64 W 104 0 44.35 | | olfcamp 'Y' SS | 10212.09 | 80.90 | 359.81 | 9913.00 | 499.84 | 498.69 | -341.64 | 4.00 | 462487.13 | 640554.18 N 32 16 15.76 W 104 0 44.35 | | rollcamp 1 33 | 10300.00 | | | | 587.01 | 585.86 | -341.93 | 4.00 | 462574.30 | | | | 10400.00 | 84.42
88.42 | 359.81
359.81 | 9924.23
9930.47 | 686.80 | 685.65 | -341.93
-342.27 | 4.00 | 462674.07 | 640553.89 N 32 16 16.62 W 104 0 44.3
640553.55 N 32 16 17 61 W 104 0 44.3 | | olfcamp 'Y' SS | 10432.09 | 89.70 | 359.81 | 9931.00 | 718.88 | 717.73 | -342.38 | 4.00 | 462706.15 | 640553.44 N 32 16 17.93 W 104 0 44.35 | | gt
/olfcamp 'Y' SS | | | | | | | | | | | | gt | 10446.98 | 90.30 | 359.81 | 9931.00 | 733.77 | 732.62 | -342.43 | 4.00 | 462721.04 | 640553.39 N 32 16 18 07 W 104 0 44 35 | | anding Point | 10500.00 | 90.30 | 359.81 | 9930.72 | 786.79 | 785.64 | -342.61 | 0.00 | 462774.06 | 640553.21 N 32 16 18.60 W 104 0 44.35 | | | 10600.00 | 90.30 | 359.81 | 9930.20 | 886.79 | 885.64 | -342.94 | 0.00 | 462874.05 | 640552.88 N 32 16 19.59 W 104 0 44.35 | | | 10700.00
10800.00 | 90.30
90.30 | 359.81
359.81 | 9929.68
9929.17 | 986.79
1086.79 | 985.64
1085.64 | -343.28
-343.62 | 0.00
0.00 | 462974.04
463074.03 | 640552.54 N 32 16 20.58 W 104 0 44.35
640552.20 N
32 16 21.57 W 104 0 44.35 | | | 10900.00 | 90.30 | 359.81 | 9928.65 | 1186.79 | 1185.63 | -343.95 | 0.00 | 463174.02 | 640551.87 N 32 16 22.56 W 104 0 44.36 | | | 11000.00
11100.00 | 90.30
90.30 | 359.81
359.81 | 9928.13
9927.61 | 1286.78
1386.78 | 1285.63
1385.63 | -344.29
-344.63 | 0.00
0.00 | 463274.01
463374.00 | 640551.53 N 32 16 23.54 W 104 0 44.36
640551.19 N 32 16 24.53 W 104 0 44.36 | | | 11200.00 | 90.30 | 359.81 | 9927.09 | 1486.78 | 1485.63 | -344.96 | 0.00 | 463473.99 | 640550.85 N 32 16 25.52 W 104 0 44.36 | | | 11300.00
11400.00 | 90.30
90.30 | 359.81
359.81 | 9926.57
9926.05 | 1586.78
1686.78 | 1585.63
1685.62 | -345.30
-345.64 | 0.00
0.00 | 463573.98
463673.97 | 640550.52 N 32 16 26.51 W 104 0 44.36
640550.18 N 32 16 27.50 W 104 0 44.36 | | | 11500.00 | 90.30 | 359.81 | 9925.53 | 1786.78 | 1785.62 | -345.97 | 0.00 | 463773.96 | 640549.84 N 32 16 28 49 W 104 0 44 30 | | | 11600.00 | 90.30 | 359.81 | 9925.01 | 1886.78 | 1885.62 | -346.31 | 0.00 | 463873.95 | 640549.51 N 32 16 29.48 W 104 0 44.3 | | | 11700.00
11800.00 | 90.30
90.30 | 359.81
359.81 | 9924.49
9923.97 | 1986.77
2086.77 | 1985.62
2085.62 | -346.65
-346.98 | 0.00
0.00 | 463973.94
464073.93 | 640549.17 N 32 16 30.47 W 104 0 44.3
640548.83 N 32 16 31.46 W 104 0 44.3 | | | 11900.00 | 90.30 | 359.81 | 9923.45 | 2186.77 | 2185.61 | -347.32 | 0.00 | 464173.92 | 640548.50 N 32 16 32.45 W 104 0 44.3 | | | 12000.00
12100.00 | 90.30
90.30 | 359.81
359.81 | 9922.93
9922.41 | 2286.77
2386.77 | 2285.61
2385.61 | -347.66
-347.99 | 0.00
0.00 | 464273.91
464373.90 | 640548.16 N 32 16 33.44 W 104 0 44.3
640547.82 N 32 16 34.43 W 104 0 44.3 | | | 12200.00 | 90.30 | 359.81 | 9921.89 | 2486.77 | 2485.61 | -348.33 | 0.00 | 464473.89 | 640547.49 N 32 16 35.42 W 104 0 44.3 | | | 12300.00
12400.00 | 90.30
90.30 | 359.81
359.81 | 9921.37
9920.85 | 2586.77
2686.77 | 2585.61
2685.60 | -348.67
-349.01 | 0.00
0.00 | 464573.88
464673.87 | 640547.15 N 32 16 36.41 W 104 0 44.3
640546.81 N 32 16 37.40 W 104 0 44.3 | | | 12500.00 | 90.30 | 359.81 | 9920.33 | 2786.76 | 2785.60 | 349.34 | 0.00 | 464773.86 | 640546.48 N 32 16 38.39 W 104 0 44.3 | | | 12600.00
12700.00 | 90.30
90.30 | 359.81
359.81 | 9919.81
9919.29 | 2886.76
2986.76 | 2885.60
2985.60 | -349.68
-350.02 | 0.00
0.00 | 464873.85
464973.84 | 640546.14 N 32 16 39.38 W 104 0 44.3
640545.80 N 32 16 40.37 W 104 0 44.3 | | | 12800.00 | 90.30 | 359.81 | 9918.77 | 3086.76 | 3085.60 | -350.02
-350.35 | 0.00 | 465073.83 | 640545.47 N 32 16 40.37 W 104 0 44.3 | | | 12900.00 | 90.30 | 359.81 | 9918.25 | 3186.76 | 3185.60 | -350.69 | 0.00 | 465173.82 | 640545.13 N 32 16 42.34 W 104 0 44.3 | | | 13000.00
13100.00 | 90.30
90.30 | 359.81
359.81 | 9917.73
9917.21 | 3286.76
3386.76 | 3285.59
3385.59 | -351.03
-351.36 | 0.00
0.00 | 465273.81
465373.80 | 640544.79 N 32 16 43.33 W 104 0 44.3
640544.46 N 32 16 44.32 W 104 0 44.3 | | | 13200.00 | 90.30 | 359.81 | 9916.69 | 3486.75 | 3485.59 | -351.70 | 0.00 | 465473.79 | 640544.12 N 32 16 45.31 W 104 0 44.3 | | | 13300.00
13400.00 | 90.30
90.30 | 359.81
359.81 | 9916.17
9915.65 | 3586.75
3686.75 | 3585.59
3685.59 | -352.04
-352.37 | 0.00
0.00 | 465573.78
465673.77 | 640543.78 N 32 16 46 30 W 104 0 44 3
640543.44 N 32 16 47 29 W 104 0 44 3 | | | 13500.00 | 90.30 | 359.81 | 9915.13 | 3786.75 | 3785.58 | -352.71 | 0.00 | 465773.76 | 640543.11 N 32 16 48.28 W 104 0 44.3 | | | 13600.00
13700.00 | 90.30
90.30 | 359.81
359.81 | 9914.61
9914.09 | 3886.75
3986.75 | 3885.58
3985.58 | -353.05
-353.38 | 0.00
0.00 | 465873.75
465973.73 | 640542.77 N 32 16 49.27 W 104 0 44.3
640542.43 N 32 16 50.26 W 104 0 44.3 | | | 13800.00 | 90.30 | 359.81 | 9913.57 | 4086.75 | 4085.58 | -353.72 | 0.00 | 466073.72 | 640542.10 N 32 16 51.25 W 104 0 44.3 | | | 13900.00 | 90.30 | 359.81 | 9913.05 | 4186.75 | 4185.58 | -354.06 | 0.00 | 466173.71 | 640541.76 N 32 16 52.24 W 104 0 44.3 | | olfcamp 'Y' SS | 13910.19 | 90.30 | 359.81 | 9913.00 | 4196.94 | 4195.77 | -354.09 | 0.00 | 466183.91 | 640541.73 N 32 16 52.34 W 104 0 44.3 | | | 14000.00 | 90.30 | 359.81 | 9912.53 | 4286.74 | 4285.57 | -354.40 | 0.00 | 466273.70 | 640541.42 N 32 16 53.23 W 104 0 44.3 | | | 14100.00
14200.00 | 90.30
90.30 | 359.81
359.81 | 9912.01
9911.49 | 4386.74
4486.74 | 4385.57
4485.57 | -354.73
-355.07 | 0.00
0.00 | 466373.69
466473.68 | 640541.09 N 32 16 54.22 W 104 0 44.3
640540.75 N 32 16 55.21 W 104 0 44.3 | | imarex Laguna | | - 0.00 | | | | | | | | | | rande 29 | | | | | | | | | | | | ederal #17H -
BHL [330' | 14294.99 | 90.30 | 359.81 | 9911.00 | 4581.73 | 4580.56 | -355.39 | 0.00 | 466568.67 | 640540.43 N 32 16 56.15 W 104 0 44.37 | Comments MD Incl. Azim Grid TVD VSEC NS EW DLS Northing Easting Latitude Longitude (ft) (ft) (°) (°) (ft) (ft) (ft) (°/100ft) (ftUS) (ftUS) (N/S ° '') (E/W ° '') Survey Type: Non-Def Plan Survey Error Model: Survey Program: ISCWSA Rev 0 *** 3-D 95.000% Confidence 2.7955 sigma | Description | Part | MD From
(ft) | MD To
(ft) | EOU Freq
(ft) | Hole Size Casi
(in) | ing Diameter
(in) | Expected Max
Inclination
(deg) | Survey Tool Type | Borehole / Survey | |-------------|------|-----------------|---------------|------------------|------------------------|----------------------|--------------------------------------|----------------------------|---| | | 1 | 0.000 | 26,000 | 1/100.000 | 17,500 | 13,375 | | NAL_MWD_IFR1+MS-Depth Only | Laguna Grande 29 Federal #17H /
Cimarex Laguna Grande 29
Federal #17H Rev0 RM 10Feb20 | | | 1 | 26,000 | 14294.995 | 1/100,000 | 17,500 | 13,375 | | NAL_MWD_IFR1+MS | Laguna Grande 29 Federal #17H /
Cimarex Laguna Grande 29 | #### Schlumberger #### Cimarex Laguna Grande 29 Federal #17H Rev0 RM 10Feb20 Proposal **Geodetic Report** (Non-Def Plan) Report Date: Client: February 12, 2020 - 04:16 PM Cimarex Energy Field: NM Eddy County (NAD 83) Cimarex Laguna Grande 29 Federal #17H / New Slot Laguna Grande 29 Federal #17H Structure / Slot: Well: Borehole: Laguna Grande 29 Federal #17H Unknown / Unknown UWI / API#: Survey Name: Cimarex Laguna Grande 29 Federal #17H Rev0 RM 10Feb20 February 10, 2020 103.233 ° / 4919.987 ft / 5.864 / 0.495 Survey Date: Tort / AHD / DDI / ERD Ratio: NAD83 New Mexico State Plane, Eastern Zone, US Feet N 32° 16' 10.81305", W 104° 0' 40.39050" Coordinate Reference System: Location Lat / Long: Location Grid N/E Y/X: N 461988.480 ftUS, E 640895.790 ftUS CRS Grid Convergence Angle: 0.1720° Grid Scale Factor: 0.99992044 Version / Patch: 2.10.787.0 Survey / DLS Computation: Vertical Section Azimuth: Minimum Curvature / Lubinski 359.807 ° (Grid North) Vertical Section Origin: 0.000 ft, 0.000 ft TVD Reference Datum: RKB TVD Reference Elevation: 2995.800 ft above MSL Seabed / Ground Elevation: 2969.800 ft above MSL 6.970 $^{\circ}$ Magnetic Declination: Total Gravity Field Strength: 998.4720mgn (9.80665 Based) **Gravity Model:** GARM 47837.649 nT Total Magnetic Field Strength: Magnetic Dip Angle: Declination Date: 59.983 ° February 10, 2020 Magnetic Declination Model: HDGM 2019 North Reference: Grid Convergence Used: Total Corr Mag North->Grid North: Local Coord Referenced To: Grid North 0.1720° 6.7978° Well Head | Comments | MD
(ft) | Incl
(°) | Azim Grid
(°) | TVD
(ft) | VSEC
(ft) | NS
(ft) | EW
(ft) | DLS
(°/100ft) | Northing
(ftUS) | Easting
(ftUS) | Latitude
(N/S ° ' ") | Longitude
(E/W ° ' ") | |--|------------|-------------|------------------|-------------|--------------|------------|------------|------------------|--------------------|-------------------|-------------------------|--------------------------| | SHL [390' FSL,
1330' FWL] | 0.00 | 0.00 | 347.49 | 0.00 | 0.00 | 0.00 | 0.00 | N/A | 461988.48 | 640895.79 | N 32 16 10.81 V | V 104 0 40.39 | | Nudge 2°/100'
DLS | 2800.00 | 0.00 | 270.10 | 2800.00 | 0.00 | 0.00 | 0.00 | 0.00 | 461988.48 | 640895.79 | N 32 16 10.81 V | V 104 0 40.39 | | Hold Nudge | 3123.37 | 6.47 | 270.10 | 3122.68 | 0.09 | 0.03 | -18.23 | 2.00 | 461988.51 | 640877.56 | N 32 16 10.81 V | V 104 0 40.60 | | Drop to Vertical
2°/100' DLS | 5817.83 | 6.47 | 270.10 | 5800.00 | 1.62 | 0.53 | -321.73 | 0.00 | 461989.01 | 640574.09 | N 32 16 10.83 V | V 104 0 44.14 | | Hold Vertical | 6141.20 | 0.00 | 270.10 | 6122.68 | 1.71 | 0.56 | -339.96 | 2.00 | 461989.04 | 640555.86 | N 32 16 10.83 V | V 104 0 44.35 | | KOP - Build
12°/100' DLS | 9439.54 | 0.00 | 270.10 | 9421.02 | 1.71 | 0.56 | -339.96 | 0.00 | 461989.04 | 640555.86 | N 32 16 10.83 V | V 104 0 44.35 | | Build 4°/100'
DLS | 10064.54 | 75.00 | 359.81 | 9882.21 | 355.60 | 354.45 | -341.15 | 12.00 | 462342.90 | 640554.67 | N 32 16 14.33 V | V 104 0 44.35 | | Landing Point | 10446.98 | 90.30 | 359.81 | 9931.00 | 733.77 | 732.62 | -342.43 | 4.00 | 462721.04 | 640553.39 | N 32 16 18.07 V | V 104 0 44.35 | | Cimarex Laguna
Grande 29
Federal #17H -
PBHL [330'
FNL,990' FWL] | 14294.99 | 90.30 | 359.81 | 9911.00 | 4581.73 | 4580.56 | -355.39 | 0.00 | 466568.67 | 640540.43 | N 32 16 56.15 V | V 104 0 44.37 | Survey Type: Non-Def Plan Survey Error Model: ISCWSA Rev 0 *** 3-D 95.000% Confidence 2.7955 sigma | Description | Part | MD From
(ft) | MD To
(ft) | EOU Freq
(ft) | Hole Size Cas
(in) | sing Diameter
(in) | Expected Max
Inclination
(deg) | | Borehole / Survey | |-------------|------|-----------------|---------------|------------------|-----------------------|-----------------------|--------------------------------------|----------------------------
---| | | 1 | 0.000 | 26.000 | 1/100.000 | 17.500 | 13.375 | | NAL_MWD_IFR1+MS-Depth Only | Laguna Grande 29 Federal #17H /
Cimarex Laguna Grande 29
Federal #17H Rev0 RM 10Feb20 | | | 1 | 26.000 | 14294.995 | 1/100.000 | 17.500 | 13.375 | | NAL_MWD_IFR1+MS | Laguna Grande 29 Federal #17H /
Cimarex Laguna Grande 29 | Drilling Office 2.10.787.0 # **Cimarex Energy** Rev₀ Borehole: Well: Field: Structure: Cimarex Laguna Grande 29 Federal # Laguna Grande 29 Federal #17H Laguna Grande 29 Federal #17H NM Eddy County (NAD 83) 17H Gravity & Magnetic Parameters Northing: 640895.79ftUS MagDec: 6.97° FS: 47837.649nT Gravity FS: 998.472mgn (9.80665 Based) Easting: Cimarex Laguna Grande 29 Federal #17H Rev0 RM 10Feb20 > EW (ft) Scale = 1:1359.42(ft) -1000 Vertical Section (ft) Azim = 359.81° Scale = 1:2236.42(ft) Origin = 0N/-S, 0E/-W | Critical Point | MD | INCL | AZIM | TVD | VSEC | N(+)/S(-) | E(+)/W(-) | DLS | |--|----------|-------|--------|---------|---------|-----------|-----------|-------| | SHL [390' FSL, 1330' FWL] | 0.00 | 0.00 | 347.49 | 0.00 | 0.00 | 0.00 | 0.00 | | | Rustler | 115.00 | 0.00 | 270.10 | 115.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Salado (Top Salt) | 559.00 | 0.00 | 270.10 | 559.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Castille (Base Salt) | 2573.00 | 0.00 | 270.10 | 2573.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Bell Canyon (Top Delaware) | 2788.00 | 0.00 | 270.10 | 2788.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Nudge 2°/100' DLS | 2800.00 | 0.00 | 270.10 | 2800.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hold Nudge | 3123.37 | 6.47 | 270.10 | 3122.68 | 0.09 | 0.03 | -18.23 | 2.00 | | Cherry Canyon | 3664.13 | 6.47 | 270.10 | 3660.00 | 0.40 | 0.13 | -79.14 | 0.00 | | Brushy Canyon | 4952.33 | 6.47 | 270.10 | 4940.00 | 1.13 | 0.37 | -224.24 | 0.00 | | Orop to Vertical 2°/100' DLS | 5817.83 | 6.47 | 270.10 | 5800.00 | 1.62 | 0.53 | -321.73 | 0.00 | | Hold Vertical | 6141.20 | 0.00 | 270.10 | 6122.68 | 1.71 | 0.56 | -339.96 | 2.00 | | op Bone Spring | 6588.52 | 0.00 | 270.10 | 6570.00 | 1.71 | 0.56 | -339.96 | 0.00 | | op 1st BSPG SS | 7568.52 | 0.00 | 270.10 | 7550.00 | 1.71 | 0.56 | -339.96 | 0.00 | | op 2nd BSPG SS | 8348.52 | 0.00 | 270.10 | 8330.00 | 1.71 | 0.56 | -339.96 | 0.00 | | op Harkey SS | 9018.52 | 0.00 | 270.10 | 9000.00 | 1.71 | 0.56 | -339.96 | 0.00 | | (OP - Build 12°/100' DLS | 9439.54 | 0.00 | 270.10 | 9421.02 | 1.71 | 0.56 | -339.96 | 0.00 | | op 3rd BSPG SS | 9508.76 | 8.31 | 359.81 | 9490.00 | 6.72 | 5.57 | -339.98 | 12.00 | | op Wolfcamp | 9930.65 | 58.93 | 359.81 | 9830.00 | 232.79 | 231.64 | -340.74 | 12.00 | | Build 4°/100' DLS | 10064.54 | 75.00 | 359.81 | 9882.21 | 355.60 | 354.45 | -341.15 | 12.00 | | Volfcamp 'Y' SS | 10212.09 | 80.90 | 359.81 | 9913.00 | 499.84 | 498.69 | -341.64 | 4.00 | | Volfcamp 'Y' SS Tgt | 10432.09 | 89.70 | 359.81 | 9931.00 | 718.88 | 717.73 | -342.38 | 4.00 | | anding Point | 10446.98 | 90.30 | 359.81 | 9931.00 | 733.77 | 732.62 | -342.43 | 4.00 | | Volfcamp 'Y' SS Tgt | 10446.98 | 90.30 | 359.81 | 9931.00 | 733.78 | 732.63 | -342.43 | 0.00 | | Volfcamp 'Y' SS | 13910.19 | 90.30 | 359.81 | 9913.00 | 4196.94 | 4195.77 | -354.09 | 0.00 | | Cimarex Laguna Grande 29 Federal #17H - PBHL | 14294.99 | 90.30 | 359.81 | 9911.00 | 4581.73 | 4580.56 | -355.39 | 0.00 | | 330' FNL 990' FWL]
Base 'Y' SS | NaN | | | 9949.00 | | | | | #### Schlumberger Cimarex Laguna Grande 29 Federal #17H Rev0 RM 10Feb20 (Non-Def Plan) #### Cimarex Laguna Grande 29 Federal #17H Rev0 RM 10Feb20 Anti-Collision Summary Report Analysis Method: Depth Interval: Version / Patch: Database \ Project: Min Pts: Reference Trajectory: 3D Least Distance Every 10.00 Measured Depth (ft) All local minima indicated. NAL Procedure: D&M AntiCollision Standard S002 2.10.787.0 us1153APP452.DIR.SLB.COM\DRILLING-NM Eddy County 2.10 Analysis Date-24hr Time: February 12, 2020 - 16:16 Client: Cimarex Energy Field: NM Eddy County (NAD 83) Cimarex Laguna Grande 29 Federal #17H Structure Slot: New Slot Laguna Grande 29 Federal #17H Borehole Laguna Grande 29 Federal #17H Scan MD Range: 0.00ft ~ 14294.99ft ISCWSA0 3-D 95.000% Confidence 2.7955 sigma, for subject well. For Trajectory Error Model: offset wells, error model version is specified with each well respectively. Offset Selection Criteria Restricted within 55305.49 ft Selection filters: Definitive Surveys - Definitive Plans - Definitive surveys exclude definitive plans - All Non-Def Surveys when no Def-Survey is set in a borehole - All Non-Def Plans when no Def-Plan is set in a borehole Sep. Controlling Reference Trajectory MD (ft) TVD (ft) Offset Trajectory Separation Allow Risk Level Alert Status Ct-Ct (ft) MAS (ft) EOU (ft) Dev. (ft) Fact. Rule Minor Maior Offset Trajectories Summary Results highlighted: Sep-Factor separation Cimarex Laguna Grande Federal #4 (Offset) Gas Inc Only 0ft-12335ft (Def Survey) Fail Major 4304.06 32,81 4302.93 4271.25 N/A MAS = 10.00 (m) 0.00 0.00 Surface 4304.01 32.81 4302.87 4271.20 595873.64 4271.16 N/A MAS = 10.00 (m 10.00 10.00 MinPt-O-SF MAS = 10.00 (m) 26.00 26.00 32.81 4302.8 WRP 4303.97 32 81 4289 61 380 82 MAS = 10.00 (m)410.00 410.00 MinPts 1240.00 1240.00 60.86 108.01 MinPt-CtCt 4261. 4303.86 76.45 4227,41 85.69 OSF1.50 1570.00 1570.00 MINPT-O-EOU 1980.00 4302.16 4302.90 102.86 4200.04 63.43 OSF1.50 2090.00 2090.00 MINPT-O-EOU 103.94 62.77 OSF1.50 2140.00 2140.00 MinPt-O-ADP 4303.79 4199.85 OSF1,50 MinPt-CtCt 4305,48 115,26 4228,2 4190,22 56,57 2280,00 2280,00 4305.53 56.51 OSF1.50 2300.00 2300.00 MINPT-O-FOLI 4305.59 115.44 4228.2 4190.15 56.48 OSF1.50 2310.00 2310.00 MinPt-O-ADP 4305.97 4306.00 121.80 53.51 OSF1.50 2400.00 2400.00 MinPt-CtCt 53.45 OSF1.50 2420.00 2420.00 MINPT-O-EOU 121,93 4184.0 4306.05 122 00 4224,3 4184.05 4177.37 53 43 OSE1 50 2430.00 2430.00 MinPt-O-ADP 50.67 OSF1.50 2530.00 2530.00 MinPt-CtCt 128.58 4305.94 4306.03 128.80 4219.79 4177.2 50.58 OSF1.50 2560.00 2560.00 MINPT-O-EOU MinPt-O-ADP 4306.19 128.98 50.51 2580.00 4177,22 4306.30 135,12 4215.8 4171.18 48.20 OSF1.50 2660.00 2660.00 MinPt-CtCt 4170.0 OSF1.50 2700.00 2700.00 MINPT-O-EOU 4170.87 4306.8 135,94 4215,81 47,91 OSF1.50 2730,00 2730.00 MinPt-O-ADP 215.58 29.94 OSF1.50 4280.00 4271.95 MinPt-CtCt 4261.2 296,60 4063,14 3964,66 21,63 OSF1.50 5830.00 5812.09 MinPt-CtCt 17.96 17.65 4259.60 356 88 3902,72 OSF1.50 6950.00 6931,48 MinPt-CtCt MINPT-O-EOU OSF1.50 4260.8 7140.00 7121.48 363.27 3897.5 4262.0 364.76 4018.4 17.58 OSF1.50 7200.00 7181.48 MinPt-O-ADP OSF1.50 16.96 7341.48 MinPt-CtCt 378.46 7360.00 4266.84 4014.1 3888.38 378,50 3888.35 16.96 OSF1.50 7370.00 7351.48 MINPT-O-EOU 4266.90 16.95 7361.48 3888.35 4267.15 385.01 4010.0 16.67 OSF1.50 7480.00 7461.48 MinPt-CtCt 16.67 OSF1.50 7500.00 7481.48 4267.13 391.64 4005.6 3875.48 16.39 OSF1.50 7610.00 7591.48 MinPt-CtCt 4267.60 16.34 7680.00 7661.48 MINPT-O-EOU 4268.2 393.48 4005.5 3874.73 16.31 OSF1.50 7720.00 7701.48 MinPt-O-ADP OSF1.50 OSF1.50 4275.96 431.11 3844 85 14.91 8360.00 8341.48 MinPt-CtCt MINPT-O-EOU 4276.05 4275.66 14.90 8390.00 8371.48 431.40 3988.07 3844.65 437.63 3983.53 3838 N4 14.69 OSF1.50 8490.00 8471.48 MinPt-CtCt 3977.04 MinPt-CtCt 4274.46 4274.66 445.55 3828.90 14.42 OSF1.50 8640.00 8621.48 446.09 3976.89 3976.92 3828.57 14.41 OSF1.50 8690.00 8671.48 MINPT-O-FOU 14.40 OSF1.50 8691.48 MinPt-O-ADP 446.36 8710.00 4274.8 3828.52 4275.49 4275.57 453.96 3972.4 3821,53 14.16 OSF1.50 8800.00 8781.48 MinPt-CtCt MINPT-O-EOU 3821.38 8811.48 3972.40 4275.64 454.27 3972.4 3821.37 14.15 OSF1.50 8840.00 8821.48 MinPt-O-ADP 13.96 OSF1.50 3815.32 8930.00 8911.48 4275.90 4276.14 4276.01 MINPT-O-EOU 461.21 3968.29 3814.93 13.94 OSF1.50 8980.00 8961.48 MinPt-CtCt MINPT-O-EOU 3808.82 13.76 OSF1,50 9060.00 9041.48 4276,46 468,39 3963,82 3808.07 13,72 OSF1.50 9130,00 9111.48 1708.09 516.39 1191.70 4.99 OSF1.50 12300.00 9921.37 9914.66 OSF<5.00 Enter Aleri 1.48 OSF1.50 13590.00 OSF<1.50 513.81 519.85 165.42 -6.04 Enter Minor OSE1.50 13900,00 9913,05 OSF<1.00 Enter Major MinPts OSF1.50 13970.00 9912.69 341.93 0.98 OSF1.50 14040.00 9912.33 OSF>1.00 Exit Maior 519,39 122,65 -50.10 OSF1,50 14294,99 9911.00 Cimarex Laguna Grande 29 Federal #18H Rev0 RM Federal #18H Revolum 12Feb20 (Non-Def Plan) Fail Minor 20.00 16.26 18.72 3.74 N/A MAS = 4.96 (m)0.00 0.00 CtCt<=15m<15.00 Enter Aleri 20.00 16.26 18.72 3.74 N/A MAS = 4.96 (m) 26.00 26.00 WRP OSF1.50 2050.00 OSF<1.50 Enter Minor -0.01 1.50 2050.00 OSE1 50 2800.00 2800.00 MinPte MinPts OSF1.50 2810.00 2810.00 OSF1.50 2940.00 2939.94 OSE>1.50 Exit Minor 27.76 69.67 60.84 4.95 3270.00 3268.38 Exit Aleri 75,32 609.27 584.59 OSF1.50 10440.00 9931.02 MinPt-CtCt 14294.99 MinPts Cimarex Laguna Grande Unit 3 (Offset) Gyro survey (Def Survey) 0,00 0,00 MAS = 10.00 (m) 2752,29 32,81 2750.27 2719.48 70467.55 | Offset Trajectory | | Separation | | Allow | Sep. | Controlling | Reference | Trajectory | | Risk Level | | Alert | Status | |---|--------------------|------------------|--------------------|--------------------|----------------|--------------------|----------------------|--------------------|-------|------------|-------|----------------------------|--------| | | Ct-Ct (ft) | MAS (ft) | EOU (ft) | Dev. (ft) | Fact. | Rule | MD (ft) | TVD (ft) | Alert | Minor | Major | 1 | | | | 2752.33 | 32.81 | 2750.26 | 2719.52 | 32410.40 | MAS = 10.00 (m) | 20.00 | 20.00 | | • | | MINPT-O-EOU | | | | 2752.34 | 32.81 | 2750.26 | 2719.53 | 27804.65 | MAS = 10.00 (m) | 26.00 | 26.00 | | | | WRP | | | | 2756.23 | 32.81 | 2747.45 | 2723.42 | 405.02 | MAS = 10.00 (m) | 1400.00 | 1400.00 | | | | MinPts | | | | 2752.49 | 32,81 | 2740,57 | 2719.68 | 276.78 | MAS = 10.00 (m) | 2270.00 | 2270,00 | | | | MinPts | | | | 2752.59 | 32.81 | 2740.46 | 2719.78 | 271.02 | MAS = 10.00 (m) | 2320.00 | 2320.00 | | | | MINPT-O-EOU | | | | 3017.38 | 33.65 | 2994.29 | 2983.74 | 142.84 | OSF1.50 | 5817.83 | 5800.00 | |
 | MinPt-O-SF | | | | 2283.31
2283.42 | 71.67
71.98 | 2234.87
2234.78 | 2211.64
2211.45 | 49.10
48.89 | OSF1.50
OSF1.50 | 11590.00
11610.00 | 9925.06
9924.96 | | | | MinPt-CtCt
MINPT-O-EOU | | | | 2283.55 | 72.13 | 2234.70 | 2211.43 | 48.78 | OSF1.50 | 11620.00 | 9924.90 | | | | MinPt-O-ADP | | | | 2398.10 | 81.20 | 2343.31 | 2316.90 | 45.37 | OSF1.50 | 12320.00 | 9921.27 | | | | MinPt-O-SF | | | | 3542.05 | 87.08 | 3483,33 | 3454.97 | 62.40 | OSF1.50 | 14294.99 | 9911.00 | | | | TD | | | | | | 0.00.00 | 0.0 | | | | | | | | | | | Cimarex Laguna Grande Unit
7H MWD Final(Surcon | | | | | | | | | | | | | | | Corrected) (Def Survey) | | | | | | | | | | | | | Pass | | | 5267.66 | 32.81 | 5265.65 | 5234.85 | 205513.80 | MAS = 10.00 (m) | 0.00 | 0.00 | | | | MinPts | | | | 5267.66 | 32.81 | 5265.60 | 5234.85 | 63489.37 | MAS = 10.00 (m) | 26.00 | 26.00 | | | | WRP | | | | 5265.89 | 32,81 | 5257.73 | 5233.08 | 852,14 | MAS = 10.00 (m) | 1270.00 | 1270.00 | | | | MinPts | | | | 5266.03 | 32.81 | 5257.61 | 5233.22 | 817.23 | MAS = 10.00 (m) | 1350.00 | 1350.00 | | | | MINPT-O-EOU | | | | 5278.85 | 32.81 | 5265.79 | 5246.04 | 476.46 | MAS = 10.00 (m) | 2450.00 | 2450.00 | | | | MinPt-O-SF | | | | 5275.86 | 32.81 | 5261.55 | 5243.05 | 427.71 | MAS = 10.00 (m) | 2760.00 | 2760.00 | | | | MinPts | | | | 5275.95 | 32.81 | 5261.46 | 5243.14 | 421.53 | MAS = 10.00 (m) | 2800.00 | 2800.00 | | | | MINPT-O-EOU | | | | 5281.23 | 32.81 | 5265.69 | 5248.42 | 389.16 | MAS = 10.00 (m) | 3340.00 | 3337.94 | | | | MinPt-O-SF | | | | 2441.59
2440.52 | 158.90
158.31 | 2335.00
2334.32 | 2282.69
2282.20 | 23.32
23.40 | OSF1.50
OSF1.50 | 9660.00
9670.00 | 9633.73
9642.63 | | | | MinPt-O-SF
MinPt-O-ADP | | | | 2440.52 | 146.77 | 2334.32 | 2266.03 | 24.98 | OSF1.50 | 10140.00 | 9899.81 | | | | MinPt-O-ADP | | | | 2412.56 | 146.48 | 2314.25 | 2266.09 | 25.02 | OSF1.50 | 10140.00 | 9903.83 | | | | MINPT-O-EOU | | | | 2412,29 | 145.79 | 2314,44 | 2266.50 | 25.14 | OSF1,50 | 10210.00 | 9912,67 | | | | MinPt-CtCt | | | | 2416.58 | 123.82 | 2333.38 | 2292,77 | 29.73 | OSF1.50 | 11120.00 | 9927.50 | | | | MinPt-O-ADP | | | | 2415.70 | 122.78 | 2333.19 | 2292.92 | 29.97 | OSF1.50 | 11190.00 | 9927.14 | | | | MINPT-O-EOU | | | | 2411.84 | 118.93 | 2331.90 | 2292.91 | 30.91 | OSF1.50 | 11430.00 | 9925.89 | | | | MinPts | | | | 2411.83 | 118.91 | 2331.90 | 2292.92 | 30.91 | OSF1.50 | 11440.00 | 9925.84 | | | | MinPt-CtCt | | | | 2421.48 | 108.52 | 2348.48 | 2312.96 | 34.06 | OSF1.50 | 12590.00 | 9919.86 | | | | MinPt-O-SF | | | | 2418.12 | 109,32 | 2344.58 | 2308.80 | 33.76 | OSF1.50 | 12850.00 | 9918,51 | | | | MinPt-CtCt | | | | 2418.19 | 109.59 | 2344.47 | 2308,60 | 33,68 | OSF1.50 | 12890.00 | 9918.30 | | | | MINPT-O-EOU | | | | 2418.36 | 109.80 | 2344.50 | 2308.56 | 33.62 | OSF1.50 | 12920.00 | 9918.15 | | | | MinPt-O-ADP | | | | 2421.48 | 110.96 | 2346.85 | 2310.52 | 33.30 | OSF1.50 | 13080.00 | 9917.31 | | | | MinPt-O-SF | | | | 2429.36 | 112.74 | 2353.55 | 2316.63 | 32.87 | OSF1.50 | 13400.00 | 9915.65 | | | | MinPt-O-SF | | | | 2424.83 | 115.01 | 2347.50 | 2309.82 | 32.15 | OSF1.50 | 13650.00 | 9914.35 | | | | MinPt-CtCt | | | | 2425.15 | 116,00 | 2347,16 | 2309,15 | 31.88 | OSF1.50 | 13720.00 | 9913,99 | | | | MINPT-O-EOU | | | | 2425.51
2434.88 | 116.42
122.55 | 2347.23
2352.52 | 2309.09 | 31.77
30.27 | OSF1.50
OSF1.50 | 13750.00
14180.00 | 9913.83
9911.60 | | | | MinPt-O-ADP
MinPt-O-ADP | | | | 2434.88 | 122.55 | 2352.52 | 2312.33 | 29.93 | OSF1.50 | 14180.00 | 9911.60 | | | | MINPT-O-EOU | | | | 2435.63 | 123,94 | 2352.05 | 2311.40 | 29.93 | OSF1.50 | 14270.00 | 9911.03 | | | | MinPt-O-EOU | | | | 2435.72 | 124.20 | 2352.11 | 2311.35 | 29.83 | OSF1.50 | 14294.99 | 9911.00 | | | | MinPt-O-SF | | | | 2400.72 | 124.37 | 2002.10 | 2311.33 | 25.03 | 031 1.30 | 14204.88 | 0011.00 | | | | WIIII L-O-SF | | # PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL OPERATOR'S NAME: Cimarex Energy NMNM019848 **LOCATION:** Section 29, T.23 S., R.29 E., NMPM **COUNTY:** Eddy County, New Mexico WELL NAME & NO.: | Laguna Grande 29 Fed 17H **SURFACE HOLE FOOTAGE:** 390'/S & 1330'/W **BOTTOM HOLE FOOTAGE** 330'/N & 990'/W COA | H2S | © Yes | No | | |----------------------|------------------|----------------|-------------| | Potash | None | © Secretary | © R-111-P | | Cave/Karst Potential | C Low | • Medium | □ High | | Cave/Karst Potential | Critical | | | | Variance | None | Flex Hose | Other Other | | Wellhead | Conventional | • Multibowl | © Both | | Other | 4 String Area | Capitan Reef | □ WIPP | | Other | Fluid Filled | Cement Squeeze | Pilot Hole | | Special Requirements | ☐ Water Disposal | □ COM | Unit | #### A. HYDROGEN SULFIDE Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM. #### **B. CASING** - 1. The 13-3/8 inch surface casing shall be set at approximately 500 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface. - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job. - b. Wait on cement (WOC) time for a primary cement job will be a minimum of $\underline{\mathbf{8}}$ - hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement) - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater. - d. If cement falls back, remedial cementing will be done prior to drilling out that string. - 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is: - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash. - ❖ In Medium Cave/Karst Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface. - 3. The minimum required fill of cement behind the 7 inch production casing is: - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification. - 4. The minimum required fill of cement behind the 4-1/2 inch production liner is: - Cement should tie-back 100 feet into the previous casing. Operator shall provide method of verification. Excess calculates to 9%. Additional cement maybe required. #### C. PRESSURE CONTROL - 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends). - 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry. - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal. - c. Manufacturer representative shall install the test plug for the initial BOP test. - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed. - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed. # **GENERAL REQUIREMENTS** The BLM is to be notified in advance for a representative to witness: - a. Spudding well (minimum of 24 hours) - b. Setting and/or Cementing of all casing strings (minimum of 4 hours) - c. BOPE tests (minimum of 4 hours) - ☑ Eddy CountyCall the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822 - ✓ Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575)393-3612 - 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s). - b. When the operator proposes to set surface casing with Spudder Rig - Notify the BLM when moving in and removing the Spudder Rig. - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location. - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well. - 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the
area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area. - 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report. #### A. **CASING** - 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed. - 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug. - 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug. - 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string. - 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer. - 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole. - 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations. - 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed. #### B. PRESSURE CONTROL - 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17. - 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. - 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure. - 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met: - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry. - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal. - c. Manufacturer representative shall install the test plug for the initial BOP test. - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed. - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed. - 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests. - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including - lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified). - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs). - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item). - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock. - e. The results of the test shall be reported to the appropriate BLM office. - f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office. - g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure. - h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2. ## C. DRILLING MUD Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented. #### D. WASTE MATERIAL AND FLUIDS All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations. ZS 040521 - 13-5/8" 3000# psi x 13-3/8" SOW Casing Head 29-23S-29E Eddy Co., NM - 13-5/8" 3000# psi x 13-3/8" SOW Casing Head Eddy Co., NM District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462 **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505** CONDITIONS Action 104605 #### **CONDITIONS** | Operator: | OGRID: | |---
--| | CIMAREX ENERGY CO. | 215099 | | 600 N. Marienfeld Street
Midland, TX 79701 | Action Number:
104605 | | | Action Type: [C-101] BLM - Federal/Indian Land Lease (Form 3160-3) | #### CONDITIONS | Created By | Condition | Condition
Date | |------------|--|-------------------| | kpickford | Notify OCD 24 hours prior to casing & cement | 5/9/2022 | | kpickford | Will require a File As Drilled C-102 and a Directional Survey with the C-104 | 5/9/2022 | | kpickford | Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string | 5/9/2022 | | kpickford | Cement is required to circulate on both surface and intermediate1 strings of casing | 5/9/2022 | | kpickford | Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system | 5/9/2022 |