Form 3160-3 (June 2015)			FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018					
UNITED STATES DEPARTMENT OF THE IN BUREAU OF LAND MANA			5. Lease Serial No) <u>.</u>				
APPLICATION FOR PERMIT TO DE			6. If Indian, Allote					
1b. Type of Well: Gas Well Oth	ENTER ner gle Zone	Multiple Zone	7. If Unit or CA A 8. Lease Name and					
2. Name of Operator [215099]			9. API Well No.	30-02	25-50785			
	Bb. Phone No	o. (include area code)	10. Field and Pool	, or Explorate	ory [97741]			
Location of Well (Report location clearly and in accordance wi At surface At proposed prod. zone	ith any State	requirements.*)	11. Sec., T. R. M.	or Blk. and St	urvey or Area			
14. Distance in miles and direction from nearest town or post offic	e*		12. County or Pari	sh 1	3. State			
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No of act	res in lease 17. Spac	ing Unit dedicated to	this well				
	19. Proposed	Depth 20. BLM	/BIA Bond No. in fil	.e				
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approxim	mate date work will start*	23. Estimated dura	ation				
The following, completed in accordance with the requirements of (as applicable)			Hydraulic Fracturing	rule per 43 C	CFR 3162.3-3			
Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office).		4. Bond to cover the operation Item 20 above).5. Operator certification.6. Such other site specific information BLM.			,			
25. Signature	Name	(Printed/Typed)		Date				
Title	,			_				
Approved by (Signature)	Name	(Printed/Typed)		Date				
Title	Office							
Application approval does not warrant or certify that the applicant applicant to conduct operations thereon. Conditions of approval, if any, are attached.	holds legal o	r equitable title to those rights	in the subject lease	which would	entitle the			
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, ma of the United States any false, fictitious or fraudulent statements or				any departm	ent or agency			
NGMP Rec 11/09/2022	en WI'	TH CONDITIONS	K 11/09	2Z 0/2022				
(Continued on page 2)	און ענו		*/1	netructions	on page 2)			

Released to Imaging: 11/10/2022 9:29:09 AM Approval Date: 09/27/2022

Received by OCD: 11/9/2022 11:15:59 AM

SCALE DRAWN BY: T.L.L. 02-13-20

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

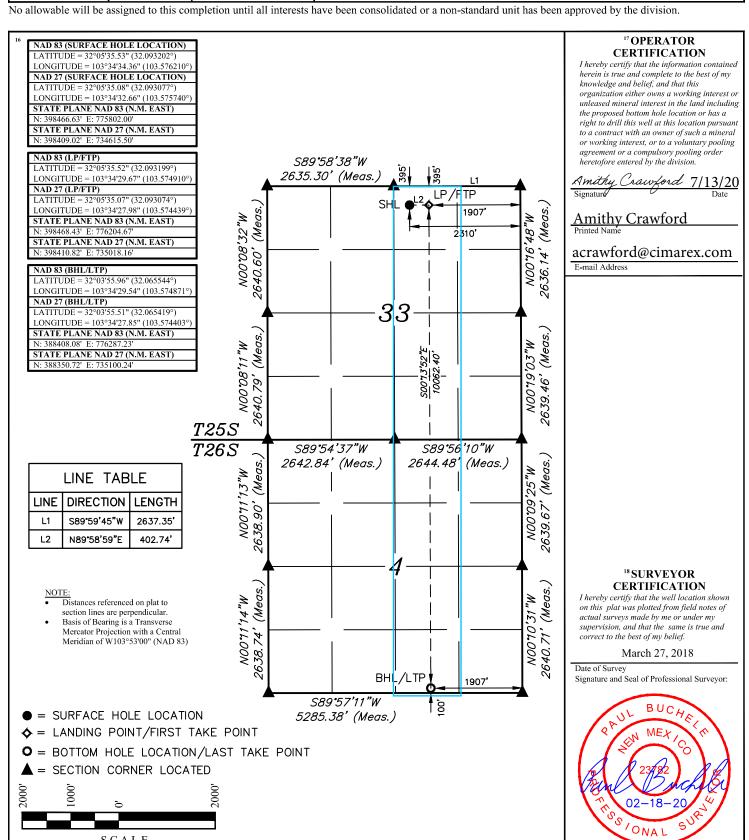
District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

■ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

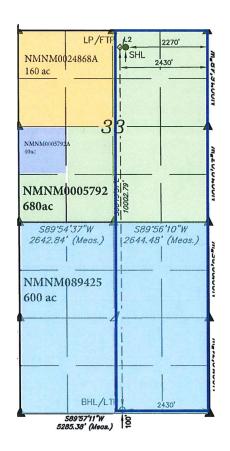

¹ API Number 30-025-50785	² Pool Code 97741	ONE SPRING		
⁴ Property Code 323150	⁵ Pi RED	⁶ Well Number 102H		
⁷ OGRID No. 215099		perator Name EX ENERGY CO.	⁹ Elevation 3354.1'	

¹⁰ Surface Location

	B	33	25S	33E	Lot full	395	NORTH	2310	EAST	LEA
•					D II		0.7.100	~ ^		

¹¹ Bottom Hole Location If Different From Surface

I	UL or lot no. O	4 26S		Range Lot Idn 33E		Feet from the 100		North/South line SOUTH	Feet from the 1907	East/West line EAST	County LEA	
Ī	12 Dedicated Acres 320		¹³ Joint or Infil		14 Conso	olidation Code		15 Order No.				



Released to Imaging: 11/10/2022 9:29:09 AM

Certificate Number

Intent	ι	As Dril	led _											
API#	30-02!	5-50785]											
Ope	rator Nar	me:				Prop	perty N	Name:	,					Well Number
Kick C	Off Point	(KOP)												
UL	Section	Township	Range	Lot	Feet		From N	N/S	Feet		From	n E/W	County	
Latitu	ıde	<u> </u>	1		Longitu	Longitude NAD							NAD	
First T	Take Poin	nt (FTP)												
UL	Section	Township	Range	Lot	Feet		From N	N/S	Feet		From	n E/W	County	
Latitu	ıde				Longitu	Longitude NAD								
Last T	ake Poin	t (LTP)												
UL	Section	Township	Range	Lot	Feet	Froi	m N/S	Feet		From E	/W	Count	ТУ	
Latitu	ıde		<u> </u>		Longitu	Longitude NAD								
Is this	well the	e defining w	well for t	the Hor	izontal Տլ	pacin	g Unit?	?						
Is this	well an	infill well?												
		lease prov	ide API i	if availa	ble, Ope	rator	Name	and w	vell n	umber	for [Definir	ng well fo	r Horizontal
Spacir API#	ng Unit.		7											
						T 5		• • • • •						Tar uarb.
Opei	rator Nar	ne:				Pro	perty N	Name:	:					Well Number
Estim	ated For	mation Top	ps			1								
Form	ation:				Тор:		For	rmatio	n:					Тор:
														<u> </u>

RED HILLS W2E2 Pad 3 LEASE MAP

Released to Imaging: 11/10/2022 9:29:09 AM

E POINT

I. Operator: Cimarex Energy Company

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Date: __11__/_9__/_2022

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description <u>Effective May 25, 2021</u>

OGRID: 215099

II. T ∀pĕ: X Original	☐ Amendmer	nt due to □ 19.15.27.9	0.D(6)(a) NMA	.C □ 19.15.27.9.D	(6)(b) NMAC	☐ Other.	
			,,,,				
If Other, please describe	**						
III. Well(s): Provide to be recompleted from					wells propose	ed to be d	rilled or proposed
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D		Anticipated roduced Water BBL/D
Red Hills Unit 102H		B, Sec 33 T25S, R33E	395 FNL/2310	FEL 2500	3200		6000
	30-025-507	<i>1</i> 85					
IV. Central Delivery Posts 19.15.27.9(D)(1) NMAG V. Anticipated Schedu or proposed to be recommended to be recommended by the second s	C] le: Provide th	ne following informati	on for each ne			vells prop	See [See
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		al Flow k Date	First Production Date
Red Hills Unit 102H		12/1/2023	2/29/2024	5/29/2024	6/13	/2024	6/13/2024
	30-025-50	785					
VI. Separation Equipm VII. Operational Prac Subsection A through F VIII. Best Managemen during active and planne	tices: ☑ Atta of 19.15.27.8 nt Practices:	ch a complete descrip NMAC.	otion of the act	cions Operator will	I take to comp	ly with t	he requirements of

Section 2 Enhanced Plan

			E APRIL 1, 2022									
Beginning April 1, 20 reporting area must co			with its statewide natural ga	as capture requirement for the applicable								
Operator certifies capture requirement for		-	tion because Operator is in o	compliance with its statewide natural ga								
IX. Anticipated Natu	ıral Gas Producti	on:										
Wel	1	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF								
X. Natural Gas Gath	nering System (NC	GGS):										
Operator System ULSTR of Tie-in Anticipated Gathering Available Maximum Daily Capacity Start Date of System Segment Tie-in												
production operations the segment or portion XII. Line Capacity. The production volume from XIII. Line Pressure. The production was gathering and the production of the produc	to the existing or part of the natural gas gas om the well prior to Operator Operator	planned interconnect of the gathering system(s) to we thering system will to the date of first product does not anticipate that d above will continue to eduction in response to the erts confidentiality pursue.	the natural gas gathering system which the well(s) will be considered will not have capacity to go tion. It its existing well(s) connect meet anticipated increases in the increased line pressure. The increased line pressure want to Section 71-2-8 NMS 27.9 NMAC, and attaches a first series of the context	aticipated pipeline route(s) connecting them(s), and the maximum daily capacity of nected. Sather 100% of the anticipated natural gated to the same segment, or portion, of the line pressure caused by the new well(s) SA 1978 for the information provided if full description of the specific information								

(h)

(i)

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, af	ter reasonable inquiry and based on the available information at the time of submittal:
one hundred percent of the	to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, turrent and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering
hundred percent of the arinto account the current a	able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one aticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. **nox, Operator will select one of the following:
Well Shut-In. □ Operated D of 19.15.27.9 NMAC;	or will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection or
 Venting and Flaring Pla	nn. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential
alternative beneficial uses	s for the natural gas until a natural gas gathering system is available, including:
(a)	power generation on lease;
(b)	power generation for grid;
(c)	compression on lease;
(d)	liquids removal on lease;
(e)	reinjection for underground storage;
(f)	reinjection for temporary storage;
(g)	reiniection for enhanced oil recovery:

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

fuel cell production; and

- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

From State of New Mexico, Natural Gas Management Plan

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

XEC Standard Response

Standard facility gas process flow begins at the inlet separator. These vessels are designed based off of forecasted rates and residence times in accordance with, and often greater than, API 12J. The separated gas is then routed to an additional separation vessel (ie sales scrubber) in order to extract liquids that may have carried over or developed due to the decrease in pressure. The sales scrubber is sized based on API 521. From the sales scrubber, the gas leaves the facility and enters the gas midstream gathering network.

Cimarex

VII. Operational Practices

Cimarex values the sustainable development of New Mexico's natural resources. Venting and flaring of natural gas is a source of waste in the industry, and Cimarex will ensure that its values are aligned with those of NMOCD. As such, Cimarex plans to take pointed steps to ensure compliance with Subsection A through F of 19.15.27.8 NMAC.

Specifically, below are the steps Cimarex will plan to follow under routine well commissioning and operations.

- 1. Capture or combust natural gas during drilling operations where technically feasible, using the best industry practices and control technologies.
 - a. All flares during these operations will be a minimum of 100ft away from the nearest surface-hole location.
- 2. All gas present during post-completion drill-out and flow back will be routed through separation equipment, and, if technically feasible, flare unsellable vapors rather than vent. Lastly, formal sales separator commissioning to process well-stream fluids and send gas to a gas flow line/collection system or use the gas for on-site fuel or beneficial usage, gas as soon as is safe and technically feasible.
- 3. Cimarex will ensure the flare or combustion equipment is properly sized to handle expected flow rates, ensure this equipment is equipped with an automatic or continuous ignition source, and ensure this equipment is designed for proper combustion efficiency.
- 4. If Cimarex must flare because gas is not meeting pipeline specifications, Cimarex will limit flaring to <60 days, analyze gas composition at least twice per week, and route gas into a gathering pipeline as soon as pipeline specifications are met.
- 5. Under routine production operations, Cimarex will not flare/vent unless:
 - a. Venting or flaring occurs due to an emergency or equipment malfunction.
 - b. Venting or flaring occurs as a result of unloading practices, and an operator is onsite (or within 30 minutes of drive time and posts contact information at the wellsite) until the end of unloading practice.
 - c. The venting or flaring occurs during automated plungerlift operations, in which case the Cimarex operator will work to optimize the plungerlift system to minimize venting/flaring.
 - d. The venting or flaring occurs during downhole well maintenance, in which case Cimarex will work to minimize venting or flaring operations to the extent that it does not pose a risk to safe operations.
 - e. The well is an exploratory well, the division has approved the well as an exploratory well, venting or flaring is limited to 12 months, as approved by the division, and venting/flaring does not cause Cimarex to breach its State-wide 98% gas capture requirement.
 - f. Venting or flaring occurs because the stock tanks or other low-pressure vessels are being gauged, sampled, or liquids are being loaded out.
 - g. The venting or flaring occurs because pressurized vessels are being maintained and are being blown-down or depressurized.
 - h. Venting or flaring occurs as a result of normal dehydration unit operations.

- i. Venting or flaring occurs as a result of bradenhead testing.
- j. Venting or flaring occurs as a result of normal compressor operations, including general compressor operations, compressor engines and turbines.
- k. Venting or flaring occurs as a result of a packer leakage test.
- l. Venting or flaring occurs as a result of a production test lasting less than 24 hours unless otherwise approved by the division.
- m. Venting or flaring occurs as a result of new equipment commissioning and is necessary to purge impurities from the pipeline or production equipment.
- 6. Cimarex will maintain its equipment in accordance with its Operations and Maintenance Program, to ensure venting or flaring events are minimized and that equipment is properly functioning.
- 7. Cimarex will install automatic tank gauging equipment on all production facilities constructed after May 25, 2021, to ensure minimal emissions from tank gauging practices.
- 8. By November 25, 2022, all Cimarex facilities equipped with flares or combustors will be equipped with continuous pilots or automatic igniters, and technology to ensure proper function, i.e. thermocouple, fire-eye, etc...
- 9. Cimarex will perform AVO (audio, visual, olfactory) facility inspections in accordance with NMOCD requirements. Specifically, Cimarex will:
 - a. Perform weekly inspections during the first year of production, and so long as production is greater than 60 MCFD.
 - b. If production is less than 60 MCFD, Cimarex will perform weekly AVO inspections when an operator is present on location, and inspections at least once per calendar month with at least 20 calendar days between inspections.
- 10. Cimarex will measure or estimate the volume of vented, flared or beneficially used natural gas, regardless of the reason or authorization for such venting or flaring.
- 11. On all facilities constructed after May 25, 2021, Cimarex will install metering where feasible and in accordance with available technology and best engineering practices, in an effort to measure how much gas could have been vented or flared.
 - a. In areas where metering is not technically feasible, such as low-pressure/low volume venting or flaring applications, engineering estimates will be used such that the methodology could be independently verified.
- 12. Cimarex will fulfill the division's requirements for reporting and filing of venting or flaring that exceeds 50 MCF in volume or last eight hours or more cumulatively within any 24-hour period.

VIII. Best Management Practices to minimize venting during active and planned maintenance

Cimarex strives to ensure minimal venting occurs during active and planned maintenance activities. Below is a description of common maintenance practices, and the steps Cimarex takes to limit venting exposure.

• Workovers:

- o Always strive to kill well when performing downhole maintenance.
- o If vapors or trapped pressure is present and must be relieved then:
 - Initial blowdown to production facility:
 - Route vapors to LP flare if possible/applicable
 - Blowdown to portable gas buster tank:
 - Vent to existing or portable flare if applicable.

• Stock tank servicing:

- o Minimize time spent with thief hatches open.
- When cleaning or servicing via manway, suck tank bottoms to ensure minimal volatiles exposed to atmosphere.
 - Connect vacuum truck to low pressure flare while cleaning bottoms to limit venting.
- o Isolate the vent lines and overflows on the tank being serviced from other tanks.

• Pressure vessel/compressor servicing and associated blowdowns:

- o Route to flare where possible.
- o Blow vessel down to minimum available pressure via pipeline, prior to venting vessel.
- Preemptively changing anodes to reduce failures and extended corrosion related servicing.
- When cleaning or servicing via manway, suck vessel bottoms to ensure minimal volatiles exposed to atmosphere.

• Flare/combustor maintenance:

- Minimize downtime by coordinating with vendor and Cimarex staff travel logistics.
- Utilizing preventative and predictive maintenance programs to replace high wear components before failure.
- Because the flare/combustor is the primary equipment used to limit venting practices, ensure flare/combustor is properly maintained and fully operational at all times via routine maintenance, temperature telemetry, onsite visual inspections.

The Cimarex expectation is to limit all venting exposure. Equipment that may not be listed on this document is still expected to be maintained and associated venting during such maintenance minimized.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Cimarex Energy Company

NMNM0005792 LEASE NO.:

LOCATION: Section 33, T.25 S., R.33 E., NMPM

COUNTY: Lea County, New Mexico

WELL NAME & NO.: Red Hills Unit 102H **SURFACE HOLE FOOTAGE:** 395'/N & 2310'/E **BOTTOM HOLE FOOTAGE** 100'/S & 1907'/W

COA

H2S	• Yes	O No	
Potash	None	Secretary	© R-111-P
Cave/Karst Potential	• Low	© Medium	C High
Cave/Karst Potential	Critical		
Variance	O None	• Flex Hose	Other
Wellhead	Conventional	Multibowl	C Both
Other	☐4 String Area	☐ Capitan Reef	□WIPP
Other	Fluid Filled	☐ Cement Squeeze	☐ Pilot Hole
Special Requirements	☐ Water Disposal	□ СОМ	✓ Unit

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the Bone Springs, Wolfcamp, and Pennsylvanian formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The 10-3/4 inch surface casing shall be set at approximately 1050 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of 8

- **hours** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept 1/3rd fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is: Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.
 - a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
 - b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.
 - Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Operator is approved for a variance for 5 ½" x 7 5/8" annular casing clearance.

- 3. The minimum required fill of cement behind the $5-1/2 \times 5$ inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Unit Wells

The well sign for a unit well shall include the unit number in addition to the surface and bottom hole lease numbers. This also applies to participating area numbers. If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced.

Commercial Well Determination

A commercial well determination shall be submitted after production has been established for at least six months. (This is not necessary for secondary recovery unit wells).

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - ☑ Eddy CountyCall the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
 - Lea County
 Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575)
 393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.

- a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
- b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive

strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.

- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.

- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

ZS 012821

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Application Data

APD ID: 10400058953

Submission Date: 08/10/2020

Highlighted data reflects the most recent changes

Show Final Text

Well Name: RED HILLS UNIT

Well Number: 102H

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - General

Operator Name: CIMAREX ENERGY COMPANY

APD ID: 10400058953 Tie to previous NOS? Y Submission Date: 08/10/2020

BLM Office: Carlsbad

User: AMITHY CRAWFORD

Title: Regulatory Analyst

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM005792

Lease Acres:

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? Y

Permitting Agent? NO

APD Operator: CIMAREX ENERGY COMPANY

Operator letter of

Operator Info

Operator Organization Name: CIMAREX ENERGY COMPANY

Operator Address: 1700 LINCOLN STREET SUITE 1800

Operator PO Box:

Operator City: DENVER

Zip: 80203

State: CO

Operator Phone: (303)295-3995

Operator Internet Address: hknauls@cimarex.com

Section 2 - Well Information

Well in Master Development Plan? NO **Master Development Plan name:**

Well in Master SUPO? NO Master SUPO name:

Well in Master Drilling Plan? NO Master Drilling Plan name:

Well Name: RED HILLS UNIT Well Number: 102H Well API Number:

Field/Pool or Exploratory? Field and Pool Field Name: Russell Pool Name: WC-025 G-06

S253329D; UPR Bone Spring

Page 1 of 3

Well Name: RED HILLS UNIT Well Number: 102H

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, OIL

Is the proposed well in a Helium production area? N Use Existing Well Pad? Y New surface disturbance? N

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name: Red
Hills Unit

Number: W2E2-W

Well Class: HORIZONTAL Number of Legs: 1

Well Work Type: Drill
Well Type: OIL WELL
Describe Well Type:
Well sub-Type: INFILL
Describe sub-type:

Distance to town: 23 Miles Distance to nearest well: 20 FT Distance to lease line: 395 FT

Reservoir well spacing assigned acres Measurement: 320 Acres

Well plat: Red_Hills_Unit_102H_C102_20200713102712.pdf

Red_Hills_Unit_W2E2_W_C102_BLM_Lease_20200713102725.pdf

Well work start Date: 11/30/2020 Duration: 30 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83 Vertical Datum: NAVD88

Survey number: Reference Datum: GROUND LEVEL

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this
SHL Leg #1	395	FNL	231 0	FEL	25S	33E	33	Aliquot NWNE	32.09320 2	- 103.5762 1	LEA		NEW MEXI CO	F	NMNM 000579 2	336 2	0	0	Υ
KOP Leg #1	395	FNL	231 0	FEL	25S	33E	33	Aliquot NWNE	32.09320 2	- 103.5762 1	LEA		NEW MEXI CO	F	NMNM 000579 2	- 656 0	994 4	992 2	Y

Well Name: RED HILLS UNIT Well Number: 102H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this
PPP Leg	395	FNL	190 7	FEL	25S	33E		Aliquot NWNE	32.09319 9	- 103.5749	LEA	1	NEW MEXI	F	NMNM 000579	- 703	106 94	104 00	Υ
#1-1								INVVINE		1		CO	CO		2	8	0.		
EXIT	100	FSL	190	FEL	26S	33E	4	Aliquot	32.06554		LEA	1	• • – • •	F	NMNM		202	104	Υ
Leg			7					SWSE	4	103.5748 71		MEXI	MEXI CO		89425	703 8	78	00	
#1										7 1		CO	CO			O			
BHL	100	FSL	190	FW	26S	33E	4	Aliquot	32.06554		LEA		NEW	F	NMNM		202	104	Υ
Leg			7	L				SWSE	4	103.5748 71		MEXI	MEXI CO		89425	703 8	78	00	
#1										7 1						O			

Highlighted data reflects the most

recent changes

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

APD ID: 10400058953 **Submission Date:** 08/10/2020

Operator Name: CIMAREX ENERGY COMPANY

Well Name: RED HILLS UNIT Well Number: 102H

Well Type: OIL WELL Well Work Type: Drill Show Final Text

Section 1 - Geologic Formations

Formation	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
784070	RUSTLER	3608	920	920	LIMESTÖNE	USEABLE WATER	N
784071	TOP SALT	2274	1334	1334	ANHYDRITE	NONE	N
784072	BASE OF SALT	-1284	4892	4892	ANHYDRITE	NONE	N
784073	BELL CANYON	-1311	4919	4919	SANDSTONE	NONE	N
784074	CHERRY CANYON	-2411	6019	6019	SANDSTONE	NONE	N
784075	BRUSHY CANYON	-3970	7578	7578	SANDSTONE	NONE	N
784076	BONE SPRING	-5439	9047	9047	LIMESTONE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 10M Rating Depth: 20278

Equipment: A BOP consisting of three rams, including one blind ram and two pipe rams and one annular preventer. An accumulator that meets the requirements in Onshore Order #2 for the pressure rating of the BOP stack. A rotating head may be installed as needed. A Kelly clock will be installed and maintained in operable condition and a drill string safety valve in the open position will be available on the rig floor.

Requesting Variance? YES

Variance request: Co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used. Variance to include Hammer Union connections on lines downstream of the buffer tank only. Cimarex requests a 5M annular variance for the 10M BOP system. See attached procedure

Testing Procedure: A multi-bowl wellhead system will be utilized. After running the 10-3/4" surface casing, a 13 5/8 BOP/BOPE system with a minimum working pressure of 10000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 10000 psi test. Annular will be tested to 50% of working pressure. The pressure test will be repeated at least every 30 days, as per Onshore Order No. 2. The multi-bowl wellhead will be installed by vendors representative. A copy of the installation instructions has been sent to the BLM field office. The wellhead will be installed by a third-party welder, monitored by the wellhead vendor representative. All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type. A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 10000 psi. The surface

Well Name: RED HILLS UNIT Well Number: 102H

casing string will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater. The casing string utilizing steel body pack-off will be tested to 70% of casing burst. If well conditions dictate conventional slips will be set and BOPE will be tested to appropriate pressures based on permitted pressure requirements.

Choke Diagram Attachment:

Red_Hills_Unit_102H_Choke_10M_20200713134316.pdf

BOP Diagram Attachment:

Red_Hills_Unit_102H_BOP_10M_20200713134323.pdf

Pressure Rating (PSI): 5M Rating Depth: 10694

Equipment: A BOP consisting of three rams, including one blind ram and two pipe rams and one annular preventer. An accumulator that meets the requirements in Onshore Order #2 for the pressure rating of the BOP stack. A rotating head may be installed as needed. A Kelly clock will be installed and maintained in operable condition and a drill string safety valve in the open position will be available on the rig floor.

Requesting Variance? YES

Variance request: Co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used. Variance to include Hammer Union connections on lines downstream of the buffer tank only.

Testing Procedure: A multi-bowl wellhead system will be utilized. After running the 10-3/4" surface casing, a 13 5/8 BOP/BOPE system with a minimum working pressure of 5000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 5000 psi test. Annular will be tested to 50% of working pressure. The pressure test will be repeated at least every 30 days, as per Onshore Order No. 2. The multi-bowl wellhead will be installed by vendors representative. A copy of the installation instructions has been sent to the BLM field office. The wellhead will be installed by a third-party welder, monitored by the wellhead vendor representative. All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type. A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi. The surface casing string will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater. The casing string utilizing steel body pack-off will be tested to 70% of casing burst. If well conditions dictate conventional slips will be set and BOPE will be tested to appropriate pressures based on permitted pressure requirements.

Choke Diagram Attachment:

Red_Hills_Unit_102H_Choke_5M_20200713134222.pdf

BOP Diagram Attachment:

Red_Hills_Unit_102H_BOP_5M_20200713134228.pdf

Well Name: RED HILLS UNIT Well Number: 102H

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	14.7 5	10.75	NEW	API	N	0	975	0	975	3362	2387	975	J-55	40.5	BUTT	3.54	7.02	BUOY	15.9 3	BUOY	15.9 3
2	PRODUCTI ON	6.75	5.5	NEW	API	N	0	9945	0	9945	3608	-6583	9945	L-80	20	LT&C	1.37	1.42	BUOY	2.22	BUOY	2.22
1	INTERMED IATE	9.87 5	7.625	NEW	API	N	0	10694	0	10400	3608	-7038	10694	L-80	29.7	BUTT	2.95	1.42	BUOY	2.15	BUOY	2.15
	PRODUCTI ON	6.75	5.0	NEW	API	N	9945	20278	9945	10400	-6583	-7038	10333	P- 110	18	BUTT	1.99	2.01	BUOY	70.8 2	BUOY	70.8 2

Casing Attachments

Casing ID: 1 String SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Red_Hills_Unit_102H_Casing_Assumptions_20200713134540.pdf

Well Name: RED HILLS UNIT Well Number: 102H

Casing ID: 2

String

PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Red_Hills_Unit_102H_Casing_Assumptions_20200713134742.pdf

Red_Hills_Unit_Production_csg_Tapered_Specs_20211020144117.pdf

Casing ID: 3

String

INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Red_Hills_Unit_102H_Casing_Assumptions_20200713134850.pdf

Spec_Sheet_for_Intermediate__7.625__L80HC_casing_20211020131743.pdf

Casing ID: 4

String

PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Red_Hills_Unit_102H_Casing_Assumptions_20200713134650.pdf

Red_Hills_Unit_Production_csg_Tapered_Specs_20211020144035.pdf

Well Name: RED HILLS UNIT Well Number: 102H

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Lead		0	0	0	0	0	0	0	0	0

SURFACE	Lead	0	975	328	1.72	13.5	564	42	Class C	Bentonite
SURFACE	Tail	0	975	156	1.34	14.8	209	42	Class C	LCM
INTERMEDIATE	Lead	0	4900	795	1.88	12.9	1494	40	35:65 (POZ C)	Salt Bentonite

INTERMEDIATE	Lead	4900	4900	1069 4	425	3.64	10.3	1547	46	Tuned Light	LCM
INTERMEDIATE	Tail		4900	1069 4	207	1.3	14.2	269	46	50:50 (POZ H)	Salt Bentonite, Fluid Loss, Dispersant, SMS
PRODUCTION	Lead		0	2027 8	1116	1.3	14.2	1450	25	50:50 (POZ H)	Salt, Bentonite, Fluid Loss, Dispersant, SMS

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials will be kept on location at all times in order to combat lost circulation or unexpected kicks. In order to run DSTs, open hole logs, and casing, the viscosity and water loss may have to be adjusted in order to meet these needs.

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Well Name: RED HILLS UNIT Well Number: 102H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	975	SPUD MUD	8.3	8.8							
975	1069	OTHER: Brine Diesel Emulsion- The Brine Emulsion is completely saturated brine fluid that ties diesel into itself to lower the weight of the fluid. The drilling fluid is completely salt saturated.	8.5	9							
1069 4	2027 8	OTHER : Cut Brine or OBM	12	12.5							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

No DST Planned

List of open and cased hole logs run in the well:

GAMMA RAY LOG, DIRECTIONAL SURVEY, COMPENSATED NEUTRON LOG,

Coring operation description for the well:

N/A

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 6760 Anticipated Surface Pressure: 4471

Anticipated Bottom Hole Temperature(F): 173

Anticipated abnormal pressures, temperatures, or potential geologic hazards? YES

Describe:

Lost circulation may be encountered in the Delaware mountain group. Abnormal pressure as well as hole stability issues may be encountered in the Wolfcamp.

Contingency Plans geoharzards description:

Lost circulation material will be available, as well as additional drilling fluid along with the fluid volume in the drilling rig pit system. Drilling fluid can be mixed on location or mixed in vendor mud plant and trucked to location if needed. Sufficient barite will be available to maintain appropriate mud weight for the Wolfcamp interval.

Well Name: RED HILLS UNIT Well Number: 102H

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

Red_Hills_Unit_W2E2_W_H2S_Plan_20211020132215.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Red_Hills_Unit_102H_AC_Report_20211020135301.pdf Red_Hills_Unit_102H_Directional_20211020135341.pdf

Other proposed operations facets description:

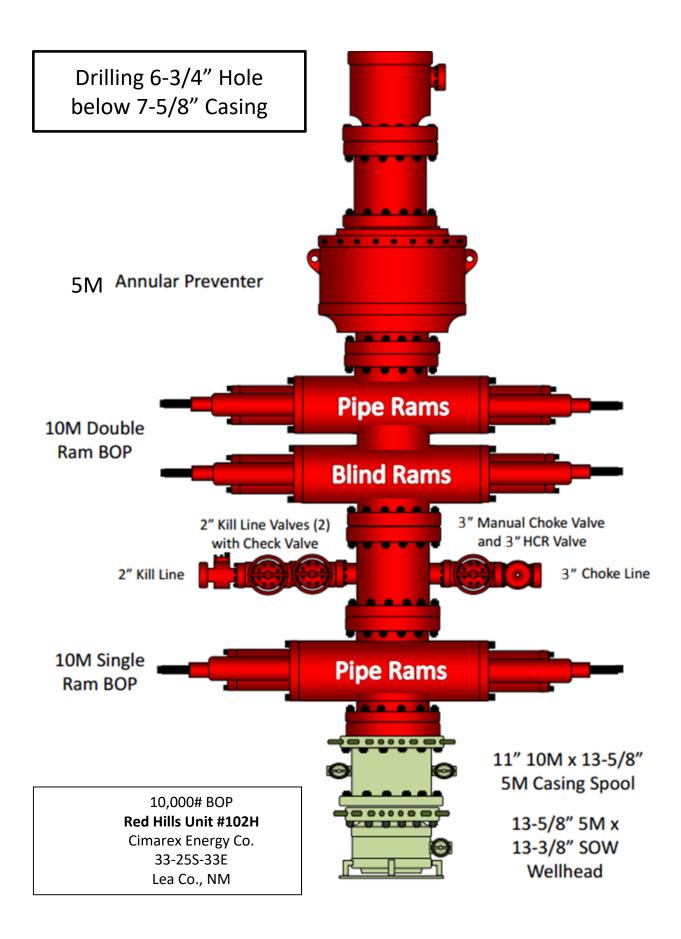
Other proposed operations facets attachment:

Red_Hills_Unit_102H_Drilling_Plan_20200713135702.pdf Red_Hills_Unit_102H_Gas_Capture_20200713135708.pdf

Other Variance attachment:

Red_Hills_Unit_W2E2_W_Flex_Hose_20200713135728.pdf

Red_Hills_Unit_102H_Well_Control_10M_w_5M_annular_Plan__BLM_Approved__20200713135742.pdf


Red_Hills_Unit_102H__Multibowl_Diagram__20200713135749.pdf

13-5/8" 3000# psi x 13-3/8" SOW Casing Head

5-(X)-

Released to Imaging: 11/10/2022 9:29:09 AM

33-25S-33E Lea Co., NM

Received by OCD: 11/9/2022 11:15:59 AM

Red Hills Unit 102H

Casing Assumptions

Hole Size	Casing Depth From	Casing Depth To	Setting Depth TVD	Casing Size	Weight (lb/ft)	Grade	Conn.	SF Collapse	SF Burst	SF Tension
14 3/4	0	975	975	10-3/4"	40.50	J-55	BT&C	3,54	7.02	15.93
9 7/8	0	10694	10400	7-5/8"	29.70	L-80	BT&C	2.95	1.42	2.15
6 3/4	0	9945	9945	5-1/2"	20.00	L-80	LT&C	1.37	1.42	2.22
6 3/4	9945	20278	10400	5"	18.00	P-110	BT&C	1.99	2.01	70.82
	•				BLM	Minimum	Safety Factor	1.125	1	1.6 Dry 1.8 Wet

Received by OCD: 11/9/2022 11:15:59 AM

Red Hills Unit 102H

Casing Assumptions

Hole Size	Casing Depth From	Casing Depth To	Setting Depth TVD	Casing Size	Weight (lb/ft)	Grade	Conn.	SF Collapse	SF Burst	SF Tension
14 3/4	0	975	975	10-3/4"	40.50	J-55	BT&C	3,54	7.02	15.93
9 7/8	0	10694	10400	7-5/8"	29.70	L-80	BT&C	2.95	1.42	2.15
6 3/4	0	9945	9945	5-1/2"	20.00	L-80	LT&C	1.37	1.42	2.22
6 3/4	9945	20278	10400	5"	18.00	P-110	BT&C	1.99	2.01	70.82
	•				BLM	Minimum	Safety Factor	1.125	1	1.6 Dry 1.8 Wet

Tapered Production Specs 5.5" 20# L80 LT&C

Burst-12,640 psi Collapse-11,080 Tension-641,000 lbs/ft

5" 18# P110 BT&C

Burst-13,940 psi Collapse-13,470 Tension-580,000/ body 388,000/ joint

Received by OCD: 11/9/2022 11:15:59 AM

Red Hills Unit 102H

Casing Assumptions

Hole Size	Casing Depth From	Casing Depth To	Setting Depth TVD	Casing Size	Weight (lb/ft)	Grade	Conn.	SF Collapse	SF Burst	SF Tension
14 3/4	0	975	975	10-3/4"	40.50	J-55	BT&C	3,54	7.02	15.93
9 7/8	0	10694	10400	7-5/8"	29.70	L-80	BT&C	2.95	1.42	2.15
6 3/4	0	9945	9945	5-1/2"	20.00	L-80	LT&C	1.37	1.42	2.22
6 3/4	9945	20278	10400	5"	18.00	P-110	BT&C	1.99	2.01	70.82
	•				BLM	Minimum	Safety Factor	1.125	1	1.6 Dry 1.8 Wet

PERFORMANCE DATA

TMK UP ULTRA™ FJ	7.625 in	29.70 lbs/ft	L80 HC
Technical Data Sheet			

Tubular Parameters		
Size	7.625	in
Nominal Weight	29.70	lbs/ft
Grade	L80 HC	
PE Weight	29.04	lbs/ft
Wall Thickness	0.375	in
Nominal ID	6.875	in
Drift Diameter	6.750	in
Nom. Pipe Body Area	8.541	in²

Minimum Yield	80,000	psi
Minimum Tensile	95,000	psi
Yield Load	683,000	lbs
Tensile Load	811,000	lbs
Min. Internal Yield Pressure	6,890	psi
Collapse Pressure	5,510	psi
		•

Connection Parameters		
Connection OD	7.625	in
Connection ID	6.881	in
Make-Up Loss	4.022	in
Critical Section Area	5.316	in²
Tension Efficiency	62.2	%
Compression Efficiency	62.2	%
Yield Load In Tension	425,000	lbs
Min. Internal Yield Pressure	6,890	psi
Collapse Pressure	5,510	psi
Uniaxial Bending	30	°/ 100 ft

Make-Up Torques								
Min. Make-Up Torque	13,200	ft-lbs						
Opt. Make-Up Torque	14,700	ft-lbs						
Max. Make-Up Torque	16,200	ft-lbs						
Operating Torque	13,200	ft-lbs						
Yield Torque	23,500	ft-lbs						

Printed on: August-27-2018

NOTE:

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000.

Received by OCD: 11/9/2022 11:15:59 AM

Red Hills Unit 102H

Casing Assumptions

Hole Size	Casing Depth From	Casing Depth To	Setting Depth TVD	Casing Size	Weight (lb/ft)	Grade	Conn.	SF Collapse	SF Burst	SF Tension
14 3/4	0	975	975	10-3/4"	40.50	J-55	BT&C	3.54	7.02	15.93
9 7/8	0	10694	10400	7-5/8"	29.70	L-80	BT&C	2.95	1.42	2.15
6 3/4	0	9945	9945	5-1/2"	20.00	L-80	LT&C	1.37	1.42	2.22
6 3/4	9945	20278	10400	5"	18.00	P-110	BT&C	1.99	2.01	70.82
	•				BLM	Minimum	Safety Factor	1.125	1	1.6 Dry 1.8 Wet

Tapered Production Specs 5.5" 20# L80 LT&C

Burst-12,640 psi Collapse-11,080 Tension-641,000 lbs/ft

5" 18# P110 BT&C

Burst-13,940 psi Collapse-13,470 Tension-580,000/ body 388,000/ joint

Hydrogen Sulfide Drilling Operations Plan Red Hills Unit 102H (W2E2-W)

Cimarex Energy Co. of Colorado UL: B, Sec. 33-25S-33E Lea Co., NM

1 All Company and Contract personnel admitted on location must be trained by a qualified H2S safety instructor to the following:

- A. Characteristics of H₂S
- B. Physical effects and hazards
- C. Principal and operation of H2S detectors, warning system and briefing areas.
- D. Evacuation procedure, routes and first aid.
- E. Proper use of safety equipment & life support systems
- F. Essential personnel meeting Medical Evaluation criteria will receive additional training on the proper use of 30 minute pressure demand air packs.

H₂S Detection and Alarm Systems:

- A. H2S sensors/detectors to be located on the drilling rig floor, in the base of the sub structure/cellar area, on the mud pits in the shale shaker area. Additional H2S detectors may play placed as deemed necessary.
- B. An audio alarm system will be installed on the derrick floor and in the top doghouse.

3 Windsock and/or wind streamers:

- A. Windsock at mudpit area should be high enough to be visible.
- B.
- Windsock on the rig floor and / or top doghouse should be high enough to be visible.

4 Condition Flags and Signs

- A. Warning sign on access road to location.
- B. Flags to be displayed on sign at entrance to location. Green flag indicates normal safe condition. Yellow flag indicates potential pressure and danger. Red flag indicates danger (H₂S present in dangerous concentration). Only H2S trained and certified personnel admitted to location.

5 Well control equipment:

A. See exhibit "E-1"

6 Communication:

- A. While working under masks chalkboards will be used for communication.
- B. Hand signals will be used where chalk board is inappropriate.
- C. Two way radio will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at most drilling foreman's trailer or living quarters.

7 Drillstem Testing:

No DSTs r cores are planned at this time.

- 8 Drilling contractor supervisor will be required to be familiar with the effects H₂S has on tubular goods and other mechanical equipment.
- 9 If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary.

H₂S Contingency Plan

Red Hills Unit 102H(W2E2-W)

Cimarex Energy Co. of Colorado

UL: B, Sec. 33-25S- 33E

Lea Co., NM

Emergency Procedures

In the event of a release of gas containing H₂S, the first responder(s) must:

- « Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- « Evacuate any public places encompassed by the 100 ppm ROE.
- « Be equipped with H₂S monitors and air packs in order to control the release.
- « Use the "buddy system" to ensure no injuries occur during the 432-620-1975
- « Take precautions to avoid personal injury during this operation.
- « Contact operator and/or local officials to aid in operation. See list of phone numbers attached.
- « Have received training in the:
 - Detection of H₂S, and
 - Measures for protection against the gas,
 - · Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO_2). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas.

Characteristics of H₂S and SO₂

Please see attached International Chemical Safety Cards.

Contacting Authorities

Cimarex Energy Co. of Colorado's personnel must liaise with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including directions to site. The following call list of essential and potential responders has been prepared for use during a release. Cimarex Energy Co. of Colorado's response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER).

H₂S Contingency Plan Emergency Contacts Red Hills Unit 102H (W2E2-W)

Cimarex Energy Co. of Colorado

UL: B, Sec. 33- 25S- 33E Lea Co., NM

Cimarex Energy Co. of Colora	ado	800-969-4789	
Co. Office and After-Hours N	1enu		
Kan Danasan al			
Key Personnel Name	Title	Office	Mobile
Larry Seigrist	Drilling Manager	432-620-1934	580-243-8485
Charlie Pritchard	Drilling Superintendent	432-620-1975	432-238-7084
Roy Shirley	Construction Superintendent		432-634-2136
 Artesia			
Ambulance		911	
State Police		575-746-2703	
City Police		575-746-2703	
Sheriff's Office		575-746-9888	
Fire Department		575-746-2701	
Local Emergency Planning	Committee	575-746-2122	
New Mexico Oil Conservat	tion Division	575-748-1283	
<u>Carlsbad</u>			
Ambulance		911	
State Police		575-885-3137	
City Police		575-885-2111	
Sheriff's Office		575-887-7551	
Fire Department		575-887-3798	
Local Emergency Planning	Committee	575-887-6544	
US Bureau of Land Manag	ement	575-887-6544	
Santa Fe			
	esponse Commission (Santa Fe)	505-476-9600	
	esponse Commission (Santa Fe) 24 Hrs	505-827-9126	
New Mexico State Emerge		505-476-9635	
National			
	onse Center (Washington, D.C.)	800-424-8802	
Medical			
Flight for Life - 4000 24th S	St.; Lubbock, TX	806-743-9911	
Aerocare - R3, Box 49F; Lu		806-747-8923	
· · ·	Yale Blvd S.E., #D3; Albuquerque, NM	505-842-4433	
	Clark Carr Loop S.E.; Albuquerque, NM	505-842-4949	
Other			
Boots & Coots IWC		800-256-9688	or 281-931-8884
Cudd Pressure Control		432-699-0139	or 432-563-3356
Halliburton		575-746-2757	
		575-746-3569	

Schlumberger

Cimarex Red Hills Unit #102H Rev0 RM 06Apr20 Proposal Geodetic Report

VSEC

(Non-Def Plan)

Report Date: Client: April 08, 2020 - 09:14 AM Cimarex Energy Field: NM Lea County (NAD 83)

Cimarex Red Hills 33-4 Unit #102H / New Slot Structure / Slot:

Red Hills 33-4 Unit #102H Borehole: Red Hills 33-4 Unit #102H UWI / API#: Unknown / Unknown

MD

Survey Name: Cimarex Red Hills 33-4 Unit #102H Rev0 RM 06Apr20

April 06, 2020 Survey Date:

Tort / AHD / DDI / ERD Ratio: 103.126 ° / 10463.448 ft / 6.323 / 1.006 NAD83 New Mexico State Plane, Eastern Zone, US Feet N 32° 5' 35.52574", W 103° 34' 34.35566" Coordinate Reference System:

Incl

Azim Grid

TVD

Location Lat / Long: Location Grid N/E Y/X: N 398466.630 ftUS, E 775802.000 ftUS

0.4023 ° CRS Grid Convergence Angle: Grid Scale Factor: Version / Patch:

0.99997205 2.10.787.0

Survey / DLS Computation: Vertical Section Azimuth: Minimum Curvature / Lubinski 179.529 ° (Grid North) Vertical Section Origin: 0.000 ft, 0.000 ft TVD Reference Datum: RKB TVD Reference Elevation: 3380.100 ft above MSL Seabed / Ground Elevation: 3354.100 ft above MSL

6.545 ° Magnetic Declination: Total Gravity Field Strength: 998.4360mgn (9.80665 Based)

EW

DLS

Northing

Easting

Latitude

Longitude

Gravity Model: GARM Total Magnetic Field Strength: 47667.424 nT Magnetic Dip Angle: 59.684° Declination Date: April 06, 2020 Magnetic Declination Model: HDGM 2020 North Reference: Grid North Grid Convergence Used: Total Corr Mag North->Grid 0.4023° 6.1428°

North: Local Coord Referenced To: Well Head

NS

Comments	(ft)	inci	Azim Grid	(ft)	VSEC	NS (ft)	EW (ft)	(°/100ft)	Northing (ftUS)	(ftUS)	(N/S ° ' ")	(E/W ° ' ")
SHL [395' FNL,					(ft)		(ft)					
2310' FEL]	0.00	0.00	177.24	0.00	0.00	0.00	0.00	N/A	398466.63	775802.00	N 32 5 35.53	W 103 34 34.36
	100.00	0.00	89.76	100.00	0.00	0.00	0.00	0.00	398466.63	775802.00	N 32 5 35.53	W 103 34 34.36
	200.00	0.00	89.76	200.00	0.00	0.00	0.00	0.00	398466.63	775802.00		W 103 34 34.36
	300.00	0.00	89.76	300.00	0.00	0.00	0.00	0.00	398466.63	775802.00	N 32 5 35.53	W 103 34 34.36
	400.00	0.00	89.76	400.00	0.00	0.00	0.00	0.00	398466.63	775802.00	N 32 5 35.53	W 103 34 34.36
	500.00	0.00	89.76	500.00	0.00	0.00	0.00	0.00	398466.63	775802.00		W 103 34 34.36
	600.00	0.00	89.76	600.00	0.00	0.00	0.00	0.00	398466.63	775802.00		W 103 34 34.36
	700.00	0.00	89.76	700.00	0.00	0.00	0.00	0.00	398466.63	775802.00		W 103 34 34.36
	800.00	0.00	89.76	800.00	0.00	0.00	0.00	0.00	398466.63	775802.00		W 103 34 34.36
	900.00	0.00	89.76	900.00	0.00	0.00	0.00	0.00	398466.63	775802.00		W 103 34 34.36
Rustler	926.00	0.00	89.76	926.00	0.00	0.00	0.00	0.00	398466.63	775802.00	N 32 5 35.53	
	1000.00	0.00	89.76	1000.00	0.00	0.00	0.00	0.00	398466.63	775802.00	N 32 5 35.53	
	1100.00	0.00	89.76	1100.00	0.00	0.00	0.00	0.00	398466.63	775802.00	N 32 5 35.53	
Ton of Coll	1200.00	0.00	89.76	1200.00 1260.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	398466.63	775802.00 775802.00	N 32 5 35.53 N 32 5 35.53	W 103 34 34.36
Top of Salt	1260.00 1300.00	0.00 0.00	89.76 89.76	1300.00	0.00	0.00 0.00	0.00	0.00	398466.63 398466.63	775802.00		W 103 34 34.36 W 103 34 34.36
	1400.00	0.00	89.76	1400.00	0.00	0.00	0.00	0.00	398466.63	775802.00		W 103 34 34.36 W 103 34 34.36
Nudge 2°/100'												
DLS	1500.00	0.00	89.76	1500.00	0.00	0.00	0.00	0.00	398466.63	775802.00	N 32 5 35.53	W 103 34 34.36
DLO	1600.00	2.00	89.76	1599.98	0.01	0.01	1.75	2.00	398466.64	775803 75	N 32 5 35.53	W 103 34 34 34
	1700.00	4.00	89.76	1699.84	0.03	0.03	6.98	2.00	398466.66	775808.98		W 103 34 34.27
	1800.00	6.00	89.76	1799.45	0.06	0.07	15.69	2.00	398466.70	775817.69	N 32 5 35.53	
Hold Nudge	1828.15	6.56	89.76	1827.43	0.07	0.08	18.77	2.00	398466.71	775820.77		W 103 34 34.14
riola ridago	1900.00	6.56	89.76	1898.81	0.11	0.11	26.99	0.00	398466.74	775828.98		W 103 34 34.04
	2000.00	6.56	89.76	1998.16	0.15	0.16	38.41	0.00	398466.79	775840.41		W 103 34 33.91
	2100.00	6.56	89.76	2097.50	0.20	0.21	49.84	0.00	398466.84	775851.84	N 32 5 35.52	W 103 34 33.78
	2200.00	6.56	89.76	2196.85	0.24	0.26	61.27	0.00	398466.89	775863.27		W 103 34 33.64
	2300.00	6.56	89.76	2296.19	0.29	0.31	72.70	0.00	398466.94	775874.70	N 32 5 35.52	
	2400.00	6.56	89.76	2395.54	0.33	0.36	84.13	0.00	398466.99	775886.13		W 103 34 33.38
	2500.00	6.56	89.76	2494.88	0.38	0.41	95.56	0.00	398467.04	775897.56	N 32 5 35.52	
	2600.00	6.56	89.76	2594.22	0.43	0.45	106.99	0.00	398467.08	775908.99	N 32 5 35.52	W 103 34 33.11
	2700.00	6.56	89.76	2693.57	0.47	0.50	118.42	0.00	398467.13	775920.42		W 103 34 32.98
	2800.00	6.56	89.76	2792.91	0.52	0.55	129.85	0.00	398467.18	775931.85		W 103 34 32.85
	2900.00	6.56	89.76	2892.26	0.56	0.60	141.28	0.00	398467.23	775943.28		W 103 34 32.71
	3000.00	6.56	89.76	2991.60	0.61	0.65	152.71	0.00	398467.28	775954.70		W 103 34 32.58
	3100.00	6.56	89.76	3090.95	0.65	0.70	164.14	0.00	398467.33	775966.13		W 103 34 32.45
	3200.00	6.56	89.76	3190.29	0.70	0.74	175.57	0.00	398467.37	775977.56		W 103 34 32.31
	3300.00 3400.00	6.56 6.56	89.76	3289.64 3388.98	0.74 0.79	0.79 0.84	187.00 198.43	0.00	398467.42	775988.99 776000.42	N 32 5 35.52 N 32 5 35.52	W 103 34 32.18 W 103 34 32.05
	3500.00	6.56	89.76 89.76	3488.33	0.79	0.89	209.86	0.00	398467.47 398467.52	776000.42		W 103 34 32.05 W 103 34 31.92
	3600.00	6.56	89.76	3587.67	0.88	0.94	221.29	0.00	398467.57	776023.28		W 103 34 31.32 W 103 34 31.78
	3700.00	6.56	89.76	3687.02	0.93	0.99	232.72	0.00	398467.62	776034.71		W 103 34 31.76 W 103 34 31.65
	3800.00	6.56	89.76	3786.36	0.97	1.04	244.15	0.00	398467.67	776046.14		W 103 34 31.52
	3900.00	6.56	89.76	3885.71	1.02	1.08	255.57	0.00	398467.71	776057.57	N 32 5 35.52	
	4000.00	6.56	89.76	3985.05	1.06	1.13	267.00	0.00	398467.76	776069.00	N 32 5 35.52	
	4100.00	6.56	89.76	4084.39	1.11	1.18	278.43	0.00	398467.81	776080.43	N 32 5 35.52	
	4200.00	6.56	89.76	4183.74	1.15	1.23	289.86	0.00	398467.86	776091.85	N 32 5 35.52	W 103 34 30.99
	4300.00	6.56	89.76	4283.08	1.20	1.28	301.29	0.00	398467.91	776103.28		W 103 34 30.85
	4400.00	6.56	89.76	4382.43	1.24	1.33	312.72	0.00	398467.96	776114.71		W 103 34 30.72
	4500.00	6.56	89.76	4481.77	1.29	1.37	324.15	0.00	398468.00	776126.14		W 103 34 30.59
	4600.00	6.56	89.76	4581.12	1.34	1.42	335.58	0.00	398468.05	776137.57		W 103 34 30.45
Base of Salt	4671.35	6.56	89.76	4652.00	1.37	1.46	343.74	0.00	398468.09	776145.73		W 103 34 30.36
	4700.00	6.56	89.76	4680.46	1.38	1.47	347.01	0.00	398468.10	776149.00		W 103 34 30.32
	4800.00	6.56	89.76	4779.81	1.43	1.52	358.44	0.00	398468.15	776160.43		W 103 34 30.19
	4900.00 4908.91	6.56 6.56	89.76 89.76	4879.15 4888.00	1.47 1.48	1.57 1.57	369.87 370.89	0.00 0.00	398468.20 398468.20	776171.86 776172.88	N 32 5 35.52 N 32 5 35.52	W 103 34 30.06
Lamar Bell Canyon	4953.20	6.56	89.76	4932.00	1.50	1.59	375.95	0.00	398468.22	776177.94		W 103 34 29.99
Dell Carlyon	5000.00	6.56	89.76	4978.50	1.52	1.62	381.30	0.00	398468.25	776183.29		W 103 34 29.99 W 103 34 29.92
Drop to Vertical												
2°/100' DLS	5021.64	6.56	89.76	5000.00	1.53	1.63	383.77	0.00	398468.26	776185.76	N 32 5 35.52	W 103 34 29.89
2 / 100 DL3	5100.00	5.00	89.76	5077.95	1.56	1.66	391.66	2.00	398468.29	776193.65	N 32 5 35.51	W 103 34 29.80
	5200.00	3.00	89.76	5177.71	1.59	1.69	398.63	2.00	398468.32	776200.62		W 103 34 29.72
	5300.00	1.00	89.76	5277.64	1.60	1.71	402.11	2.00	398468.34	776204.10		W 103 34 29.68
Hold Vertical	5349.79	0.00	89.76	5327.43	1.60	1.71	402.55	2.00	398468.34	776204.53	N 32 5 35.51	
	5400.00	0.00	89.76	5377.64	1.60	1.71	402.55	0.00	398468.34	776204.53		W 103 34 29.68
	5500.00	0.00	89.76	5477.64	1.60	1.71	402.55	0.00	398468.34	776204.53		W 103 34 29.68
	5600.00	0.00	89.76	5577.64	1.60	1.71	402.55	0.00	398468.34	776204.53	N 32 5 35.51	W 103 34 29.68
	5700.00	0.00	89.76	5677.64	1.60	1.71	402.55	0.00	398468.34	776204.53	N 32 5 35.51	W 103 34 29.68
	5800.00	0.00	89.76	5777.64	1.60	1.71	402.55	0.00	398468.34	776204.53	N 32 5 35.51	W 103 34 29.68
	5900.00	0.00	89.76	5877.64	1.60	1.71	402.55	0.00	398468.34	776204.53		W 103 34 29.68
	6000.00	0.00	89.76	5977.64	1.60	1.71	402.55	0.00	398468.34	776204.53		W 103 34 29.68
Cherry Canyon	6039.36	0.00	89.76	6017.00	1.60	1.71	402.55	0.00	398468.34	776204.53		W 103 34 29.68
	6100.00	0.00	89.76	6077.64	1.60	1.71	402.55	0.00	398468.34	776204.53	N 32 5 35.51	
	6200.00	0.00	89.76	6177.64	1.60	1.71	402.55	0.00	398468.34	776204.53		W 103 34 29.68
	6300.00	0.00	89.76	6277.64	1.60	1.71	402.55	0.00	398468.34	776204.53		W 103 34 29.68
	6400.00	0.00	89.76	6377.64	1.60	1.71	402.55	0.00	398468.34	776204.53	N 32 5 35.51	
	6500.00	0.00	89.76	6477.64	1.60	1.71	402.55	0.00	398468.34	776204.53	N 32 5 35.51	vv 103 34 29.68

Comments	MD (ft)	Incl (°)	Azim Grid (°)	TVD (ft)	VSEC (ft)	NS (ft)	EW (ft)	DLS (°/100ft)	Northing (ftUS)	Easting Latitude Longitude (ftUS) (N/S ° ' ") (E/W ° ' ")
	6600.00	0.00	89.76	6577.64	1.60	1.71	402.55	0.00	398468.34	776204.53 N 32 5 35.51 W 103 34 29.68
	6700.00 6800.00	0.00 0.00	89.76 89.76	6677.64 6777.64	1.60 1.60	1.71 1.71	402.55 402.55	0.00	398468.34 398468.34	776204.53 N 32 5 35.51 W 103 34 29.68 776204.53 N 32 5 35.51 W 103 34 29.68
	6900.00	0.00	89.76	6877.64	1.60	1.71	402.55	0.00	398468.34	776204.53 N 32 5 35.51 W 103 34 29.68
	7000.00	0.00	89.76	6977.64	1.60	1.71	402.55	0.00	398468.34	776204.53 N 32 5 35.51 W 103 34 29.68
	7100.00 7200.00	0.00	89.76 89.76	7077.64 7177.64	1.60 1.60	1.71 1.71	402.55 402.55	0.00 0.00	398468.34 398468.34	776204.53 N 32 5 35.51 W 103 34 29.68 776204.53 N 32 5 35.51 W 103 34 29.68
	7300.00	0.00	89.76	7277.64	1.60	1.71	402.55	0.00	398468.34	776204.53 N 32 5 35.51 W 103 34 29.68
	7400.00	0.00	89.76	7377.64	1.60	1.71	402.55	0.00	398468.34	776204.53 N 32 5 35.51 W 103 34 29.68
Brushy Canyon	7500.00 7512.36	0.00 0.00	89.76 89.76	7477.64 7490.00	1.60 1.60	1.71 1.71	402.55 402.55	0.00 0.00	398468.34 398468.34	776204.53 N 32 5 35.51 W 103 34 29.68 776204.53 N 32 5 35.51 W 103 34 29.68
Draony Ganyon	7600.00	0.00	89.76	7577.64	1.60	1.71	402.55	0.00	398468.34	776204.53 N 32 5 35.51 W 103 34 29.68
	7700.00	0.00	89.76	7677.64	1.60	1.71	402.55	0.00	398468.34	776204.53 N 32 5 35.51 W 103 34 29.68
	7800.00 7900.00	0.00	89.76 89.76	7777.64 7877.64	1.60 1.60	1.71 1.71	402.55 402.55	0.00 0.00	398468.34 398468.34	776204.53 N 32 5 35.51 W 103 34 29.68 776204.53 N 32 5 35.51 W 103 34 29.68
	8000.00	0.00	89.76	7977.64	1.60	1.71	402.55	0.00	398468.34	776204.53 N 32 5 35.51 W 103 34 29.68
	8100.00	0.00	89.76	8077.64	1.60	1.71	402.55	0.00	398468.34	776204.53 N 32 5 35.51 W 103 34 29.68
	8200.00 8300.00	0.00	89.76 89.76	8177.64 8277.64	1.60 1.60	1.71 1.71	402.55 402.55	0.00 0.00	398468.34 398468.34	776204.53 N 32 5 35.51 W 103 34 29.68 776204.53 N 32 5 35.51 W 103 34 29.68
	8400.00	0.00	89.76	8377.64	1.60	1.71	402.55	0.00	398468.34	776204.53 N 32 5 35.51 W 103 34 29.68
	8500.00 8600.00	0.00	89.76 89.76	8477.64 8577.64	1.60 1.60	1.71 1.71	402.55 402.55	0.00 0.00	398468.34 398468.34	776204.53 N 32 5 35.51 W 103 34 29.68 776204.53 N 32 5 35.51 W 103 34 29.68
	8700.00	0.00	89.76	8677.64	1.60	1.71	402.55	0.00	398468.34	776204.53 N 32 5 35.51 W 103 34 29.68
	8800.00	0.00	89.76	8777.64	1.60	1.71	402.55	0.00	398468.34	776204.53 N 32 5 35.51 W 103 34 29.68
	8900.00	0.00	89.76	8877.64	1.60	1.71	402.55	0.00	398468.34	776204.53 N 32 5 35.51 W 103 34 29.68
Bone Spring	9000.00 9061.36	0.00 0.00	89.76 89.76	8977.64 9039.00	1.60 1.60	1.71 1.71	402.55 402.55	0.00 0.00	398468.34 398468.34	776204.53 N 32 5 35.51 W 103 34 29.68 776204.53 N 32 5 35.51 W 103 34 29.68
Bone opning	9100.00	0.00	89.76	9077.64	1.60	1.71	402.55	0.00	398468.34	776204.53 N 32 5 35.51 W 103 34 29.68
Leonard Shale	9116.36	0.00	89.76	9094.00	1.60	1.71	402.55	0.00	398468.34	776204.53 N 32 5 35.51 W 103 34 29.68
	9200.00 9300.00	0.00	89.76 89.76	9177.64 9277.64	1.60 1.60	1.71 1.71	402.55 402.55	0.00 0.00	398468.34 398468.34	776204.53 N 32 5 35.51 W 103 34 29.68 776204.53 N 32 5 35.51 W 103 34 29.68
Avalon Shale	9378.36	0.00	89.76	9356.00	1.60	1.71	402.55	0.00	398468.34	776204.53 N 32 5 35.51 W 103 34 29.68
	9400.00	0.00	89.76	9377.64	1.60	1.71	402.55	0.00	398468.34	776204.53 N 32 5 35.51 W 103 34 29.68
	9500.00	0.00	89.76 89.76	9477.64 9577.64	1.60	1.71 1.71	402.55 402.55	0.00	398468.34 398468.34	776204.53 N 32 5 35.51 W 103 34 29.68 776204.53 N 32 5 35.51 W 103 34 29.68
	9600.00 9700.00	0.00	89.76 89.76	9577.64 9677.64	1.60 1.60	1.71 1.71	402.55 402.55	0.00	398468.34 398468.34	776204.53 N 32 5 35.51 W 103 34 29.68 776204.53 N 32 5 35.51 W 103 34 29.68
Lower Avalon	9753.36	0.00	89.76	9731.00	1.60	1.71	402.55	0.00	398468.34	776204.53 N 32 5 35.51 W 103 34 29.68
Shale										
	9800.00 9900.00	0.00	89.76 89.76	9777.64 9877.64	1.60 1.60	1.71 1.71	402.55 402.55	0.00 0.00	398468.34 398468.34	776204.53 N 32 5 35.51 W 103 34 29.68 776204.53 N 32 5 35.51 W 103 34 29.68
KOP - Build										
12°/100' DLS	9944.90	0.00	89.76	9922.54	1.60	1.71	402.55	0.00	398468.34	
1st Bone Spring	10000.00	6.61	179.53	9977.52	4.78	-1.47	402.57	12.00	398465.16	776204.56 N 32 5 35.48 W 103 34 29.68
Sand	10059.46	13.75	179.53	10036.00	15.28	-11.97	402.66	12.00	398454.66	776204.65 N 32 5 35.38 W 103 34 29.68
	10100.00	18.61	179.53	10074.92	26.57	-23.26	402.75	12.00	398443.37	776204.74 N 32 5 35.27 W 103 34 29.68
2nd Pono Carina	10200.00	30.61	179.53	10165.67	68.15	-64.83	403.09	12.00	398401.80	776205.08 N 32 5 34.86 W 103 34 29.68
2nd Bone Spring Carb	10269.88	39.00	179.53	10223.00	108.00	-104.68	403.42	12.00	398361.95	776205.41 N 32 5 34.46 W 103 34 29.67
	10300.00	42.61	179.53	10245.80	127.68	-124.36	403.58	12.00	398342.27	776205.57 N 32 5 34.27 W 103 34 29.67
	10400.00 10500.00	54.61 66.61	179.53 179.53	10311.79 10360.77	202.56 289.54	-199.25 -286.22	404.20 404.91	12.00 12.00	398267.39 398180.42	776206.19 N 32 5 33.53 W 103 34 29.67 776206.90 N 32 5 32.67 W 103 34 29.67
	10600.00	78.61	179.53	10390.60	384.79	-381.47	405.70	12.00	398085.17	776206.90 N 32 5 32.67 W 103 34 29.67 776207.68 N 32 5 31.72 W 103 34 29.67
Landing Point	10694.90	90.00	179.53	10400.00	479.07	-475.74	406.47	12.00	397990.90	776208.46 N 32 5 30.79 W 103 34 29.67
	10700.00 10800.00	90.00 90.00	179.53 179.53	10400.00 10400.00	484.17 584.17	-480.84 -580.84	406.51 407.33	0.00	397985.80 397885.81	776208.50 N 32 5 30.74 W 103 34 29.67 776209.32 N 32 5 29.75 W 103 34 29.67
	10900.00	90.00	179.53	10400.00	684.17	-680.84	408.16	0.00	397785.81	776210.14 N 32 5 28.76 W 103 34 29.67
	11000.00	90.00	179.53	10400.00	784.17	-780.83	408.98	0.00	397685.82	776210.97 N 32 5 27.77 W 103 34 29.67
	11100.00 11200.00	90.00 90.00	179.53 179.53	10400.00 10400.00	884.17 984.17	-880.83 -980.83	409.80 410.62	0.00	397585.83 397485.83	776211.79 N 32 5 26.78 W 103 34 29.66 776212.61 N 32 5 25.79 W 103 34 29.66
	11300.00	90.00	179.53	10400.00	1084.17	-1080.82	411.44	0.00	397385.84	776213.43 N 32 5 24.80 W 103 34 29.66
	11400.00	90.00	179.53	10400.00	1184.17	-1180.82	412.27	0.00	397285.84	776214.25 N 32 5 23.81 W 103 34 29.66
	11500.00 11600.00	90.00 90.00	179.53 179.53	10400.00 10400.00	1284.17 1384.17	-1280.82 -1380.81	413.09 413.91	0.00 0.00	397185.85 397085.86	776215.08 N 32 5 22.82 W 103 34 29.66 776215.90 N 32 5 21.83 W 103 34 29.66
	11700.00	90.00	179.53	10400.00	1484.17	-1480.81	414.73	0.00	396985.86	776216.72 N 32 5 20.84 W 103 34 29.66
	11800.00	90.00	179.53	10400.00	1584.17	-1580.81	415.55	0.00	396885.87	776217.54 N 32 5 19.85 W 103 34 29.65
	11900.00 12000.00	90.00 90.00	179.53 179.53	10400.00 10400.00	1684.17 1784.17	-1680.80 -1780.80	416.38 417.20	0.00	396785.88 396685.88	776218.36 N 32 5 18.87 W 103 34 29.65 776219.19 N 32 5 17.88 W 103 34 29.65
	12100.00	90.00	179.53	10400.00	1884.17	-1880.80	418.02	0.00	396585.89	776220.01 N 32 5 16.89 W 103 34 29.65
	12200.00	90.00	179.53	10400.00	1984.17	-1980.79	418.84	0.00	396485.90	776220.83 N 32 5 15.90 W 103 34 29.65
	12300.00 12400.00	90.00 90.00	179.53 179.53	10400.00 10400.00	2084.17 2184.17	-2080.79 -2180.79	419.66 420.49	0.00	396385.90 396285.91	776221.65 N 32 5 14.91 W 103 34 29.65 776222.47 N 32 5 13.92 W 103 34 29.65
	12500.00	90.00	179.53	10400.00	2284.17	-2280.78	421.31	0.00	396185.91	776223.30 N 32 5 12.93 W 103 34 29.64
	12600.00	90.00	179.53	10400.00	2384.17	-2380.78	422.13	0.00	396085.92	776224.12 N 32 5 11.94 W 103 34 29.64
	12700.00 12800.00	90.00 90.00	179.53 179.53	10400.00 10400.00	2484.17 2584.17	-2480.78 -2580.77	422.95 423.77	0.00 0.00	395985.93 395885.93	776224.94 N 32 5 10.95 W 103 34 29.64 776225.76 N 32 5 9.96 W 103 34 29.64
	12900.00	90.00	179.53 179.53	10400.00	2684.17 2684.17	-2580.77 -2680.77	423.77 424.60	0.00	395885.93 395785.94	776226.58 N 32 5 8.97 W 103 34 29.64
	13000.00	90.00	179.53	10400.00	2784.17	-2780.77	425.42	0.00	395685.95	776227.41 N 32 5 7.98 W 103 34 29.64
	13100.00 13200.00	90.00 90.00	179.53 179.53	10400.00 10400.00	2884.17 2984.17	-2880.76 -2980.76	426.24 427.06	0.00 0.00	395585.95 395485.96	776228.23 N 32 5 6.99 W 103 34 29.64 776229.05 N 32 5 6.00 W 103 34 29.64
	13300.00	90.00	179.53	10400.00	3084.17	-3080.76	427.88	0.00	395385.97	776229.87 N 32 5 5.00 W 103 34 29.62
	13400.00	90.00	179.53	10400.00	3184.17	-3180.75	428.71	0.00	395285.97	776230.69 N 32 5 4.02 W 103 34 29.63
	13500.00 13600.00	90.00 90.00	179.53 179.53	10400.00 10400.00	3284.17 3384.17	-3280.75 -3380.75	429.53 430.35	0.00	395185.98 395085.99	776231.52 N 32 5 3.03 W 103 34 29.63 776232.34 N 32 5 2.04 W 103 34 29.63
	13700.00	90.00	179.53 179.53	10400.00	3384.17 3484.17	-3380.75 -3480.74	430.35 431.17	0.00	395085.99 394985.99	776232.34 N 32 5 2.04 W 103 34 29.63 776233.16 N 32 5 1.05 W 103 34 29.63
	13800.00	90.00	179.53	10400.00	3584.17	-3580.74	431.99	0.00	394886.00	776233.98 N 32 5 0.06 W 103 34 29.63
	13900.00	90.00	179.53	10400.00	3684.17	-3680.74 -3780.73	432.82	0.00	394786.00	776234.80 N 32 4 59.07 W 103 34 29.63
	14000.00 14100.00	90.00 90.00	179.53 179.53	10400.00 10400.00	3784.17 3884.17	-3780.73 -3880.73	433.64 434.46	0.00 0.00	394686.01 394586.02	776235.62 N 32 4 58.08 W 103 34 29.62 776236.45 N 32 4 57.10 W 103 34 29.62
	14200.00	90.00	179.53	10400.00	3984.17	-3980.73	435.28	0.00	394486.02	776237.27 N 32 4 56.11 W 103 34 29.62
	14300.00	90.00	179.53	10400.00	4084.17	-4080.72	436.10	0.00	394386.03	776238.09 N 32 4 55.12 W 103 34 29.62
	14400.00 14500.00	90.00 90.00	179.53 179.53	10400.00 10400.00	4184.17 4284.17	-4180.72 -4280.72	436.93 437.75	0.00 0.00	394286.04 394186.04	776238.91 N 32 4 54.13 W 103 34 29.62 776239.73 N 32 4 53.14 W 103 34 29.62
	14600.00	90.00	179.53	10400.00	4384.17	-4280.72	437.75	0.00	394086.05	776240.56 N 32 4 53.14 W 103 34 29.62
	14700.00	90.00	179.53	10400.00	4484.17	-4480.71	439.39	0.00	393986.06	776241.38 N 32 4 51.16 W 103 34 29.61
	14800.00	90.00 90.00	179.53 179.53	10400.00 10400.00	4584.17 4684.17	-4580.71 -4680.70	440.21 441.04	0.00	393886.06 393786.07	776242.20 N 32 4 50.17 W 103 34 29.61 776243.02 N 32 4 49.18 W 103 34 29.61
	14900.00 15000.00	90.00	179.53 179.53	10400.00	4684.17 4784.17	-4680.70 -4780.70	441.04 441.86	0.00	393786.07	776243.02 N 32 4 49.18 W 103 34 29.61 776243.84 N 32 4 48.19 W 103 34 29.61
	.0000.00									
			179.53	10400.00	4883.37	-4879.90	442.67	0.00	393586.88	776244.66 N 32 4 47.21 W 103 34 29.61
NMNM089425	15099.20	90.00		10.00		4000 = :			000=00	770044 07 N 00 4 17 5 11 11 11 11
NMNM089425	15100.00	90.00	179.53	10400.00	4884.17	-4880.70 -4980.69	442.68	0.00	393586.08	
NMNM089425	15100.00 15200.00	90.00 90.00	179.53 179.53	10400.00	4984.17	-4980.69	443.50	0.00 0.00 0.00	393486.09	776245.49 N 32 4 46.21 W 103 34 29.61
NMNM089425	15100.00 15200.00 15300.00 15400.00	90.00 90.00 90.00 90.00	179.53 179.53 179.53 179.53	10400.00 10400.00 10400.00	4984.17 5084.17 5184.17	-4980.69 -5080.69 -5180.69	443.50 444.32 445.15	0.00 0.00 0.00	393486.09 393386.09 393286.10	776245.49 N 32 4 46.21 W 103 34 29.61 776246.31 N 32 4 45.22 W 103 34 29.61 776247.13 N 32 4 44.23 W 103 34 29.60
NMNM089425	15100.00 15200.00 15300.00 15400.00 15500.00	90.00 90.00 90.00 90.00 90.00	179.53 179.53 179.53 179.53 179.53	10400.00 10400.00 10400.00 10400.00	4984.17 5084.17 5184.17 5284.17	-4980.69 -5080.69 -5180.69 -5280.68	443.50 444.32 445.15 445.97	0.00 0.00 0.00 0.00	393486.09 393386.09 393286.10 393186.11	776246.31 N 32 4 45.22 W 103 34 29.61 776247.13 N 32 4 44.23 W 103 34 29.60 776247.95 N 32 4 43.24 W 103 34 29.60
NMNM0005792 - NMNM089425 Crossing	15100.00 15200.00 15300.00 15400.00	90.00 90.00 90.00 90.00	179.53 179.53 179.53 179.53	10400.00 10400.00 10400.00	4984.17 5084.17 5184.17	-4980.69 -5080.69 -5180.69	443.50 444.32 445.15	0.00 0.00 0.00	393486.09 393386.09 393286.10	776245.49 N 32 4 46.21 W 103 34 29.61 776246.31 N 32 4 45.22 W 103 34 29.61 776247.13 N 32 4 44.23 W 103 34 29.60

Comments	MD	Incl	Azim Grid	TVD	VSEC	NS	EW	DLS	Northing	Easting	Latitude	Longitude
	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	(ftUS)	(ftUS)	(N/S ° ' ")	(E/W ° ' ")
	15900.00	90.00	179.53	10400.00	5684.17	-5680.67	449.26	0.00	392786.13	776251.24	N 32 439.28	
	16000.00	90.00	179.53	10400.00	5784.17	-5780.67	450.08	0.00	392686.14		N 32 438.29	
	16100.00	90.00	179.53	10400.00	5884.17	-5880.66	450.90	0.00	392586.14	776252.89	N 32 437.30	W 103 34 29.60
	16200.00	90.00	179.53	10400.00	5984.17	-5980.66	451.72	0.00	392486.15		N 32 436.32	
	16300.00	90.00	179.53	10400.00	6084.17	-6080.65	452.54	0.00	392386.16		N 32 4 35.33	
	16400.00	90.00	179.53	10400.00	6184.17	-6180.65	453.37	0.00	392286.16		N 32 434.34	
	16500.00	90.00	179.53	10400.00	6284.17	-6280.65	454.19	0.00	392186.17		N 32 4 33.35	
	16600.00	90.00	179.53	10400.00	6384.17	-6380.64	455.01	0.00	392086.18		N 32 4 32.36	
	16700.00	90.00	179.53	10400.00	6484.17	-6480.64	455.83	0.00	391986.18		N 32 431.37	
	16800.00	90.00	179.53	10400.00	6584.17	-6580.64	456.65	0.00	391886.19		N 32 4 30.38	
	16900.00	90.00	179.53	10400.00	6684.17	-6680.63	457.48	0.00	391786.20		N 32 4 29.39	
	17000.00	90.00	179.53	10400.00	6784.17	-6780.63	458.30	0.00	391686.20		N 32 4 28.40	
	17100.00	90.00	179.53	10400.00	6884.17	-6880.63	459.12	0.00	391586.21		N 32 4 27.41	
	17200.00	90.00	179.53	10400.00	6984.17	-6980.62	459.94	0.00	391486.21	776261.93	N 32 4 26.42	W 103 34 29.58
	17300.00	90.00	179.53	10400.00	7084.17	-7080.62	460.76	0.00	391386.22		N 32 4 25.43	
	17400.00	90.00	179.53	10400.00	7184.17	-7180.62	461.59	0.00	391286.23	776263.57	N 32 4 24.44	W 103 34 29.58
	17500.00	90.00	179.53	10400.00	7284.17	-7280.61	462.41	0.00	391186.23	776264.39	N 32 4 23.45	W 103 34 29.58
	17600.00	90.00	179.53	10400.00	7384.17	-7380.61	463.23	0.00	391086.24	776265.22	N 32 4 22.46	W 103 34 29.57
	17700.00	90.00	179.53	10400.00	7484.17	-7480.61	464.05	0.00	390986.25	776266.04	N 32 4 21.47	W 103 34 29.57
	17800.00	90.00	179.53	10400.00	7584.17	-7580.60	464.87	0.00	390886.25	776266.86	N 32 4 20.48	W 103 34 29.57
	17900.00	90.00	179.53	10400.00	7684.17	-7680.60	465.70	0.00	390786.26	776267.68	N 32 4 19.49	W 103 34 29.57
	18000.00	90.00	179.53	10400.00	7784.17	-7780.60	466.52	0.00	390686.27	776268.50	N 32 4 18.50	W 103 34 29.57
	18100.00	90.00	179.53	10400.00	7884.17	-7880.59	467.34	0.00	390586.27	776269.33	N 32 4 17.51	W 103 34 29.57
	18200.00	90.00	179.53	10400.00	7984.17	-7980.59	468.16	0.00	390486.28		N 32 416.52	
	18300.00	90.00	179.53	10400.00	8084.17	-8080.59	468.98	0.00	390386.28	776270.97	N 32 4 15.53	W 103 34 29.56
	18400.00	90.00	179.53	10400.00	8184.17	-8180.58	469.81	0.00	390286.29		N 32 4 14.55	
	18500.00	90.00	179.53	10400.00	8284.17	-8280.58	470.63	0.00	390186.30	776272.61	N 32 4 13.56	W 103 34 29.56
	18600.00	90.00	179.53	10400.00	8384.17	-8380.58	471.45	0.00	390086.30	776273.43	N 32 4 12.57	W 103 34 29.56
	18700.00	90.00	179.53	10400.00	8484.17	-8480.57	472.27	0.00	389986.31		N 32 411.58	
	18800.00	90.00	179.53	10400.00	8584.17	-8580.57	473.09	0.00	389886.32		N 32 4 10.59	
	18900.00	90.00	179.53	10400.00	8684.17	-8680.57	473.91	0.00	389786.32		N 32 4 9.60	
	19000.00	90.00	179.53	10400.00	8784.17	-8780.56	474.74	0.00	389686.33		N 32 4 8.61	
	19100.00	90.00	179.53	10400.00	8884.17	-8880.56	475.56	0.00	389586.34		N 32 4 7.62	
	19200.00	90.00	179.53	10400.00	8984.17	-8980.56	476.38	0.00	389486.34		N 32 4 6.63	
	19300.00	90.00	179.53	10400.00	9084.17	-9080.55	477.20	0.00	389386.35		N 32 4 5.64	
	19400.00	90.00	179.53	10400.00	9184.17	-9180.55	478.02	0.00	389286.35		N 32 4 4.65	
	19500.00	90.00	179.53	10400.00	9284.17	-9280.55	478.85	0.00	389186.36		N 32 4 3.66	
	19600.00	90.00	179.53	10400.00	9384.17	-9380.54	479.67	0.00	389086.37		N 32 4 2.67	
	19700.00	90.00	179.53	10400.00	9484.17	-9480.54	480.49	0.00	388986.37		N 32 4 1.68	
	19800.00	90.00	179.53	10400.00	9584.17	-9580.54	481.31	0.00	388886.38		N 32 4 0.69	
	19900.00	90.00	179.53	10400.00	9684.17	-9680.53	482.13	0.00	388786.39		N 32 3 59.70	
	20000.00	90.00	179.53	10400.00	9784.17	-9780.53	482.96	0.00	388686.39		N 32 3 58.71	
	20100.00	90.00	179.53	10400.00	9884.17	-9880.53	483.78	0.00	388586.40		N 32 3 57.72	
	20200.00	90.00	179.53	10400.00	9984.17	-9980.52	484.60	0.00	388486.41		N 32 3 56.73	
Cimaray Bad	20200.00	30.00	173.55	10400.00	3304.17	-3300.32	404.00	0.00	300400.41	110200.55	14 32 3 30.73	W 103 34 23.34
Cimarex Red Hills 33-4 Unit												
#102H - PBHL	20278.33	90.00	179.53	10400.00	10062.50	-10058.85	485.24	0.00	388408.08	776297 22	N 32 3 55.96	W 103 34 30 E4
	20210.33	90.00	178.03	10400.00	10002.00	-10000.00	403.24	0.00	300400.08	110201.23	14 32 3 33.90	vv 103 34 29.54
[100' FSL, 1907'												
FEL]												

Survey Type:

Non-Def Plan

Survey Error Model: Survey Program:

ISCWSA Rev 0 *** 3-D 95.000% Confidence 2.7955 sigma

_	Description	Part	MD From (ft)	MD To (ft)	EOU Freq (ft)	Hole Size Casi (in)	ing Diameter (in)	Expected Max Inclination (deg)	Survey Tool Type	Borehole / Survey
		1	0.000	26.000	1/100.000	17.500	13.375	I	NAL_MWD_IFR1+MS-Depth Only	Red Hills 33-4 Unit #102H / Cimarex Red Hills 33-4 Unit #102H Rev0 RM 06Apr20
		1	26.000	20278.331	1/100.000	17.500	13.375		NAL_MWD_IFR1+MS	Red Hills 33-4 Unit #102H / Cimarex Red Hills 33-4 Unit

1. Geological Formations

MD at TD 20,278 Deepest expected fresh water

Formation	Depth (TVD) from KB	Water/Mineral Bearing/Target Zone	Hazards
Rustler	920	N/A	
Top of Salt	1334	N/A	
Lamar	4877	N/A	
Base of Salt	4892	N/A	
Bell Canyon	4919	N/A	
Cherry Canyon	6019	N/A	
Brushy Canyon	7578	N/A	
Bone Spring	9047	Hydrocarbons	
Leonard Shale	9066	Hydrocarbons	
Avalon Shale	9338	Hydrocarbons	
Lower Avalon Shale	9711	Hydrocarbons	
1st Bone Spring Sand	10030	Hydrocarbons	
2nd Bone Spring Carb	10230	Hydrocarbons	
2nd Bone Spring Sand	10580	Hydrocarbons	
3rd Bone Spring Carb	11017	Hydrocarbons	
3rd Bone Spring Sand	11692	Hydrocarbons	
Wolfcamp	12128	Hydrocarbons	
Wolfcamp Y Sand	12236	Hydrocarbons	
Wolfcamp A1	12298	Hydrocarbons	
MA1 Target	12560	Hydrocarbons	
Wolfcamp A2	12912	Hydrocarbons	

2. Casing Program

Hole Size	Casing Depth From	Casing Depth To	Setting Depth TVD	Casing Size	Weight (lb/ft)	Grade	Conn.	SF Collapse	SF Burst	SF Tension
14 3/4	0	975	975	10-3/4"	40.50	J-55	BT&C	3.54	7.02	15.93
9 7/8	0	10694	10400	7-5/8"	29.70	L-80	BT&C	2.95	1.42	2.15
6 3/4	0	9945	9945	5-1/2"	20.00	L-80	LT&C	1.37	1.42	2.22
6 3/4	9945	20278	10400	5"	18.00	P-110	BT&C	1.99	2.01	70.82
					BLM	Minimum S	afety Factor	1.125	1	1.6 Dry 1.8 Wet

TVD was used on all calculations.

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Request Variance for 5-1/2" x 7-5/8" annular clearance. The portion that does not meet clearance will not be cemented

Cimarex Energy Co., Red Hills Unit 102H

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Υ
Does casing meet API specifications? If no, attach casing specification sheet.	Υ
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Υ
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	N
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3rd string cement tied back 500' into previous casing?	N
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	N
Is 2nd string set 100' to 600' below the base of salt?	N
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	N
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	N
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	N
Is AC Report included?	Υ

3. Cementing Program

Casing		Wt. lb/gal	Yld ft3/sack	H2O gal/sk	500# Comp. Strength (hours)	Slurry Description
Surface	328	13.50	1.72	9.15	15.5	Lead: Class C + Bentonite
	156	14.80	1.34	6.32	9.5	Tail: Class C + LCM
Intermediate Stage 1	425	10.30	3.64	22.18		Lead: Tuned Light + LCM
	207	14.20	1.30	5.86	14:30	Tail: 50:50 (Poz:H) + Salt + Bentonite + Fluid Loss + Dispersant + SMS
Intermediate Stage 2	795	12.90	1.88	9.65	12	Lead: 35:65 (Poz:C) + Salt + Bentonite
Production	1116	14.20	1.30	5.86	14:30	Tail: 50:50 (Poz:H) + Salt + Bentonite + Fluid Loss + Dispersant + SMS

DV tool with possible annular casing packer as needed is proposed at a depth of +/- 4,900'.

Casing String	тос	% Excess
Surface	0	42
Intermediate Stage 1	4900	46
Intermediate Stage 2	0	40
Production	9910	25

Cimarex request the ability to perform casing integrity tests after plug bump of cement job.

4. Pressure Control Equipment

A variance is requested for the use of a diverter on the surface casing. See attached for schematic.

BOP installed and tested before drilling which hole?	Size	Min Required WP	Туре		Tested To
9 7/8	13 5/8	5M	Annular	Х	50% of working pressure
			Blind Ram		
			Pipe Ram	Х	5M
			Double Ram	Х	
			Other		
6 3/4	13 5/8	10M	Annular	Х	50% of working pressure
			Blind Ram		
			Pipe Ram	Х	10M
			Double Ram	Х	
			Other		

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

	Formation integrity test will be performed per Onshore Order #2. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.			
Х	A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.			
	N Are anchors required by manufacturer?			

5. Mud Program

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0' to 975'	FW Spud Mud	8.30 - 8.80	30-32	N/C
975' to 10694'	Brine Diesel Emulsion	8.50 - 9.00	30-35	N/C
10694' to 20278'	Cut Brine or OBM	12.00 - 12.50	27-70	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

The Brine Emulsion is completely saturated brine fluid that ties diesel into itself to lower the weight of the fluid. The drilling fluid is completely salt saturated.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logg	ogging, Coring and Testing					
	Will run GR/CNL fromTD to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM.					
Х	No logs are planned based on well control or offset log information.					
	Drill stem test?					
	Coring?					

Additional Logs Planned	Interval
ruantional Logo rianica	

7. Drilling Conditions

Condition	
BH Pressure at deepest TVD	6760 psi
Abnormal Temperature	No

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

X H2S is present

X H2S plan is attached

8. Other Facets of Operation

9. Wellhead

A multi-bowl wellhead system will be utilized.

After running the 10-3/4" surface casing, a 13 5/8" BOP/BOPE system with a minimum working pressure of 10000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 10000 psi test. Annular will be tested to 50% of working pressure. The pressure test will be repeated at least every 30 days, as per Onshore Order No. 2.

The multi-bowl wellhead will be installed by vendor's representative. A copy of the installation instructions has been sent to the BLM field office.

The wellhead will be installed by a third-party welder while being monitored by the wellhead vendor representative.

All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type.

A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 10000 psi.

All casing strings will be tested as per Onshore Order No.2 to atleast 0.22 psi/ft or 1,500 whichever is greater and not to exceed 70% of casing burst.

If well conditions dictate conventional slips will be set and BOPE will be tested to appropriate pressures based on permitted pressure requirements.

Co-Flex Hose **Red Hills Unit W2E2-W** Cimarex Energy Co. 33-25S-33E Lea Co., NM

Specification Sheet Choke & Kill Hose

The Midwest Hose & Specialty Choke & Kill hose is manufactured with only premium componets. The reinforcement cables, inner liner and cover are made of the highest quality material to handle the tough drilling applications of today's industry. The end connections are available with API flanges, API male threads, hubs, harnmer unions or other special fittings upon request. Hose assembly is manufactured to API 7K. This assembly is wrapped with fire resistant vermculite coated fiberglass insulation, rated at 2000 degrees with stainless steel armor cover.

Working Pressure:

5,000 or 10,000 psi working pressure

Test Pressure:

10,000 or 15,000 psi test pressure

Reinforcement:

Multiple steel cables

Cover:

Stainless Steel Armor

Inner Tube:

Petroleum resistant, Abrasion resistant

End Fitting:

API flanges, API male threads, threaded or butt weld hammer

unions, unibolt and other special connections

Maximum Length:

110 Feet

ID:

2-1/2", 3", 3-1/2". 4"

Operating Temperature: -22 deg F to +180 deg F (-30 deg C to +82 deg C)

P.O. Box 96558 - 1421 S.E. 29th St. Oklahoma City, OK 73143 * (405) 670-6718 * Fax: (405) 670-6816

Cimarex 10M Well Control Plan

Version 1.0

BOPE Preventer Utilization

The table below displays all BHA components, drill pipe, casing, or open hole that could be present during a required shut in and the associated preventer component that would provide a barrier to flow. It is specific to the hole section that requires a 10M system. The mud system being utilized in the hole will always assumed to be the first barrier to flow. The below table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill String Element	OD	Preventer	RWP
4" Drillpipe	4"	Lower Ram 3 1/2" - 5 ½" VBR* Upper Ram 3 1/2" - 5 ½" VBR*	10M
4.5" Drillpipe	4.5"	Lower Ram 3 1/2" - 5 ½" VBR* Upper Ram 3 1/2" - 5 ½" VBR*	10M
4" HWDP Drillpipe	4"	Lower Ram 3 1/2" - 5 ½" VBR* Upper Ram 3 1/2" - 5 ½" VBR*	10M
4.5" HWDP Drillpipe	4.5"	Lower Ram 3 1/2" - 5 ½" VBR* Upper Ram 3 1/2" - 5 ½" VBR*	10M
Drill Collars (including non- magnetic)	4.75- 5.25"	Lower Ram 3 1/2" - 5 ½" VBR* Upper Ram 3 1/2" - 5 ½" VBR*	10M
Production Casing	5.5"	Lower Ram 3 1/2" - 5 ½" VBR* Upper Ram 3 1/2" - 5 ½" VBR*	10M
Production Casing	5"	Lower Ram 3 1/2" - 5 ½" VBR* Upper Ram 3 1/2" - 5 ½" VBR*	10M
Production Casing	4.5"	Lower Ram 3 1/2" - 5 ½" VBR* Upper Ram 3 1/2" - 5 ½" VBR*	10M
ALL	0-13 5/8"	Annular	5M
Open Hole		Blind Rams	10M

*VBR – Variable Bore Ram

Well Control Procedures

Proper well control response is highly specific to current well conditions and must be adapted based on environment as needed. The procedures below are given in "common" operating conditions to cover the basic and most necessary operations required during the wellbore construction. These include drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole. In some of the procedures below, there will be a switch of control from the lesser RWP annular to the appropriate 10M RWP ram. The pressure at which this is done is variable based on overall well conditions that must be evaluated situationally. The pressure that control is switched may be equal to or less than the RWP but at no time will the pressure on the annular preventer exceed the RWP of the annular. The annular will be tested to 5,000 psi. This will be the RWP of the annular preventer.

Shutting In While Drilling

- 1. Sound alarm to alert crew
- 2. Space out drill string
- 3. Shut down pumps
- 4. Shut in uppermost BOPE preventer (typically the annular preventer) and open HCR.
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

9. If pressure is anticipated to climb to the RWP of the annular preventer during kill procedure, swap control of the well to the upper pipe ram

Shutting In While Tripping

- 1. Sound alarm and alert crew
- 2. Install open, full open safety valve and close valve
- 3. Shut in uppermost BOPE preventer (typically the annular preventer) and open HCR.
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure
- 8. If pressure is anticipated to climb to the RWP of the annular preventer during kill procedure, swap control of the well to the upper pipe ram

Shutting In While Running Casing

- Sound alarm and alert crew
- 2. Install circulating swedge. Close high pressure, low torque valves.
- 3. Shut in uppermost BOPE preventer (typically the annular preventer) and open HCR.
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold Pre-job safety meeting and discuss kill procedure
- 8. If pressure is anticipated to climb to the RWP of the annular preventer during kill procedure, swap control of the well to the upper pipe ram

Shutting in while out of hole

- 1. Sound alarm
- 2. Shut-in well: close blind rams
- 3. Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

- 1. Prior to pulling last joint of drill pipe thru the stack space out and check flow. If flowing see steps below.
- 2. Sound alarm and alert crew
- 3. Install open, full open safety valve and close valve
- 4. Shut in upper pipe ram and open HCR.

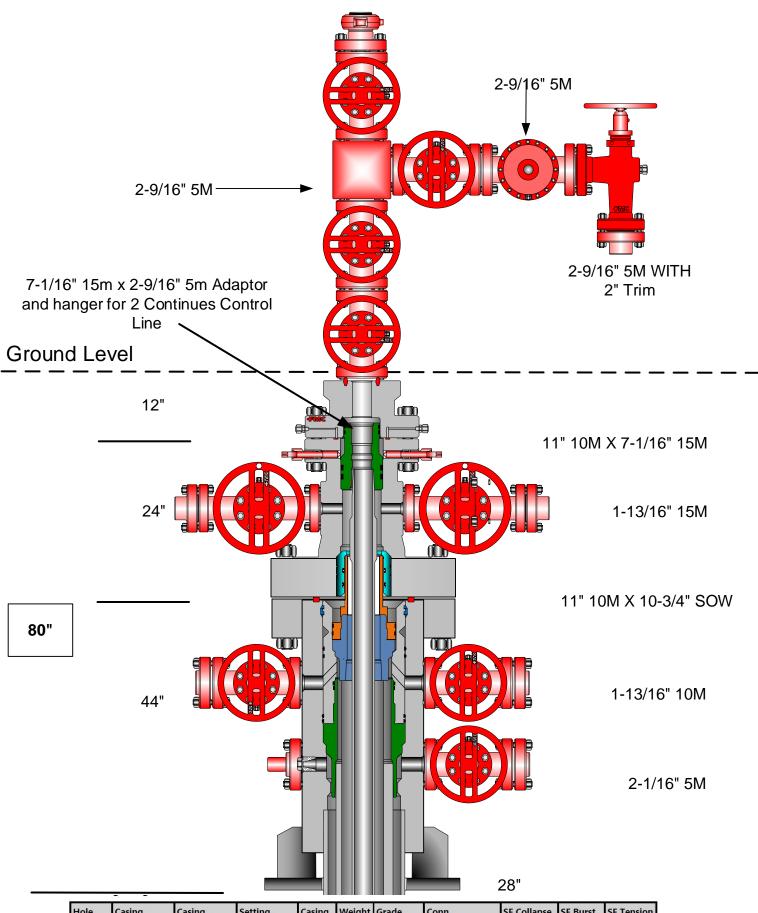
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- Sound alarm and alert crew
- 2. Stab Crossover and install open, full open safety valve and close valve
- 3. Space out drill string with upset just beneath the compatible pipe ram.
- 4. Shut in upper compatible pipe ram and open HCR.
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm and alert crew
- 2. If possible pick up high enough, to pull string clear and follow "Open Hole" scenario
- 3. If not possible to pick up high enough:
 - 1. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve and close valve
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR.
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure



Red Hills Unit 102H

CACTUS FOR SERVICE WEARBUSHING IN CASING HEAD & CASING SPOOL

LEA CO., NM

Multi-bowl Wellhead Diagram

Hole Size	Casing Depth From	Casing Depth To	Setting Depth TVD	Casing Size	Weight (lb/ft)	Grade	Conn.	SF Collapse	SF Burst	SF Tension
14 3/4	0	975	975	10-3/4"	40.50	J-55	BT&C	3.54	7.02	15.93
9 7/8	0	10694	10400	7-5/8"	29.70	L-80	BT&C	2.95	1.42	2.15
6 3/4	0	9945	9945	5-1/2"	20.00	L-80	LT&C	1.37	1.42	2.22
6 3/4	9945	20278	10400	5"	18.00	P-110	BT&C	1.99	2.01	70.82
	a. 11/10/20′	22.0.20.00	434		BLM	Minimum	Safety Factor	1.125	1.	1.6 Dry 1.8 Wet

Released to Imaging: 11/10/2022 9:29:09 AM

U.S. Department of the Interior **BUREAU OF LAND MANAGEMENT** SUPO Data Report

APD ID: 10400058953

Submission Date: 08/10/2020

Highlighted data reflects the most recent changes

Operator Name: CIMAREX ENERGY COMPANY

Well Number: 102H

Show Final Text

Well Name: RED HILLS UNIT

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

Red_Hills_Unit_W2E2_W_Existing_Acess_Road_20200713135807.pdf

Existing Road Purpose: ACCESS, FLUID TRANSPORT

Row(s) Exist? YES

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? NO

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

Well Name: RED HILLS UNIT Well Number: 102H

Red_Hills_Unit_W2E2_W_One_Mile_radius_20200713135917.pdf

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Received Approval on everything except the powerline. 2- 550 X 450 pads were staked with the BLM for construction and use as a central tank batteries (CTB), please see Exhibit F. Road: New and existing roads will be used. Please see Exhibit D for 5857 new road. Bulk Lines: 4082 of 8- 12 buried steel Bulk lines will be constructed in the same 30 trench. Please see Attachment B for route. Power: 1 pole, 173 of 480 volt, 4 wire, 3 phase overhead powerline will be constructed for the facility. Please see Exhibit I for powerline route.

Production Facilities map:

Red_Hills_Unit__Zone_1_West_CTB_Btty_Layout_20200708120443.pdf

Red_Hills_Unit__Zone_2_West_CTB_Btty_Layout_20200708120436.pdf

Red_Hills_Unit_102H_SUPO_20200713135936.pdf

 $Red_Hills_Unit_W2E2_W_Bulk_Flowline_ROW_20200713135947.pdf$

Red_Hills_Unit_W2E2_W_Power_ROW_20200713135954.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source type: MUNICIPAL

Water source use type: SURFACE CASING

INTERMEDIATE/PRODUCTION

CASING

Source latitude: Source longitude:

Source datum:

Water source permit type: WATER RIGHT

Permit Number:

Water source transport method: TRUCKING

Source land ownership: FEDERAL

Source transportation land ownership: FEDERAL

Water source volume (barrels): 5000 Source volume (acre-feet): 0.64446548

Source volume (gal): 210000

Well Name: RED HILLS UNIT Well Number: 102H

Water source and transportation

Red_Hills_Unit_W2E2_W_Drilling_Water_Routes_20200713140023.pdf

Water source comments:

New water well? N

New Water Well Info

Well latitude: Well Longitude: Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft): Est thickness of aquifer:

Aquifer comments:

Aquifer documentation:

Well depth (ft): Well casing type:

Well casing outside diameter (in.): Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method: Drill material:

Grout material: Grout depth:

Casing length (ft.): Casing top depth (ft.):

Well Production type: Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Using any construction materials: YES

Construction Materials description: Caliche will be obtained from the actual well site if available. If not available onsite caliche will be obtained for a pit located in Sec 3 26S 33E

Construction Materials source location

Section 7 - Methods for Handling

Waste type: DRILLING

Waste content description: Drilling Fluids, drill cuttings, water and other waste produced from the well during drilling

operations

Amount of waste: 15000 barrels

Waste disposal frequency : Weekly

Safe containment description: N/A

Safe containment attachment:

Received by OCD: 11/9/2022 11:15:59 AM

Page 61 of 82

Operator Name: CIMAREX ENERGY COMPANY

Well Name: RED HILLS UNIT Well Number: 102H

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Haul to R360 Environmental Solutions, 4507 Carlsbad Hwy, Hobbs, NM 88240

Waste type: SEWAGE

Waste content description: Human Waste

Amount of waste: 300 gallons

Waste disposal frequency: Weekly

Safe containment description: Waste will be properly contained and disposed of properly at a state approved disposal

facility.

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY

Disposal type description:

Disposal location description: A licensed 3rd party contractor will be used to haul and dispose human waste to City of

Toyah TX waste water facility.

Waste type: GARBAGE

Waste content description: Garbage and trash produced during drilling and completion operations

Amount of waste: 32500 pounds

Waste disposal frequency: Weekly
Safe containment description: N/A

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: A licensed 3rd party hauls trash to Lea County Landfill

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.) Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Well Name: RED HILLS UNIT Well Number: 102H

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? N

Description of cuttings location

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary

Are you requesting any Ancillary Facilities?: N

Ancillary Facilities

Comments:

Section 9 - Well Site

Well Site Layout Diagram:

Red_Hills_Unit_102H_Wellsite_Layout_20211020130442.pdf

Red_Hills_Unit_pad_3_W2E2_W_Wellsite_Pad_Info_20200713144244__1__20211020130831.pdf

Comments: This multi-well pad has wells Red Hills Unit 99H 100H 101H 102H 103H 104H 105H 106H 107H 108H 109H 110H 111H 112H

Section 10 - Plans for Surface

Type of disturbance: New Surface Disturbance Multiple Well Pad Name: Red Hills Unit

Multiple Well Pad Number: W2E2-W

Recontouring

Red_Hills_Unit_W2E2_W_Interim_Reclaimation_20200713144304.pdf

Drainage/Erosion control construction: To control and prevent potentially contaminated precipitation from leaving the pad site, a perimeter berm and settlement pond will be installed. Contaminated water will be removed from pond, stored in waste tanks, and disposed of at a state approved facility. Standing water or puddles will not be allowed. Drainage ditches would be established and maintained on the pad and along access roads to divert water away from operations. Natural drainage areas disturbed during construction would be re-contoured to near original condition prior to construction. Erosion Control Best Management Practices would be used where necessary and consist of seeding, fiber rolls, water bars, silt fences, and temporary diversion dikes. Areas disturbed during construction that are no longer needed for operations would be obliterated, re-contoured to near original condition prior to construction. Erosion Control Best Management Practices would be used where necessary and consist of seeding, fiber rolls, water bars, silt

Well Name: RED HILLS UNIT Well Number: 102H

fences, and temporary diversion dikes. Areas disturbed during construction that are no longer needed for operations would be obliterated, re-contoured, and reclaimed to near original condition to re-establish natural drainage.

Drainage/Erosion control reclamation: All disturbed and re-contoured areas would be reseeded according to specifications. Approved seed mixtures would be certified weed free and consist of grasses, forbs, or shrubs similar to the surrounding area. Compacted soil areas may need to be obliterated and reclaimed to near natural conditions by recontouring all slopes to facilitate and re-establish natural drainage.

Well pad proposed disturbance

Well pad interim reclamation (acres): 3 Well pad long term disturbance

(acres): 6.69

Road proposed disturbance (acres):

Road interim reclamation (acres): 0

Road long term disturbance (acres):

Powerline proposed disturbance

(acres): 0.119

Powerline interim reclamation (acres): Powerline long term disturbance

(acres): 0.119

Pipeline proposed disturbance

Pipeline interim reclamation (acres): 0 Pipeline long term disturbance

(acres): 7.028

(acres): 7.028

(acres): 3.69

Other proposed disturbance (acres): 0 Other interim reclamation (acres): 0

Other long term disturbance (acres): 0

Total proposed disturbance: 17.871

Total interim reclamation: 3

Total long term disturbance: 14.87099999999999

Disturbance Comments:

Reconstruction method: After well plugging, all disturbed areas would be returned to the original contour or a contour that blends with the surrounding landform including roads unless the surface owner requests that they be left intact. In consultation with the surface owners it will be determined if any gravel or similar materials used to reinforce an area are to be removed, buried, or left in place during final reclamation. Salvaged topsoil, if any, would be re-spread evenly over the surfaces to be re-vegetated. As necessary, the soil surface would be prepared to provide a seedbed for re-establishment of desirable vegetation. Site preparation may include gouging, scarifying, dozer track-walking, mulching, or fertilizing. Reclamation, Re-vegetation, and Drainage: All disturbed and re-contoured areas would be reseeded using techniques outlined under Phase I and II of this plan or as specified by the land owner. Approved seed mixtures would be certified weed free and consist of grasses, forbs, or shrubs similar to the surrounding area. Compacted soil areas may need to be obliterated and reclaimed to near natural conditions by re-contouring all slopes to facilitate and re-establish natural drainage.

Topsoil redistribution: The original stock piled topsoil, if any, will be spread evenly over the areas being reclaimed and the original landform will be restored for all disturbed areas including well pad, production facilities, roads, pipelines, and power line corridors as close as possible to the original topography. The location will then be seeded.

Soil treatment: The soil surface would be prepared to provide a seedbed for reestablishment of desirable vegetation. Establish control of erosion and invasion of non-native plants to reestablish plant community.

Existing Vegetation at the well pad: N/A

Existing Vegetation at the well pad

Existing Vegetation Community at the road: N/A

Existing Vegetation Community at the road

Existing Vegetation Community at the pipeline: N/A

Existing Vegetation Community at the pipeline

Existing Vegetation Community at other disturbances: N/A

Well Name: RED HILLS UNIT Well Number: 102H

Existing Vegetation Community at other disturbances

Non native seed used? N

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? N

Seedling transplant description

Will seed be harvested for use in site reclamation? N

Seed harvest description:

Seed harvest description attachment:

Seed

Seed Table

Seed Summary
Seed Type Pounds/Acre

Total pounds/Acre:

Seed reclamation

Operator Contact/Responsible Official

First Name: Kanicia Last Name: Schlichting

Phone: (432)571-7894 Email: kschlichting@cimarex.com

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? N

Existing invasive species treatment description:

Existing invasive species treatment

Weed treatment plan description: N/A

Weed treatment plan

Monitoring plan description: N/A

Monitoring plan

Well Name: RED HILLS UNIT Well Number: 102H

Success standards: N/A

Pit closure description: N/A

Pit closure attachment:

Section 11 - Surface

Disturbance	type:	WELL PAD
-------------	-------	----------

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: PIPELINE

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT, PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Operator Name: CIMAREX ENERGY COMPANY				
Well Name: RED HILLS UNIT	Well Number: 102H			
Military Local Office:				
USFWS Local Office:				
Other Local Office:				
USFS Region:				
USFS Forest/Grassland:	USFS Ranger District:			
Fee Owner: Dinwidde Cattle Co.	Fee Owner Address: PO BOX 963 Capitan NM 88316			
Phone: (575)355-7610	Email:			
Surface use plan certification: YES				
Surface use plan certification document:				
Red_Hills_UnitSurface_owner_Agreeme	nt_20200727094138.pdf			
Surface access agreement or bond: AGREEMEN	NT			
Surface Access Agreement Need description: N	I/A			
Surface Access Bond BLM or Forest Service:				
BLM Surface Access Bond number:				
USFS Surface access bond number:				
Disturbance type: TRANSMISSION LINE				
Describe:				
Surface Owner: BUREAU OF LAND MANAGEMENT,PR	IVATE OWNERSHIP			
Other surface owner description:				
BIA Local Office:				
BOR Local Office:				
COE Local Office:				
DOD Local Office:				
NPS Local Office:				
State Local Office:				
Military Local Office:				
ISFWS Local Office:				

Other Local Office:

USFS Region:

Operator Name: CIMAREX ENERGY COMPANY Well Name: RED HILLS UNIT Well Number: 102H **USFS Forest/Grassland: USFS** Ranger District: Fee Owner: Dinwiddie Cattle Co. Fee Owner Address: PO BOX 963 Phone: (575)355-7610 Email: Surface use plan certification: YES Surface use plan certification document: Red_Hills_Unit__Surface_owner_Agreement_20200727094451.pdf Surface access agreement or bond: AGREEMENT Surface Access Agreement Need description: N/A **Surface Access Bond BLM or Forest Service: BLM Surface Access Bond number: USFS Surface access bond number:** Disturbance type: NEW ACCESS ROAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT, PRIVATE OWNERSHIP Other surface owner description: **BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: Military Local Office: USFWS Local Office:**

USFS Ranger District:

Other Local Office:

USFS Forest/Grassland:

USFS Region:

Well Name: RED HILLS UNIT Well Number: 102H

Fee Owner: Dinwiddie Cattle Co Fee Owner Address: PO Box 963

Phone: (575)355-7610 **Email:**

Surface use plan certification: YES

Surface use plan certification document:

Red_Hills_Unit__Surface_owner_Agreement_20200727094206.pdf

Surface access agreement or bond: AGREEMENT Surface Access Agreement Need description: N/A

Surface Access Bond BLM or Forest Service:

BLM Surface Access Bond number:

USFS Surface access bond number:

Section 12 - Other

Right of Way needed? Y

Use APD as ROW? Y

ROW Type(s): 281001 ROW - ROADS,288100 ROW - O&G Pipeline,289001 ROW- O&G Well Pad,FLPMA (Powerline)

ROW

SUPO Additional Information:

Use a previously conducted onsite? Y

Previous Onsite information: Location was moved 20 ft. south to avoid pipeline to north. V-Door West. Tops soil west. Interim reclamation: All sides. Access road is from Red Hills Unit 33 West Zone 2 CTB, north and then east (Following existing pipeline) to the NE corner of this proposed pad. Pad size is 500' (East/West) x 560' (North/South)

Other SUPO

SELF-CERTIFICATION STATEMENT SURFACE OWNER SURFACE USE PLAN

Federal Lease Number: NMNM5792

Well Name & Number: Red Hills Unit

I hereby certify to the Authorized Officer of the Bureau of Land Management that I have reached one of the following agreements with the Surface Owner; after failure of my good-faith effort to come to an agreement of any kind with the Surface Owner, have provided a Federal Bond and will provide evidence of service of such Federal Bond to the Surface Owner:

1.	I have a signed access agreement to enter the leased lands;
2	I have a signed waiver from the Surface Owner;
3. <u>X</u>	I have entered into an agreement regarding compensation to the Surface Owner for damages for loss of crops and tangible improvements;
4	Because I have been unable to reach either 1, 2 or 3 with the Surface Owner, I have obtained a Federal Bond to cover loss of crops and damages to tangible improvements and served the surface owner with a copy of the surface owner with a copy of the Federal Bond.
Cimarex	Energy Co.
Name of Operat	for or Agent for Operator
4	Della 7, 16, 2020
Signature of Op	erator Date

ACCESS AGREEMENT Section 33-25S-33E Lea County, NM

"Surface Owner name", ("Surface Owner"), has granted authority to Cimarex Energy Co. ("Cimarex") to enter onto the below described lands for all purposes necessary allowing Cimarex to proceed with its required permitting with the Bureau of Land Management.

Well name & # Red Hills Unit Section 33, 25S-33E Lea County, NM

The Surface Owner and Cimarex have also entered into negotiations for a Surface Damage Agreement to allow permanent access to the proposed location.

Executed this 16th day of July 2020

Jim Suchecki

Surface Landman

SELF-CERTIFICATION STATEMENT SURFACE OWNER SURFACE USE PLAN

Federal Lease Number: NMNM5792

Well Name & Number: Red Hills Unit

I hereby certify to the Authorized Officer of the Bureau of Land Management that I have reached one of the following agreements with the Surface Owner; after failure of my good-faith effort to come to an agreement of any kind with the Surface Owner, have provided a Federal Bond and will provide evidence of service of such Federal Bond to the Surface Owner:

1	I have a signed access agreement to enter the leased lands;
2	I have a signed waiver from the Surface Owner;
3. <u>X</u>	I have entered into an agreement regarding compensation to the Surface Owner for damages for loss of crops and tangible improvements;
4	Because I have been unable to reach either 1, 2 or 3 with the Surface Owner, I have obtained a Federal Bond to cover loss of crops and damages to tangible improvements and served the surface owner with a copy of the surface owner with a copy of the Federal Bond.
Cimarex	Energy Co.
Name of Operat	or or Agent for Operator
A.	Sell. 7,16,2020
Signature of On	erator Date

ACCESS AGREEMENT Section 33-25S-33E Lea County, NM

"Surface Owner name", ("Surface Owner"), has granted authority to Cimarex Energy Co. ("Cimarex") to enter onto the below described lands for all purposes necessary allowing Cimarex to proceed with its required permitting with the Bureau of Land Management.

Well name & # Red Hills Unit Section 33, 25S-33E Lea County, NM

The Surface Owner and Cimarex have also entered into negotiations for a Surface Damage Agreement to allow permanent access to the proposed location.

Executed this 16th day of July 2020

Jim Suchecki

Surface Landman

SELF-CERTIFICATION STATEMENT SURFACE OWNER SURFACE USE PLAN

Federal Lease Number: NMNM5792

Well Name & Number: Red Hills Unit

I hereby certify to the Authorized Officer of the Bureau of Land Management that I have reached one of the following agreements with the Surface Owner; after failure of my good-faith effort to come to an agreement of any kind with the Surface Owner, have provided a Federal Bond and will provide evidence of service of such Federal Bond to the Surface Owner:

1	I have a signed access agreement to enter the leased lands;
2	I have a signed waiver from the Surface Owner;
3. <u>X</u>	I have entered into an agreement regarding compensation to the Surface Owner for damages for loss of crops and tangible improvements;
4	Because I have been unable to reach either 1, 2 or 3 with the Surface Owner, I have obtained a Federal Bond to cover loss of crops and damages to tangible improvements and served the surface owner with a copy of the surface owner with a copy of the Federal Bond.
Cimarex	Energy Co.
Name of Operat	for or Agent for Operator
A	DIL. 7, 16, 2020
Signature of Op	erator Date

ACCESS AGREEMENT Section 33-25S-33E Lea County, NM

"Surface Owner name", ("Surface Owner"), has granted authority to Cimarex Energy Co. ("Cimarex") to enter onto the below described lands for all purposes necessary allowing Cimarex to proceed with its required permitting with the Bureau of Land Management.

Well name & # Red Hills Unit Section 33, 25S-33E Lea County, NM

The Surface Owner and Cimarex have also entered into negotiations for a Surface Damage Agreement to allow permanent access to the proposed location.

Executed this 16th day of July 2020

Jim Suchecki

Surface Landman

SELF-CERTIFICATION STATEMENT SURFACE OWNER SURFACE USE PLAN

Federal Lease Number: NMNM5792

Well Name & Number: Red Hills Unit

I hereby certify to the Authorized Officer of the Bureau of Land Management that I have reached one of the following agreements with the Surface Owner; after failure of my good-faith effort to come to an agreement of any kind with the Surface Owner, have provided a Federal Bond and will provide evidence of service of such Federal Bond to the Surface Owner:

1	I have a signed access agreement to enter the leased lands;
2	I have a signed waiver from the Surface Owner;
3. <u>X</u>	I have entered into an agreement regarding compensation to the Surface Owner for damages for loss of crops and tangible improvements;
4	Because I have been unable to reach either 1, 2 or 3 with the Surface Owner, I have obtained a Federal Bond to cover loss of crops and damages to tangible improvements and served the surface owner with a copy of the surface owner with a copy of the Federal Bond.
Cimarex	Energy Co.
Name of Operat	for or Agent for Operator
A	Sell. 7, 16, 2020
Signature of Op	erator Date

ACCESS AGREEMENT Section 33-25S-33E Lea County, NM

"Surface Owner name", ("Surface Owner"), has granted authority to Cimarex Energy Co. ("Cimarex") to enter onto the below described lands for all purposes necessary allowing Cimarex to proceed with its required permitting with the Bureau of Land Management.

Well name & # Red Hills Unit Section 33, 25S-33E Lea County, NM

The Surface Owner and Cimarex have also entered into negotiations for a Surface Damage Agreement to allow permanent access to the proposed location.

Executed this 16th day of July 2020

Jim Suchecki

Surface Landman

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

PWD Data Report

PWD disturbance (acres):

APD ID: 10400058953 **Submission Date:** 08/10/2020

Operator Name: CIMAREX ENERGY COMPANY

Well Name: RED HILLS UNIT

Well Number: 102H

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined

Would you like to utilize Lined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit

Pit liner description:

Pit liner manufacturers

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule

Lined pit reclamation description:

Lined pit reclamation

Leak detection system description:

Leak detection system

Well Name: RED HILLS UNIT Well Number: 102H

Lined pit Monitor description:

Lined pit Monitor

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information

Section 3 - Unlined

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule

Unlined pit reclamation description:

Unlined pit reclamation

Unlined pit Monitor description:

Unlined pit Monitor

Do you propose to put the produced water to beneficial use?

Beneficial use user

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic

State

Unlined Produced Water Pit Estimated

Unlined pit: do you have a reclamation bond for the pit?

Well Name: RED HILLS UNIT Well Number: 102H

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information

Section 4 -

Would you like to utilize Injection PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number: Injection well name:

Assigned injection well API number? Injection well API number:

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection

Underground Injection Control (UIC) Permit?

UIC Permit

Section 5 - Surface

Would you like to utilize Surface Discharge PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 -

Would you like to utilize Other PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Other PWD discharge volume (bbl/day):

Well Name: RED HILLS UNIT Well Number: 102H

Other PWD type description:

Other PWD type

Have other regulatory requirements been met?

Other regulatory requirements

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data

APD ID: 10400058953

Operator Name: CIMAREX ENERGY COMPANY

Well Name: RED HILLS UNIT

Well Type: OIL WELL

Submission Date: 08/10/2020

Highlighted data reflects the most recent changes

Well Number: 102H

Well Work Type: Drill

recent changes Show Final Text

Bond

Federal/Indian APD: FED

BLM Bond number: NMB001188

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 157349

CONDITIONS

Operator:	OGRID:
CIMAREX ENERGY CO.	215099
600 N. Marienfeld Street	Action Number:
Midland, TX 79701	157349
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104	11/10/2022
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	11/10/2022
pkautz	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	11/10/2022
pkautz	Cement is required to circulate on both surface and intermediate1 strings of casing	11/10/2022