Form C-101

August 1, 2011 Permit 341228

40760

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

LOVINGTON;UPPER PENN, NORTHEAST

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

		APPLICA	ATION FOR PE	RMIT T	O DRILL, RE-I	ENTER, DEEPEN	N, PLUGBAC	K, OR ADD	A ZONI	E		
1. Operator Nam									2. OGRIE			
MAT	ADOR PRODUCT	ON COMPANY	,							228937		
One	Lincoln Centre								3. API Nu	umber		
Dalla	as, TX 75240									30-025-51560		
4. Property Code	е		5. Property Name						6. Well N	0.		
3340	082		RANDY	ALLEN 1	6 16S 37E STAT	E				001		
					7. Surfa	ace Location						
UL - Lot	Section	Township	Range		Lot Idn	Feet From	N/S Line	Feet From		E/W Line	County	
0	16	16	SS .	37E	0	408	S	2	060	E		Lea
		•			8. Proposed Bo	ottom Hole Location	n					
UL - Lot	Section	Township	Range		Lot Idn	Feet From	N/S Line	Feet From		E/W Line	County	
_	16	1 10	30	27E		171	c		400		1	1.00

9. Pool Information

	Additional Well Information						
11. Work Type	12. Well Type	13. Cable/Rotary	14. Lease Type	15. Ground Level Elevation			
New Well	OIL		State	3801			
16. Multiple	17. Proposed Depth	18. Formation	19. Contractor	20. Spud Date			
N	12145	Atoka		9/23/2023			
Depth to Ground water		Distance from nearest fresh water	well	Distance to nearest surface water			

We will be using a closed-loop system in lieu of lined pits

21. Proposed Casing and Cement Program

				, aa e ee e g. a		
Ту	pe Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC
Sı	ırf 14.75	9.625	36	1776	1700	0
Pr	od 8.75	5.5	17	12145	1810	0

Casing/Cement Program: Additional Comments

Optional DV/Packer placed at least 50' outside surface shoe

22. Proposed Blowout Prevention Program

Туре	Working Pressure	Test Pressure	Manufacturer
Annular	5000	3000	Cameron
Double Ram	10000	5000	Cameron
Pipe	10000	5000	Cameron

knowledge and b	pelief.	true and complete to the best of my NMAC ☑ and/or 19.15.14.9 (B) NMAC		OIL CONSERVA	ATION DIVISION	
Signature:						
Printed Name:	Electronically filed by Brett A Jen	nings	Approved By:	Paul F Kautz		
Title:	Regulatory Analyst		Title:	Geologist		
Email Address: brett.jennings@matadorresources.com			Approved Date:	6/2/2023	Expiration Date: 6/2/2025	
Date:	5/30/2023	Phone: 972-629-2160	Conditions of Appr	roval Attached	•	

DISTRICT I 1625 N. FRENCH DR., HOBBS, NM 88240 Phone: (575) 393-6101 Fax: (575) 393-0720

DISTRICT II 811 S. FIRST ST., ARTESIA, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

DISTRICT III 1000 RIO BRAZOS RD., AZTEC, NM 67410 Phone: (505) 334-6178 Fax: (505) 334-6170

DISTRICT IV 1220 S. ST. FRANCIS DR., SANTA FE, NM 67505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department

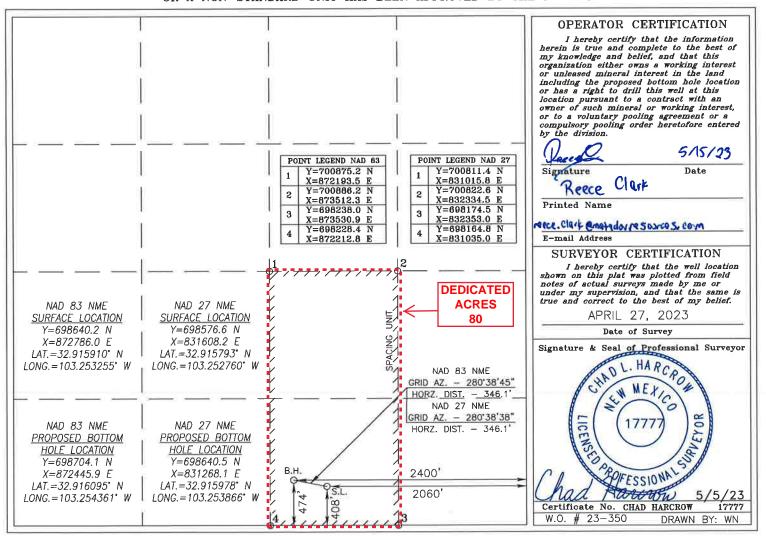
> CONSERVATION DIVISION 1220 SOUTH ST. FRANCIS DR. Santa Fe, New Mexico 87505

Form C-102
Revised August 1, 2011
Submit one copy to appropriate
District Office

□ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

API Number	Pool Code	Pool Name	
30-025-51560	40760	Lovington; Upper Penn.	
Property Code		erty Name	Well Number
334082	RANDY ALLEN 1	6-16S-37E STATE	1
OGRID No.		ator Name	Elevation
228937	MATADOR PROD	OUCTION COMPANY	3801.9


Surface Location

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
0	16	16-S	37-E		408	SOUTH	2060	EAST	LEA

Bottom Hole Location If Different From Surface

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
0	16	16-S	37-E		474	SOUTH	2400	EAST	LEA
Dedicated Acres Joint or Infill Consolidation Code				Code Or	der No.				
80				N	ISL				

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

Permit 341228

Form APD Comments

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240

Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III
1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

PERMIT COMMENTS

Operator Name and Address:	API Number:
MATADOR PRODUCTION COMPANY [228937]	30-025-51560
One Lincoln Centre	Well:
Dallas, TX 75240	RANDY ALLEN 16 16S 37E STATE #001

Created By	Comment	omment Date
ekosakowsk	Matador will separately file for administrative approval for an non-standard location for this well 5/3	30/2023

Permit 341228

Form APD Conditions

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

PERMIT CONDITIONS OF APPROVAL

Operator Name and Address:	API Number:	
MATADOR PRODUCTION COMPANY [228937]	30-025-51560	
One Lincoln Centre	Well:	
Dallas, TX 75240	RANDY ALLEN 16 16S 37E STATE #001	

OCD	Condition
Reviewer	
pkautz	Notify OCD 24 hours prior to casing & cement
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh
	water zone or zones and shall immediately set in cement the water protection string
pkautz	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud,
	drilling fluids and solids must be contained in a steel closed loop system
pkautz	Cement is required to circulate on both surface and intermediate1 strings of casing
pkautz	The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud

Addendum to Natural Gas Management Plan for Matador's

Randy Allen 16-16S-37E #1

VI. Separation Equipment

Flow from the well will be routed via a flowline to a 72"x20' three phase heater treater dedicated to the well. The heater treater is sized with input from BRE ProMax and API 12J. Expected production from the Monika 14-17S-37E #1 well is approximately 600 mcfd, 300 bopd, and 50 bwpd. Liquid retention times at expected maximum rates will be >3 minutes. Gas will be routed from the heater treater to sales. The gas from the heater treater(s) could either be sent to sales or routed to a compressor if the sales line pressure is higher than the MAWP of the heater treater (125 psi). From the heater treater, hydrocarbon liquid and water will be routed to the tanks where vapor is compressed by a VRU if technically feasible to either sales or a compressor if the sales line pressure is higher than the VRU's maximum discharge pressure (~150 psi). Therefore, Matador has sized our separation equipment to optimize gas capture and our separation equipment is of sufficient size to handle the expected volumes of gas.

VII. Operation Practices

Although not a complete recitation of all our efforts to comply with a subsection A through F of 19.15.27.8 NMAC, a summary is as follows. During drilling, Matador will have a properly sized flare stack at least 100 feet from the nearest surface hole. During initial flowback we will route the flowback fluids into completion or storage tanks and, to the extent possible, flare rather than vent any gas. We will commence operation of the heater treater as soon as technically feasible, and have instructed our team that we want to connect the gas to sales as soon as possible but not later than 30 days after initial flowback.

Regarding production operations, we have designed our production facilities to be compliant with the requirements of Part E of 19.15.27.8 NMAC. We will instruct our team to perform the AVOs on the frequency required under the rules. While the well is producing, we will take steps to minimize flaring during maintenance, as set forth below, and we have a process in place for the measuring of any flared gas and the reporting of any reportable flaring events.

VII. Best Management Practices

Steps are taken to minimize venting during active or planned maintenance when technically feasible including:

- Isolating the affected component and reducing pressure through process piping
- Blowing down the equipment being maintained to a control device
- Performing preventative maintenance and minimizing the duration of maintenance activities
- Shutting in sources of supply as possible
- Other steps that are available depending on the maintenance being performed

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically
Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: Matador	Production	Company	OGRID: <u>22</u>	8937		Date:_	5-18.	-33
II. Type: ⊠Original □	Amendment	due to ☐ 19.15.27.9	9.D(6)(a) NMAC	C □ 19.15.27.9.D(6)(b) N	МАС 🗆 С	Other.	
If Other, please describ	e:				i i			
III. Well(s): Provide the recompleted from a sin					wells p	roposed to	be dril	lled or proposed to be
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D		ticipated MCF/D		Anticipated Produced Water BBL/D
Randy Allen 16-16S-37E #1	TBD	UL-O Sec 16 T16S R3	7E 408' FSL 2,060' FEL	300	600		50	
V. Anticipated Schedu proposed to be recomp					n	Initial	Flow	First Production Date
Randy Allen 16-16S-37E #1	TBD	9/23/2023	10/5/2023	10/10/2023		10/23/2023		10/23/2023
VI. Separation Equipovil. Operational Prace Subsection A through E VIII. Best Manageme during active and plann	etices: Att of 19.15.27. nt Practices:	ach a complete descar 8 NMAC.	ription of the act	ions Operator will	take to	comply w	ith the	requirements of

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

☑ Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated N	Natural Gas	Production:
-------------------	-------------	--------------------

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity o
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural	gas gathering system 🗆 v	will 🗌 will not have	e capacity to gather	100% of the anticipated r	ıatural gas
production volume from the well p	prior to the date of first pr	roduction.			

XIII. Line Pressure. Operator \(\square\) does \(\square\) does not anticipate that its existing well(s) connected to the same segment, or portion, of	f the
natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well((s).

Attach C	perator's	s pla	in to manage prod	luction in	response to t	he	increased	line	pressure

XIV. Confid-	entiality: Deerate	or asserts	confidentiality	pursuant 1	to Section	71-2-8	NMSA	1978 f	or the	information	provided	in
Section 2 as p	rovided in Paragrap	h (2) of Su	absection D of	19.15.27.9	NMAC, an	nd attacl	hes a full	descrip	otion of	f the specific	information	on
for which con	fidentiality is assert	ed and the	basis for such	assertion.								

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

⊠Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

□Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system.

If Operator checks this box, Operator will select one of the following:

Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:	
Printed Name: Ryan Hernandez	74
Title: Senior Facilities Engineer	1
E-mail Address: rhernandez@matadorresources.com	
Date: 5-18-23	
Phone: (972) 371-5427	
OIL CONSERVATION DIVISION	
(Only applicable when submitted as a standalone form)	
Approved By:	
Title:	
Approval Date,	
Conditions of Approval:	

Matador Production Company

Twin Lakes
Randy Allen
Randy Allen State #1

Wellbore #1

Plan: State Plan #2

Standard Planning Report

20 May, 2023

EDM 5000.14 Single User Db Database: Company: Matador Production Company

Project: Twin Lakes Site: Randy Allen Well: Randy Allen State #1

Wellbore: Wellbore #1 State Plan #2 Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Randy Allen State #1

KB @ 3830.4usft KB @ 3830.4usft

Grid

Minimum Curvature

Project Twin Lakes

Map System: Geo Datum:

Map Zone:

US State Plane 1927 (Exact solution) NAD 1927 (NADCON CONUS)

New Mexico East 3001

System Datum:

Mean Sea Level

Using geodetic scale factor

Randy Allen Site

Northing: 698,576.60 usft Site Position: Latitude: 32° 54' 56.855 N From: Мар Easting: 831,608.20 usft Longitude: 103° 15' 9.935 W 0.0 usft Slot Radius: 13-3/16 " Grid Convergence: 0.59° **Position Uncertainty:**

Well Randy Allen State #1

Well Position +N/-S 0.0 usft 698,576.60 usft Latitude: 32° 54' 56.855 N Northing: +E/-W 0.0 usft Easting: 831,608.20 usft Longitude: 103° 15' 9.935 W **Position Uncertainty** 0.0 usft Wellhead Elevation: **Ground Level:** 3,801.9 usft

Wellbore	Wellbore #1					
Magnetics	Model Name	Sample Date	Declination	Dip Angle	Field Strength	
			(°)	(°)	(nT)	
	IGRF2015	5/10/2023	6.20	60.65	47,764.09198381	

Design State Plan #2 **Audit Notes:** Version: Phase: **PROTOTYPE** Tie On Depth: 0.0 Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°) 280.64 0.0 0.0 0.0

Date 5/19/2023 Plan Survey Tool Program **Depth From** Depth To (usft) (usft) Survey (Wellbore) **Tool Name** Remarks 0.0 MWD 12,145.9 State Plan #2 (Wellbore #1)

OWSG MWD - Standard

Plan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,300.0	0.00	0.00	2,300.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,530.2	2.30	280.64	2,530.2	0.9	-4.5	1.00	1.00	0.00	280.64	
10,915.7	2.30	280.64	10,908.8	63.1	-335.6	0.00	0.00	0.00	0.00	
11,145.9	0.00	0.00	11,139.0	63.9	-340.1	1.00	-1.00	0.00	180.00	VP - Randy Allen Stat
12,145.9	0.00	0.00	12,139.0	63.9	-340.1	0.00	0.00	0.00	0.00	BHL - Randy Allen Sta

Database: EDM 5000.14 Single User Db Company: Matador Production Company

Project: Twin Lakes
Site: Randy Allen
Well: Randy Allen State #1
Wellbore: Wellbore #1
Design: State Plan #2

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:
Survey Calculation Method:

Well Randy Allen State #1 KB @ 3830.4usft

KB @ 3830.4usft Grid

Minimum Curvature

lanned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0		0.00							
	0.00		800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,104.0	0.00	0.00	2,104.0	0.0	0.0	0.0	0.00	0.00	0.00
Rustler									
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,400.0	1.00	280.64	2,400.0	0.2	-0.9	0.9	1.00	1.00	0.00
2,500.0	2.00	280.64	2,500.0	0.6	-3.4	3.5	1.00	1.00	0.00
2,530.2	2.30	280.64	2,530.2	0.9	-4.5	4.6	1.00	1.00	0.00
2,600.0	2.30	280.64	2,599.9	1.4	-7.3	7.4	0.00	0.00	0.00
2,700.0	2.30	280.64	2,699.8	2.1	-11.2	11.4	0.00	0.00	0.00
						11.4			
2,800.0	2.30	280.64	2,799.7	2.9	-15.2	15.5	0.00	0.00	0.00
2,900.0	2.30	280.64	2,899.6	3.6	-19.1	19.5	0.00	0.00	0.00
3,000.0	2.30	280.64	2,999.6	4.3	-23.1	23.5	0.00	0.00	0.00
3,100.0	2.30	280.64	3,099.5	5.1	-27.0	27.5	0.00	0.00	0.00
3,162.6	2.30	280.64	3,162.0	5.5	-29.5	30.0	0.00	0.00	0.00
Base salts/to	p Artesia grp sa	ınds							
2 200 0	2.20	200.64	2 100 1	F 0	24.0	24 5	0.00	0.00	0.00
3,200.0	2.30	280.64	3,199.4	5.8	-31.0	31.5	0.00	0.00	0.00
3,300.0	2.30	280.64	3,299.3	6.6	-34.9	35.5	0.00	0.00	0.00
3,400.0	2.30	280.64	3,399.2	7.3	-38.9	39.6	0.00	0.00	0.00
3,500.0	2.30	280.64	3,499.2	8.0	-42.8	43.6	0.00	0.00	0.00
3,600.0	2.30	280.64	3,599.1	8.8	-46.8	47.6	0.00	0.00	0.00
3,700.0	2.30	280.64	3,699.0	9.5	-50.7	51.6	0.00	0.00	0.00
3,800.0	2.30	280.64	3,798.9	10.3	-54.7	55.6	0.00	0.00	0.00
3,900.0	2.30	280.64	3,898.8	11.0	-58.6	59.6	0.00	0.00	0.00
4,000.0	2.30	280.64	3,998.8	11.8	-62.6	63.7	0.00	0.00	0.00
4,100.0	2.30	280.64	4,098.7	12.5	-66.5	67.7	0.00	0.00	0.00
	2.30	200.04	4,090.7	12.5		07.7	0.00	0.00	0.00
4,200.0	2.30	280.64	4,198.6	13.2	-70.5	71.7	0.00	0.00	0.00
4,300.0	2.30	280.64	4,298.5	14.0	-74.4	75.7	0.00	0.00	0.00
4,400.0	2.30	280.64	4,398.4	14.7	-78.4	79.7	0.00	0.00	0.00
4,500.0	2.30	280.64	4,498.3	15.5	-82.3	83.8	0.00	0.00	0.00
4,600.0	2.30	280.64	4,598.3	16.2	-86.3	87.8	0.00	0.00	0.00

Database: EDM 5000.14 Single User Db Company: Matador Production Company

Project: Twin Lakes
Site: Randy Allen
Well: Randy Allen State #1
Wellbore: Wellbore #1
Design: State Plan #2

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:
Survey Calculation Method:

Well Randy Allen State #1 KB @ 3830.4usft

KB @ 3830.4usft Grid

Minimum Curvature

Measured Depth Inclination Azimuth Depth Cy Cy Cy Cy Cy Cy Cy C										
Depth Inclination Azimuth Cyr (usft) (usft)	anned Survey									
4,900.0	Depth			Depth			Section	Rate	Rate	Rate
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	4,900.0 5,000.0	2.30 2.30	280.64 280.64	4,898.0 4,997.9	18.4 19.2	-98.1 -102.1	99.8 103.8	0.00 0.00	0.00 0.00	0.00 0.00
5,200.0 2,30 280.64 5,197.8 20.7 -109.9 111.9 0.00 0.00 0.00 0.00 5,300.0 2,30 280.64 5,297.7 21.4 -113.9 115.9 0.00 0.00 0.00 0.00 5,500.0 2,30 280.64 5,397.6 22.1 -117.8 119.9 0.00 0.00 0.00 0.00 5,500.0 2,30 280.64 5,407.5 22.9 -121.8 112.9 0.00 0.00 0.00 0.00 5,500.0 2,30 280.64 5,507.5 22.6 125.7 127.9 0.00 0.00 0.00 0.00 5,500.0 2,30 280.64 5,507.5 22.6 125.7 127.9 0.00 0.00 0.00 0.00 5,500.0 2,30 280.64 5,507.5 22.6 125.7 127.9 0.00 0.00 0.00 0.00 5,800.0 2,30 280.64 5,807.3 25.8 1-137.6 140.0 0.00 0.00 0.00 0.00 5,800.0 2,30 280.64 5,807.1 25.8 1-137.6 140.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	San Andres									
6.5700.0	5,200.0 5,300.0 5,400.0	2.30 2.30 2.30	280.64 280.64 280.64	5,197.8 5,297.7 5,397.6	20.7 21.4 22.1	-109.9 -113.9 -117.8	111.9 115.9 119.9	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
6,200.0	5,700.0 5,800.0 5,900.0	2.30 2.30 2.30	280.64 280.64 280.64	5,697.4 5,797.3 5,897.2	24.4 25.1 25.8	-129.7 -133.6 -137.6	132.0 136.0 140.0	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
Glorieta 6,600.0 2,30 280.64 6,596.7 31.0 -165.2 168.1 0.00 0.00 0.00 0.00 6,700.0 2.30 280.64 6,696.6 31.8 -169.2 172.1 0.00 0.00 0.00 0.00 6,800.0 2.30 280.64 6,796.5 32.5 -173.1 176.1 0.00	6,200.0 6,300.0 6,400.0	2.30 2.30 2.30	280.64 280.64 280.64	6,197.0 6,296.9 6,396.8	28.1 28.8 29.6	-149.4 -153.4 -157.3	152.0 156.1 160.1	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
6,600.0		2.30	280.64	6,517.0	30.5	-162.1	164.9	0.00	0.00	0.00
7,000.0 2.30 280.64 6,996.3 34.0 -181.0 184.2 0.00 0.00 0.00 7,100.0 2.30 280.64 7,096.2 34.8 -185.0 188.2 0.00 0.00 0.00 7,200.0 2.30 280.64 7,196.2 35.5 -188.9 192.2 0.00 0.00 0.00 7,300.0 2.30 280.64 7,296.1 36.2 -192.9 196.2 0.00 0.00 0.00 7,600.0 2.30 280.64 7,396.0 37.0 -196.8 200.2 0.00 0.00 0.00 7,500.0 2.30 280.64 7,495.8 38.5 -204.7 208.3 0.00 0.00 0.00 7,700.0 2.30 280.64 7,695.8 39.2 -208.6 212.3 0.00 0.00 0.00 7,788.3 2.30 280.64 7,784.0 39.9 -212.6 216.3 0.00 0.00 0.00 7,800.0 <t< td=""><td>6,600.0 6,700.0 6,800.0</td><td>2.30 2.30</td><td>280.64 280.64</td><td>6,696.6 6,796.5</td><td>31.8 32.5</td><td>-169.2 -173.1</td><td>172.1 176.1</td><td>0.00 0.00</td><td>0.00 0.00</td><td>0.00 0.00</td></t<>	6,600.0 6,700.0 6,800.0	2.30 2.30	280.64 280.64	6,696.6 6,796.5	31.8 32.5	-169.2 -173.1	172.1 176.1	0.00 0.00	0.00 0.00	0.00 0.00
7,500.0 2.30 280.64 7,495.9 37.7 -200.7 204.3 0.00 0.00 0.00 7,600.0 2.30 280.64 7,595.8 38.5 -204.7 208.3 0.00 0.00 0.00 7,700.0 2.30 280.64 7,695.8 39.2 -208.6 212.3 0.00 0.00 0.00 7,788.3 2.30 280.64 7,784.0 39.9 -212.1 215.8 0.00 0.00 0.00 Tubb 7,800.0 2.30 280.64 7,795.7 39.9 -212.6 216.3 0.00 0.00 0.00 7,900.0 2.30 280.64 7,895.6 40.7 -216.5 220.3 0.00 0.00 0.00 8,000.0 2.30 280.64 7,995.5 41.4 -220.5 224.3 0.00 0.00 0.00 8,200.0 2.30 280.64 8,195.4 42.2 -224.4 228.4 0.00 0.00	7,100.0 7,200.0 7,300.0	2.30 2.30 2.30	280.64 280.64 280.64	7,096.2 7,196.2 7,296.1	34.8 35.5 36.2	-185.0 -188.9 -192.9	188.2 192.2 196.2	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
7,800.0 2.30 280.64 7,795.7 39.9 -212.6 216.3 0.00 0.00 0.00 7,900.0 2.30 280.64 7,895.6 40.7 -216.5 220.3 0.00 0.00 0.00 8,000.0 2.30 280.64 7,995.5 41.4 -220.5 224.3 0.00 0.00 0.00 8,100.0 2.30 280.64 8,095.4 42.2 -224.4 228.4 0.00 0.00 0.00 8,200.0 2.30 280.64 8,195.4 42.9 -228.4 232.4 0.00 0.00 0.00 8,300.0 2.30 280.64 8,295.3 43.7 -232.3 236.4 0.00 0.00 0.00 8,400.0 2.30 280.64 8,395.2 44.4 -236.3 240.4 0.00 0.00 0.00 8,500.0 2.30 280.64 8,495.1 45.1 -240.2 244.4 0.00 0.00 0.00 0.00 8	7,500.0 7,600.0 7,700.0	2.30 2.30 2.30	280.64 280.64 280.64	7,495.9 7,595.8 7,695.8	37.7 38.5 39.2	-200.7 -204.7 -208.6	204.3 208.3 212.3	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
7,900.0 2.30 280.64 7,895.6 40.7 -216.5 220.3 0.00 0.00 0.00 8,000.0 2.30 280.64 7,995.5 41.4 -220.5 224.3 0.00 0.00 0.00 8,100.0 2.30 280.64 8,095.4 42.2 -224.4 228.4 0.00 0.00 0.00 8,200.0 2.30 280.64 8,195.4 42.9 -228.4 232.4 0.00 0.00 0.00 8,300.0 2.30 280.64 8,295.3 43.7 -232.3 236.4 0.00 0.00 0.00 8,400.0 2.30 280.64 8,395.2 44.4 -236.3 240.4 0.00 0.00 0.00 8,500.0 2.30 280.64 8,495.1 45.1 -240.2 244.4 0.00 0.00 0.00 8,700.0 2.30 280.64 8,695.0 45.9 -244.2 248.5 0.00 0.00 0.00 8,700.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
8,500.0 2.30 280.64 8,495.1 45.1 -240.2 244.4 0.00 0.00 0.00 8,600.0 2.30 280.64 8,595.0 45.9 -244.2 248.5 0.00 0.00 0.00 8,700.0 2.30 280.64 8,695.0 46.6 -248.1 252.5 0.00 0.00 0.00 8,800.0 2.30 280.64 8,794.9 47.4 -252.1 256.5 0.00 0.00 0.00 8,900.0 2.30 280.64 8,894.8 48.1 -256.0 260.5 0.00 0.00 0.00 9,000.0 2.30 280.64 8,994.7 48.8 -260.0 264.5 0.00 0.00 0.00 9,100.0 2.30 280.64 9,094.6 49.6 -263.9 268.5 0.00 0.00 0.00 9,200.0 2.30 280.64 9,194.6 50.3 -267.9 272.6 0.00 0.00 0.00 9,300.0 2.30 280.64 9,294.5 51.1 -271.8 276.6 0.00 0.00	7,900.0 8,000.0 8,100.0 8,200.0	2.30 2.30 2.30 2.30	280.64 280.64 280.64 280.64	7,895.6 7,995.5 8,095.4 8,195.4	40.7 41.4 42.2 42.9	-216.5 -220.5 -224.4 -228.4	220.3 224.3 228.4 232.4	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
9,000.0 2.30 280.64 8,994.7 48.8 -260.0 264.5 0.00 0.00 0.00 9,100.0 2.30 280.64 9,094.6 49.6 -263.9 268.5 0.00 0.00 0.00 9,200.0 2.30 280.64 9,194.6 50.3 -267.9 272.6 0.00 0.00 0.00 9,300.0 2.30 280.64 9,294.5 51.1 -271.8 276.6 0.00 0.00 0.00	8,500.0 8,600.0 8,700.0	2.30 2.30 2.30	280.64 280.64 280.64	8,495.1 8,595.0 8,695.0	45.1 45.9 46.6	-240.2 -244.2 -248.1	244.4 248.5 252.5	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00 0.00
	9,000.0 9,100.0 9,200.0	2.30 2.30 2.30	280.64 280.64 280.64	8,994.7 9,094.6 9,194.6	48.8 49.6 50.3	-260.0 -263.9 -267.9	264.5 268.5 272.6	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
					51.8	-275.8				

Database: EDM 5000.14 Single User Db Company: Matador Production Company

Twin Lakes

Site: Randy Allen

Well: Randy Allen State #1

Wellbore: Wellbore #1

Design: State Plan #2

Project:

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:
Survey Calculation Method:

Well Randy Allen State #1

KB @ 3830.4usft KB @ 3830.4usft

Grid

Minimum Curvature

ed Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,500.0	2.30	280.64	9,494.3	52.6	-279.7	284.6	0.00	0.00	0.00
9,600.0	2.30	280.64	9,594.2	53.3	-283.7	288.6	0.00	0.00	0.00
9,700.0	2.30	280.64	9,694.2	54.0	-287.6	292.6	0.00	0.00	0.00
9,800.0	2.30	280.64	9,794.1	54.8	-291.6	296.7	0.00	0.00	0.00
9,900.0	2.30	280.64	9,894.0	55.5	-295.5	300.7	0.00	0.00	0.00
10,000.0	2.30	280.64	9,993.9	56.3	-299.4	304.7	0.00	0.00	0.00
10,100.0	2.30	280.64	10,093.8	57.0	-303.4	308.7	0.00	0.00	0.00
10,200.0	2.30	280.64	10,193.7	57.7	-307.3	312.7	0.00	0.00	0.00
10,300.0	2.30	280.64	10,293.7	58.5	-311.3	316.7	0.00	0.00	0.00
10,400.0	2.30	280.64	10,393.6	59.2	-315.2	320.8	0.00	0.00	0.00
10,500.0	2.30	280.64	10,493.5	60.0	-319.2	324.8	0.00	0.00	0.00
10,600.0	2.30	280.64	10,593.4	60.7	-323.1	328.8	0.00	0.00	0.00
10,700.0	2.30	280.64	10,693.3	61.5	-327.1	332.8	0.00	0.00	0.00
10,800.0	2.30	280.64	10,793.3	62.2	-331.0	336.8	0.00	0.00	0.00
10,838.8	2.30	280.64	10,832.0	62.5	-332.6	338.4	0.00	0.00	0.00
Wolfcamp D									
10,900.0	2.30	280.64	10,893.2	62.9	-335.0	340.8	0.00	0.00	0.00
10,915.7	2.30	280.64	10,908.8	63.1	-335.6	341.5	0.00	0.00	0.00
11,000.0	1.46	280.64	10,993.1	63.6	-338.3	344.2	1.00	-1.00	0.00
11,047.9	0.98	280.64	11,041.0	63.8	-339.3	345.3	1.00	-1.00	0.00
Penn Shale									
11,100.0	0.46	280.64	11,093.1	63.9	-340.0	345.9	1.00	-1.00	0.00
11,145.9	0.00	0.00	11,139.0	63.9	-340.1	346.1	1.00	-1.00	0.00
11,200.0	0.00	0.00	11,193.1	63.9	-340.1	346.1	0.00	0.00	0.00
11,300.0	0.00	0.00	11,293.1	63.9	-340.1	346.1	0.00	0.00	0.00
11,301.9	0.00	0.00	11,295.0	63.9	-340.1	346.1	0.00	0.00	0.00
Strawn									
11,400.0	0.00	0.00	11,393.1	63.9	-340.1	346.1	0.00	0.00	0.00
11,500.0	0.00	0.00	11,493.1	63.9	-340.1	346.1	0.00	0.00	0.00
11,600.0	0.00	0.00	11,593.1	63.9	-340.1	346.1	0.00	0.00	0.00
11.700.0	0.00	0.00	11.693.1	63.9	-340.1	346.1	0.00	0.00	0.00
11,800.0	0.00	0.00	11,793.1	63.9	-340.1	346.1	0.00	0.00	0.00
11,845.9	0.00	0.00	11,839.0	63.9	-340.1	346.1	0.00	0.00	0.00
Atoka	3.33	3.33	,555.5	55.5	5.5.1	5.5.1	0.00	0.00	0.00
11,900.0	0.00	0.00	11,893.1	63.9	-340.1	346.1	0.00	0.00	0.00
12,000.0	0.00	0.00	11,993.1	63.9	-340.1	346.1	0.00	0.00	0.00
12,100.0	0.00	0.00	12,093.1	63.9	-340.1	346.1	0.00	0.00	0.00
12,145.9	0.00	0.00	12,139.0	63.9	-340.1	346.1	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
VP - Randy Allen State # - plan hits target cent - Point	0.00 er	0.00	11,139.0	63.9	-340.1	698,640.50	831,268.10	32° 54′ 57.522 N	103° 15' 13.917 W
BHL - Randy Allen State - plan hits target cent - Point	0.00 er	0.00	12,139.0	63.9	-340.1	698,640.50	831,268.10	32° 54' 57.522 N	103° 15' 13.917 W

Database: EDM 5000.14 Single User Db Company: Matador Production Company

Project: Twin Lakes
Site: Randy Allen
Well: Randy Allen State #1
Wellbore: Wellbore #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Randy Allen State #1 KB @ 3830.4usft KB @ 3830.4usft Grid

Minimum Curvature

Wellbore: Wellbore #1

Design: State Plan #2

Formations							
	Measured Depth (usft)	Vertical Depth (usft)	Name	Lithology	Dip (°)	Dip Direction (°)	
	2,104.0	2,104.0	Rustler				
	3,162.6	3,162.0	Base salts/top Artesia grp sands				
	5,058.1	5,056.0	San Andres				
	6,520.3	6,517.0	Glorieta				
	7,788.3	7,784.0	Tubb				
	10,838.8	10,832.0	Wolfcamp D				
	11,047.9	11,041.0	Penn Shale				
	11,301.9	11,295.0	Strawn				
	11,845.9	11,839.0	Atoka				