Nine

Customer: Lease: Caza Petroleum, Inc.

Well #: Job Type Date:

Mad River 13 State Com 10H

Surface 07/20/2022 Rig Number: County: Ticket No.: Supervisor: Service Point:

Citadel 4 Eddy T-39047 Bryce Townsend Cementing - Hobbs, NM

QTY	Unit of Measure	Description of Product				Titling - Hobbs, INIVI
		Description of Product	Unit Price	Amount	Discount	Net Amount
Service Charges						
1	Each	Pump Down Casing 0000 - 1000	\$2,851.20	\$2,851.20	79.00%	\$598.75
1	Per Day	Head & Manifold Rental	\$680.40	\$680.40	79.00%	\$142.88
1	Per Job	Densometer	\$583.20	\$583.20	79.00%	\$122.47
1	Per Job	Environmental Surcharge	\$842.40	\$842.40	50.00%	\$421.20
1	Per Job	Labor Surcharge	\$842.40	\$842.40	0.00%	\$842.40
1	Per Job	Supervisor Job Bonus	\$1,020.60	\$1,020.60	50.00%	\$510.30
1	Per Day	Circulating Iron & Swage	\$2,980.80	\$2,980.80	79.00%	\$625.97
1	Per Job	Derrick Connection Fee	\$988.20	\$988.20	79.00%	\$207.52
1	Each	Fuel Surcharge	\$1,575.00	\$1,575.00	0.00%	\$1,575.00
Services Subtota	al			\$12,364.20		\$5,046.49

QTY	Unit of Measure	Description of Product	Unit Price	Amount	Discount	Net Amount
Mileage And	Delivery					
360	Unit/Mile	Heavy Equipment Mileage	\$9.97	\$3,589.20	79.00%	\$753.73
240	Unit/Mile	Pickup Mileage	\$5.67	\$1,360.80	79.00%	\$285.77
1330	CU FT	Bulk Service Charge	\$2.59	\$3,444.70	79.00%	\$723.39
2820	Ton Mile	Product Delivery Charge	\$3.24	\$9,136.80	79.00%	\$1,918.73
0	Unit Hour	Pumping Equipment Standby	\$1,458.00	\$0.00	50.00%	\$0.00
0	Unit Hour	Bulk Equipment Standby	\$486.00	\$0.00	50.00%	\$0.00
Mileage And Delivery Subtotal				\$17,531.50		\$3,681.62

Description	Date	Time
Call Out Time:	07/19/2022	14:30
Time Request On Location:	07/19/2022	21:00
Arrive On Location:	07/19/2022	19:00
Start Job:	07/19/2022	22:00
Job Complete:	07/20/2022	01:55
Depart Location:	07/20/2022	02:00

9Nine

Customer:

Caza Petroleum, Inc.

Lease: Well #: Mad River 13 State Com 10H

Job Type: Ticket No.:

Surface T-39047

QTY	Unit of Measure Description of Product		Unit Price	Amount	Discount	Net Amount
1000	Sacks	Class C Cement	\$46.27	\$46,270.00	79.00%	\$9,716.70
20	Gallons	CPT-503L	\$117.51	\$2,350.20	79.00%	\$493.54
Materials				\$48,620.20		\$10,210.24

Totals

Gross Amount \$78,515.90

ount Discount Amount

Net Amount

\$59,577.55

\$18,938.35

Nine

Customer:

Caza Petroleum, Inc.

Lease: Well #: Mad River 13 State Com

Job Type:

10H Surface

Ticket No.:

T-39047

Gross Amount

Discount Amount

Net Amount

Totals

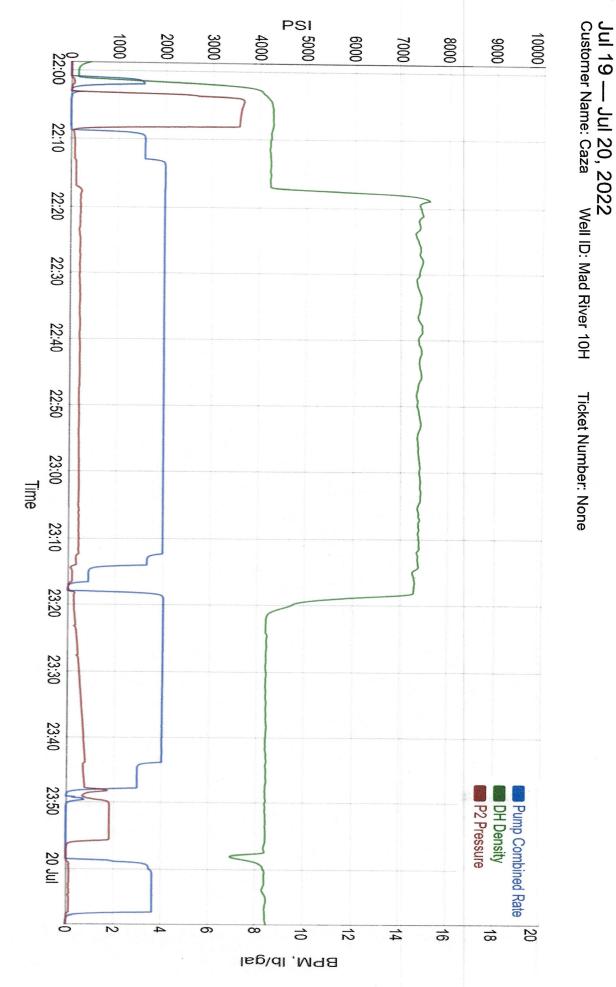
\$78,515.90

\$59,577.55

\$18,938.35

Customer Stamp Below

Caza Petroleum, Inc. Mad River 13 State Com 10H Rig:Citadel 4


Surface T-39047 County: Eddy Supervisor: Bryce Townsend

			CEII		g Job	Log		
Date	Time	Description	Rate (BPM)	Volume (BBL)	Pressure (PSI)	Details of Operation and Procedure		
07/19/2022	15:00	Called Out				Called out for a 13 3/8" surface on Citadel 4 for CAZA		
07/19/2022	15:01	On Location Time				Given a hard time of 09:00pm		
07/19/2022	15:05	Conduct Meetings				Head, manifold, nubbins and swedges on location from last job		
07/19/2022	16:30	Conduct Meetings				Route meeting with operator. Cover planned stop and route to location		
07/19/2022	16:45	Depart For Job				Depart or location with cementer in the lead		
07/19/2022	18:30	Arrived on Location				Supervisor and pump on location		
07/19/2022	18:35	Discuss Job With Customer				Talked with company man to get information needed to figure j TD-755ft TP-749.84ft Shoe-43.43ft Collar@706.05ft Csg-13 3, 54.5# J-55 Pvcsg-20" 94# J-55@145ft Hole-17.5" Mud-8.8 WE Dye requested 4.5BPM max whole job due to losses		
07/19/2022	18:40	Rigs Progress at Arrival				Rig is rigging up casing crew		
07/19/2022	20:00	Equipment Arrives to Location				All equipment on location.		
07/19/2022	20:05	Conduct Meetings				JSA over spotting equipment and rig up.		
07/19/2022	20:15	Rig Equipment				Rig up all NES equipment needed to complete job.		
07/19/2022	21:40	Install Cement Head				Stab head for job		
07/19/2022	21:45	Load Plug				Pre-load plug with driller due to them being in a hurry.		
07/19/2022	22:45	Conduct Meetings				JSA over job. Cover no go zones, pressure hazards, hydration, communication and stop work		
07/19/2022	23:03	Fill Lines	3		60	Fill lines for test		
07/19/2022	23:05	Pressure Test	1		3000	Test pumps and lines		
07/19/2022	23:10	Start Spacer	3		80	Pumping dyed spacer		
07/19/2022	23:19	Spacer Complete	4	30	120	Spacer pumped to spec		
07/19/2022	23:20	Start Cement	4		120	Mixing tail slurry@14.8ppg verified with mud scales and company man		
07/20/2022	00:17	Cement Complete	1	237	50	Tail pumped to spec		
07/20/2022	00:18	Decrease Rate	0.7		100	Slow down pump to drop plug on the fly		
07/20/2022	00:19	Release Plug	0.8	0	100	Drop plug on the fly		
07/20/2022	00:20	Start Displacement	4		150	1st 20bbls used to wash up pump		
07/20/2022	00:26	Other	4	26	220	Cement to surface 84bbls 354sks		
07/20/2022	00:45	Decrease Rate	3	90	350	Slow down to land plug		
07/20/2022	00:50	Bump Plug	3	110	940	Land plug 500 psi over final pressure		
07/20/2022	00:51	Other	1	0.5	920	Pressure dropped so we pressured up again and held		
07/20/2022	00:57	Check Floats				.5bbl back floats holding		
07/20/2022	01:00	Other				Flushed through stack for rig		
07/20/2022	01:10	Conduct Meetings				Rig down JSA with all NES hands on location.		

07/20/2022	01:20	Rig Equipment		Rig down all NES equipment used to complete job
07/20/2022	02:00	Job Complete		Job complete crew off location

	Cement F	leights and Top	S		
Slurry Type	Cen	nent Height	Cement Top		
Spacer					
Tail CMT	755		0		
	Crev	w Members			
Field Supervisor		Bryce Town	send		
Bulk Hand		Garrett Hou	ston		
		Russell Mey	/ers		
Bulk Hand		Saul Madrid			
	Casing	g Information			
	Prev	ious Casing	Hole & Casing Info		
Hole Size 1			17.5		
MD:			750		
TVD:			750		
Casing Size		20.000	13.375		
Casing Grade			J-55		
Casing Length		140	749		
Casing Weight	i	94.00	54.50		
Casing ID			12.615		
DV Tool					
Shoe Joint			45		
Burst Pressure		2	184		
Cement Return	s	84			
Mud I			Water Info		
Туре	WBM	PH	8		
Weight	8.4	Chlrd	276		
		Temp	90		

		Spa	acer		
	PPG		YLD		H20
		Tail	CMT		
14.8	PPG	1.33	YLD	6.32	H20
			1000	Sacks	Class C Cement

eceined by Opp Po Appropriate District: 1	7 AM State of New Mexico	Form C-103 ⁷ of 9
<u>District I</u> – (575) 393-6161 1625 N. French Dr., Hobbs, NM 88240	Energy, Minerals and Natural Resource	S Revised July 18, 2013 WELL API NO.
<u>District II</u> – (575) 748-1283 811 S. First St., Artesia, NM 88210	OIL CONSERVATION DIVISION	30-015-49643 5. Indicate Type of Lease
<u>District III</u> – (505) 334-6178 1000 Rio Brazos Rd., Aztec, NM 87410	1220 South St. Francis Dr.	STATE FEE
<u>District IV</u> – (505) 476-3460 1220 S. St. Francis Dr., Santa Fe, NM	Santa Fe, NM 87505	6. State Oil & Gas Lease No.
87505	FICES AND REPORTS ON WELLS	Mad River 13 State Com 7. Lease Name or Unit Agreement Name
(DO NOT USE THIS FORM FOR PROP	OSALS TO DRILL OR TO DEEPEN OR PLUG BACK TO A LICATION FOR PERMIT" (FORM C-101) FOR SUCH	
1. Type of Well: Oil Well	Gas Well Other	8. Well Number 10H
2. Name of Operator Caza Oil and Gas, Inc		9. OGRID Number 249099
3. Address of Operator 200 N. Lorraine St #1550.,	Midland, TX 79701	10. Pool name or Wildcat Purple Sage; Wolfcamp
4. Well Location Unit Letter	602 feet from the South line and	235 feet from the East line
Section 13	feet from the South line and Township 24S Range 27E	1 235 feet from the Last line NMPM County Eddy
Section 16	11. Elevation (Show whether DR, RKB, RT, GR	
	3103'GR	
12. Check	Appropriate Box to Indicate Nature of No	tice, Report or Other Data
NOTICE OF II		SUBSEQUENT REPORT OF:
PERFORM REMEDIAL WORK TEMPORARILY ABANDON		WORK ☐ ALTERING CASING ☐ E DRILLING OPNS.☐ P AND A ☐
PULL OR ALTER CASING		
DOWNHOLE COMMINGLE		
CLOSED-LOOP SYSTEM OTHER:	✓ OTHER:	
	vork). SEE RULE 19.15.7.14 NMAC. For Multip	ls, and give pertinent dates, including estimated date le Completions: Attach wellbore diagram of
7/10/2022 Drillad 17 F	S" halo to 755' Dan 12 275" 54 5# 155	PTC casing to 746'. Coment with
	5" hole to 755'. Ran 13.375" 54.5# J55 d Class C. Circulate 354sx to surface.	BTC casing to 746. Cement with
7/40/000	D. D. D.	
Spud Date: 7/18/2022	Rig Release Date:	
I hereby certify that the information	n above is true and complete to the best of my know	wledge and belief.
SIGNATURE_	TITLE Engineer	DATE 7/20/2022 PHONE: 985-415-9729
Type or print name Steve Mo	Orris E-mail address:	©morcorengineering.com
For State Use Only	E-man address.	1HONE

Rig: Citadel #4

Well: Mad River 13 State Com 10H

County Eddy
Prospect: Upper Wolfcamp
Date: 7/19/2022

Casing Size (in)
Connection Type
Weight (lb/ft)
Grade
Casing I.D. (in)
Casing Drift (in)
Capacity (bbl/ft)
Disp. (bbl/ft)
Mud Wt. (ppg)
Bouyancy Factor
Block Weight (lbs)
Burst Strength (psi)
Collapse Strength (psi)
Tension Strength (lb)
Min torque (ft-lbs)
Optimum torque (ft-lbs)

Max torque (ft-lbs)

Confirmed drift OD (in)

12.459	
0.1546	
0.0198	
8.90	
0.869	
47000.000	
2,730	
1,140	
909,000	
3,860	
5,140	
6,430	
12.26	
44	
18	

Bottom Csg

13 3/8 BTC ERW

54.5

J-5

12.615

Top Csg

Total Jts on Loc. 44

Total Jts ran in hole 18

Total Jts remain out 26

Marker Jts on Loc. 0

Marker Jts ran in hole 0

Marker Jts remain out 0

Damaged Jts on Loc. 0

T.D. (ft)
Shoe Depth (ft)
Top of FC (ft)

755.00 (From KB) 746.00 702.00

XO Info:
OD
ID
Length
Top Depth

Top Liner (ft): Liner Lap(ft):

Btm Csg Length 710.87
Top Csg Length

RKB to GL (ft) 23.60

RKB to 20" Cond. (ft.) 29.25

RKB to 5.5" Mandrel (ft) 22.60

13 3/8 Landing Joint 9 5/8" Landing Jt (see instructions) (see instructions)

Required Stick Up (ft) 3.8

**type "out" in comments to remove jt from calculations

(* = Auto Calc.)

John Lew Lew	(* = Auto	calc.)									
# Hole # Hole # Control of the Hole Hole Hole Hole Hole Hole Hole Hol		Run				O.D.	Wt.	Wt.	CAP.	DISPL.	COMMENTS:
Shoe 2.01 2.01 743.99 13.375 47,000 0.00 0.00 f 22 39.72 41.73 704.27 13.375 54.50 48,881 6.14 0.79 Centrilizer / Mid Float 1.70 43.43 702.57 13.375 54.50 50,760 12.28 1.57 Centrilizer / Mid 3 20 39.67 122.79 623.21 13.375 54.50 50,760 12.28 1.57 Centrilizer / Mid 4 19 39.66 162.45 583.55 13.375 54.50 52,638 18.41 2.36 Centrilizer / Mid 5 18 39.68 202.13 543.87 13.375 54.50 56,384 30.68 3.93 6 17 39.68 241.81 504.19 13.375 54.50 58,273 36.81 4.71 7 16 39.67 281.48 464.52 13.375 54.50 60,151 42.94 5.50	Joint	In	LENGTH			*					
float 1,70 43,43 702,57 13,375 54,50 48,881 6,14 0,79 Centrilizer / Mid 2 21 39,69 83,12 662,88 13,375 54,50 50,760 12,28 1.57 Centrilizer / Mid 3 20 39,67 122,79 623,21 13,375 54,50 52,638 18,41 2,36 Centrilizer / Mid 4 19 39,66 162,45 583,55 13,375 54,50 54,515 24,54 3,14 5 18 39,68 202,13 543,87 13,375 54,50 56,394 30,68 3,93 6 17 39,68 241,81 504,19 13,375 54,50 58,273 36,81 4,71 7 16 39,67 281,48 464,52 13,375 54,50 60,151 42,94 5,50 8 15 39,69 321,17 424,83 13,375 54,50 62,030 49,08 6,29	#		(ft)				(lb/ft) *				
Float	Shoe		2.01	2.01	743.99	13.375		47,000	0.00	0.00	
2 21 39.69 83.12 662.88 13.375 54.50 50,760 12.28 1.57 Centrilizer / Mid 3 20 39.67 122.79 623.21 13.375 54.50 52,638 18.41 2.36 Centrilizer / Mid 4 19 39.66 162.45 583.55 13.375 54.50 54,515 24.54 3.14 5 18 39.68 202.13 543.87 13.375 54.50 56,394 30.68 3.93 6 17 39.68 241.81 504.19 13.375 54.50 56,394 30.68 3.93 6 17 39.68 241.81 504.19 13.375 54.50 58,273 36.81 4.71 7 16 39.67 281.48 464.52 13.375 54.50 60,151 42.94 5.50 8 15 39.69 321.17 424.83 13.375 54.50 60,151 42.94 5.50 8 15 39.66 400.48 345.52 13.375 54.50 65,785<	1	22	39.72	41.73	704.27	13.375	54.50		6.14	0.79	Centrilizer / Mid jt
3 20 39.67 122.79 623.21 13.375 54.50 52,638 18.41 2.36 Centrilizer / Mid] 4 19 39.66 162.45 583.55 13.375 54.50 54,515 24.54 3.14 5 18 39.68 202.13 543.87 13.375 54.50 56,394 30.68 3.93 6 17 39.68 241.81 504.19 13.375 54.50 58,273 36.81 4.71 7 16 39.67 281.48 464.52 13.375 54.50 60,151 42.94 5.50 8 15 39.69 321.17 424.83 13.375 54.50 62,030 49.08 6.29 9 14 39.65 360.82 385.18 13.375 54.50 63,907 55.21 7.07 10 13 39.66 400.48 345.52 13.375 54.50 65,785 61.34 7.86 11 12 <td>Float</td> <td></td> <td>1.70</td> <td></td> <td></td> <td>13.375</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Float		1.70			13.375					
4 19 39.66 162.45 583.55 13.375 54.50 54,515 24.54 3.14 5 18 39.68 202.13 543.87 13.375 54.50 56,394 30.68 3.93 6 17 39.68 241.81 504.19 13.375 54.50 58,273 36.81 4.71 7 16 39.67 281.48 464.52 13.375 54.50 60,151 42.94 5.50 8 15 39.69 321.17 424.83 13.375 54.50 62,030 49.08 6.29 9 14 39.65 360.82 385.18 13.375 54.50 63,907 55.21 7.07 10 13 39.66 400.48 345.52 13.375 54.50 65,785 61.34 7.86 11 12 39.69 440.17 305.83 13.375 54.50 67,664 67.48 8.64 12 11 39.67 <t< td=""><td></td><td>21</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		21									
5 18 39.68 202.13 543.87 13.375 54.50 56,394 30.68 3.93 6 17 39.68 241.81 504.19 13.375 54.50 58,273 36.81 4.71 7 16 39.67 281.48 464.52 13.375 54.50 60,151 42.94 5.50 8 15 39.69 321.17 424.83 13.375 54.50 62,030 49.08 6.29 9 14 39.65 360.82 385.18 13.375 54.50 63,907 55.21 7.07 10 13 39.66 400.48 345.52 13.375 54.50 65,785 61.34 7.86 11 12 39.69 440.17 305.83 13.375 54.50 67,664 67.48 8.64 12 11 39.67 479.84 266.16 13.375 54.50 67,664 67.48 8.64 12 11 39.67 <	3	20	39.67		623.21	13.375				2.36	Centrilizer / Mid jt
6 17 39.68 241.81 504.19 13.375 54.50 58,273 36.81 4.71 7 16 39.67 281.48 464.52 13.375 54.50 60,151 42.94 5.50 8 15 39.69 321.17 424.83 13.375 54.50 62,030 49.08 6.29 9 14 39.65 360.82 385.18 13.375 54.50 63,907 55.21 7.07 10 13 39.66 400.48 345.52 13.375 54.50 65,785 61.34 7.86 11 12 39.69 440.17 305.83 13.375 54.50 67,664 67.48 8.64 12 11 39.67 479.84 266.16 13.375 54.50 69,542 73.61 9.43 13 10 39.27 519.11 226.89 13.375 54.50 71,401 79.68 10.20 14 9 39.64	4	19	39.66		583.55	13.375	54.50	54,515	24.54	3.14	
7 16 39.67 281.48 464.52 13.375 54.50 60,151 42.94 5.50 8 15 39.69 321.17 424.83 13.375 54.50 62,030 49.08 6.29 9 14 39.65 360.82 385.18 13.375 54.50 63,907 55.21 7.07 10 13 39.66 400.48 345.52 13.375 54.50 65,785 61.34 7.86 11 12 39.69 440.17 305.83 13.375 54.50 67,664 67.48 8.64 12 11 39.67 479.84 266.16 13.375 54.50 69,542 73.61 9.43 13 10 39.27 519.11 226.89 13.375 54.50 71,401 79.68 10.20 14 9 39.64 558.75 187.25 13.375 54.50 73,278 85.81 10.99 15 8 39.66	5	18		202.13	543.87	13.375	54.50	56,394	30.68	3.93	
8 15 39.69 321.17 424.83 13.375 54.50 62,030 49.08 6.29 9 14 39.65 360.82 385.18 13.375 54.50 63,907 55.21 7.07 10 13 39.66 400.48 345.52 13.375 54.50 65,785 61.34 7.86 11 12 39.69 440.17 305.83 13.375 54.50 67,664 67.48 8.64 12 11 39.67 479.84 266.16 13.375 54.50 69,542 73.61 9.43 13 10 39.27 519.11 226.89 13.375 54.50 71,401 79.68 10.20 14 9 39.64 558.75 187.25 13.375 54.50 73,278 85.81 10.99 15 8 39.66 598.41 147.59 13.375 54.50 75,156 91.94 11.78 16 7 39.70 638.11 107.89 13.375 54.50 77,035 98.08 12.56 C	6	17	39.68	241.81	504.19	13.375	54.50	58,273	36.81	4.71	
9 14 39.65 360.82 385.18 13.375 54.50 63,907 55.21 7.07 10 13 39.66 400.48 345.52 13.375 54.50 65,785 61.34 7.86 11 12 39.69 440.17 305.83 13.375 54.50 67,664 67.48 8.64 12 11 39.67 479.84 266.16 13.375 54.50 69,542 73.61 9.43 13 10 39.27 519.11 226.89 13.375 54.50 71,401 79.68 10.20 14 9 39.64 558.75 187.25 13.375 54.50 73,278 85.81 10.99 15 8 39.66 598.41 147.59 13.375 54.50 75,156 91.94 11.78 16 7 39.70 638.11 107.89 13.375 54.50 77,035 98.08 12.56 Cement basket 17 6 39.28 677.39 68.61 13.375 54.50 78,895 104.15 13.34 19 4 39.68 30.16 30.16 000 78,895 104.15 13.34 20 <td>7</td> <td>16</td> <td>39.67</td> <td>281.48</td> <td>464.52</td> <td>13.375</td> <td>54.50</td> <td>60,151</td> <td>42.94</td> <td>5.50</td> <td></td>	7	16	39.67	281.48	464.52	13.375	54.50	60,151	42.94	5.50	
10 13 39.66 400.48 345.52 13.375 54.50 65,785 61.34 7.86 11 12 39.69 440.17 305.83 13.375 54.50 67,664 67.48 8.64 12 11 39.67 479.84 266.16 13.375 54.50 69,542 73.61 9.43 13 10 39.27 519.11 226.89 13.375 54.50 71,401 79.68 10.20 14 9 39.64 558.75 187.25 13.375 54.50 73,278 85.81 10.99 15 8 39.66 598.41 147.59 13.375 54.50 75,156 91.94 11.78 16 7 39.70 638.11 107.89 13.375 54.50 78,895 104.15 13.34 17 6 39.28 677.39 68.61 13.375 54.50 78,895 104.15 13.34 18 5 38.45	8	15	39.69	321.17	424.83	13.375	54.50	62,030	49.08	6.29	
11 12 39.69 440.17 305.83 13.375 54.50 67,664 67.48 8.64 12 11 39.67 479.84 266.16 13.375 54.50 69,542 73.61 9.43 13 10 39.27 519.11 226.89 13.375 54.50 71,401 79.68 10.20 14 9 39.64 558.75 187.25 13.375 54.50 73,278 85.81 10.99 15 8 39.66 598.41 147.59 13.375 54.50 75,156 91.94 11.78 16 7 39.70 638.11 107.89 13.375 54.50 77,035 98.08 12.56 Cement basket 17 6 39.28 677.39 68.61 13.375 54.50 78,895 104.15 13.34 18 5 38.45 715.84 30.16 30.16 000 78,895 104.15 13.34 20 3	9	14	39.65	360.82	385.18	13.375	54.50	63,907	55.21	7.07	
11 12 39.69 440.17 305.83 13.375 54.50 67,664 67.48 8.64 12 11 39.67 479.84 266.16 13.375 54.50 69,542 73.61 9.43 13 10 39.27 519.11 226.89 13.375 54.50 71,401 79.68 10.20 14 9 39.64 558.75 187.25 13.375 54.50 73,278 85.81 10.99 15 8 39.66 598.41 147.59 13.375 54.50 75,156 91.94 11.78 16 7 39.70 638.11 107.89 13.375 54.50 77,035 98.08 12.56 Cement basket 17 6 39.28 677.39 68.61 13.375 54.50 78,895 104.15 13.34 18 5 38.45 715.84 30.16 30.16 000 78,895 104.15 13.34 20 3	10	13	39.66	400.48	345.52	13.375	54.50	65,785	61.34	7.86	
12 11 39.67 479.84 266.16 13.375 54.50 69,542 73.61 9.43 13 10 39.27 519.11 226.89 13.375 54.50 71,401 79.68 10.20 14 9 39.64 558.75 187.25 13.375 54.50 73,278 85.81 10.99 15 8 39.66 598.41 147.59 13.375 54.50 75,156 91.94 11.78 16 7 39.70 638.11 107.89 13.375 54.50 77,035 98.08 12.56 Cement basket 17 6 39.28 677.39 68.61 13.375 54.50 78,895 104.15 13.34 18 5 38.45 715.84 30.16 13.375 0.00 78,895 104.15 13.34 19 4 39.68 30.16 0ut 20 3 39.68 30.16 0ut 21 2 38.77 30.16 0ut 22 1 39.65 30.16 0ut Mandrel 1.00 716.84 29.16 13.375 0.00 78,895 104.15 13.34	11			440.17	305.83	13.375	54.50	67,664	67.48	8.64	
13 10 39.27 519.11 226.89 13.375 54.50 71,401 79.68 10.20 14 9 39.64 558.75 187.25 13.375 54.50 73,278 85.81 10.99 15 8 39.66 598.41 147.59 13.375 54.50 75,156 91.94 11.78 16 7 39.70 638.11 107.89 13.375 54.50 77,035 98.08 12.56 Cement basket 17 6 39.28 677.39 68.61 13.375 54.50 78,895 104.15 13.34 18 5 38.45 715.84 30.16 13.375 0.00 78,895 104.15 13.34 19 4 39.68 30.16 0ut 0ut 0ut 20 3 39.68 30.16 0ut 0ut 0ut 21 2 38.77 30.16 0ut 0ut 0ut 0ut					266.16	13.375	54.50		73.61	9.43	
14 9 39.64 558.75 187.25 13.375 54.50 73,278 85.81 10.99 15 8 39.66 598.41 147.59 13.375 54.50 75,156 91.94 11.78 16 7 39.70 638.11 107.89 13.375 54.50 77,035 98.08 12.56 Cement basket 17 6 39.28 677.39 68.61 13.375 54.50 78,895 104.15 13.34 18 5 38.45 715.84 30.16 13.375 0.00 78,895 104.15 13.34 19 4 39.68 30.16 0ut 0ut 0ut 20 3 39.68 30.16 0ut 0ut 0ut 21 2 38.77 30.16 0ut 0ut 0ut 22 1 39.65 30.16 0ut 0ut 0ut 0ut Mandrel 1.00 716.84 29.				519.11							
15 8 39.66 598.41 147.59 13.375 54.50 75,156 91.94 11.78 16 7 39.70 638.11 107.89 13.375 54.50 77,035 98.08 12.56 Cement basket 17 6 39.28 677.39 68.61 13.375 54.50 78,895 104.15 13.34 18 5 38.45 715.84 30.16 13.375 0.00 78,895 104.15 13.34 19 4 39.68 30.16 0ut 0ut 20 3 39.68 30.16 0ut 0ut 21 2 38.77 30.16 0ut 0ut 0ut 22 1 39.65 30.16 0ut 0ut 0ut 0ut Mandrel 1.00 716.84 29.16 13.375 0.00 78,895 104.15 13.34											
16 7 39.70 638.11 107.89 13.375 54.50 77,035 98.08 12.56 Cement basket 17 6 39.28 677.39 68.61 13.375 54.50 78,895 104.15 13.34 18 5 38.45 715.84 30.16 13.375 0.00 78,895 104.15 13.34 19 4 39.68 30.16 0ut 0ut 20 3 39.68 30.16 0ut 0ut 21 2 38.77 30.16 0ut 0ut 22 1 39.65 30.16 0ut 0ut Mandrel 1.00 716.84 29.16 13.375 0.00 78,895 104.15 13.34									91.94	11.78	
17 6 39.28 677.39 68.61 13.375 54.50 78,895 104.15 13.34 18 5 38.45 715.84 30.16 13.375 0.00 78,895 104.15 13.34 19 4 39.68 30.16 out 20 3 39.68 30.16 out 21 2 38.77 30.16 out 22 1 39.65 30.16 out Mandrel 1.00 716.84 29.16 13.375 0.00 78,895 104.15 13.34										12.56	Cement basket
18 5 38.45 715.84 30.16 13.375 0.00 78,895 104.15 13.34 19 4 39.68 30.16 out 20 3 39.68 30.16 out 21 2 38.77 30.16 out 22 1 39.65 30.16 out Mandrel 1.00 716.84 29.16 13.375 0.00 78,895 104.15 13.34	17			677.39	68.61	13.375	54.50	78,895	104.15		
19 4 39.68 30.16 out 20 3 39.68 30.16 out 21 2 38.77 30.16 out 22 1 39.65 30.16 out Mandrel 1.00 716.84 29.16 13.375 0.00 78,895 104.15 13.34	18										
20 3 39.68 30.16 out 21 2 38.77 30.16 out 22 1 39.65 30.16 out Mandrel 1.00 716.84 29.16 13.375 0.00 78,895 104.15 13.34					30.16						
21 2 38.77 30.16 out 22 1 39.65 30.16 out Mandrel 1.00 716.84 29.16 13.375 0.00 78,895 104.15 13.34	20				30.16						
22 1 39.65 30.16 out Mandrel 1.00 716.84 29.16 13.375 0.00 78,895 104.15 13.34	21	2			30.16						
Mandrel 1.00 716.84 29.16 13.375 0.00 78,895 104.15 13.34		1									
		·		716.84		13.375	0.00	78.895	104.15	13.34	
			00.00		(515.1)			,			

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 127222

CONDITIONS

Operator:	OGRID:
CAZA OPERATING, LLC	249099
200 N Loraine St	Action Number:
Midland, TX 79701	127222
	Action Type:
	[C-103] Sub. Drilling (C-103N)

CONDITIONS

Created By		Condition Date
nmurphy	None	8/25/2023