

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Application Data

APD ID: 10400093017 **Submission Date**: 06/22/2023

Operator Name: COG OPERATING LLC

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - General

BLM Office: Carlsbad User: MAYTE REYES Title: Regulatory Analyst

Federal/Indian APD: FED Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM92757 Lease Acres:

Surface access agreement in place? Allotted? Reservation:

Agreement in place? YES Federal or Indian agreement: FEDERAL

Agreement number: NMNM105761374

Agreement name:

Keep application confidential? Y

Permitting Agent? NO APD Operator: COG OPERATING LLC

Operator letter of

Operator Info

Operator Organization Name: COG OPERATING LLC

Operator Address: ONE CONCHO CENTER 600 W ILLINOIS AVENUE

Operator PO Box:

Operator City: MIDLAND State: TX

Operator Phone: (432)685-4342

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO Master Development Plan name:

Well in Master SUPO? NO Master SUPO name:

Well in Master Drilling Plan? NO Master Drilling Plan name:

Well Name: TOMAHAWK WC UNIT Well Number: 723H Well API Number:

Meiekkildou Von Eingtotátót) Fiéld land Mool Field Name: PURPLE SAGE Pool Name: WOLFCAMP GAS

Zip: 79701-4287

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Is the proposed well in an area containing other mineral resources? USEABLE WATER

Is the proposed well in a Helium production area? N Use Existing Well Pad? N New surface disturbance?

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name: Number: 719H, 718H, 719H, 70MAHAWK WC UNIT

Well Class: HORIZONTAL 723H, 724H
Number of Legs: 1

Well Work Type: Drill
Well Type: OIL WELL

Describe Well Type:

Well sub-Type: EXPLORATORY (WILDCAT)

Describe sub-type:

Distance to town: 3 Miles Distance to nearest well: 30 FT Distance to lease line: 200 FT

Reservoir well spacing assigned acres Measurement: 1283.96 Acres

Well plat: COG_Tomahawk_723H_C102_20230621120927.pdf

Well work start Date: 01/01/2025 Duration: 30 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83 Vertical Datum: NAVD88

Survey number: Reference Datum: GROUND LEVEL

																_			
Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this
SHL	225	FNL	134	FW	24S	28E	30	Aliquot	32.19520	-	EDD	NEW	NEW	F	NMNM	309	0	0	Υ
Leg			6	L				NENW	3	104.1311	Υ		MEXI		92757	4			
#1										48		co	СО						
КОР	225	FNL	134	FW	24S	28E	30	Aliquot	32.19520	-	EDD		NEW	F	NMNM	309	0	0	Υ
Leg			6	L				NENW	3	104.1311	Υ	1	MEXI		92757	4			
#1										48		co	СО						
PPP	330	FNL	101	FW	24S	28E	30	Aliquot	32.1949		EDD		14-74	F	NMNM		944	938	Υ
Relgas	ed to	Imagi	₽g: 4	/3/202	24 8:1	2:14	4 <i>M</i>	NWN		104.1322	Υ	1	MEXI		92757		9	7	
#1-1								W		18		CO	CO			3			

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this
EXIT Leg #1	330	FSL	101 5	FW L	24S	28E	31	Lot 4	32.16746 1	- 104.1322 37	EDD Y	MEXI	NEW MEXI CO	S	STATE	- 642 8	193 36	952 2	Y
BHL Leg #1	200	FSL	101 5	FW L	24S	28E	31	Lot 4	32.16710 4	- 104.1322 37	EDD Y	MEXI	NEW MEXI CO	S	STATE	- 640 8	194 66	950 2	Y

Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. NMNM92757 **BUREAU OF LAND MANAGEMENT** APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. **✓** DRILL REENTER 1a. Type of work: NMNM105761374 Oil Well 1b. Type of Well: Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing ✓ Single Zone Multiple Zone TOMAHAWK WC UNIT 723H 2. Name of Operator 9. API Well No. 30-015-54902 COG OPERATING LLC 3a Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory PURPLE SAGE/WOLFCAMP GAS 600 West Illinois Ave, Midland, TX 79701 (432) 683-7443 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area SEC 30/T24S/R28E/NMP At surface NENW / 225 FNL / 1346 FWL / LAT 32.195203 / LONG -104.131148 At proposed prod. zone LOT 4 / 200 FSL / 1015 FWL / LAT 32.167104 / LONG -104.132237 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State **EDDY** NM 3 miles 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well 200 feet location to nearest property or lease line, ft. 1283.96 (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, 30 feet 9502 feet / 19466 feet FED: NMB000215 applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 3094 feet 01/01/2025 30 days 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see Item 20 above). 2. A Drilling Plan. 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the Name (Printed/Typed) Date 25. Signature MAYTE REYES / Ph: (432) 683-7443 06/22/2023 (Electronic Submission) Title Regulatory Analyst Approved by (Signature) Date Name (Printed/Typed) (Electronic Submission) CODY LAYTON / Ph: (575) 234-5959 03/07/2024 Title Office

Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.

Carlsbad Field Office

Conditions of approval, if any, are attached.

Assistant Field Manager Lands & Minerals

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

DISTRICT I 1625 N. FRENCH DR., HOBBS, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720

State of New Mexico
Energy, Minerals & Natural Resources Department
OIL CONSERVATION DIVISION

1220 SOUTH ST. FRANCIS DR. Santa Fe, New Mexico 87505

Form C-102
Revised August 1, 2011
Submit one copy to appropriate
District Office

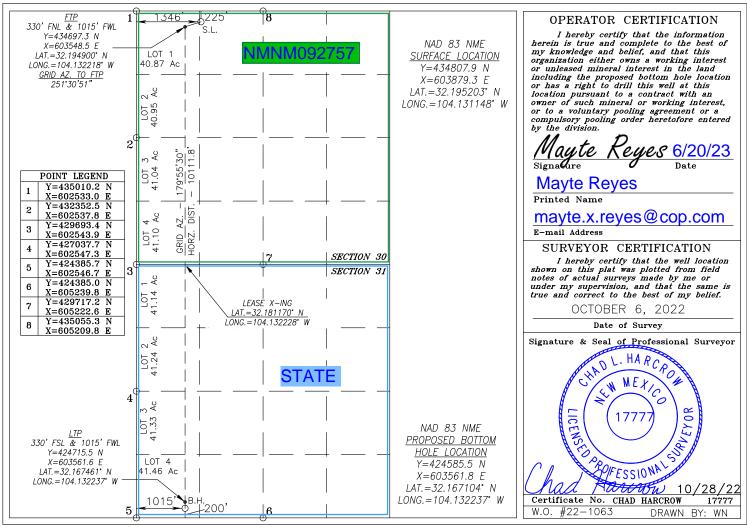
DISTRICT II 811 S. FIRST ST., ARTESIA, NM 88210 Phone: (575) 748-9720 DISTRICT III 1000 RIO BRAZOS RD., AZTEC, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

DISTRICT IV 1220 S. ST. FRANCIS DR., SANTA FE, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

 \square AMENDED REPORT

WELL	LOCATION	AND	ACREAGE	DEDICATION	PLAT	

API Number	Pool Code	Pool Name				
30-015- 54902	98220	Purple Sage; Wolfd	amp (Gas)			
Property Code	Prop	Property Name				
330184	TOMAHAW	TOMAHAWK WC UNIT				
OGRID No.	Opera	ator Name	Elevation			
229137	COG OPE	COG OPERATING, LLC				


Surface Location

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
С	30	24-S	28-E		225	NORTH	1346	WEST	EDDY

Bottom Hole Location If Different From Surface

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
4	31	24-S	28-E		200	SOUTH	1015	WEST	EDDY
Dedicated Acres	Joint o	r Infill	Consolidation (Code Or	der No.				
1283.96									

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

As per LR2000 Section 30: Lot 1 40.22, Lot 2 40.27, Lot 3 40.32 and Lot 4 40.37. Section 31: Lot 1 40.47, Lot 2 40.62, Lot 3 40.77 and Lot 4 40.92

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

<u>Section 1 – Plan Description</u> Effective May 25, 2021

I. Operator: COG O	perating LL	.C_OGRID:22	29137	Date:	6 / 20	/_23_			
II. Type: ☒ Original [☐ Amendment	due to □ 19.15.27.9	9.D(6)(a) NMA	C □ 19.15.27.9.D((6)(b) NN	MAC □ Othe	r.		
If Other, please describe	e:								
III. Well(s): Provide the be recompleted from a s					wells pro	posed to be	drilled or proposed to		
Well Name API ULSTR Footages Anticipated Oil BBL/D Gas MCF/D Produced Water BBL/D									
Tomahawk WC Unit 723H	30-015-	C-30-24S-28E	225 FNL & 1015 FWL	± 1720	± 57	33	± 6732		
	IV. Central Delivery Point Name: [See 19.15.27.9(D)(1) NMAC] V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point. Well Name								
Tomahawk WC Unit 723H	Pending	2/17/2025	± 25 days from spud	6/17/2025	5	6/27/2025	7/2/2025		
VI. Separation Equipment: ☐ Attach a complete description of how Operator will size separation equipment to optimize gas capture. VII. Operational Practices: ☐ Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC. VIII. Best Management Practices: ☐ Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.									

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

🛮 Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

We	ell	API	Anticipated Average Natural Gas Rate MCF/I	Anticipated Volume of Natural Of Gas for the First Year MCF
. Natural Gas Gat	thering System (NO	GGS):		
Operator	System	ULSTR of Tie-in	Anticipated Gathering	Available Maximum Daily Capacity
1			Start Date	of System Segment Tie-in

XI. Map. \square Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line	Capacity. The natural	gas gathering system	□ will □ wil	l not have o	capacity to gather	r 100% of the ar	ıticipated	natural gas
production	volume from the well	prior to the date of fire	st production.					

XIII. Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment, or portion, or	f the
natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well	l(s).

	1 .	· •	1 .		1	•	1		1.
1 1	Affach (Inerator's	nlan to	manage	nroduction	in resnonse	to the	increased	line pressure

XIV.	onfidentiality: \square Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in
Section	2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information
for wh	h confidentiality is asserted and the basis for such assertion.

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

one hundred percent of	to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering
hundred percent of the a into account the current	able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one inticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. box, Operator will select one of the following:
Well Shut-In. □ Operat	for will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection
D of 19.15.27.9 NMAC;	
	lan. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential es for the natural gas until a natural gas gathering system is available, including:
(a)	power generation on lease;
(b)	power generation for grid;
(c)	compression on lease;
(d)	liquids removal on lease;
(e)	reinjection for underground storage;
(f)	reinjection for temporary storage;
(g)	reinjection for enhanced oil recovery;
(h)	fuel cell production: and

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

(i)

VI. Separation Equipment

How Operator will size separation equipment to optimize gas capture:

All ConocoPhillips production facility equipment will be sized per industry standards (API 12J) with adequate retention time to effectively separate all phases of production. Each project will take into consideration the number of wells and type curves for each formation pool to ensure adequate facility capacity. Design considerations will also include review of all piping, tanks, VRU's and associated equipment to ensure optimized gas capture minimized risk of release.

VII. Operational Practices

Actions Operator will take to comply with the requirements below:

B. Drilling Operations

- During drilling, flare stacks will be located a minimum of 100 feet from the nearest surface hole location. All gas is captured or combusted. If an emergency or malfunction occurs, gas will be flared or vented for public health, safety, and the environment and be properly reported to the NMOCD pursuant to 19.15.27.8.G.
- Measure or estimate the volume of natural gas that is vented, flared or beneficially used during drilling, completion and production operations, regardless of the reason or authorization for such venting or flaring.

C. Completion Operations

- During completion operations, operator does not produce oil or gas but maintains adequate well control through completion operations.
- Individual well test separators will be set to properly separate gas and liquids. A
 temporary test separator will be utilized initially to process volumes. In addition,
 separators will be tied into flowback tanks which will be tied into the gas processing
 equipment for sales down a pipeline.

D. Venting and flaring during production operations

- During each phase of well life (drilling, completion and production) of a ConocoPhillips well, COP personnel will follow all necessary procedures to ensure both the operation and the equipment are within the NMAC 19.15.27.8 Subsection D guidelines.
- During well operations that require unloading of the well to atmospheric pressure, all reasonable actions will be taken to minimize vented gas
- Through the life of the well all flaring shall be measured, and venting events quantified using the data available and industry best practice.

E. Performance standards for separation, storage tank and flare equipment

 All storage tanks and separation equipment are designed minimize risk of liquid or vapor release and optimize gas capture. This includes automation for automatic gauging and pressure monitoring.

- All flare stacks are equipped with auto ignition devices and/or continuous pilots and are designed to operate at maximum combustion efficiency pursuant NMAC 19.15.27.8
 Subsection E. Flares will follow COP spacing guidelines to ensure they are a safe distance from combustibles and operations equipment.
- COP personnel will conduct routine AVO inspections on a regular basis per NMAC 19.15.27.8 Subsection E guidelines.
- F. Measurement of vented and flared natural gas.
 - Measurement equipment will be installed to quantify gas flared during drilling, completion and production of the well.
 - All measurement devices installed will meet accuracy ratings per AGA and API standards.
 - Measurement devices will be installed without manifolds that allow diversion of gas around the metering element, except for the sole purpose of inspection of servicing the measurement device.

VIII. Best Management Practices

- Operator will curtail or shut in production, within reasonable limits, during upset conditions to minimize venting and flaring.
- When feasible, Operator will use equipment to capture gas that would otherwise be vented or flared
- During completions and production operations Operator will minimize blowdowns to atmosphere
- When feasible, Operator will use electric or air actuated equipment to reduce bleed emissions

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Mayte Reyes
Printed Name: Mayte Reyes
Title: Sr. Regulatory Coodinator
E-mail Address: mayte.x.reyes@conocophillips.com
Date: 6/20/2023
Phone: 575-748-6945
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

APD ID: 10400093017

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

Submission Date: 06/22/2023

Operator Name: COG OPERATING LLC

Well Name: TOMAHAWK WC UNIT

Well Number: 723H

Well Work Type: Drill

Well Type: OIL WELL

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
13055224	QUATERNARY	3094	0	Ö	ALLUVIUM	NONE	N
13055219	RUSTLER	2592	502	502	ANHYDRITE	USEABLE WATER	N
13055220	TOP SALT	2228	866	866	SALT	NONE	N
13055229	BASE OF SALT	825	2269	2269	SALT	NONE	N
13055222	LAMAR	607	2487	2487	LIMESTONE	NONE	N
13055223	BELL CANYON	571	2523	2523	SANDSTONE	NONE	N
13055230	CHERRY CANYON	-225	3319	3319	SANDSTONE	NATURAL GAS, OIL	N
13055231	BRUSHY CANYON	-1242	4336	4336	SANDSTONE	NATURAL GAS, OIL	N
13055232	BONE SPRING	-2858	5952	5952	SANDSTONE	NATURAL GAS, OIL	N
13055233	BONE SPRING 1ST	-3878	6972	6972	SANDSTONE	NATURAL GAS, OIL	N
13055234	BONE SPRING 2ND	-4455	7549	7549	SANDSTONE	NATURAL GAS, OIL	N
13055226	BONE SPRING 3RD	-5764	8858	8858	SANDSTONE	NATURAL GAS, OIL	N
13055221	WOLFCAMP	-6128	9222	9222	SHALE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Pressure Rating (PSI): 10M Rating Depth: 9502

Equipment: BOP and BOPE will be installed per Onshore Order #2 requirements prior to drilling below the surface casing and will be rated to the above pressure rating or greater, see attached diagrams. Required safety valves, with appropriate wrenches and subs for the drill string being utilized, will be in the open position and accessible on the rig floor.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to choke manifold. See attached for specs and hydrostatic test chart. 5M Annular variance requested. A variance is requested to use a multibowl wellhead.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Choke Diagram Attachment:

COG Tomahawk 10M Choke 20230621073357.pdf

BOP Diagram Attachment:

COG Tomahawk 10M BOP 20230621073410.pdf

COG Tomahawk Flex Hose Variance 20230621073442.pdf

Pressure Rating (PSI): 5M Rating Depth: 9000

Equipment: BOP and BOPE will be installed per Onshore Order #2 requirements prior to drilling below the surface casing and will be rated to the above pressure rating or greater, see attached diagrams. Required safety valves, with appropriate wrenches and subs for the drill string being utilized, will be in the open position and accessible on the rig floor.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to choke manifold. See attached for specs and hydrostatic test chart. 5M Variance is requested. A variance is requested to use a multibowl wellhead.

Testing Procedure: The BOP and BOPE will be fully tested per Onshore Order #2 when initially installed, whenever any seal subject to test pressure is broken, and/or following related repairs.

Choke Diagram Attachment:

COG_Tomahawk_5M_Choke_20230621073230.pdf

BOP Diagram Attachment:

COG Tomahawk 5M BOP 20230621073254.pdf

COG Tomahawk Flex Hose Variance 20230621073255.pdf

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Section 3 - Casing

Casina ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	14.7 5	10.75	NEW	API	N	0	816	0	816	3094	2278	816	J-55		OTHER - BTC	5.6	1.49	DRY	21.4 4	DRY	19.2 6
2	INTERMED IATE	8.75	7.625	NEW	API	Υ	0	9000	0	9000	3585	-5906		OTH ER		OTHER - W513	1.62	2.12	DRY	2.4	DRY	4
3	PRODUCTI ON	6.75	5.5	NEW	API	Υ	0	19466	0	9502	3585	-6408	19466	OTH ER		OTHER - W441	2.35	2.78	DRY	3.03	DRY	2.34

Casing Attachments

Casing ID: 1

String

SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

COG_Tomahawk_723H_Casing_Prog_20230621151517.pdf

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Casing Attachments

Casing ID: 2

String

INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

COG_Tomahawk_723H_Casing_Prog_20230621151547.pdf

Casing Design Assumptions and Worksheet(s):

COG_Tomahawk_723H_Casing_Prog_20230621151658.pdf

Casing ID: 3

String

PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

COG_Tomahawk_723H_Casing_Prog_20230621151351.pdf

Casing Design Assumptions and Worksheet(s):

COG_Tomahawk_723H_Casing_Prog_20230621151420.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	816	390	1.73	13.5	674	50	Class C + 4% Gel + 1% CaCl2	As needed
SURFACE	Tail		817	816	250	1.35	14.8	337	50	Class C + 2% CaCl2	As needed
INTERMEDIATE	Lead		9000	9000	600	3.6	10.5	2160	50	NeoCem-C	As needed
INTERMEDIATE	Tail		9000	9000	220	1.35	14.8	297	50	HalCem-C	As needed
PRODUCTION Released to Imaging	Lead : 4/3/2	024 8:1	9592 2:14 A	1946 6	460	1.71	12.5	786	25	VersaCem	As needed

Well Name: TOMAHAWK WC UNIT Well Number: 723H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Tail		9502	1946 6	770	1.48	13.2	1139	25	NeoCem	As needed

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
816	9000	OTHER : Diesel Brine Emulsion	8.4	9.7							Diesel Brine Emulsion
9000	1946 6	OIL-BASED MUD	11	12.5							ОВМ
0	816	OTHER : Fresh water gel	8.6	8.8							Fresh water gel

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

None planned

List of open and cased hole logs run in the well:

CEMENT BOND LOG, COMPENSATED NEUTRON LOG, GAMMA RAY LOG,

Coring operation description for the well:

None planned

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 6180

Anticipated Surface Pressure: 4085

Anticipated Bottom Hole Temperature(F): 155

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

COG_Tomahawk_H2S_SUP_20230621084435.pdf COG_Tomahawk_H2S_Schem_20230621084435.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

COG_Tomahawk_723H_Directional_Plan_20230621152544.pdf COG_Tomahawk_723H_AC_RPT_20230621152544.pdf

Other proposed operations facets description:

Drilling Plan attached.

GCP attached.

Cement Plan attached.

Other proposed operations facets attachment:

API_BTC_10.750_0.400_J55_Casing_11092022_20230621084615.pdf API_BTC_7.625_0.375_L80_ICY_11092022_20230621084613.pdf

711 1_B10_7:020_0:070_E00_101_11002022_20200021004010:pdf

TXP_BTC_5.500_0.415_P110_CY_11092022_20230621084615.pdf

Wedge_441_5.500_0.415_P110_CY_11092022_20230621084615.pdf

Wedge_513_7.625_0.375_P110_ICY_11092022_20230621084616.pdf

COG_Tomahawk_723H_Cement_Prog_20230621152628.pdf

Released to Imaging: 4/3/2024 8:12-14 AM_Prog_20230621152631.pdf

COG_Tomahawk_723H_GCP_20230621152634.pdf

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Other Variance attachment:

COG_6.75_5M_Variance_WCP_20230621084732.pdf

DELAWARE BASIN WEST

TOMAHAWK PROSPECT (NM-E)
TOMAHAWK WC UNIT S19-30-31 R24S T28E
TOMAHAWK WC UNIT #723H

OWB PWP1

Anticollision Report

19 May, 2023

Anticollision Report

 Company:
 DELAWARE BASIN WEST
 Local Co-ordinate Reference:
 Well TOMAHAWK WC UNIT #723H

 Project:
 TOMAHAWK PROSPECT (NM-E)
 TVD Reference:
 KB=32 @ 3125.0usft

Reference Site: TOMAHAWK WC UNIT S19-30-31 R24S MD Reference: KB=32 @ 3125.0usft KB=32 @ 3125.0usft

Site Error: 0.0 usft North Reference: Grid

 Reference Well:
 TOMAHAWK WC UNIT #723H
 Survey Calculation Method:
 Minimum Curvature

 Well Error:
 3.0 usft
 Output errors are at
 2.00 sigma

Reference Wellbore OWB Database: EDT 17 Central Planning Prod

Reference Design: PWP1 Offset TVD Reference: Reference Datum

Reference PWP1

Filter type: NO GLOBAL FILTER: Using user defined selection & filtering criteria

 Interpolation Method:
 MD Interval 100.0usft
 Error Model:
 ISCWSA

 Depth Range:
 Unlimited
 Scan Method:
 Closest Approach 3D

 Results Limited by:
 Maximum centre distance of 1,000.0usft
 Error Surface:
 Combined Pedal Curve

Warning Levels Evaluated at: 2.79 Sigma Casing Method: Added to Error Values

Survey Tool Program		Date 5/19/2023		
From (usft)	To (usft) S	Survey (Wellbore)	Tool Name	Description
0.0 1,500.0 9,066.6	9,066.6 F	PWP1 (OWB) PWP1 (OWB) PWP1 (OWB)	r.5 SDI_KPR_WL_NS-CT r.5 MWD+IFR1 r.5 MWD+IFR1+MS	SDI Keeper Wireline GyrocompInitilzd Cont. rev.5 OWSG MWD + IFR1 rev.5 OWSG MWD + IFR1 + Multi-Station Correction rev.5

	Reference	Offset	Distance			
Site Name Offset Well - Wellbore - Design	Measured Depth (usft)	Measured Depth (usft)	Between Centres (usft)	Between Ellipses (usft)	Separation Factor	Warning
TOMAHAWK WC UNIT S19-30-31 R24S T28E						
TOMAHAWK WC UNIT #717H - OWB - PWP0	1,500.0	1,468.0	90.1	80.8	9.683 CC,	ES
TOMAHAWK WC UNIT #717H - OWB - PWP0	1,600.0	1,565.9	92.6	82.9	9.606 SF	
TOMAHAWK WC UNIT #718H - OWB - PWP0	1,500.0	1,468.0	60.0	50.7	6.448 CC,	ES
TOMAHAWK WC UNIT #718H - OWB - PWP0	19,466.5	19,447.0	879.9	719.7	5.490 SF	
TOMAHAWK WC UNIT #719H - OWB - PWP1	1,500.0	1,500.0	30.0	20.7	3.234 CC,	ES
TOMAHAWK WC UNIT #719H - OWB - PWP1	19,466.5	19,559.4	468.1	308.7	2.936 SF	
TOMAHAWK WC UNIT #724H - OWB - PWP1	1,527.7	1,527.4	30.0	20.6	3.199 CC	
TOMAHAWK WC UNIT #724H - OWB - PWP1	1,700.0	1,697.9	30.2	20.0	2.970 ES	
TOMAHAWK WC UNIT #724H - OWB - PWP1	1,800.0	1,796.8	30.9	20.2	2.892 SF	

Anticollision Report

Company: DELAWARE BASIN WEST Project: TOMAHAWK PROSPECT (NM-E)

Reference Site: TOMAHAWK WC UNIT S19-30-31 R24S

Site Error: 0.0 usft

TOMAHAWK WC UNIT #723H Reference Well:

Well Error: 3.0 usft Reference Wellbore OWB Reference Design:

PWP1

Local Co-ordinate Reference:

TVD Reference:

KB=32 @ 3125.0usft KB=32 @ 3125.0usft MD Reference:

North Reference: Grid

Minimum Curvature **Survey Calculation Method:**

Output errors are at 2.00 sigma

EDT 17 Central Planning Prod Database: Offset TVD Reference:

Reference Datum

Well TOMAHAWK WC UNIT #723H

	Reference	Offset	Dista	nce		
Site Name Offset Well - Wellbore - Design	Measured Depth (usft)	Measured Depth (usft)	Between Centres (usft)	Between Ellipses (usft)	Separation Factor	Warning
TOMAHAWK WC UNIT S19-30-31 R24S T28E						
TOMAHAWK WC UNIT #717H - OWB - PWP0 TOMAHAWK WC UNIT #718H - OWB - PWP0 TOMAHAWK WC UNIT #719H - OWB - PWP1 TOMAHAWK WC UNIT #724H - OWB - PWP1	19,466.5 19,466.5 19,466.5 19,466.5	19,629.0 19,447.0 19,559.4 19,611.4	879.9 468.1 468.2	719.7 308.7 306.7	5.490 2.936 2.899	=-

Offset Des	sign: TC	MAHAWK	WC UNIT	S19-30-31	R24S T28	BE - TOMAHAV	VK WC UNI	T #717H - (OWB - PW	'P0			Offset Site Error:	0.0 usft
Survey Progr						.5 MWD+IFR1+MS				Rule Assi	gned:		Offset Well Error:	3.0 usft
Measured	vertical	Offs Measured	Vertical	Semi M Reference	Major Axis Offset	Highside	Offset Wellbo	ore Centre +E/-W	Between	Between	Minimum	Separation	Warning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	(usft)	(usft)	Centres (usft)	Ellipses (usft)	Separation (usft)	Factor		
0.0	0.0	0.0	32.0	3.0	3.0	89.05	1.5	90.1	95.6					
100.0	100.0	68.0	100.0	3.0	3.1	89.05	1.5	90.1	90.1	83.6	6.51	13.848		
200.0	200.0	168.0	200.0	3.2	3.2	89.05	1.5	90.1	90.1	83.3	6.77	13.314		
300.0	300.0	268.0	300.0	3.3	3.3	89.05	1.5	90.1	90.1	83.1	7.00	12.873		
400.0	400.0	368.0	400.0	3.4	3.5	89.05	1.5	90.1	90.1	82.9	7.22	12.475		
500.0	500.0	468.0	500.0	3.5	3.6	89.05	1.5	90.1	90.1	82.7	7.44	12.114		
600.0	600.0	568.0	600.0	3.7	3.7	89.05	1.5	90.1	90.1	82.5	7.65	11.783		
700.0	700.0	668.0	700.0	3.8	3.8	89.05	1.5	90.1	90.1	82.3	7.85	11.479		
800.0	800.0	768.0	800.0	3.9	3.9	89.05	1.5	90.1	90.1	82.1	8.05	11.197		
900.0	900.0	868.0	900.0	4.0	4.1	89.05	1.5	90.1	90.1	81.9	8.24	10.936		
1,000.0	1,000.0	968.0	1,000.0	4.2	4.2	89.05	1.5	90.1	90.1	81.7	8.43	10.692		
1,100.0	1,100.0	1,068.0	1,100.0	4.3	4.3	89.05	1.5	90.1	90.1	81.5	8.61	10.465		
1,200.0	1,200.0	1,168.0	1,200.0	4.4	4.4	89.05	1.5	90.1	90.1	81.3	8.79	10.251		
1,300.0	1,300.0	1,268.0	1,300.0	4.5	4.5	89.05	1.5	90.1	90.1	81.1	8.97	10.050		
1,400.0	1,400.0	1,368.0	1,400.0	4.6	4.7	89.05	1.5	90.1	90.1	81.0	9.14	9.861		
1,500.0	1,500.0	1,468.0	1,500.0	4.7	4.8	89.05	1.5	90.1	90.1	80.8	9.31	9.683 CC, E	S	
1,600.0	1,600.0	1,565.9	1,597.9	4.9	4.9	-165.30	1.7	90.8	92.6	82.9	9.64	9.606 SF		
1,700.0	1,699.8	1,662.3	1,694.2	5.0	5.0	-166.39	2.5	94.6	101.6	91.4	10.13	10.022		
1,800.0	1,799.5	1,757.4	1,789.0	5.3	5.2	-167.86	3.9	101.4	117.2	106.6	10.67	10.985		
1,900.0	1,898.7	1,850.6	1,881.8	5.6	5.5	-169.37	6.0	111.1	139.6	128.3	11.23	12.428		
2,000.0	1,997.7	1,942.0	1,972.2	5.8	5.7	-170.72	8.6	123.4	166.8	155.0	11.72	14.223		
2,100.0	2,096.8	2,031.5	2,060.5	6.1	6.0	-171.74	11.7	138.2	197.0	184.8	12.23	16.105		
2,200.0	2,195.8	2,120.8	2,148.0	6.3	6.3	-172.55	15.4	155.6	230.2	217.4	12.76	18.040		
2,300.0	2,294.8	2,214.8	2,239.9	6.6	6.6	-173.20	19.5	174.7	264.3	251.0	13.32	19.843		
2,400.0	2,393.8	2,308.8	2,331.8	6.9	6.9	-173.70	23.5	193.8	298.4	284.5	13.91	21.455		
2,500.0	2,492.9	2,402.8	2,423.8	7.3	7.2	-174.10	27.6	212.9	332.5	318.0	14.52	22.894		

Anticollision Report

Company: DELAWARE BASIN WEST

Project: TOMAHAWK PROSPECT (NM-E) Reference Site: TOMAHAWK WC UNIT S19-30-31 R24S

Site Error: 0.0 usft

TOMAHAWK WC UNIT #723H Reference Well:

Well Error: 3.0 usft Reference Wellbore OWB

PWP1 Reference Design:

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

Well TOMAHAWK WC UNIT #723H

KB=32 @ 3125.0usft KB=32 @ 3125.0usft

North Reference: Grid

Minimum Curvature **Survey Calculation Method:**

Output errors are at 2.00 sigma Database:

EDT 17 Central Planning Prod Offset TVD Reference:

Reference Datum

Offset Des	sign: 10		WO OINT	010-00-01	11210120	BE - TOMAHA		,,, ,,,,	0112 . 11	. 0			Offset Site Error:	0.0 usft
Survey Progr Refe		.5 SDI_KPR_\ Off			IFR1, 8943-r Major Axis	.5 MWD+IFR1+MS	Offset Wellb	ore Centre	Dist	Rule Assi	gned:		Offset Well Error:	3.0 usft
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
2,600.0	2,591.9	2,496.7	2,515.7	7.6	7.5	-174.42	31.7	232.0	366.6	351.5	15.16	24.177		
2,700.0	2,690.9	2,590.7	2,607.6	8.0	7.9	-174.69	35.7	251.1	400.8	384.9	15.83	25.323		
2,800.0	2,789.9	2,684.7	2,699.5	8.3	8.2	-174.91	39.8	270.2	434.9	418.4	16.51	26.347		
2,900.0	2,889.0	2,778.7	2,791.5	8.7	8.5	-175.11	43.9	289.4	469.1	451.9	17.20	27.265		
3,000.0	2,988.0	2,872.6	2,883.4	9.0	8.9	-175.27	47.9	308.5	503.2	485.3	17.92	28.089		
3,100.0	3,087.0	2,966.6	2,975.3	9.4	9.3	-175.42	52.0	327.6	537.4	518.8	18.64	28.831		
3,200.0	3,186.1	3,060.6	3,067.2	9.8	9.7	-175.55	56.0	346.7	571.6	552.2	19.37	29.500		
3,300.0	3,285.1	3,154.6	3,159.1	10.2	10.0	-175.66	60.1	365.8	605.7	585.6	20.12	30.106		
3,400.0	3,384.1	3,248.5	3,251.1	10.5	10.4	-175.76	64.2	384.9	639.9	619.0	20.87	30.655		
3,500.0	3,483.1	3,342.5	3,343.0	10.9	10.8	-175.86	68.2	404.0	674.1	652.4	21.64	31.155		
3,600.0	3,582.2	3,436.5	3,434.9	11.3	11.2	-175.94	72.3	423.1	708.2	685.8	22.41	31.610		
3,700.0	3,681.2	3,530.5	3,526.8	11.7	11.6	-176.01	76.4	442.2	742.4	719.2	23.18	32.026		
3,800.0	3,780.2	3,624.4	3,618.7	12.1	12.0	-176.08	80.4	461.4	776.6	752.6	23.97	32.403		
3,900.0	3,879.3	3,718.7	3,710.9	12.5	12.4	-176.16	84.5	480.5	810.0	785.2	24.75	32.732		
4,000.0	3,978.7	3,813.5	3,803.7	12.9	12.8	-176.23	88.6	499.8	841.8	816.2	25.53	32.975		
4,100.0	4,078.2	3,908.9	3,897.0	13.3	13.2	-176.29	92.7	519.2	871.9	845.6	26.30	33.145		
4,200.0	4,177.9	4,004.7	3,990.7	13.6	13.7	-176.33	96.9	538.7	900.3	873.2	27.08	33.252		
4,300.0	4,277.7	4,101.1	4,085.0	14.0	14.1	-176.36	101.0	558.3	927.1	899.3	27.84	33.304		
4,400.0	4,377.6	4,197.9	4,179.7	14.3	14.5	-176.39	105.2	578.0	952.2	923.6	28.58	33.312		
4,500.0	4,477.6	4,295.1	4,274.8	14.6	15.0	-176.41	109.4	597.7	975.6	946.3	29.31	33.290		
4,600.0	4,577.6	4,392.7	4,370.2	14.8	15.4	-176.41	113.6	617.6	997.3	967.4	29.92	33.336		

Anticollision Report

Company: DELAWARE BASIN WEST

Project: TOMAHAWK PROSPECT (NM-E) Reference Site: TOMAHAWK WC UNIT S19-30-31 R24S

Site Error: 0.0 usft

TOMAHAWK WC UNIT #723H Reference Well:

Well Error: 3.0 usft

Reference Wellbore OWB PWP1 Reference Design:

TVD Reference: MD Reference:

Well TOMAHAWK WC UNIT #723H

KB=32 @ 3125.0usft KB=32 @ 3125.0usft

North Reference: Grid

Local Co-ordinate Reference:

Minimum Curvature **Survey Calculation Method:**

Output errors are at 2.00 sigma

EDT 17 Central Planning Prod Database: Offset TVD Reference:

Reference Datum

	sign:	- F ODL 1/DE :	All NC OT	700 - 5 * * * * * *	ED4 6000	E MAID LED LA LO				D			Offset Site Error:	0.0 us
ey Progr Refe	ram: 0- rence	r.5 SDI_KPR_V Off :			FR1, 9038-r. Iajor Axis	5 MWD+IFR1+MS	Offset Wellb	ore Centre	Dis	Rule Assi tance	gnea:		Offset Well Error:	3.0 u
asured epth usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
0.0	0.0	0.0	32.0	3.0	3.0	89.05	1.0	60.0	68.0	, ,	, ,			
100.0	100.0	68.0	100.0	3.0	3.1	89.05	1.0	60.0	60.0	53.5	6.51	9.221		
200.0	200.0	168.0	200.0	3.2	3.2	89.05	1.0	60.0	60.0	53.2	6.77	8.866		
300.0	300.0	268.0	300.0	3.3	3.3	89.05	1.0	60.0	60.0	53.0	7.00	8.572		
400.0	400.0	368.0	400.0	3.4	3.5	89.05	1.0	60.0	60.0	52.8	7.22	8.308		
500.0	500.0	468.0	500.0	3.5	3.6	89.05	1.0	60.0	60.0	52.6	7.44	8.067		
600.0	600.0	568.0	600.0	3.7	3.7	89.05	1.0	60.0	60.0	52.4	7.65	7.847		
700.0	700.0	668.0	700.0	3.8	3.8	89.05	1.0	60.0	60.0	52.2	7.85	7.644		
800.0	800.0	768.0	800.0	3.9	3.9	89.05	1.0	60.0	60.0	52.0	8.05	7.456		
900.0	900.0	868.0	900.0	4.0	4.1	89.05	1.0	60.0	60.0	51.8	8.24	7.282		
1,000.0	1,000.0	968.0	1,000.0	4.2	4.2	89.05	1.0	60.0	60.0	51.6	8.43	7.120		
1,100.0	1,100.0	1,068.0	1,100.0	4.3	4.3	89.05	1.0	60.0	60.0	51.4	8.61	6.969		
1,200.0	1,200.0	1,168.0	1,200.0	4.4	4.4	89.05	1.0	60.0	60.0	51.2	8.79	6.826		
1,300.0	1,300.0	1,268.0	1,300.0	4.5	4.5	89.05	1.0	60.0	60.0	51.0	8.97	6.693		
1,400.0	1,400.0	1,368.0	1,400.0	4.6	4.7	89.05	1.0	60.0	60.0	50.9	9.14	6.567		
1,500.0	1,500.0	1,468.0	1,500.0	4.7	4.8	89.05	1.0	60.0	60.0	50.7	9.31	6.448 CC, E	S	
1,600.0	1,600.0	1,568.0	1,600.0	4.9	4.9	-165.37	1.0	60.0	61.7	52.1	9.57	6.445		
1,700.0	1,699.8	1,667.8	1,699.8	5.0	5.0	-166.48	1.0	60.0	66.8	56.8	9.93	6.725		
1,800.0	1,799.5	1,765.8	1,797.8	5.3	5.1	-167.83	0.9	60.7	76.0	65.7	10.36	7.336		
1,900.0	1,898.7	1,861.8	1,893.7	5.6	5.2	-168.75	0.2	64.5	91.8	80.9	10.88	8.435		
2,000.0	1,997.7	1,956.4	1,988.0	5.8	5.4	-169.16	-1.0	71.3	112.4	101.0	11.35	9.903		
2,100.0	2,096.8	2,051.9	2,083.1	6.1	5.6	-169.14	-2.7	80.8	135.6	123.8	11.81	11.483		
2,200.0	2,195.8	2,149.1	2,179.7	6.3	5.8	-169.09	-4.4	90.8	159.2	146.9	12.29	12.957		
2,300.0	2,294.8	2,246.3	2,276.4	6.6	6.0	-169.05	-6.2	100.8	182.8	170.0	12.80	14.283		
2,400.0	2,393.8	2,343.4	2,373.0	6.9	6.2	-169.02	-8.0	110.8	206.4	193.1	13.34	15.474		
2,500.0	2,492.9	2,440.6	2,469.7	7.3	6.5	-169.00	-9.7	120.8	230.0	216.1	13.90	16.543		
2,600.0	2,591.9	2,537.8	2,566.3	7.6	6.8	-168.98	-11.5	130.8	253.6	239.1	14.49	17.501		
2,700.0	2,690.9	2,635.0	2,662.9	8.0	7.1	-168.97	-13.3	140.8	277.2	262.1	15.10	18.361		
2,800.0	2,789.9	2,732.1	2,759.6	8.3	7.3	-168.95	-15.0	150.8	300.8	285.1	15.72	19.133		
2,900.0	2,889.0	2,829.3	2,856.2	8.7	7.7	-168.94	-16.8	160.8	324.4	308.0	16.36	19.828		
3,000.0	2,988.0	2,926.5	2,952.9	9.0	8.0	-168.93	-18.5	170.8	348.0	331.0	17.01	20.454		
3,100.0	3,087.0	3,023.7	3,049.5	9.4	8.3	-168.92	-20.3	180.8	371.6	353.9	17.68	21.020		
3,200.0	3,186.1	3,120.9	3,146.2	9.8	8.6	-168.92	-20.3	190.8	395.2	376.8	18.35	21.532		
3,300.0	3,285.1	3,218.0	3,242.8	10.2	8.9	-168.91	-23.8	200.8	418.8	399.7	19.04	21.997		
3,400.0	3,384.1	3,315.2	3,339.5	10.2	9.3	-168.91	-25.6	210.8	442.4	422.6	19.73	22.421		
3,500.0	3,483.1	3,412.4	3,436.1	10.9	9.6	-168.90	-27.4	220.8	466.0	445.5	20.43	22.807		
2000	2 500 0	0.500.0	0.500.7	44.0	40.0	400.00	00.4	000.0	400.0	400.4	04.44	00.400		
3,600.0	3,582.2	3,509.6	3,532.7	11.3	10.0	-168.90	-29.1	230.9	489.6	468.4	21.14	23.160		
3,700.0	3,681.2	3,606.7	3,629.4	11.7	10.3	-168.89	-30.9	240.9	513.1	491.3	21.85	23.483		
3,800.0	3,780.2	3,703.9	3,726.0	12.1	10.7	-168.89	-32.7	250.9	536.7	514.2	22.57 23.29	23.776		
3,900.0 4,000.0	3,879.3 3,978.7	3,801.3 3,899.0	3,822.9 3,920.1	12.5 12.9	11.0 11.4	-168.91 -168.90	-34.4 -36.2	260.9 270.9	559.6 580.7	536.3 556.7	23.29 24.00	24.025 24.192		
4,100.0 4,200.0	4,078.2 4,177.9	3,997.1 4,095.5	4,017.6 4,115.5	13.3 13.6	11.7 12.1	-168.86 -168.78	-38.0 -39.8	281.0 291.2	600.2 618.0	575.5 592.6	24.71 25.41	24.288 24.322		
						-168.78								
4,300.0	4,277.7	4,194.2	4,213.6	14.0	12.5	-168.68	-41.6	301.3	634.1	608.0	26.09	24.302		
4,400.0 4,500.0	4,377.6 4,477.6	4,293.1 4,392.3	4,312.0 4,410.6	14.3 14.6	12.8 13.2	-168.55 -168.40	-43.3 -45.1	311.5 321.7	648.5 661.3	621.8 633.9	26.76 27.39	24.238 24.140		
4,600.0	4,577.6	4,491.6	4,509.4	14.8	13.6	-168.21	-47.0	331.9	672.3	644.4	27.90	24.093		
4,700.0	4,677.6	4,591.1	4,608.3	14.8	14.0	86.00	-48.8	342.2	682.5	654.1	28.31	24.107		
4,800.0	4,777.6	4,690.5	4,707.2	14.8	14.4	86.21	-50.6	352.4	692.6	663.9	28.72	24.116		
4,900.0	4,877.6	4,790.0	4,806.2	14.9	14.7	86.41	-52.4	362.7	702.8	673.6	29.14	24.121		
5,000.0	4,977.6	4,889.4	4,905.1	14.9	15.1	86.61	-54.2	372.9	712.9	683.4	29.56	24.121		

Anticollision Report

Company: DELAWARE BASIN WEST

Project: TOMAHAWK PROSPECT (NM-E) Reference Site: TOMAHAWK WC UNIT S19-30-31 R24S

Site Error: 0.0 usft

TOMAHAWK WC UNIT #723H Reference Well:

Well Error: 3.0 usft OWB

Reference Wellbore PWP1 Reference Design:

Local Co-ordinate Reference:

TVD Reference:

KB=32 @ 3125.0usft KB=32 @ 3125.0usft MD Reference:

North Reference: Grid

Minimum Curvature **Survey Calculation Method:**

Output errors are at 2.00 sigma

EDT 17 Central Planning Prod Database: Offset TVD Reference:

Reference Datum

Well TOMAHAWK WC UNIT #723H

Sumany Dear	amı ^	r E ODI VDD V	VI NO CT 4	700 r 5 MM/D	ED1 0020 -	E MM/D+IED4 + M40				Dula Aa-'	anod:		Offset Well Error:	0.0 ust
Survey Progra Refer		r.5 SDI_KPR_V- Offs			FR1, 9038-r //ajor Axis	:.5 MWD+IFR1+MS	Offset Wellb	ore Centre	Dist	Rule Assi ance	gned:		Offset Well Error:	3.0 us
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
5,100.0	5,077.6	4,988.9	5,004.0	15.0	15.5	86.80	-56.0	383.1	723.1	693.1	29.98	24.117		
5,200.0	5,177.6	5,088.3	5,102.9	15.0	15.9	86.99	-57.8	393.4	733.3	702.9	30.42	24.109		
5,300.0	5,277.6	5,187.8	5,201.8	15.1	16.3	87.17	-59.6	403.6	743.5	712.6	30.85	24.097		
5,400.0	5,377.6	5,287.2	5,300.7	15.1	16.7	87.35	-61.4	413.8	753.7	722.4	31.30	24.083		
5,500.0	5,477.6	5,386.7	5,399.6	15.2	17.0	87.52	-63.2	424.1	763.9	732.1	31.74	24.065		
5,600.0	5,577.6	5,486.1	5,498.5	15.2	17.4	87.69	-65.0	434.3	774.1	741.9	32.19	24.045		
5,700.0	5,677.6	5,585.6	5,597.4	15.3	17.8	87.85	-66.8	444.6	784.3	751.7	32.65	24.023		
5,800.0	5,777.6	5,685.1	5,696.3	15.3	18.2	88.01	-68.6	454.8	794.5	761.4	33.11	23.999		
5,900.0	5,877.6	5,784.5	5,795.2	15.4	18.6	88.16	-70.4	465.0	804.8	771.2	33.57	23.972		
6,000.0	5,977.6	5,884.0	5,894.1	15.4	19.0	88.31	-72.2	475.3	815.0	781.0	34.04	23.944		
6,100.0	6,077.6	5,983.4	5,993.0	15.5	19.4	88.46	-74.0	485.5	825.2	790.7	34.51	23.914		
6,200.0	6,177.6	6,082.9	6,091.9	15.5	19.8	88.60	-75.8	495.7	835.5	800.5	34.98	23.883		
6,300.0	6,277.6	6,182.3	6,190.9	15.6	20.2	88.74	-77.6	506.0	845.7	810.3	35.46	23.851		
6,400.0	6,377.6	6,281.8	6,289.8	15.6	20.6	88.88	-79.4	516.2	856.0	820.1	35.94	23.817		
6,500.0 6,600.0	6,477.6 6,577.6	6,395.0 6,512.2	6,402.5 6,519.2	15.7 15.7	21.0 21.4	89.02 89.14	-81.4 -83.0	527.1 536.2	865.6 873.3	829.1 836.3	36.50 37.05	23.716 23.571		
6,700.0	6,677.6	6,629.6	6,636.5	15.8	21.8	89.22	-84.1	542.8	879.0	841.4	37.56	23.403		
6,800.0	6,777.6	6,747.3	6,754.2	15.8	22.2	89.27	-84.9	547.2	882.6	844.6	38.01	23.219		
6,900.0	6,877.6	6,865.2	6,872.0	15.9	22.5	89.30	-85.2	549.1	884.3	846.0	38.33	23.071		
7,000.0	6,977.6	6,970.8	6,977.6	15.9	22.5	89.30	-85.3	549.2	884.4	845.9	38.45	23.000		
7,100.0	7,077.6	7,070.8	7,077.6	16.0	22.6	89.30	-85.3	549.2	884.4	845.9	38.53	22.954		
7,200.0	7,177.6	7,170.8	7,177.6	16.0	22.6	89.30	-85.3	549.2	884.4	845.8	38.61	22.907		
7,300.0	7,277.6	7,270.8	7,277.6	16.1	22.6	89.30	-85.3	549.2	884.4	845.7	38.69	22.860		
7,400.0	7,377.6	7,370.8	7,377.6	16.2	22.7	89.30	-85.3	549.2	884.4	845.6	38.77	22.814		
7,500.0	7,477.6	7,470.8	7,477.6	16.2	22.7	89.30	-85.3	549.2	884.4	845.5	38.85	22.767		
7,600.0	7,577.6	7,570.8	7,577.6	16.3	22.7	89.30	-85.3	549.2	884.4	845.5	38.93	22.720		
7,700.0	7,677.6	7,670.8	7,677.6	16.3	22.7	89.30	-85.3	549.2	884.4	845.4	39.01	22.673		
7,800.0	7,777.6	7,770.8	7,777.6	16.4	22.8	89.30	-85.3	549.2	884.4	845.3	39.09	22.626		
7,900.0	7,877.6	7,870.8	7,877.6	16.4	22.8	89.30	-85.3	549.2	884.4	845.2	39.17	22.578		
8,000.0	7,977.6	7,970.8	7,977.6	16.5	22.8	89.30	-85.3	549.2	884.4	845.1	39.25	22.531		
8,100.0	8,077.6	8,070.8	8,077.6	16.5	22.9	89.30	-85.3	549.2	884.4	845.1	39.33	22.484		
8,200.0	8,177.6	8,170.8	8,177.6	16.6	22.9	89.30	-85.3	549.2	884.4	845.0	39.42	22.436		
8,300.0	8,277.6	8,270.8	8,277.6	16.6	22.9	89.30	-85.3	549.2	884.4	844.9	39.50	22.389		
8,400.0	8,377.6	8,370.8	8,377.6	16.7	23.0	89.30	-85.3	549.2	884.4	844.8	39.59	22.341		
8,500.0	8,477.6	8,470.8	8,477.6	16.8	23.0	89.30	-85.3	549.2	884.4	844.7	39.67	22.293		
8,600.0	8,577.6	8,570.8	8,577.6	16.8	23.0	89.30	-85.3	549.2	884.4	844.6	39.76	22.245		
8,700.0	8,677.6	8,670.8	8,677.6	16.9	23.1	89.30	-85.3	549.2	884.4	844.5	39.84	22.198		
8,800.0	8,777.6	8,770.8	8,777.6	16.9	23.1	89.30	-85.3	549.2	884.4	844.5	39.93	22.150		
8,900.0	8,877.6	8,870.8	8,877.6	17.0	23.1	89.30	-85.3	549.2	884.4	844.4	40.01	22.102		
9,000.0	8,977.6	8,970.8	8,977.6	17.0	23.2	89.30	-85.3	549.2	884.4	844.3	40.10	22.054		
9,100.0	9,077.6	9,071.5	9,078.2	17.1	23.2	-90.60	-86.5	549.2	884.4	844.2	40.14	22.031		
9,200.0	9,175.9	9,173.5	9,178.5	17.1	23.2	-90.58	-104.4	549.3	884.4	844.2	40.16	22.019		
9,300.0	9,268.4	9,275.4	9,272.5	17.1	23.2	-90.53	-143.2	549.3	884.4	844.2	40.20	21.998		
9,400.0	9,351.2	9,377.1	9,356.0	17.1	23.2	-90.46	-200.9	549.4	884.3	844.1	40.26	21.964		
9,500.0 9,600.0	9,420.6 9,473.5	9,478.5 9,579.6	9,425.3 9,477.3	17.2 17.3	23.3 23.3	-90.37 -90.26	-274.7 -361.1	549.5 549.6	884.3 884.2	843.9 843.7	40.36 40.52	21.908 21.824		
9,700.0	9,507.7	9,680.2	9,509.9	17.4	23.4	-90.14	-456.1	549.7	884.2	843.5	40.73	21.708		
9,800.0	9,521.7	9,780.5	9,521.9	17.5	23.5	-90.02	-555.5	549.8	884.1	843.1	41.00	21.562		
9,900.0	9,522.0	9,880.5	9,522.0	17.7	23.7	-90.00	-655.5	550.0	884.1	842.7	41.35	21.380		
10,000.0	9,522.0	9,980.5	9,522.0	17.9	23.8	-90.00	-755.5	550.1	884.1	842.3	41.76	21.171		
10,100.0	9,522.0	10,080.5	9,522.0	18.1	24.0	-90.00	-855.5	550.2	884.0	841.8	42.21	20.941		

Anticollision Report

Company: DELAWARE BASIN WEST

Project: TOMAHAWK PROSPECT (NM-E) Reference Site: TOMAHAWK WC UNIT S19-30-31 R24S

Site Error: 0.0 usft

TOMAHAWK WC UNIT #723H Reference Well:

Well Error: 3.0 usft Reference Wellbore OWB

PWP1 Reference Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference:

Well TOMAHAWK WC UNIT #723H

KB=32 @ 3125.0usft KB=32 @ 3125.0usft

North Reference: Grid

Minimum Curvature **Survey Calculation Method:**

Output errors are at 2.00 sigma EDT 17 Central Planning Prod Database:

Offset TVD Reference: Reference Datum

ırvey Progr						.5 MWD+IFR1+MS				Rule Assi	gned:		Offset Well Error:	3.0 usf
Refei Measured Depth	rence Vertical Depth	Offs Measured Depth	et Vertical Depth	Semi M Reference	lajor Axis Offset	Highside Toolface	Offset Wellbe	+E/-W	Dist Between Centres	ance Between Ellipses	Minimum Separation	Separation Factor	Warning	
(usft)	(usft)	(usft)	(usft)	(usft)	(usft)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)			
10,200.0	9,522.0	10,180.5	9,522.0	18.4	24.3	-90.00	-955.5	550.3	884.0	841.2	42.72	20.692		
10,300.0	9,522.0	10,280.5	9,522.0	18.7	24.5	-90.00	-1,055.5	550.5	883.9	840.6	43.27	20.426		
10,400.0	9,522.0	10,380.5	9,522.0	19.1	24.7	-90.00	-1,155.5	550.6	883.9	840.0	43.87	20.147		
10,500.0	9,522.0	10,480.5	9,522.0	19.4	25.0	-90.00	-1,255.5	550.7	883.8	839.3	44.52	19.855		
10,600.0	9,522.0	10,580.5	9,522.0	19.8	25.3	-90.00	-1,355.5	550.9	883.8	838.6	45.20	19.553		
10,700.0	9,522.0	10,680.5	9,522.0	20.2	25.7	-90.00	-1,455.5	551.0	883.7	837.8	45.92	19.244		
10,800.0	9,522.0	10,780.5	9,522.0	20.6	26.0	-90.00	-1,555.5	551.1	883.7	837.0	46.69	18.928		
10,900.0	9,522.0	10,880.5	9,522.0	21.1	26.4	-90.00	-1,655.5	551.2	883.7	836.2	47.49	18.609		
11,000.0	9,522.0	10,980.5	9,522.0	21.6	26.7	-90.00	-1,755.5	551.4	883.6	835.3	48.32	18.287		
11,100.0	9,522.0	11,080.5	9,522.0	22.1	27.1	-90.00	-1,855.5	551.5	883.6	834.4	49.18	17.964		
11,200.0	9,522.0	11,180.5	9,522.0	22.6	27.5	-90.00	-1,955.5	551.6	883.5	833.4	50.08	17.642		
11,300.0	9,522.0	11,280.5	9,522.0	23.1	28.0	-90.00	-2,055.5	551.8	883.5	832.5	51.01	17.321		
11,400.0	9,522.0	11,380.5	9,522.0	23.6	28.4	-90.00	-2,155.5	551.9	883.4	831.5	51.96	17.002		
11,500.0	9,522.0	11,480.5	9,522.0	24.1	28.9	-90.00	-2,255.5	552.0	883.4	830.5	52.94	16.686		
11,600.0	9,522.0	11,580.5	9,522.0	24.7	29.3	-90.00	-2,355.5	552.1	883.4	829.4	53.95	16.375		
11,700.0	9,522.0	11,680.5	9,522.0	25.3	29.8	-90.00	-2,455.5	552.3	883.3	828.3	54.97	16.068		
11,800.0	9,522.0	11,780.5	9,522.0	25.9	30.3	-90.00	-2,555.5	552.4	883.3	827.2	56.02	15.766		
11,900.0	9,522.0	11,880.5	9,522.0	26.4	30.8	-90.00	-2,655.5	552.5	883.2	826.1	57.10	15.469		
12,000.0	9,522.0	11,980.5	9,522.0	27.0	31.3	-90.00	-2,755.5	552.7	883.2	825.0	58.19	15.178		
12,100.0	9,522.0	12,080.5	9,522.0	27.6	31.8	-90.00	-2,855.5	552.8	883.1	823.8	59.30	14.894		
12,200.0	9,522.0	12,180.5	9,522.0	28.3	32.4	-90.00	-2,955.5	552.9	883.1	822.7	60.42	14.615		
12,300.0	9,522.0	12,280.5	9,522.0	28.9	32.9	-90.00	-3,055.5	553.0	883.1	821.5	61.57	14.343		
12,400.0	9,522.0	12,380.5	9,522.0	29.5	33.5	-90.00	-3,155.5	553.2	883.0	820.3	62.73	14.077		
12,500.0	9,522.0	12,480.5	9,522.0	30.1	34.0	-90.00	-3,255.5	553.3	883.0	819.1	63.90	13.818		
12,600.0	9,522.0	12,580.5	9,522.0	30.8	34.6	-90.00	-3,355.5	553.4	882.9	817.8	65.09	13.565		
12,700.0	9,522.0	12,680.5	9,522.0	31.4	35.2	-90.00	-3,455.5	553.6	882.9	816.6	66.29	13.319		
12,800.0	9,522.0	12,780.5	9,522.0	32.1	35.8	-90.00	-3,555.5	553.7	882.8	815.3	67.50	13.078		
12,900.0	9,522.0		9,522.0	32.7	36.3	-90.00	-3,655.5	553.8	882.8	814.1	68.73	12.845		
13,000.0	9,522.0	12,980.5	9,522.0	33.4	36.9	-90.00	-3,755.5	553.9	882.7	812.8	69.97	12.617		
13,100.0	9,522.0	13,080.5	9,522.0	34.1	37.5	-90.00	-3,855.5	554.1	882.7	811.5	71.21	12.395		
13,200.0	9,522.0	13,180.5	9,522.0	34.7	38.2	-90.00	-3,955.5	554.2	882.7	810.2	72.47	12.180		
13,300.0	9,522.0	13,280.5	9,522.0	35.4	38.8	-90.00	-4,055.5	554.3	882.6	808.9	73.74	11.970		
13,400.0	9,522.0	13,380.5	9,522.0	36.1	39.4	-90.00	-4,155.5	554.5	882.6	807.6	75.01	11.765		
13,500.0	9,522.0	13,480.5	9,522.0	36.8	40.0	-90.00	-4,255.5	554.6	882.5	806.2	76.30	11.567		
13,600.0	9,522.0	13,580.5	9,522.0	37.5	40.6	-90.00	-4,355.5	554.7	882.5	804.9	77.59	11.373		
13,700.0	9,522.0	13,680.5	9,522.0	38.1	41.3	-90.00	-4,455.5	554.8	882.4	803.6	78.89	11.185		
13,800.0	9,522.0	13,780.5	9,522.0	38.8	41.9	-90.00	-4,555.5	555.0	882.4	802.2	80.20	11.002		
13,900.0	9,522.0	13,880.5	9,522.0	39.5	42.6	-90.00	-4,655.5	555.1	882.4	800.8	81.52	10.824		
14,000.0	9,522.0	13,980.5	9,522.0	40.2	43.2	-90.00	-4,755.5	555.2	882.3	799.5	82.84	10.651		
14,100.0	9,522.0	14,080.5	9,522.0	40.9	43.9	-90.00	-4,855.5	555.4	882.3	798.1	84.17	10.482		
14,200.0	9,522.0	14,180.5	9,522.0	41.6	44.5	-90.00	-4,955.5	555.5	882.2	796.7	85.50	10.318		
14,300.0	9,522.0	14,280.5	9,522.0	42.3	45.2	-90.00	-5,055.5	555.6	882.2	795.3	86.84	10.158		
14,400.0	9,522.0	14,380.5	9,522.0	43.0	45.8	-90.00	-5,155.5	555.7	882.1	794.0	88.19	10.003		
14,500.0	9,522.0	14,480.5	9,522.0	43.7	46.5	-90.00	-5,255.5	555.9	882.1	792.6	89.54	9.851		
14,600.0	9,522.0	14,580.5	9,522.0	44.4	47.2	-90.00	-5,355.5	556.0	882.1	791.2	90.90	9.704		
14,700.0	9,522.0	14,680.5	9,522.0	45.2	47.8	-90.00	-5,455.5	556.1	882.0	789.8	92.26	9.560		
14,800.0	9,522.0	14,780.5	9,522.0	45.9	48.5	-90.00	-5,555.5	556.3	882.0	788.3	93.62	9.420		
14,900.0	9,522.0	14,880.5	9,522.0	46.6	49.2	-90.00	-5,655.5	556.4	881.9	786.9	94.99	9.284		
15,000.0	9,522.0	14,980.5	9,522.0	47.3	49.9	-90.00	-5,755.5	556.5	881.9	785.5	96.37	9.151		
15,100.0	9,522.0	15,080.5	9,522.0	48.0	50.6	-90.00	-5,855.5	556.6	881.8	784.1	97.75	9.022		
15,200.0	9,522.0	15,180.5	9,522.0	48.7	50.0	-90.00	-,	300.0	300		30			

Anticollision Report

Company: DELAWARE BASIN WEST

Project: TOMAHAWK PROSPECT (NM-E) Reference Site: TOMAHAWK WC UNIT S19-30-31 R24S

Site Error: 0.0 usft

TOMAHAWK WC UNIT #723H Reference Well:

Well Error: 3.0 usft

Reference Wellbore OWB PWP1 Reference Design:

Local Co-ordinate Reference:

TVD Reference:

KB=32 @ 3125.0usft KB=32 @ 3125.0usft MD Reference:

Well TOMAHAWK WC UNIT #723H

North Reference: Grid

Minimum Curvature **Survey Calculation Method:**

Output errors are at 2.00 sigma

EDT 17 Central Planning Prod Database:

Reference Datum Offset TVD Reference:

		FECULIADE I	ALL NO OT	1700 × E \$414/D	ED4 0000	E MAND LIEDA LACO				Dul- 4 - 1			Office Well France	2.0
urvey Progi Refe	ram: 0 rence	r.5 SDI_KPR_\ Off :			IFR1, 9038-r. Iajor Axis	5 MWD+IFR1+MS	Offset Wellb	ore Centre	Dist	Rule Assi	gned:		Offset Well Error:	3.0 us
Measured Depth	Vertical Depth	Measured Depth	Vertical Depth	Reference	Offset	Highside Toolface	+N/-S	+E/-W	Between Centres	Between Ellipses	Minimum Separation	Separation Factor	Warning	
(usft)	(usft)	(usft)	(usft)	(usft)	(usft)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)			
15,300.0	9,522.0	15,280.5	9,522.0	49.5	51.9	-90.00	-6,055.5	556.9	881.8	781.2	100.52	8.772		
15,400.0	9,522.0	15,380.5	9,522.0	50.2	52.6	-90.00	-6,155.5	557.0	881.7	779.8	101.91	8.652		
15,500.0	9,522.0	15,480.5	9,522.0	50.9	53.3	-90.00	-6,255.5	557.2	881.7	778.4	103.30	8.535		
15,600.0	9,522.0	15,580.5	9,522.0	51.6	54.0	-90.00	-6,355.5	557.3	881.6	776.9	104.70	8.421		
15,700.0	9,522.0	15,680.5	9,522.0	52.3	54.7	-90.00	-6,455.5	557.4	881.6	775.5	106.09	8.309		
15,800.0	9,522.0	15,780.5	9,522.0	53.1	55.4	-90.00	-6,555.5	557.6	881.5	774.0	107.50	8.201		
15,900.0	9,522.0	15,880.5	9,522.0	53.8	56.1	-90.00	-6,655.5	557.7	881.5	772.6	108.90	8.094		
16,000.0	9,522.0	15,980.5	9,522.0	54.5	56.8	-90.00	-6,755.5	557.8	881.4	771.1	110.31	7.991		
16,100.0	9,522.0	16,080.5	9,522.0	55.3	57.5	-90.00	-6,855.5	557.9	881.4	769.7	111.72	7.889		
16,200.0	9,522.0	16,180.5	9,522.0	56.0	58.2	-90.00	-6,955.5	558.1	881.4	768.2	113.14	7.790		
16,300.0	9,522.0	16,280.5	9,522.0	56.7	58.9	-90.00	-7,055.5	558.2	881.3	766.8	114.55	7.694		
16,400.0	9,522.0	16,380.5	9,522.0	57.5	59.6	-90.00	-7,155.4	558.3	881.3	765.3	115.97	7.599		
16,500.0	9,522.0	16,480.5	9,522.0	58.2	60.3	-90.00	-7,255.4	558.5	881.2	763.8	117.39	7.507		
16,600.0	9,522.0	16,580.5	9,522.0	58.9	61.0	-90.00	-7,355.4	558.6	881.2	762.4	118.81	7.416		
16,700.0	9,522.0	16,680.5	9,522.0	59.7	61.7	-90.00	-7,455.4	558.7	881.1	760.9	120.24	7.328		
16,800.0	9,522.0	16,780.5	9,522.0	60.4	62.4	-90.00	-7,555.4	558.8	881.1	759.4	121.67	7.242		
16,900.0	9,522.0	16,880.5	9,522.0	61.1	63.2	-90.00	-7,655.4	559.0	881.1	758.0	123.10	7.157		
17,000.0	9,522.0	16,980.5	9,522.0	61.9	63.9	-90.00	-7,755.4	559.1	881.0	756.5	124.53	7.075		
17,100.0	9,522.0	17,080.5	9,522.0	62.6	64.6	-90.00	-7,855.4	559.2	881.0	755.0	125.96	6.994		
17,200.0	9,522.0	17,180.5	9,522.0	63.3	65.3	-90.00	-7,955.4	559.4	880.9	753.5	127.40	6.915		
17,300.0	9,522.0	17,280.5	9,522.0	64.1	66.0	-90.00	-8,055.4	559.5	880.9	752.1	128.83	6.837		
17,400.0	9,522.0	17,380.5	9,522.0	64.8	66.7	-90.00	-8,155.4	559.6	880.8	750.6	130.27	6.762		
17,500.0	9,522.0	17,480.5	9,522.0	65.6	67.5	-90.00	-8,255.4	559.7	880.8	749.1	131.71	6.687		
17,600.0	9,522.0	17,580.5	9,522.0	66.3	68.2	-90.00	-8,355.4	559.9	880.8	747.6	133.15	6.615		
17,700.0	9,522.0	17,680.5	9,522.0	67.0	68.9	-90.00	-8,455.4	560.0	880.7	746.1	134.60	6.543		
17,800.0	9,522.0	17,780.5	9,522.0	67.8	69.6	-90.00	-8,555.4	560.1	880.7	744.6	136.04	6.474		
17,900.0	9,522.0	17,880.5	9,522.0	68.5	70.3	-90.00	-8,655.4	560.3	880.6	743.1	137.49	6.405		
18,000.0	9,522.0	17,980.5	9,522.0	69.3	71.1	-90.00	-8,755.4	560.4	880.6	741.6	138.93	6.338		
18,100.0	9,522.0	18,080.5	9,522.0	70.0	71.8	-90.00	-8,855.4	560.5	880.5	740.2	140.38	6.272		
18,200.0	9,522.0	18,180.5	9,522.0	70.8	72.5	-90.00	-8,955.4	560.6	880.5	738.7	141.83	6.208		
18,300.0	9,522.0	18,280.5	9,522.0	71.5	73.3	-90.00	-9,055.4	560.8	880.4	737.2	143.28	6.145		
18,400.0	9,522.0	18,380.5	9,522.0	72.3	74.0	-90.00	-9,155.4	560.9	880.4	735.7	144.74	6.083		
18,500.0	9,522.0	18,480.5	9,522.0	73.0	74.7	-90.00	-9,255.4	561.0	880.4	734.2	146.19	6.022		
18,600.0	9,522.0	18,580.5	9,522.0	73.7	75.4	-90.00	-9,355.4	561.2	880.3	732.7	147.64	5.962		
18,700.0	9,522.0	18,680.5	9,522.0	74.5	76.2	-90.00	-9,455.4	561.3	880.3	731.2	149.10	5.904		
18,800.0	9,522.0	18,780.5	9,522.0	75.2	76.9	-90.00	-9,555.4	561.4	880.2	729.7	150.56	5.846		
18,900.0	9,522.0	18,880.5	9,522.0	76.0	77.6	-90.00	-9,655.4	561.5	880.2	728.2	152.02	5.790		
19,000.0	9,522.0	18,980.5	9,522.0	76.7	78.4	-90.00	-9,755.4	561.7	880.1	726.7	153.48	5.735		
19,000.0	9,522.0	19,080.5	9,522.0	77.5	79.1	-90.00	-9,755.4 -9,855.4	561.8	880.1	725.2	154.94	5.680		
19,200.0	9,522.0	19,180.5	9,522.0	78.2	79.8	-90.00	-9,955.4	561.9	880.1	723.7	156.40	5.627		
19,300.0	9,522.0	19,280.5	9,522.0	79.0	80.6	-90.00	-10,055.4	562.1	880.0	722.2	157.86	5.575		
10 400 0	0.500.0	10 200 5	0.500.0	70.7	04.0	00.00	10.155.4	F00.0	000.0	700 7	150.00	E 500		
19,400.0	9,522.0 9,522.0	19,380.5 19,447.0	9,522.0 9,522.0	79.7 80.2	81.3 81.8	-90.00 -90.00	-10,155.4 -10,222.0	562.2 562.3	880.0 879.9	720.7 719.7	159.32 160.29	5.523 5.490 SF		

Anticollision Report

Company: DELAWARE BASIN WEST

 Project:
 TOMAHAWK PROSPECT (NM-E)

 Reference Site:
 TOMAHAWK WC UNIT S19-30-31 R24S

T28E

Site Error: 0.0 usft

Reference Well: TOMAHAWK WC UNIT #723H

Well Error: 3.0 usft
Reference Wellbore OWB

Reference Design: PWP1

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

Well TOMAHAWK WC UNIT #723H

KB=32 @ 3125.0usft KB=32 @ 3125.0usft

North Reference: Grid

Survey Calculation Method: Minimum Curvature

Output errors are at 2.00 sigma

Database: EDT 17 Central Planning Prod

Offset TVD Reference: Reference Datum

	sign: 10												Offset Site Error:	0.0 ust
urvey Progr						.5 MWD+IFR1+MS	Offeet Wallh	ana Camtua	Die	Rule Assi	gned:		Offset Well Error:	3.0 ust
Refer Measured	rence Vertical	Off Measured	set Vertical	Reference	Major Axis Offset	Highside	Offset Wellb		Between	tance Between	Minimum	Separation	Warning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)	Factor		
0.0	0.0		0.0	3.0	3.0	89.05	0.5	30.0	30.0	(2.2.1.)	(====)			
100.0	100.0		100.0	3.0	3.0	89.05	0.5	30.0	30.0	23.5	6.49	4.621		
200.0	200.0		200.0	3.2	3.2	89.05	0.5	30.0	30.0	23.3	6.73	4.456		
300.0	300.0	300.0	300.0	3.3	3.3	89.05	0.5	30.0	30.0	23.0	6.96	4.308		
400.0	400.0	400.0	400.0	3.4	3.4	89.05	0.5	30.0	30.0	22.8	7.19	4.174		
500.0	500.0	500.0	500.0	3.5	3.5	89.05	0.5	30.0	30.0	22.6	7.40	4.052		
600.0	600.0	600.0	600.0	3.7	3.7	89.05	0.5	30.0	30.0	22.4	7.61	3.941		
700.0	700.0	700.0	700.0	3.8	3.8	89.05	0.5	30.0	30.0	22.2	7.82	3.838		
800.0	800.0	800.0	800.0	3.9	3.9	89.05	0.5	30.0	30.0	22.0	8.02	3.743		
900.0	900.0		900.0	4.0	4.0	89.05	0.5	30.0	30.0	21.8	8.21	3.655		
1,000.0	1,000.0	1,000.0	1,000.0	4.2	4.2	89.05	0.5	30.0	30.0	21.6	8.40	3.573		
1,100.0	1,100.0	1,100.0	1,100.0	4.3	4.3	89.05	0.5	30.0	30.0	21.4	8.58	3.497		
1,200.0	1,200.0	1,200.0	1,200.0	4.4	4.4	89.05	0.5	30.0	30.0	21.2	8.76	3.425		
1,300.0	1,300.0	1,300.0	1,300.0	4.5	4.5	89.05	0.5	30.0	30.0	21.1	8.94	3.357		
1,400.0	1,400.0	1,400.0	1,400.0	4.6	4.6	89.05	0.5	30.0	30.0	20.9	9.11	3.294		
1,500.0	1,500.0	1,500.0	1,500.0	4.7	4.7	89.05	0.5	30.0	30.0	20.7	9.28	3.234 CC, E	s	
1,600.0	1,600.0	1,600.0	1,600.0	4.9	4.9	-165.77	0.5	30.0	31.7	22.1	9.55	3.320		
1,700.0	1,699.8		1,699.8	5.0	5.0	-167.75	0.5	30.0	36.8	26.9	9.91	3.713		
1,800.0	1,799.5	1,799.5	1,799.5	5.3	5.1	-170.06	0.5	30.0	45.3	35.1	10.29	4.406		
1,900.0	1,898.7	1,898.7	1,898.7	5.6	5.2	-172.12	0.5	30.0	57.4	46.7	10.70	5.364		
2,000.0	1,997.7	1,997.7	1,997.7	5.8	5.3	-173.66	0.5	30.0	71.2	60.2	11.03	6.452		
2,100.0	2,096.8	2,095.1	2,095.1	6.1	5.5	-175.54	1.9	30.7	86.0	74.6	11.42	7.531		
2,200.0	2,195.8		2,191.4	6.3	5.7	-178.33	6.3	32.7	102.9	91.0	11.89	8.655		
2,300.0	2,294.8		2,287.6	6.6	5.8	178.59	13.4	36.0	122.1	109.8	12.31	9.920		
2,400.0	2,393.8	2,385.9	2,385.1	6.9	6.0	176.13	21.1	39.6	141.9	129.1	12.80	11.088		
2,500.0	2,492.9	2,483.8	2,482.6	7.3	6.2	174.28	28.8	43.2	162.0	148.7	13.32	12.162		
2,600.0	2,591.9	2,581.6	2,580.1	7.6	6.4	172.83	36.6	46.8	182.1	168.3	13.85	13.149		
2,700.0	2,690.9	2,679.5	2,677.5	8.0	6.6	171.68	44.3	50.4	202.4	188.0	14.40	14.055		
2,800.0	2,789.9	2,777.4	2,775.0	8.3	6.9	170.73	52.0	54.0	222.7	207.7	14.96	14.883		
2,900.0	2,889.0	2,875.2	2,872.5	8.7	7.1	169.94	59.8	57.6	243.1	227.5	15.54	15.642		
3,000.0	2,988.0	2,973.1	2,970.0	9.0	7.4	169.27	67.5	61.2	263.5	247.3	16.13	16.336		
3,100.0	3,087.0	3,070.9	3,067.5	9.4	7.7	168.70	75.2	64.8	283.9	267.2	16.73	16.972		
3,200.0	3,186.1	3,168.8	3,165.0	9.8	8.0	168.21	83.0	68.4	304.4	287.0	17.34	17.555		
3,300.0	3,285.1	3,266.6	3,262.4	10.2	8.3	167.78	90.7	72.1	324.8	306.9	17.96	18.090		
3,400.0	3,384.1	3,364.5	3,359.9	10.5	8.6	167.40	98.4	75.7	345.3	326.7	18.58	18.583		
3,500.0	3,483.1	3,462.3	3,457.4	10.9	8.9	167.06	106.1	79.3	365.8	346.6	19.22	19.036		
3,600.0	3,582.2	3,560.2	3,554.9	11.3	9.2	166.76	113.9	82.9	386.3	366.5	19.86	19.454		
3,700.0	3,681.2	3,658.0	3,652.4	11.7	9.5	166.49	121.6	86.5	406.9	386.4	20.51	19.841		
3,800.0	3,780.2	3,755.9	3,749.8	12.1	9.8	166.24	129.3	90.1	427.4	406.2	21.16	20.195		
3,900.0	3,879.3	3,853.9	3,847.5	12.5	10.1	166.04	137.1	93.7	447.2	425.4	21.81	20.500		
4,000.0	3,978.7	3,952.2	3,945.4	12.9	10.5	165.80	144.8	97.3	465.3	442.8	22.46	20.716		
4,100.0	4,078.2	4,051.0	4,043.9	13.3	10.8	165.53	152.6	100.9	481.7	458.7	23.08	20.872		
4,200.0	4,177.9	4,157.5	4,150.0	13.6	11.1	165.26	160.1	104.4	495.8	472.0	23.74	20.885		
4,300.0	4,277.7	4,264.6	4,257.0	14.0	11.5	165.08	165.8	107.1	506.6	482.2	24.38	20.776		
4,400.0	4,377.6		4,364.5	14.3	11.8	164.97	169.7	108.9	514.2	489.2	24.99	20.578		
4,500.0	4,477.6	4,480.3	4,472.5	14.6	12.1	164.92	171.8	109.9	518.5	493.0	25.53	20.314		
4,600.0	4,577.6	4,585.4	4,577.6	14.8	12.2	164.93	172.2	110.1	519.7	493.9	25.80	20.144		
4,700.0	4,677.6	4,685.4	4,677.6	14.8	12.3	58.93	172.2	110.1	519.7	493.8	25.92	20.053		
4,800.0	4,777.6		4,777.6	14.8	12.3	58.93	172.2	110.1	519.7	493.7	26.04	19.960		
4,900.0	4,877.6		4,877.6	14.9	12.4	58.93	172.2	110.1	519.7	493.6	26.16	19.868		
5,000.0	4,977.6	4,985.4	4,977.6	14.9	12.5	58.93	172.2	110.1	519.7	493.5	26.28	19.776		

Anticollision Report

Company: DELAWARE BASIN WEST

Project: TOMAHAWK PROSPECT (NM-E) Reference Site: TOMAHAWK WC UNIT S19-30-31 R24S

Site Error: 0.0 usft

TOMAHAWK WC UNIT #723H Reference Well:

Well Error: 3.0 usft Reference Wellbore OWB

PWP1 Reference Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference:

Well TOMAHAWK WC UNIT #723H KB=32 @ 3125.0usft

KB=32 @ 3125.0usft

North Reference: Grid

Minimum Curvature **Survey Calculation Method:**

Output errors are at 2.00 sigma

EDT 17 Central Planning Prod Database: Offset TVD Reference:

Reference Datum

urvey Progr						.5 MWD+IFR1+MS				Rule Assi	gned:		Offset Well Error:	3.0 usf
Measured	vertical	Offs Measured	Vertical	Semi M Reference	lajor Axis Offset	Highside	Offset Wellbe	ere Centre +E/-W	Between	Between	Minimum	Separation	Warning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	(usft)	(usft)	Centres (usft)	Ellipses (usft)	Separation (usft)	Factor		
5,100.0	5,077.6	5,085.4	5,077.6	15.0	12.6	58.93	172.2	110.1	519.7	493.3	26.40	19.685		
5,200.0	5,177.6	5,185.4	5,177.6	15.0	12.6	58.93	172.2	110.1	519.7	493.2	26.52	19.595		
5,300.0	5,277.6	5,285.4	5,277.6	15.1	12.7	58.93	172.2	110.1	519.7	493.1	26.65	19.505		
5,400.0	5,377.6	5,385.4	5,377.6	15.1	12.8	58.93	172.2	110.1	519.7	493.0	26.77	19.415		
5,500.0	5,477.6	5,485.4	5,477.6	15.2	12.8	58.93	172.2	110.1	519.7	492.8	26.89	19.326		
5,600.0	5,577.6	5,585.4	5,577.6	15.2	12.9	58.93	172.2	110.1	519.7	492.7	27.02	19.237		
5,700.0	5,677.6	5,685.4	5,677.6	15.3	13.0	58.93	172.2	110.1	519.7	492.6	27.14	19.149		
5,800.0	5,777.6	5,785.4	5,777.6	15.3	13.1	58.93	172.2	110.1	519.7	492.5	27.27	19.062		
5,900.0	5,877.6	5,885.4	5,877.6	15.4	13.1	58.93	172.2	110.1	519.7	492.3	27.39	18.975		
6,000.0	5,977.6	5,985.4	5,977.6	15.4	13.2	58.93	172.2	110.1	519.7	492.2	27.52	18.889		
6,100.0	6,077.6	6,085.4	6,077.6	15.5	13.3	58.93	172.2	110.1	519.7	492.1	27.64	18.803		
6,200.0	6,177.6	6,185.4	6,177.6	15.5	13.4	58.93	172.2	110.1	519.7	492.0	27.77	18.717		
6,300.0	6,277.6	6,285.4	6,277.6	15.6	13.4	58.93	172.2	110.1	519.7	491.8	27.89	18.633		
6,400.0	6,377.6	6,385.4	6,377.6	15.6	13.5	58.93	172.2	110.1	519.7	491.7	28.02	18.548		
6,500.0	6,477.6	6,485.4	6,477.6	15.7	13.6	58.93	172.2	110.1	519.7	491.6	28.15	18.464		
6,600.0	6,577.6	6,585.4	6,577.6	15.7	13.7	58.93	172.2	110.1	519.7	491.5	28.28	18.381		
6,700.0	6,677.6	6,685.4	6,677.6	15.8	13.7	58.93	172.2	110.1	519.7	491.3	28.40	18.298		
6,800.0	6,777.6	6,785.4	6,777.6	15.8	13.8	58.93	172.2	110.1	519.7	491.2	28.53	18.216		
6,900.0	6,877.6	6,885.4	6,877.6	15.9	13.9	58.93	172.2	110.1	519.7	491.1	28.66	18.135		
7,000.0	6,977.6	6,985.4	6,977.6	15.9	14.0	58.93	172.2	110.1	519.7	490.9	28.79	18.053		
7,100.0	7,077.6	7,085.4	7,077.6	16.0	14.0	58.93	172.2	110.1	519.7	490.8	28.92	17.973		
7,200.0	7,177.6	7,185.4	7,177.6	16.0	14.1	58.93	172.2	110.1	519.7	490.7	29.05	17.893		
7,300.0	7,277.6	7,285.4	7,277.6	16.1	14.2	58.93	172.2	110.1	519.7	490.6	29.18	17.813		
7,400.0	7,377.6	7,385.4	7,377.6	16.2	14.3	58.93	172.2	110.1	519.7	490.4	29.31	17.734		
7,500.0	7,477.6	7,485.4	7,477.6	16.2	14.3	58.93	172.2	110.1	519.7	490.3	29.44	17.655		
7,600.0	7,577.6	7,585.4	7,577.6	16.3	14.4	58.93	172.2	110.1	519.7	490.2	29.57	17.577		
7,700.0	7,677.6	7,685.4	7,677.6	16.3	14.5	58.93	172.2	110.1	519.7	490.0	29.70	17.500		
7,800.0	7,777.6	7,785.4	7,777.6	16.4	14.6	58.93	172.2	110.1	519.7	489.9	29.83	17.423		
7,900.0	7,877.6	7,885.4	7,877.6	16.4	14.6	58.93	172.2	110.1	519.7	489.8	29.96	17.346		
8,000.0	7,977.6	7,985.4	7,977.6	16.5	14.7	58.93	172.2	110.1	519.7	489.6	30.09	17.270		
8,100.0	8,077.6	8,085.4	8,077.6	16.5	14.8	58.93	172.2	110.1	519.7	489.5	30.23	17.195		
8,200.0	8,177.6	8,185.4	8,177.6	16.6	14.9	58.93	172.2	110.1	519.7	489.4	30.36	17.120		
8,300.0	8,277.6	8,285.4	8,277.6	16.6	14.9	58.93	172.2	110.1	519.7	489.2	30.49	17.045		
8,400.0	8,377.6	8,385.4	8,377.6	16.7	15.0	58.93	172.2	110.1	519.7	489.1	30.62	16.971		
8,500.0	8,477.6	8,485.4	8,477.6	16.8	15.1	58.93	172.2	110.1	519.7	489.0	30.76	16.897		
8,600.0	8,577.6	8,585.4	8,577.6	16.8	15.2	58.93	172.2	110.1	519.7	488.8	30.89	16.824		
8,700.0	8,677.6	8,685.4	8,677.6	16.9	15.2	58.93	172.2	110.1	519.7	488.7	31.03	16.752		
8,800.0	8,777.6	8,785.4	8,777.6	16.9	15.3	58.93	172.2	110.1	519.7	488.6	31.16	16.680		
8,900.0	8,877.6	8,885.4	8,877.6	17.0	15.4	58.93	172.2	110.1	519.7	488.5	31.28	16.616		
9,000.0	8,977.6	9,091.7	9,078.2	17.0	15.5	62.96	131.2	110.1	509.9	478.4	31.46	16.207		
9,100.0	9,077.6	9,248.8	9,208.8	17.1	15.6	-108.65	45.2	110.2	485.6	454.2	31.43	15.449		
9,200.0	9,175.9	9,364.9	9,283.6	17.1	15.7	-102.34	-43.2	110.3	463.7	432.7	31.02	14.952		
9,300.0	9,268.4	9,460.2	9,327.7	17.1	15.8	-96.22	-127.6	110.4	450.0	419.5	30.52	14.746		
9,400.0	9,351.2	9,543.3	9,351.8	17.1	15.9	-90.03	-207.0	110.5	445.4	415.2	30.22	14.740		
9,404.4	9,354.6	9,546.8	9,352.5	17.1	15.9	-89.75	-210.4	110.5	445.4	415.2	30.21	14.742		
9,500.0	9,420.6	9,618.8	9,361.4	17.2	15.9	-83.78	-281.8	110.6	449.3	419.0	30.29	14.831		
9,600.0	9,473.5	9,700.5	9,362.0	17.3	16.0	-77.30	-363.5	110.7	459.1	428.4	30.64	14.981		
9,700.0	9,507.7	9,794.3	9,362.0	17.4	16.0	-72.38	-457.2	110.8	468.5	437.4	31.10	15.066		
9,800.0	9,521.7	9,893.1	9,362.0	17.5	16.1	-70.28	-556.1	110.9	473.0	441.4	31.57	14.981		
9,900.0	9,522.0	9,993.1	9,362.0	17.7	16.1	-70.23	-656.1	111.0	473.0	441.0	32.07	14.752		
10,000.0	9,522.0	10,093.1	9,362.0	17.9	16.2	-70.23	-756.1	111.1	473.0	440.4	32.63	14.496		

Anticollision Report

Company: DELAWARE BASIN WEST Project: TOMAHAWK PROSPECT (NM-E)

Reference Site: TOMAHAWK WC UNIT S19-30-31 R24S

Site Error: 0.0 usft

TOMAHAWK WC UNIT #723H Reference Well:

Well Error: 3.0 usft

Reference Wellbore OWB

PWP1 Reference Design:

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

Well TOMAHAWK WC UNIT #723H

KB=32 @ 3125.0usft KB=32 @ 3125.0usft

North Reference: Grid

Minimum Curvature **Survey Calculation Method:**

Output errors are at 2.00 sigma

EDT 17 Central Planning Prod Database:

Offset TVD Reference: Reference Datum

urvey Progra	am : 0	-r.5 SDI_KPR_V	VL_NS-CT, 2			.5 MWD+IFR1+MS				Rule Assi	gned:		Offset Well Error:	3.0 usf
Refer Measured	ence Vertical	Offs Measured	et Vertical	Semi M Reference	lajor Axis Offset	Highside	Offset Wellb		Dist Between	ance Between	Minimum	Separation	Warning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)	Factor		
10,100.0	9,522.0	10,193.1	9,362.0	18.1	16.4	-70.23	-856.1	111.3	472.9	439.7	33.25	14.222		
10,200.0	9,522.0	10,293.1	9,362.0	18.4	16.5	-70.22	-956.1	111.4	472.9	439.0	33.93	13.935		
10,300.0	9,522.0	10,393.1	9,362.0	18.7	16.7	-70.22	-1,056.1	111.5	472.8	438.2	34.67	13.639		
10,400.0	9,522.0	10,493.1	9,362.0	19.1	17.0	-70.22	-1,156.1	111.6	472.8	437.3	35.45	13.335		
10,500.0	9,522.0	10,593.1	9,362.0	19.4	17.3	-70.22	-1,256.1	111.7	472.7	436.4	36.29	13.028		
10,600.0	9,522.0	10,693.1	9,362.0	19.8	17.7	-70.21	-1,356.1	111.8	472.7	435.5	37.16	12.719		
10,700.0	9,522.0	10,793.1	9,362.0	20.2	18.1	-70.21	-1,456.1	112.0	472.6	434.5	38.08	12.412		
10,800.0	9,522.0	10,893.1	9,362.0	20.6	18.6	-70.21	-1,556.1	112.1	472.6	433.5	39.03	12.107		
10,900.0	9,522.0	10,993.1	9,362.0	21.1	19.1	-70.21	-1,656.1	112.2	472.5	432.5	40.02	11.806		
11,000.0	9,522.0	11,093.1	9,362.0	21.6	19.6	-70.21	-1,756.1	112.3	472.5	431.4	41.05	11.511		
11,100.0	9,522.0	11,193.1	9,362.0	22.1	20.1	-70.20	-1,856.1	112.4	472.4	430.3	42.10	11.222		
11,200.0	9,522.0	11,293.1	9,362.0	22.6	20.7	-70.20	-1,956.1	112.6	472.4	429.2	43.18	10.940		
11,300.0	9,522.0	11,393.1	9,362.0	23.1	21.3	-70.20	-2,056.1	112.7	472.3	428.0	44.29	10.665		
11,400.0	9,522.0	11,493.1	9,362.0	23.6	21.9	-70.20	-2,056.1	112.7	472.3	426.9	45.42	10.399		
11,500.0	9,522.0	11,593.1	9,362.0	24.1	22.5	-70.19	-2,156.1	112.9	472.2	425.6	46.57	10.140		
11,600.0	9,522.0	11,693.1	9,362.0	24.7	23.1	-70.19	-2,356.1	113.0	472.2	424.4	47.74	9.890		
11,700.0	9,522.0	11,793.1	9,362.0	25.3	23.7	-70.19	-2,456.1	113.1	472.1	423.2	48.93	9.648		
11,800.0	9,522.0	11,893.1	9,362.0	25.9	24.4	-70.19	-2,556.1	113.3	472.1	421.9	50.14	9.414		
11,900.0	9,522.0	11,993.1	9,362.0	26.4	25.0	-70.19	-2,656.1	113.4	472.0	420.6	51.37	9.188		
12,000.0	9,522.0	12,093.1	9,362.0	27.0	25.7	-70.18	-2,756.1	113.5	472.0	419.3	52.61	8.970		
12,100.0	9,522.0	12,193.1	9,362.0	27.6	26.3	-70.18	-2,856.1	113.6	471.9	418.0	53.87	8.760		
12,200.0	9,522.0	12,293.1	9,362.0	28.3	27.0	-70.18	-2,956.1	113.7	471.9	416.7	55.14	8.558		
12,300.0	9,522.0	12,393.1	9,362.0	28.9	27.7	-70.18	-3,056.1	113.8	471.8	415.4	56.42	8.363		
12,400.0	9,522.0	12,493.1	9,362.0	29.5	28.4	-70.17	-3,156.1	114.0	471.8	414.0	57.71	8.174		
12,500.0	9,522.0	12,593.1	9,362.0	30.1	29.0	-70.17	-3,256.1	114.1	471.7	412.7	59.02	7.993		
12,600.0	9,522.0	12,693.1	9,362.0	30.8	29.7	-70.17	-3,356.1	114.2	471.7	411.3	60.33	7.818		
12,700.0	9,522.0	12,793.1	9,362.0	31.4	30.4	-70.17	-3,456.1	114.3	471.6	409.9	61.65	7.649		
12,800.0	9,522.0	12,893.1	9,362.0	32.1	31.1	-70.17	-3,556.1	114.4	471.5	408.6	62.98	7.487		
12,900.0	9,522.0	12,993.1	9,362.0	32.7	31.8	-70.16	-3,656.1	114.5	471.5	407.2	64.32	7.330		
13,000.0	9,522.0	13,093.1	9,362.0	33.4	32.5	-70.16	-3,756.1	114.7	471.4	405.8	65.67	7.179		
13,100.0	9,522.0	13,193.1	9,362.0	34.1	33.2	-70.16	-3,856.1	114.8	471.4	404.4	67.03	7.033		
13,200.0	9,522.0	13,293.1	9,362.0	34.7	33.9	-70.16	-3,956.1	114.9	471.3	403.0	68.39	6.892		
13,300.0	9,522.0	13,393.1	9,362.0	35.4	34.6	-70.15	-4,056.1	115.0	471.3	401.5	69.76	6.756		
13,400.0	9,522.0	13,493.1	9,362.0	36.1	35.3	-70.15 -70.15	-4,056.1 -4,156.1	115.0	471.3	401.5	71.13	6.625		
13,500.0	9,522.0	13,593.1	9,362.0	36.8	36.0	-70.15 -70.15	-4,156.1 -4,256.1	115.1	471.2	398.7	71.13	6.498		
13,600.0	9,522.0	13,693.1	9,362.0	37.5	36.8	-70.15 -70.15	-4,256.1 -4,356.1	115.4	471.2	397.2	73.90	6.376		
13,700.0	9,522.0	13,793.1	9,362.0	38.1	37.5	-70.14	-4,456.1	115.5	471.1	395.8	75.29	6.257		
13,800.0	9,522.0	13,893.1	9,362.0	38.8	38.2	-70.14	-4,456.1 -4,556.1	115.6	471.1	394.3	76.68	6.143		
13,900.0	9,522.0	13,993.1	9,362.0	39.5	38.9	-70.14 -70.14	-4,556.1 -4,656.1	115.6	471.0	394.3	78.08	6.032		
14,000.0	9,522.0	14,093.1	9,362.0	40.2	39.6	-70.14 -70.14	-4,056.1 -4,756.1	115.7	471.0	392.9	79.49	5.925		
14,000.0	9,522.0	14,093.1	9,362.0	40.2	40.4	-70.14 -70.14	-4,756.1 -4,856.1	116.0	470.9	390.0	80.90	5.925		
14,200.0	9,522.0	14,293.1	9,362.0	41.6	41.1	-70.13 -70.13	-4,956.1 -5,056.1	116.1	470.8	388.5 387.1	82.31 83.72	5.720 5.623		
14,300.0	9,522.0	14,393.1	9,362.0	42.3	41.8	-70.13	-5,056.1	116.2	470.8	387.1	83.72	5.623		
14,400.0	9,522.0	14,493.1	9,362.0	43.0	42.6	-70.13	-5,156.1	116.3	470.7	385.6	85.14	5.529		
14,500.0 14,600.0	9,522.0 9,522.0	14,593.1 14,693.1	9,362.0 9,362.0	43.7 44.4	43.3 44.0	-70.13 -70.12	-5,256.1 -5,356.1	116.4 116.5	470.7 470.6	384.1 382.6	86.57 87.99	5.437 5.348		
14,700.0 14,800.0	9,522.0 9,522.0	14,793.1 14,893.1	9,362.0 9,362.0	45.2 45.9	44.8 45.5	-70.12 -70.12	-5,456.1 -5,556.1	116.7 116.8	470.6 470.5	381.1 379.7	89.42 90.85	5.262 5.179		
					45.5		-5,556.1 5,656.1							
14,900.0	9,522.0	14,993.1	9,362.0	46.6	46.2	-70.12	-5,656.1 5,756.1	116.9	470.5	378.2	92.29	5.098		
15,000.0	9,522.0	15,093.1	9,362.0	47.3	47.0	-70.12	-5,756.1	117.0	470.4	376.7	93.72	5.019		

Anticollision Report

Company: DELAWARE BASIN WEST Project: TOMAHAWK PROSPECT (NM-E)

Reference Site: TOMAHAWK WC UNIT S19-30-31 R24S

Site Error: 0.0 usft

TOMAHAWK WC UNIT #723H Reference Well:

Well Error: 3.0 usft

PWP1 Reference Design:

Reference Wellbore OWB Local Co-ordinate Reference:

TVD Reference:

MD Reference:

Well TOMAHAWK WC UNIT #723H

KB=32 @ 3125.0usft KB=32 @ 3125.0usft

North Reference: Grid

Minimum Curvature **Survey Calculation Method:**

Output errors are at 2.00 sigma

EDT 17 Central Planning Prod Database:

Reference Datum Offset TVD Reference:

urvey Prog	ram: 0-	r.5 SDI KPR V	VL NS-CT. 2	2000-r.5 MWD+	FR1, 8892-r	.5 MWD+IFR1+MS				Rule Assig	gned:		Offset Well Error:	3.0 u
Refe	rence	Offs	set	Semi M	lajor Axis		Offset Wellb	ore Centre		ance	-	0		
leasured Depth	Vertical Depth	Measured Depth	Vertical Depth	Reference	Offset	Highside Toolface	+N/-S	+E/-W	Between Centres	Between Ellipses	Minimum Separation	Separation Factor	Warning	
(usft)	(usft)	(usft)	(usft)	(usft)	(usft)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	i actor		
15,200.0	9,522.0	15,293.1	9,362.0	48.7	48.4	-70.11	-5,956.1	117.2	470.3	373.7	96.61	4.868		
15,300.0	9,522.0	15,393.1	9,362.0	49.5	49.2	-70.11	-6,056.1	117.4	470.3	372.2	98.05	4.796		
15,400.0	9,522.0	15,493.1	9,362.0	50.2	49.9	-70.11	-6,156.1	117.5	470.2	370.7	99.50	4.726		
15,500.0	9,522.0	15,593.1	9,362.0	50.9	50.7	-70.10	-6,256.1	117.6	470.2	369.2	100.95	4.658		
15,600.0	9,522.0	15,693.1	9,362.0	51.6	51.4	-70.10	-6,356.1	117.7	470.2	367.7	100.33	4.591		
15,700.0	9,522.0	15,793.1	9,362.0	52.3	52.1	-70.10	-6,456.1	117.8	470.1	366.2	103.85	4.526		
45 000 0	0.500.0	45.000.4	0.000.0	50.4	50.0	70.40	0.550.4	447.0	470.0	204.7	405.00	4.400		
15,800.0	9,522.0	15,893.1	9,362.0	53.1	52.9	-70.10	-6,556.1	117.9	470.0	364.7	105.30	4.463		
15,900.0	9,522.0	15,993.1	9,362.0	53.8	53.6	-70.10	-6,656.1	118.1	470.0	363.2	106.76	4.402		
16,000.0	9,522.0	16,093.1	9,362.0	54.5	54.4	-70.09	-6,756.1	118.2	469.9	361.7	108.22	4.342		
16,100.0	9,522.0	16,193.1	9,362.0	55.3	55.1	-70.09	-6,856.1	118.3	469.9	360.2	109.67	4.284		
16,200.0	9,522.0	16,293.1	9,362.0	56.0	55.9	-70.09	-6,956.1	118.4	469.8	358.7	111.14	4.227		
16,300.0	9,522.0	16,393.1	9,362.0	56.7	56.6	-70.09	-7,056.1	118.5	469.7	357.1	112.60	4.172		
16,400.0	9,522.0	16,493.1	9,362.0	57.5	57.3	-70.08	-7,156.1	118.7	469.7	355.6	114.06	4.118		
16,500.0	9,522.0	16,593.1	9,362.0	58.2	58.1	-70.08	-7,256.1	118.8	469.6	354.1	115.53	4.065		
16,600.0	9,522.0	16,693.1	9,362.0	58.9	58.8	-70.08	-7,356.1	118.9	469.6	352.6	116.99	4.014		
16,700.0	9,522.0	16,793.1	9,362.0	59.7	59.6	-70.08	-7,456.1	119.0	469.5	351.1	118.46	3.964		
16,800.0	9,522.0	16,893.1	9,362.0	60.4	60.3	-70.07	-7,556.1	119.1	469.5	349.6	119.93	3.915		
16,900.0	9,522.0	16,993.1	9,362.0	61.1	61.1	-70.07	-7,656.1	119.1	469.4	348.0	121.40	3.867		
17,000.0	9,522.0	17,093.1	9,362.0	61.9	61.8	-70.07	-7,756.1	119.4	469.4	346.5	122.87	3.820		
17,100.0	9,522.0	17,193.1	9,362.0	62.6	62.6	-70.07	-7,856.1	119.5	469.3	345.0	124.34	3.775		
	9,522.0	17,193.1			63.3	-70.07			469.3	343.5	125.82			
17,200.0	9,522.0	17,293.1	9,362.0	63.3	03.3	-70.07	-7,956.1	119.6	409.3	343.5	125.02	3.730		
17,300.0	9,522.0	17,393.1	9,362.0	64.1	64.1	-70.06	-8,056.1	119.7	469.2	341.9	127.29	3.686		
17,400.0	9,522.0	17,493.1	9,362.0	64.8	64.8	-70.06	-8,156.1	119.8	469.2	340.4	128.77	3.644		
17,500.0	9,522.0	17,593.1	9,362.0	65.6	65.6	-70.06	-8,256.1	119.9	469.1	338.9	130.24	3.602		
17,600.0	9,522.0	17,693.1	9,362.0	66.3	66.3	-70.06	-8,356.1	120.1	469.1	337.4	131.72	3.561		
17,700.0	9,522.0	17,793.1	9,362.0	67.0	67.1	-70.05	-8,456.1	120.2	469.0	335.8	133.20	3.521		
17,800.0	9,522.0	17,893.1	9,362.0	67.8	67.8	-70.05	-8,556.1	120.3	469.0	334.3	134.68	3.482		
17,900.0	9,522.0	17,993.1	9,362.0	68.5	68.6	-70.05	-8,656.1	120.4	468.9	332.8	136.16	3.444		
18,000.0	9,522.0	18,093.1	9,362.0	69.3	69.3	-70.05	-8,756.1	120.5	468.9	331.2	137.64	3.407		
18,100.0	9,522.0	18,193.1	9,362.0	70.0	70.1	-70.05	-8,856.1	120.6	468.8	329.7	139.12	3.370		
18,200.0	9,522.0	18,293.1	9,362.0	70.8	70.1	-70.04	-8,956.1	120.8	468.8	328.2	140.60	3.334		
10 200 0	0.500.0	10 000 1	0.200.0	74.5	74.0	70.04	0.050.4	400.0	400 7	200.0	140.00	2 000		
18,300.0	9,522.0	18,393.1	9,362.0	71.5	71.6	-70.04	-9,056.1	120.9	468.7	326.6	142.08	3.299		
18,400.0	9,522.0	18,493.1	9,362.0	72.3	72.4	-70.04	-9,156.1	121.0	468.7	325.1	143.57	3.264		
18,500.0	9,522.0	18,593.1	9,362.0	73.0	73.1	-70.04	-9,256.1	121.1	468.6	323.6	145.05	3.231		
18,600.0	9,522.0	18,693.1	9,362.0	73.7	73.9	-70.03	-9,356.1	121.2	468.6	322.0	146.54	3.198		
18,700.0	9,522.0	18,793.1	9,362.0	74.5	74.6	-70.03	-9,456.1	121.4	468.5	320.5	148.02	3.165		
18,800.0	9,522.0	18,893.1	9,362.0	75.2	75.4	-70.03	-9,556.1	121.5	468.5	319.0	149.51	3.133		
18,900.0	9,522.0	18,993.1	9,362.0	76.0	76.1	-70.03	-9,656.1	121.6	468.4	317.4	151.00	3.102		
19,000.0	9,522.0	19,093.1	9,362.0	76.7	76.9	-70.02	-9,756.1	121.7	468.4	315.9	152.48	3.072		
19,100.0	9,522.0	19,193.1	9,362.0	77.5	77.6	-70.02	-9,856.1	121.8	468.3	314.3	153.97	3.042		
19,200.0	9,522.0	19,293.1	9,362.0	78.2	78.4	-70.02	-9,956.1	121.9	468.3	312.8	155.46	3.012		
19,300.0	9,522.0	19,393.1	9,362.0	79.0	79.2	-70.02	-10,056.1	122.1	468.2	311.3	156.95	2.983		
19,400.0	9,522.0	19,493.1	9,362.0	79.0	79.2	-70.02	-10,056.1	122.1	468.2	309.7	158.43	2.955		
19,466.5	9,522.0	19,493.1	9,362.0	80.2	80.4	-70.02	-10,130.1	122.2	468.1	308.7	159.42	2.935 2.936 SF		

Anticollision Report

Company: DELAWARE BASIN WEST

Project: TOMAHAWK PROSPECT (NM-E) Reference Site: TOMAHAWK WC UNIT S19-30-31 R24S

Site Error: 0.0 usft

TOMAHAWK WC UNIT #723H Reference Well:

Well Error: 3.0 usft

Reference Wellbore OWB

PWP1 Reference Design:

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

Well TOMAHAWK WC UNIT #723H

KB=32 @ 3125.0usft KB=32 @ 3125.0usft

North Reference: Grid

Minimum Curvature **Survey Calculation Method:**

Output errors are at 2.00 sigma

EDT 17 Central Planning Prod Database: Offset TVD Reference:

Reference Datum

ırvey Progra Refer		.5 SDI_KPR_\ Offs			FR1, 8958-r. Iajor Axis	5 MWD+IFR1+MS	Offset Wellbe	ore Centre	Dist	Rule Assi tance	gned:		Offset Well Error:	3.0 us
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
0.0	0.0	0.0	0.0	3.0	3.0	-90.95	-0.5	-30.0	30.0	(uon)	(uoit)			
100.0	100.0	100.0	100.0	3.0	3.0	-90.95	-0.5	-30.0	30.0	23.5	6.49	4.621		
200.0	200.0	200.0	200.0	3.2	3.2	-90.95	-0.5	-30.0	30.0	23.3	6.73	4.456		
300.0	300.0	300.0	300.0	3.3	3.3	-90.95	-0.5	-30.0	30.0	23.0	6.96	4.308		
400.0	400.0	400.0	400.0	3.4	3.4	-90.95	-0.5	-30.0	30.0	22.8	7.19	4.174		
500.0	500.0	500.0	500.0	3.5	3.5	-90.95	-0.5	-30.0	30.0	22.6	7.40	4.052		
600.0	600.0	600.0	600.0	3.7	3.7	-90.95	-0.5	-30.0	30.0	22.4	7.61	3.941		
700.0	700.0	700.0	700.0	3.8	3.8	-90.95	-0.5	-30.0	30.0	22.2	7.82	3.838		
800.0	800.0	800.0	800.0	3.9	3.9	-90.95	-0.5	-30.0	30.0	22.0	8.02	3.743		
900.0	900.0	900.0	900.0	4.0	4.0	-90.95	-0.5	-30.0	30.0	21.8	8.21	3.655		
1,000.0	1,000.0	1,000.0	1,000.0	4.2	4.2	-90.95	-0.5	-30.0	30.0	21.6	8.40	3.573		
1,100.0	1,100.0	1,100.0	1,100.0	4.3	4.3	-90.95	-0.5	-30.0	30.0	21.4	8.58	3.497		
1,200.0	1,200.0	1,200.0	1,200.0	4.4	4.4	-90.95	-0.5	-30.0	30.0	21.2	8.76	3.425		
1,300.0	1,300.0	1,300.0	1,300.0	4.5	4.5	-90.95	-0.5	-30.0	30.0	21.1	8.94	3.357		
1,400.0	1,400.0	1,400.0	1,400.0	4.6	4.6	-90.95	-0.5	-30.0	30.0	20.9	9.11	3.294		
1,500.0	1,500.0	1,500.0	1,500.0	4.7	4.7	-90.95	-0.5	-30.0	30.0	20.7	9.28	3.234		
1,527.7	1,527.7	1,527.4	1,527.4	4.8	4.8	15.17	-0.5	-30.1	30.0	20.6	9.38	3.199 CC		
1,600.0	1,600.0	1,599.0	1,599.0	4.9	4.8	16.63	-0.1	-31.7	30.0	20.4	9.64	3.113		
1,700.0	1,699.8	1,697.9	1,697.8	5.0	5.0	21.37	0.9	-36.7	30.2	20.0	10.16	2.970 ES		
1,800.0	1,799.5	1,796.8	1,796.3	5.3	5.3	29.03	2.7	-45.0	30.9	20.2	10.69	2.892 SF		
1,900.0	1,898.7	1,895.5	1,894.3	5.6	5.5	38.87	5.2	-56.7	32.8	21.6	11.20	2.930		
2,000.0	1,997.7	1,994.1	1,991.7	5.8	5.9	47.62	8.3	-71.6	37.6	26.0	11.62	3.239		
2,100.0	2,096.8	2,092.4	2,088.1	6.1	6.2	52.38	12.2	-89.7	46.2	34.2	12.05	3.837		
2,200.0	2,195.8	2,191.7	2,185.3	6.3	6.5	54.75	16.5	-109.9	56.8	44.3	12.49	4.548		
2,300.0	2,294.8	2,291.1	2,282.5	6.6	6.8	56.37	20.8	-130.1	67.4	54.5	12.95	5.209		
2,400.0	2,393.8	2,390.5	2,379.8	6.9	7.1	57.54	25.1	-150.3	78.1	64.7	13.42	5.820		
2,500.0	2,492.9	2,489.9	2,477.0	7.3	7.5	58.44	29.4	-170.5	88.8	74.9	13.91	6.384		
2,600.0	2,591.9	2,589.3	2,574.3	7.6	7.8	59.14	33.7	-190.7	99.5	85.1	14.42	6.904		
2,700.0	2,690.9	2,688.7	2,671.5	8.0	8.2	59.70	38.0	-211.0	110.3	95.3	14.93	7.383		
2,800.0	2,789.9	2,788.2	2,768.7	8.3	8.6	60.17	42.3	-231.2	121.0	105.5	15.46	7.824		
2,900.0	2,889.0	2,887.6	2,866.0	8.7	8.9	60.56	46.6	-251.4	131.7	115.7	16.00	8.232		
3,000.0	2,988.0	2,987.0	2,963.2	9.0	9.3	60.89	50.9	-271.6	142.5	125.9	16.55	8.609		
3,100.0	3,087.0	3,086.4	3,060.5	9.4	9.7	61.17	55.2	-291.8	153.2	136.1	17.11	8.958		
3,200.0	3,186.1	3,185.8	3,157.7	9.8	10.1	61.42	59.5	-312.1	164.0	146.3	17.67	9.281		
3,300.0	3,285.1	3,285.3	3,255.0	10.2	10.6	61.64	63.8	-332.3	174.7	156.5	18.24	9.580		
3,400.0	3,384.1	3,384.7	3,352.2	10.5	11.0	61.83	68.0	-352.5	185.5	166.7	18.82	9.859		
3,500.0	3,483.1	3,484.1	3,449.5	10.9	11.4	62.00	72.3	-372.7	196.3	176.9	19.40	10.118		
3,600.0	3,582.2	3,583.5	3,546.7	11.3	11.8	62.15	76.6	-392.9	207.0	187.0	19.98	10.359		
3,700.0	3,681.2	3,682.9	3,644.0	11.7	12.2	62.29	80.9	-413.2	217.8	197.2	20.57	10.585		
3,800.0 3,900.0	3,780.2 3,879.3	3,782.3 3,881.7	3,741.2 3,838.4	12.1 12.5	12.7 13.1	62.41 62.45	85.2 89.5	-433.4 -453.6	228.6 239.7	207.4 217.9	21.17 21.79	10.794 11.001		
ა,უიი.ი														
4,000.0	3,978.7	3,981.0	3,935.5	12.9	13.5	62.15	93.8	-473.8	251.6	229.2	22.45	11.208		
4,100.0	4,078.2	4,080.1	4,032.5	13.3	14.0	61.56	98.1	-493.9	264.4	241.3	23.16	11.418		
4,200.0	4,177.9	4,179.1	4,129.3	13.6	14.4	60.72	102.4	-514.1	278.1	254.2	23.91	11.632		
4,300.0 4,400.0	4,277.7 4,377.6	4,277.8 4,376.4	4,225.9 4,322.2	14.0 14.3	14.9 15.3	59.68 58.49	106.7 110.9	-534.1 -554.2	292.7 308.3	268.0 282.8	24.69 25.51	11.854 12.087		
4,400.0	4,3/1.0	4,3/0.4	4,322.2	14.3	15.3	50.49	110.9	-354.∠	308.3	∠8∠.8	25.51	12.08/		
4,500.0	4,477.6	4,474.6	4,418.4	14.6	15.7	57.17	115.2	-574.2	325.0	298.6	26.34	12.337		
4,600.0	4,577.6	4,572.6	4,514.2	14.8	16.2	55.76	119.4	-594.1	342.8	315.7	27.16	12.624		
4,700.0	4,677.6	4,670.4	4,609.9	14.8	16.6	-51.77	123.6	-614.0	361.4	333.5	27.92	12.945		
4,800.0	4,777.6	4,768.2 4,866.1	4,705.6	14.8	17.1	-53.15	127.9	-633.9	380.3	351.6	28.67	13.265		

Anticollision Report

Company: DELAWARE BASIN WEST Project: TOMAHAWK PROSPECT (NM-E)

Reference Site: TOMAHAWK WC UNIT S19-30-31 R24S

Site Error: 0.0 usft

TOMAHAWK WC UNIT #723H Reference Well:

Well Error: 3.0 usft Reference Wellbore OWB

PWP1 Reference Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference:

Well TOMAHAWK WC UNIT #723H

KB=32 @ 3125.0usft KB=32 @ 3125.0usft

North Reference: Grid

Minimum Curvature **Survey Calculation Method:**

Output errors are at 2.00 sigma

EDT 17 Central Planning Prod Database: Offset TVD Reference: Reference Datum

	sign:												Offset Site Error:	0.0 us
ey Progr Refe	rence	Offs	set	Semi N	lajor Axis	5 MWD+IFR1+MS	Offset Wellbe	ore Centre		Rule Assi tance	_		Offset Well Error:	3.0 us
epth	Vertical Depth	Measured Depth	Vertical Depth	Reference	Offset	Highside Toolface	+N/-S (usft)	+E/-W (usft)	Centres	Between Ellipses	Minimum Separation	Separation Factor	Warning	
usft) 5,000.0	(usft) 4,977.6	(usft) 4,970.4	(usft) 4,903.5	(usft) 14.9	(usft) 18.0	(°) -55.56	136.4	-674.2	(usft) 417.8	(usft) 387.7	(usft) 30.13	13.868		
5,100.0	5,077.6	5,076.0	5,007.3	15.0		-56.54	140.4	-674.2	434.8	403.9	30.13	14.096		
				15.0	18.4 18.9			-093.0 -710.1						
5,200.0	5,177.6	5,182.3	5,112.2			-57.37	144.1	-710.1	450.1	418.6	31.52	14.280 14.421		
3,300.0	5,277.6	5,289.3	5,218.0	15.1	19.4	-58.05	147.3		463.8	431.6	32.16			
5,400.0	5,377.6	5,396.8	5,324.6	15.1	19.8	-58.62	150.1	-738.7	475.8	443.0	32.77	14.521		
5,500.0	5,477.6	5,504.8	5,431.9	15.2	20.2	-59.08	152.6	-750.2	486.0	452.7	33.33	14.582		
5,600.0	5,577.6	5,613.1	5,539.9	15.2	20.7	-59.44	154.6	-759.7	494.5	460.7	33.86	14.607		
5,700.0	5,677.6	5,721.9	5,648.3	15.3	21.1	-59.72	156.2	-767.3	501.3	466.9	34.34	14.597		
0.008,	5,777.6	5,830.8	5,757.2	15.3	21.4	-59.92	157.4	-772.8	506.2	471.4	34.77	14.558		
5,900.0	5,877.6	5,940.0	5,866.2	15.4	21.8	-60.05	158.1	-776.3	509.3	474.2	35.14	14.493		
5,000.0	5,977.6	6,049.2	5,975.5	15.4	22.0	-60.10	158.4	-777.8	510.7	475.3	35.38	14.432		
3,100.0	6,077.6	6,151.3	6,077.6	15.5	22.0	-60.10	158.5	-777.8	510.7	475.2	35.47	14.396		
3,200.0	6,177.6	6,251.3	6,177.6	15.5	22.1	-60.10	158.5	-777.8	510.7	475.1	35.56	14.360		
3,300.0	6,277.6	6,351.3	6,277.6	15.6	22.1	-60.10	158.5	-777.8	510.7	475.1	35.65	14.324		
3,400.0	6,377.6	6,451.3	6,377.6	15.6	22.2	-60.10	158.5	-777.8	510.7	475.0	35.74	14.288		
,500.0	6,477.6	6,551.3	6,477.6	15.7	22.2	-60.10	158.5	-777.8	510.7	474.9	35.83	14.252		
3,600.0	6,577.6	6,651.3	6,577.6	15.7	22.2	-60.10	158.5	-777.8	510.7	474.8	35.92	14.216		
5,700.0	6,677.6	6,751.3	6,677.6	15.8	22.3	-60.10	158.5	-777.8	510.7	474.7	36.02	14.180		
5,800.0	6,777.6	6,851.3	6,777.6	15.8	22.3	-60.10	158.5	-777.8	510.7	474.6	36.11	14.144		
5,900.0	6,877.6	6,951.3	6,877.6	15.9	22.3	-60.10	158.5	-777.8	510.7	474.5	36.20	14.108		
,000.0	6,977.6	7,051.3	6,977.6	15.9	22.4	-60.10	158.5	-777.8	510.7	474.4	36.29	14.072		
7,100.0	7,077.6	7,151.3	7,077.6	16.0	22.4	-60.10	158.5	-777.8	510.7	474.3	36.39	14.036		
,200.0	7,177.6	7,251.3	7,177.6	16.0	22.5	-60.10	158.5	-777.8	510.7	474.2	36.48	14.000		
,300.0	7,277.6	7,351.3	7,277.6	16.1	22.5	-60.10	158.5	-777.8	510.7	474.1	36.57	13.964		
,400.0	7,377.6	7,451.3	7,377.6	16.2	22.5	-60.10	158.5	-777.8	510.7	474.0	36.67	13.928		
,500.0	7,477.6	7,551.3	7,477.6	16.2	22.6	-60.10	158.5	-777.8	510.7	473.9	36.76	13.892		
,600.0	7,577.6	7,651.3	7,577.6	16.3	22.6	-60.10	158.5	-777.8	510.7	473.8	36.86	13.856		
7,700.0	7,677.6	7,751.3	7,677.6	16.3	22.7	-60.10	158.5	-777.8	510.7	473.8	36.96	13.820		
7,800.0	7,777.6	7,851.3	7,777.6	16.4	22.7	-60.10	158.5	-777.8	510.7	473.7	37.05	13.784		
,900.0	7,877.6	7,951.3	7,877.6	16.4	22.7	-60.10	158.5	-777.8	510.7	473.6	37.15	13.748		
3,000.0	7,977.6	8,051.3	7,977.6	16.5	22.8	-60.10	158.5	-777.8	510.7	473.5	37.25	13.712		
3,100.0	8,077.6	8,151.3	8,077.6	16.5	22.8	-60.10	158.5	-777.8	510.7	473.4	37.34	13.676		
,200.0	8,177.6	8,251.3	8,177.6	16.6	22.9	-60.10	158.5	-777.8	510.7	473.3	37.44	13.640		
3,300.0	8,277.6	8,351.3	8,277.6	16.6	22.9	-60.10	158.5	-777.8	510.7	473.3	37.54	13.604		
3,400.0	8,377.6	8,451.3	8,377.6	16.7	22.9	-60.10	158.5	-777.8	510.7	473.1	37.64	13.568		
3,500.0	8,477.6	8,551.3	8,477.6	16.8	23.0	-60.10	158.5	-777.8	510.7	473.0	37.74	13.532		
	0.533.5	0.051.5	0.533.6	40.0	60.0	00.40	450.5	0	510 -	470.5	07.04	40.407		
3,600.0	8,577.6	8,651.3	8,577.6	16.8	23.0	-60.10	158.5	-777.8	510.7	472.9	37.84	13.497		
3,700.0	8,677.6	8,751.3	8,677.6	16.9	23.1	-60.10	158.5	-777.8	510.7	472.8	37.94	13.461		
3,800.0	8,777.6	8,851.3	8,777.6	16.9	23.1	-60.10	158.5	-777.8 -777.0	510.7	472.7	38.04	13.425		
9,000.0	8,877.6 8,977.6	8,951.3 9,147.7	8,877.6 9,069.1	17.0 17.0	23.1 23.2	-60.10 -63.84	158.5 121.4	-777.8 -777.8	510.7 501.6	472.6 463.9	38.13 37.75	13.394 13.287		
	3,577.0		0,000.1	17.0	20.2	55.54	.21.7				31.10			
,100.0	9,077.6	9,301.2	9,198.7	17.1	23.2	108.34	40.6	-777.6	479.0	440.9	38.15	12.558		
,200.0	9,175.9	9,417.0	9,275.9	17.1	23.2	102.08	-45.5	-777.4	458.8	419.9	38.84	11.813		
9,300.0	9,268.4	9,513.1	9,322.7	17.1	23.3	95.95	-129.2	-777.3	446.2	406.6	39.53	11.287		
9,396.6	9,348.6	9,594.5	9,348.5	17.1	23.4	89.98	-206.3	-777.1	442.2	402.1	40.15	11.015		
9,400.0	9,351.2	9,597.2	9,349.1	17.1	23.4	89.77	-209.0	-777.1	442.2	402.1	40.17	11.009		
,500.0	9,420.6	9,675.0	9,360.8	17.2	23.4	83.48	-285.7	-777.0	446.3	405.5	40.73	10.957		
,600.0	9,473.5	9,754.1	9,362.0	17.3	23.5	77.22	-364.8	-776.8	456.0	414.9	41.18	11.074		
,700.0	9,507.7	9,847.9	9,362.0	17.4	23.7	72.26	-458.6	-776.6	465.6	424.1	41.51	11.216		
0,800,0	9,521.7	9,946.7	9,362.0	17.5	23.9	70.15	-557.5	-776.5	470.1	428.3	41.83	11.238		
9,900.0	9,522.0	10,046.7	9,362.0	17.7	24.1	70.11	-657.5	-776.3	470.2	428.0	42.20	11.142		

Anticollision Report

Company: DELAWARE BASIN WEST

Project: TOMAHAWK PROSPECT (NM-E) Reference Site: TOMAHAWK WC UNIT S19-30-31 R24S

Site Error: 0.0 usft

TOMAHAWK WC UNIT #723H Reference Well:

Reference Wellbore OWB

Well Error: 3.0 usft

PWP1 Reference Design:

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

Well TOMAHAWK WC UNIT #723H

KB=32 @ 3125.0usft KB=32 @ 3125.0usft

North Reference: Grid

Survey Calculation Method:

Minimum Curvature Output errors are at 2.00 sigma

EDT 17 Central Planning Prod Database:

Offset TVD Reference: Reference Datum

Offset De	sign: T	OMAHAWK	WC UNIT	S19-30-31	R24S T28	BE - TOMAHAV	VK WC UN	IT #724H -	OWB - PW	/P1			Offset Site Error:	0.0 usft
Survey Prog	ram:	0-r.5 SDI KPR	WL NS-CT,	1500-r.5 MWD+	IFR1, 8958-r	.5 MWD+IFR1+MS				Rule Ass	igned:		Offset Well Error:	3.0 usft
	rence Vertical		fset Vertical		Major Axis Offset	Highside	Offset Wellb	ore Centre	Dis Between	tance Between	Minimum	Separation	Warning	
Depth	Depth	Depth	Depth	Kelefelice	Oliset	Toolface	+N/-S	+E/-W	Centres	Ellipses	Separation	Factor	wanning	
(usft)	(usft)	(usft)	(usft)	(usft)	(usft)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)			
10,000.0	9,522.0		9,362.0	17.9	24.3	70.10	-757.5	-776.1	470.2	427.5	42.63	11.030		
10,100.0	9,522.0		9,362.0	18.1	24.5	70.10	-857.5	-775.9	470.1	427.0	43.10	10.908		
10,200.0	9,522.0		9,362.0	18.4	24.8	70.10	-957.5	-775.7	470.1	426.5	43.62	10.777		
10,300.0 10,400.0	9,522.0 9,522.0		9,362.0 9,362.0	18.7 19.1	25.0 25.3	70.10 70.10	-1,057.5 -1,157.5	-775.5 -775.3	470.1 470.1	425.9 425.3	44.19 44.81	10.638 10.492		
10,500.0	9,522.0		9,362.0	19.1	25.6	70.10	-1,157.5	-775.3 -775.1	470.1	424.6	45.46	10.492		
10,000.0	0,022.0	10,040.7	0,002.0	10.4	20.0	70.10	-1,207.0	-770.1	470.1	724.0	40.40	10.040		
10,600.0	9,522.0	10,746.7	9,362.0	19.8	26.0	70.10	-1,357.5	-774.9	470.0	423.9	46.16	10.183		
10,700.0	9,522.0	10,846.7	9,362.0	20.2	26.3	70.10	-1,457.5	-774.7	470.0	423.1	46.89	10.023		
10,800.0	9,522.0	10,946.7	9,362.0	20.6	26.7	70.10	-1,557.5	-774.5	470.0	422.3	47.67	9.860		
10,900.0	9,522.0		9,362.0	21.1	27.1	70.10	-1,657.5	-774.3	470.0	421.5	48.48	9.695		
11,000.0	9,522.0	11,146.7	9,362.0	21.6	27.5	70.10	-1,757.5	-774.1	470.0	420.6	49.32	9.529		
11,100.0	9,522.0	11,246.7	9,362.0	22.1	27.9	70.09	-1,857.5	-773.9	469.9	419.7	50.19	9.363		
11,100.0	9,522.0		9,362.0	22.1	28.3	70.09	-1,957.5	-773.7	469.9	418.8	51.10	9.303		
11,300.0	9,522.0		9,362.0	23.1	28.7	70.09	-2,057.5	-773.7	469.9	417.9	52.03	9.031		
11,400.0	9,522.0		9,362.0	23.6	29.2	70.09	-2,157.5	-773.3	469.9	416.9	52.99	8.867		
11,500.0	9,522.0		9,362.0	24.1	29.7	70.09	-2,257.5	-773.1	469.8	415.9	53.97	8.705		
11,600.0	9,522.0		9,362.0	24.7	30.1	70.09	-2,357.5	-773.0	469.8	414.8	54.98	8.545		
11,700.0	9,522.0		9,362.0	25.3	30.6	70.09	-2,457.5	-772.8	469.8	413.8	56.02	8.387		
11,800.0	9,522.0		9,362.0	25.9	31.1	70.09	-2,557.4	-772.6	469.8	412.7	57.07	8.232		
11,900.0	9,522.0		9,362.0	26.4	31.6	70.09	-2,657.4	-772.4	469.8	411.6	58.15	8.079		
12,000.0	9,522.0	12,146.7	9,362.0	27.0	32.1	70.09	-2,757.4	-772.2	469.7	410.5	59.24	7.930		
12,100.0	9,522.0	12,246.7	9,362.0	27.6	32.7	70.08	-2,857.4	-772.0	469.7	409.4	60.35	7.783		
12,200.0	9,522.0		9,362.0	28.3	33.2	70.08	-2,957.4	-771.8	469.7	408.2	61.48	7.640		
12,300.0	9,522.0		9,362.0	28.9	33.8	70.08	-3,057.4	-771.6	469.7	407.1	62.63	7.499		
12,400.0	9,522.0	12,546.7	9,362.0	29.5	34.3	70.08	-3,157.4	-771.4	469.7	405.9	63.79	7.363		
12,500.0	9,522.0	12,646.7	9,362.0	30.1	34.9	70.08	-3,257.4	-771.2	469.6	404.7	64.97	7.229		
12,600.0	9,522.0		9,362.0	30.8	35.5	70.08	-3,357.4	-771.0	469.6	403.5	66.16	7.099		
12,700.0	9,522.0		9,362.0	31.4	36.0	70.08	-3,457.4	-770.8	469.6	402.2	67.36	6.971		
12,800.0	9,522.0		9,362.0	32.1	36.6	70.08	-3,557.4	-770.6	469.6	401.0	68.58	6.848		
12,900.0	9,522.0		9,362.0	32.7	37.2	70.08	-3,657.4	-770.4	469.6	399.7	69.80	6.727		
13,000.0	9,522.0	13,146.7	9,362.0	33.4	37.8	70.08	-3,757.4	-770.2	469.5	398.5	71.04	6.609		
13,100.0	9,522.0	13,246.7	9,362.0	34.1	38.4	70.08	-3,857.4	-770.0	469.5	397.2	72.29	6.495		
13,200.0	9,522.0		9,362.0	34.7	39.0	70.07	-3,957.4	-769.8	469.5	395.9	73.55	6.383		
13,300.0	9,522.0		9,362.0	35.4	39.6	70.07	-4,057.4	-769.6	469.5	394.6	74.82	6.275		
13,400.0	9,522.0	13,546.7	9,362.0	36.1	40.3	70.07	-4,157.4	-769.4	469.4	393.3	76.10	6.169		
13,500.0	9,522.0	13,646.7	9,362.0	36.8	40.9	70.07	-4,257.4	-769.3	469.4	392.0	77.38	6.066		
12 000 0	0.500.0	10.740.7	0.000.0	07.5	44.5	70.07	4 257 4	700.4	400 4	200 7	70.00	E 000		
13,600.0	9,522.0		9,362.0	37.5	41.5	70.07	-4,357.4	-769.1	469.4	390.7	78.68	5.966		
13,700.0 13,800.0	9,522.0 9,522.0		9,362.0 9,362.0	38.1 38.8	42.1 42.8	70.07 70.07	-4,457.4 -4,557.4	-768.9 -768.7	469.4 469.4	389.4 388.1	79.98 81.29	5.869 5.774		
13,800.0	9,522.0		9,362.0	38.8	42.8	70.07	-4,557.4 -4,657.4	-768.7 -768.5	469.4	386.7	82.61	5.774		
14,000.0	9,522.0		9,362.0	40.2	44.1	70.07	-4,057.4 -4,757.4	-768.3	469.3	385.4	83.93	5.592		
,000.0	5,022.0	. 1,170.7	0,002.0	70.2	77.1	. 5.51	.,	700.0	400.0	300.4	30.00	0.502		
14,100.0	9,522.0	14,246.7	9,362.0	40.9	44.7	70.07	-4,857.4	-768.1	469.3	384.0	85.26	5.504		
14,200.0	9,522.0	14,346.7	9,362.0	41.6	45.4	70.07	-4,957.4	-767.9	469.3	382.7	86.60	5.419		
14,300.0	9,522.0	14,446.7	9,362.0	42.3	46.0	70.06	-5,057.4	-767.7	469.3	381.3	87.94	5.336		
14,400.0	9,522.0		9,362.0	43.0	46.7	70.06	-5,157.4	-767.5	469.2	379.9	89.29	5.255		
14,500.0	9,522.0	14,646.7	9,362.0	43.7	47.4	70.06	-5,257.4	-767.3	469.2	378.6	90.64	5.177		
14 000 0	0.500.0	147407	0.000.0		40.0	70.00	E 057 4	707.4	400.0	077.0	00.00	E 400		
14,600.0	9,522.0		9,362.0	44.4	48.0	70.06	-5,357.4 5,457.4	-767.1	469.2	377.2	92.00	5.100		
14,700.0	9,522.0		9,362.0	45.2 45.9	48.7 49.4	70.06 70.06	-5,457.4 -5,557.4	-766.9 -766.7	469.2 469.1	375.8 374.4	93.36 94.73	5.025 4.953		
14,800.0 14,900.0	9,522.0 9,522.0		9,362.0 9,362.0	46.6	50.1	70.06	-5,557.4 -5,657.4	-766.7 -766.5	469.1	374.4	96.10	4.953		
15,000.0	9,522.0		9,362.0	47.3	50.1	70.06	-5,057.4 -5,757.4	-766.3	469.1	373.0	96.10	4.813		
10,000.0	0,022.0	, 10,140.7	0,002.0	41.3	30.1	7 0.00	-0,707.4	-700.5	400. I	37 1.0	31.41	4.010		

Anticollision Report

Company: DELAWARE BASIN WEST

Project: TOMAHAWK PROSPECT (NM-E) Reference Site: TOMAHAWK WC UNIT S19-30-31 R24S

Site Error: 0.0 usft

TOMAHAWK WC UNIT #723H Reference Well:

Well Error: 3.0 usft Reference Wellbore OWB

PWP1 Reference Design:

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

Well TOMAHAWK WC UNIT #723H

KB=32 @ 3125.0usft KB=32 @ 3125.0usft

North Reference: Grid

Minimum Curvature **Survey Calculation Method:**

Output errors are at 2.00 sigma

EDT 17 Central Planning Prod Database: Offset TVD Reference:

Reference Datum

0-r.5 SDI KPF												
Survey Program: 0-r.5 SDI_KPR_WL_NS-CT, Reference Offset			1500-r.5 MWD+IFR1, 8958-r.5 MWD+IFR1+MS Semi Major Axis			Offset Wellbore Centre		Rule Assigned: Distance			Offset Well Error:	3.0 usft
Measure Depth	ed Vertical	Reference	Offset		+N/-S +E/-W		Between Between Centres Ellipses		Minimum Separation	Separation Factor	Warning	
(usft)		(usft)	(usft)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)			
.0 15,246.	9,362.0	48.0	51.4	70.06	-5,857.4	-766.1	469.1	370.2	98.85	4.745		
.0 15,346.	3.7 9,362.0	48.7	52.1	70.06	-5,957.4	-765.9	469.1	368.8	100.24	4.680		
.0 15,446.	5.7 9,362.0	49.5	52.8	70.05	-6,057.4	-765.8	469.0	367.4	101.62	4.615		
.0 15,546.	6.7 9,362.0	50.2	53.5	70.05	-6,157.4	-765.6	469.0	366.0	103.02	4.553		
.0 15,646.	9,362.0	50.9	54.2	70.05	-6,257.4	-765.4	469.0	364.6	104.41	4.492		
.0 15,746.	9,362.0	51.6	54.9	70.05	-6,357.4	-765.2	469.0	363.2	105.81	4.432		
.0 15,846.	6.7 9,362.0	52.3	55.5	70.05	-6,457.4	-765.0	469.0	361.7	107.21	4.374		
.0 15,946.		53.1	56.2	70.05	-6,557.4	-764.8	468.9	360.3	108.61	4.317		
.0 16,046.		53.8	56.9	70.05	-6,657.4	-764.6	468.9	358.9	110.02	4.262		
.0 16,146.		54.5	57.6	70.05	-6,757.4	-764.4	468.9	357.5	111.43	4.208		
.0 16,246.		55.3	58.3	70.05	-6,857.4	-764.2	468.9	356.0	112.84	4.155		
.0 16,346.		56.0	59.0	70.05	-6,957.4	-764.0	468.9	354.6	114.26	4.103		
.0 16,446.		56.7	59.8	70.05	-7,057.4	-763.8	468.8	353.2	115.68	4.053		
.0 16,546.	5.7 9,362.0	57.5	60.5	70.04	-7,157.4	-763.6	468.8	351.7	117.10	4.004		
.0 16,646.	3.7 9,362.0	58.2	61.2	70.04	-7,257.4	-763.4	468.8	350.3	118.52	3.955		
.0 16,746.	9,362.0	58.9	61.9	70.04	-7,357.4	-763.2	468.8	348.8	119.94	3.908		
.0 16,846.	6.7 9,362.0	59.7	62.6	70.04	-7,457.4	-763.0	468.7	347.4	121.37	3.862		
.0 16,946.		60.4	63.3	70.04	-7,557.4	-762.8	468.7	345.9	122.80	3.817		
.0 17,046.	6.7 9,362.0	61.1	64.0	70.04	-7,657.4	-762.6	468.7	344.5	124.23	3.773		
.0 17,146.		61.9	64.7	70.04	-7,757.4	-762.4	468.7	343.0	125.66	3.730		
.0 17,246.		62.6	65.4	70.04	-7,857.4	-762.2	468.7	341.6	127.10	3.687		
.0 17,346.	6.7 9,362.0	63.3	66.2	70.04	-7,957.4	-762.1	468.6	340.1	128.54	3.646		
.0 17,446. .0 17,546.		64.1	66.9	70.04	-8,057.4	-761.9	468.6	338.6	129.97	3.605		
		64.8	67.6	70.04	-8,157.4	-761.7	468.6	337.2	131.42	3.566		
.0 17,646.		65.6	68.3	70.03	-8,257.4	-761.5	468.6	335.7	132.86	3.527		
.0 17,746.	9,362.0	66.3	69.0	70.03	-8,357.4	-761.3	468.6	334.3	134.30	3.489		
.0 17,846.	9,362.0	67.0	69.8	70.03	-8,457.4	-761.1	468.5	332.8	135.75	3.452		
.0 17,946.	6.7 9,362.0	67.8	70.5	70.03	-8,557.4	-760.9	468.5	331.3	137.19	3.415		
.0 18,046.	6.7 9,362.0	68.5	71.2	70.03	-8,657.4	-760.7	468.5	329.9	138.64	3.379		
.0 18,146.	9,362.0	69.3	71.9	70.03	-8,757.4	-760.5	468.5	328.4	140.09	3.344		
.0 18,246.		70.0	72.6	70.03	-8,857.4	-760.3	468.4	326.9	141.54	3.310		
.0 18,346.	5.7 9,362.0	70.8	73.4	70.03	-8,957.4	-760.1	468.4	325.4	142.99	3.276		
.0 18,446.		71.5	74.1	70.03	-9,057.4	-759.9	468.4	324.0	144.45	3.243		
.0 18,546.		72.3	74.8	70.03	-9,157.4	-759.7	468.4	322.5	145.90	3.210		
.0 18,646.		73.0	75.6	70.02	-9,257.4	-759.5	468.4	321.0	147.36	3.178		
.0 18,746.		73.7	76.3	70.02	-9,357.4	-759.3	468.3	319.5	148.81	3.147		
.0 10,740.	3,302.0	75.7	70.5	70.02	-3,337.4	-100.0	400.3	318.3	140.01	3.147		
.0 18,846.	9,362.0	74.5	77.0	70.02	-9,457.4	-759.1	468.3	318.0	150.27	3.116		
.0 18,946.	9,362.0	75.2	77.7	70.02	-9,557.4	-758.9	468.3	316.6	151.73	3.086		
.0 19,046.	9,362.0	76.0	78.5	70.02	-9,657.4	-758.7	468.3	315.1	153.19	3.057		
.0 19,146.	9,362.0	76.7	79.2	70.02	-9,757.4	-758.6	468.3	313.6	154.65	3.028		
.0 19,246.		77.5	79.9	70.02	-9,857.4	-758.4	468.2	312.1	156.12	2.999		
0 10 246	7 02620	70 2	90.7	70.02	_0 057 4	_7E0 O	460.2	310 6	157 50	2 074		
.0 19,34	6	6.7 9,362.0 6.7 9,362.0 6.7 9,362.0 1.4 9,362.0	6.7 9,362.0 78.2 6.7 9,362.0 79.0 6.7 9,362.0 79.7 1.4 9,362.0 80.2	6.7 9,362.0 78.2 80.7 6.7 9,362.0 79.0 81.4 6.7 9,362.0 79.7 82.1 1.4 9,362.0 80.2 82.6	6.7 9,362.0 78.2 80.7 70.02 6.7 9,362.0 79.0 81.4 70.02 6.7 9,362.0 79.7 82.1 70.02 1.4 9,362.0 80.2 82.6 70.02	6.7 9,362.0 78.2 80.7 70.02 -9,957.4 6.7 9,362.0 79.0 81.4 70.02 -10,057.4 6.7 9,362.0 79.7 82.1 70.02 -10,157.4 1.4 9,362.0 80.2 82.6 70.02 -10,222.1	6.7 9,362.0 78.2 80.7 70.02 -9,957.4 -758.2 6.7 9,362.0 79.0 81.4 70.02 -10,057.4 -758.0 6.7 9,362.0 79.7 82.1 70.02 -10,157.4 -757.8 1.4 9,362.0 80.2 82.6 70.02 -10,222.1 -757.6	6.7 9,362.0 78.2 80.7 70.02 -9,957.4 -758.2 468.2 6.7 9,362.0 79.0 81.4 70.02 -10,057.4 -758.0 468.2 6.7 9,362.0 79.7 82.1 70.02 -10,157.4 -757.8 468.2 1.4 9,362.0 80.2 82.6 70.02 -10,222.1 -757.6 468.2	6.7 9,362.0 78.2 80.7 70.02 -9,957.4 -758.2 468.2 310.6 6.7 9,362.0 79.0 81.4 70.02 -10,057.4 -758.0 468.2 309.2 6.7 9,362.0 79.7 82.1 70.02 -10,157.4 -757.8 468.2 307.7 1.4 9,362.0 80.2 82.6 70.02 -10,222.1 -757.6 468.2 306.7	6.7 9,362.0 78.2 80.7 70.02 -9,957.4 -758.2 468.2 310.6 157.58 6.7 9,362.0 79.0 81.4 70.02 -10,057.4 -758.0 468.2 309.2 159.04 6.7 9,362.0 79.7 82.1 70.02 -10,157.4 -757.8 468.2 307.7 160.50 1.4 9,362.0 80.2 82.6 70.02 -10,222.1 -757.6 468.2 306.7 161.46	6.7 9,362.0 78.2 80.7 70.02 -9,957.4 -758.2 468.2 310.6 157.58 2.971 6.7 9,362.0 79.0 81.4 70.02 -10,057.4 -758.0 468.2 309.2 159.04 2.944 6.7 9,362.0 79.7 82.1 70.02 -10,157.4 -757.8 468.2 307.7 160.50 2.917 1.4 9,362.0 80.2 82.6 70.02 -10,222.1 -757.6 468.2 306.7 161.46 2.900	6.7 9,362.0 78.2 80.7 70.02 -9,957.4 -758.2 468.2 310.6 157.58 2.971 6.7 9,362.0 79.0 81.4 70.02 -10,057.4 -758.0 468.2 309.2 159.04 2.944 6.7 9,362.0 79.7 82.1 70.02 -10,157.4 -757.8 468.2 307.7 160.50 2.917 1.4 9,362.0 80.2 82.6 70.02 -10,222.1 -757.6 468.2 306.7 161.46 2.900

Anticollision Report

Company: **DELAWARE BASIN WEST** Project: TOMAHAWK PROSPECT (NM-E)

TOMAHAWK WC UNIT S19-30-31 R24S Reference Site:

Site Error: 0.0 usft

TOMAHAWK WC UNIT #723H Reference Well:

3.0 usft Well Error: **OWB** Reference Wellbore PWP1 Reference Design:

North Reference: **Survey Calculation Method:**

TVD Reference:

MD Reference:

Output errors are at Database:

Local Co-ordinate Reference:

Offset TVD Reference:

Grid

Minimum Curvature

KB=32 @ 3125.0usft

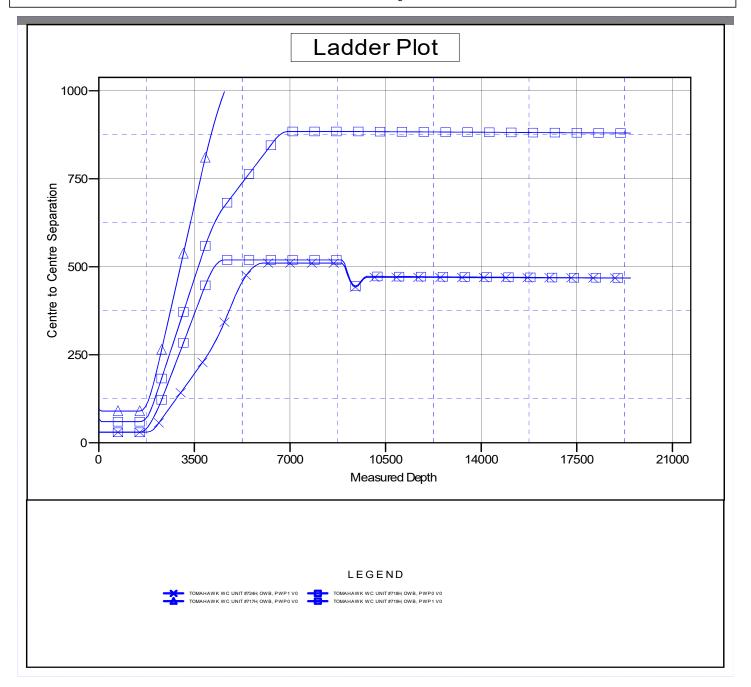
KB=32 @ 3125.0usft

2.00 sigma

EDT 17 Central Planning Prod

Well TOMAHAWK WC UNIT #723H

Reference Datum


Reference Depths are relative to KB=32 @ 3125.0usft

Offset Depths are relative to Offset Datum Central Meridian is 104° 20' 0.000 W

Coordinates are relative to: TOMAHAWK WC UNIT #723H

Coordinate System is US State Plane 1927 (Exact solution), New Mexico East 30

Grid Convergence at Surface is: 0.11°

Anticollision Report

Company: **DELAWARE BASIN WEST** Project: TOMAHAWK PROSPECT (NM-E)

TOMAHAWK WC UNIT S19-30-31 R24S Reference Site:

Site Error: 0.0 usft

TOMAHAWK WC UNIT #723H Reference Well:

3.0 usft Well Error: **OWB** Reference Wellbore

PWP1 Reference Design:

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

Well TOMAHAWK WC UNIT #723H

KB=32 @ 3125.0usft KB=32 @ 3125.0usft

North Reference: Grid

Survey Calculation Method:

Offset TVD Reference:

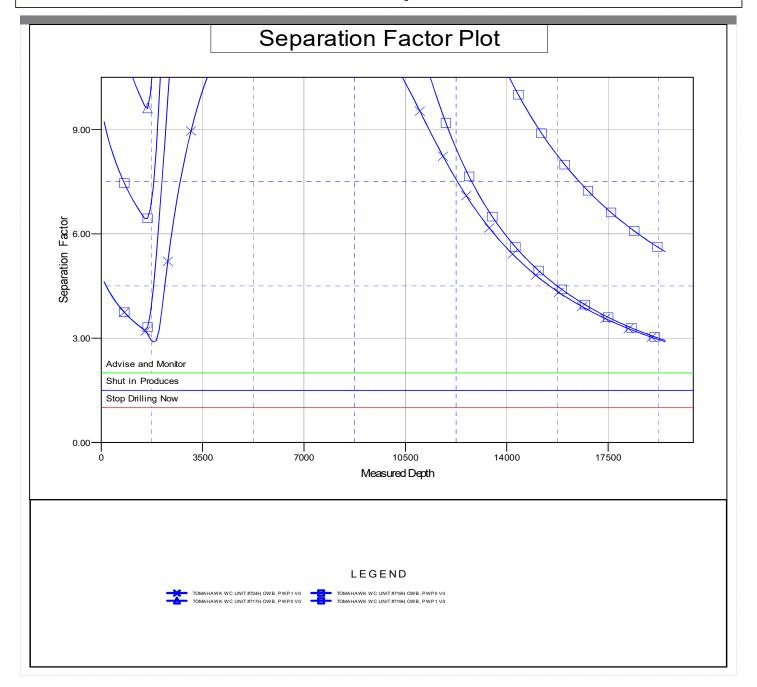
Minimum Curvature

Output errors are at

2.00 sigma

EDT 17 Central Planning Prod Database:

Reference Datum


Reference Depths are relative to KB=32 @ 3125.0usft

Offset Depths are relative to Offset Datum Central Meridian is 104° 20' 0.000 W

Coordinates are relative to: TOMAHAWK WC UNIT #723H

Coordinate System is US State Plane 1927 (Exact solution), New Mexico East 30

Grid Convergence at Surface is: 0.11°

DELAWARE BASIN WEST

TOMAHAWK PROSPECT (NM-E)
TOMAHAWK WC UNIT S19-30-31 R24S T28E
TOMAHAWK WC UNIT #723H

OWB

Plan: PWP1

Standard Planning Report

19 May, 2023

Planning Report

EDT 17 Central Planning Prod Database: Company: **DELAWARE BASIN WEST** Project: TOMAHAWK PROSPECT (NM-E) Site:

TOMAHAWK WC UNIT S19-30-31 R24S

T28E

TOMAHAWK WC UNIT #723H

Wellbore: OWB PWP1 Design:

Well:

Site

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well TOMAHAWK WC UNIT #723H

KB=32 @ 3125.0usft KB=32 @ 3125.0usft

Grid

Minimum Curvature

59.82

181.78

47,390.47245150

Project TOMAHAWK PROSPECT (NM-E)

Map System: US State Plane 1927 (Exact solution) NAD 1927 (NADCON CONUS) Geo Datum:

New Mexico East 3001 Map Zone:

System Datum: Mean Sea Level

TOMAHAWK WC UNIT S19-30-31 R24S T28E

BGGM2022

Site Position: Northing: 429,658.13 usft Latitude: 32° 10' 51.880 N 564,040.01 usft 104° 7' 34.829 W From: Мар Easting: Longitude:

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well TOMAHAWK WC UNIT #723H

Well Position +N/-S 0.0 usft 32° 11' 42.294 N Northing: 434,749.70 usft Latitude: +E/-W 0.0 usft Easting: 562,696.00 usft Longitude: 104° 7' 50.357 W

Position Uncertainty 3.0 usft Wellhead Elevation: usft **Ground Level:** 3,093.0 usft

Grid Convergence: 0.11°

OWB Wellbore Sample Date Declination Dip Angle Field Strength Magnetics **Model Name** (°) (°) (nT)

6.80

0.0

9/1/2023

0.0

PWP1 Design **Audit Notes:** Version: Phase: PLAN Tie On Depth: 0.0 Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°)

0.0

Plan	Survey Tool Prog	ıram	Date 5/19/2023		
	Depth From (usft)	Depth To (usft)	Survey (Wellbore)	Tool Name	Remarks
1	0.0	1,500.0	PWP1 (OWB)	r.5 SDI_KPR_WL_NS-CT	
			SDI Keeper Wireline Gyrocor	ηţ	
2	1,500.0	9,066.6	PWP1 (OWB)	r.5 MWD+IFR1	
				OWSG MWD + IFR1 rev.5	
3	9,066.6	19,465.6	PWP1 (OWB)	r.5 MWD+IFR1+MS	
				OWSG MWD + IFR1 + Multi-	St

Planning Report

EDT 17 Central Planning Prod Database: DELAWARE BASIN WEST Company: Project: TOMAHAWK PROSPECT (NM-E)

TOMAHAWK WC UNIT S19-30-31 R24S

T28E

Well: TOMAHAWK WC UNIT #723H

OWB Wellbore: Design: PWP1

Site:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference: KB=32 @ 3125.0usft

Well TOMAHAWK WC UNIT #723H

KB=32 @ 3125.0usft

Grid

Survey Calculation Method: Minimum Curvature

an Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,900.0	8.00	254.00	1,898.7	-7.7	-26.8	2.00	2.00	0.00	254.00	
3,803.8	8.00	254.00	3,784.0	-80.7	-281.5	0.00	0.00	0.00	0.00	
4,603.8	0.00	0.00	4,581.4	-96.1	-335.1	1.00	-1.00	0.00	180.00	
9,067.0	0.00	0.00	9,044.5	-96.1	-335.1	0.00	0.00	0.00	0.00	
9,817.0	90.00	179.90	9,522.0	-573.6	-334.3	12.00	12.00	23.99	179.90	
19,335.6	90.00	179.90	9,522.0	-10,092.2	-317.9	0.00	0.00	0.00	0.00	
19,465.6	90.00	179.90	9,522.0	-10,222.2	-317.7	0.00	0.00	0.00	0.00	

Planning Report

Database: EDT 17 Central Planning Prod
Company: DELAWARE BASIN WEST
Project: TOMAHAWK PROSPECT (NM-E)
Site: TOMAHAWK WC UNIT S19-30-31 R24S

T28E

TOMAHAWK WC UNIT #723H

Wellbore: OWB
Design: PWP1

Well:

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well TOMAHAWK WC UNIT #723H

KB=32 @ 3125.0usft KB=32 @ 3125.0usft

Minimum Curvature

Grid

Design:	PWP1								
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
Start Build	2.00								
1,600.0	2.00	254.00	1,600.0	-0.5	-1.7	0.5	2.00	2.00	0.00
1,700.0	4.00	254.00	1,699.8	-1.9	-6.7	2.1	2.00	2.00	0.00
1,800.0	6.00	254.00	1,799.5	-4.3	-15.1	4.8	2.00	2.00	0.00
1,900.0	8.00	254.00	1,898.7	-7.7	-26.8	8.5	2.00	2.00	0.00
Start 1903.8	8 hold at 1900.0 N	/ID							
2,000.0	8.00	254.00	1,997.7	-11.5	-40.2	12.8	0.00	0.00	0.00
2,100.0	8.00	254.00	2,096.8	-15.4	-53.6	17.0	0.00	0.00	0.00
2,200.0	8.00	254.00	2,195.8	-19.2	-66.9	21.3	0.00	0.00	0.00
2,300.0	8.00	254.00	2,294.8	-23.0	-80.3	25.5	0.00	0.00	0.00
2,400.0	8.00	254.00	2,393.8	-26.9	-93.7	29.8	0.00	0.00	0.00
2,500.0	8.00	254.00	2,492.9	-30.7	-107.1	34.0	0.00	0.00	0.00
2,600.0	8.00	254.00	2,591.9	-34.5	-120.4	38.3	0.00	0.00	0.00
2,700.0	8.00	254.00	2,690.9	-38.4	-133.8	42.5	0.00	0.00	0.00
2,800.0	8.00	254.00	2,789.9	-42.2	-147.2	46.8	0.00	0.00	0.00
2,900.0	8.00	254.00	2,889.0	-46.0	-160.6	51.0	0.00	0.00	0.00
3,000.0	8.00	254.00	2,988.0	-49.9	-174.0	55.3	0.00	0.00	0.00
3,100.0	8.00	254.00	3,087.0	-53.7	-187.3	59.5	0.00	0.00	0.00
3,200.0	8.00	254.00	3,186.1	-57.6	-200.7	63.8	0.00	0.00	0.00
3,300.0	8.00	254.00	3,285.1	-61.4	-214.1	68.0	0.00	0.00	0.00
3,400.0	8.00	254.00	3,384.1	-65.2	-227.5	72.3	0.00	0.00	0.00
3,500.0	8.00	254.00	3,483.1	-69.1	-240.9	76.5	0.00	0.00	0.00
3,600.0	8.00	254.00	3,582.2	-72.9	-254.2	80.8	0.00	0.00	0.00
3,700.0	8.00	254.00	3,681.2	-76.7	-267.6	85.0	0.00	0.00	0.00
3,800.0	8.00	254.00	3,780.2	-80.6	-281.0	89.3	0.00	0.00	0.00
3,803.8	8.00	254.00	3,784.0	-80.7	-281.5	89.4	0.00	0.00	0.00
Start Drop -	1.00								
3,900.0	7.04	254.00	3,879.3	-84.2	-293.6	93.3	1.00	-1.00	0.00
4,000.0	6.04	254.00	3,978.7	-87.3	-304.5	96.7	1.00	-1.00	0.00
4,100.0	5.04	254.00	4,078.2	-90.0	-313.8	99.7	1.00	-1.00	0.00
4,200.0	4.04	254.00	4,177.9	-92.2	-321.4	102.1	1.00	-1.00	0.00
4,300.0	3.04	254.00	4,277.7	-93.9	-327.4	104.0	1.00	-1.00	0.00
4,400.0	2.04	254.00	4,377.6	-95.1	-331.6	105.3	1.00	-1.00	0.00
4,500.0	1.04	254.00	4,477.6	-95.8	-334.2	106.2	1.00	-1.00	0.00
4,600.0	0.04	254.00	4,577.6	-96.1	-335.1	106.5	1.00	-1.00	0.00
4,603.8	0.00	0.00	4,581.4	-96.1	-335.1	106.5	1.00	-1.00	0.00
Start 4463.1	hold at 4603.8 N	/ID							

Planning Report

Database: EDT 17 Central Planning Prod
Company: DELAWARE BASIN WEST
Project: TOMAHAWK PROSPECT (NM-E)
Site: TOMAHAWK WC UNIT S19-30-31 R24S

T28E

TOMAHAWK WC UNIT #723H

Wellbore: OWB
Design: PWP1

Well:

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well TOMAHAWK WC UNIT #723H

KB=32 @ 3125.0usft KB=32 @ 3125.0usft Grid

Minimum Curvature

gn:	PWP1													
ned Survey														
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)					
4,700.0	0.00	0.00	4,677.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
4,800.0	0.00	0.00	4,777.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
4,900.0	0.00	0.00	4,877.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
5,000.0	0.00	0.00	4,977.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
5,100.0	0.00	0.00	5,077.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
5,200.0	0.00	0.00	5,177.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
5,300.0	0.00	0.00	5,277.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
5,400.0	0.00	0.00	5,377.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
5,500.0	0.00	0.00	5,477.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
5,600.0	0.00	0.00	5,577.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
5,700.0	0.00	0.00	5,677.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
5,800.0	0.00	0.00	5,777.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
5,900.0	0.00	0.00	5,877.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
6,000.0	0.00	0.00	5,977.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
6,100.0	0.00	0.00	6,077.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
6,200.0	0.00	0.00	6,177.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
6,300.0	0.00	0.00	6,277.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
6,400.0	0.00	0.00	6,377.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
6,500.0	0.00	0.00	6,477.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
6,600.0	0.00	0.00	6,577.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
6,700.0	0.00	0.00	6,677.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
6,800.0	0.00	0.00	6,777.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
6,900.0	0.00	0.00	6,877.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
7,000.0	0.00	0.00	6,977.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
7,100.0	0.00	0.00	7,077.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
7,200.0	0.00	0.00	7,177.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
7,300.0	0.00	0.00	7,277.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
7,400.0	0.00	0.00	7,377.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
7,500.0	0.00	0.00	7,477.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
7,600.0	0.00	0.00	7,577.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
7,700.0	0.00	0.00	7,677.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
7,800.0	0.00	0.00	7,777.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
7,900.0	0.00	0.00	7,877.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
8,000.0	0.00	0.00	7,977.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
8,100.0	0.00	0.00	8,077.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
8,200.0	0.00	0.00	8,177.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
8,300.0	0.00	0.00	8,277.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
8,400.0	0.00	0.00	8,377.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
8,500.0	0.00	0.00	8,477.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
8,600.0	0.00	0.00	8,577.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
8,700.0	0.00	0.00	8,677.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
8,800.0	0.00	0.00	8,777.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
8,900.0	0.00	0.00	8,877.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
9,000.0	0.00	0.00	8,977.6	-96.1	-335.1	106.5	0.00	0.00	0.00					
9,067.0	0.00	0.00	9,044.5	-96.1	-335.1	106.5	0.00	0.00	0.00					
	2.00 TFO 179.90													
9,100.0	3.97	179.90	9,077.6	-97.2	-335.1	107.6	12.00	12.00	0.00					
9,200.0	15.97	179.90	9,175.9	-114.5	-335.1	124.9	12.00	12.00	0.00					
9,300.0	27.97	179.90	9,268.4	-151.8	-335.0	162.2	12.00	12.00	0.00					
9,400.0	39.97	179.90	9,351.2	-207.6	-334.9	217.9	12.00	12.00	0.00					
9,449.1	45.85	179.90	9,387.1	-241.0	-334.8	251.3	12.00	12.00	0.00					
	HAWK WC UNIT													
9,500.0	51.97	179.90	9,420.6	-279.4	-334.8	289.6	12.00	12.00	0.00					

Planning Report

Database: EDT 17 Central Planning Prod
Company: DELAWARE BASIN WEST
Project: TOMAHAWK PROSPECT (NM-E)
Site: TOMAHAWK WC UNIT S19-30-31 R24S

T28E

TOMAHAWK WC UNIT #723H

Wellbore: OWB Design: PWP1

Well:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well TOMAHAWK WC UNIT #723H

KB=32 @ 3125.0usft KB=32 @ 3125.0usft Grid

Minimum Curvature

ngii.									
anned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,600.0	63.97	179.90	9,473.5	-364.0	-334.6	374.2	12.00	12.00	0.00
9,700.0	75.97	179.90	9,507.7	-457.8	-334.5	467.9	12.00	12.00	0.00
9,800.0	87.97	179.90	9,521.7	-556.6	-334.3	566.7	12.00	12.00	0.00
9,817.0	90.00	179.90	9,522.0	-573.6	-334.3	583.7	12.00	12.00	0.00
Start 9518.7	hold at 9817.0 M	1D							
9,900.0	90.00	179.90	9,522.0	-656.6	-334.1	666.7	0.00	0.00	0.00
10,000.0	90.00	179.90	9.522.0	-756.6	-334.0	766.6	0.00	0.00	0.00
10,100.0	90.00	179.90	9,522.0	-856.6	-333.8	866.5	0.00	0.00	0.00
10,700.0	90.00	179.90	9,522.0		-333.6	966.5		0.00	
				-956.6			0.00		0.00
10,300.0	90.00	179.90	9,522.0	-1,056.6	-333.4	1,066.4	0.00	0.00	0.00
10,400.0	90.00	179.90	9,522.0	-1,156.6	-333.3	1,166.4	0.00	0.00	0.00
10,500.0	90.00	179.90	9,522.0	-1,256.6	-333.1	1,266.3	0.00	0.00	0.00
10,600.0	90.00	179.90	9,522.0	-1,356.6	-332.9	1,366.3	0.00	0.00	0.00
10,700.0	90.00	179.90	9,522.0	-1,456.6	-332.8	1,466.2	0.00	0.00	0.00
10,800.0	90.00	179.90	9,522.0	-1,556.6	-332.6	1,566.2	0.00	0.00	0.00
10,900.0	90.00	179.90	9,522.0	-1,656.6	-332.4	1,666.1	0.00	0.00	0.00
11,000.0	90.00	179.90	9,522.0	-1,756.6	-332.2	1,766.1	0.00	0.00	0.00
11,100.0	90.00	179.90	9,522.0	-1,856.6	-332.1	1,866.0	0.00	0.00	0.00
11,200.0	90.00	179.90	9,522.0	-1,956.6	-331.9	1,966.0	0.00	0.00	0.00
11,300.0	90.00	179.90	9,522.0	-2,056.6	-331.7	2,065.9	0.00	0.00	0.00
11,400.0	90.00	179.90	9,522.0	-2,156.6	-331.6	2,165.8	0.00	0.00	0.00
11,500.0	90.00	179.90	9,522.0	-2,256.6	-331.4	2,265.8	0.00	0.00	0.00
11,600.0	90.00	179.90	9,522.0	-2,356.6	-331.2	2,365.7	0.00	0.00	0.00
11,700.0	90.00	179.90	9,522.0	-2,456.6	-331.0	2,465.7	0.00	0.00	0.00
11,800.0	90.00	179.90	9,522.0	-2,556.6	-330.9	2,565.6	0.00	0.00	0.00
11,900.0	90.00	179.90	9,522.0	-2,656.6	-330.7	2,665.6	0.00	0.00	0.00
12,000.0	90.00	179.90	9,522.0	-2,756.6	-330.5	2,765.5	0.00	0.00	0.00
12,100.0	90.00	179.90	9,522.0	-2,856.6	-330.3	2,865.5	0.00	0.00	0.00
12,200.0	90.00	179.90	9,522.0	-2,956.6	-330.2	2,965.4	0.00	0.00	0.00
12,300.0	90.00	179.90	9,522.0	-3,056.6	-330.2	3,065.4	0.00	0.00	0.00
			,						
12,400.0	90.00	179.90	9,522.0	-3,156.6	-329.8	3,165.3	0.00	0.00	0.00
12,500.0	90.00	179.90	9,522.0	-3,256.6	-329.7	3,265.3	0.00	0.00	0.00
12,600.0	90.00	179.90	9,522.0	-3,356.6	-329.5	3,365.2	0.00	0.00	0.00
12,700.0	90.00	179.90	9,522.0	-3,456.6	-329.3	3,465.2	0.00	0.00	0.00
12,800.0	90.00	179.90	9,522.0	-3,556.6	-329.1	3,565.1	0.00	0.00	0.00
						3,665.0			
12,900.0	90.00	179.90	9,522.0	-3,656.6	-329.0	ა,იინ.0	0.00	0.00	0.00
13,000.0	90.00	179.90	9,522.0	-3,756.6	-328.8	3,765.0	0.00	0.00	0.00
13,100.0	90.00	179.90	9,522.0	-3,856.6	-328.6	3,864.9	0.00	0.00	0.00
13,200.0	90.00	179.90	0,500.0	0.050.0	-328.5	3,964.9	0.00	0.00	0.00
			9,522.0	-3,956.6					
13,300.0	90.00	179.90	9,522.0	-4,056.6	-328.3	4,064.8	0.00	0.00	0.00
13,400.0	90.00	179.90	9,522.0	-4,156.6	-328.1	4,164.8	0.00	0.00	0.00
13,500.0	90.00	179.90	9,522.0	-4,256.6	-327.9	4,264.7	0.00	0.00	0.00
13,600.0	90.00	179.90	9,522.0	-4,356.6	-327.8	4,364.7	0.00	0.00	0.00
13,700.0	90.00	179.90	9,522.0	-4,456.6	-327.6	4,464.6	0.00	0.00	0.00
,									
13,800.0	90.00	179.90	9,522.0	-4,556.6	-327.4	4,564.6	0.00	0.00	0.00
13,900.0	90.00	179.90	9,522.0	-4,656.6	-327.3	4,664.5	0.00	0.00	0.00
14,000.0	90.00	179.90	9,522.0	-4,756.6	-327.1	4,764.5	0.00	0.00	0.00
14,100.0	90.00	179.90	9,522.0	-4,856.6	-326.9	4,864.4	0.00	0.00	0.00
14,200.0	90.00	179.90	9,522.0	-4,956.6	-326.7	4,964.3	0.00	0.00	0.00
14,300.0	90.00	179.90	9,522.0	-5,056.6	-326.6	5,064.3	0.00	0.00	0.00
14,400.0	90.00	179.90	9,522.0	-5,156.6	-326.4	5,164.2	0.00	0.00	0.00

Planning Report

Database: EDT 17 Central Planning Prod
Company: DELAWARE BASIN WEST
Project: TOMAHAWK PROSPECT (NM-E)
Site: TOMAHAWK WC UNIT S19-30-31 R24S

T28E

TOMAHAWK WC UNIT #723H

Wellbore: OWB
Design: PWP1

Well:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well TOMAHAWK WC UNIT #723H

KB=32 @ 3125.0usft KB=32 @ 3125.0usft

KB=32 @ 3125.0ust Grid

Minimum Curvature

ed Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
14,600.0	90.00	179.90	9,522.0	-5,356.6	-326.0	5,364.1	0.00	0.00	0.00
14,700.0	90.00	179.90	9,522.0	-5,456.6	-325.9	5,464.1	0.00	0.00	0.00
14,800.0	90.00	179.90	9,522.0	-5,556.6	-325.7	5,564.0	0.00	0.00	0.00
14,900.0	90.00	179.90	9,522.0	-5,656.6	-325.5	5,664.0	0.00	0.00	0.00
15,000.0	90.00	179.90	9,522.0	-5,756.6	-325.4	5,763.9	0.00	0.00	0.00
15,100.0	90.00	179.90	9,522.0	-5,856.6	-325.2	5,863.9	0.00	0.00	0.00
15,200.0	90.00	179.90	9,522.0	-5,956.6	-325.0	5,963.8	0.00	0.00	0.00
15,300.0	90.00	179.90	9,522.0	-6,056.6	-324.8	6,063.8	0.00	0.00	0.00
15,400.0	90.00	179.90	9,522.0	-6,156.6	-324.7	6,163.7	0.00	0.00	0.00
15,500.0	90.00	179.90	9,522.0	-6,256.6	-324.5	6,263.6	0.00	0.00	0.00
15,600.0	90.00	179.90	9,522.0	-6,356.6	-324.3	6,363.6	0.00	0.00	0.00
15,700.0	90.00	179.90	9,522.0	-6,456.6	-324.2	6,463.5	0.00	0.00	0.00
15,800.0	90.00	179.90	9,522.0	-6,556.6	-324.0	6,563.5	0.00	0.00	0.00
15,900.0	90.00	179.90	9,522.0	-6,656.6	-323.8	6,663.4	0.00	0.00	0.00
16,000.0	90.00	179.90	9,522.0	-6,756.6	-323.6	6,763.4	0.00	0.00	0.00
16,100.0	90.00	179.90	9,522.0	-6,856.6	-323.5	6,863.3	0.00	0.00	0.00
16,200.0	90.00	179.90	9,522.0	-6,956.6	-323.3	6,963.3	0.00	0.00	0.00
16,300.0	90.00	179.90	9,522.0	-7,056.6	-323.1	7,063.2	0.00	0.00	0.00
16,400.0	90.00	179.90	9,522.0	-7,156.6	-323.0	7,163.2	0.00	0.00	0.00
16,500.0	90.00	179.90	9,522.0	-7,256.6	-322.8	7,263.1	0.00	0.00	0.00
16,600.0	90.00	179.90	9,522.0	-7,356.6	-322.6	7,363.1	0.00	0.00	0.00
16,700.0	90.00	179.90	9,522.0	-7,456.6	-322.4	7,463.0	0.00	0.00	0.00
16,800.0	90.00	179.90	9,522.0	-7,556.6	-322.3	7,562.9	0.00	0.00	0.00
16,900.0	90.00	179.90	9,522.0	-7,656.6	-322.1	7,662.9	0.00	0.00	0.00
17,000.0	90.00	179.90	9,522.0	-7,756.6	-321.9	7,762.8	0.00	0.00	0.00
17,100.0	90.00	179.90	9,522.0	-7,856.6	-321.7	7,862.8	0.00	0.00	0.00
17,200.0	90.00	179.90	9,522.0	-7,956.6	-321.6	7,962.7	0.00	0.00	0.00
17,300.0	90.00	179.90	9,522.0	-8,056.6	-321.4	8,062.7	0.00	0.00	0.00
17,400.0	90.00	179.90	9,522.0	-8,156.6	-321.2	8,162.6	0.00	0.00	0.00
17,500.0	90.00	179.90	9,522.0	-8,256.6	-321.1	8,262.6	0.00	0.00	0.00
17,600.0	90.00	179.90	9,522.0	-8,356.6	-320.9	8,362.5	0.00	0.00	0.00
17,700.0	90.00	179.90	9,522.0	-8,456.6	-320.7	8,462.5	0.00	0.00	0.00
17,800.0	90.00	179.90	9,522.0	-8,556.6	-320.5	8,562.4	0.00	0.00	0.00
17,900.0	90.00	179.90	9,522.0	-8,656.6	-320.4	8,662.4	0.00	0.00	0.00
18,000.0	90.00	179.90	9,522.0	-8,756.6	-320.2	8,762.3	0.00	0.00	0.00
18,100.0	90.00	179.90	9,522.0	-8,856.6	-320.0	8,862.2	0.00	0.00	0.00
18,200.0	90.00	179.90	9,522.0	-8,956.6	-319.9	8,962.2	0.00	0.00	0.00
18,300.0	90.00	179.90	9,522.0	-9,056.6	-319.7	9,062.1	0.00	0.00	0.00
18,400.0	90.00	179.90	9,522.0	-9,156.6	-319.5	9,162.1	0.00	0.00	0.00
18,500.0	90.00	179.90	9,522.0	-9,256.6	-319.3	9,262.0	0.00	0.00	0.00
18,600.0	90.00	179.90	9,522.0	-9,356.6	-319.2	9,362.0	0.00	0.00	0.00
18,700.0	90.00	179.90	9,522.0	-9,456.6	-319.0	9,461.9	0.00	0.00	0.00
18,800.0	90.00	179.90	9,522.0	-9,556.6	-318.8	9,561.9	0.00	0.00	0.00
18,900.0	90.00	179.90	9,522.0	-9,656.6	-318.6	9,661.8	0.00	0.00	0.00
19,000.0	90.00	179.90	9,522.0	-9,756.6	-318.5	9,761.8	0.00	0.00	0.00
19,100.0	90.00	179.90	9,522.0	-9,856.6	-318.3	9,861.7	0.00	0.00	0.00
19,200.0	90.00	179.90	9,522.0	-9,956.6	-318.1	9,961.7	0.00	0.00	0.00
19,300.0	90.00	179.90	9,522.0	-10,056.6	-318.0	10,061.6	0.00	0.00	0.00
19,335.6	90.00	179.90	9,522.0	-10,092.2	-317.9	10,097.2	0.00	0.00	0.00
Start 130.0 h	old at 19335.6 N	ID - LTP (TOMA	HAWK WC UNI	Т #723Н)					
19,400.0	90.00	179.90	9,522.0	-10,156.6	-317.8	10,161.5	0.00	0.00	0.00
19,465.6	90.00	179.90	9,522.0	-10,222.2	-317.7	10,227.1	0.00	0.00	0.00

Planning Report

EDT 17 Central Planning Prod Database: DELAWARE BASIN WEST Company: Project: Site:

TOMAHAWK PROSPECT (NM-E) TOMAHAWK WC UNIT S19-30-31 R24S

T28E

Well: TOMAHAWK WC UNIT #723H

Wellbore: OWB Design: PWP1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well TOMAHAWK WC UNIT #723H

KB=32 @ 3125.0usft KB=32 @ 3125.0usft

Grid

Minimum Curvature

Planned Survey

Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
FTP (TOMAHAWK WC - plan misses target - Circle (radius 50.0	center by 187	0.00 .6usft at 944	9,522.0 9.1usft MD (-110.6 9387.1 TVD, -	-330.8 -241.0 N, -334	434,639.10 .8 E)	562,365.20	32° 11' 41.205 N	104° 7' 54.209 W
LTP (TOMAHAWK WC I - plan hits target cer - Point		0.00	9,522.0	-10,092.2	-317.9	424,657.50	562,378.10	32° 10' 2.423 N	104° 7' 54.276 W
PBHL (TOMAHAWK WC - plan hits target cer - Rectangle (sides \	nter	179.93 1.6 D20.0)	9,522.0	-10,222.2	-317.7	424,527.50	562,378.30	32° 10' 1.137 N	104° 7' 54.277 W

Casing Points						
	Measured Depth (usft)	Vertical Depth (usft)		Name	Casing Diameter (")	Hole Diameter (")
	(40.1)	(40.1)		Ivallie	V 7	\ /
	19,466.6	9,522.0	5-1/2" Production Casing		5-1/2	6-1/4

Plan Annotations					
	asured	Vertical	Local Coor		
	epth usft)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Comment
	1,500.0	1,500.0	0.0	0.0	Start Build 2.00
	1,900.0	1,898.7	-7.7	-26.8	Start 1903.8 hold at 1900.0 MD
	3,803.8	3,784.0	-80.7	-281.5	Start Drop -1.00
	4,603.8	4,581.4	-96.1	-335.1	Start 4463.1 hold at 4603.8 MD
	9,067.0	9,044.5	-96.1	-335.1	Start DLS 12.00 TFO 179.90
	9,817.0	9,522.0	-573.6	-334.3	Start 9518.7 hold at 9817.0 MD
•	19,335.6	9,522.0	-10,092.2	-317.9	Start 130.0 hold at 19335.6 MD
•	19,465.6	9,522.0	-10,222.2	-317.7	TD at 19465.6

Released to Imaging: 4/3/2024 8:12:14 AM

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT APD Print Report
04/01/2024

APD ID: 10400093017

Operator Name: COG OPERATING LLC

Well Name: TOMAHAWK WC UNIT

Well Type: OIL WELL

Submission Date: 06/22/2023

Federal/Indian APD: FED

Well Number: 723H

Well Work Type: Drill

Highlighted data reflects the most recent changes Show Final Text

Application

Section 1 - General

BLM Office: Carlsbad User: MAYTE REYES Title: Regulatory Analyst

Federal/Indian APD: FED Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM92757 Lease Acres:

Surface access agreement in place? Allotted? Reservation:

Agreement in place? YES Federal or Indian agreement: FEDERAL

Agreement number: NMNM105761374

Agreement name:

Keep application confidential? Y

Permitting Agent? NO APD Operator: COG OPERATING LLC

Operator letter of

Operator Info

Operator Organization Name: COG OPERATING LLC

Operator Address: ONE CONCHO CENTER 600 W ILLINOIS AVENUE

Operator PO Box:

Operator City: MIDLAND State: TX

Operator Phone: (432)685-4342

Operator Internet Address:

Approval Date: 03/07/2024 Page 1 of 23

Zip: 79701-4287

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Section 2 - Well Information

Well in Master Development Plan? NO Master Development Plan name:

Well in Master SUPO? NO Master SUPO name:

Well in Master Drilling Plan? NO Master Drilling Plan name:

Well Name: TOMAHAWK WC UNIT Well Number: 723H Well API Number:

Field/Pool or Exploratory? Field and Pool Field Name: PURPLE SAGE Pool Name: WOLFCAMP GAS

Is the proposed well in an area containing other mineral resources? USEABLE WATER

Is the proposed well in a Helium production area? N Use Existing Well Pad? N New surface disturbance?

Type of Well Pad: MULTIPLE WELL Multiple Well Pad Name: Number: 719H, 718H, 719H,

TOMAHAWK WC UNIT 723H, 724H
Well Class: HORIZONTAL Number of Legs: 1

Well Class: HORIZONTAL

Number of Legs: 1

Well Work Type: Drill

Describe Well Type:
Well sub-Type: EXPLORATORY (WILDCAT)

Describe sub-type:

Well Type: OIL WELL

Distance to town: 3 Miles Distance to nearest well: 30 FT Distance to lease line: 200 FT

Reservoir well spacing assigned acres Measurement: 1283.96 Acres

Well plat: COG_Tomahawk_723H_C102_20230621120927.pdf

Well work start Date: 01/01/2025 Duration: 30 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83 Vertical Datum: NAVD88

Survey number: Reference Datum: GROUND LEVEL

Wellbore
NS-Foot
NS Indicator
EW-Foot
EW Indicator
Twsp
Range
Section
Aliquot/Lot/Tract
Latitude
Longitude
County
State
Meridian
Lease Type
Lease Number
Elevation
MD
TVD
Will this well produce from this

Well Name: TOMAHAWK WC UNIT Well Number: 723H

$\overline{}$																			
Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this
SHL Leg #1	225	FNL	134 6	FW L	24S	28E	30	Aliquot NENW	32.19520 3	- 104.1311 48	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 92757	309 4	0	0	Υ
KOP Leg #1	225	FNL	134 6	FW L	24S	28E	30	Aliquot NENW		- 104.1311 48	EDD Y		NEW MEXI CO	F	NMNM 92757	309 4	0	0	Y
PPP Leg #1-1	330	FNL	101 5	FW L	24S	28E	30	Aliquot NWN W	32.1949	- 104.1322 18	EDD Y	NEW MEXI CO		F	NMNM 92757	- 629 3	944 9	938 7	Υ
EXIT Leg #1	330	FSL	101 5	FW L	24S	28E	31	Lot 4	32.16746 1	- 104.1322 37	EDD Y	NEW MEXI CO		S	STATE	- 642 8	193 36	952 2	Υ
BHL Leg #1	200	FSL	101 5	FW L	24S	28E	31	Lot 4	32.16710 4	- 104.1322 37	EDD Y	NEW MEXI CO	—	S	STATE	- 640 8	194 66	950 2	Υ

Drilling Plan

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
13055224	QUATERNARY	3094	0	Ô	ALLUVĪŪM	NONE	N
13055219	RUSTLER	2592	502	502	ANHYDRITE	USEABLE WATER	N
13055220	TOP SALT	2228	866	866	SALT	NONE	N
13055229	BASE OF SALT	825	2269	2269	SALT	NONE	N
13055222	LAMAR	607	2487	2487	LIMESTONE	NONE	N
13055223	BELL CANYON	571	2523	2523	SANDSTONE	NONE	N
13055230	CHERRY CANYON	-225	3319	3319	SANDSTONE	NATURAL GAS, OIL	N
13055231	BRUSHY CANYON	-1242	4336	4336	SANDSTONE	NATURAL GAS, OIL	N

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
13055232	BONE SPRING	-2858	5952	5952	SANDSTONE	NATURAL GAS, OIL	N
13055233	BONE SPRING 1ST	-3878	6972	6972	SANDSTONE	NATURAL GAS, OIL	N
13055234	BONE SPRING 2ND	-4455	7549	7549	SANDSTONE	NATURAL GAS, OIL	N
13055226	BONE SPRING 3RD	-5764	8858	8858	SANDSTONE	NATURAL GAS, OIL	N
13055221	WOLFCAMP	-6128	9222	9222	SHALE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 10M Rating Depth: 9502

Equipment: BOP and BOPE will be installed per Onshore Order #2 requirements prior to drilling below the surface casing and will be rated to the above pressure rating or greater, see attached diagrams. Required safety valves, with appropriate wrenches and subs for the drill string being utilized, will be in the open position and accessible on the rig floor.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to choke manifold. See attached for specs and hydrostatic test chart. 5M Annular variance requested. A variance is requested to use a multibowl wellhead.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Choke Diagram Attachment:

COG Tomahawk 10M Choke 20230621073357.pdf

BOP Diagram Attachment:

COG Tomahawk 10M BOP 20230621073410.pdf

COG_Tomahawk_Flex_Hose_Variance_20230621073442.pdf

Pressure Rating (PSI): 5M Rating Depth: 9000

Equipment: BOP and BOPE will be installed per Onshore Order #2 requirements prior to drilling below the surface casing and will be rated to the above pressure rating or greater, see attached diagrams. Required safety valves, with appropriate wrenches and subs for the drill string being utilized, will be in the open position and accessible on the rig floor.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to choke manifold. See attached for specs and hydrostatic test chart. 5M Variance is requested. A variance is requested to use a multibowl wellhead.

Testing Procedure: The BOP and BOPE will be fully tested per Onshore Order #2 when initially installed, whenever any seal subject to test pressure is broken, and/or following related repairs. Released to Imaging: 4/3/2024 8:12:14 AM

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Choke Diagram Attachment:

COG_Tomahawk_5M_Choke_20230621073230.pdf

BOP Diagram Attachment:

COG_Tomahawk_5M_BOP_20230621073254.pdf

COG_Tomahawk_Flex_Hose_Variance_20230621073255.pdf

Section 3 - Casing

casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	ם ארים
1	SURFACE	14.7 5	10.75	NEW	API	N	0	816	0	816	3094	2278	816	J-55		OTHER - BTC	5.6	1.49	DRY	21.4 4	DRY	19 6
	INTERMED IATE	8.75	7.625	NEW	API	Υ	0	9000	0	9000	3585	-5906	9000	OTH ER		OTHER - W513	1.62	2.12	DRY	2.4	DRY	4
-	PRODUCTI ON	6.75	5.5	NEW	API	Υ	0	19466	0	9502	3585	-6408	19466	OTH ER		OTHER - W441	2.35	2.78	DRY	3.03	DRY	2.

Casing Attachments

Casing ID: 1 String SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

 $COG_Tomahawk_723H_Casing_Prog_20230621151517.pdf$

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Casing Attachments

Casing ID: 2

String

INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

COG_Tomahawk_723H_Casing_Prog_20230621151547.pdf

Casing Design Assumptions and Worksheet(s):

COG_Tomahawk_723H_Casing_Prog_20230621151658.pdf

Casing ID: 3

String

PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

COG_Tomahawk_723H_Casing_Prog_20230621151351.pdf

Casing Design Assumptions and Worksheet(s):

COG_Tomahawk_723H_Casing_Prog_20230621151420.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	816	390	1.73	13.5	674	50	Class C + 4% Gel + 1% CaCl2	As needed
SURFACE	Tail		817	816	250	1.35	14.8	337	50	Class C + 2% CaCl2	As needed
INTERMEDIATE	Lead		9000	9000	600	3.6	10.5	2160	50	NeoCem-C	As needed
INTERMEDIATE	Tail		9000	9000	220	1.35	14.8	297	50	HalCem-C	As needed

Well Name: TOMAHAWK WC UNIT Well Number: 723H

String Type	Lead/Tail	Stage Tool Depth	Тор МD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Lead		9502	1946 6	460	1.71	12.5	786	25	VersaCem	As needed
PRODUCTION	Tail		9502	1946 6	770	1.48	13.2	1139	25	NeoCem	As needed

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
816	9000	OTHER : Diesel Brine Emulsion	8.4	9.7							Diesel Brine Emulsion
9000	1946 6	OIL-BASED MUD	11	12.5							ОВМ
0	816	OTHER : Fresh water gel	8.6	8.8							Fresh water gel

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

None planned

List of open and cased hole logs run in the well:

CEMENT BOND LOG, COMPENSATED NEUTRON LOG, GAMMA RAY LOG,

Coring operation description for the well:

None planned

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 6180

Anticipated Surface Pressure: 4085

Anticipated Bottom Hole Temperature(F): 155

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

COG_Tomahawk_H2S_SUP_20230621084435.pdf COG_Tomahawk_H2S_Schem_20230621084435.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

COG_Tomahawk_723H_Directional_Plan_20230621152544.pdf COG_Tomahawk_723H_AC_RPT_20230621152544.pdf

Other proposed operations facets description:

Drilling Plan attached. GCP attached. Cement Plan attached.

Other proposed operations facets attachment:

API_BTC_10.750_0.400_J55_Casing_11092022_20230621084615.pdf
API_BTC_7.625_0.375_L80_ICY_11092022_20230621084613.pdf
TXP_BTC_5.500_0.415_P110_CY_11092022_20230621084615.pdf
Wedge_441_5.500_0.415_P110_CY_11092022_20230621084615.pdf
Wedge_513_7.625_0.375_P110_ICY_11092022_20230621084616.pdf
COG_Tomahawk_723H_Cement_Prog_20230621152628.pdf

Released to Imaging: 47312024_723H_Drilling_Prog_20230621152631.pdf

Well Name: TOMAHAWK WC UNIT Well Number: 723H

COG_Tomahawk_723H_GCP_20230621152634.pdf

Other Variance attachment:

COG_6.75_5M_Variance_WCP_20230621084732.pdf

SUPO

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

COG_Tomahawk_Existing_Road__20230620152245.pdf

Existing Road Purpose: ACCESS,FLUID TRANSPORT Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? YES

Existing Road Improvement Description: Existing roads will be maintained in the same condition or better.

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

COG_Tomahawk_Access_Road_20230620153247.pdf

New road type: RESOURCE

Length: 10289.9 Feet **Width (ft.)**: 30

Max slope (%): 33 Max grade (%): 1

Army Corp of Engineers (ACOE) permit required? N

ACOE Permit Number(s):

New road travel width: 14

New road access erosion control: Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage, and to be consistent with local drainage patterns.

New road access plan or profile prepared? N

New road access plan

Approval Date: 03/07/2024 Page 9 of 23

Page 10 of 23

Operator Name: COG OPERATING LLC

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Access road engineering design? N

Access road engineering design

Turnout? N

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Blading

Access other construction information: No turnouts are planned.

Access miscellaneous information: Roads previously approved with Tomahawk WC Unit 701H, 702H, 703H, 704H, 705H,

706H, 707H, 708H, 709H, 710H, 711H, 712H, 713H, 714H, 715H, 716H, 717H and 718H APDs.

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: None necessary

Road Drainage Control Structures (DCS) description: None needed.

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

COG_Tomahawk_723H_1_MILE_DATA_20230621121358.pdf

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Tomahawk Federal 30-B CTB. This CTB will be built to accommodate the Tomahawk Fed Com #706H, #707, #708, #717, #718, #719, #721,#, #722, #723, #724. We plan to install (1) buried 6 FP 601HT production flowline with MAWP of 1350 psi from each wellhead to the inlet manifold of the proposed CTB (10 lines total); the route for these flowlines will follow the flowlines route as shown in the diagram below. We will install (1) buried 6 FP 601 gas line for gas lift supply with MAWP of 1350 psi from the CTB to the well pads; the route for the gas lift lines will follow the gas lift route as shown in layout below. We released to Imaging: 4/3/2024 8:12:14 AM

Well Name: TOMAHAWK WC UNIT Well Number: 723H

will install (1) buried 6 FP 601 liquid return line with MAWP of 1350 psi for compressor liquids from the well pads to the CTB; the route for the liquid return lines will follow the liquid return route as shown in layout on the following page. CTB, powerlines and flowlines, previously approved with Tomahawk WC Unit 701H, 702H, 703H, 704H, 705H, 706H, 707H, 708H, 709H, 710H, 711H, 712H, 713H, 714H, 715H, 716H, 717H and 718H APDs.

Production Facilities map:

COG_Tomahawk_Federal_30_B_CTB_20240103085544.pdf
COG_TOMAHAWK_POWERLINE_REV_20240103085552.pdf
COG_TOMAHAWK_FLOWLINE_GASLINE_REV_20240103085557.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source type: OTHER

Describe type: Brine Water

Water source use type: INTERMEDIATE/PRODUCTION

CASING

Source latitude: Source longitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Water source transport method: TRUCKING

Source land ownership: COMMERCIAL

Source transportation land ownership: COMMERCIAL

Water source volume (barrels): 30000 Source volume (acre-feet): 3.866793

Source volume (gal): 1260000

Water source type: OTHER

Describe type: Fresh Water

Water source use type: SURFACE CASING

STIMULATION

ICE PAD CONSTRUCTION &

MAINTENANCE

Source latitude: Source longitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Released to Imaging: 4/3/2024 8:12:14 AM

Approval Date: 03/07/2024 Page 11 of 23

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Water source transport method: PIPELINE

Source land ownership: PRIVATE

Source transportation land ownership: PRIVATE

Water source volume (barrels): 450000 Source volume (acre-feet): 58.001892

Source volume (gal): 18900000

Water source and transportation

COG_Tomahawk_Brine_H2O_20230621105126.pdf COG_Tomahawk_Fresh_H2O_20230621105127.pdf

Water source comments: See attached maps

New water well? N

New Water Well Info

Well latitude: Well Longitude: Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft): Est thickness of aquifer:

Aquifer comments:

Aquifer documentation:

Well depth (ft): Well casing type:

Well casing outside diameter (in.): Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method: Drill material:

Grout material: Grout depth:

Casing length (ft.): Casing top depth (ft.):

Well Production type: Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Approval Date: 03/07/2024 Page 12 of 23

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Section 6 - Construction Materials

Using any construction materials: YES

Construction Materials description: Caliche will be obtained from the actual well site. If caliche does not exist or is not plentiful from the well site, the caliche source will be from the Hayhurst Caliche Pit located in Sec 18. T24S. R28E. SENW

Construction Materials source location

Section 7 - Methods for Handling

Waste type: DRILLING

Waste content description: Drilling fluids and produced oil land water while drilling and completion operations

Amount of waste: 6000 barrels

Waste disposal frequency: One Time Only

Safe containment description: All drilling waste will be stored safely and disposed of properly

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Trucked to an approved disposal facility

Waste type: SEWAGE

Waste content description: Human waste and gray water

Amount of waste: 1000 gallons

Waste disposal frequency : One Time Only

Safe containment description: Waste will be properly contained and disposed of properly at a state approved disposal

facility.

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY

Disposal type description:

Disposal location description: Trucked to an approved disposal facility

Waste type: GARBAGE

Waste content description: Garbage and trash produced during drilling and completion operations.

Amount of waste: 500 pounds

Waste disposal frequency: One Time Only

Safe containment description: Garbage and trash produced during drilling and completion operations will be collected in a

trash container and disposed of properly at a state approved disposal facility

Safe containment attachment:

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Trucked to an approved disposal facility.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? Y

Description of cuttings location Roll off cutting containers on tracks

Cuttings area length (ft.) Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary

Are you requesting any Ancillary Facilities?: N

Ancillary Facilities

Comments: Gas Capture Plan attached

Page 14 of 23

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Section 9 - Well Site

Well Site Layout Diagram:

COG TOMAHAWK WC PAD EXP Layout 20240103085629.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Multiple Well Pad Name: TOMAHAWK WC UNIT Type of disturbance: New Surface Disturbance

Multiple Well Pad Number: 719H, 718H, 719H, 723H, 724H

Recontouring

COG TOMAHAWK WC PAD EXP RECLAMATION REV 20240103085655.pdf

Drainage/Erosion control construction: Proper erosion control methods will be used at the well site to control erosion, runoff, and siltation of the surrounding area. Straw waddles will be used as necessary at the well site to reduce sediment impacts to fragile/sensitive soils.

Drainage/Erosion control reclamation: The interim reclamation will be monitored periodically to ensure that vegetation has re-established and that erosion is controlled.

Well pad proposed disturbance

(acres): 4.78

Road proposed disturbance (acres):

7.09

Powerline proposed disturbance

(acres): 8.15

Pipeline proposed disturbance

(acres): 3.54

Other proposed disturbance (acres):

5.74

Total proposed disturbance:

29.300000000000004

Disturbance Comments:

Well pad interim reclamation (acres):

Powerline interim reclamation (acres): Powerline long term disturbance 8.15

Pipeline interim reclamation (acres):

Total interim reclamation: 25.43999999999998

(acres): 3.86 Road interim reclamation (acres): 7.09 Road long term disturbance (acres):

7.09

Well pad long term disturbance

(acres): 8.15

Pipeline long term disturbance

(acres): 3.54

Other interim reclamation (acres): 5.74 Other long term disturbance (acres):

Total long term disturbance:

28.380000000000003

Reconstruction method: If needed, portions of the pad not needed for production operations will be re-contoured to its original state as much as possible. The caliche that is removed will be reused. The stockpiled topsoil will be spread out over reclaimed area and reseeded with BLM approved seed mixture.

Topsoil redistribution: North

Soil treatment: None

Existing Vegetation at the well pad: Shinnery Oak/Mesquite grassland

Existing Vegetation at the well pad

Existing Vegetation Community at the road: Shinnery Oak/Mesquite grassland

Existing Vegetation Community at the road

Released to Imaging: 4/3/2024 8:12:14 AM

Approval Date: 03/07/2024 Page 15 of 23

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Existing Vegetation Community at the pipeline: Shinnery Oak/Mesquite grassland

Existing Vegetation Community at the pipeline

Existing Vegetation Community at other disturbances: N/A

Existing Vegetation Community at other disturbances

Non native seed used? N

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? N

Seedling transplant description

Will seed be harvested for use in site reclamation? N

Seed harvest description:

Seed harvest description attachment:

Seed

Seed Table

Seed Summary
Seed Type Pounds/Acre

Total pounds/Acre:

Seed reclamation

Operator Contact/Responsible Official

First Name: Last Name:

Phone: Email:

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? N

Existing invasive species treatment description:

Released to Imaging: 4/3/2024 8:12:14 AM

Approval Date: 03/07/2024 Page 16 of 23

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Existing invasive species treatment

Weed treatment plan description: N/A

Weed treatment plan

Monitoring plan description: N/A

Monitoring plan

Success standards: N/A

Pit closure description: N/A

Pit closure attachment:

COG_Tomahawk_Closed_Loop_20230621105320.pdf

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Section 12 - Other

Right of Way needed? N

Use APD as ROW?

ROW Type(s):

ROW

SUPO Additional Information: Surface Use & Operating Plan. Attached On-site was done by Gerald Herrera (COG); Keely Watland (BLM); on October 4th, 2022. **Use a previously conducted onsite?** N

Previous Onsite information:

Other SUPO

COG Tomahawk Access Road 20230621114810.pdf

COG Tomahawk Brine H2O 20230621114757.pdf

COG Tomahawk Closed Loop 20230621114744.pdf

COG_Tomahawk_Existing_Road__20230621114758.pdf

COG Tomahawk Fresh H2O 20230621114757.pdf

COG_Tomahawk_723H_1_MILE_DATA_20230621121941.pdf

COG_Tomahawk_723H_C102_20230621121941.pdf

COG_Tomahawk_717H_718H_719H_723H_724H_SUP_20240103085806.pdf

COG_TOMAHAWK_WC_PAD_EXP_RECLAMATION_REV_20240103085809.pdf

COG_TOMAHAWK_WC_PAD_EXP_Layout_20240103085810.pdf

COG_Tomahawk_Federal_30_B_CTB_20240103085815.pdf

COG_TOMAHAWK_POWERLINE_REV_20240103085819.pdf

COG_TOMAHAWK_FLOWLINE_GASLINE_REV_20240103085823.pdf

PWD

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined

Would you like to utilize Lined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Page 19 of 23

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit

Pit liner description:

Pit liner manufacturers

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule

Lined pit reclamation description:

Lined pit reclamation

Leak detection system description:

Leak detection system

Lined pit Monitor description:

Lined pit Monitor

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Released to Imaging: 4/3/2024 8:12:14 AM

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Lined pit bond number:

Lined pit bond amount:

Additional bond information

Section 3 - Unlined

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule

Unlined pit reclamation description:

Unlined pit reclamation

Unlined pit Monitor description:

Unlined pit Monitor

Do you propose to put the produced water to beneficial use?

Beneficial use user

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic

State

Unlined Produced Water Pit Estimated

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Released to Imaging: 4/3/2024 8:12:14 AM

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Additional bond information

Section 4 -

Would you like to utilize Injection PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number: Injection well name:

Assigned injection well API number? Injection well API number:

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection

Underground Injection Control (UIC) Permit?

UIC Permit

Section 5 - Surface

Would you like to utilize Surface Discharge PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 -

Would you like to utilize Other PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Other PWD discharge volume (bbl/day):

Other PWD type description:

Released to Imaging: 4/3/2024 8:12:14 AM

Approval Date: 03/07/2024 Page 21 of 23

Well Name: TOMAHAWK WC UNIT Well Number: 723H

Other PWD type

Have other regulatory requirements been met?

Other regulatory requirements

Bond Info

Bond

Federal/Indian APD: FED

BLM Bond number: NMB000215

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information

Operator Certification

Payment Info

Payment

APD Fee Payment Method: PAY.GOV

pay.gov Tracking ID: 2765R2TU

Approval Date: 03/07/2024 Page 22 of 23

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: COG OPERATING LLC

WELL NAME & NO.: | TOMAHAWK WC UNIT 723H

SURFACE HOLE FOOTAGE: 225'/N & 1346'/W BOTTOM HOLE FOOTAGE 200'/S & 1015'/W

LOCATION: Section 30, T.24 S., R.28 E. COUNTY: Eddy County, New Mexico

COA

H2S	• Yes	O No	
Potash	None	O Secretary	© R-111-P
Cave/Karst Potential	O Low	• Medium	O High
Cave/Karst Potential	O Critical		
Variance	O None	• Flex Hose	Other
Wellhead	Conventional	Multibowl	O Both
Wellhead Variance	O Diverter		
Other	□4 String	☐ Capitan Reef	□WIPP
Other	☐ Fluid Filled	☐ Pilot Hole	☐ Open Annulus
Cementing	☐ Contingency	☐ EchoMeter	☐ Primary Cement
	Cement Squeeze		Squeeze
Special Requirements	☐ Water Disposal	\square COM	✓ Unit
Special Requirements	☐ Batch Sundry		
Special Requirements	☐ Break Testing	☐ Offline	✓ Casing
Variance	_	Cementing	Clearance

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated AT SPUD. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

Primary Casing Design:

1. The **10-3/4** inch surface casing shall be set at approximately **816** feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.

- a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The **7-5/8** inch intermediate casing shall be set at approximately **9,000** feet. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is:

Option 1 (Single Stage):

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- ❖ In Medium Cave/Karst Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The **5-1/2** inch production casing shall be set at approximately **19,466** feet The minimum required fill of cement behind the **5-1/2** inch production casing is:

Option 1 (Single Stage):

• Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 10-3/4 inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 3500 (70% Working Pressure) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Unit Wells

The well sign for a unit well shall include the unit number in addition to the surface and bottom hole lease numbers. This also applies to participating area numbers. If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced.

Commercial Well Determination

A commercial well determination shall be submitted after production has been established for at least six months. (This is not necessary for secondary recovery unit wells)

Casing Clearance:

- Overlap clearance OK for production interval

Operator shall clean up cycles until wellbore is clear of cuttings and any large debris, ensure cutting sizes are adequate "coffee ground or less" before cementing.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - If well located in Eddy County
 EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,

Page 3 of 8

BLM_NM_CFO_DrillingNotifications@BLM.GOV

(575) 361-2822

- If well located in Lea County
 Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43 CFR part 3170 Subpart 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke

manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR part 3170 Subpart 3172 must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be

- initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR part 3170 Subpart 3172** with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and

disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

KPI 2/28/2024

COG OPERATING LLC HYDROGEN SULFIDE DRILLING OPERATIONS PLAN

1. <u>HYDROGEN SULFIDE TRAINING</u>

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- a. The hazards and characteristics of hydrogen sulfide (H₂S).
- b. The proper use and maintenance of personal protective equipment and life support systems.
- c. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- d. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- a. The effects of H2S on metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- b. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- c. The contents and requirements of the H₂S Drilling Operations Plan and the Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. This plan shall be available at the well site. All personnel will be required to carry documentation that they have received the proper training.

2. <u>H₂S SAFETY EQUIPMENT AND SYSTEMS</u>

Note: All H₂S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H2S. If H2S greater than 100 ppm is encountered in the gas stream we will shut in and install H2S equipment.

a. Well Control Equipment:

Flare line.

Choke manifold with remotely operated choke.

Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit.

Auxiliary equipment to include: annular preventer, mud-gas separator, rotating head.

- b. Protective equipment for essential personnel:
 Mark II Surviveair 30-minute units located in the dog house and at briefing areas.
- c. H2S detection and monitoring equipment:
 2 portable H2S monitor positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 ppm are reached.
- d. Visual warning systems: Caution/Danger signs shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.
- e. Mud Program:
 The mud program has been designed to minimize the volume of H2S circulated to the surface.
- f. Metallurgy:
 All drill strings, casings, tubing, wellhead, blowout preventers, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.
- g. Communication:Company vehicles equipped with cellular telephone.

COG OPERATING LLC has conducted a review to determine if an H2S contingency plan is required for the above referenced well. We were able to conclude that any potential hazardous volume would be minimal. H2S concentrations of wells in this area from surface to TD are low enough; therefore, we do not believe that an H2S contingency plan is necessary.

WARNING

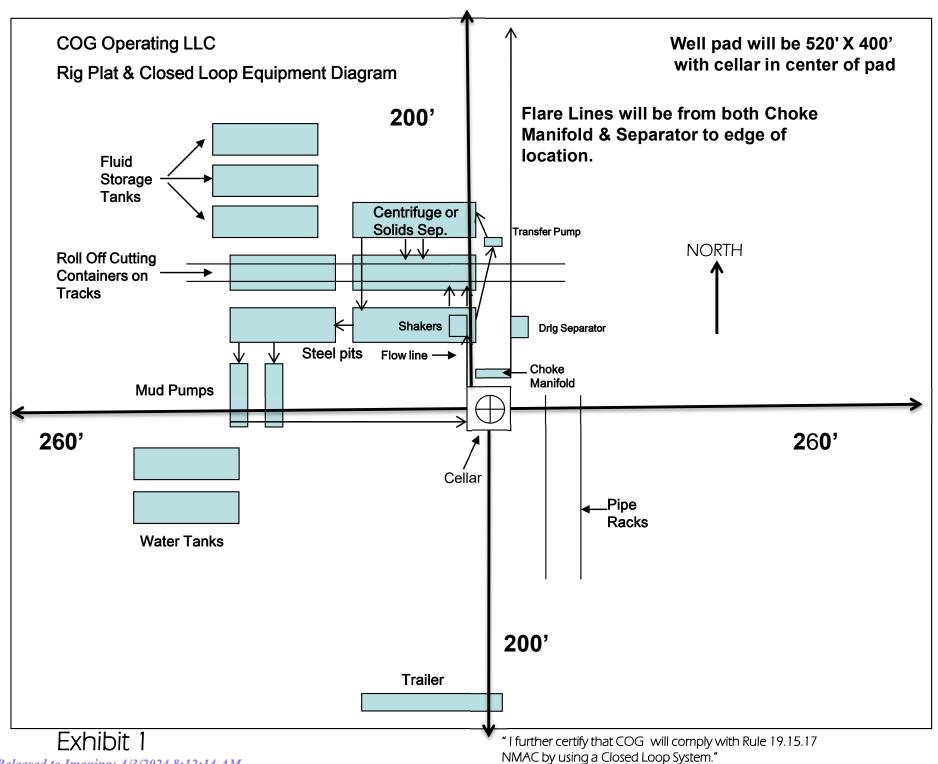
YOU ARE ENTERING AN H₂S AREA AUTHORIZED PERSONNEL ONLY

- 1. BEARDS OR CONTACT LENSES NOT ALLOWED
- 2. HARD HATS REQUIRED
- 3. SMOKING IN DESIGNATED AREAS ONLY
- 4. BE WIND CONSCIOUS AT ALL TIMES
- 5. CK WITH COG OPERATING LLC FOREMAN AT MAIN OFFICE

COG OPERATING LLC

1-575-748-6940

EMERGENCY CALL LIST


OFFICE

COG OPERATING LLC OFFICE 575-748-6940

CHAD GREGORY 432-894-5590

EMERGENCY RESPONSE NUMBERS

	<u>OFFICE</u>
STATE POLICE	575-748-9718
EDDY COUNTY SHERIFF	575-746-2701
EMERGENCY MEDICAL SERVICES (AMBULANCE)	911 or 575-746-2701
EDDY COUNTY EMERGENCY MANAGEMENT (HARRY BURGESS)	575-887-9511
STATE EMERGENCY RESPONSE CENTER (SERC)	575-476-9620
CARLSBAD POLICE DEPARTMENT	575-885-2111
CARLSBAD FIRE DEPARTMENT	575-885-3125
NEW MEXICO OIL CONSERVATION DIVISION	575-748-1283
INDIAN FIRE & SAFETY	800-530-8693
HALLIBURTON SERVICES	800-844-8451

1. Geologic Formations

TVD of target	9,502' EOL	Pilot hole depth	NA
MD at TD:	19,466'	Deepest expected fresh water:	90'

Formation	Depth (TVD) from KB	Water/Mineral Bearing/ Target Zone?	Hazards*
Quaternary Fill	Surface	Water	
Rustler	502	Water	
Top of Salt	866	Salt	
Base of Salt	2269	Salt	
Lamar	2487	Salt Water	
Bell Canyon	2523	Salt Water	
Cherry Canyon	3319	Oil/Gas	
Brushy Canyon	4336	Oil/Gas	
Bone Spring	5952	Oil/Gas	
Bone Spring 1st Sand	6972	Oil/Gas	
Bone Spring 2nd Sand	7549	Oil/Gas	
Bone Spring 3rd Carb	7975	Oil/Gas	
Bone Spring 3rd Sand	8858	Oil/Gas	
Wolfcamp	9222	Oil/Gas	

2. Casing Program

Hole Size	Casing	j Interval	Csg. Size	Weight	Grade	Conn.	SF	SF Burst	SF	SF
Tiole Size	From	То	Osg. Oize	(lbs)	Grade	COIIII.	Collapse	or Burst	Body	Joint
14.75"	0	816	10.75"	45.5	J55	BTC	5.60	1.49	19.26	21.44
9.875"	0	5952	7.625"	29.7	L80-ICY	TXP BTC	1.97	1.40	4.11	4.11
8.750"	5952	9,000	7.625"	29.7	P110-ICY	W513	1.62	2.12	4.00	2.40
6.75"	0	8500	5.5"	23	P110-CY	TXP BTC	2.63	3.11	3.73	3.73
6.75"	8500	19,466	5.5"	23	P110-CY	W441	2.35	2.78	3.34	3.03
-				BLM Minimum Safety Factor			1.125	1	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet

Intermediate casing will be kept at least 1/3 full while running casing.to mitigate collapse. Surface burst based on 0.7 frac gradient at the shoe with Gas Gradient 0.1 psi/ft to surface and All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

The 5 1/2" W441 casing will be run back at least 200' into the intermediate casing to ensure the coupling OD clearance is greater than .422" for the cement bond tie in.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Υ
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Υ
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Υ
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary?	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing	# Sks	Wt. lb/ gal	Yld ft3/	H₂0 gal/sk	500# Comp. Strength (hours)	Slurry Description
Surf.	390	13.5	1.73	9.22	12	Lead: Class C + 4% Gel + 1% CaCl2
Sull.	250	14.8	1.35	6.45	8	Tail: Class C + 2% CaCl2
Inter.	600	10.5	3.6	22.81	72	NeoCem-C
Stage 1	220	14.8	1.35	6.6	8	HalCem-C
Prod	460	12.5	1.71	9.32	72	VersaCem
FIUU	770	13.2	1.48	7.49	19	NeoCem-C

If losses are encountered in the intermediate section a DV/ECP tool will be run ~50' above the Lamar Lime top, cement will be adjusted accordingly if this contingency is necessary.

Volumes Subject to Observed Hole Conditions and/or Fluid Caliper Results Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

Casing String	TOC	% Excess
Surface	0'	50%
1 st Intermediate	0'	50%
Production	8,500'	25% OH in Lateral (KOP to EOL)

4. Pressure Control Equipment

A variance is requested for the use of a diverter on the surface casing. See attached for schematic.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Ту	pe	x	Tested to:		
			Ann	ular	Х	2500psi		
	13-5/8"	5M	Blind Ram		Х	5000psi		
9-7/8"			Pipe Ram		Х			
				Double	e Ram	Х	Jooopsi	
			Other*					
			5M Aı	nnular	Х	2500 psi		
6-3/4"	13-5/8"	10M			Blind	Ram	Χ	
			Pipe	Ram	Χ	10000psi		
			Double	e Ram	m x			
			Other*					

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

	Formation integrity test will be performed per Onshore Order #2.			
Y	On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.			
Y	A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.			
	N Are anchors required by manufacturer?			
Y	A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.			

5. Mud Program

	Depth	Tymo	Weight	Viscosity	Water Loss
From	То	Туре	(ppg)	Viscosity	Water Loss
0	Surf. Shoe	FW Gel	8.6 - 8.8	28-34	N/C
Surf csg	7-5/8" Int shoe	Brine Diesel Emulsion	8.4 - 9.7	28-34	N/C
7-5/8" Int shoe	Lateral TD	ОВМ	11 - 12.5	35-45	<20

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid? PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, Coring and Testing.					
	Will run GR/CNL from TD to surface (horizontal well – vertical				
Y	portion of hole). Stated logs run will be in the Completion				
	Report and submitted to the BLM.				
v	No Logs are planned based on well control or offset log				
Į ř	information.				
N	Drill stem test? If yes, explain.				
N	Coring? If yes, explain.				

Additional logs planned		Interval
N	Resistivity	Pilot Hole TD to ICP
N	Density	Pilot Hole TD to ICP
Y	CBL	Production casing (If cement not circulated to surface)
Υ	Mud log	Intermediate shoe to TD
N	PEX	

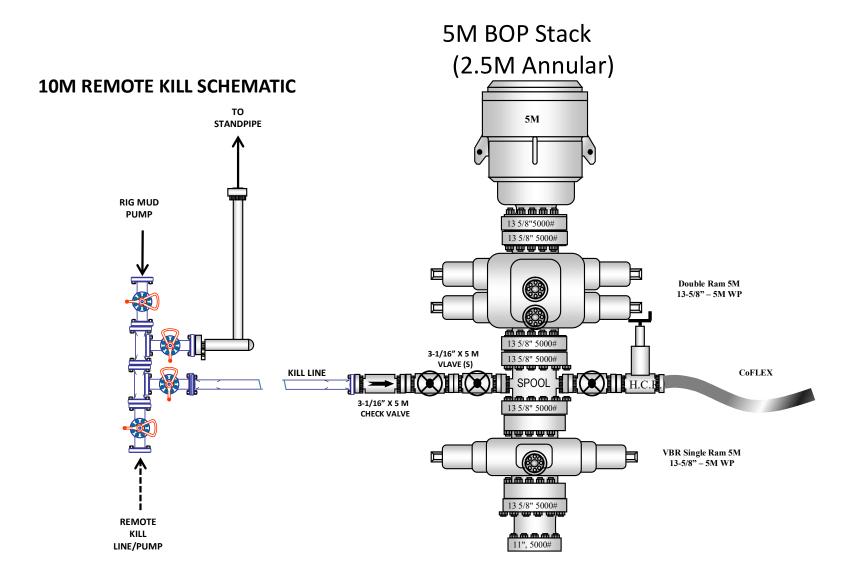
7. Drilling Conditions

Condition	Specify what type and where?	
BH Pressure at deepest TVD	6180 psi at 9502' TVD	
Abnormal Temperature	NO 155 Deg. F.	

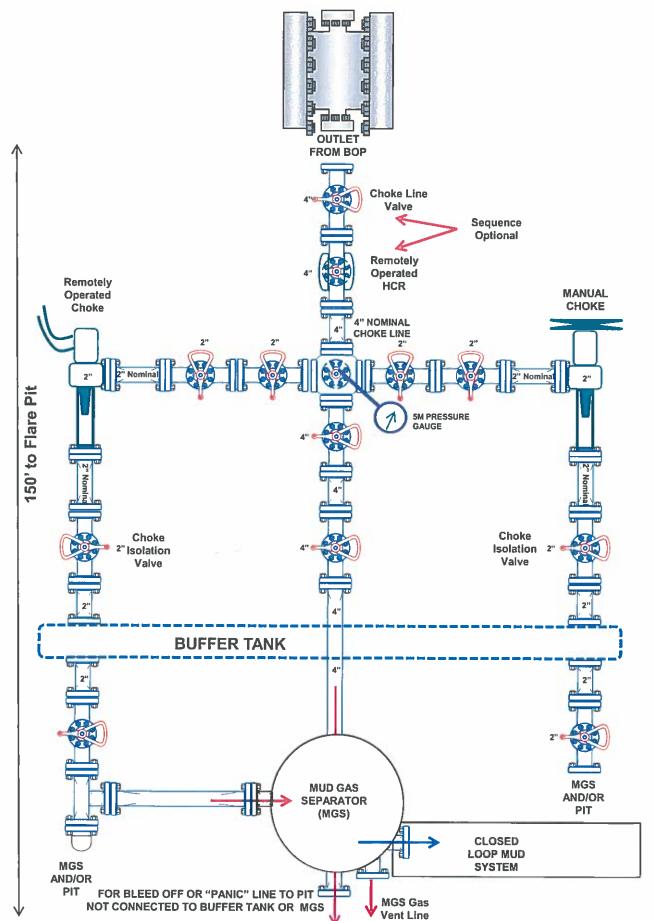
No abnormal pressure or temperature conditions are anticipated. Sufficient mud materials to maintain mud properties and weight increase requirements will be kept on location at all times.

Sufficient supplies of Paper/LCM for periodic sweeps to control seepage and losses will be maintained on location.

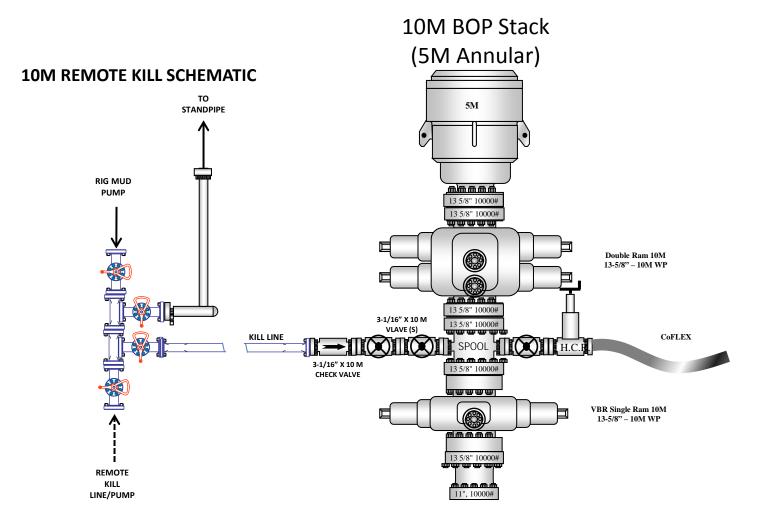
Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

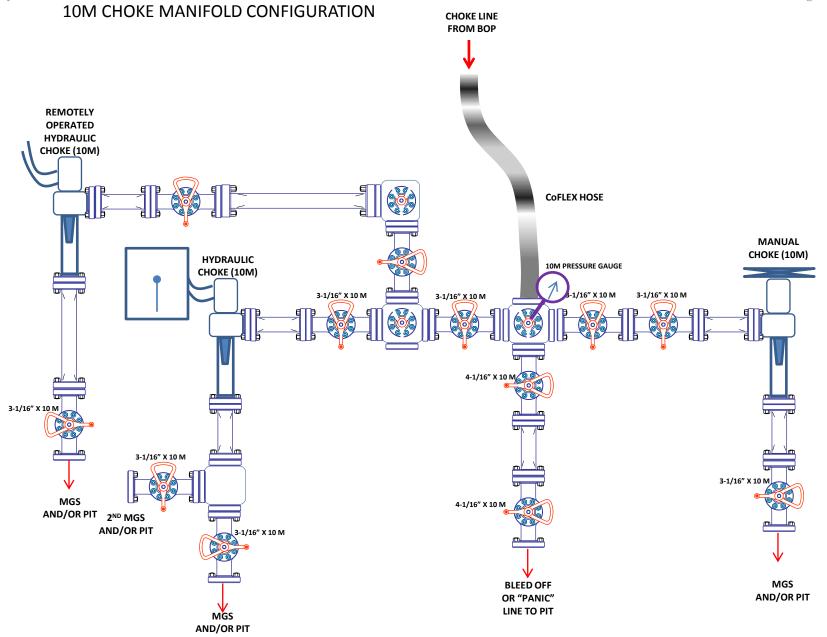

N	H2S is present
Y	H2S Plan attached

8. Other Facets of Operation


Υ	Is it a walking operation?
Y	Is casing pre-set?

х	H2S Plan.
х	BOP & Choke Schematics.
х	Directional Plan


5M BOP Stack



5M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)

Released to Imaging: 4/3/2024 8:12:14 AM

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 328669

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	328669
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
ward.rikala Notify OCD 24 hours prior to casing & cement		4/3/2024
ward.rikala	Will require a File As Drilled C-102 and a Directional Survey with the C-104	4/3/2024
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	4/3/2024
ward.rikala Cement is required to circulate on both surface and intermediate1 strings of casing		4/3/2024
ward.rikala	If cement does not circulate on any string, a CBL is required for that string of casing	4/3/2024
ward.rikala	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	4/3/2024