Sundry Print Report

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

EAGLE

Well Name: JAMES RANCH UNIT DI 8 Well Location: T22S / R30E / SEC 36 / County or Parish/State: EDDY /

NWNW / 32.34768 / -103.837181

Well Number: 151H Type of Well: OIL WELL Allottee or Tribe Name:

Lease Number: NMNM002953C Unit or CA Name: JAMES RANCH Unit or CA Number:

NMNM070965Z

US Well Number: Operator: XTO PERMIAN OPERATING

LLC

Notice of Intent

Sundry ID: 2667195

Type of Submission: Notice of Intent

Type of Action: Other

Date Sundry Submitted: 04/15/2022 Time Sundry Submitted: 11:02

Date proposed operation will begin: 05/01/2022

Procedure Description: **Pool Change, SHL Change, Spacing, Casing/Cement, Drilling Variance Changes XTO Permian Operating, LLC requests permission to make the following changes to the original APD: Change Pool from: Los Medanos; Wolfcamp (South) to Los Medanos; Bone Spring No Additional Surface Disturbance Change SHL fr/2311'FSL & 1776'FWL to 2436'FSL & 1747'FWL Well Stays in the Same Quarter-Quarter as Permitted Total SHL Move: 125' North & 29' East SHL change requested to optimize well pad layout, drilling efficiencies, and for safety purposes. Change BHL fr/990'FNL & 50'FEL to 1830'FNL & 50'FEL Casing/Cement design per the attached drilling program. Attachments: C102 Drilling Program Directional Plan Multibowl Diagram

Surface Disturbance

Is any additional surface disturbance proposed?: No

NOI Attachments

Procedure Description

JRU_DI_8_Eagle_151H_Attachments_20220415110233.pdf

Page 1 of 2

by OCD: 9/27/2024 6:41:47 AM Name: JAMES RANCH UNIT DI 8

EAGLE

Well Location: T22S / R30E / SEC 36 / NWNW / 32.34768 / -103.837181

County or Parish/State: Page 2 of

NM

Well Number: 151H

Type of Well: OIL WELL

Allottee or Tribe Name:

Lease Number: NMNM002953C

Unit or CA Name: JAMES RANCH

Unit or CA Number: NMNM070965Z

US Well Number:

Operator: XTO PERMIAN OPERATING

Conditions of Approval

Additional

Sec 36 22S 30E NMP Sundry 2667195 James Ranch Unit DI 8 Eagle 151H Eddy NMNM0029353C XTO 13 22_44691_Allison_Morency_20220510123311.pdf

Sec_36_22S_30E_NMP_Sundry_2667195_James_Ranch_Unit_DI_8_Eagle_151H_Eddy_NMNM0029353C_XTO_CO As.docx_20220510123305.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: STEPHANIE RABADUE Signed on: APR 15, 2022 11:02 AM

Name: XTO PERMIAN OPERATING LLC

Title: Regulatory Coordinator

Street Address: 500 W. Illinois St, Ste 100

City: Midland State: TX

Phone: (432) 620-6714

Email address: STEPHANIE.RABADUE@EXXONMOBIL.COM

Field

Representative Name:

Street Address:

City:

State:

Zip:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS

BLM POC Title: Petroleum Engineer

BLM POC Email Address: cwalls@blm.gov

BLM POC Phone: 5752342234

Disposition Date: 05/11/2022

Disposition: Approved Signature: Chris Walls

Page 2 of 2

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

FORM APPROVE	D
OMB No. 1004-013	37
Expires: October 31, 2	202

5. Lease Serial N

DOK	EAU OF LAND MANAGEMENT						
Do not use this t	IOTICES AND REPORTS ON Worm for proposals to drill or to Use Form 3160-3 (APD) for suc	o re-enter an	6. If Indian, Allottee or	Tribe Name			
	TRIPLICATE - Other instructions on page		7. If Unit of CA/Agree	ment, Name and/or No.			
1. Type of Well	THIPLICATE - Other Instructions on pag	e 2					
Oil Well Gas W	Vell Other						
2. Name of Operator			9. API Well No.				
3a. Address	3h Phone No.	(include area code)	10. Field and Pool or E	xploratory Area			
Ja. Address	Jo. 1 none ivo.	(include dred code)	10. I fold that I don't h	mpioratory rifea			
4. Location of Well (Footage, Sec., T., K	.,M., or Survey Description)		11. Country or Parish,	State			
12. CHE	CK THE APPROPRIATE BOX(ES) TO IN	DICATE NATURE OF NOT	ΓΙCE, REPORT OR OTH	ER DATA			
TYPE OF SUBMISSION		TYPE OF A	CTION				
Notice of Intent	Acidize Deep	pen Pro	oduction (Start/Resume)	Water Shut-Off			
		ĕ <u>—</u>	clamation	Well Integrity			
Subsequent Report			complete	Other			
Final Abandonment Notice		=	mporarily Abandon ater Disposal				
is ready for final inspection.)	tices must be filed only after all requirement	s, including reclamation, ha	ive been completed and the	e operator has detennined that the site			
14. I hereby certify that the foregoing is	true and correct. Name (Printed/Typed)	Title					
Signature		Date					
	THE SPACE FOR FED	ERAL OR STATE O	FICE USE				
Approved by							
		Title	D	Pate			
	ned. Approval of this notice does not warran equitable title to those rights in the subject led duct operations thereon.						
	3 U.S.C Section 1212, make it a crime for all ents or representations as to any matter with		illfully to make to any dep	partment or agency of the United States			

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Additional Remarks

Change BHL fr/990FNL & 50FEL to 1830FNL & 50FEL

Casing/Cement design per the attached drilling program.

Attachments:

C102

Drilling Program

Directional Plan

Multibowl Diagram

Location of Well

 $0. \ SHL: \ NWNW \ / \ 1190 \ FNL \ / \ 2300 \ FWL \ / \ TWSP: \ 22S \ / \ RANGE: \ 30E \ / \ SECTION: \ 36 \ / \ LAT: \ 32.34768 \ / \ LONG: \ -103.837181 \ (\ TVD: \ 0 \ feet, \ MD: \ 0 \ feet \)$ $PPP: \ NENE \ / \ 990 \ FNL \ / \ 100 \ FEL \ / \ TWSP: \ 22S \ / \ RANGE: \ 30E \ / \ SECTION: \ 36 \ / \ LAT: \ 32.352568 \ / \ LONG: \ -103.835471 \ (\ TVD: \ 11045 \ feet, \ MD: \ 19829 \ feet \)$ $BHL: \ NENE \ / \ 990 \ FNL \ / \ 50 \ FEL \ / \ TWSP: \ 22S \ / \ RANGE: \ 30E \ / \ SECTION: \ 31 \ / \ LAT: \ 32.352548 \ / \ LONG: \ -103.808625 \ (\ TVD: \ 11194 \ feet, \ MD: \ 19829 \ feet \)$

Sec 36-22S-30E-NMP Sundry 2667195 James Ranch Unit DI 8 Eagle 151H Eddy NMNM0029353C XTO 13-22 44691 Allison Morency

James Ranch Unit DI 8 Eagle 151H

13 3/8	surface	csg in a	17 1/2	inch hole.		<u>Design I</u>	actors			Surfa	ice	
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	54.50	J	55	BTC	29.82	4.6	1.36	525	12	2.27	8.70	28,613
"B"				BTC				0				0
w/8.4#	/g mud, 30min Sf	c Csg Test psig:	1,500	Tail Cmt	does not	circ to sfc.	Totals:	525	_			28,613
Comparison (of Proposed to	Minimum R	equired Ceme	nt Volumes								
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
17 1/2	0.6946	500	779	365	114	9.00	1200	2M				1.56

95/8	casing ins	side the	13 3/8			<u>Design</u> l	Factors -		-	Int 1		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	40.00	J	55	BTC	4.27	1.28	0.87	3,688	2	1.63	2.14	147,520
"B"								0				0
w/8.4	#/g mud, 30min Sf	c Csg Test psig:					Totals:	3,688				147,520
1	The cement vo	olume(s) are	intended to ac	hieve a top of	0	ft from su	ırface or a	525				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
12 1/4	0.3132	1650	2288	1181	94	10.50	2426	3M				0.81
Class 'H' tail c	mt yld > 1.20											i
Burst Frac Gradient(s) for Segment(s): A, B, C, D = 1.07, b, c, d All >												
0.70, OK.												

7 5/8	casing ins	side the	9 5/8			Design Fa	ctors		-	Int 2	-	
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	29.70	RY P	110	Flush Joint	1.96	2.99	1.66	3,788	2	2.78	5.59	112,504
"B"	29.70	HCL	80	Flush Joint	2.35	1.27	1.21	5,812	2	2.02	2.38	172,616
w/8.4	#/g mud, 30min Sf						Totals:	9,600				285,120
1	The cement vo	olume(s) are	intended to a	chieve a top of	3100	ft from su	urface or a	588				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
8 3/4	0.1005	450	835	658	27	9.10	3401	5M				0.56
Class 'H' tail c	mt yld > 1.20											

5 1/2	casing ins	ide the	7 5/8			Design	Factors -			Prod 1	-	
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	20.00	RY P	110	Semi-Premiur	3.07	2.14	2.22	9,500	2	3.72	3.59	190,000
"B"	20.00	RY P	110	Semi-Flush	33.70	1.95	2.22	9,503	2	3.72	3.26	190,060
w/8.4#	‡/g mud, 30min Sfo		,				Totals:	19,003				380,060
	The cement vo	olume(s) are	intended to a	chieve a top of	9900	ft from su	ırface or a	-300				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
6 3/4	0.0835	680	1062	732	45	10.50						0.43
Class 'H' tail c	mt yld > 1.20		Capitan Reef	est top XXXX.								
L												

Carlsbad Field Office 5/10/2022

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: | XTO Permian Operating

WELL NAME & NO.: | James Ranch Unit DI 8 Eagle 151H

LOCATION: Sec 36-22S-30E-NMP **COUNTY:** Eddy County, NM

Updated COAs per Sundry 2667195 approved through engineering on 05/10/2022.

α	\sim	
C	4 1	Δ
٠,	ι,	

H2S	• Yes	O No	
Potash	O None	Secretary	• R-111-P
Cave/Karst Potential	O Low	• Medium	O High
Cave/Karst Potential	Critical		
Variance	O None	Flex Hose	Other
Wellhead	Conventional	• Multibowl	O Both
Other	☐4 String Area	☐ Capitan Reef	□WIPP
Other	☐ Fluid Filled	☐ Cement Squeeze	☐ Pilot Hole
Special Requirements	☐ Water Disposal	□ СОМ	✓ Unit

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Salado** formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The **13-3/8** inch surface casing shall be set at approximately **525** feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface. *Adjustment due to BLM geologist and protecting usable water zone*.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **24 hours in the Potash Area** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
 - ❖ In Medium Cave/Karst Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
 - ❖ In <u>R111 Potash Areas</u> if cement does not circulate to surface on the first two salt protection casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement should tie back at least **500 feet** into the previous casing string. Operator should provide method of verification. If cement does not circulate see B.1.a, c-d above.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **500 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000** (**5M**) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Unit Wells

The well sign for a unit well shall include the unit number in addition to the surface and bottom hole lease numbers. This also applies to participating area numbers. If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced.

Commercial Well Determination

A commercial well determination shall be submitted after production has been established for at least six months.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

- Eddy County
 Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as

possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except

- the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and

disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

District I

District III

District IV

1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION

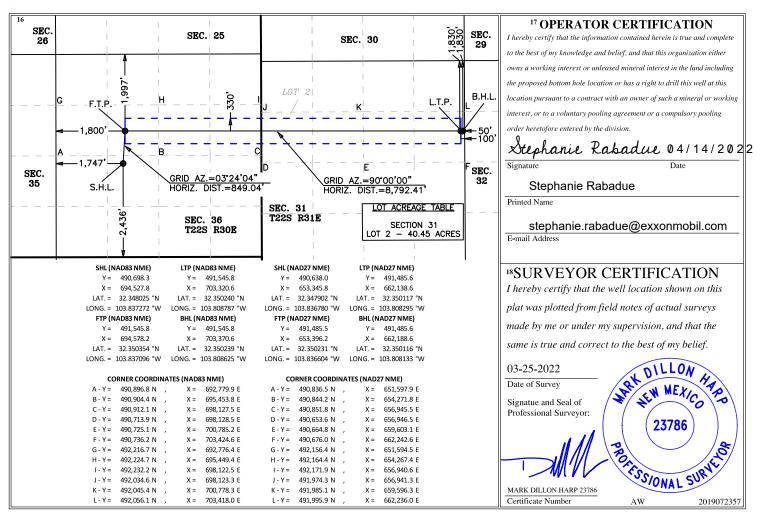
1220 South St. Francis Dr. Santa Fe, NM 87505

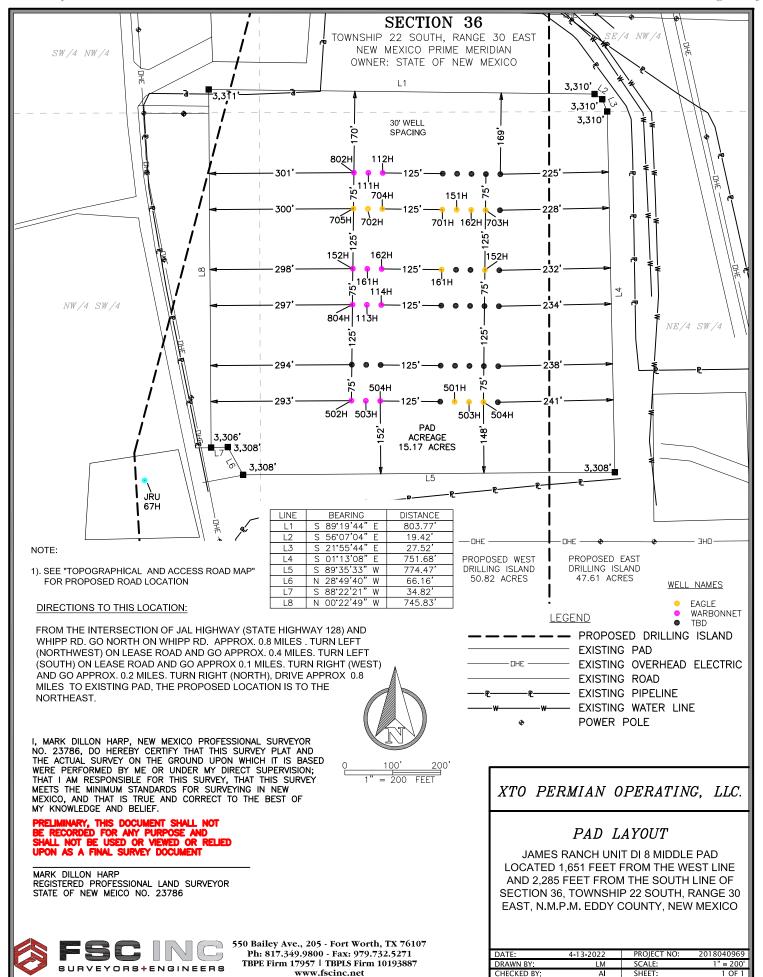
Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Numbe 30-015-49448	er	² Pool Code 4 0 2 9 5	³ Pool Name Los Medanos; Bone Spring				
⁴ Property Code		⁵ Pr	operty Name	⁶ Well Number			
		JAMES RANCH UNIT DI 8 EAGLE					
⁷ OGRID No.		⁸ Operator Name					
373075		XTO PERMIA	3,309'				


¹⁰ Surface Location


UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
K	36	22S	30E		2,436	SOUTH	1,747	WEST	EDDY

¹¹ Bottom Hole Location If Different From Surface

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
Н	31	22S	31E		1,830	NORTH	50	EAST	EDDY
12 Dedicated Acres	¹³ Joint o	r Infill	Consolidation	Code 15 Or	der No.				
280.45									

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

© COPYRIGHT 2016 - ALL RIGHTS RESERVED

DRILLING PLAN: BLM COMPLIANCE (Supplement to BLM 3160-3)

XTO Energy Inc. James Ranch Unit DI 8 Eagle 151H Projected TD: 19003' MD / 10451' TVD SHL: 'FL & 'FL, Section, T, R BHL: 'FL & 'FL, Section, T, R County, NM

1. Geologic Name of Surface Formation

Quaternary

2. Estimated Tops of Geological Markers & Depths of Anticipated Fresh Water, Oil or Gas

Formation	Well Depth (TVD)	Water/Oil/Gas
Rustler	289'	Water
Top of Salt	596'	Water
Base of Salt	3588'	Water
Delaware	3831'	Water
Brushy Canyon	6446'	Water/Oil/Gas
Bone Spring	7658'	Water
1st Bone Spring Ss	8699'	Water/Oil/Gas
2nd Bone Spring Ss	9532'	Water/Oil/Gas
3rd Bone Spring Sh	10107'	Water/Oil/Gas
Target/Land Curve	10379'	Water/Oil/Gas

^{***} Hydrocarbons @ Brushy Canyon

No other formations are expected to yield oil, gas or fresh water in measurable volumes. The surface fresh water sands will be protected by setting 13.375 inch casing @ 571' (25' above the salt) and circulating cement back to surface. The salt will be isolated by setting 9.625 inch casing at 3688' and circulating cement to surface. The second intermediate will isolate from the salt down to the next casing seat by setting 7.625 inch casing at 9600' and cementing to surface. A 6.75 inch curve and 6.75 inch lateral hole will be drilled to 19003 MD/TD and 5.5 inch production casing will be set at TD and cemented back up to 2nd intermediate (estimated TOC 9100 feet) per Potash regulations.

3. Casing Design

Hole Size	Depth	OD Csg	Weight	Grade	Collar	New/Used	SF Burst	SF Collapse	SF Tension
17.5	0' – 571'	13.375	54.5	J-55	втс	New	2.48	4.48	27.41
12.25	0' – 3688'	9.625	40	J-55	втс	New	1.81	2.29	4.27
8.75	0' – 3788'	7.625	29.7	RY P-110	Flush Joint	New	3.02	3.16	1.96
8.75	3788' – 9600'	7.625	29.7	HC L-80	Flush Joint	New	2.19	3.78	2.35
6.75	0' – 9500'	5.5	20	RY P-110	Semi-Premium	New	1.05	2.25	2.34
6.75	9500' - 19003'	5.5	20	RY P-110	Semi-Flush	New	1.05	2.04	5.98

- · XTO requests the option to utilize a spudder rig (Atlas Copco RD20 or Equivalent) to set and cement surface and intermediate 1 casing per this Sundry
- · XTO requests to not utilize centralizers in the curve and lateral
- · 9.625 Collapse analyzed using 50% evacuation based on regional experience.
- · 7.625 Collapse analyzed using 50% evacuation based on regional experience.
- 5.5 Tension calculated using vertical hanging weight plus the lateral weight multiplied by a friction factor of 0.35
- · Test on 2M annular & Casing will be limited to 70% burst of the casing or 1500 psi, whichever is less
- · XTO requests the option to use 5" BTC Float equipment for the the production casing

Wellhead:

<u>Permanent Wellhead – Multibowl System</u>
A. Starting Head: 13-5/8" 10M top flange x 13-3/8" SOW bottom

B. Tubing Head: 13-5/8" 10M bottom flange x 7-1/16" 15M top flange

^{***} Groundwater depth 40' (per NM State Engineers Office).

- \cdot Wellhead will be installed by manufacturer's representatives.
- · Manufacturer will monitor welding process to ensure appropriate temperature of seal.
- · Operator will test the 7-5/8" casing per BLM Onshore Order 2
- · Wellhead Manufacturer representative will not be present for BOP test plug installation

4. Cement Program

Surface Casing: 13.375, 54.5 New BTC, J-55 casing to be set at +/- 571'

Lead: 200 sxs EconoCem-HLTRRC (mixed at 12.9 ppg, 1.87 ft3/sx, 10.13 gal/sx water)
Tail: 300 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

Top of Cement: Surface

Compressives: 12-hr = 250 psi 24 hr = 500 psi

Due to the high probability of not getting cement to surface during conventional top-out jobs in the area, ~10-20 ppb gravel will be added on the backside of the 1" to get cement to surface, if required.

1st Intermediate Casing: 9.625, 40 New BTC, J-55 casing to be set at +/- 3688'

Lead: 1520 sxs Class C (mixed at 12.9 ppg, 1.39 ft3/sx, 10.13 gal/sx water)

Tail: 130 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

Top of Cement: Surface

Compressives: 12-hr = 900 psi 24 hr = 1500 psi

2nd Intermediate Casing: 7.625, 29.7 New casing to be set at +/- 9600'

st Stage

Optional Lead: 160 sxs Class C (mixed at 10.5 ppg, 2.77 ft3/sx, 15.59 gal/sx water)

TOC: 3488

Tail: 290 sxs Class C (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

TOC: Brushy Canyon @ 6446

Compressives: 12-hr = 900 psi 24 hr = 1150 psi

2nd Stage

Lead: 0 sxs Class C (mixed at 12.9 ppg, 2.16 ft3/sx, 9.61 gal/sx water)

Tail: 390 sxs Class C (mixed at 14.8 ppg, 1.33 ft3/sx, 6.39 gal/sx water)

Top of Cement: 0

Compressives: 12-hr = 900 psi 24 hr = 1150 psi

XTO requests to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brush Canyon (6446') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. If cement is not visually confirmed to circulate to surface, the final cement top after the second stage job will be verified by Echo-meter. If necessary, a top out consisting of 1,500 sack of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. If cement is still unable to circulate to surface, another Echo-meter run will be performed for cement top verification.

XTO will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program.

XTO will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

XTO requests to pump an Optional Lead if well conditions dictate in an attempt to bring cement to surface. If cement reaches the desired height, the BLM will be notified and the second stage bradenhead squeeze and subsequent TOC verification will be negated.

XTO requests the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval from BLM when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure the first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Production Casing: 5.5, 20 New Semi-Flush, RY P-110 casing to be set at +/- 19003'

Lead: 30 sxs NeoCem (mixed at 11.5 ppg, 2.69 ft3/sx, 15.00 gal/sx water) Top of Cement: 9100 feet
Tail: 650 sxs VersaCem (mixed at 13.2 ppg, 1.51 ft3/sx, 8.38 gal/sx water) Top of Cement: 9910 feet
Compressives: 12-hr = 1375 psi 24 hr = 2285 psi

XTO requests the option to offline cement and remediate (if needed) surface and intermediate casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with

no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence.

5. Pressure Control Equipment

Once the permanent WH is installed on the 13.375 casing, the blow out preventer equipment (BOP) will consist of a 13-5/8" minimum 5M Hydril and a 13-5/8" minimum 5M Double Ram BOP. MASP should not exceed 3135 psi. In any instance where 10M BOP is required by BLM, XTO requests a variance to utilize 5M annular with 10M ram preventers (a common BOP configuration, which allows use of 10M rams in unlikely event that pressures exceed 5M).

All BOP testing will be done by an independent service company. Annular pressure tests will be limited to 50% of the working pressure. When nippling up on the 13.375, 5M bradenhead and flange, the BOP test will be limited to 5000 psi. When nippling up on the 7.625, the BOP will be tested to a minimum of 5000 psi. All BOP tests will include a low pressure test as per BLM regulations. The 5M BOP diagrams are attached. Blind rams will be functioned tested each trip, pipe rams will be functioned tested each day.

A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test chart will be kept on the rig. Attached is an example of a certification and pressure test chart. The manufacturer does not require anchors

XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as per Cactus recommendations, XTO will contact the BLM to skid the rig to drill the remaining wells on the pad. Once surface and both intermediate strings are all completed, XTO will begin drilling the production hole

on each of the wells.

A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken. Based on discussions with the BLM on February 27th 2020, we will request permission to **ONLY** retest broken pressure seals if the following conditions are met: 1. After a full BOP test is conducted on the first well on the pad 2. When skidding to drill an intermediate section that does not penetrate into the Wolfcamp.

6. Proposed Mud Circulation System

INTERVAL	Hole Size	Mud Type	MW	Viscosity	Fluid Loss
INTERVAL	Hole Size	Mud Type	(ppg)	(sec/qt)	(cc)
0' - 571'	17.5	FW/Native	8.5-9	35-40	NC
571' - 3688'	12.25	Brine	10-10.5	30-32	NC
3688' to 9600'	8.75	BDE/OBM or FW/Brine	8.6-9.1	30-32	NC
9600' to 19003'	6.75	ОВМ	10-10.5	50-60	NC - 20

The necessary mud products for weight addition and fluid loss control will be on location at all times.

Spud with fresh water/native mud. Drill out from under 13-3/8" surface casing with brine solution. A 10.0 ppg -10.5 ppg brine mud will be used while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. A Pason or Totco will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system.

7. Auxiliary Well Control and Monitoring Equipment

- A. A Kelly cock will be in the drill string at all times.
- B. A full opening drill pipe stabbing valve having appropriate connections will be on the rig floor at all times.
- C. H2S monitors will be on location when drilling below the 13.375 casing.

8. Logging, Coring and Testing Program

Mud Logger: Mud Logging Unit (2 man) below intermediate casing.

Open hole logging will not be done on this well.

9. Abnormal Pressures and Temperatures / Potential Hazards

None Anticipated. BHT of 170 to 190 F is anticipated. No H2S is expected but monitors will be in place to detect any H2S occurrences. Should these circumstances be encountered the operator and drilling contractor are prepared to take all necessary steps to ensure safety of all personnel and environment. Lost circulation could occur but is not expected to be a serious problem in this area and hole seepage will be compensated for by additions of small amounts of LCM in the drilling fluid. The maximum anticipated bottom hole pressure for this well is 5435 psi.

10. Anticipated Starting Date and Duration of Operations

Anticipated spud date will be after BLM approval. Move in operations and drilling is expected to take 40 days.

Well Plan Report - JRU DI 8 EAGLE 151H

Messured Description: 19003.40 ft

10451.00 ft

TV RKB:

Location

Carbographic New Mexico

Reprence East - NAD System: 27

Northing: 490638.33 ft

653345.06 ft Easting:

3339.00 ft RKB:

Ground 3309.00 ft

Level: North

Grid Reference:

Convergence

0.27 Deg Angle:

JRU DI-8 Site:

SLOT 2 Slot:

Plan Sections JRU DI 8 EAGLE 151H

Measured			TVD			Build	Turn	Dogleg	
Depth	Inclination	Azimuth	RKB	Y Offset	X Offset	Rate	Rate	Rate	
(ft)	(Deg)	(Deg)	(ft)	(ft)	(ft)	(Deg/100ft)	(Deg/100ft)	(Deg/100ft) Target	
0	0	4.05	0	-0.01	0	0	0	0	
3600	0	4.05	3600	-0.01	0	0	0	0	
4359.01	15.18	5.22	4350.16	99.54	9.1	2	0	2	

9910.46	0	0	9806	847.47	77.44	0
1 0810.45	90	90	10378.96	847.47	650.4	10
19003.4	88.99	90	10451	847.25	8842.93	-0.01
ag						
ging						

6749.84

7500

747.92

847.47

5.22

0

68.34

77.44

0

-2

Position JRU DI 8
Uncertainty EAGLE 151H

6845.45

7604.46

15.18

0

%ieasured Highside TVD Lateral Vertical Magnitude Semi-major Semi-minor Semi-minor Tool Depth Inclination **RKB** Error Bias Error Bias Error Bias of Bias **Azimuth Used Azimuth Error Error** (ft) (°) (°) (ft) (°) XOM_R2OW o SG 0 0 4.053 0 0 0 0 0 0 0 0 2.297 0 MWD+IFR1+ MS XOM_R2OW 0 SG MWD+IFR1+ 0 0 0 0.358 100 0 100 0.358 0 0.358 0 2.299 0.358 MS XOM R2OW SG 0 0 0.717 0.717 200 0 200 0.717 0 0.717 0 2.307 0 MWD+IFR1+ MS XOM_R2OW o SG 300 0 0 300 1.075 0 1.075 0 2.321 0 0 1.075 1.075 MWD+IFR1+ MS XOM_R2OW 0 SG MWD+IFR1+ 400 0 0 400 1.434 0 1.434 0 2.34 0 0 1.434 1.434 MS XOM_R2OW SG 0 500 0 0 500 1.792 0 1.792 0 2.364 0 1.792 1.792 MWD+IFR1+ MS XOM_R2OW 0 SG MWD+IFR1+ 0 0 0 2.151 0 0 0 2.151 2.151 600 600 2.151 2.394 MS XOM_R2OW o SG 0 0 2.509 700 0 700 2.509 0 2.509 0 2.428 0 2.509 MWD+IFR1+ MS

0

2

0

10 FTP 4

0.01 BHL 4

0

0

0

0

														XOM_R2OW
Rei	800	0	0	800	2.868	0	2.868	0	2.467	0	0	2.868	2.868	0 SG MWD+IFR1+
Released to Imaging: 12/3/2024 8:04:06 AM														MWD+IFR1+3 MS
ed i														XOM_R2OW
to I	900	0	0	900	3.226	0	3.226	0	2.511	0	0	3.226	3.226	0 SG MWD+IFR1+
ma	900	0	U	900	3.220	U	3.220	U	2.311	U	U	3.220	5.220	
ging														MS YOM BOOM
9: 1														XOM_R2OW
2/3	1000	0	0	1000	3.585	0	3.585	0	2.56	0	0	3.585	3.585	0 SG MWD+IFR1+
/20.														MS 🕌
24														XOM_R2OW
8:0.	1100	0	0	1100	3.943	0	3.943	0	2.613	0	0	3.943	3.943	0 SG MWD+IFR1+
1:00														MS MS
5 4														XOM_R2OW
N	1200	0	0	1200	4.302	0	4.302	0	2.67	0	0	4.302	4.302	0 SG MWD+IFR1+
	1200	U	U	1200	4.302	U	4.302	U	2.07	O	U	4.302	4.302	
														MS XOM_R2OW
	1300	0	0	1300	4.66	0	4.66	0	2.731	0	0	4.66	4.66	0 SG MWD+IFR1+
														MS
														XOM_R2OW
	1400	0	0	1400	5.019	0	5.019	0	2.797	0	0	5.019	5.019	0 SG MWD+IFR1+
														MS
														XOM_R2OW
	1500	0	0	1500	5.377	0	5.377	0	2.866	0	0	5.377	5.377	0 SG MWD+IFR1+
		-	-			-		-		-				
														MS XOM_R2OW
	1500		•	4600	F 700	•	F 70.6	•	2.020	•		5 70 <i>C</i>	5 726	
	1600	0	0	1600	5.736	0	5.736	0	2.939	0	0	5.736	5.736	0 SG MWD+IFR1+
														MS
														XOM_R2OW
	1700	0	0	1700	6.094	0	6.094	0	3.016	0	0	6.094	6.094	0 SG MWD+IFR1+
														MS
														XOM_R2OW
	1800	0	0	1800	6.452	0	6.452	0	3.096	0	0	6.452	6.452	O SG
														MWD+IFR1+ MS
														XOM_R2OW
	1900	0	0	1900	6.811	0	6.811	0	3.179	0	0	6.811	6.811	
	1900	U	U	1900	0.011	U	0.011	U	5.179	U	U	0.011	0.011	0 SG MWD+IFR1+
														MS VOM BROWN
														XOM_R2OW
	2000	0	0	2000	7.169	0	7.169	0	3.266	0	0	7.169	7.169	0 SG MWD+IFR1+
•														MS
														-

														XOM_R2OW
Released to Imaging: 12/3/2024 8:04:06 AM	2100	0	0	2100	7.528	0	7.528	0	3.355	0	0	7.528	7.528	0 SG MWD+IFR1+ MS
ased														MS XOM_R2OW
to I	2200	0	0	2200	7.886	0	7.886	0	3.448	0	0	7.886	7.886	SG SG
mag	2200	O	U	2200	7.000	O	7.880	Ü	3.440	O	O	7.880	7.000	SG 0 MWD+IFR1+ MS
ing:														XOM_R2OW
12/3	2300	0	0	2300	8.245	0	8.245	0	3.544	0	0	8.245	8.245	0 SG 0 MWD+IFR1+
/202														MS
4 8:0	2400	0	0	2400	8.603	0	8.603	0	3.643	0	0	8.603	8.603	XOM_R2OW SG
94:00	2400	U	U	2400	8.005	U	6.003	U	5.045	O	U	6.005	6.005	O SG MWD+IFR1+ MS
5 AA														XOM R2OW
	2500	0	0	2500	8.962	0	8.962	0	3.745	0	0	8.962	8.962	O SG MWD+IFR1+ MS
														MS
	2600	0	0	2600	9.32	0	9.32	0	3.849	0	0	9.32	9.32	XOM_R2OW SG 0
	2000	O	U	2000	9.32	U	9.32	O	3.643	O	U	9.32	9.32	MWD+IFR1+ MS
														XOM_R2OW
	2700	0	0	2700	9.679	0	9.679	0	3.956	0	0	9.679	9.679	0 SG MWD+IFR1+
														MS
	2800	0	0	2800	10.037	0	10.037	0	4.066	0	0	10.037	10.037	XOM_R2OW 0 SG 0 MWD+IFR1+
	2000	U	U	2800	10.057	0	10.057	U	4.000	O	U	10.057	10.037	MWD+IFR1+ MS
														XOM_R2OW
	2900	0	0	2900	10.396	0	10.396	0	4.179	0	0	10.396	10.396	90 SG MWD+IFR1+
														MS
	3000	0	0	3000	10.754	0	10.754	0	4.295	0	0	10.754	10.754	XOM_R2OW SG
	3000	U	U	3000	10.754	U	10.754	U	4.293	O	U	10.754	10.754	MWD+IFR1+ MS
														XOM_R2OW
	3100	0	0	3100	11.113	0	11.113	0	4.413	0	0	11.113	11.113	0 SG MWD+IFR1+
														MS
	2200	0	0	3200	11 471	0	11 471	0	4 524	0	0	11 471	11 471	XOM_R2OW _ SG
	3200	0	0	3200	11.471	0	11.471	0	4.534	0	0	11.471	11.471	0 SG MWD+IFR1+
														MS XOM_R2OW
	3300	0	0	3300	11.83	0	11.83	0	4.657	0	0	11.83	11.83	0 SG MWD+IFR1+
•														MS

Releas	3400	0	0	3400	12.188	0	12.188	0	4.783	0	0	12.188	12.188	XOM_R2OW O SG MWD+IFR1+ MS
sed to Imag	3500	0	0	3500	12.546	0	12.546	0	4.912	0	0	12.546	12.546	XOM_R2OW SG 0 MWD+IFR1+ MS
Released to Imaging: 12/3/2024 8:04:06 AM	3600	0	4.053	3600	12.905	0	12.905	0	5.043	0	0	12.905	12.905	XOM_R2OW SG 0 MWD+IFR1+ MS
24 8:04:06	3700	2	5.221	3699.98	13.256	0	13.263	0	5.177	0	0	13.263	13.263	XOM_R2OW SG -0.275 MWD+IFR1+ MS
AM	3800	4	5.221	3799.838	13.593	0	13.622	0	5.312	0	0	13.622	13.621	XOM_R2OW SG -1.414 MWD+IFR1+ MS
	3900	6	5.221	3899.452	13.915	0	13.98	0	5.448	0	0	13.98	13.979	XOM_R2OW SG 0.134 MWD+IFR1+ MS
	4000	8	5.221	3998.702	14.222	0	14.338	0	5.585	0	0	14.338	14.334	XOM_R2OW SG 1.259 MWD+IFR1+ MS
	4100	10	5.221	4097.465	14.512	0	14.696	0	5.724	0	0	14.696	14.688	XOM_R2OW SG 1.988 MWD+IFR1+ MS
	4200	12	5.221	4195.623	14.787	0	15.053	0	5.865	0	0	15.053	15.04	XOM_R2OW SG 2.484 MWD+IFR1+ MS
	4300	14	5.221	4293.055	15.046	0	15.41	0	6.008	0	0	15.41	15.389	XOM_R2OW SG 2.84 MWD+IFR1+ MS
4	359.01	15.18	5.221	4350.162	15.192	0	15.62	0	6.092	0	0	15.62	15.595	XOM_R2OW SG MWD+IFR1+ MS
	4400	15.18	5.221	4389.722	15.337	0	15.767	0	6.152	0	0	15.767	15.737	XOM_R2OW SG 3.064 MWD+IFR1++ MS
	4500	15.18	5.221	4486.232	15.694	0	16.125	0	6.308	0	0	16.125	16.082	XOM_R2OW SG 3.342 MWD+IFR1+ MS

														XOM_R2OW
Released to Imaging: 12/3/2024 8:04:06 AM	4600	15.18	5.221	4582.743	16.054	0	16.484	0	6.468	0	0	16.484	16.43	3.479 SG MWD+IFR1+
asea														MS
l to 1														XOM_R2OW 3 FF7 SG
lmag	4700	15.18	5.221	4679.254	16.415	0	16.845	0	6.631	0	0	16.845	16.78	3.557 MWD+IFR1+
ging														MS XOM_R2OW
: 12/	4800	15.18	5.221	4775.765	16.778	0	17.207	0	6.798	0	0	17.207	17.131	s sos SG
3/20														MWD+IFR1+ MS
24 8														XOM_R2OW
.04:	4900	15.18	5.221	4872.275	17.143	0	17.571	0	6.968	0	0	17.571	17.485	3.631 MWD+IFR1+
06 A														MS XOM_R2OW
M	5000	15.18	5.221	4968.786	17.51	0	17.935	0	7.142	0	0	17.936	17.84	3 647 SG
	3000	15.10	3.221	4300.700	17.51	Ü	17.555	Ü	7.142	O .	Ü	17.550	17.04	MWD+IFR1+ MS
														XOM_R2OW
	5100	15.18	5.221	5065.297	17.878	0	18.301	0	7.319	0	0	18.301	18.197	3.655 SG MWD+IFR1+
														MS
	5200	45.40	5 224	5464.007	10.240		10.550	•	7 400		•	10.550	40.555	XOM_R2OW
	5200	15.18	5.221	5161.807	18.248	0	18.668	0	7.499	0	0	18.668	18.555	MWD+IFR1+
														MS XOM_R2OW
	5300	15.18	5.221	5258.318	18.62	0	19.036	0	7.682	0	0	19.036	18.914	3.655 SG MWD+IFR1+
														MS
														XOM_R2OW
	5400	15.18	5.221	5354.829	18.992	0	19.404	0	7.869	0	0	19.404	19.275	3.649 MWD+IFR1+
														MS XOM_R2OW
	5500	15.18	5.221	5451.339	19.366	0	19.774	0	8.058	0	0	19.774	19.637	3 64 SG
		20.20	0.222	0.102.1000	23.000	· ·	20177	·	0.000	· ·	·	23	23.007	MWD+IFR1+ MS
														XOM_R2OW
	5600	15.18	5.221	5547.85	19.741	0	20.144	0	8.251	0	0	20.144	20	3.629 SG MWD+IFR1+
														MS
	F700	45.40	5 224	5644.364	20.447		20.545	•	0.446			20.545	20.255	XOM_R2OW
	5700	15.18	5.221	5644.361	20.117	0	20.515	0	8.446	0	0	20.515	20.365	3.617 MWD+IFR1+
														MS XOM_R2OW
	5800	15.18	5.221	5740.872	20.495	0	20.887	0	8.645	0	0	20.887	20.73	3 602 SG
														MWD+IFR1+ MS
-														-

Releas	5900	15.18	5.221	5837.382	20.873	0	21.259	0	8.846	0	0	21.26	21.097	XOM_R2OW SG 3.586 MWD+IFR1+ MS
Released to Imaging: 12/3/2024 8:04:06 AM	6000	15.18	5.221	5933.893	21.252	0	21.633	0	9.05	0	0	21.633	21.464	XOM_R2OW SG 3.569 MWD+IFR1+ MS
ıg: 12/3/202	6100	15.18	5.221	6030.404	21.632	0	22.006	0	9.257	0	0	22.006	21.833	XOM_R2OW SG 3.551 MWD+IFR1+ MS
4 8:04:06	6200	15.18	5.221	6126.914	22.013	0	22.381	0	9.467	0	0	22.381	22.202	XOM_R2OW SG 3.531 MWD+IFR1+ MS
4M	6300	15.18	5.221	6223.425	22.395	0	22.756	0	9.679	0	0	22.756	22.572	XOM_R2OW SG 3.511 MWD+IFR1+ MS
	6400	15.18	5.221	6319.936	22.777	0	23.131	0	9.894	0	0	23.131	22.943	XOM_R2OW SG 3.489 MWD+IFR1+ MS
	6500	15.18	5.221	6416.447	23.16	0	23.507	0	10.112	0	0	23.507	23.315	XOM_R2OW SG MWD+IFR1+ MS XOM_R2OW
	6600	15.18	5.221	6512.957	23.544	0	23.883	0	10.333	0	0	23.884	23.687	3.443 MWD+IFR1+ MS XOM_R2OW
	6700	15.18	5.221	6609.468	23.929	0	24.26	0	10.556	0	0	24.26	24.061	3.418 SG MWD+IFR1+ MS XOM_R2OW
	6800	15.18	5.221	6705.979	24.314	0	24.638	0	10.782	0	0	24.638	24.435	3.393 SG MWD+IFR1+ MS XOM_R2OW
68	45.446	15.18	5.221	6749.838	24.489	0	24.809	0	10.886	0	0	24.809	24.605	3.38 SG MWD+IFR1+ MS XOM_R2OW
	6900	14.089	5.221	6802.621	24.754	0	25.015	0	11.011	0	0	25.015	24.809	3.368 SG MWD+IFR1+ MS XOM_R2OW
	7000	12.089	5.221	6900.018	25.219	0	25.391	0	11.243	0	0	25.391	25.182	3.347 SG MWD+IFR1+ MS

Tool 10,089 5,221 698,346 28,854 0 25,764 0 11,476 0 0 25,764 25,354 3,325 65,700 11,000															XOM_R2OW
7500 2.089 5.21 7395.566 27.086 0 27.221 0 12.401 0 0 27.221 27.008 3.292 MWDHFR1+ MS XOM, R2OW	Relea	7100	10.089	5.221	6998.146	25.654	0	25.764	0	11.476	0	0	25.764	25.554	3.324 MWD+IFR1+
7500 2.089 5.21 7395.566 27.086 0 27.221 0 12.401 0 0 27.221 27.008 3.292 MWDHFR1+ MS XOM, R2OW	ased														IVIS
7500 2.089 5.21 7395.566 27.086 0 27.221 0 12.401 0 0 27.221 27.008 3.292 MWDHFR1+ MS XOM, R2OW	to I	7200	0.000	F 221	7006 886	26.050	0	26 124	0	11 700	0	0	26 124	25.022	
7500 2.089 5.21 7395.566 27.086 0 27.221 0 12.401 0 0 27.221 27.008 3.292 MWDHFR1+ MS XOM, R2OW	mag	7200	8.089	5.221	7096.886	26.059	Ü	26.134	U	11.708	U	U	26.134	25.923	
7500 2.089 5.21 7395.566 27.086 0 27.221 0 12.401 0 0 27.221 27.008 3.292 MWDHFR1+ MS XOM, R2OW XOM, R2OW XOM, R2OW XOM R2OW XOM, R2OW X	ing														
7500 2.089 5.21 7395.566 27.086 0 27.221 0 12.401 0 0 27.221 27.008 3.292 MWDHFR1+ MS XOM, R2OW XOM, R2OW XOM, R2OW XOM R2OW XOM, R2OW X	: 12,	7300	6.089	5.221	7196.116	26.434	0	26.501	0	11.939	0	0	26.501	26.29	3 207 SG
7500 2.089 5.21 7395.566 27.086 0 27.221 0 12.401 0 0 27.221 27.008 3.292 MWDHFR1+ MS XOM, R2OW	/3/2						-		-		-				MWD+IFR1+
7500 2.089 5.21 7395.566 27.086 0 27.221 0 12.401 0 0 27.221 27.008 3.292 MWDHFR1+ MS XOM, R2OW	024														XOM_R2OW
7500 2.089 5.21 7395.566 27.086 0 27.221 0 12.401 0 0 27.221 27.008 3.292 MWDHFR1+ MS XOM, R2OW	8:04	7400	4.089	5.221	7295.717	26.776	0	26.863	0	12.17	0	0	26.863	26.652	3.282 SG
7500 2.089 5.21 7395.566 27.086 0 27.221 0 12.401 0 0 27.221 27.008 3.292 MWDHFR1+ MS XOM, R2OW	1:06														
7500 2.089 5.21 7395.566 27.086 0 27.221 0 12.401 0 0 27.221 27.008 3.292 MWDHFR1+ MS XOM, R2OW XOM, R2OW XOM, R2OW XOM R2OW XOM, R2OW X	AM														
MS NOM, R20W		7500	2.089	5.221	7395.566	27.086	0	27.221	0	12.401	0	0	27.221	27.008	3.292 SG MWD+IFR1+
7604.456 0 0 7500 27.375 0 27.589 0 12.641 0 0 27.59 27.375 3.31 SG MWDHFR1+ MS XOM_R2OW 7700 0 0 7595.544 27.707 0 27.924 0 12.862 0 0 27.925 27.706 3.29 MWDHFR1+ MS XOM_R2OW 7800 0 0 7695.544 28.055 0 28.275 0 13.096 0 0 28.276 28.054 3.347 SG MWDHFR1+ MS XOM_R2OW 7800 0 0 7795.544 28.403 0 28.626 0 13.333 0 0 28.627 28.402 3.364 SG MWDHFR1+ MS XOM_R2OW 8800 0 0 7895.544 28.75 0 28.977 0 13.573 0 0 28.978 28.75 3.38 MWDHFR1+ MS XOM_R2OW 88100 0 0 7995.544 29.1 0 29.329 0 13.816 0 0 29.33 29.099 3.395 SG XOM_R2OW 8820 0 0 8095.544 29.48 0 29.329 0 14.311 0 0 0 30.033 29.796 3.424 MWDHFR1+ MS XOM_R2OW 8820 0 0 8095.544 29.488 0 29.68 0 14.062 0 0 29.681 29.447 3.44 MWDHFR1+ MS XOM_R2OW 8820 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424 MWDHFR1+															MS
MS NOM, RZOW NO															XOM_R2OW SG
Note	76	604.456	0	0	7500	27.375	0	27.589	0	12.641	0	0	27.59	27.375	
96															
MS XOM_R2OW 7800 0 0 7695.544 28.055 0 28.275 0 13.096 0 0 28.276 28.054 3.347 MWD+IFR1+ MS XOM_R2OW 7900 0 0 7795.544 28.403 0 28.626 0 13.333 0 0 28.627 28.402 3.364 MWD+IFR1+ MS XOM_R2OW 8000 0 0 7895.544 28.751 0 28.977 0 13.573 0 0 28.978 28.75 3.38 MWD+IFR1+ MS XOM_R2OW 8100 0 0 7995.544 29.1 0 29.329 0 13.816 0 0 29.33 29.099 3.395 SG MWD+IFR1+ MS XOM_R2OW 8200 0 0 8095.544 29.48 0 29.68 0 14.062 0 0 29.681 29.447 3.41 MS XOM_R2OW 8200 0 0 8095.544 29.448 0 29.68 0 14.062 0 0 29.681 29.447 3.41 MS XOM_R2OW 8300 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424 MWD+IFR1+ MS XOM_R2OW 8400 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424 MWD+IFR1+ MS XOM_R2OW		7700	0	0	7505 511	27 707	0	27 924	0	12 862	0	0	27 025	27 706	
XOM_R2OW 7800 0 0 7695.544 28.055 0 28.275 0 13.096 0 0 28.276 28.054 3.347 MWD+IFR1+ MS XOM_R2OW 7900 0 0 7795.544 28.403 0 28.626 0 13.333 0 0 28.627 28.402 3.364 MWD+IFR1+ MS XOM_R2OW 8000 0 0 7895.544 28.751 0 28.977 0 13.573 0 0 28.978 28.75 3.38 MWD+IFR1+ MS XOM_R2OW 8000 0 0 7895.544 28.751 0 28.977 0 13.573 0 0 28.978 28.75 3.38 MWD+IFR1+ MS XOM_R2OW 8100 0 0 7995.544 29.1 0 29.329 0 13.816 0 0 29.33 29.099 3.395 SG MWD+IFR1+ MS XOM_R2OW 8200 0 0 8095.544 29.48 0 29.68 0 14.062 0 0 29.681 29.447 3.41 MWD+IFR1+ MS XOM_R2OW 8300 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424 SG MWD+IFR1+ MS XOM_R2OW 8400 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424 SG MWD+IFR1+ MS XOM_R2OW 8500 0 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424 SG MWD+IFR1+ MS XOM_R2OW 8500 0 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424 SG MWD+IFR1+ MS XOM_R2OW 8500 0 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424 SG MWD+IFR1+ MS XOM_R2OW 8500 0 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424 SG MWD+IFR1+ MS XOM_R2OW		7700	O	O	7333.344	27.707	O	27.324	O	12.802	U	U	27.323	27.700	
MS XOM_R2OW 7900 0 0 7795.544 28.403 0 28.626 0 13.333 0 0 28.627 28.402 3.364 MWDHFR1+ MS XOM_R2OW 8000 0 0 7895.544 28.751 0 28.977 0 13.573 0 0 28.978 28.75 3.38 MWDHFR1+ MS XOM_R2OW 8100 0 0 7995.544 29.1 0 29.329 0 13.816 0 0 29.33 29.099 3.395 SMWDHFR1+ MS XOM_R2OW 8200 0 0 8095.544 29.448 0 29.68 0 14.062 0 0 29.681 29.447 3.41 MS XOM_R2OW 8300 0 0 8195.544 29.77 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424 MWDHFR1+ MS XOM_R2OW 8400 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424 MWDHFR1+ MS XOM_R2OW 8400 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424 MWDHFR1+ MS XOM_R2OW 8500 0 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424 MWDHFR1+ MS XOM_R2OW															XOM_R2OW
MS XOM_R2OW 7900 0 0 7795.544 28.403 0 28.626 0 13.333 0 0 28.627 28.402 3.364 MWDHFR1+ MS XOM_R2OW 8000 0 0 7895.544 28.751 0 28.977 0 13.573 0 0 28.978 28.75 3.38 MWDHFR1+ MS XOM_R2OW 8100 0 0 7995.544 29.1 0 29.329 0 13.816 0 0 29.33 29.099 3.395 SMWDHFR1+ MS XOM_R2OW 8200 0 0 8095.544 29.448 0 29.68 0 14.062 0 0 29.681 29.447 3.41 MS XOM_R2OW 8300 0 0 8195.544 29.77 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424 MWDHFR1+ MS XOM_R2OW 8400 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424 MWDHFR1+ MS XOM_R2OW 8400 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424 MWDHFR1+ MS XOM_R2OW 8500 0 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424 MWDHFR1+ MS XOM_R2OW		7800	0	0	7695.544	28.055	0	28.275	0	13.096	0	0	28.276	28.054	3.347 SG
XOM_R2OW 7900 0 0 7795.544 28.403 0 28.626 0 13.333 0 0 28.627 28.402 3.364 SG MWD+IFR1+ MS XOM_R2OW 8000 0 0 7895.544 28.751 0 28.977 0 13.573 0 0 28.978 28.75 3.38 MWD+IFR1+ MS XOM_R2OW 8100 0 0 7995.544 29.1 0 29.329 0 13.816 0 0 29.33 29.099 3.395 SG MWD+IFR1+ MS XOM_R2OW 8200 0 0 8095.544 29.448 0 29.68 0 14.062 0 0 29.681 29.447 3.41 SG MWD+IFR1+ MS XOM_R2OW 8300 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 3 30.033 29.796 3.424 MWD+IFR1+ MS XOM_R2OW 8400 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 3 30.033 29.796 3.424 MWD+IFR1+ MS XOM_R2OW 8400 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 3 30.033 29.796 3.424 MWD+IFR1+ MS XOM_R2OW 8400 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 3 30.033 29.796 3.424 MWD+IFR1+ MS XOM_R2OW 8500 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 3 30.033 29.796 3.424 MWD+IFR1+ MS XOM_R2OW 8500 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 3 30.033 29.796 3.424 MWD+IFR1+ MS XOM_R2OW 8500 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 3 30.033 29.796 3.424 MWD+IFR1+ MS XOM_R2OW 8500 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424 MWD+IFR1+ MS XOM_R2OW 8500 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424															
MS XOM_R2OW Solution															XOM_R2OW
MS XOM_R2OW Solution		7900	0	0	7795.544	28.403	0	28.626	0	13.333	0	0	28.627	28.402	3.364 SG MWD+IFR1+
8000 0 0 7895.544 28.751 0 28.977 0 13.573 0 0 28.978 28.75 3.38 SG MWD+IFR1+ MS XOM_R2OW SG MWD															MS
8100 0 0 7995.544 29.1 0 29.329 0 13.816 0 0 29.33 29.099 3.395 SG MWD+IFR1+ MS XOM_R2OW 8200 0 0 8095.544 29.448 0 29.68 0 14.062 0 0 29.681 29.447 3.41 SG MWD+IFR1+ MS XOM_R2OW 8300 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 30.033 29.796 3.424 SG MWD+IFR1+ MS XOM_R2OW 8400 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 30.033 29.796 3.424 MWD+IFR1+ MS XOM_R2OW 8500 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 30.033 29.796 3.424 MWD+IFR1+ MS XOM_R2OW 8500 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 30.033 29.796 3.424 MWD+IFR1+ MS XOM_R2OW 8500 0 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 30.033 29.796 3.424 MWD+IFR1+ MS XOM_R2OW 8500 0 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 0 30.033 29.796 3.424															XOM_R2OW SG
Stop		8000	0	0	7895.544	28.751	0	28.977	0	13.573	0	0	28.978	28.75	MINDILIKT
8100 0 0 7995.544 29.1 0 29.329 0 13.816 0 0 29.33 29.099 3.395 SG MWDHFR1+ MS XOM_R2OW SG MWDHFR1+ MS															
8200 0 0 8095.544 29.448 0 29.68 0 14.062 0 0 29.681 29.447 3.41 SG MWD+IFR1+ MS XOM_R2OW SG MWD		9100	0	0	700E E44	20.1	0	20.220	0	12 016	0	0	20.22	20.000	SG
XOM_R2OW 8200 0 0 8095.544 29.448 0 29.68 0 14.062 0 0 29.681 29.447 3.41 SG MWD+IFR1++ MS XOM_R2OW SG MWD+IFR1++ MS XOM_R2OW SCHOOL STATE		8100	U	U	7995.544	29.1	U	29.529	U	15.610	U	U	29.55	29.099	MWD+IFR1+
8200 0 0 8095.544 29.448 0 29.68 0 14.062 0 0 29.681 29.447 3.41 SG MWD+IFR1++ MS XOM_R2OW 3															
MWD+IFR1++ MS XOM_R2OW 8300 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 30.033 29.796 3.424 SG MWD+IFR1+		8200	0	0	8095.544	29.448	0	29.68	0	14.062	0	0	29.681	29.447	3 41 SG
XOM_R2OW 8300 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 30.033 29.796 3.424 MWD+IFR1+															MWD+IFK1+
8300 0 0 8195.544 29.797 0 30.032 0 14.311 0 0 30.033 29.796 3.424 MWD+IFR1+															XOM_R2OW
		8300	0	0	8195.544	29.797	0	30.032	0	14.311	0	0	30.033	29.796	
	•														

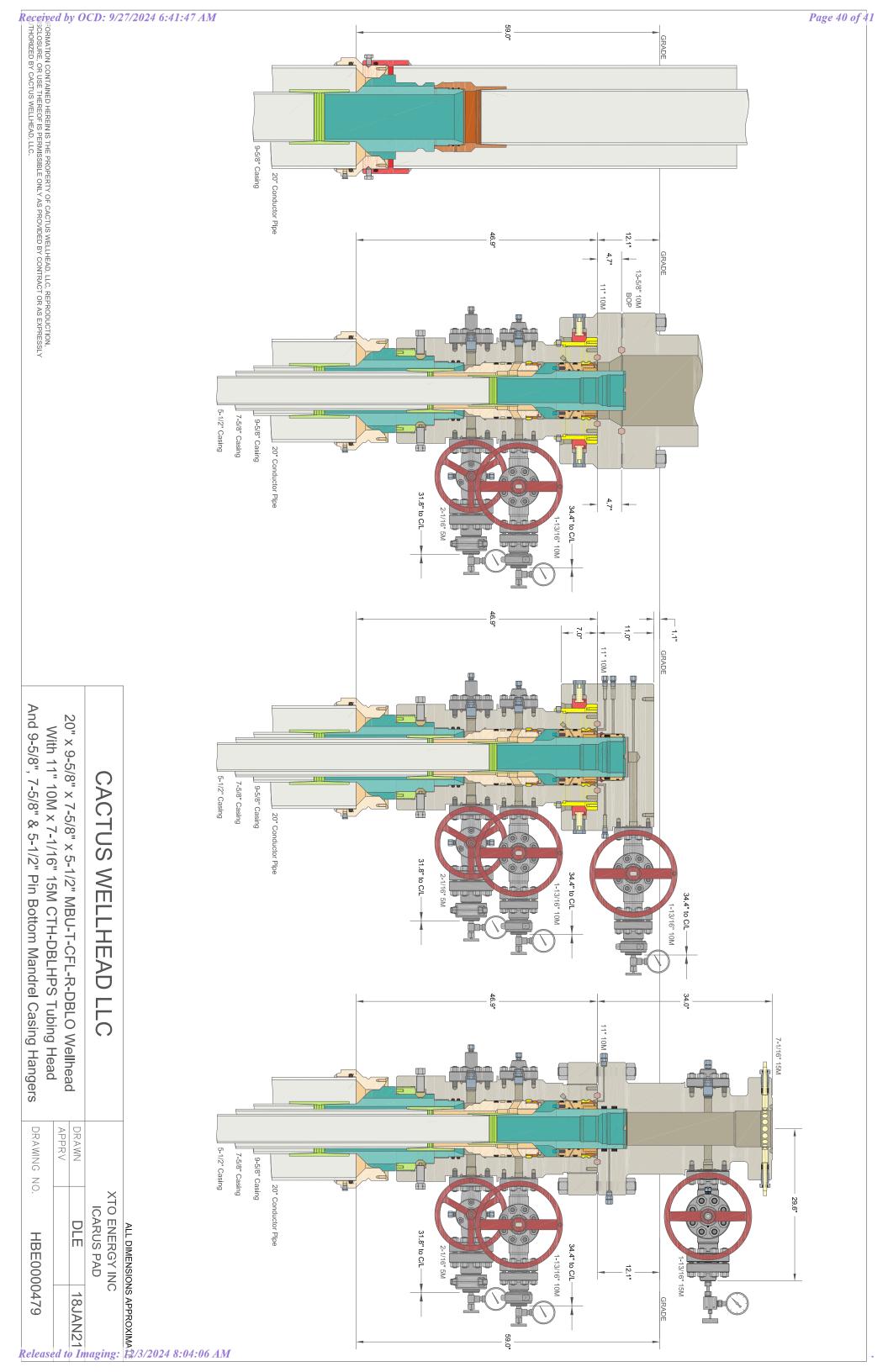
Re	8400	0	0	8295.544	30.146	0	30.384	0	14.564	0	0	30.385	30.146	XOM_R2OW SG 3.437
leased	0400	Ü	Ü	0233.344	30.140	Ü	30.304	Ŭ	14.504	v	Ü	30.303	30.140	MS MS XOM_R2OW
to Ima	8500	0	0	8395.544	30.496	0	30.736	0	14.819	0	0	30.737	30.495	3.45 MWD+IFR1+
ging: 1														MS XOM_R2OW
2/3/20.	8600	0	0	8495.544	30.845	0	31.088	0	15.078	0	0	31.089	30.844	MWD+IFR1+
24 8:04	8700	0	0	8595.544	31.195	0	31.44	0	15.339	0	0	31.441	31.194	XOM_R2OW SG 3.474 MWD+IFR1+
Released to Imaging: 12/3/2024 8:04:06 AM														MS XOM_R2OW
N	8800	0	0	8695.544	31.545	0	31.793	0	15.604	0	0	31.794	31.544	3.485 SG MWD+IFR1+ MS
	8900	0	0	8795.544	31.895	0	32.145	0	15.872	0	0	32.146	31.894	XOM_R2OW
	0300	Ü	J	0,33.311	31.033	J	32.113	v	13.572	Ü	Ü	32.110	31.03	MWD+IFR1+ MS XOM_R2OW
	9000	0	0	8895.544	32.246	0	32.498	0	16.143	0	0	32.499	32.245	3.506 SG MWD+IFR1+
										_				MS XOM_R2OW
	9100	0	0	8995.544	32.596	0	32.851	0	16.416	0	0	32.852	32.595	MWD+IFR1+ MS
	9200	0	0	9095.544	32.947	0	33.204	0	16.693	0	0	33.205	32.946	XOM_R2OW SG 3.525 MWD+IFR1+
														MS XOM_R2OW
	9300	0	0	9195.544	33.298	0	33.557	0	16.973	0	0	33.558	33.297	3.534 SG MWD+IFR1+ MS
	9400	0	0	9295.544	33.649	0	33.91	0	17.256	0	0	33.911	33.648	XOM_R2OW SG 3.543 MWD+IFR1+
														MS XOM_R2OW
	9500	0	0	9395.544	34	0	34.263	0	17.542	0	0	34.264	33.999	3.552 SG MWD+IFR1+> MS
	9600	0	0	9495.544	34.351	0	34.617	0	17.832	0	0	34.618	34.35	XOM_R2OW 3 56
•		-	-			-		-	2.5	-	-		- 192	MWD+IFR1+ MS

														XOM_R2OW
Rele	9700 9800 9900 910.456	0	0	9595.544	34.703	0	34.97	0	18.124	0	0	34.971	34.702	3.568 SG MWD+IFR1+3
ased														MS XOM_R2OW
to I	0000	0	0	0605 544	35.054	0	25 224	0	10 410	0	0	25 225	25.052	
mag	9800	0	0	9695.544	35.054	0	35.324	0	18.419	0	0	35.325	35.053	3.575 SG MWD+IFR1+
ing														MS XOM_R2OW
: 12)	9900	0	0	9795.544	35.406	0	35.678	0	18.717	0	0	35.679	35.405	3 FO2 SG
/3/2		-				-		•		-				3.583 MWD+IFR1+ MS
024														XOM_R2OW
8 99	10.456	0	0	9806	35.443	0	35.715	0	18.749	0	0	35.716	35.442	3.583 SG MWD+IFR1+
1:06														MS MS
AM														XOM_R2OW
	10000	8.954	90	9895.18	35.737	0	35.748	0	19.016	0	0	36.022	35.747	3.221 SG MWD+IFR1+
														MS
														XOM_R2OW
	10100	18.954	90	9992.106	35.016	0	36.072	0	19.306	0	0	36.346	36.072	2.051 SG MWD+IFR1+
														MS XOM_R2OW
	10200	20.054	00	40002 277	22.500	0	26 270	0	40.570	0	0	26.642	26.270	
	10200	28.954	90	10083.377	33.569	0	36.379	0	19.579	0	0	36.643	36.379	0.421 SG MWD+IFR1+
														MS XOM_R2OW
	10300	38.954	90	10166.22	31.501	0	36.664	0	19.829	0	0	36.9	36.664	-1.27 SG -MWD+IFR1+
	10300	30.331	30	10100.22	31.301	Ü	30.001	Ü	13.023	C	Ü	30.3	30.001	MWD+IFR1+ MS
														XOM_R2OW
	10400	48.954	90	10238.117	28.983	0	36.921	0	20.059	0	0	37.109	36.921	-2.578 SG MWD+IFR1+
														MS
														XOM_R2OW
	10500	58.954	90	10296.886	26.265	0	37.149	0	20.27	0	0	37.264	37.149	-2.266 SG MWD+IFR1+
														MS
														XOM_R2OW
	10600	68.954	90	10340.739	23.7	0	37.344	0	20.47	0	0	37.371	37.341	18.268 MWD+IFR1+
														MS
					24 = 42							0= = 40		XOM_R2OW
	10700	78.954	90	10368.344	21.748	0	37.505	0	20.664	0	0	37.518	37.414	MWD+IFR1+
														MS XOM_R2OW
	10800	88.954	90	10378.862	20.889	0	37.631	0	20.857	0	0	37.655	37.428	71 125 SG
	10000	00.334	90	10376.602	20.003	U	37.031	U	20.657	U	U	37.033	37.420	MMD+IFR1+
I														MS

R										_				XOM_R2OW
eleas	10900 11000 11100	90	90	10378.958	20.877	0	37.642	0	20.877	0	0	37.667	37.428	70.923 MWD+IFR1+ MS
ed to														XOM_R2OW
Ima	10900	89.989	90	10378.967	21.062	0	37.741	0	21.061	0	0	37.78	37.422	70.613 SG MWD+IFR1+
ıging														MS XOM_R2OW
g: 12	11000	89.977	90	10378.997	21.293	0	37.868	0	21.293	0	0	37.921	37.418	71 026 SG
/3/20	11000	03.377	30	10370.337	21.233	Ü	37.000	Ü	21.233	G	Ü	37.321	37.410	MWD+IFR1+ MS
124 8														XOM_R2OW
8.04:	11100	89.964	90	10379.048	21.551	0	38.012	0	21.55	0	0	38.077	37.417	71.695 SG MWD+IFR1+
06 A														MS XOM_R2OW
M	11200	89.952	90	10379.121	21.834	0	38.174	0	21.833	0	0	38.248	37.418	72 442 SG
														MWD+IFR1+ MS
														XOM_R2OW 73 196
	11300	89.94	90	10379.215	22.141	0	38.352	0	22.14	0	0	38.435	37.421	MWD+IFR1+
														MS XOM_R2OW
	11400	89.927	90	10379.331	22.471	0	38.546	0	22.47	0	0	38.638	37.427	72 028 SG
														MWD+IFR1+ MS
														XOM_R2OW SG
	11500	89.915	90	10379.468	22.824	0	38.757	0	22.823	0	0	38.855	37.434	74.625 SG MWD+IFR1+
														MS XOM_R2OW
	11600	89.903	90	10379.627	23.198	0	38.984	0	23.197	0	0	39.088	37.443	75.283 SG MWD+IFR1+
														MS
	11700	00.001	00	10270 007	22 502	0	20 227	0	22 504	0	0	20.226	27 454	XOM_R2OW SG 75.899
	11700	89.891	90	10379.807	23.592	U	39.227	U	23.591	U	U	39.336	37.454	MWD+IFR1+ MS
														XOM_R2OW
	11800	89.878	90	10380.009	24.005	0	39.485	0	24.004	0	0	39.598	37.467	76.476 SG MWD+IFR1+
														MS XOM_R2OW
	11900	89.866	90	10380.232	24.436	0	39.758	0	24.435	0	0	39.875	37.481	77 014 SG
	11900	83.800	30	10300.232	24.430	O	33.738	Ü	24.433	U	O	33.873	37.401	MWD+IFR1++-
														XOM_R2OW
	12000	89.854	90	10380.477	24.885	0	40.046	0	24.884	0	0	40.166	37.497	77.517 SG MWD+IFR1+
•														MS

Releas	12100	89.841	90	10380.743	25.35	0	40.348	0	25.349	0	0	40.472	37.513	XOM_R2OW SG 77.987 MWD+IFR1+ MS
Released to Imaging:	12200	89.829	90.001	10381.03	25.831	0	40.665	0	25.83	0	0	40.791	37.532	XOM_R2OW SG 78.427 MWD+IFR1+ MS
	12300	89.817	90.001	10381.339	26.326	0	40.995	0	26.326	0	0	41.124	37.551	XOM_R2OW SG 78.838 MWD+IFR1+ MS
12/3/2024 8:04:06 AM	12400	89.805	90.001	10381.67	26.835	0	41.339	0	26.835	0	0	41.469	37.572	XOM_R2OW SG 79.224 MWD+IFR1+ MS
AM	12500	89.792	90.001	10382.022	27.357	0	41.697	0	27.357	0	0	41.828	37.594	XOM_R2OW SG 79.586 MWD+IFR1+ MS
	12600	89.78	90.001	10382.395	27.892	0	42.067	0	27.892	0	0	42.2	37.618	XOM_R2OW SG 79.926 MWD+IFR1+ MS
	12700	89.768	90.001	10382.79	28.438	0	42.449	0	28.438	0	0	42.583	37.642	XOM_R2OW SG MWD+IFR1+ MS
	12800	89.755	90.001	10383.206	28.995	0	42.844	0	28.995	0	0	42.979	37.668	XOM_R2OW SG MWD+IFR1+ MS
	12900	89.743	90.001	10383.644	29.562	0	43.251	0	29.563	0	0	43.386	37.695	XOM_R2OW SG MWD+IFR1+ MS
	13000	89.731	90.001	10384.103	30.139	0	43.669	0	30.14	0	0	43.805	37.723	XOM_R2OW SG 81.101 MWD+IFR1+ MS XOM_R2OW
	13100	89.718	90.001	10384.584	30.726	0	44.098	0	30.727	0	0	44.234	37.753	81.355 SG MWD+IFR1+ MS XOM_R2OW
	13200	89.706	90.001	10385.086	31.321	0	44.539	0	31.322	0	0	44.675	37.783	81.596 MWD+IFR1+ MS XOM_R2OW
٠	13300	89.694	90.001	10385.61	31.924	0	44.989	0	31.926	0	0	45.126	37.814	81.824 SG MWD+IFR1+ MS

Release	13400	89.682	90.001	10386.155	32.535	0	45.45	0	32.537	0	0	45.586	37.847	XOM_R2OW SG 82.041 MWD+IFR1+ MS
Released to Imaging: 12/3/2024 8:04:06 AM	13500	89.669	90.001	10386.722	33.153	0	45.921	0	33.156	0	0	46.057	37.881	XOM_R2OW SG MWD+IFR1+ MS
g: 12/3/202	13600	89.657	90.001	10387.31	33.779	0	46.402	0	33.781	0	0	46.537	37.915	XOM_R2OW SG 82.442 MWD+IFR1+ MS
4 8:04:06	13700	89.645	90.001	10387.919	34.41	0	46.892	0	34.413	0	0	47.027	37.951	XOM_R2OW SG 82.629 MWD+IFR1+ MS
4M	13800	89.632	90.001	10388.55	35.048	0	47.391	0	35.052	0	0	47.525	37.988	XOM_R2OW SG 82.807 MWD+IFR1+ MS
	13900	89.62	90.001	10389.203	35.692	0	47.898	0	35.696	0	0	48.033	38.026	XOM_R2OW SG 82.977 MWD+IFR1+ MS
	14000	89.608	90.001	10389.877	36.342	0	48.415	0	36.346	0	0	48.548	38.065	XOM_R2OW SG 83.139 MWD+IFR1+ MS
	14100	89.595	90.001	10390.572	36.996	0	48.939	0	37.001	0	0	49.072	38.105	XOM_R2OW SG 83.294 MWD+IFR1+ MS
	14200	89.583	90.001	10391.289	37.656	0	49.471	0	37.661	0	0	49.604	38.146	XOM_R2OW SG 83.443 MWD+IFR1+ MS
	14300	89.571	90.001	10392.027	38.32	0	50.011	0	38.325	0	0	50.143	38.188	XOM_R2OW SG 83.585 MWD+IFR1+ MS
	14400	89.559	90.001	10392.787	38.989	0	50.559	0	38.994	0	0	50.69	38.231	XOM_R2OW SG 83.721 MWD+IFR1+ MS
	14500	89.546	90.001	10393.568	39.662	0	51.113	0	39.668	0	0	51.243	38.275	XOM_R2OW SG 83.852 MWD+IFR1+ MS
	14600	89.534	90.001	10394.371	40.339	0	51.675	0	40.345	0	0	51.804	38.32	XOM_R2OW SG 83.977 MWD+IFR1+ MS


														XOM_R2OW
Released to Imaging:	14700	89.522	90.001	10395.195	41.02	0	52.243	0	41.027	0	0	52.372	38.366	84.098 SG MWD+IFR1+
asea														MS 🧵
l to														XOM_R2OW
Ima	14800	89.509	90.001	10396.041	41.705	0	52.818	0	41.712	0	0	52.946	38.413	84.214 MWD+IFR1+
ging														MS XOM_R2OW
	14000	00 407	00.003	10206 000	42.202	0	F2 4	0	42.4	0	0	F2 F2C	20.462	se 🖁
2/3/2	14900	89.497	90.002	10396.908	42.393	0	53.4	0	42.4	0	0	53.526	38.462	84.326 MWD+IFR1+
024														MS XOM_R2OW
8:0	15000	89.485	90.002	10397.797	43.084	0	53.987	0	43.092	0	0	54.113	38.511	84 434 SG
4:06														MWD+IFR1+ MS
12/3/2024 8:04:06 AM														XOM_R2OW
1	15100	89.472	90.002	10398.707	43.779	0	54.58	0	43.787	0	0	54.705	38.561	84.537 SG MWD+IFR1+
														MS
														XOM_R2OW
	15200	89.46	90.002	10399.638	44.477	0	55.179	0	44.485	0	0	55.303	38.612	MWD+IFR1+
														MS XOM_R2OW
	15300	89.448	90.002	10400.591	45.177	0	55.784	0	45.186	0	0	55.907	38.664	84.734 SG
	13300	83.448	90.002	10400.551	45.177	U	33.764	U	43.180	Ü	U	33.907	38.004	MWD+IFR1+
														MS XOM_R2OW
	15400	89.436	90.002	10401.565	45.88	0	56.394	0	45.889	0	0	56.516	38.717	84 827 SG
														MWD+IFR1+ MS
														XOM_R2OW
	15500	89.423	90.002	10402.561	46.586	0	57.009	0	46.595	0	0	57.13	38.771	84.917 SG MWD+IFR1+
														MS
														XOM_R2OW SG
	15600	89.411	90.002	10403.579	47.294	0	57.629	0	47.304	0	0	57.749	38.826	85.004 SG MWD+IFR1+
														MS XOM_R2OW
	15700	89.399	90.002	10404.618	48.005	0	58.254	0	48.015	0	0	58.373	38.882	SG 85.088
	13700	65.555	30.002	10404.010	40.003	Ü	30.234	Ü	40.013	Ü	Ü	30.373	30.002	MWD+IFR1+ MS
														XOM_R2OW
	15800	89.386	90.002	10405.678	48.718	0	58.884	0	48.728	0	0	59.002	38.939	85.169 SG
														MWD+IFR1++ MS
														XOM_R2OW】
	15900	89.374	90.002	10406.76	49.433	0	59.518	0	49.444	0	0	59.636	38.997	85.248 SG MWD+IFR1+
•														MS

R														XOM_R2OW
Released to Imaging: 12/3/2024 8:04:06 AM	16000	89.362	90.002	10407.863	50.15	0	60.157	0	50.161	0	0	60.273	39.056	85.324 MWD+IFR1+ MS
ed to														XOM_R2OW
Imag	16100	89.349	90.002	10408.987	50.869	0	60.8	0	50.881	0	0	60.915	39.116	85.398 MWD+IFR1+
ing:														MS XOM_R2OW
12/3/2	16200	89.337	90.002	10410.134	51.59	0	61.447	0	51.602	0	0	61.562	39.176	85.469 SG MWD+IFR1+
2024														MS XOM_R2OW
8:04:	16300	89.325	90.002	10411.301	52.313	0	62.098	0	52.326	0	0	62.212	39.238	85.539 SG MWD+IFR1+
06 AA														MS XOM_R2OW
	16400	89.313	90.002	10412.49	53.038	0	62.753	0	53.051	0	0	62.866	39.301	85.606 SG MWD+IFR1+
														MS XOM_R2OW
	16500	89.3	90.002	10413.701	53.764	0	63.412	0	53.778	0	0	63.524	39.364	85.672 SG MWD+IFR1+
														MS XOM_R2OW
	16600	89.288	90.002	10414.933	54.492	0	64.075	0	54.506	0	0	64.185	39.429	85.735 SG MWD+IFR1+
														MS XOM_R2OW
	16700	89.276	90.002	10416.186	55.222	0	64.741	0	55.236	0	0	64.85	39.494	85.797 SG MWD+IFR1+
														MS XOM_R2OW
	16800	89.263	90.002	10417.461	55.953	0	65.41	0	55.967	0	0	65.519	39.561	85.857 SG MWD+IFR1+
														MS XOM_R2OW
	16900	89.251	90.002	10418.758	56.685	0	66.083	0	56.7	0	0	66.191	39.628	85 915 SG
														MS
	17000	89.239	90.002	10420.076	57.419	0	66.759	0	57.435	0	0	66.866	39.696	XOM_R2OW SG 85.972
														MWD+IFR1+ MS
	17100	89.226	90.002	10421.415	58.154	0	67.438	0	58.17	0	0	67.544	39.765	XOM_R2OW SG 86.027 MWD+JFR1+-
	17100	03.220	30.002	10421.413	30.134	Ü	07.430	Ü	30.17	Ü	Ü	07.544	33.703	MS
	17200	00.244	00.003	10422 776	F0 004	0	CO 12	0	F0 007	0	0	C0 225	20.025	XOM_R2OW
	17200	89.214	90.002	10422.776	58.891	0	68.12	0	58.907	0	0	68.225	39.835	86.081 MWD+IFR1+

Rele	17300	89.202	90.002	10424.158	59.629	0	68.805	0	59.645	0	0	68.909	39.906	XOM_R2OW SG MWD+IFR1+
Released to Imaging: 12/3/2024 8:04:06 AM	17400	89.19	90.002	10425.562	60.368	0	69.493	0	60.384	0	0	69.597	39.978	MS XOM_R2OW SG 86.184 MWD+IFR1+ MS
ing: 12/3/202	17500	89.177	90.003	10426.987	61.108	0	70.184	0	61.125	0	0	70.286	40.051	XOM_R2OW SG 86.234 MWD+IFR1+ MS
24 8:04:06	17600	89.165	90.003	10428.433	61.849	0	70.877	0	61.866	0	0	70.979	40.124	XOM_R2OW SG 86.283 MWD+IFR1+ MS
AM	17700	89.153	90.003	10429.902	62.591	0	71.573	0	62.609	0	0	71.674	40.199	XOM_R2OW SG 86.33 MWD+IFR1+ MS
	17800	89.14	90.003	10431.391	63.334	0	72.272	0	63.353	0	0	72.372	40.274	XOM_R2OW 86.376 SG MWD+IFR1+ MS
	17900	89.128	90.003	10432.902	64.078	0	72.973	0	64.097	0	0	73.072	40.351	XOM_R2OW SG 86.421 MWD+IFR1+ MS
	18000	89.116	90.003	10434.435	64.823	0	73.676	0	64.843	0	0	73.775	40.428	XOM_R2OW SG 86.465 MWD+IFR1+ MS
	18100	89.103	90.003	10435.989	65.57	0	74.382	0	65.589	0	0	74.48	40.506	XOM_R2OW SG 86.507 MWD+IFR1+ MS
	18200	89.091	90.003	10437.564	66.317	0	75.09	0	66.337	0	0	75.187	40.585	XOM_R2OW SG 86.549 MWD+IFR1+ MS
	18300	89.079	90.003	10439.161	67.064	0	75.8	0	67.085	0	0	75.896	40.665	XOM_R2OW SG 86.59 MWD+IFR1+ MS
	18400	89.067	90.003	10440.779	67.813	0	76.513	0	67.834	0	0	76.608	40.745	XOM_R2OW SG 86.63 MWD+IFR1+ MS
	18500	89.054	90.003	10442.419	68.563	0	77.227	0	68.584	0	0	77.322	40.827	XOM_R2OW SG 86.669 MWD+IFR1+ MS

Released	89.042	90.003	10444.08	69.313	0	77.944	0	69.335	0	0	78.037	40.909	XOM_R2OW SG MWD+IFR1+ MS
1 to 18700	9.03	90.003	10445.763	70.064	0	78.662	0	70.086	0	0	78.755	40.993	XOM_R2OW SG 86.744 MWD+IFR1+ MS
18800	89.017	90.003	10447.467	70.815	0	79.382	0	70.838	0	0	79.475	41.077	XOM_R2OW SG 86.781 MWD+IFR1+ MS
2024 8:04:06	89.005	90.003	10449.193	71.568	0	80.105	0	71.591	0	0	80.196	41.162	XOM_R2OW SG 86.816 MWD+IFR1+ MS
19003.4	88.992	90.003	10451	72.347	0	80.853	0	72.37	0	0	80.944	41.251	XOM_R2OW SG 86.852 MWD+IFR1+ MS

Plan Targets	JRU DI 8 EAGLE 151H			
	Measured Depth	Grid Northing	Grid Easting	TVD MSL Shape
Target Name	(ft)	(ft)	(ft)	(ft)
FTP 4	10810.51	491485.8	653995.5	7040 RECTANGLE
BHL 4	19003.4	491485.58	662187.99	7112 RECTANGLE

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 387665

CONDITIONS

Operator:	OGRID:
XTO PERMIAN OPERATING LLC.	373075
6401 HOLIDAY HILL ROAD	Action Number:
MIDLAND, TX 79707	387665
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
ward.rikal	Prior to the submission of this C-104, there was a C-103 NOI submitted for approval. The C-103 NOI was not approved or rejected; however, the work requested in the C-103 NOI was performed and completed without NMOCD approval. This action is currently under review from our legal department.	12/3/2024