Received by OCD: 8/21/2024 7:31:59 AM

eceived by OCD. 0/21/202	+ /.31.37 /11/1				1 uge 1 of	
	UNITED STAT DEPARTMENT OF THE UREAU OF LAND MAN	INTERIOR	5	0	ORM APPROVED MB No. 1004-0137 ires: October 31, 2021	
Do not use th		ORTS ON WELLS to drill or to re-enter an NPD) for such proposals		. If Indian, Allottee of	r Tribe Name	
	IN TRIPLICATE - Other inst	ructions on page 2	7	. If Unit of CA/Agree	ement, Name and/or No.	
1. Type of Well	Gas Well Other		8	. Well Name and No.		
2. Name of Operator			9	. API Well No.		
3a. Address		3b. Phone No. (include area code	b. Phone No. <i>(include area code)</i>		10. Field and Pool or Exploratory Area	
4. Location of Well (Footage, Sec.	, T.,R.,M., or Survey Description)	1	1. Country or Parish,	State	
12.	CHECK THE APPROPRIATE E	OX(ES) TO INDICATE NATURE	E OF NOTIC	E, REPORT OR OTH	IER DATA	
TYPE OF SUBMISSION		TYI	PE OF ACTI	ON		
Notice of Intent	Acidize	Deepen Hydraulic Fracturing	Produc	etion (Start/Resume)	Water Shut-Off Well Integrity	
Subsequent Report	Casing Repair Change Plans	New Construction Plug and Abandon	Recom	plete rarily Abandon	Other	
Final Abandonment Notice	Convert to Injection	=		Disposal		
the proposal is to deepen direc the Bond under which the wor completion of the involved op	tionally or recomplete horizonta k will be perfonned or provide the erations. If the operation results is	lly, give subsurface locations and n he Bond No. on file with BLM/BIA n a multiple completion or recomp	neasured and A. Required subletion in a ne	true vertical depths o absequent reports must we interval, a Form 31	rk and approximate duration thereof. If of all pertinent markers and zones. Attach st be filed within 30 days following 160-4 must be filed once testing has been he operator has detennined that the site	

14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>)			
т	ĩitle		
Signature	Date		
THE SPACE FOR FEDER	RAL OR STATE OF	FICE USE	
Approved by			
	Title	Date	
Conditions of approval, if any, are attached. Approval of this notice does not warrant o certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.			
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any any false, fictitious or fraudulent statements or representations as to any matter within		Ilfully to make to any department or agency of the United	States

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

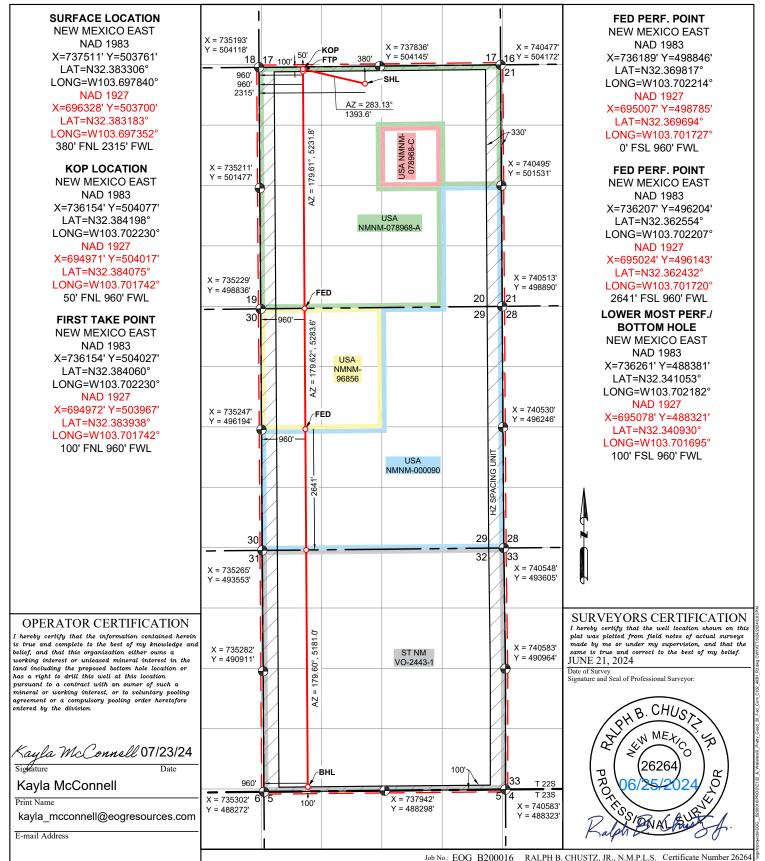
Additional Information

Location of Well

0. SHL: NENW / 380 FNL / 2315 FWL / TWSP: 22S / RANGE: 32E / SECTION: 20 / LAT: 32.383306 / LONG: -103.69784 (TVD: 0 feet, MD: 0 feet) PPP: NENW / 100 FNL / 2310 FWL / TWSP: 22S / RANGE: 32E / SECTION: 20 / LAT: 32.384077 / LONG: -103.697857 (TVD: 9885 feet, MD: 9899 feet) PPP: NENW / 0 FNL / 2310 FWL / TWSP: 22S / RANGE: 32E / SECTION: 29 / LAT: 32.369833 / LONG: -103.697842 (TVD: 10150 feet, MD: 15184 feet) BHL: SESW / 100 FSL / 2310 FWL / TWSP: 22S / RANGE: 32E / SECTION: 29 / LAT: 32.355583 / LONG: -103.697829 (TVD: 10150 feet, MD: 20368 feet) Received by OCD: 8/21/2024 7:31:59 AM

DISTRICT I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 DISTRICT II 811 S. Frat St., Artesia, NM 88210 Phone: (575) 748-9720 DISTRICT III 1000 Rio Brazos Rd., Aztee, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 DISTRICT IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, New Mexico 87505


Page 4 of 91 Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

A1 30-025-53	PI Number 112			Pool Code 97366		Pool Name BILBREY BASIN; BONE SPRING, SOUTH				
Property Co 334556				DDE	Property N				Well Nun	
				FRE					403	
OGRID N	D.				Operator 1				Elevatio	
7377				EC	OG RESOUF	RCE	S, INC.		3659	Э'
	Surface Location									
UL or lot no.	Section	Townshi	p Range	Lot Idn	Feet from the	e	North/South line	Feet from the	East/West line	County
С	20	22 S	32 E		380		NORTH	2315	WEST	LEA
· · · · ·			Bott	om Hole	Location If I	Diffe	rent From Surfac	e		
UL or lot no.	Section	Townshi	p Range	Lot Idn	Feet from the	e	North/South line	Feet from the	East/West line	County
М	32	22 S	32 E		100 SOUTH 960 WEST LE					LEA
Dedicated Acres	Joint or	Infill	Consolidated Co	de Ord	er No.					
1920				NSP-2206; COM PENDING						

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Released to Imaging: 12/13/2024 1:33:05 PM

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

Pad Name:Pretty Good 20 Fed Com SHALLOWSHL:Section 20, Township 22-S, Range 32-E, LEA County, NM

Well Name	API #	Surface		Intermediate		Production	
wen name	AFI#	MD	TVD	MD	TVD	MD	TVD
Pretty Good 20 Fed Com #209H (FKA 508H)	30-025-53119	1,000	1,000	4,695	4,542	25,044	9,407
Pretty Good 20 Fed Com #210H (FKA 402H)	30-025-53111	1,000	1,000	4,732	4,542	25,079	9,407
Pretty Good 20 Fed Com #221H (FKA 604H)	30-025-51774	1,000	1,000	4,695	4,542	25,044	9,407
Pretty Good 20 Fed Com #305H (FKA 404H)	30-025-53113	1,000	1,000	4,673	4,542	25,207	9,590
Pretty Good 20 Fed Com #306H (FKA 703H)	30-025-51790	1,000	1,000	4,712	4,542	25,243	9,590
Pretty Good 20 Fed Com #403H	30-025-53112	1,000	1,000	4,684	4,542	25,762	10,135
Pretty Good 20 Fed Com #509H (FKA 710H)	30-025-51805	1,000	1,000	4,695	4,542	26,267	10,630
Pretty Good 20 Fed Com #510H (FKA 506H)	30-025-53117	1,000	1,000	4,715	4,542	26,286	10,630
Pretty Good 20 Fed Com #511H (FKA 505H)	30-025-53116	1,000	1,000	4,619	4,542	26,196	10,630
Pretty Good 20 Fed Com #512H (FKA 503H)	30-025-53114	1,000	1,000	4,667	4,542	26,241	10,630
Pretty Good 20 Fed Com #585H (FKA 507H)	30-025-53118	1,000	1,000	4,672	4,542	26,526	10,910
Pretty Good 20 Fed Com #586H (FKA 504H)	30-025-53115	1,000	1,000	4,745	4,542	26,592	10,910

ALL PREVIOUS COAs STILL APPLY

Above listed wells are approved for 4 Designs listed in the "EOG BLM Variance 5a -Alternate Shallow Casing Designs" document. The casing set points and directional plans for the wells in the batch are within the boundary conditions reviewed in the blanket design. The COA is written for the deepest well on the pad. Operator is responsible to review the cement volumes based on the set points, design executed and to achieve the TOC requirements listed in the COA.

COA

H2S	• Yes	O No	
Potash	• None	O Secretary	© R-111-P
Cave/Karst Potential	• Low	O Medium	O High
Cave/Karst Potential	^O Critical		
Variance	○ None	• Flex Hose	O Other
Wellhead	Conventional	Multibowl	O Both
Wellhead Variance	O Diverter		
Other	4 String	Capitan Reef	WIPP
Other	□ Fluid Filled	Pilot Hole	Open Annulus
Cementing	Contingency Cement Squeeze	EchoMeter	Primary Cement Squeeze
Special Requirements	U Water Disposal	COM	Unit Unit
Special Requirements	□ Batch Sundry		
Special Requirements	Break Testing	✓ Offline	Casing Clearance
Variance		Cementing	

A. CASING

Shallow Design A:

- 1. The **13-3/8** inch surface casing shall be set at approximately **1,000** feet **TVD** (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch intermediate casing shall be set at approximately 4,542 feet TVD.
 - Mud weight could brine up to 10.2ppg. Reviewed and OK
 - Keep casing half full during run for collapse SF

The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The **5-1/2** inch production casing shall be set at approximately **26,592** feet. The minimum required fill of cement behind the **5-1/2** inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Shallow Design B:

- 1. The **10-3/4** inch surface casing shall be set at approximately **1,000** feet **TVD** (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall

be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u>
 <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The **8-5/8** inch intermediate casing shall be set at approximately **4,542** feet **TVD**.
 - Mud weight could brine up to 10.2ppg. Reviewed and OK
 - Keep casing half full during run for collapse SF

The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The **5-1/2** inch production casing shall be set at approximately **26,592** feet. The minimum required fill of cement behind the **5-1/2** inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Shallow Design C:

- 1. The **13-3/8** inch surface casing shall be set at approximately **1,000** feet **TVD** (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of $\underline{8}$ <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.

- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The **9-5/8** inch intermediate casing shall be set at approximately **4,542** feet **TVD**.
 - Mud weight could brine up to 10.2ppg. Reviewed and OK
 - Keep casing half full during run for collapse SF

The minimum required fill of cement behind the **9-5/8** inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The **6** inch production casing shall be set at approximately **26,592** feet. The minimum required fill of cement behind the **6** inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Shallow Design D:

- 1. The **13-3/8** inch surface casing shall be set at approximately **1,000** feet **TVD** (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - e. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - f. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u>
 <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - g. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - h. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The **9-5/8** inch intermediate casing shall be set at approximately **4,542** feet **TVD**.
 - Mud weight could brine up to 10.2ppg. Reviewed and OK
 - Keep casing half full during run for collapse SF

The minimum required fill of cement behind the **9-5/8** inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The **6** inch x **5.5** inch tapered production casing shall be set at approximately **26,592** feet. The minimum required fill of cement behind the **6** inch x **5.5** inch tapered production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Production Bradenhead Plan Reviewed and is OK for all four designs.

(Note: For a minimum 5M BOPE or less (Utilizing a 10M BOPE system) BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (**575-706-2779**) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR part 3170 Subpart 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Offline cementing OK for surface and intermediate intervals. Notify the BLM prior to the commencement of any offline cementing procedure.

Casing Clearance:

- Overlap clearance OK.
- Salt annular variance in place.
- 1" surface clearance not met. Operator aware and will perf and squeeze if necessary

Operator shall clean up cycles until wellbore is clear of cuttings and any large debris, ensure cutting sizes are adequate "coffee ground or less" before cementing.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Eddy County Petroleum Engineering Inspection Staff:

Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220; <u>BLM NM CFO DrillingNotifications@BLM.GOV</u>; (575) 361-2822

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii. BOP/BOPE test to be conducted per 43 CFR 3172 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

 Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least <u>8</u> hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in **43 CFR 3172**.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - iii. Manufacturer representative shall install the test plug for the initial BOP test.
 - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - v. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before

cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v. The results of the test shall be reported to the appropriate BLM office.
- vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time

between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per **43 CFR 3172**.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

KPI 8/16/2024

Seog resources

Revised Permit Information 06/21/2024:

Well Name: Pretty Good 20 Fed Com 403H; FKA Pretty Good 20 Fed Com 403H
Location: SHL: 380' FNL & 2315' FWL, Section 20, T-22-S, R-32-E, LEA Co., N.M.
BHL: 100' FSL & 960' FWL, Section 32, T-22-S, R-32-E, LEA Co., N.M.

Hole	Interv	al MD	Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13"	0	1,000	0	1,000	10-3/4"	40.5#	J-55	STC
9-7/8"	0	4,684	0	4,540	8-5/8"	32#	J-55	BTC-SC
7-7/8"	0	9,835	0	9,558	6"	24.5#	P110-EC	VAM Sprint-TC
6-3/4"	9,835	25,762	9,558	10,135	5-1/2"	20#	P110-EC	VAM Sprint SF

1. CASING PROGRAM

**For highlighted rows above, variance is requested to run entire string of either 6" or 5-1/2" casing string above due to availablility.

Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Onshore Order #2 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	
1,000' 10-3/4''	230	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	120	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 800')
4,540' ^{8-5/8''}	290	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	130	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 3747')
25,762' _{6''}	1000	14.8	1.32	Bradenhead squeeze: Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	2220	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL- 549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ 6,931')

2. CEMENTING PROGRAM:

Pretty Good 20 Fed Com 403H

Additive	Purpose			
Bentonite Gel	Lightweight/Lost circulation prevention			
Calcium Chloride	Accelerator			
Cello-flake	Lost circulation prevention			
Sodium Metasilicate	Accelerator			
MagOx	Expansive agent			
Pre-Mag-M	Expansive agent			
Sodium Chloride	Accelerator			
FL-62	Fluid loss control			
Halad-344	Fluid loss control			
Halad-9	Fluid loss control			
HR-601	Retarder			
Microbond	Expansive Agent			

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

EOG requests variance from minimum standards to pump a two stage cement job on the 6" and 5-1/2" production casing strings with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon (6,931') and the second stage performed as a 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 400 sacks of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (1.32 yld, 14.8 ppg) will be executed as a contingency. Top will be verified by Echo-meter.

Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

3. MUD PROGRAM:

Depth (TVD)	Туре	Weight (ppg)	Viscosity	Water Loss
0 – 1,000'	Fresh - Gel	8.6-8.8	28-34	N/c
1,000' - 4,540'	Brine	9.0-10.5	28-34	N/c
4,540' - 25,762'	Oil Base	8.8-9.5	58-68	N/c - 6

Seog resources

Pretty Good 20 Fed Com 403H

4. VARIANCE REQUESTS:

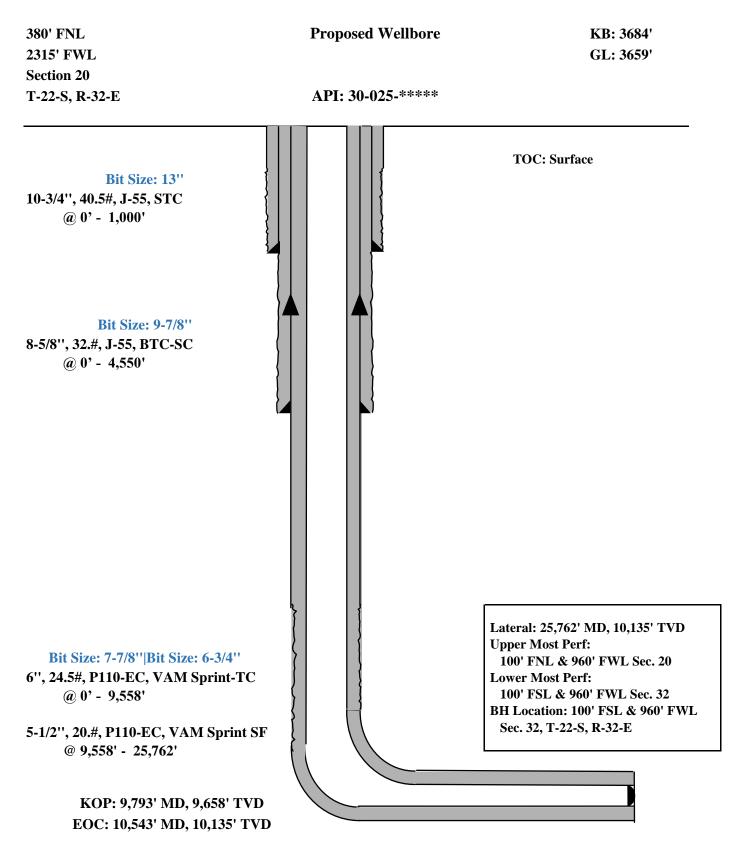
EOG requests the additional variance(s) in the attached document(s):

Variances requested include (supporting documents attached):

- BOP Break Testing for 5M Intermediate Intervals (EOG BLM Variance 3a_b)
- Offline Cementing for Surface and Intermediate Intervals (EOG BLM Variance 3a_b)
- Salt Interval Washout Annular Clearnace (EOG BLM Variance 4a)
- Alternate Shallow Casing Designs (EOG BLM Variance 5a)

Seog resources Pretty Good 20 Fed Com 403H

8. TUBING REQUIREMENTS:


EOG respectively requests an exception to the following NMOCD rule:

 19.15.16.10 Casing AND TUBING RQUIREMENTS: J (3): "The operator shall set tubing as near the bottom as practical and tubing perforations shall not be more than 250 feet above top of pay zone."

With horizontal flowing and gas lifted wells an end of tubing depth placed at or slightly above KOP is a conservative way to ensure the tubing stays clean from debris, plugging, and allows for fewer well interventions post offset completion. The deeper the tubulars are run into the curve, the higher the probability is that the tubing will become stuck in sand and or well debris as the well produces over time. An additional consideration for EOT placement during artificial lift installations is avoiding the high dog leg severity and inclinations found in the curve section of the wellbore to help improve reliability and performance. Dog leg severity and inclinations tend not to hamper gas lifted or flowing wells, but they do effect other forms of artificial lift like rod pump or ESP (electric submersible pump). Keeping the EOT above KOP is an industry best practice for those respective forms of artificial lift.

🎖 eog resources

Pretty Good 20 Fed Com 403H

Seog resources

Pretty Good 20 Fed Com 403H

1. GEOLOGIC NAME OF SURFACE FORMATION:

Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	891'
Tamarisk Anhydrite	973'
Top of Salt	1,258'
Base of Salt	4,442'
Lamar	4,720'
Bell Canyon	4,761'
Cherry Canyon	5,604'
Brushy Canyon	6,931'
Bone Spring Lime	8,677'
Leonard (Avalon) Shale	8,835'
1st Bone Spring Sand	9,575'
2nd Bone Spring Shale	9,912'
2nd Bone Spring Sand	10,283'
3rd Bone Spring Carb	10,711'
3rd Bone Spring Sand	11,421'
TD	10,135'

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Bell Canyon	4,761'	Oil
Cherry Canyon	5,604'	Oil
Brushy Canyon	6,931'	Oil
Leonard (Avalon) Shale	8,835'	Oil
1st Bone Spring Sand	9,575'	Oil
2nd Bone Spring Shale	9,912'	Oil
2nd Bone Spring Sand	10,283'	Oil

Midland

Lea County, NM (NAD 83 NME) Pretty Good 20 Fed Com #403H

OH

Plan: Plan #0.1 RT

Standard Planning Report

02 July, 2024

Database: Company: Project: Site: Well: Wellbore:	PEDMB Midland Lea County, NM Pretty Good 20 #403H OH	•	ME)	TVD Reference MD Reference North Referen	:	Well #403H kb = 26' @ 368 kb = 26' @ 368 Grid Minimum Curva	5.0usft
Design:	Plan #0.1 RT						
Project	Lea County, NM	(NAD 83 NM	1E)				
ooo Batann	US State Plane 19 North American Da New Mexico Easte	atum 1983		System Datum:		Mean Sea Level	
Site	Pretty Good 20 F	ed Com					
Site Position: From: Position Uncertainty:	Мар	0.0 usft	Northing: Easting: Slot Radius:	503,120. 738,938. 13-3/	00 usft Longitu		32° 22' 53.475 N 103° 41' 35.624 W
Well	#403H						
Well Position Position Uncertainty	+N/-S +E/-W	0.0 usft 0.0 usft 0.0 usft	Northing: Easting: Wellhead Elev	7	03,761.00 usft 37,511.00 usft usft	Latitude: Longitude: Ground Level:	32° 22' 59.902 N 103° 41' 52.220 W 3.659.0 usft
Grid Convergence:		0.34 °					-,
Wellbore	ОН						
Magnetics	Model Name		Sample Date	Declination (°)		Dip Angle (°)	Field Strength (nT)
	IGRF2	2020	7/2/2024		6.26	59.92	47,256.00766949
Design	Plan #0.1 RT						
Audit Notes: Version:			Phase:	PLAN	Tie On Dep	th:	0.0
Vertical Section:		(u	rom (TVD) Isft)).0	+N/-S (usft) 0.0	+E/-W (usft) 0.0		rection (°) 84.65
		l).0	0.0	0.0	I	04.00
Plan Survey Tool Pro	gram D	Date 7/2/20)24				
Depth From (usft)	Depth To (usft) Su	rvey (Wellb	ore)	Tool Name	Rema	rks	
1 0.0	25,761.8 Pla	an #0.1 RT ((OH)	EOG MWD+IFR1 MWD + IFR1			

Database:	PEDMB	Local Co-ordinate Reference:	Well #403H
Company:	Midland	TVD Reference:	kb = 26' @ 3685.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3685.0usft
Site:	Pretty Good 20 Fed Com	North Reference:	Grid
Well:	#403H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.1 RT		

Plan Sections

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,770.4	11.41	283.11	1,766.7	12.8	-55.1	2.00	2.00	0.00	283.11	
8,242.0	11.41	283.11	8,110.3	303.2	-1,301.9	0.00	0.00	0.00	0.00	
8,812.4	0.00	0.00	8,677.0	316.0	-1,357.0	2.00	-2.00	0.00	180.00	
9,792.9	0.00	0.00	9,657.5	316.0	-1,357.0	0.00	0.00	0.00	0.00	KOP(Pretty Good 20
10,013.3	26.46	180.00	9,870.2	266.0	-1,357.0	12.00	12.00	81.65	180.00	FTP(Pretty Good 20
10,542.9	90.00	179.60	10,134.9	-161.5	-1,355.0	12.00	12.00	-0.07	-0.44	
25,761.8	90.00	179.60	10,135.0	-15,380.0	-1,250.0	0.00	0.00	0.00	0.00	PBHL(Pretty Good 2

Planned Survey

(usft) (r) (usft) (usft) <th></th>	
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
2000 0.00 0.00 2000 0.0 0.0 0.00 0	
300.0 0.00 300.0 0.0 0.0 0.00 0.00 0.00 0.00 400.0 0.00 0.00 400.0 0.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
900.0 0.00 900.0 0.0 0.0 0.00 0.00 0.00 1,000.0 0.00 0.00 1,000.0 0.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{bmatrix} 1,600.0 & 8.00 & 283.11 & 1,598.7 & 6.3 & -27.2 & -4.1 & 2.00 & 2.00 & 0.00 \\ 1,700.0 & 10.00 & 283.11 & 1,697.5 & 9.9 & -42.4 & -6.4 & 2.00 & 2.00 & 0.00 \\ 1,770.4 & 11.41 & 283.11 & 1,766.7 & 12.8 & -55.1 & -8.3 & 2.00 & 2.00 & 0.00 \\ 1,800.0 & 11.41 & 283.11 & 1,795.7 & 14.2 & -60.8 & -9.2 & 0.00 & 0.00 & 0.00 \\ 2,000.0 & 11.41 & 283.11 & 1,991.7 & 23.1 & -99.4 & -15.0 & 0.00 & 0.00 & 0.00 \\ 2,000.0 & 11.41 & 283.11 & 2,089.7 & 27.6 & -118.6 & -17.9 & 0.00 & 0.00 & 0.00 \\ 2,200.0 & 11.41 & 283.11 & 2,187.8 & 32.1 & -137.9 & -20.8 & 0.00 & 0.00 & 0.00 \\ 2,200.0 & 11.41 & 283.11 & 2,285.8 & 36.6 & -157.2 & -23.7 & 0.00 & 0.00 & 0.00 \\ 2,300.0 & 11.41 & 283.11 & 2,285.8 & 36.6 & -157.2 & -23.7 & 0.00 & 0.00 & 0.00 \\ 2,400.0 & 11.41 & 283.11 & 2,285.8 & 36.6 & -195.7 & -29.6 & 0.00 & 0.00 & 0.00 \\ 2,600.0 & 11.41 & 283.11 & 2,579.8 & 50.1 & -214.9 & -32.5 & 0.00 & 0.00 & 0.00 \\ 2,600.0 & 11.41 & 283.11 & 2,677.9 & 54.5 & -234.2 & -35.4 & 0.00 & 0.00 & 0.00 \\ 2,600.0 & 11.41 & 283.11 & 2,775.9 & 59.0 & -253.5 & -38.3 & 0.00 & 0.00 & 0.00 \\ 2,600.0 & 11.41 & 283.11 & 2,775.9 & 59.0 & -253.5 & -38.3 & 0.00 & 0.00 & 0.00 \\ 2,600.0 & 11.41 & 283.11 & 2,775.9 & 59.0 & -253.5 & -38.3 & 0.00 & 0.00 & 0.00 \\ 2,600.0 & 11.41 & 283.11 & 2,775.9 & 59.0 & -253.5 & -38.3 & 0.00 & 0.00 & 0.00 \\ 3,000.0 & 11.41 & 283.11 & 2,677.9 & 54.5 & -272.7 & -41.2 & 0.00 & 0.00 & 0.00 \\ 3,000.0 & 11.41 & 283.11 & 3,070.0 & 72.5 & -311.3 & -47.0 & 0.00 & 0.00 & 0.00 \\ 3,000.0 & 11.41 & 283.11 & 3,266.0 & 81.5 & -349.8 & -52.9 & 0.00 & 0.00 & 0.00 \\ 3,000.0 & 11.41 & 283.11 & 3,266.0 & 81.5 & -349.8 & -52.9 & 0.00 & 0.00 & 0.00 \\ 3,000.0 & 11.41 & 283.11 & 3,364.0 & 85.9 & -369.1 & -55.8 & 0.00 & 0.00 & 0.00 \\ 3,600.0 & 11.41 & 283.11 & 3,366.1 & 94.9 & -407.6 & -61.6 & 0.00 & 0.00 & 0.00 \\ 3,600.0 & 11.41 & 283.11 & 3,566.1 & 94.9 & -407.6 & -61.6 & 0.00 & 0.00 & 0.00 \\ 3,600.0 & 11.41 & 283.11 & 3,566.1 & 94.9 & -407.6 & -61.6 & 0.00 & 0.00 & 0.00 \\ 3,700.0 & 11.41 & 283.11 & 3,566.1 & 94.9 & -407.6 & -61.6 & 0.00 & 0.00 & 0.00 \\ 3,7$	
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
2,000.0 11.41 283.11 1,991.7 23.1 -99.4 -15.0 0.00 0.00 0.00 2,100.0 11.41 283.11 2,089.7 27.6 -118.6 -17.9 0.00 0.00 0.00 2,200.0 11.41 283.11 2,187.8 32.1 -137.9 -20.8 0.00 0.00 0.00 2,300.0 11.41 283.11 2,285.8 36.6 -157.2 -23.7 0.00 0.00 0.00 2,400.0 11.41 283.11 2,383.8 41.1 -176.4 -26.7 0.00 0.00 0.00 2,600.0 11.41 283.11 2,679.8 50.1 -214.9 -32.5 0.00 0.00 0.00 2,600.0 11.41 283.11 2,677.9 54.5 -234.2 -35.4 0.00 0.00 0.00 2,800.0 11.41 283.11 2,775.9 59.0 -253.5 -38.3 0.00 0.00 0.00 2,900.0	
2,100.0 11.41 283.11 2,089.7 27.6 -118.6 -17.9 0.00 0.00 0.00 2,200.0 11.41 283.11 2,187.8 32.1 -137.9 -20.8 0.00 0.00 0.00 2,300.0 11.41 283.11 2,285.8 36.6 -157.2 -23.7 0.00 0.00 0.00 2,400.0 11.41 283.11 2,383.8 41.1 -176.4 -26.7 0.00 0.00 0.00 2,600.0 11.41 283.11 2,481.8 45.6 -195.7 -29.6 0.00 0.00 0.00 2,600.0 11.41 283.11 2,579.8 50.1 -214.9 -32.5 0.00 0.00 0.00 2,700.0 11.41 283.11 2,775.9 59.0 -253.5 -38.3 0.00 0.00 0.00 2,900.0 11.41 283.11 2,971.9 68.0 -292.0 -44.1 0.00 0.00 0.00 3,000.0	0
2,200.0 11.41 283.11 2,187.8 32.1 -137.9 -20.8 0.00 0.00 0.00 2,300.0 11.41 283.11 2,285.8 36.6 -157.2 -23.7 0.00 0.00 0.00 2,400.0 11.41 283.11 2,285.8 36.6 -157.2 -23.7 0.00 0.00 0.00 2,500.0 11.41 283.11 2,481.8 45.6 -195.7 -29.6 0.00 0.00 0.00 2,600.0 11.41 283.11 2,579.8 50.1 -214.9 -32.5 0.00 0.00 0.00 2,700.0 11.41 283.11 2,677.9 54.5 -234.2 -35.4 0.00 0.00 0.00 2,800.0 11.41 283.11 2,775.9 59.0 -253.5 -38.3 0.00 0.00 0.00 3,000.0 11.41 283.11 2,971.9 68.0 -292.0 -44.1 0.00 0.00 0.00 3,000.0	0
2,300.011.41283.112,285.836.6-157.2-23.70.000.000.002,400.011.41283.112,383.841.1-176.4-26.70.000.000.002,500.011.41283.112,481.845.6-195.7-29.60.000.000.002,600.011.41283.112,579.850.1-214.9-32.50.000.000.002,600.011.41283.112,677.954.5-234.2-35.40.000.000.002,800.011.41283.112,775.959.0-253.5-38.30.000.000.002,900.011.41283.112,971.968.0-292.0-44.10.000.000.003,000.011.41283.113,070.072.5-311.3-47.00.000.000.003,100.011.41283.113,070.072.5-311.3-47.00.000.000.003,200.011.41283.113,060.081.5-349.8-52.90.000.000.003,300.011.41283.113,266.081.5-349.8-52.90.000.000.003,400.011.41283.113,660.081.5-349.8-52.90.000.000.003,600.011.41283.113,660.194.9-407.6-61.60.000.000.003,600.011.41283.113,660.194.9 </th <td>0</td>	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0
2,500.0 11.41 283.11 2,481.8 45.6 -195.7 -29.6 0.00 0.00 0.00 2,600.0 11.41 283.11 2,579.8 50.1 -214.9 -32.5 0.00 0.00 0.00 2,700.0 11.41 283.11 2,677.9 54.5 -234.2 -35.4 0.00 0.00 0.00 2,800.0 11.41 283.11 2,775.9 59.0 -253.5 -38.3 0.00 0.00 0.00 2,900.0 11.41 283.11 2,873.9 63.5 -272.7 -41.2 0.00 0.00 0.00 3,000.0 11.41 283.11 2,971.9 68.0 -292.0 -44.1 0.00 0.00 0.00 3,00.0 11.41 283.11 3,070.0 72.5 -311.3 -47.0 0.00 0.00 0.00 3,200.0 11.41 283.11 3,66.0 81.5 -349.8 -52.9 0.00 0.00 0.00 3,400.0	0
2,600.0 11.41 283.11 2,579.8 50.1 -214.9 -32.5 0.00 0.00 0.00 2,700.0 11.41 283.11 2,677.9 54.5 -234.2 -35.4 0.00 0.00 0.00 2,800.0 11.41 283.11 2,775.9 59.0 -253.5 -38.3 0.00 0.00 0.00 2,900.0 11.41 283.11 2,873.9 63.5 -272.7 -41.2 0.00 0.00 0.00 3,000.0 11.41 283.11 2,971.9 68.0 -292.0 -44.1 0.00 0.00 0.00 3,000.0 11.41 283.11 3,070.0 72.5 -311.3 -47.0 0.00 0.00 0.00 3,200.0 11.41 283.11 3,168.0 77.0 -330.5 -49.9 0.00 0.00 0.00 3,300.0 11.41 283.11 3,266.0 81.5 -349.8 -52.9 0.00 0.00 0.00 3,400.0	0
2,700.0 11.41 283.11 2,677.9 54.5 -234.2 -35.4 0.00 0.00 0.00 2,800.0 11.41 283.11 2,775.9 59.0 -253.5 -38.3 0.00 0.00 0.00 2,900.0 11.41 283.11 2,873.9 63.5 -272.7 -41.2 0.00 0.00 0.00 3,000.0 11.41 283.11 2,971.9 68.0 -292.0 -44.1 0.00 0.00 0.00 3,00.0 11.41 283.11 3,070.0 72.5 -311.3 -47.0 0.00 0.00 0.00 3,200.0 11.41 283.11 3,168.0 77.0 -330.5 -49.9 0.00 0.00 0.00 3,200.0 11.41 283.11 3,266.0 81.5 -349.8 -52.9 0.00 0.00 0.00 3,400.0 11.41 283.11 3,64.0 85.9 -369.1 -55.8 0.00 0.00 0.00 3,500.0	0
2,800.0 11.41 283.11 2,775.9 59.0 -253.5 -38.3 0.00 0.00 0.00 2,900.0 11.41 283.11 2,873.9 63.5 -272.7 -41.2 0.00 0.00 0.00 3,000.0 11.41 283.11 2,971.9 68.0 -292.0 -44.1 0.00 0.00 0.00 3,100.0 11.41 283.11 3,070.0 72.5 -311.3 -47.0 0.00 0.00 0.00 3,200.0 11.41 283.11 3,168.0 77.0 -330.5 -49.9 0.00 0.00 0.00 3,200.0 11.41 283.11 3,266.0 81.5 -349.8 -52.9 0.00 0.00 0.00 3,400.0 11.41 283.11 3,364.0 85.9 -369.1 -55.8 0.00 0.00 0.00 3,500.0 11.41 283.11 3,462.1 90.4 -388.3 -58.7 0.00 0.00 0.00 3,600.0	0
2,900.0 11.41 283.11 2,873.9 63.5 -272.7 -41.2 0.00 0.00 0.00 3,000.0 11.41 283.11 2,971.9 68.0 -292.0 -44.1 0.00 0.00 0.00 3,100.0 11.41 283.11 3,070.0 72.5 -311.3 -47.0 0.00 0.00 0.00 3,200.0 11.41 283.11 3,168.0 77.0 -330.5 -49.9 0.00 0.00 0.00 3,300.0 11.41 283.11 3,266.0 81.5 -349.8 -52.9 0.00 0.00 0.00 3,400.0 11.41 283.11 3,364.0 85.9 -369.1 -55.8 0.00 0.00 0.00 3,500.0 11.41 283.11 3,462.1 90.4 -388.3 -58.7 0.00 0.00 0.00 3,600.0 11.41 283.11 3,560.1 94.9 -407.6 -61.6 0.00 0.00 0.00 3,600.0	0
3,000.0 11.41 283.11 2,971.9 68.0 -292.0 -44.1 0.00 0.00 0.00 3,100.0 11.41 283.11 3,070.0 72.5 -311.3 -47.0 0.00 0.00 0.00 3,200.0 11.41 283.11 3,168.0 77.0 -330.5 -49.9 0.00 0.00 0.00 3,300.0 11.41 283.11 3,266.0 81.5 -349.8 -52.9 0.00 0.00 0.00 3,400.0 11.41 283.11 3,364.0 85.9 -369.1 -55.8 0.00 0.00 0.00 3,500.0 11.41 283.11 3,462.1 90.4 -388.3 -58.7 0.00 0.00 0.00 3,600.0 11.41 283.11 3,560.1 94.9 -407.6 -61.6 0.00 0.00 0.00 3,600.0 11.41 283.11 3,658.1 99.4 -426.9 -64.5 0.00 0.00 0.00	0
3,100.0 11.41 283.11 3,070.0 72.5 -311.3 -47.0 0.00 0.00 0.00 3,200.0 11.41 283.11 3,168.0 77.0 -330.5 -49.9 0.00 0.00 0.00 3,300.0 11.41 283.11 3,266.0 81.5 -349.8 -52.9 0.00 0.00 0.00 3,400.0 11.41 283.11 3,364.0 85.9 -369.1 -55.8 0.00 0.00 0.00 3,500.0 11.41 283.11 3,462.1 90.4 -388.3 -58.7 0.00 0.00 0.00 3,600.0 11.41 283.11 3,560.1 94.9 -407.6 -61.6 0.00 0.00 0.00 3,600.0 11.41 283.11 3,658.1 99.4 -426.9 -64.5 0.00 0.00 0.00	0
3,200.0 11.41 283.11 3,168.0 77.0 -330.5 -49.9 0.00 0.00 0.00 3,300.0 11.41 283.11 3,266.0 81.5 -349.8 -52.9 0.00 0.00 0.00 3,400.0 11.41 283.11 3,364.0 85.9 -369.1 -55.8 0.00 0.00 0.00 3,500.0 11.41 283.11 3,462.1 90.4 -388.3 -58.7 0.00 0.00 0.00 3,600.0 11.41 283.11 3,560.1 94.9 -407.6 -61.6 0.00 0.00 0.00 3,600.0 11.41 283.11 3,658.1 99.4 -426.9 -64.5 0.00 0.00 0.00	0
3,300.0 11.41 283.11 3,266.0 81.5 -349.8 -52.9 0.00 0.00 0.00 3,400.0 11.41 283.11 3,364.0 85.9 -369.1 -55.8 0.00 0.00 0.00 3,500.0 11.41 283.11 3,462.1 90.4 -388.3 -58.7 0.00 0.00 0.00 3,600.0 11.41 283.11 3,560.1 94.9 -407.6 -61.6 0.00 0.00 0.00 3,700.0 11.41 283.11 3,658.1 99.4 -426.9 -64.5 0.00 0.00 0.00	0
3,400.0 11.41 283.11 3,364.0 85.9 -369.1 -55.8 0.00 0.00 0.00 3,500.0 11.41 283.11 3,462.1 90.4 -388.3 -58.7 0.00 0.00 0.00 3,600.0 11.41 283.11 3,560.1 94.9 -407.6 -61.6 0.00 0.00 0.00 3,700.0 11.41 283.11 3,658.1 99.4 -426.9 -64.5 0.00 0.00 0.00	0
3,500.0 11.41 283.11 3,462.1 90.4 -388.3 -58.7 0.00 0.00 0.00 3,600.0 11.41 283.11 3,560.1 94.9 -407.6 -61.6 0.00 0.00 0.00 3,700.0 11.41 283.11 3,658.1 99.4 -426.9 -64.5 0.00 0.00 0.00	0
3,600.0 11.41 283.11 3,560.1 94.9 -407.6 -61.6 0.00 0.00 0.00 3,700.0 11.41 283.11 3,658.1 99.4 -426.9 -64.5 0.00 0.00 0.00	
3,700.0 11.41 283.11 3,658.1 99.4 -426.9 -64.5 0.00 0.00 0.00	
3,800.0 11.41 283.11 3,756.1 103.9 -446.1 -67.4 0.00 0.00 0.00	
	0
3,900.0 11.41 283.11 3,854.2 108.4 -465.4 -70.3 0.00 0.00 0.00	0
4,000.0 11.41 283.11 3,952.2 112.9 -484.7 -73.2 0.00 0.00 0.00	0
4,100.0 11.41 283.11 4,050.2 117.3 -503.9 -76.1 0.00 0.00 0.00	0
4,200.0 11.41 283.11 4,148.2 121.8 -523.2 -79.1 0.00 0.00 0.00	0
4,300.0 11.41 283.11 4,246.3 126.3 -542.5 -82.0 0.00 0.00 0.00	0
4,400.0 11.41 283.11 4,344.3 130.8 -561.7 -84.9 0.00 0.00 0.00	0
4,500.0 11.41 283.11 4,442.3 135.3 -581.0 -87.8 0.00 0.00 0.00	0
4,600.0 11.41 283.11 4,540.3 139.8 -600.2 -90.7 0.00 0.00 0.00	0
4,700.0 11.41 283.11 4,638.4 144.3 -619.5 -93.6 0.00 0.00 0.00	0
4,800.0 11.41 283.11 4,736.4 148.7 -638.8 -96.5 0.00 0.00 0.00	
4,900.0 11.41 283.11 4,834.4 153.2 -658.0 -99.4 0.00 0.00 0.00	0
5,000.0 11.41 283.11 4,932.4 157.7 -677.3 -102.3 0.00 0.00 0.00	0
5,100.0 11.41 283.11 5,030.5 162.2 -696.6 -105.2 0.00 0.00 0.00	0
<u>5,200.0</u> <u>11.41</u> <u>283.11</u> <u>5,128.5</u> <u>166.7</u> <u>-715.8</u> <u>-108.2</u> <u>0.00</u> <u>0.00</u> <u>0.00</u>	0

7/2/2024 3:52:00PM

COMPASS 5000.16 Build 100

Database:	PEDMB	Local Co-ordinate Reference:	Well #403H
Company:	Midland	TVD Reference:	kb = 26' @ 3685.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3685.0usft
Site:	Pretty Good 20 Fed Com	North Reference:	Grid
Well:	#403H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,300.0	11.41	283.11	5,226.5	171.2	-735.1	-111.1	0.00	0.00	0.00
5,400.0	11.41	283.11	5,324.5	175.7	-754.4	-114.0	0.00	0.00	0.00
5,500.0	11.41	283.11	5,422.5	180.2	-773.6	-116.9	0.00	0.00	0.00
5,600.0	11.41	283.11	5,520.6	184.6	-792.9	-119.8	0.00	0.00	0.00
5,700.0	11.41	283.11	5,618.6	189.1	-812.2	-122.7	0.00	0.00	0.00
5,800.0	11.41	283.11	5,716.6	193.6	-831.4	-122.7	0.00	0.00	0.00
5,600.0	11.41	203.11	5,710.0	195.0	-031.4	-125.0	0.00	0.00	0.00
5,900.0	11.41	283.11	5,814.6	198.1	-850.7	-128.5	0.00	0.00	0.00
6,000.0	11.41	283.11	5,912.7	202.6	-870.0	-131.4	0.00	0.00	0.00
6,100.0	11.41	283.11	6,010.7	207.1	-889.2	-134.4	0.00	0.00	0.00
6,200.0	11.41	283.11	6,108.7	211.6	-908.5	-137.3	0.00	0.00	0.00
6,300.0	11.41	283.11	6,206.7	216.0	-927.8	-140.2	0.00	0.00	0.00
6 400 0	11 11	000 11	6 204 9	220 5	047.0	142.1	0.00	0.00	0.00
6,400.0	11.41	283.11	6,304.8	220.5	-947.0	-143.1	0.00	0.00	0.00
6,500.0	11.41	283.11	6,402.8	225.0	-966.3	-146.0	0.00	0.00	0.00
6,600.0	11.41	283.11	6,500.8	229.5	-985.5	-148.9	0.00	0.00	0.00
6,700.0	11.41	283.11	6,598.8	234.0	-1,004.8	-151.8	0.00	0.00	0.00
6,800.0	11.41	283.11	6,696.9	238.5	-1,024.1	-154.7	0.00	0.00	0.00
6,900.0	11.41	283.11	6,794.9	243.0	-1,043.3	-157.6	0.00	0.00	0.00
7,000.0	11.41	283.11	6,892.9	247.4	-1,062.6	-160.6	0.00	0.00	0.00
7,100.0	11.41	283.11	6,990.9	251.9	-1,081.9	-163.5	0.00	0.00	0.00
7,200.0	11.41	283.11	7,089.0	256.4	-1,101.1	-166.4	0.00	0.00	0.00
7,200.0	11.41	283.11	7,089.0	250.4	-1,120.4	-169.3	0.00	0.00	0.00
				200.9	-1,120.4				
7,400.0	11.41	283.11	7,285.0	265.4	-1,139.7	-172.2	0.00	0.00	0.00
7,500.0	11.41	283.11	7,383.0	269.9	-1,158.9	-175.1	0.00	0.00	0.00
7,600.0	11.41	283.11	7,481.1	274.4	-1,178.2	-178.0	0.00	0.00	0.00
7,700.0	11.41	283.11	7,579.1	278.8	-1,197.5	-180.9	0.00	0.00	0.00
7,800.0	11.41	283.11	7,677.1	283.3	-1,216.7	-183.8	0.00	0.00	0.00
7,900.0	11.41	283.11	7,775.1	287.8	-1,236.0	-186.8	0.00	0.00	0.00
8,000.0	11.41	283.11	7,873.2	292.3	-1,255.3	-189.7	0.00	0.00	0.00
		283.11		292.3			0.00		0.00
8,100.0	11.41	283.11	7,971.2 8,069.2		-1,274.5 -1,293.8	-192.6	0.00	0.00	
8,200.0	11.41			301.3		-195.5		0.00	0.00
8,242.0	11.41	283.11	8,110.3	303.2	-1,301.9	-196.7	0.00	0.00	0.00
8,300.0	10.25	283.11	8,167.3	305.6	-1,312.5	-198.3	2.00	-2.00	0.00
8,400.0	8.25	283.11	8,266.0	309.3	-1,328.1	-200.7	2.00	-2.00	0.00
8,500.0	6.25	283.11	8,365.2	312.1	-1,340.4	-202.5	2.00	-2.00	0.00
8,600.0	4.25	283.11	8,464.8	314.2	-1,349.3	-203.9	2.00	-2.00	0.00
8,700.0	2.25	283.11	8,564.6	315.5	-1,354.9	-204.7	2.00	-2.00	0.00
8,800.0	0.25	283.11	8,664.6	316.0	-1,357.0	-205.0	2.00	-2.00	0.00
8,812.4	0.00	0.00	8,677.0	316.0	-1,357.0	-205.0	2.00	-2.00	0.00
8,900.0	0.00	0.00	8,764.6	316.0	-1,357.0	-205.0	0.00	0.00	0.00
9,000.0	0.00	0.00	8,864.6	316.0	-1,357.0	-205.0	0.00	0.00	0.00
9,100.0	0.00	0.00	8,964.6	316.0	-1,357.0	-205.0	0.00	0.00	0.00
9,200.0	0.00	0.00	9,064.6	316.0	-1,357.0	-205.0	0.00	0.00	0.00
9,300.0	0.00	0.00	9,164.6	316.0	-1,357.0	-205.0	0.00	0.00	0.00
9,400.0	0.00	0.00	9,264.6	316.0	-1,357.0	-205.0	0.00	0.00	0.00
9,500.0	0.00	0.00	9,364.6	316.0	-1,357.0	-205.0	0.00	0.00	0.00
9,600.0	0.00	0.00	9,464.6	316.0	-1,357.0	-205.0	0.00	0.00	0.00
9,700.0	0.00	0.00	9,564.6	316.0	-1,357.0	-205.0	0.00	0.00	0.00
9,792.9	0.00	0.00	9,657.5	316.0	-1,357.0	-205.0	0.00	0.00	0.00
9,800.0	0.85	180.00	9,664.6	315.9	-1,357.0	-205.0	12.00	12.00	0.00
9,825.0	3.85	180.00	9,689.6	314.9	-1,357.0	-204.0	12.00	12.00	0.00
9,850.0	6.85	180.00	9,714.5	312.6	-1,357.0	-201.6	12.00	12.00	0.00
9,875.0	9.85	180.00	9,739.2	309.0	-1,357.0	-198.0	12.00	12.00	0.00
					-1,357.0	-193.1			
9,900.0	12.85	180.00	9,763.7	304.0	-1,357.0	-193.1	12.00	12.00	0.00

Released to Imaging: 12/13/2024 1:33:05 PM

COMPASS 5000.16 Build 100

.

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,950.0	18.86	180.00	9,811.8	290.4	-1,357.0	-179.5	12.00	12.00	0.0
9,950.0 9,975.0	21.86	180.00	9,811.8	290.4 281.7	-1,357.0	-179.5	12.00	12.00	0.0
9,975.0	21.00	160.00	9,035.2	201.7	-1,357.0	-170.0	12.00	12.00	0.0
10,000.0	24.86	180.00	9,858.2	271.8	-1,357.0	-161.0	12.00	12.00	0.0
10,013.3	26.46	180.00	9,870.2	266.0	-1,357.0	-155.2	12.00	12.00	0.0
10,025.0	27.86	179.98	9,880.6	260.7	-1,357.0	-149.9	12.00	12.00	-0.2
10,050.0	30.86	179.93	9,902.4	248.4	-1,357.0	-137.7	12.00	12.00	-0.1
10,075.0	33.86	179.90	9,923.5	235.0	-1,357.0	-124.4	12.00	12.00	-0.1
10,100.0	36.86	179.87	9,943.9	220.6	-1,356.9	-109.9	12.00	12.00	-0.1
10,125.0	39.86	179.84	9,963.5	205.1	-1,356.9	-94.5	12.00	12.00	-0.1
10,150.0	42.86	179.82	9,982.2	188.6	-1,356.9	-78.0	12.00	12.00	-0.0
10,175.0	45.86	179.80	10,000.1	171.1	-1,356.8	-60.6	12.00	12.00	-0.0
10,200.0	48.86	179.78	10,017.0	152.7	-1,356.7	-42.3	12.00	12.00	-0.0
10 225 0	51.86	170 76	10 022 0	133.4	1 256 6	-23.1	12.00	12.00	-0.0
10,225.0		179.76	10,033.0		-1,356.6		12.00		
10,250.0	54.86	179.74	10,047.9	113.4	-1,356.6	-3.1	12.00	12.00	-0.0
10,275.0	57.86	179.73	10,061.8	92.6	-1,356.5	17.6	12.00	12.00	-0.0
10,300.0	60.86	179.71	10,074.5	71.1	-1,356.4	39.0	12.00	12.00	-0.0
10,325.0	63.86	179.70	10,086.1	48.9	-1,356.2	61.1	12.00	12.00	-0.0
10,350.0	66.86	179.69	10,096.5	26.2	-1,356.1	83.7	12.00	12.00	-0.0
10,375.0	69.86	179.68	10,105.7	3.0	-1,356.0	106.9	12.00	12.00	-0.0
10,400.0	72.86	179.67	10,113.7	-20.7	-1,355.9	130.5	12.00	12.00	-0.0
10,425.0	75.86	179.65	10,120.5	-44.8	-1,355.7	154.5	12.00	12.00	-0.0
	78.86	179.64			-1,355.6	178.8	12.00	12.00	-0.0
10,450.0	/0.00	179.04	10,125.9	-69.2	-1,355.0	1/0.0	12.00	12.00	-0.0
10,475.0	81.86	179.63	10,130.1	-93.8	-1,355.4	203.3	12.00	12.00	-0.0
10,500.0	84.86	179.62	10,133.0	-118.6	-1,355.2	228.0	12.00	12.00	-0.0
10,525.0	87.86	179.61	10,134.6	-143.6	-1,355.1	252.9	12.00	12.00	-0.0
10,542.9	90.00	179.60	10,134.9	-161.5	-1,355.0	270.7	12.00	12.00	-0.0
10,600.0	90.00	179.60	10,134.9	-218.6	-1,354.6	327.6	0.00	0.00	0.0
10,700.0	90.00	179.60	10,134.9	-318.6	-1,353.9	427.2	0.00	0.00	0.0
10,800.0	90.00	179.60	10,134.9	-418.6	-1,353.2	526.8	0.00	0.00	0.0
10,900.0	90.00	179.60	10,134.9	-518.6	-1,352.5	626.4	0.00	0.00	0.0
11,000.0	90.00	179.60	10,134.9	-618.6	-1,351.8	726.0	0.00	0.00	0.0
11,100.0	90.00	179.60	10,134.9	-718.6	-1,351.1	825.7	0.00	0.00	0.0
11,200.0	90.00	179.60	10,134.9	-818.6	-1,350.4	925.3	0.00	0.00	0.0
11,300.0	90.00	179.60	10,134.9	-918.6	-1,349.7	1,024.9	0.00	0.00	0.0
11,400.0	90.00	179.60	10,134.9	-1,018.6	-1,349.0	1,124.5	0.00	0.00	0.0
11,500.0	90.00	179.60	10,134.9	-1,118.6	-1,348.4	1,124.0	0.00	0.00	0.0
11,600.0	90.00	179.60	10,134.9	-1,218.6	-1,347.7	1,323.7	0.00	0.00	0.0
11,700.0	90.00	179.60	10,134.9	-1,318.6	-1,347.0	1,423.3	0.00	0.00	0.0
11,800.0	90.00	179.60	10,134.9	-1,418.6	-1,346.3	1,523.0	0.00	0.00	0.0
11,900.0	90.00	179.60	10,134.9	-1,518.6	-1,345.6	1,622.6	0.00	0.00	0.0
12,000.0	90.00	179.60	10,135.0	-1,618.5	-1,344.9	1,722.2	0.00	0.00	0.0
12,100.0	90.00	179.60	10,135.0	-1,718.5	-1,344.2	1,821.8	0.00	0.00	0.0
12,200.0	90.00	179.60	10,135.0	-1,818.5	-1,343.5	1,921.4	0.00	0.00	0.0
12,300.0	90.00	179.60	10,135.0	-1,918.5	-1,342.8	2,021.0	0.00	0.00	0.0
12,400.0	90.00	179.60	10,135.0	-2,018.5	-1,342.2	2,120.6	0.00	0.00	0.0
12,500.0	90.00	179.60	10,135.0	-2,118.5	-1,341.5	2,220.2	0.00	0.00	0.0
12,600.0	90.00	179.60	10,135.0	-2,218.5	-1,340.8	2,319.9	0.00	0.00	0.0
12,700.0	90.00	179.60	10,135.0	-2,318.5	-1,340.1	2,419.5	0.00	0.00	0.0
12,800.0	90.00	179.60	10,135.0	-2,418.5	-1,339.4	2,419.0	0.00	0.00	0.0
12,900.0	90.00	179.60	10,135.0	-2,518.5	-1,338.7	2,618.7	0.00	0.00	0.0
13,000.0	90.00	179.60	10,135.0	-2,618.5	-1,338.0	2,018.7	0.00	0.00	0.0
13,100.0	90.00	179.60	10,135.0	-2,718.5	-1,337.3	2,817.9	0.00	0.00	0.0
13,200.0	90.00	179.60	10,135.0	-2,818.5	-1,336.6	2,917.5	0.00	0.00	0.0
13,300.0	90.00	179.60	10,135.0	-2,918.5	-1,335.9	3,017.1	0.00	0.00	0.0

7/2/2024 3:52:00PM

Page 6

COMPASS 5000.16 Build 100

Database:	PEDMB	Local Co-ordinate Reference:	Well #403H
Company:	Midland	TVD Reference:	kb = 26' @ 3685.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3685.0usft
Site:	Pretty Good 20 Fed Com	North Reference:	Grid
Well:	#403H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,400.0	90.00	179.60	10,135.0	-3,018.5	-1,335.3	3,116.8	0.00	0.00	0.00
13,500.0	90.00	179.60	10,135.0	-3,118.5	-1,334.6	3,216.4	0.00	0.00	0.00
13,600.0	90.00	179.60	10,135.0	-3,218.5	-1,333.9	3,316.0	0.00	0.00	0.00
13,700.0	90.00	179.60	10,135.0	-3,318.5	-1,333.2	3,415.6	0.00	0.00	0.00
13,800.0	90.00	179.60	10,135.0	-3,418.5	-1,332.5	3,515.2	0.00	0.00	0.00
13,900.0	90.00	179.60	10,135.0	-3,518.5	-1,331.8	3,614.8	0.00	0.00	0.00
14,000.0	90.00	179.60	10,135.0	-3,618.5	-1,331.1	3,714.4	0.00	0.00	0.00
14,100.0	90.00	179.60	10,135.0	-3,718.5	-1,330.4	3,814.1	0.00	0.00	0.00
14,200.0	90.00	179.60	10,135.0	-3,818.5	-1,329.7	3,913.7	0.00	0.00	0.00
14,300.0	90.00	179.60	10,135.0	-3,918.5	-1,329.0	4,013.3	0.00	0.00	0.00
14,400.0	90.00	179.60	10,135.0	-4,018.5	-1,328.4	4,112.9	0.00	0.00	0.00
14,500.0	90.00	179.60	10,135.0	-4,118.5	-1,327.7	4,212.5	0.00	0.00	0.00
14,600.0	90.00	179.60	10,135.0	-4,218.5	-1,327.0	4,312.1	0.00	0.00	0.00
14,700.0	90.00	179.60	10,135.0	-4,318.5	-1,326.3	4,411.7	0.00	0.00	0.00
14,800.0	90.00	179.60	10,135.0	-4,418.5	-1,325.6	4,511.3	0.00	0.00	0.00
14,900.0	90.00	179.60	10,135.0	-4,518.5	-1,324.9	4,611.0	0.00	0.00	0.00
15,000.0	90.00	179.60	10,135.0	-4,618.5	-1,324.2	4,710.6	0.00	0.00	0.00
15,100.0	90.00	179.60	10,135.0	-4,718.5	-1,323.5	4,810.2	0.00	0.00	0.00
15,200.0	90.00	179.60	10,135.0	-4,818.5	-1,322.8	4,909.8	0.00	0.00	0.00
15,300.0	90.00	179.60	10,135.0	-4,918.5	-1,322.2	5,009.4	0.00	0.00	0.00
15,400.0	90.00	179.60	10,135.0	-5,018.5	-1,321.5	5,109.0	0.00	0.00	0.00
15,500.0	90.00	179.60	10,135.0	-5,118.5	-1,320.8	5,208.6	0.00	0.00	0.00
15,600.0	90.00	179.60	10,135.0	-5,218.5	-1,320.1	5,308.2	0.00	0.00	0.00
15,700.0	90.00	179.60	10,135.0	-5,318.5	-1,319.4	5,407.9	0.00	0.00	0.00
15,800.0	90.00	179.60	10,135.0	-5,418.5	-1,318.7	5,507.5	0.00	0.00	0.00
15,900.0	90.00	179.60	10,135.0	-5,518.5	-1,318.0	5,607.1	0.00	0.00	0.00
16,000.0	90.00	179.60	10,135.0	-5,618.5	-1,317.3	5,706.7	0.00	0.00	0.00
16,100.0	90.00	179.60	10,135.0	-5,718.5	-1,316.6	5,806.3	0.00	0.00	0.00
16,200.0	90.00	179.60	10,135.0	-5,818.4	-1,315.9	5,905.9	0.00	0.00	0.00
16,300.0	90.00	179.60	10,135.0	-5,918.4	-1,315.3	6,005.5	0.00	0.00	0.00
16,400.0	90.00	179.60	10,135.0	-6,018.4	-1,314.6	6,105.2	0.00	0.00	0.00
16,500.0	90.00	179.60	10,135.0	-6,118.4	-1,313.9	6,204.8	0.00	0.00	0.00
16,600.0	90.00	179.60	10,135.0	-6,218.4	-1,313.2	6,304.4	0.00	0.00	0.00
16,700.0	90.00	179.60	10,135.0	-6,318.4	-1,312.5	6,404.0	0.00	0.00	0.00
16,800.0	90.00	179.60	10,135.0	-6,418.4	-1,311.8	6,503.6	0.00	0.00	0.00
16,900.0	90.00	179.60	10,135.0	-6,518.4	-1,311.1	6,603.2	0.00	0.00	0.00
17,000.0	90.00	179.60	10,135.0	-6,618.4	-1,310.4	6,702.8	0.00	0.00	0.00
17,100.0	90.00	179.60	10,135.0	-6,718.4	-1,309.7	6,802.4	0.00	0.00	0.00
17,200.0	90.00	179.60	10,135.0	-6,818.4	-1,309.0	6,902.1	0.00	0.00	0.00
17,300.0	90.00	179.60	10,135.0	-6,918.4	-1,308.4	7,001.7	0.00	0.00	0.00
17,400.0	90.00	179.60	10,135.0	-7,018.4	-1,307.7	7,101.3	0.00	0.00	0.00
17,500.0	90.00	179.60	10,135.0	-7,118.4	-1,307.0	7,200.9	0.00	0.00	0.00
17,600.0	90.00	179.60	10,135.0	-7,218.4	-1,306.3	7,300.5	0.00	0.00	0.00
17,700.0	90.00	179.60	10,135.0	-7,318.4	-1,305.6	7,400.1	0.00	0.00	0.00
17,800.0	90.00	179.60	10,135.0	-7,418.4	-1,304.9	7,499.7	0.00	0.00	0.00
17,900.0	90.00	179.60	10,135.0	-7,518.4	-1,304.2	7,599.4	0.00	0.00	0.00
18,000.0	90.00	179.60	10,135.0	-7,618.4	-1,303.5	7,699.0	0.00	0.00	0.00
18,100.0	90.00	179.60	10,135.0	-7,718.4	-1,302.8	7,798.6	0.00	0.00	0.00
18,200.0	90.00	179.60	10,135.0	-7,818.4	-1,302.2	7,898.2	0.00	0.00	0.00
18,300.0	90.00	179.60	10,135.0	-7,918.4	-1,301.5	7,997.8	0.00	0.00	0.00
18,400.0	90.00	179.60	10,135.0	-8,018.4	-1,300.8	8,097.4	0.00	0.00	0.00
18,500.0	90.00	179.60	10,135.0	-8,118.4	-1,300.1	8,197.0	0.00	0.00	0.00
18,600.0	90.00	179.60	10,135.0	-8,218.4	-1,299.4	8,296.6	0.00	0.00	0.00
10,000.0									

Released to Imaging: 12/13/2024 1:33:05 PM

COMPASS 5000.16 Build 100

.

Database:	PEDMB	Local Co-ordinate Reference:	Well #403H
Company:	Midland	TVD Reference:	kb = 26' @ 3685.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3685.0usft
Site:	Pretty Good 20 Fed Com	North Reference:	Grid
Well:	#403H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.1 RT		

Planned Survey

(usft) (°) (°) (usft) (usft) (usft) (°/100usft)		(°/100usft)
18,800.0 90.00 179.60 10,135.0 -8,418.4 -1,298.0 8,495.9 0.00	0.00	0.00
18,900.0 90.00 179.60 10,135.0 -8,518.4 -1,297.3 8,595.5 0.00	0.00	0.00
19,000.0 90.00 179.60 10,135.0 -0,018.4 -1,297.5 0,595.5 0.00	0.00	0.00
19,100.0 90.00 179.60 10,135.0 -8,718.4 -1,295.9 8,794.7 0.00	0.00	0.00
19,200.0 90.00 179.60 10,135.0 -8,818.4 -1,295.3 8,894.3 0.00	0.00	0.00
19,300.0 90.00 179.60 10,135.0 -8,918.4 -1,294.6 8,993.9 0.00	0.00	0.00
19,400.0 90.00 179.60 10,135.0 -9,018.4 -1,293.9 9,093.5 0.00	0.00	0.00
19,500.0 90.00 179.60 10,135.0 -9,118.4 -1,293.2 9,193.2 0.00	0.00	0.00
19,600.0 90.00 179.60 10,135.0 -9,218.4 -1,292.5 9,292.8 0.00	0.00	0.00
19,700.0 90.00 179.60 10,135.0 -9,318.4 -1,291.8 9,392.4 0.00	0.00	0.00
19,700.0 90.00 179.00 10,135.0 -9,318.4 -1,291.1 9,492.0 0.00	0.00	0.00
19,600.0 90.00 179.60 10,135.0 -9,418.4 -1,291.1 9,492.0 0.00	0.00	0.00
20,000.0 90.00 179.60 10,135.0 -9,618.4 -1,289.7 9,691.2 0.00 20,400.0 00.00 170.60 10,135.0 0,748.4 1,280.0 0,700.8 0,000	0.00	0.00 0.00
20,100.0 90.00 179.60 10,135.0 -9,718.4 -1,289.0 9,790.8 0.00	0.00	
20,200.0 90.00 179.60 10,135.0 -9,818.4 -1,288.4 9,890.5 0.00	0.00	0.00
20,300.0 90.00 179.60 10,135.0 -9,918.4 -1,287.7 9,990.1 0.00	0.00	0.00
20,400.0 90.00 179.60 10,135.0 -10,018.3 -1,287.0 10,089.7 0.00	0.00	0.00
20,500.0 90.00 179.60 10,135.0 -10,118.3 -1,286.3 10,189.3 0.00	0.00	0.00
20,600.0 90.00 179.60 10,135.0 -10,218.3 -1,285.6 10,288.9 0.00	0.00	0.00
20,700.0 90.00 179.60 10,135.0 -10,318.3 -1,284.9 10,388.5 0.00	0.00	0.00
20,800.0 90.00 179.60 10,135.0 -10,418.3 -1,284.2 10,488.1 0.00	0.00	0.00
20,900.0 90.00 179.60 10,135.0 -10,518.3 -1,283.5 10,587.7 0.00	0.00	0.00
21,000.0 90.00 179.60 10,135.0 -10,518.3 -1,283.5 10,587.7 0.00	0.00	0.00
21,000.0 90.00 179.00 10,135.0 -10,018.3 -1,282.8 10,087.4 0.00 21,100.0 90.00 179.60 10,135.0 -10,718.3 -1,282.2 10,787.0 0.00	0.00	0.00
21,200.0 90.00 179.60 10,135.0 -10,818.3 -1,281.5 10,886.6 0.00	0.00	0.00
21,300.0 90.00 179.60 10,135.0 -10,918.3 -1,280.8 10,986.2 0.00	0.00	0.00
21,400.0 90.00 179.60 10,135.0 -11,018.3 -1,280.1 11,085.8 0.00	0.00	0.00
21,500.0 90.00 179.60 10,135.0 -11,118.3 -1,279.4 11,185.4 0.00	0.00	0.00
21,600.0 90.00 179.60 10,135.0 -11,218.3 -1,278.7 11,285.0 0.00	0.00	0.00
21,700.0 90.00 179.60 10,135.0 -11,318.3 -1,278.0 11,384.6 0.00	0.00	0.00
21,800.0 90.00 179.60 10,135.0 -11,418.3 -1,277.3 11,484.3 0.00	0.00	0.00
21,900.0 90.00 179.60 10,135.0 -11,518.3 -1,276.6 11,583.9 0.00	0.00	0.00
22,000.0 90.00 179.60 10,135.0 -11,618.3 -1,275.9 11,683.5 0.00	0.00	0.00
22,100.0 90.00 179.60 10,135.0 -11,718.3 -1,275.3 11,783.1 0.00	0.00	0.00
22,200.0 90.00 179.60 10,135.0 -11,818.3 -1,274.6 11,882.7 0.00	0.00	0.00
22,300.0 90.00 179.60 10,135.0 -11,918.3 -1,273.9 11,982.3 0.00	0.00	0.00
22,400.0 90.00 179.60 10,135.0 -12,018.3 -1,273.2 12,081.9 0.00	0.00	0.00
22,500.0 90.00 179.60 10,135.0 -12,118.3 -1,272.5 12,181.6 0.00	0.00	0.00
22,600.0 90.00 179.60 10,135.0 -12,218.3 -1,271.8 12,281.2 0.00	0.00	0.00
22,700.0 90.00 179.60 10,135.0 -12,318.3 -1,271.1 12,380.8 0.00	0.00	0.00
22,800.0 90.00 179.60 10,135.0 -12,418.3 -1,270.4 12,480.4 0.00	0.00	0.00
22,900.0 90.00 179.60 10,135.0 -12,518.3 -1,269.7 12,580.0 0.00	0.00	0.00
23,000.0 90.00 179.60 10,135.0 -12,618.3 -1,269.0 12,679.6 0.00	0.00	0.00
23,100.0 90.00 179.60 10,135.0 -12,718.3 -1,268.4 12,779.2 0.00	0.00	0.00
23,200.0 90.00 179.60 10,135.0 -12,818.3 -1,267.7 12,878.8 0.00	0.00	0.00
23,300.0 90.00 179.60 10,135.0 -12,918.3 -1,267.0 12,978.5 0.00	0.00	0.00
23,400.0 90.00 179.60 10,135.0 -13,018.3 -1,266.3 13,078.1 0.00	0.00	0.00
23,500.0 90.00 179.60 10,135.0 -13,118.3 -1,265.6 13,177.7 0.00	0.00	0.00
23,600.0 90.00 179.60 10,135.0 -13,218.3 -1,264.9 13,277.3 0.00	0.00	0.00
23,700.0 90.00 179.60 10,135.0 -13,318.3 -1,264.2 13,376.9 0.00	0.00	0.00
23,800.0 90.00 179.60 10,135.0 -13,418.3 -1,263.5 13,476.5 0.00	0.00	0.00
23,900.0 90.00 179.60 10,135.0 -13,518.3 -1,262.8 13,576.1 0.00	0.00	0.00
24,000.0 90.00 179.60 10,135.0 -13,618.3 -1,262.2 13,675.8 0.00	0.00	0.00
24,100.0 90.00 179.60 10,135.0 -13,718.3 -1,261.5 13,775.4 0.00	0.00	0.00

7/2/2024 3:52:00PM

Page 8

COMPASS 5000.16 Build 100

.

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
24,200.0	90.00	179.60	10,135.0	-13,818.3	-1,260.8	13,875.0	0.00	0.00	0.00
24,300.0	90.00	179.60	10,135.0	-13,918.3	-1,260.1	13,974.6	0.00	0.00	0.00
24,400.0	90.00	179.60	10,135.0	-14,018.3	-1,259.4	14,074.2	0.00	0.00	0.00
24,500.0	90.00	179.60	10,135.0	-14,118.3	-1,258.7	14,173.8	0.00	0.00	0.00
24,600.0	90.00	179.60	10,135.0	-14,218.2	-1,258.0	14,273.4	0.00	0.00	0.00
24,700.0	90.00	179.60	10,135.0	-14,318.2	-1,257.3	14,373.0	0.00	0.00	0.00
24,800.0	90.00	179.60	10,135.0	-14,418.2	-1,256.6	14,472.7	0.00	0.00	0.00
24,900.0	90.00	179.60	10,135.0	-14,518.2	-1,255.9	14,572.3	0.00	0.00	0.00
25,000.0	90.00	179.60	10,135.0	-14,618.2	-1,255.3	14,671.9	0.00	0.00	0.00
25,100.0	90.00	179.60	10,135.0	-14,718.2	-1,254.6	14,771.5	0.00	0.00	0.00
25,200.0	90.00	179.60	10,135.0	-14,818.2	-1,253.9	14,871.1	0.00	0.00	0.00
25,300.0	90.00	179.60	10,135.0	-14,918.2	-1,253.2	14,970.7	0.00	0.00	0.00
25,400.0	90.00	179.60	10,135.0	-15,018.2	-1,252.5	15,070.3	0.00	0.00	0.00
25,500.0	90.00	179.60	10,135.0	-15,118.2	-1,251.8	15,169.9	0.00	0.00	0.00
25,600.0	90.00	179.60	10,135.0	-15,218.2	-1,251.1	15,269.6	0.00	0.00	0.00
25,700.0	90.00	179.60	10,135.0	-15,318.2	-1,250.4	15,369.2	0.00	0.00	0.00
25,761.8	90.00	179.60	10,135.0	-15,380.0	-1,250.0	15,430.7	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP(Pretty Good 20 Fe - plan hits target cen - Point	0.00 ter	0.00	9,657.5	316.0	-1,357.0	504,077.00	736,154.00	32° 23' 3.109 N	103° 42' 8.023 W
FTP(Pretty Good 20 Fec - plan hits target cen - Point	0.00 ter	0.00	9,870.2	266.0	-1,357.0	504,027.00	736,154.00	32° 23' 2.614 N	103° 42' 8.026 W
PBHL(Pretty Good 20 F - plan hits target cen - Point	0.00 ter	0.00	10,135.0	-15,380.0	-1,250.0	488,381.00	736,261.00	32° 20' 27.787 N	103° 42' 7.854 W

Released to Imaging: 12/13/2024 1:33:05 PM

leogresources

G

4

• |- |- |- |+ |+ |+

350-

700-

1050-

1400-

1750-

2100

2450-

2800-

3150

3500-

3850-

4200

4550-

Dept 0 4900

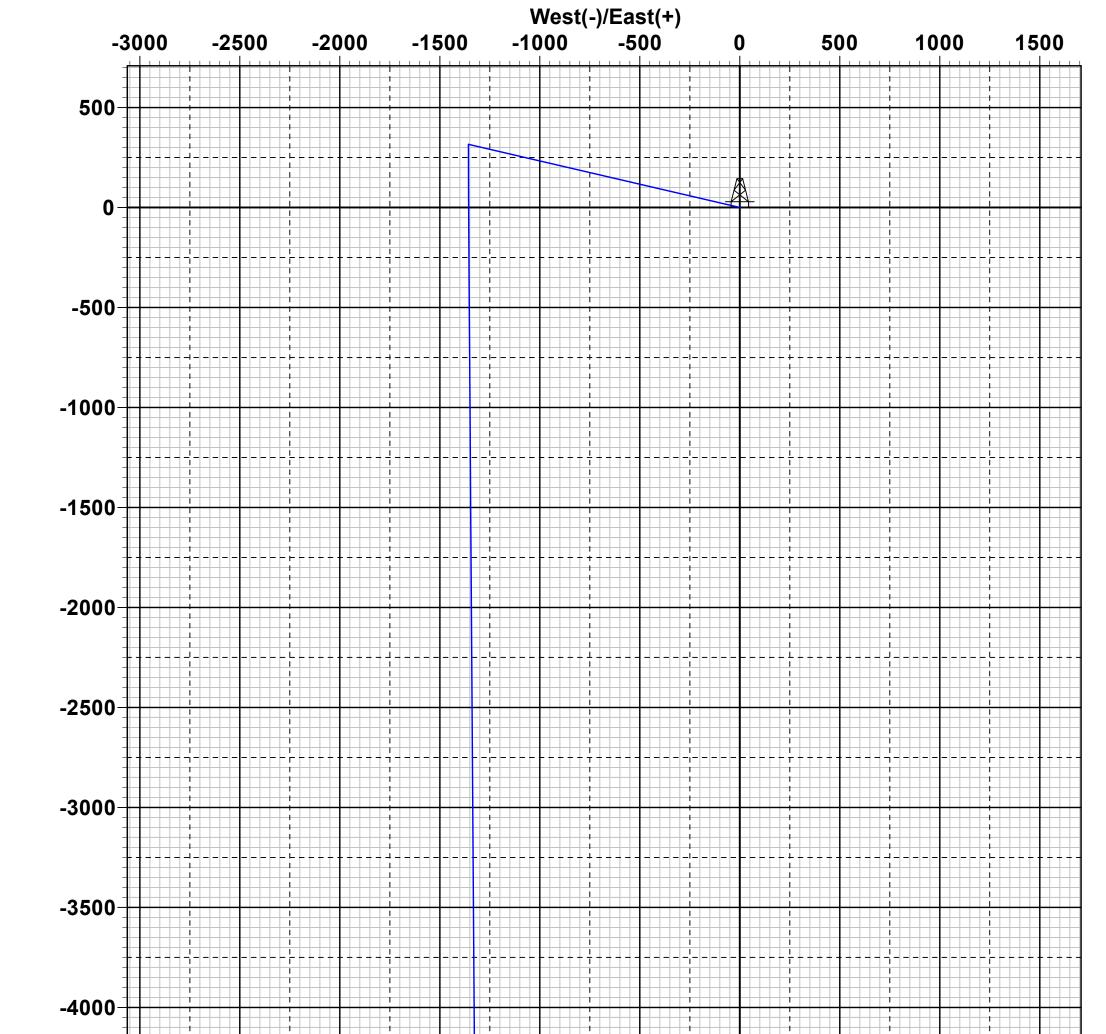
පු 5250

5600-

Azimuths to Grid North True North: -0.34° Magnetic North: 5.92°

> **Magnetic Field** Strength: 47256.0nT Dip Angle: 59.92° Date: 7/2/2024 Model: IGRF2020

To convert a Magnetic Direction to a Grid Direction, Add 5.92° To convert a Magnetic Direction to a True Direction, Add 6.26° East To convert a True Direction to a Grid Direction, Subtract 0.34°


Lea County, NM (NAD 83 NME)

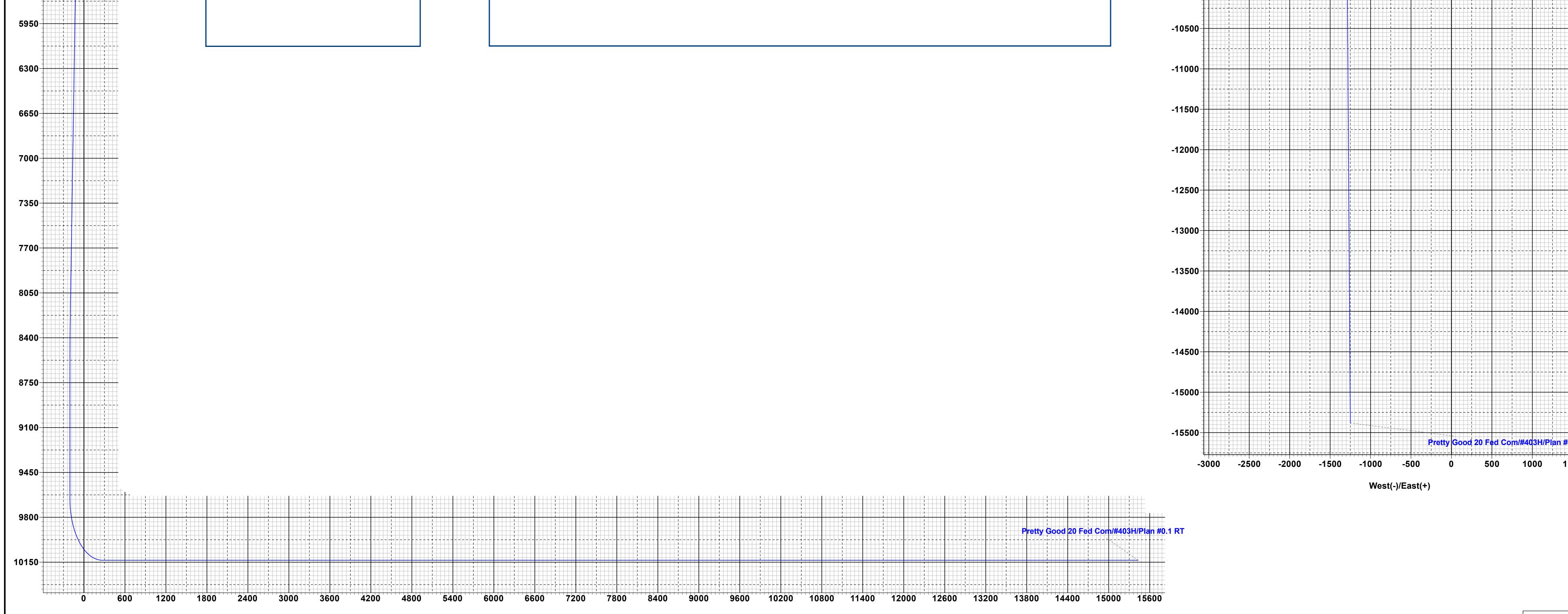
Pretty Good 20 Fed Com #403H

Plan #0.1 RT

PROJECT DETAILS: Lea County, NM (NAD 83 NME)

Geodetic System: US State Plane 1983 Datum: North American Datum 1983 Ellipsoid: GRS 1980 Zone: New Mexico Eastern Zone System Datum: Mean Sea Level

WELL DETAILS: #403H


		SECTION DETAILS												
Sec	MD	Inc	Azi	TVD	+N/-S	+E/-W	Dleg	TFace	VSect	Target				
1	0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.0					
2	1200.0	0.00	0.00	1200.0	0.0	0.0	0.00	0.00	0.0					
3	1770.4	11.41	283.11	1766.7	12.8	-55.1	2.00	283.11	-8.3					
4	8242.0	11.41	283.11	8110.3	303.2	-1301.9	0.00	0.00	-196.7					
5	8812.4	0.00	0.00	8677.0	316.0	-1357.0	2.00	180.00	-205.0					
6	9792.9	0.00	0.00	9657.5	316.0	-1357.0	0.00	0.00	-205.0	KOP(Pretty Good 20 Fed Com #403H)				
7	10013.3	26.46	180.00	9870.2	266.0	-1357.0	12.00	180.00	-155.2	FTP(Pretty Good 20 Fed Com #403H)				
8	10542.9	90.00	179.60	10134.9	-161.5	-1355.0	12.00	-0.44	270.7					
9	25761.8	90.00	179.60	10135.0	-15380.0	-1250.0	0.00	0.00	15430.7	PBHL(Pretty Good 20 Fed Com #403H)				

WELLBORE TARGET DETAILS (MAP CO-ORDINATES)													
Name	TVD	+N/-S	+E/-W	Northing	Easting								
KOP(Pretty Good 20 Fed Com #	403H) 9657.5	316.0	-1357.0	504077.00	736154.00								
FTP(Pretty Good 20 Fed Com #4	403H) 9870.2	266.0	-1357.0	504027.00	736154.00								
PBHL(Pretty Good 20 Fed Com	#403H) 10135.0	-15380.0	-1250.0	488381.00	736261.00								

CASING DETAILS

No casing data is available

-												
-		- +		+						 		
-4500												
-4000												
-		+ + + + + +	 · _!			!	 		!	 		
-												
-5000											1	
-5000												
-												
-												
EE00												
-5500												
-												
-										 		
-6000											1	
-											1	
-		 	 ¦	+			 · + + -			 		
-												
-6500												
-												
-		 	 İ				 · + + -			 		
-												
-7000											1	
-												
-	$\begin{array}{c} \bullet \\ \bullet $	 +	 				 · -			 		
-7500												
, –												
-			 i	+		I	 · + +			 		
-7500 -8000												
-8000												
-							 			 		
-												
-8500											1	
-0300												
-												
-												
-9000												
-												
	┽╉┽┽┽┥┥┙┙╸╸╸	+ + + + + + + + + + + + + + + + + + + +			+ + +			+ + + + + +		 		
-9500												
-												
-	+ +	 +	 				 			 		 - + + -
-												
										1		
-10000												

Vertical Section at 184.65°

Lea County, NM (NAD 83 NME) Pretty Good 20 Fed Com #403H OH Plan #0.1 RT 15:52, July 02 2024

- - - - -

- - - - ·

------+++

1500

Pretty Good 20 Fed Com 403H API #: 30-025-53112 Variances

EOG respectfully requests the below variances to be applied to the above well:

- Variance is requested to waive the centralizer requirements for the intermediate casing in the intermediate hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the intermediate interval to maximize cement bond and zonal isolation.

- Variance is also requested to waive the centralizer requirements for the production casing in the production hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the production interval to maximize cement bond and zonal isolation.

- Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

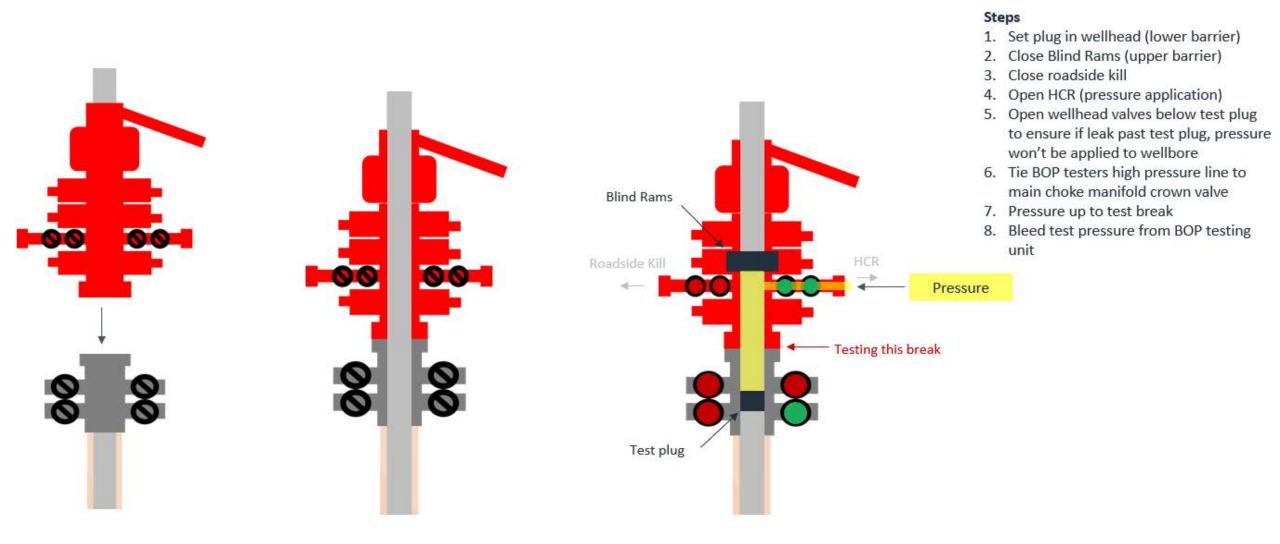
- Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

- Variance is requested to use a 5,000 psi annular BOP with the 10,000 psi BOP stack.

- EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and Cement on the subject well. After WOC 8 hours or 500 psi compressive strength (whichever is greater), the Surface Rig will move off so the wellhead can be installed. A welder will cut the casing to the proper height and weld on the wellhead (both "A" and "B" sections). The weld will be tested to 1,500 psi. All valves will be closed and a wellhead cap will be installed (diagram attached). If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

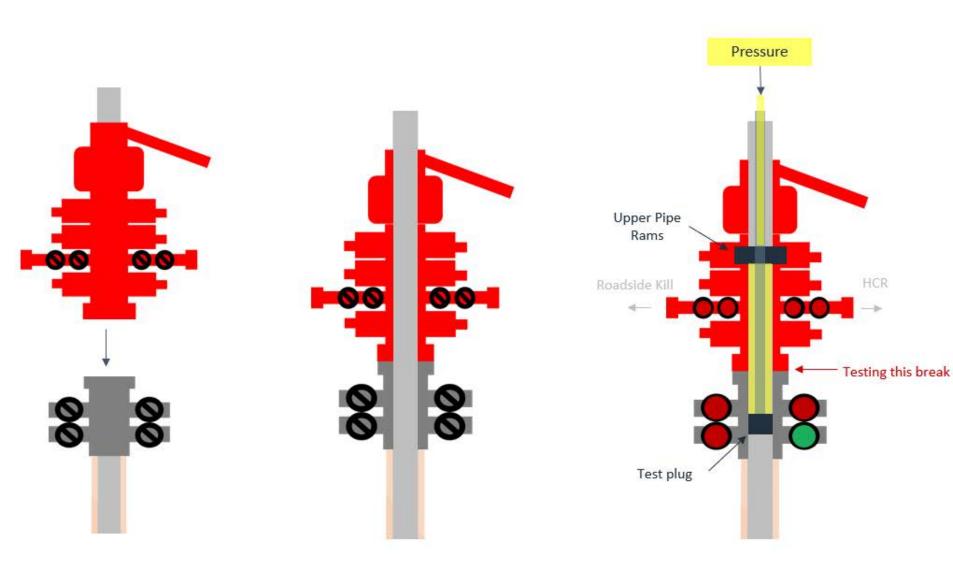
EOG requests the additional variance(s) in the attached document(s):

- EOG BLM Variance 2a Inermediate Bradenhead Cement
- EOG BLM Variance 3a_b BOP Break-test and Offline Intermediate Cement
- EOG BLM Variance 4a Salt Section Annular Clearance
- EOG BLM Variance 5a Alternate Shallow Casing Designs



Break-test BOP & Offline Cementing:

EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of ECFR Title 43 Part 3172.6(b)(9)(iv) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with Batch Drilling & Offline cement operations to include the following:


- Full BOPE test at first installation on the pad.
- Full BOPE test every 21 days.
- This test will be conducted for 5M rated hole intervals only.
- Each rig requesting the break-test variance is capable of picking up the BOP without damaging components using winches, following API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth edition, December 2018, Annex C. Table C.4) which recognizes break testing as an acceptable practice.
- Function tests will be performed on the following BOP elements:
 - Annular **à** during each full BOPE test
 - Upper Pipe Rams **à** On trip ins where FIT required
 - Blind Rams **à** Every trip
 - Lower Pipe Rams à during each full BOPE test
- Break testing BOP and BOPE coupled with batch drilling operations and option to offline cement and/or remediate (if needed) any surface or intermediate sections, according to attached offline cementing support documentation.
- After the well section is secured, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad.
- TA cap will also be installed per Wellhead vendor procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Break Test Diagram (HCR valve)

Released to Imaging: 12/13/2024 1:33:05 PM

Break Test Diagram (Test Joint)

Steps

- 1. Set plug in with test joint wellhead (lower barrier)
- 2. Close Upper Pipe Rams (upper barrier)
- 3. Close roadside kill
- 4. Close HCR
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- 6. Tie BOP testers high pressure line to top of test joint
- 7. Pressure up to test break
- 8. Bleed test pressure from BOP testing unit

Received by OCD: 8/21/2024 7:31:59 AM

Seog resources Offline Intermediate Cementing Procedure

Cement Program

1. No changes to the cement program will take place for offline cementing.

Summarized Operational Procedure for Intermediate Casing

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment back pressure valves.
 - a. Float equipment is equipped with two back pressure valves rated to a minimum of 5,000 psi.
- 2. Land production casing on mandrel hanger through BOP.
 - a. If casing is unable to be landed with a mandrel hanger, then the **casing will be cemented online**.
- 3. Break circulation and confirm no restrictions.
 - a. Ensure no blockage of float equipment and appropriate annular returns.
 - b. Perform flow check to confirm well is static.
- 4. Set pack-off
 - a. If utilizing a fluted/ported mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid, remove landing joint, and set annular packoff through BOP. Pressure test to 5,000 psi for 10 min.
 - b. If utilizing a solid mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid. Pressure test seals to 5,000 psi for 10 min. Remove landing joint through BOP.
- 5. After confirmation of both annular barriers and the two casing barriers, install TA plug and pressure test to 5,000 psi for 10 min. Notify the BLM with intent to proceed with nipple down and offline cementing.
 - a. Minimum 4 hrs notice.
- 6. With the well secured and BLM notified, nipple down BOP and secure on hydraulic carrier or cradle.
 - a. Note, if any of the barriers fail to test, the BOP stack will not be nippled down until after the cement job has concluded and both lead and tail slurry have reached 500 psi.
- 7. Skid/Walk rig off current well.
- 8. Confirm well is static before removing TA Plug.
 - a. Cementing operations will not proceed until well is under control. (If well is not static, notify BLM and proceed to kill)
 - b. Casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing.
 - c. Well control plan can be seen in Section B, Well Control Procedures.
 - d. If need be, rig can be moved back over well and BOP nippled back up for any further remediation.

Page | 1

2/24/2022

Page 36 of 91

2/24/2022

Seog resources

Offline Intermediate Cementing Procedure

- e. Diagram for rig positioning relative to offline cementing can be seen in Figure 4.
- 9. Rig up return lines to take returns from wellhead to pits and rig choke.
 - a. Test all connections and lines from wellhead to choke manifold to 5,000 psi high for 10 min.
 - b. If either test fails, perform corrections and retest before proceeding.
 - c. Return line schematics can be seen in Figure 3.
- 10. Remove TA Plug from the casing.
- 11. Install offline cement tool.
 - a. Current offline cement tool schematics can be seen in Figure 1 (Cameron) and Figure 2 (Cactus).
- 12. Rig up cement head and cementing lines.
 - a. Pressure test cement lines against cement head to 80% of casing burst for 10 min.
- 13. Break circulation on well to confirm no restrictions.
 - a. If gas is present on circulation, well will be shut in and returns rerouted through gas buster.
 - b. Max anticipated time before circulating with cement truck is 6 hrs.
- 14. Pump cement job as per plan.
 - a. At plug bump, test casing to 0.22 psi/ft or 1500 psi, whichever is greater.
 - b. If plug does not bump on calculated, shut down and wait 8 hrs or 500 psi compressive strength, whichever is greater before testing casing.
- 15. Confirm well is static and floats are holding after cement job.
 - a. With floats holding and backside static:
 - i. Remove cement head.
 - b. If floats are leaking:
 - i. Shut-in well and WOC (Wait on Cement) until tail slurry reaches 500 psi compressive strength and the casing is static prior to removing cement head.
 - c. If there is flow on the backside:
 - i. Shut in well and WOC until tail slurry reaches 500 psi compressive strength. Ensure that the casing is static prior to removing cement head.
- 16. Remove offline cement tool.
- 17. Install night cap with pressure gauge for monitoring.
- 18. Test night cap to 5,000 psi for 10 min.

Example Well Control Plan Content

A. Well Control Component Table

The table below, which covers the cementing of the <u>5M MASP (Maximum Allowable Surface Pressure) portion of the well</u>, outlines the well control component rating in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the BOP nippled up to the wellhead.

Intermediate hole section, 5M requirement

Component	RWP
Pack-off	10M
Casing Wellhead Valves	10M
Annular Wellhead Valves	5M
TA Plug	10M
Float Valves	5M
2" 1502 Lo-Torque Valves	15M

B. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while circulating and cementing through the Offline Cement Adapter.

General Procedure While Circulating

- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.

Page | 3

2/24/2022

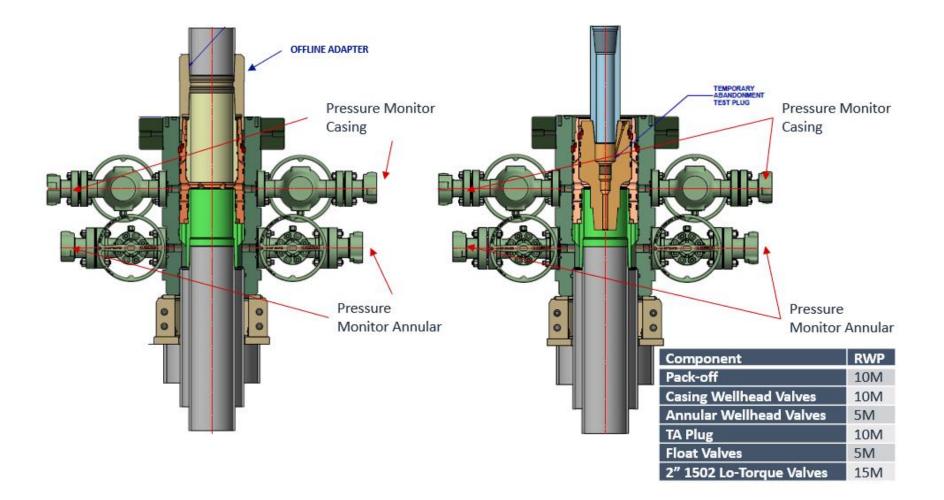
Seog resources

Offline Intermediate Cementing Procedure

- 6. Read and record the following:
 - a. SICP (Shut in Casing Pressure) and AP (Annular Pressure)
 - b. Pit gain
 - c. Time
 - d. Regroup and identify forward plan to continue circulating out kick via rig choke and mud/gas separator. Circulate and adjust mud density as needed to control well.

General Procedure While Cementing

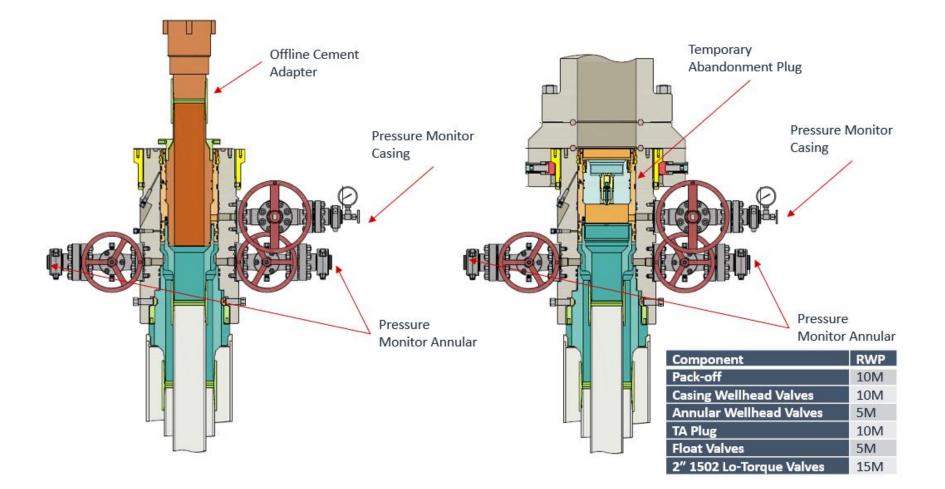
- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.
- 6. Open rig choke and begin pumping again taking returns through choke manifold and mud/gas separator.
- 7. Continue to place cement until plug bumps.
- 8. At plug bump close rig choke and cement head.
- 9. Read and record the following
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead


General Procedure After Cementing

- 1. Sound alarm (alert crew).
- 2. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 3. Confirm shut-in.
- 4. Notify tool pusher/company representative.
- 5. Read and record the following:
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead

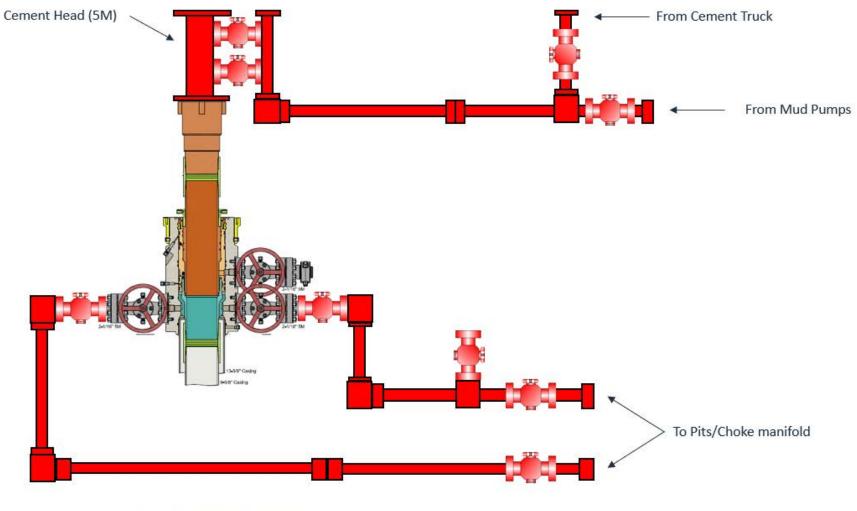
Page | 4

Seog resources Offline Intermediate Cementing Procedure


Figure 1: Cameron TA Plug and Offline Adapter Schematic

2/24/2022

leog resources Offline Intermediate Cementing Procedure


Page | 6

2/24/2022

2/24/2022

Seog resources Offline Intermediate Cementing Procedure

*** All Lines 10M rated working pressure

Page | 7

Offline Intermediate Cementing Procedure

2/24/2022

Salt Section Annular Clearance Variance Request

Daniel Moose

Current Design (Salt Strings)

0.422" Annular clearance requirement

- Casing collars shall have a minimum clearance of 0.422 inches on all sides in the hole/casing annulus, with recognition that variances can be granted for justified exceptions.

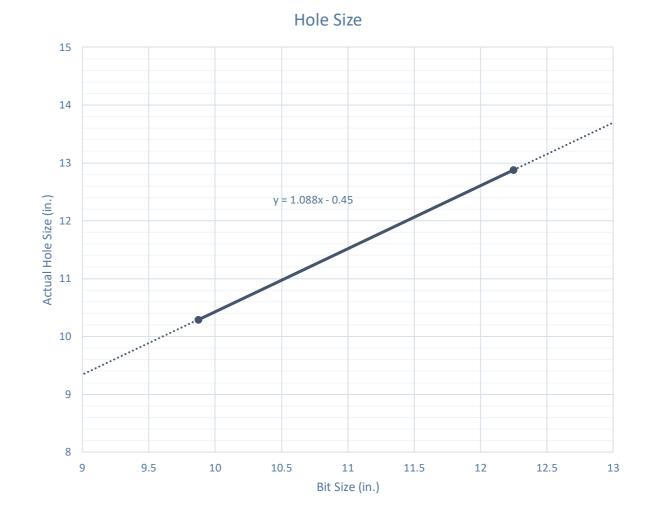
- 12.25" Hole x 9.625"40# J55/HCK55 LTC Casing
 - 1.3125" Clearance to casing OD
 - 0.8125" Clearance to coupling OD
- 9.875" Hole x 8.75" 38.5# P110 Sprint-SF Casing
 - 0.5625" Clearance to casing OD
 - 0.433" Clearance to coupling OD

Page 45 of 91

Annular Clearance Variance Request

EOG request permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Onshore Order #2 under the following conditions:

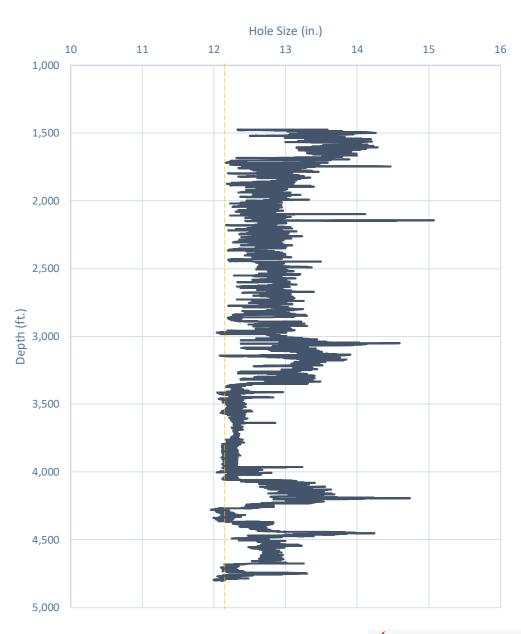
- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues


Volumetric Hole Size Calculation

Hole Size Calculations Off Cement Volumes

- Known volume of cement pumped
- Known volume of cement returned to surface
- Must not have had any losses
- Must have bumped plug

Average Hole Size

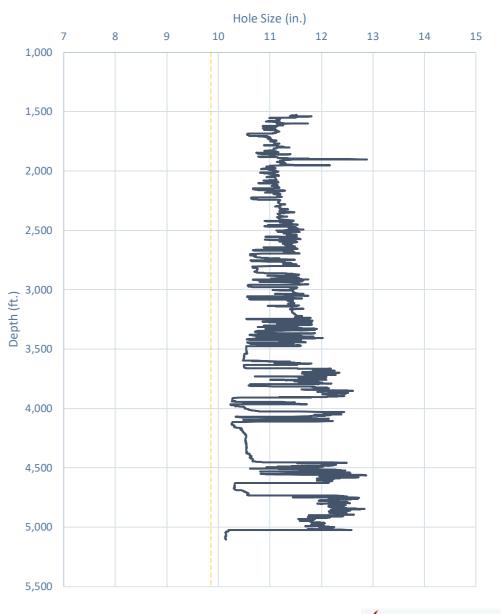

- 12.25" Hole
 - 12.88" Hole
 - 5.13% diameter increase
 - 10.52% area increase
 - 0.63" Average enlargement
 - 0.58" Median enlargement
 - 179 Well Count
- 9.875" Hole
 - 10.30" Hole
 - 4.24% diameter increase
 - 9.64% area increase
 - 0.42" Average enlargement
 - 0.46" Median enlargement
 - 11 Well Count

Caliper Hole Size (12.25")

Average Hole Size

- 12.25" Bit
 - 12.76" Hole
 - 4.14% diameter increase
 - 8.44% area increase
 - 0.51" Average enlargement
 - 0.52" Median enlargement
 - Brine

Modelo 10 Fed Com #501H



Whirling Wind 11 Fed Com #744H

Caliper Hole Size (9.875")

Average Hole Size

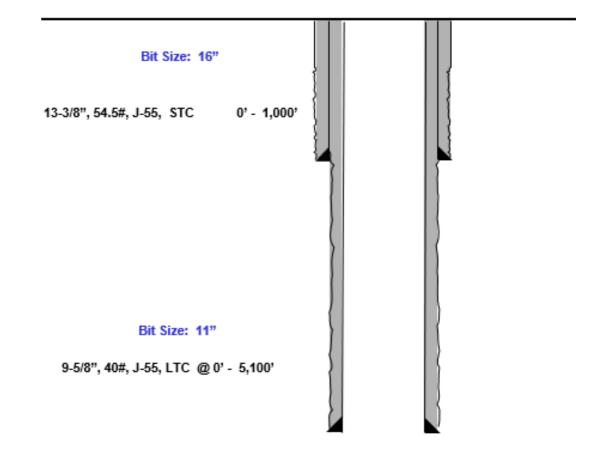
- 9.875" Hole
 - 11.21" Hole
 - 13.54% diameter increase
 - 28.92% area increase
 - 1.33" Average enlargement
 - 1.30" Median enlargement
 - EnerLite

Design A

Proposed 11" Hole with 9.625" 40# J55/HCK55 LTC Casing

- 11" Bit + 0.52" Average hole enlargement = 11.52" Hole Size
 - 0.9475" Clearance to casing OD

$$=\frac{11.52 - 9.625}{2}$$


• 0.4475" Clearance to coupling OD

$$11.52 - 10.625$$


=

- Previous Shoe 13.375" 54.5# J55 STC
 - 0.995" Clearance to coupling OD (~1,200' overlap)

$$=\frac{12.615-10.625}{2}$$

Design B

Index

Released to Imaging: 12/13/2024 1:33:05 PM

Page 51 of 91

.

Casing Spec Sheets

PERFORMANCE DATA

API LTC		
Technical	Data	Sheet

9.625 in 40.00 lbs/ft

K55 HC

Tubular Parameters

Size	9.625	in	Minimum Yield	55	ksi
Nominal Weight	40.00	lbs/ft	Minimum Tensile	95	ksi
Grade	K55 HC		Yield Load	629	kips
PE Weight	38.94	lbs/ft	Tensile Load	1088	kips
Wall Thickness	0.395	in	Min. Internal Yield Pressure	3,950	psi
Nominal ID	8.835	in	Collapse Pressure	3600	psi
Drift Diameter	8.750	in		•	·
Nom. Pipe Body Area	11.454	in²			
	•	•			

Connection Parameters

Connection OD	10.625	in
Coupling Length	10.500	in
Threads Per Inch	8	tpi
Standoff Thread Turns	3.50	turns
Make-Up Loss	4.750	in
Min. Internal Yield Pressure	3,950	psi

Pipe Body and API Connections Performance Data

13.375	54.50/0.380	J55

New Search »

« Back to Previous List

USC O Metric

PDF

6/8/2015 10:04:37 AM					
Mechanical Properties	Ptpe	BTC	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	BTC	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	-	-	-	in.
Inside Diameter	12.615	12.615	-	12.615	in.
Standard Drift	12.459	12.459	-	12.459	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	54.50	-	-	-	lbs/ft
Plain End Weight	52.79	-	-	-	lbs/ft
Performance	Ptpe	BTC	LTC	STC	
Minimum Collapse Pressure	1,130	1,130	-	1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	-	2,740	psi
Minimum Pipe Body Yield Strength	853.00	-	-	-	1000 lbs
Joint Strength	-	909	-	514	1000 lbs
Reference Length	-	11,125	-	6,290	ft
Make-Up Data	Ptpe	BTC	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,860	fl-lbs
Maximum Make-Up Torque	-	-	-	6,430	ft-lbs

Casing Spec Sheets

Pipe Body and API Connections Performance Data

10.750 40.50/0.350 J55					PD
New Search »					« Back to Previous I
					USC 🔵 Met
/8/2015 10:14:05 AM					
Mechanical Properties	Ptpe	BTC	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-		psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	втс	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350	-	-		in.
Inside Diameter	10.050	10.050		10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50	-	-	-	lbs/ft
Plain End Weight	38.91	-	-		lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi
Minimum Pipe Body Yield Strength	629.00	-	-		1000 lbs
Joint Strength	-	700	-	420	1000 lbs
Reference Length	-	11,522	-	6,915	ft
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81		3.50	in.
Minimum Make-Up Torque	-	-		3,150	ft-lbs
Maximum Make-Up Torque	-	-	-	5,250	ft-lbs

								all	our	ec
					AP	1 5 CT , 1	0th Ed. Co	onnect	ion Data	Sheet
	O.D. (in) 8.625	WEIGHT (I Nominal: Plain End:	b/ft) 32.00 31.13	WALL (in 0.352	`	ADE 55	* API DRIF 7.796	· 1	RBW 87.	
	Ma	aterial Propert	ies (PE)			P	ipe Body I	Data (I	PE)	
5		Pipe					Geom	etry		
	Minimum Yie	eld Strength:	55	ksi	Nomir	nal ID:			7.92 i	nch
	Maximum Yi	ield Strength:	80	ksi	Nomir	Nominal Area:			9.149 in ²	
	Minimum Te	ensile Strength:	75	ksi	*Spec	ial/Alt. D)rift:		7.875 i	nch
		Coupling	J				Perform			
		eld Strength:		ksi			ld Strength	1:	503 k	
	Maximum Yi	ield Strength:	80	ksi		Collapse Resistance: Internal Yield Pressure:			2,530 psi	
l	Minimum Te	ensile Strength:	ksi		istorical)	essure.		3,930 p	si	
	ļ	API Connectio Coupling OD: 9				AP	l Connecti	ion To	rque	
		STC Perform			STC Torque (ft-lbs)					
	STC Interna	Pressure:	3,930	psi	Min:	2,793	Opti:	3,724	Max:	4,655
l	STC Joint S	trength:	372	kips						
		LTC Perform	ance			I	LTC Torqu	e (ft-lk	is)	
I.	LTC Interna	Pressure:	3,930	psi	Min:	3,130	Opti:	4,174	Max:	5,217
	LTC Joint St	•		kips						
	SC-BTC Pe	rformance - C	pig OD =	9.125"		E	BTC Torqu	e (ft-lk	os)	
	BTC Interna	I Pressure:	3,930	psi	follo	w API gui	delines regar	ding pos	sitional ma	ke up
	BTC Joint S	trength:	503	kips						
			*Alt. Drift will	be used unles	s API Drift	is specifie	d on order.			
	**lf a	above API connec	tions do not	suit your nee 100% of pi			n connections	s are ava	ailable up t	0
	AND ON AN "AS IS MERCHANTABILITY ONLY AND IS BASED INCIDENTAL, PUNIT	S PROVIDED BY VALLOUREC S" BASIS WITHOUT WARRAN , FITNESS FOR PURPOSE, AC ON ESTIMATES THAT HAVE IVE, EXEMPLARY OR CONSE T) HOWEVER CAUSED OR AI	ITY OR REPRESENT CURACY OR COMP NOT BEEN VERIFIE QUENTIAL LOSS OF	ATION OF ANY KIND PLETENESS. THE INFO ED OR TESTED. IN NO R DAMAGE (INCLUD	D, WHETHER EX DRMATION COP DEVENT SHALL ING WITHOUT DR DAMAGES VI	PRESS OR IMPL NTAINED IN THI VALLOUREC OF LIMITATION, LC VERE FORESEEA	IED, INCLUDING WIT IS DOCUMENT IS PRO R ITS AFFILIATES BE F DSS OF USE, LOSS OF	THOUT LIMIT DVIDED FOR RESPONSIBLE BARGAIN, L	ATION ANY WAI INFORMATIONA FOR ANY INDIR DSS OF REVENUE	RRANTY OF L PURPOSES ECT, SPECIAL E, PROFIT OR

eog

Released to Imaging: 12/13/2024 1:33:05 PM

11

EOG BLANKET CASING DESIGN VARIANCE

EOG respectfully requests the drill plans in the attached document 'EOG Alternate Casing Designs – BLM APPROVED' be added to the COA's for this well. These designs have been approved by the BLM down to the TVDs listed below and will allow EOG to run alternate casing designs for this well if necessary.

The designs and associated details listed are the "worst case scenario" boundaries for design safety factors. Location and lithology have NOT been accounted for in these designs. The specific well details will be based on the APD/Sundry package and the information listed in the COA.

The mud program will not change from the original design for this well. Summary of the mud programs for both shallow and deep targets are listed at the end of this document. If the target is changing, a sundry will be filed to update the casing design and mud/cement programs.

Cement volumes listed in this document are for reference only. The cement volumes for the specific well will be adjusted to ensure cement tops meet BLM requirements as listed in the COA and to allow bradenhead cementing when applicable.

This blanket document only applies to wells with three string designs outside of Potash and Capitan Reef boundaries.

Sł	Shallow Design Boundary Conditions											
	Deepest	Deepest	Max Inc	Max DLS								
	MD (ft)	TVD (ft)	(deg)	(°/100usft)								
Surface	2030	2030	0	0								
Intermediate	7793	5650	40	8								
Production	28578	12000	90	25								

Shallow Design A

.		NOUNA						
Hole	Interv	al MD	Interva	Interval TVD				
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

4. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

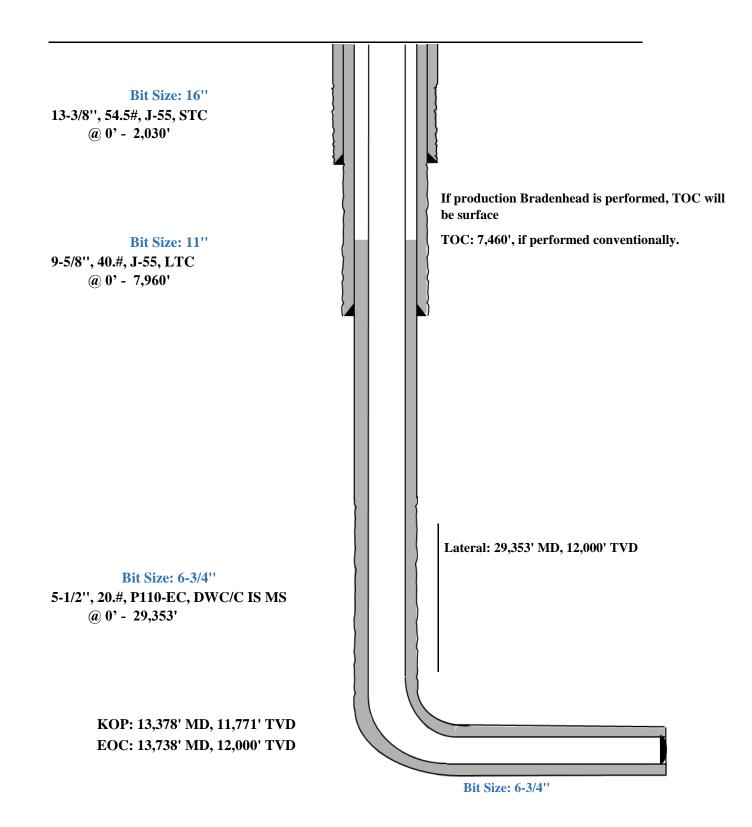
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	
2,030' 13-3/8''	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8''	760	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{5-1/2''}	1000	14.8	1.32	Bradenhead squeeze: Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	1480	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)


5. CEMENTING PROGRAM:

Seog resources

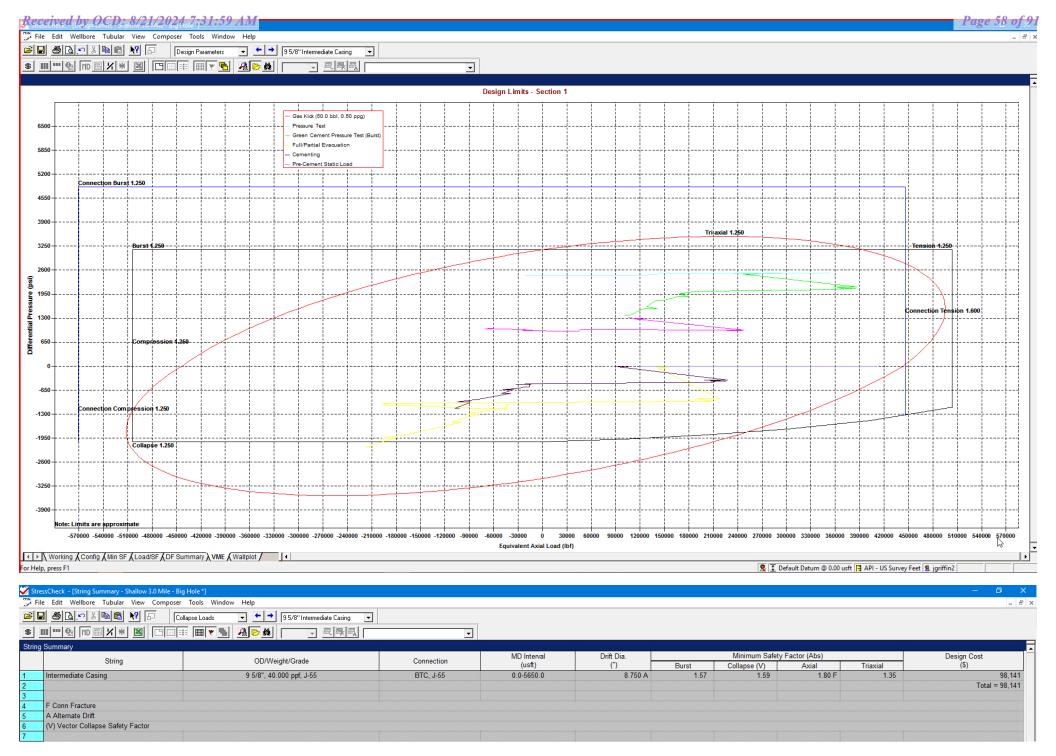
Shallow Design A

Proposed Wellbore

KB: 3558' GL: 3533'

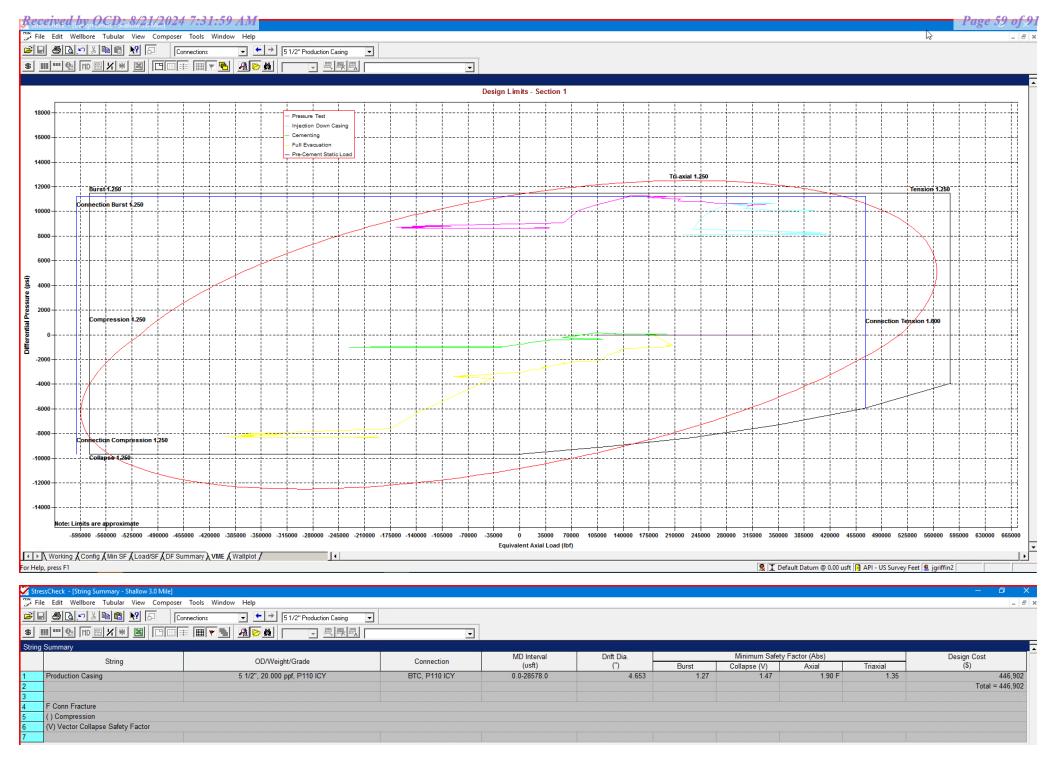
Page 57 of 9

Image: Section 1 Image: Section 2 S Image: Section 2 M Image: Section 2 M Image: Section 2 S Image: Section 2 M Image: Sec •


Axial Force (lbf)					Absolute Safety Factor _ Pressure (psi)									
	Depth (MD) (usft)	Apparent (w/Bending)	Actual (w/o Bending)	Equivalent Axial Load (lbf)	Bending Stress at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	Temperature (°F)	Internal	External	Addt'l Pickup To Prevent Buck. (lbf)	Buckled Length (usft
	0	252987	228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500.00	0.00	N/A	N/A
	100	247735	223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543.63	43.63		
	100	234996	223701	235716	986.2	1.71	1.58	N/A	3.04 F	71.10	2543.64	43.64		
	1700	341565	139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241.64	741.64		
	1700	312979	139666	323488	15131.5	1.58	1.57	N/A	2.28 F	88.70	3241.65	741.65		
	1850	336881	132027	348440	17885.2	1.51	1.57	N/A	2.12 F	90.29	3305.05	805.05		
	1850	318549	132027	329984	16284.8	1.54	1.57	N/A	2.24 F	90.29	3305.06	805.06		
	1950	320468	127243	332475	16869.9	1.52	1.57	N/A	2.23 F	91.30	3344.87	844.87		
	1950	312802	127243	324756	16200.7	1.53	1.57	N/A	2.28 F	91.30	3344.87	844.87		
	2050	307858	122773	320295	16159.3	1.52	1.57	N/A	2.32 F	92.23	3381.89	881.89		
	2050	303560	122772	315965	15784.1	1.53	1.57	N/A	2.35 F	92.23	3381.89	881.89		
	2300	151294	112633	163658	3375.4	1.71	1.57	N/A	4.72 F	94.35	3466.13	966.13		
	2300	132741	112633	144956	1755.6	1.72	1.57	N/A	5.38 F	94.35	3466.14	966.14		
	2370	129966	109858	142452	1755.6	1.72	1.57	N/A	5.49 F	94.94	3489.28	989.28		
	2370	127909	107800	140922	1755.6	1.75	1.60	N/A	5.58 F	94.94	3489.29	1036.40		
	2700	105515	94232	119785	985.1	1.75	1.60	N/A	6.77 F	97.73	3599.97	1152.35		
	2700	111680	94231	126006	1523.4	1.75	1.60	N/A	6.39 F	97.73	3599.97	1152.35		
	3100	110766	77783	126839	2879.6	1.71	1.60	N/A	6.44 F	101.11	3734.23	1293.00		
	3100	97392	77783	113331	1712.1	1.73	1.60	N/A	7.33 F	101.11	3734.23	1293.01		
	3700	71565	53303	89806	1594.4	1.70	1.61	N/A	9.97 F	106.15	3934.24	1502.54		
	3700	60887	53302	79004	662.3	1.71	1.61	N/A	11.72 F	106.16	3934.25	1502.55		
	4650	34671	14219	56495	1785.6	1.64	1.61	N/A	20.59 F	114.20	4253.37	1836.86		
	4900	44595	4828	67626	3472.0	1.59	1.61	N/A	16.01 F	116.32	4337.37	1924.87		
	4900	28975	4828	51775	2108.2	1.62	1.61	N/A	24.64 F	116.32	4337.38	1924.87		
	5029	22103	34	45340	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.40	1969.94		
	5029	22102	33	45339	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.41	1969.95		
	5600	-45329	-21341	-20805	2094.3	1.57	1.62	N/A	(13.67)	122.23	4572.11	2170.78		
	5650	-40465	-23210	-15657	1506.5	1.58	1.62	N/A	(15.31)	122.66	4588.87	2188.34		
		onn Fracture												
		compression Vector Collapse Safety												
	(V) V	ector Collapse Safety	ractor											

✓ ► Working (Config (Min SF) Load/SF (DF Summary (VME (Wallplot)) For Help, press F1

🧏 İ Default Datum @ 0.00 usft 📑 API - US Survey Feet 😫 jgriffin2


9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 12/13/2024 1:33:05 PM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 12/13/2024 1:33:05 PM

Page 6 of 25

Seog resources

Shallow Design B

. . C		ROOMA						
Hole	Interv	al MD	Interva	al TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13-1/2"	0	2,161	0	2,030	10-3/4"	40.5#	J-55	STC
9-7/8"	0	7,951	0	5,650	8-5/8"	32#	J-55	BTC-SC
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

4. CASING PROGRAM

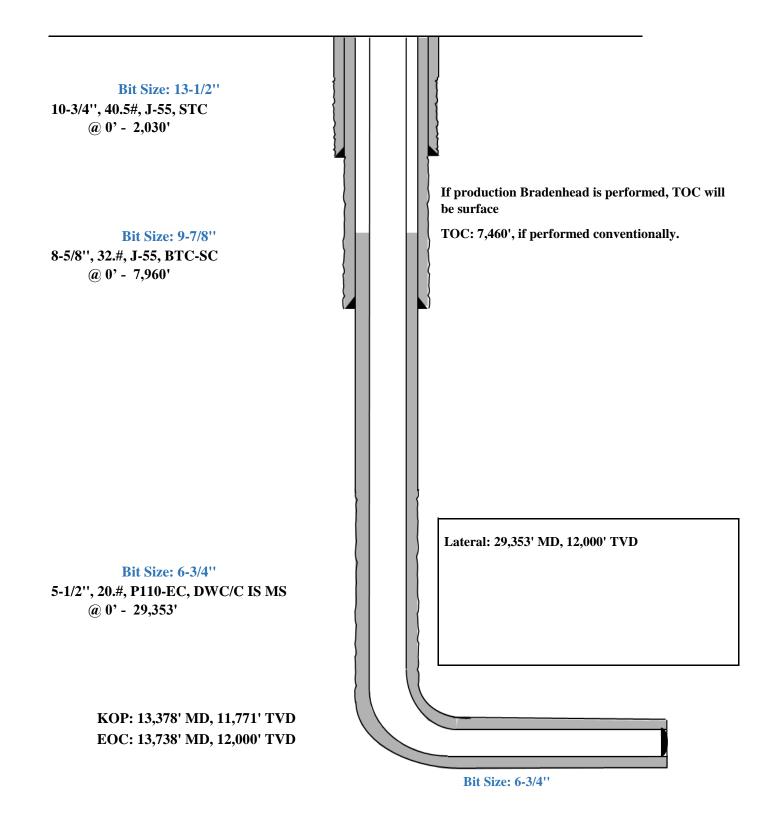
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.


		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	
2,030' 10-3/4''	530	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	140	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' ^{8-5/8''}	470	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	210	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{5-1/2''}	1000	14.8	1.32	Bradenhead squeeze: Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	1480	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)

5. CEMENTING PROGRAM:

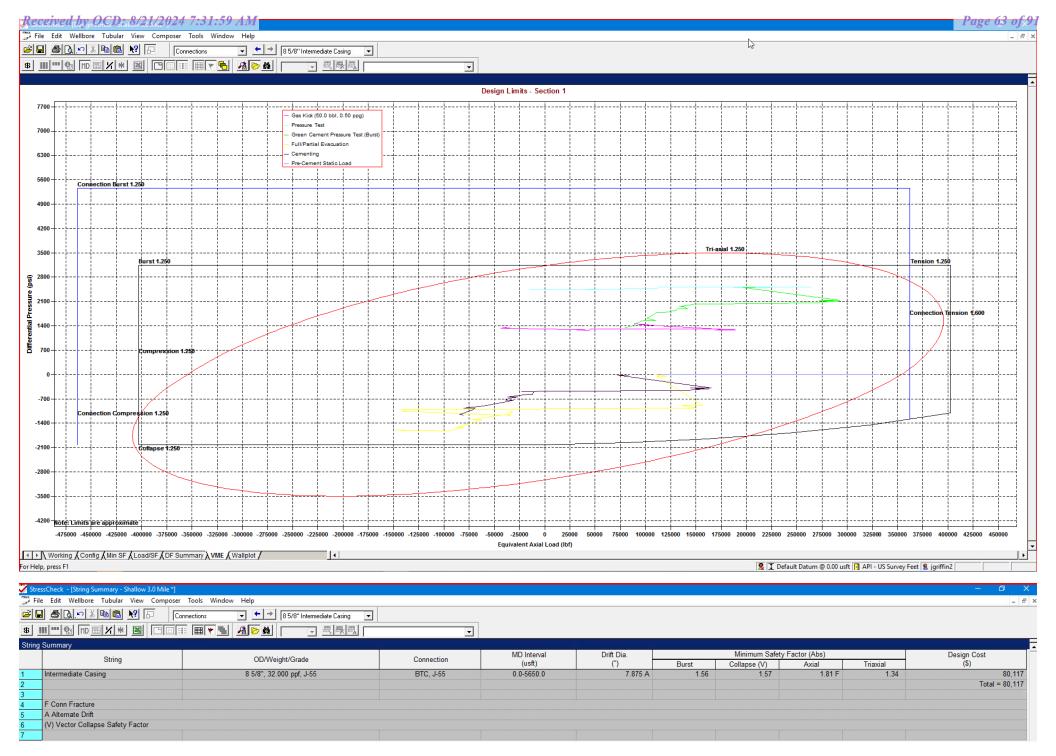
Shallow Casing Design B

Proposed Wellbore KB: 3558'

_ 8 >

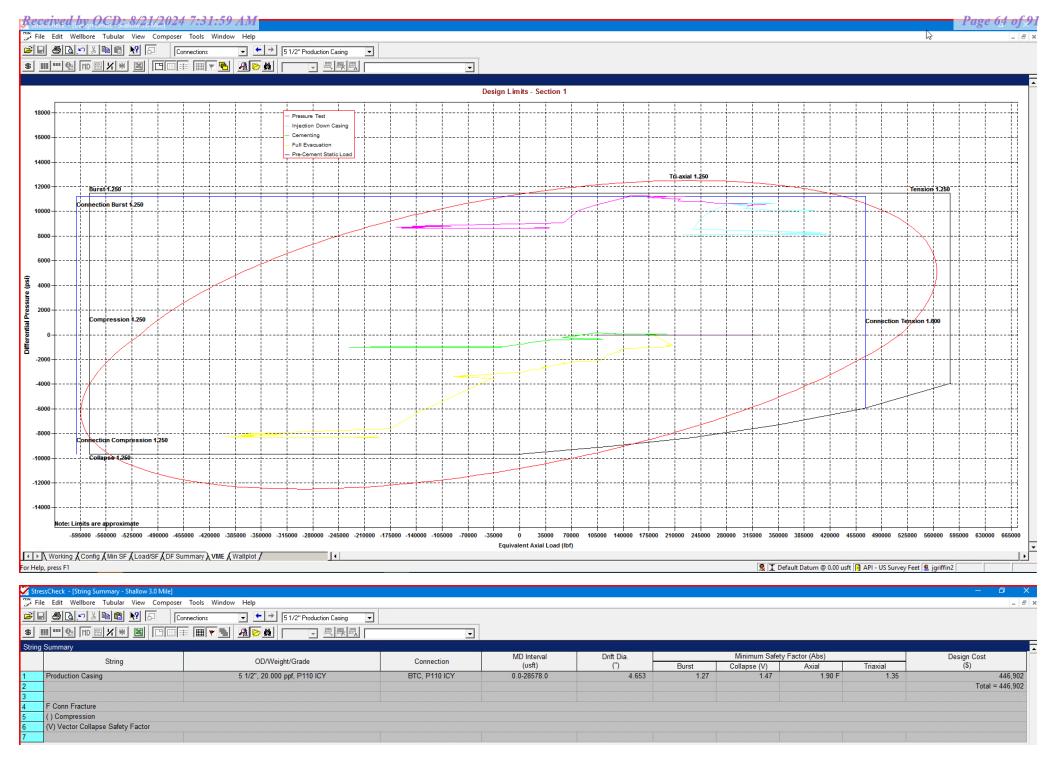
🚟 File Edit Wellbore Tubular View Composer Tools Window Help

▼ ► → 85/8" Intermediate Casing ▼ Burst Design 💌 🖳 🗮 🖳 Pressure Test •


Axial Force (lbf)		Force (lbf)	E 1 1 1			Absolute S	afety Factor		T .	Pressur	e (psi)		
(usft)	Apparent (w/Bending)	Actual (w/o Bending)	Equivalent Axial Load (lbf)	Bending Stress at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	Temperature (°F)	Internal	External	Addt'l Pickup To Prevent Buck. (Ibf)	Buckled Length (usft)
0	200426	183224	200546	1880.2	1.68	1.57	N/A	2.89 F	70.00	2500.00	0.00	N/A	N/A
100	196229	179028	196812	1880.2	1.69	1.57	N/A	2.95 F	71.10	2543.63	43.63		
 100	187111	179027	187686	883.7	1.70	1.57	N/A	3.10 F	71.10	2543.64	43.64		
 1700	256401	111891	264835	15795.8	1.56	1.56	N/A	2.26 F	88.70	3241.64	741.64		
 1700	235940	111891	244247	13559.4	1.60	1.56	N/A	2.45 F	88.70	3241.65	741.65		
 1850	252413	105788	261533	16027.0	1.54	1.56	N/A	2.29 F	90.29	3305.05	805.05		
 1850	239292	105787	248323	14592.9	1.56	1.56	N/A	2.42 F	90.29	3305.06	805.06		
 1950	240267	101966	249748	15117.2	1.54	1.56	N/A	2.41 F	91.30	3344.87	844.87		
 1950	234781	101965	244223	14517.5	1.56	1.56	N/A	2.47 F	91.30	3344.87	844.87		
 2050	230871	98395	240694	14480.4	1.55	1.56	N/A	2.51 F	92.23	3381.89	881.89		
 2050	227794	98394	237594	14144.2	1.55	1.56	N/A	2.54 F	92.23	3381.89	881.89		
 2300	117966	90294	127818	3024.7	1.70	1.56 1.56	N/A	4.91 F	94.35	3466.13	966.13		
 2300	104686	90293	114432	1573.2	1.71		N/A	5.53 F	94.35	3466.14	966.14		
 2370	102469 100817	88077	112431	1573.2	1.71	1.56 1.59	N/A	5.65 F 5.75 F	94.94 94.94	3489.28	989.28 1036.40		
 2370	83660	75583	111200 95052	1573.2 882.8	1.75	1.59	N/A N/A	5.75 F 6.92 F	94.94	3489.29 3599.97	1036.40		
 2700	88072	75583	95052	1365.1	1.74	1.59	N/A N/A	6.58 F	97.73	3599.97	1152.35		
 3100	86049	62442	99504	2580.4	1.74	1.59	N/A N/A	6.58 F	101.11	3599.97	1152.35		
 3100	76477	62442	89195	1534.2	1.71	1.59	N/A	7.57 F	101.11	3734.23	1293.00		
 3700	55953	42882	70509	1428.8	1.69	1.59	N/A N/A	10.35 F	106.15	3934.23	1295.01		
 3700	48311	42002	62778	593.5	1.71	1.60	N/A	11.99 F	106.15	3934.24	1502.54		
 4000	41458	33043	56865	919.9	1.69	1.60	N/A	13.97 F	108.69	4034.82	1607.91		
 4650	26293	11655	43706	1600.1	1.63	1.60	N/A	22.03 F	114.20	4054.02	1836.86		
 4900	32619	4156	50970	3111.2	1.59	1.60	N/A	17.76 F	116.32	4337.37	1924.87		
 4900	21439	4155	39625	1889.2	1.61	1.60	N/A	27.02 F	116.32	4337.38	1924.87		
 5039	15822	26	34389	1726.6	1.61	1.61	N/A	36.61 F	117.49	4383.77	1973.48		
 5039	15822	26	34388	1726.6	1.61	1.61	N/A	36.61 F	117.49	4383.78	1973.49		
 5600	-33912	-16743	-14286	1876.7	1.57	1.61	N/A	(14.60)	122.23	4572.11	2170.78		
 5650	-30585	-18235	-10742	1350.0	1.58	1.61	N/A	(16.18)	122.66	4588.87	2188.34		
 				1000.0				(10.10)		1000.01	2100.01		
 F C	onn Fracture												
	ompression												
	ector Collapse Safet	y Factor											

Working Config Min SF Load/SF DF Summary WIE Wallplot For Help, press F1

🕵 I Default Datum @ 0.00 usft 📑 API - US Survey Feet 😫 jgriffin2


8-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

*Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 12/13/2024 1:33:05 PM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 12/13/2024 1:33:05 PM

Page 11 of 25

Shallow Design C

 . C		NUGNA	IVI					
Hole	Interv	al MD	Interva	al TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	29,353	0	12,000	6"	24.5#	P110-EC	VAM Sprint-SF

4. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

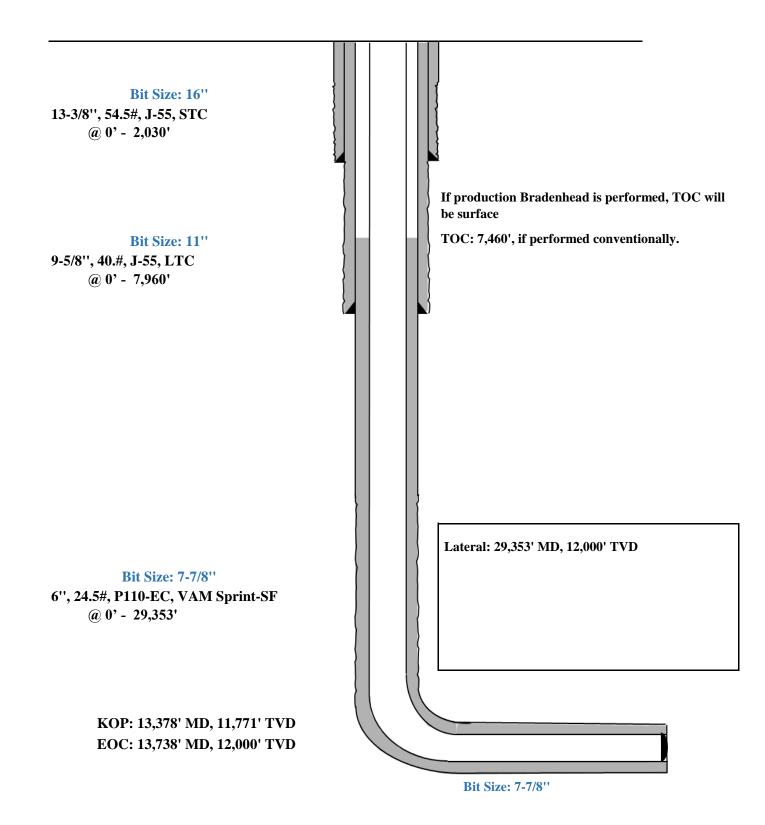
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" casing in the 7-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidny Description
2,030' 13-3/8''	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8''	760	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{6''}	1000	14.8	1.32	Bradenhead squeeze: Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	2500	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)


5. CEMENTING PROGRAM:

Seog resources

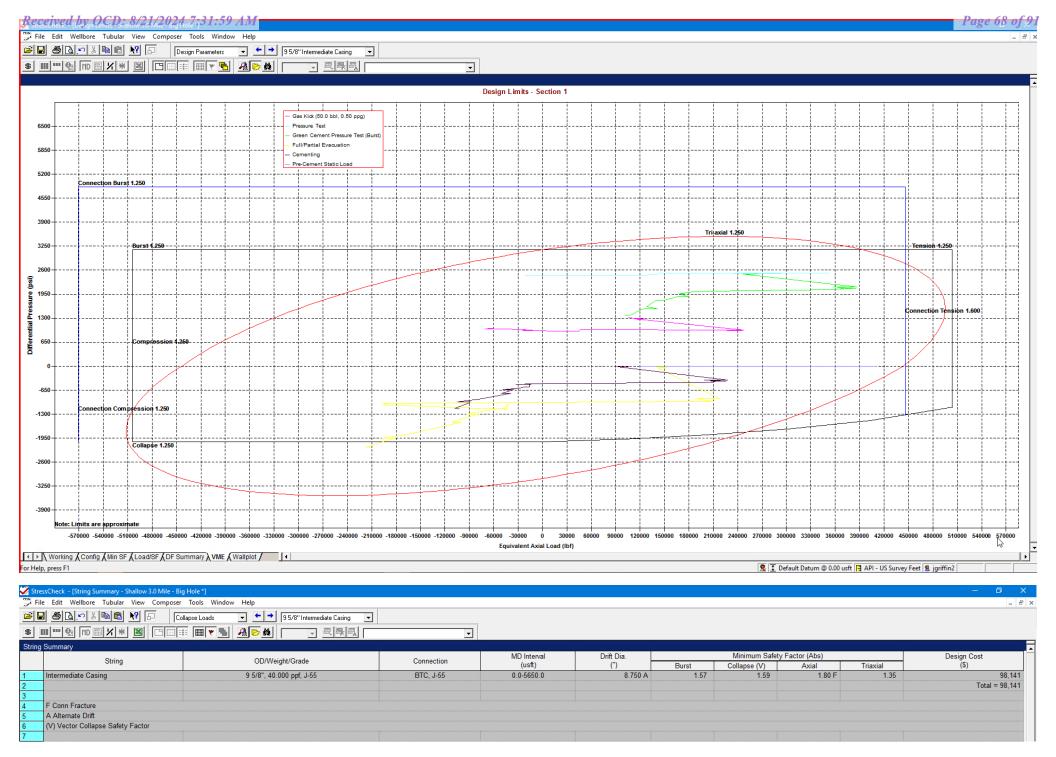
Shallow Design C

Proposed Wellbore

KB: 3558' GL: 3533'

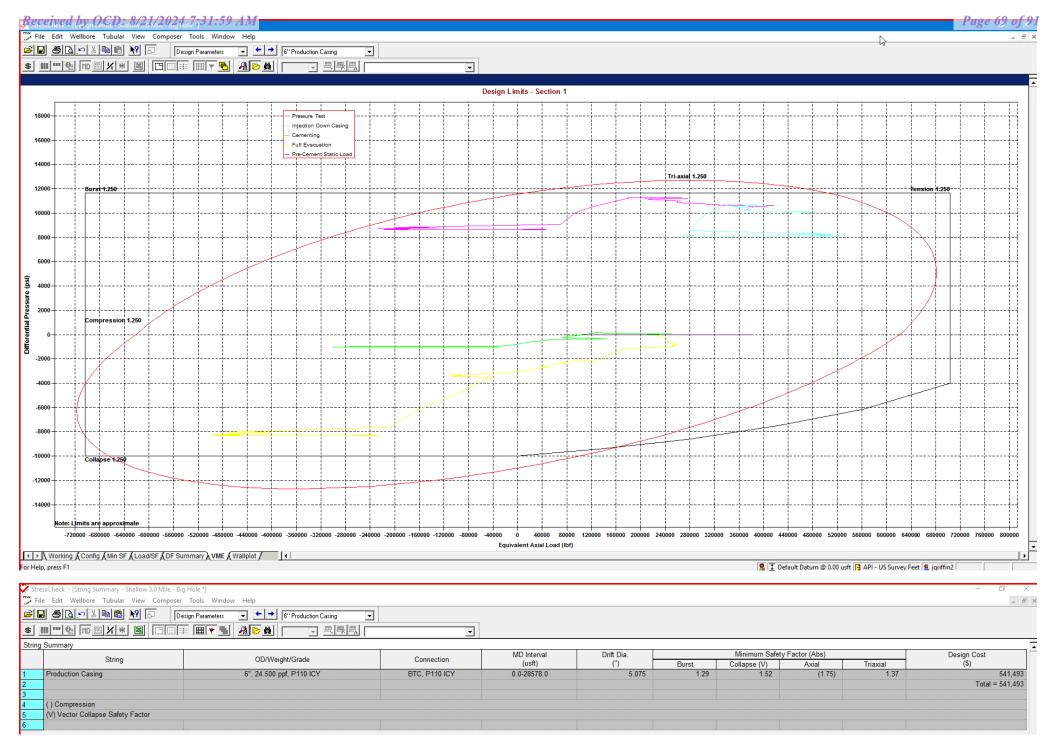
Released to Imaging: 12/13/2024 1:33:05 PM

Image: Image


Depth (MD)		orce (lbf)	Equivalent	Bending Stress		Absolute S	afety Factor		Temperature	Pressure	(psi)	Addt'l Pickup To	Buckled
(usft)	Apparent (w/Bending)	Actual (w/o Bending)	Axial Load (lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	(°F)	Internal	External	Prevent Buck. (lbf)	Length (usf
(228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500.00	0.00	N/A	N/A
100	247735	223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543.63	43.63		
100	234996	223701	235716	986.2	1.71	1.58	N/A	3.04 F	71.10	2543.64	43.64		
1700	341565	139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241.64	741.64		
1700		139666	323488	15131.5	1.58	1.57	N/A	2.28 F	88.70	3241.65	741.65		
1850	336881	132027	348440	17885.2	1.51	1.57	N/A	2.12 F	90.29	3305.05	805.05		
1850	318549	132027	329984	16284.8	1.54	1.57	N/A	2.24 F	90.29	3305.06	805.06		
1950	320468	127243	332475	16869.9	1.52	1.57	N/A	2.23 F	91.30	3344.87	844.87		
1950	312802	127243	324756	16200.7	1.53	1.57	N/A	2.28 F	91.30	3344.87	844.87		
2050	307858	122773	320295	16159.3	1.52	1.57	N/A	2.32 F	92.23	3381.89	881.89		
2050	303560	122772	315965	15784.1	1.53	1.57	N/A	2.35 F	92.23	3381.89	881.89		
2300	151294	112633	163658	3375.4	1.71	1.57	N/A	4.72 F	94.35	3466.13	966.13		
2300	132741	112633	144956	1755.6	1.72	1.57	N/A	5.38 F	94.35	3466.14	966.14		
2370	129966	109858	142452	1755.6	1.72	1.57	N/A	5.49 F	94.94	3489.28	989.28		
2370	127909	107800	140922	1755.6	1.75	1.60	N/A	5.58 F	94.94	3489.29	1036.40		
2700	105515	94232	119785	985.1	1.75	1.60	N/A	6.77 F	97.73	3599.97	1152.35		
2700	111680	94231	126006	1523.4	1.75	1.60	N/A	6.39 F	97.73	3599.97	1152.35		
3100	110766	77783	126839	2879.6	1.71	1.60	N/A	6.44 F	101.11	3734.23	1293.00		
3100	97392	77783	113331	1712.1	1.73	1.60	N/A	7.33 F	101.11	3734.23	1293.01		
3700	71565	53303	89806	1594.4	1.70	1.61	N/A	9.97 F	106.15	3934.24	1502.54		
3700	60887	53302	79004	662.3	1.71	1.61	N/A	11.72 F	106.16	3934.25	1502.55		
4650	34671	14219	56495	1785.6	1.64	1.61	N/A	20.59 F	114.20	4253.37	1836.86		
4900	44595	4828	67626	3472.0	1.59	1.61	N/A	16.01 F	116.32	4337.37	1924.87		
4900	28975	4828	51775	2108.2	1.62	1.61	N/A	24.64 F	116.32	4337.38	1924.87		
5029	22103	34	45340	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.40	1969.94		
5029	22102	33	45339	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.41	1969.95		
5600		-21341	-20805	2094.3	1.57	1.62	N/A	(13.67)	122.23	4572.11	2170.78		
5650		-23210	-15657	1506.5	1.58	1.62	N/A	(15.31)	122.66	4588.87	2188.34		
								· · · · ·					
F	Conn Fracture												
(Compression												
(V	Vector Collapse Safety	/ Factor											

✓ ► Working Config Min SF Load/SF DF Summary VME Wallplot For Help, press F1

🙎 🛨 Default Datum @ 0.00 usft 🖪 API - US Survey Feet 🙎 jgriffin2


9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 12/13/2024 1:33:05 PM

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 12/13/2024 1:33:05 PM

Seog resources

Shallow Design D

 C								
Hole	Interv	al MD	Interva	l TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	13,278	0	11,671	6"	22.3#	P110-EC	DWC/C IS
6-3/4"	13,278	29,353	11,671	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

4. CASING PROGRAM

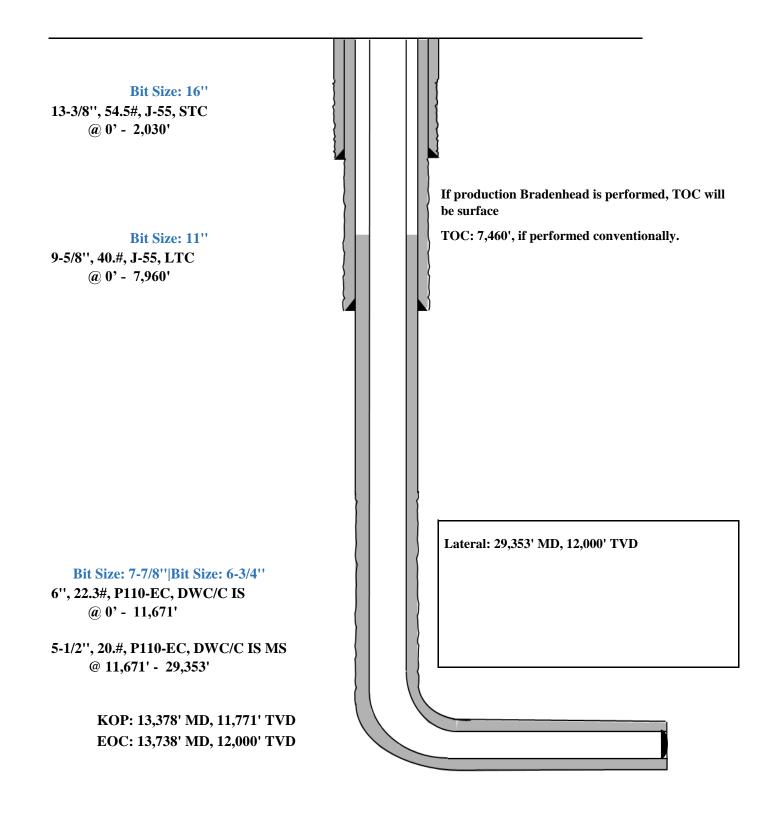
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.


		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidiny Description
2,030' 13-3/8''	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8''	760	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{6''}	1000	14.8	1.32	Bradenhead squeeze: Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	2500	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)

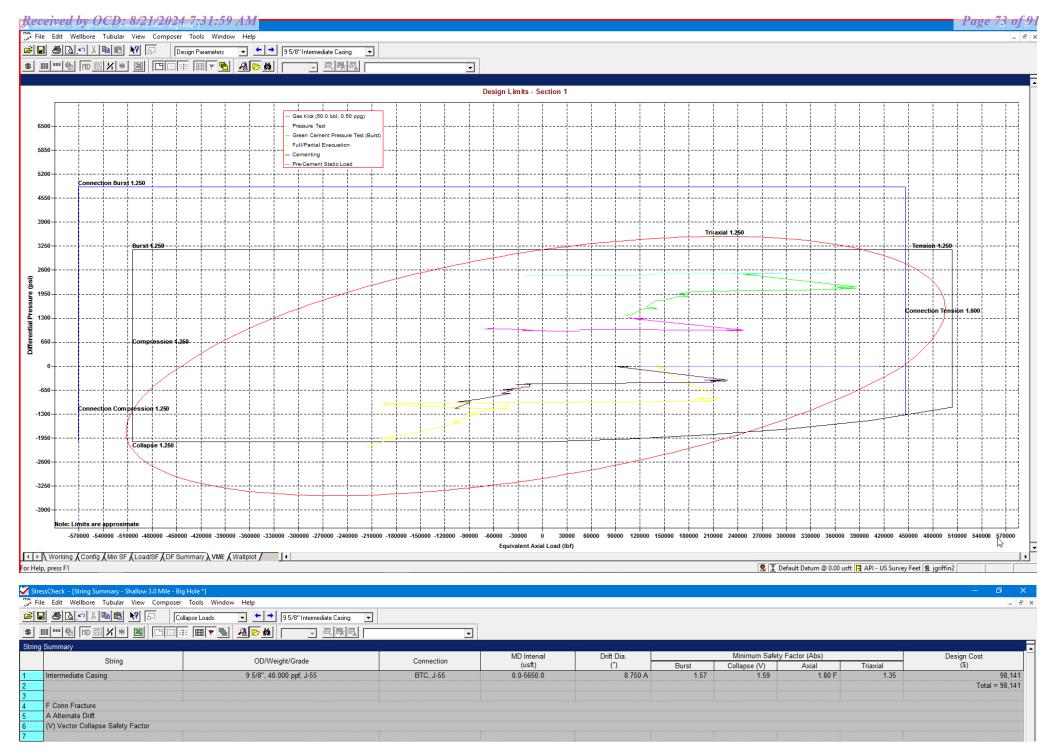
5. CEMENTING PROGRAM:

Shallow Design D

Proposed Wellbore

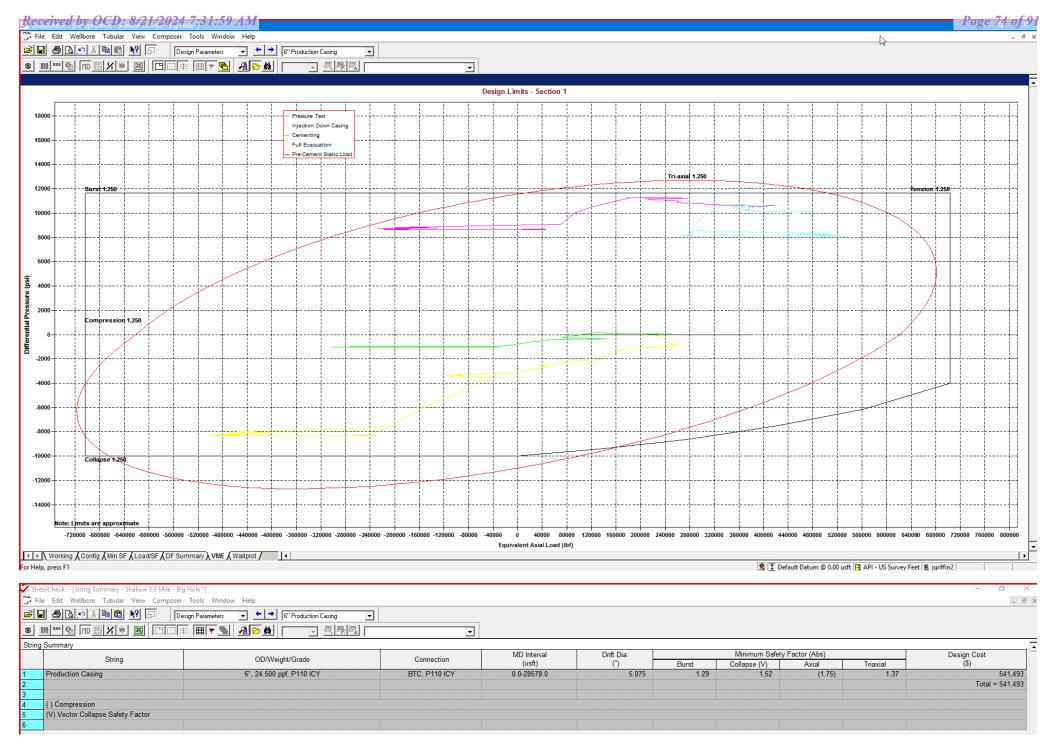
KB: 3558' GL: 3533'

File Edit Wellbore Tubular View Composer Tools Window Help

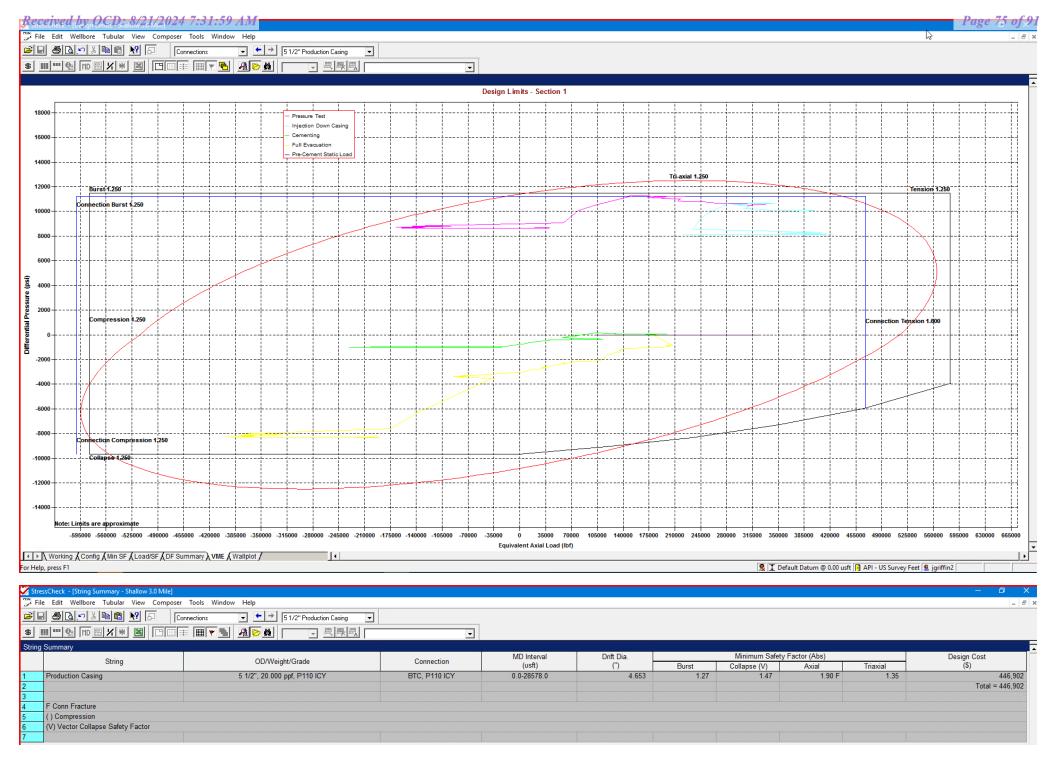

	Depth (MD)		orce (lbf)	Equivalent	Bending Stress		Absolute S	afety Factor		Temperature	Pressure	e (psi)	Addt'l Pickup To	Buckled
100 24775 22702 22466 2092 169 158 NA 228F 7110 25438 4364 100 24996 22701 22576 95223 1727 153 157 NA 229F 8870 234165 74165 100 315979 139666 32248 151315 159 157 NA 229F 8870 234165 74165 1050 33681 130027 33440 17682 151 157 NA 222F 9029 336.06 805.06 1050 33648 12723 33294 16284 154 157 NA 222F 9029 336.06 805.06 1050 33648 12723 33295 16680 9 152 157 NA 222F 9130 334.47 844.87 1050 33686 12773 32295 16593 152 157 NA 222F 9130 334.47 844.87 1050 33686 12773 3225 16593 152 157 NA 223F 9130 334.87 844.87 1050 33686 12773 3225 16593 152 157 NA 223F 9130 334.87 844.87 1050 30788 12773 3225 16593 152 157 NA 223F 9130 334.87 844.87 1050 30788 12773 3225 16593 152 157 NA 223F 9223 33818 8189 2300 15124 11633 16368 33754 177 157 NA 223F 9223 33818 88189 2300 137274 11633 16368 13754 177 157 NA 223F 94.35 346614 966.14 2300 13574 11633 16368 13754 177 157 NA 548F 94.43 346614 966.14 2300 13574 11633 16368 13754 177 150 NA 548F 94.94 3489.28 1038.4 2300 137274 11633 16368 13754 177 160 NA 548F 94.94 3489.29 1036.4 2300 137274 11633 16368 1775 160 NA 548F 94.94 3489.29 1036.4 2300 137274 11633 16368 1775 160 NA 548F 94.94 3489.29 1036.4 2300 137274 11633 164956 1775 160 NA 6.77F 97.7 359.97 1152.35 2300 11676 77783 12639 22756 177 160 NA 6.67F 97.7 359.97 1152.35 100 111076 77783 12639 2775 171 160 NA 6.97F 97.7 359.97 1152.35 100 111676 77783 12639 2775 171 160 NA 6.97F 97.7 359.97 1152.35 100 111676 77783 12639 2775 171 160 NA 6.97F 97.7 359.97 1152.35 100 111676 7778 12639 2776 171 161 NA 97F 106.15 394.24 1502.55 100 111676 7778 12639 2776 151 1131 1712 173 180 NA 6.47F 151.2 4.37.37 1135.8 100 9732 7778 12639 2776 151 114 174 180.4 1152 433.7 1135.8 100 9735 3730 3906 15424 175 216 161 NA 22.9F 114.2 423.37 1132.47 105 192 2477 1270.76 105 192 2110 3 44530 1288 161 151 NA 32.30F 1114 430.40 199.994 100 199.94 100 199.95 1133 1451 1120 1161 NA 32.30F 1114 430.40 199.994 100 199.95 1133 1451 1120 1161 NA 32.30F 1114 430.40 199.994 100 199.95 113 1455 148 151 1161 NA 32.30F 1140 430.						Triaxial	Burst	Collapse (V)	Axial		Internal	External	Prevent Buck. (lbf)	Length (us
100 24496 223701 22576 962 1772 153 157 NA 220F 870 334164 71164 7													N/A	N/A
1700 34:665 139667 32625 176272 1.53 1.57 NA 2.0 F 87.0 324.64 74.14 74.14 74.14 74.15 74.														
1700 312279 13966 22488 1513.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1														
1860 336881 132027 344440 17885.2 151 157 N/A 2.12 F 90.29 3306.05 880.05 1850 3194549 132027 32984 1628.8 154 157 N/A 2.23 F 91.30 3344.87 844.87 1950 312022 127243 332475 16689.9 15.2 157 N/A 2.23 F 92.23 3381.88 844.87 2050 307656 122772 31565 16159.3 1.52 1.57 N/A 2.35 F 92.23 3381.88 881.89 2050 307656 122772 31565 1578.4 1.71 157 N/A 2.3 F 92.23 3381.88 881.89 2000 15124 11263 143656 177.5 1.72 1.75 N/A 5.3 F 94.34 3489.28 999.28 2200 152741 11680 14422 175.6 1.72 1.57 N/A 5.8 F 94.94 3489.29 1036.40 2200 105515 94222 11975.6 1.75 1.60														
1850 316549 132027 32994 16204.8 15.4 1.57 NVA 2.24 F 90.29 3305.06 805.06 1950 320488 12743 332475 16609 1.52 1.57 NVA 2.23 F 91.30 334.47 84.487 2060 307868 122773 3320295 16159.3 1.52 1.57 NVA 2.23 F 91.30 334.487 84.487 2060 307868 122773 3320295 16159.3 1.52 1.57 NVA 2.23 F 92.3 3381.89 881.89 2060 300506 122773 3320295 1574.4 1.53 1.57 NVA 4.25 F 92.3 3381.89 881.89 2300 15724 112633 163658 3375.4 1.71 1.57 NVA 5.35 F 94.94 3489.28 999.28 2370 12396 109656 142452 1755.6 1.72 1.57 NVA 5.48 F 94.43 3489.28 999.28 2700 11660 94232 119765 1.71														
1950 320468 127243 332475 16689 9 1.52 1.57 N/A 2.23 F 9130 3344.67 644.87 1950 312802 127243 324756 16200 7 1.53 1.57 N/A 2.28 F 9130 3344.67 644.87 2050 307688 122772 315965 15764.1 1.53 1.57 N/A 2.25 F 92.23 3381.89 881.89 2300 15124 112633 14496 1755.6 1.72 1.57 N/A 5.38 F 94.35 3466.14 966.14 2300 132741 112633 14496 1755.6 1.72 1.57 N/A 5.38 F 94.34 3486.29 968.2 2370 12799 107800 14922 1755.6 1.72 1.57 N/A 5.38 F 94.94 3489.29 1038.40 103.40 2700 11600 94231 12006 15.23.4 1.75 1.60 N/A 6.37 F 97.73 3599.97 115.2.35 3100 110766 77783 12639														
1950 312802 12243 334766 162007 1 53 1 57 NA 2.28F 91.30 334.487 84.487 2050 307658 12277 30595 16159.3 1 52 1 57 NA 2.28F 92.23 338189 88189 2050 303560 12277 315965 1578.1 1 53 1 57 NA 2.38F 92.23 338189 88189 2300 15124 11263 116368 337.4 1 71 1 57 NA 4.72F 94.35 3466.14 966.14 2300 152741 112653 142452 175.6 1 72 1 57 NA 5.48F 94.94 3489.28 999.28 2370 129966 109860 142452 175.6 1 72 1 57 NA 5.48F 94.94 3489.28 999.28 2370 129966 109860 142452 175.6 1 72 1 50 NA 6.79F 97.73 3599.97 1152.35 2700 110561 94231 12609 176 1 60														
2000 307680 122772 320295 161503 1.52 1.57 NA 2.22 F 92.23 3381.89 881.89 2050 303560 122772 315865 1578.41 1.53 1.57 NA 2.32 F 92.23 3381.89 881.89 2000 151244 112633 164656 337.54 1.11 1.57 NA 6.3 F 94.35 3466.13 966.13 2300 132741 112633 144956 1755.6 1.72 1.57 NA 6.3 F 94.35 3466.14 966.13 2370 127906 1107600 140922 1755.6 1.72 1.57 NA 5.8 F 94.34 3489.28 99.28 2000 105515 542.22 11785 1.60 NA 6.3 F 97.73 359.97 1152.35 2700 101676 77783 12839 287.6 1.71 1.60 NA 6.3 9 F 97.73 3599.97 1152.35 3100 110766 77783 12839 2876 1.71 1.60 NA														
2050 303660 12272 315965 16784.1 1.53 1.57 N/A 2.35 F 32.23 3318.99 881.89 2300 151294 11263 143656 3375.4 1.71 1.57 N/A 4.72 F 94.35 3466.13 966.13 2300 132741 112633 144856 1755.6 1.72 1.57 N/A 5.88 F 94.35 3466.14 966.14 2370 127909 107800 140822 1755.6 1.72 1.57 N/A 5.88 F 94.94 3489.28 989.28 2700 127909 107800 140822 1755.6 1.75 1.60 N/A 6.39 F 97.73 359.97 1152.35 2700 11660 94.21 126005 152.4 1.75 1.60 N/A 6.39 F 97.73 359.97 1152.35 3100 10766 77783 11331 1712 1.73 1.60 N/A 6.39 F 107.13 1293.00 3100 10765 53302 77083 1581.4 1.70 1.														
2300 15124 112633 16368 337.64 1.71 1.57 N/A 4.72 F 94.35 3466.13 966.13 2300 1327.41 112633 1.44966 175.6 1.72 1.57 N/A 5.38 F 94.35 3466.14 966.14 2370 129966 109686 1.42422 175.6 1.72 1.57 N/A 5.49 F 94.94 3489.28 989.28 2370 127999 107600 140922 175.6 1.75 1.60 N/A 6.39 F 97.73 369.97 1152.35 2700 111680 94231 126006 1523.4 1.75 1.60 N/A 6.39 F 97.73 359.97 1152.35 2700 111680 94231 126006 1523.4 1.75 1.60 N/A 6.39 F 97.73 359.97 1152.35 3100 110766 77783 12639 207.96 1.71 1.60 N/A 6.39 F 101.11 3734.23 1293.01 3100 97392 77783 113331 171.2														
2300 132/11 112633 14466 1756.6 1.72 1.57 N/A 5.38 F 94.35 3466.14 966.14 2370 12996 109868 144252 1756.6 1.72 1.57 N/A 5.49 F 94.44 3489.29 989.28 1036.40 2370 12709 107515 94232 11976 986.1 1.75 1.60 N/A 6.77 F 97.73 3599.97 1152.35 2700 11160 94231 126605 1253 1.75 1.60 N/A 6.37 F 97.73 3599.97 1152.35 3100 110766 77783 126839 2879.6 1.71 1.60 N/A 6.37 F 101.11 3734.23 1293.00 1123.00 3100 97392 77783 11331 1712.1 1.73 1.60 N/A 7.33 F 101.11 3734.23 1293.00 11376 166.1 104.4 1.07 1.61 N/A 9.97 F 106.15 3934.25 1502.54 3700 6087 53302 79004 662.3														
2370 129966 109858 142452 1755.6 1.72 1.57 N/A 5.49 F 94.94 3489.28 989.28 2370 127909 107800 140922 1755.6 1.75 1.60 N/A 5.58 F 94.94 3489.28 1036.40 2700 105515 94232 119785 985.1 1.75 1.60 N/A 6.39 F 97.73 3599.97 1152.35 2700 111680 94231 126006 1523.4 1.75 1.60 N/A 6.39 F 97.73 3599.97 1152.35 3100 110766 77783 126839 2879.6 1.71 1.60 N/A 6.44 F 101.11 3734.23 1293.01 3700 71656 53303 89906 1594.4 1.70 1.61 N/A 9.97 F 106.15 3934.24 1502.54 3700 60867 53302 7904 662.3 1.71 1.61 N/A 11.72 F 106.16 3934.24 1502.55 4460 34671 14219 56495 1785.6														
2370 127909 107800 140922 1755.6 1.75 1.60 N/A 5.58 F 94.94 3489.29 1036.40 2700 105515 94232 119765 985.1 1.75 1.60 N/A 6.77 F 97.73 3599.97 1152.35 3100 94231 126039 2679.6 1.71 1.60 N/A 6.34 F 101.11 3734.23 1293.00 3100 97392 77783 113331 1712.1 1.73 1.60 N/A 6.44 F 101.11 3734.23 1293.00 3700 71656 53303 89806 1594.4 1.70 1.61 N/A 9.97 F 106.16 3934.24 1502.54 3700 60887 53303 89806 1594.4 1.70 1.61 N/A 11.72 F 106.16 3934.24 1502.55 4650 34671 14219 56495 1785.6 1.64 1.61 N/A 20.59 F 114.20 4253.37 1836.86 4900 42695 4828 676726 3472.0 1.59														
2700 106515 94232 119765 965.1 1.75 1.60 N/A 6.77 F 97.73 3599.97 1152.35 2700 111680 94231 126006 1523.4 1.75 1.60 N/A 6.39 F 97.73 3599.97 1152.35 3100 110766 77783 112803 287.6 1.71 1.60 N/A 6.39 F 97.73 3599.97 1152.35 3100 97392 77783 113331 1712.1 1.73 1.60 N/A 7.33 F 101.11 3734.23 1293.01 3700 71555 53303 89806 1594.4 1.70 1.61 N/A 9.97 F 106.15 3934.24 1602.54 3700 71555 53302 7090.6623 1.715 1.61 N/A 20.59 F 114.20 4253.37 1836.86 44500 34671 14219 56495 1785.6 1.64 1.61 N/A 20.59 F 114.20 4253.37 1836.86 4900 44595 4428 67626 3472.0 1.69														
2700 111680 94231 126006 15234 1.75 1.60 N/A 6.39 F 97.73 3599.97 1152.35 3100 110766 77783 126839 2279.6 1.71 1.60 N/A 6.44 F 101.11 3734.23 1293.00 3100 97392 77783 113331 1712.1 1.73 1.60 N/A 7.33 F 101.11 3734.23 1293.01 3700 97765 53303 89806 1594.4 1.70 1.61 N/A 7.33 F 101.11 3734.23 1502.54 3700 60887 53302 79004 662.3 1.71 1.61 N/A 1172 F 106.15 3934.24 1502.54 4450 34671 14219 56495 1786 1.64 1.61 N/A 20.59 F 114.20 4253.37 1382.66 44900 28975 4828 51775 2108.2 1.62 1.61 N/A 23.05 F 114.20 4337.37 1924.87 6029 22102 33 45339 1926.8														
3100 110766 77783 126839 2879.6 1.71 1.60 N/A 6.44 F 101.11 3734.23 1293.00 3100 97392 77783 113331 1712.1 1.73 1.60 N/A 7.33 F 101.11 3734.23 1293.01 3700 71665 53303 89806 1594.4 1.70 1.61 N/A 9.97 F 106.15 3934.24 1502.54 3700 06887 53302 79004 662.3 1.71 1.61 N/A 9.97 F 106.15 3934.24 1502.55 5 4650 34671 14219 56495 1785.6 1.64 1.61 N/A 10.1 F 116.32 4337.37 1924.87 4900 24975 4428 67626 3472.0 1.59 1.61 N/A 16.01 F 116.32 4337.37 1924.87 4900 28975 4428 67626 3472.0 1.59 1.61 N/A 24.64 F 116.32 4337.33 1924.87 5029 22103 34 45339 1926.														
3100 97392 77783 113331 1712.1 1.73 1.60 N/A 7.33 F 101.11 3734.23 1293.01 3700 71665 53303 89806 1594.4 1.70 1.61 N/A 9.97 F 106.15 3394.24 1502.54 3700 60887 53302 79004 662.3 1.71 1.61 N/A 11.72 F 106.16 3934.24 1502.55 4650 34671 14219 56495 1765 6 1.64 1.61 N/A 20.59 F 114.20 4253.37 1838.66 4900 44595 4828 67626 3472.0 1.59 1.61 N/A 16.01 F 116.32 4337.37 1924.87 4900 28975 4828 51775 2108.2 1.62 1.61 N/A 32.05 F 117.40 4380.40 1969.94 5029 22102 33 45339 1926.8 1.61 1.61 N/A 32.30 F 117.40 4380.41 1969.95 5600 -45329 -21341 -20805 2094.3														
3700 71565 53303 89806 1594.4 1.70 1.61 N/A 9.97 F 106.15 3934.24 1502.54 3700 60887 53302 7904 662.3 1.71 1.61 N/A 11.72 F 106.15 3934.24 1502.55 4650 34671 14219 56495 1785.6 1.64 1.61 N/A 20.97 F 14.20 4253.37 1836.86 4400 44595 4428 67626 3472.0 1.59 1.61 N/A 10.17 F 116.32 4337.37 1924.87 4900 28975 4828 51775 2108.2 1.62 1.61 N/A 24.64 F 116.32 4337.38 1924.87 5029 22103 34 45340 1926.8 1.61 1.61 N/A 32.30 F 117.40 4380.40 1969.94 5029 22102 33 45339 1926.8 1.61 1.61 N/A 32.30 F 117.40 4380.40 1969.95 5650 -40465 -23210 -15657 1506.5 1														
3700 60887 53302 79004 662.3 1.71 1.61 N/A 11.72 F 106.16 3934.25 1502.55 4600 34671 14219 56495 1785.6 1.64 1.61 N/A 20.59 F 114.20 4253.37 1836.86 4900 44595 4828 67626 3472.0 1.59 1.61 N/A 16.01 F 116.32 4337.37 1924.87 4900 28975 4828 51775 2108.2 1.62 1.61 N/A 24.64 F 116.32 4337.37 1924.87 4900 28975 4828 51775 2108.2 1.62 1.61 N/A 24.64 F 116.32 4337.38 1924.87 5029 22103 34 45340 1926.8 1.61 1.61 N/A 32.30 F 117.40 4380.40 1969.95 5600 -45329 -21341 -20805 2094.3 1.57 1.62 N/A (13.67) 122.23 4572.11 2170.78 5600 -45329 -21341 -20805 1.58														
4650 34671 14219 56495 1785.6 1.64 1.61 N/A 20.59 F 114.20 4253.37 1836.86 4900 44595 4628 67626 3472.0 1.59 1.61 N/A 16.01 F 116.32 4337.37 1924.87 4900 28975 4828 51775 2108.2 1.62 1.61 N/A 24.64 F 116.32 4337.38 1924.87 5029 22103 34 45340 1926.8 1.61 1.61 N/A 32.30 F 117.40 4380.41 1969.94 5029 22102 3 45339 1926.8 1.61 1.61 N/A 32.30 F 117.40 4380.41 1969.94 5600 -45329 -21341 -20805 2094.3 1.57 1.62 N/A (13.67) 122.23 4572.11 2170.78 6560 -40465 -23210 -15657 1506.5 1.58 1.62 N/A (13.67) 122.23 4572.11 2170.78 6														
4400 44595 4828 67626 3472.0 1.59 1.61 N/A 16.01 F 116.32 4337.37 1924.87 4900 28975 4828 51775 2108.2 1.62 1.61 N/A 24.64 F 116.32 4337.38 1924.87 5029 22103 34 45340 1926.8 1.61 N/A 32.30 F 117.40 4380.41 1969.94 5029 22102 33 45339 1926.8 1.61 1.61 N/A 32.30 F 117.40 4380.41 1969.95 5600 -45329 -21341 -20805 2094.3 1.57 1.62 N/A (13.67) 122.23 4572.11 2170.78 5650 -40465 -23210 -15657 1506.5 1.58 1.62 N/A (15.31) 122.66 4588.87 2180.34 6														
4900 28975 4828 51775 2108.2 1.62 1.61 N/A 24.64 F 116.32 4337.38 1924.87 5029 22103 34 46340 1926.8 1.61 1.61 N/A 32.30 F 117.40 4380.40 1969.94 5029 22102 33 45339 1926.8 1.61 1.61 N/A 32.30 F 117.40 4380.40 1969.95 5050 2.4523 -2.1341 -2.0805 2.094.3 1.57 1.62 N/A (13.67) 122.23 4572.11 2170.78 5650 -40465 -23210 -15657 1506.5 1.58 1.62 N/A (15.31) 122.66 4588.87 2188.34 F Com Fracture Compression														
5029 22103 34 45340 1926.8 1.61 1.61 N/A 32.30 F 117.40 4380.40 1969.94 5029 22102 33 45339 1926.8 1.61 1.61 N/A 32.30 F 117.40 4380.41 1969.95 5600 -45229 -21341 -20805 2094.3 1.57 1.62 N/A (13.67) 122.23 4572.11 2170.78 5650 -4465 -23210 -15657 1506.5 1.58 1.62 N/A (15.31) 122.65 458.87 2188.34 6														
5029 22102 33 45339 1926.8 1.61 1.61 N/A 32.30 F 117.40 4380.41 1969.95 5600 -45329 -21341 -20805 2094.3 1.57 1.62 N/A (13.67) 122.23 4572.11 2170.78 5600 -40465 -23210 -15657 1506.5 1.58 1.62 N/A (15.31) 122.65 458.87 2188.34 F Conn Fracture () Compression														
5600 -45329 -21341 -20805 2094.3 1.57 1.62 N/A (13.67) 122.23 4572.11 2170.78 5650 -40465 -23210 -15657 1506.5 1.58 1.62 N/A (15.31) 122.66 4588.87 2180.34 F Conn Fracture () Compression														
5650 -40465 -23210 -15657 1506.5 1.58 1.62 N/A (15.31) 122.66 4588.87 2188.34 F Conn Fracture														
F Conn Fracture () Compression														
() Compression	5650	-40465	-23210	-15657	1506.5	1.58	1.62	N/A	(15.31)	122.66	4588.87	2188.34		
	F	Conn Fracture												
(V) Vector Collapse Safety Factor		Compression												
	()													

For Help, press F1

🙎 👤 Default Datum @ 0.00 usft 📑 API - US Survey Feet 🙎 jgriffin2


9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi


*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 12/13/2024 1:33:05 PM

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 12/13/2024 1:33:05 PM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 12/13/2024 1:33:05 PM

Page 22 of 25

Additive	Purpose
Bentonite Gel	Lightweight/Lost circulation prevention
Calcium Chloride	Accelerator
Cello-flake	Lost circulation prevention
Sodium Metasilicate	Accelerator
MagOx	Expansive agent
Pre-Mag-M	Expansive agent
Sodium Chloride	Accelerator
FL-62	Fluid loss control
Halad-344	Fluid loss control
Halad-9	Fluid loss control
HR-601	Retarder
Microbond	Expansive Agent

Shallow Casing Design 501H

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

EOG requests variance from minimum standards to pump a two stage cement job on the production casing string with the first stage being pumped conventionally with the calculated top of cement at the top of the Brushy Canyon and the second stage performed as a 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 400 sacks of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (1.32 yld, 14.8 ppg) will be executed as a contingency. Top will be verified by Echo-meter.

Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

MUD PROGRAM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal. The applicable depths and properties of the drilling fluid systems are as follows:

Measured Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 – 2,030'	Fresh - Gel	8.6-8.8	28-34	N/c
2,030' – 7,793'	Brine	9-10.5	28-34	N/c
5,450' – 28,578' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

Appendix A - Spec Sheets

•

Pipe Body and API Connections Performance Data Received by OCD: 8/21/2024 7:31:59 AM 13.375 54.50/0.380 J55

Page 79 of 91 PDF

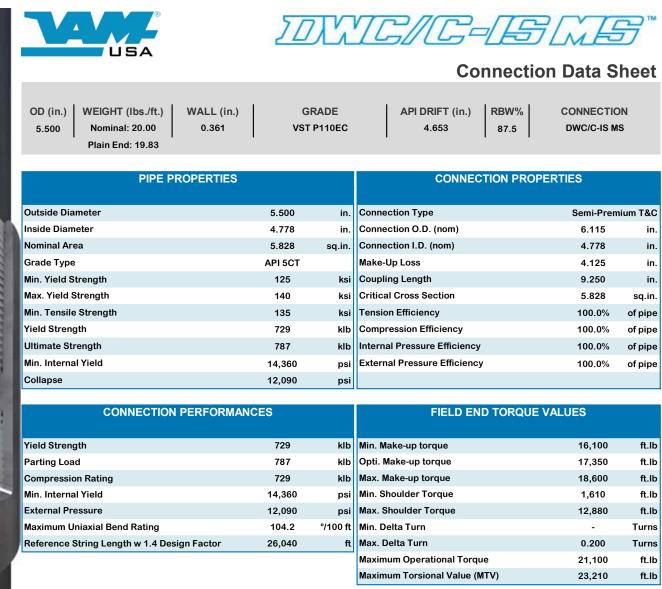
New Search »

a Back to Previous List

USC O Metric

6/8/2015 10:04:37 AM	**************************************			2	
Mechanical Properties	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000		-	-	psi
Maximum Yield Strength	80,000	-		-	psi
Minimum Tensile Strength	75,000			-	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	7	-		in,
Inside Diameter	12.615	12.615	-	12.615	in.
Standard Drift	12.459	12.459	-	12.459	in.
Alternate Drift	-	-		-	in.
Nominal Linear Weight, T&C	54.50	-			lbs/ft
Plain End Weight	52.79			-	Ibs/ft
Performance	P1pe	втс	LTC	STC	
Minimum Collapse Pressure	1,130	1,130		1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	-	2,740	psi
Minimum Pipe Body Yield Strength	853.00	-		-	1000 lbs
Joint Strength	=	909	-	514	1000 lbs
Reference Length	-	11,125	-	6,290	n
Make-Up Data	Ріре	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-			3,860	ft-lbs
Released to Imaging: 12/13/2024 1:33:05 PM Maximum Make-Up Torque	-	-		6,430	ft-lbs

Pipe Body and API Connections Performance Data Received by OCD: 8/21/2024 7:31:59 AM 9.625 40.00/0.395 J55


Page 80 of 91 PDF

New Search »

« Back to Previous List

USC O Metric

6/8/2015 10:23:27 AM	A5-	w/	o	x	u
Mechanical Properties	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-		psi
Minimum Tensile Strength	75,000	J			psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	9.625	10.625	10.625	10.625	in.
Wall Thickness	0.395		<i>27</i> .)		in.
Inside Diameter	8.835	8.835	8.835	8.835	in.
Standard Drift	8.679	8.679	8.679	8.679	in.
Alternate Drift	8.750	8.750	8.750	8.750	in.
Nominal Linear Weight, T&C	40.00	-	-		lbs/ft
Plain End Weight	38.97	-	-	-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	2,570	2,570	2,570	2,570	psi
Minimum Internal Yield Pressure	3,950	3,950	3,950	3,950	psi
Minimum Pipe Body Yield Strength	630.00		+	-	1000 lbs
Joint Strength		714	520	452	1000 lbs
Reference Length	-	11,898	8,665	7,529	ft
Make-Up Data	Ріре	втс	LTC	STC	
Make-Up Loss		4.81	4.75	3.38	in.
Minimum Make-Up Torque	-		3,900	3,390	ft-lbs
Released to Imaging: 12/13/2024 1:33:05 PM Maximum Make-Up Torque	. —		6,500	5,650	ft-lbs

Need Help? Contact: <u>tech.support@vam-usa.com</u> Reference Drawing: 8136PP Rev.01 & 8136BP Rev.01 Date: 12/03/2019 Time: 06:19:27 PM

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages.

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM[®] USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

1. DWC connections are available with a seal ring (SR) option.

2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.

Connection performance properties are based on nominal pipe body and connection dimensions.
 DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
 DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.

6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.

7. Bending efficiency is equal to the compression efficiency.

8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.

9. Connection yield torque is not to be exceeded.

10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.

11. DWC connections will accommodate API standard drift diameters.

12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages.

Pipe Body and API Connections Performance Data

10.750 40.50/0.350 J55

New Search »
« Back to Previous List

USC 🔵 Metric

6/8/2015 10:14:05 AM	

6/8/2015 10:14:05 AM					
Mechanical Properties	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	BTC	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350	-	-	-	in.
Inside Diameter	10.050	10.050	-	10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50				lbs/ft
Plain End Weight	38.91	-	-	-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi
Minimum Pipe Body Yield Strength	629.00	-	-	-	1000 lbs
Joint Strength	-	700	-	420	1000 lbs
Reference Length	-	11,522	-	6,915	ft
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,150	ft-lbs
Released to Imaging: 12/13/2024 1:33:05 PM Maximum Make-Up Torque	-	-	-	5,250	ft-lbs

API 5CT, 10th Ed. Connection Data Sheet

	AFI 5CT, TUILI EU. CONNECTION DATA SHEE									
O.D. (in)	WEIGHT (I	b/ft)	WALL	(in)	GR	ADE	*API DRIF	T (in)	RBV	V %
8.625	Nominal: Plain End:	32.00 31.13	0.352	2	J	55	7.79	6	87	.5
I	Material Propert	ies (PE)			Pipe Body Data (PE)					
	Pipe						Geon	netry		
Minimum `	Yield Strength:	55	ksi		Nomin	nal ID:			7.92	inch
Maximum	Yield Strength:	80	ksi		Nomin	nal Area	:		9.149	in ²
Minimum ⁻	Tensile Strength:	75	ksi		*Spec	ial/Alt. [Drift:		7.875	inch
	Coupling	J					Perfor	nance		
Minimum `	Yield Strength:	55	ksi		Pipe E	Body Yie	eld Strengt	h:	503	kips
Maximum	Yield Strength:	80	ksi				istance:		2,530	psi
					1	Yield Pro	accura:			
	Tensile Strength:	75	ksi			storical)	essure.		3,930	psi
	API Connectio	n Data	ksi			storical)	PI Connec	tion To		psi
		n Data 0.625"	ksi			storical) AF			orque	psi
Minimum ⁻	API Connectio Coupling OD: 9	n Data 0.625"				storical) AF	PI Connec		orque	
Minimum ⁻ STC Interr	API Connectio Coupling OD: 9 STC Perform	n Data 0.625" ance 3,930			(API Hi	storical) AF	PI Connec STC Torq	ue (ft-lk	rque os)	
Minimum ⁻ STC Interr	API Connectio Coupling OD: 9 STC Perform nal Pressure:	n Data 0.625" ance 3,930 372	psi		(API Hi	storical) AF 2,793	PI Connec STC Torq	u e (ft-ll 3,724	orque os) Max:	
Minimum ⁻ STC Interr STC Joint	API Connectio Coupling OD: 9 STC Perform nal Pressure: Strength:	n Data 0.625" ance 3,930 372	psi kips		(API Hi	storical) AF 2,793	PI Connec STC Torqu Opti:	u e (ft-ll 3,724	orque os) Max:	4,65
Minimum ⁻ STC Interr STC Joint	API Connectio Coupling OD: 9 STC Perform nal Pressure: Strength: LTC Perform nal Pressure:	n Data 0.625" ance 3,930 372 ance 3,930	psi kips		(API Hi	storical) AF 2,793	PI Connec STC Torqu Opti: LTC Torqu	ue (ft-lk 3,724 ue (ft-lk	mque os) Max: os)	4 ,65
Minimum STC Interr STC Joint LTC Interr LTC Joint	API Connectio Coupling OD: 9 STC Perform nal Pressure: Strength: LTC Perform nal Pressure:	n Data .625" ance 3,930 372 ance 3,930 417	psi kips psi kips		(API Hi	storical) AF 2,793 3,130	PI Connec STC Torqu Opti: LTC Torqu	ue (ft-lk 3,724 ue (ft-lk 4,174	max: Max: Max: Max:	4,6
Minimum STC Interr STC Joint LTC Interr LTC Joint SC-BTC F	API Connectio Coupling OD: 9 STC Perform nal Pressure: Strength: LTC Perform nal Pressure: Strength:	n Data .625" ance 3,930 372 ance 3,930 417	psi kips psi kips 9.125"		(API Hi	storical) AF 2,793 3,130	PI Connec STC Torqu Opti: LTC Torqu Opti:	ue (ft-lk 3,724 ue (ft-lk 4,174 ue (ft-lk	orque DS) Max: DS) Max:	4,6:

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Rev 3, 7/30/2021

S S2L2 DA 7.875 W/O# SLN # PO# MADE IN USA FT LB

VALLOUREC STAR 8.625 32# J55

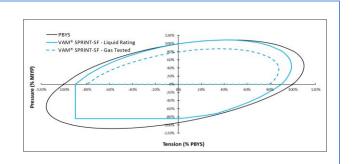
10/21/2022 15:24

Issued on: 10 Feb. 2021 by Wesley Ott

TAM SPRINT-SF
Connection Data Sheet

OD	Weight (lb/ft)	Wall Th.	Grade	API Drift:	Connection
6 in.	Nominal: 24.50	0.400 in.	P110EC	5.075 in.	VAM [®] SPRINT-SF
	Plain End: 23.95				

PI PE PROPERTI ES		
Nominal OD	6.000	in.
Nominal ID	5.200	in.
Nominal Cross Section Area	7.037	sqin.
Grade Type	Hiç	gh Yield
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi


CONNECTION PROPERTIES		
Connection Type	Integral	Semi-Flush
Connection OD (nom):	6.277	in.
Connection ID (nom):	5.146	in.
Make-Up Loss	5.386	in.
Critical Cross Section	6.417	sqin.
Tension Efficiency	91.0	% of pipe
Compression Efficiency	91.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTION PERFORMANCI		
Tensile Yield Strength	801	klb
Compression Resistance	801	klb
Internal Yield Pressure	14,580	psi
Collapse Resistance	12,500	psi
Max. Structural Bending	83	°/100ft
Max. Bending with ISO/API Sealability	30	°/100ft

TORQUE VALUES		
Min. Make-up torque	21,750	ft.lb
Opt. Make-up torque	24,250	ft.lb
Max. Make-up torque	26,750	ft.lb
Max. Torque with Sealability (MTS)	53,000	ft.lb

* 87.5% RBW

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Connection Data Sheet

OD (in.)	WEIGHT (lbs./ft.)	WALL (in.)	GRADE	API DRIFT (in.)	RBW%	CONNECTION
6.000	Nominal: 22.30	0.360	VST P110EC	5.155	92.5	DWC/C-IS
	Plain End: 21 70		•	•		i .

PIPE PROPERTIES				
Nominal OD	6.000	in.		
Nominal ID	5.280	in.		
Nominal Area	6.379	sq.in.		
Grade Type	API 5CT			
Min. Yield Strength	125	ksi		
Max. Yield Strength	140	ksi		
Min. Tensile Strength	135	ksi		
Yield Strength	797	klb		
Ultimate Strength	861	klb		
Min. Internal Yield Pressure	13,880	psi		
Collapse Pressure	9,800	psi		

CONNECTION PERFORMA	NCES	
Yield Strength	797	klb
Parting Load	861	klb
Compression Rating	797	klb
Min. Internal Yield	13,880	psi
External Pressure	9,800	psi
Maximum Uniaxial Bend Rating	47.7	°/100 ft
Reference String Length w 1.4 Design Factor	25,530	ft.

CONNECTION PRC	PERTIES	
Connection Type	Semi-Prem	nium T&C
Connection OD (nom)	6.650	in.
Connection ID (nom)	5.280	in.
Make-Up Loss	4.313	in.
Coupling Length	9.625	in.
Critical Cross Section	6.379	sq.in.
Tension Efficiency	100.0%	of pipe
Compression Efficiency	100.0%	of pipe
Internal Pressure Efficiency	100.0%	of pipe
External Pressure Efficiency	100.0%	of pipe

FIELD END TORQUE V	ALUES	
Min. Make-up torque	17,000	ft.lb
Opti. Make-up torque	18,250	ft.lb
Max. Make-up torque	19,500	ft.lb
Min. Shoulder Torque	1,700	ft.lb
Max. Shoulder Torque	13,600	ft.lb
Min. Delta Turn	-	Turns
Max. Delta Turn	0.200	Turns
Maximum Operational Torque	24,200	ft.lb
Maximum Torsional Value (MTV)	26,620	ft.lb

Need Help? Contact: <u>tech.support@vam-usa.com</u> Reference Drawing: 8135PP Rev.02 & 8135BP Rev.02 Date: 07/30/2020

Time: 07:50:47 PM

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates us advised of the possibility of such damages.

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM[®] USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

1. DWC connections are available with a seal ring (SR) option.

2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.

3. Connection performance properties are based on nominal pipe body and connection dimensions.

4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.

5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.

6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.

7. Bending efficiency is equal to the compression efficiency.

8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.

9. Connection yield torque is not to be exceeded.

10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.

11. DWC connections will accommodate API standard drift diameters.

12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

Seog resources

EOG Batch Casing

Pad Name: Pretty Good 20 Fed Com SHALLOW SHL: Section 20, Township 22-S, Range 32-E, LEA County, NM

EOG requests for the below wells to be approved for all four designs listed in the Blanket Casing Design ('EOG BLM Variance 5a - Alternate Shallow Casing Designs.pdf' OR 'EOG BLM Variance 5b -Alternate Deep Casing Designs.pdf') document. The MDs and TVDs for all intervals are within the boundary conditions. The max inclination and DLS are also within the boundary conditions. The directional plans for the wells are attached separately.

Well Name	API #	Surface		Intermediate Prod		Produ	uction	
wen maine		MD	TVD	MD	TVD	MD	TVD	
Pretty Good 20 Fed Com #209H (FKA 508H)	30-025-53119	1,000	1,000	4,695	4,542	25,044	9,407	
Pretty Good 20 Fed Com #210H (FKA 402H)	30-025-53111	1,000	1,000	4,732	4,542	25,079	9,407	
Pretty Good 20 Fed Com #221H (FKA 604H)	30-025-51774	1,000	1,000	4,695	4,542	25,044	9,407	
Pretty Good 20 Fed Com #305H (FKA 404H)	30-025-53113	1,000	1,000	4,673	4,542	25,207	9,590	
Pretty Good 20 Fed Com #306H (FKA 703H)	30-025-51790	1,000	1,000	4,712	4,542	25,243	9,590	
Pretty Good 20 Fed Com #403H	30-025-53112	1,000	1,000	4,684	4,542	25,762	10,135	
Pretty Good 20 Fed Com #509H (FKA 710H)	30-025-51805	1,000	1,000	4,695	4,542	26,267	10,630	
Pretty Good 20 Fed Com #510H (FKA 506H)	30-025-53117	1,000	1,000	4,715	4,542	26,286	10,630	
Pretty Good 20 Fed Com #511H (FKA 505H)	30-025-53116	1,000	1,000	4,619	4,542	26,196	10,630	
Pretty Good 20 Fed Com #512H (FKA 503H)	30-025-53114	1,000	1,000	4,667	4,542	26,241	10,630	
Pretty Good 20 Fed Com #585H (FKA 507H)	30-025-53118	1,000	1,000	4,672	4,542	26,526	10,910	
Pretty Good 20 Fed Com #586H (FKA 504H)	30-025-53115	1,000	1,000	4,745	4,542	26,592	10,910	

Variances

EOG requests the additional variance(s) in the attached document(s):

- EOG BLM Variance 2a Intermediate Bradenhead Cement
- EOG BLM Variance 3a_b BOP Break-test and Offline Intermediate Cement
- EOG BLM Variance 4a Salt Section Annular Clearance
- EOG BLM Variance 5a Alternate Shallow Casing Designs

seog resources

Page 90 of 91

EOG Batch Casing

GEOLOGIC NAME OF SURFACE FORMATION:

Permian

ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	891'
Tamarisk Anhydrite	973'
Top of Salt	1,258'
Base of Salt	4,442'
Lamar	4,720'
Bell Canyon	4,761'
Cherry Canyon	5,604'
Brushy Canyon	6,931'
Bone Spring Lime	8,677'
Leonard (Avalon) Shale	8,835'
1st Bone Spring Sand	9,575'
2nd Bone Spring Shale	9,912'
2nd Bone Spring Sand	10,283'
3rd Bone Spring Carb	10,711'
3rd Bone Spring Sand	11,421'

ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Bell Canyon	4,761'	Oil
Cherry Canyon	5,604'	Oil
Brushy Canyon	6,931'	Oil
Leonard (Avalon) Shale	8,835'	Oil
1st Bone Spring Sand	9,575'	Oil
2nd Bone Spring Shale	9,912'	Oil
2nd Bone Spring Sand	10,283'	Oil
	-	

fresh water sands will be protected by setting surface casing at 1,000' and circulating cement back to surface.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
EOG RESOURCES INC	7377
5509 Champions Drive	Action Number:
Midland, TX 79706	375946
	Action Type:
	[C-103] NOI Change of Plans (C-103A)
CONDITIONS	

Created By	Condition	Condition Date
pkautz	ALL PREVIOUS COA'S APPLY	12/13/2024

CONDITIONS

Action 375946

Page 91 of 91

.