Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5 Lease Serial No. NMNM030452 BUREAU OF LAND MANAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. ✓ DRILL REENTER 1a. Type of work: NMNM071016X/POKER LAKE UNIT 1b. Type of Well: Oil Well ✓ Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing ✓ Single Zone Multiple Zone POKER LAKE UNIT 23 DTD 441H 2. Name of Operator 9. API Well No. XTO PERMIAN OPERATING LLC 30-015-55910 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory PURPLE SAGE/WOLFCAMP (GAS) 6401 HOLIDAY HILL ROAD BLDG 5, MIDLAND, TX 7970 (432) 683-2277 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area SEC 23/T24S/R30E/NMP At surface NWNE / 1152 FNL / 1771 FEL / LAT 32.207469 / LONG -103.848705 At proposed prod. zone SENW / 2627 FNL / 1475 FWL / LAT 32.174413 / LONG -103.855444 12. County or Parish 14. Distance in miles and direction from nearest town or post office* 13 State **EDDY** NM 9.3 miles 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well 1152 feet location to nearest 1600.0 property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, 30 feet FED: COB000050 12214 feet / 25426 feet applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 3429 feet 02/15/2025 45 days 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the 25. Signature Name (Printed/Typed) Date (Electronic Submission) RICHARD REDUS / Ph: (432) 682-8873 04/16/2024 Title Permitting Manager Approved by (Signature) Name (Printed/Typed) Date (Electronic Submission) CODY LAYTON / Ph: (575) 234-5959 11/22/2024 Title Office Assistant Field Manager Lands & Minerals Carlsbad Field Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction (Continued on page 2) *(Instructions on page 2) ### Application for Permit to Drill # U.S. Department of the Interior Bureau of Land Management Date Printed: 11/26/2024 12:18 PM ### **APD Package Report** APD ID: 10400098055 Well Status: AAPD APD Received Date: 04/16/2024 09:42 AM Well Name: POKER LAKE UNIT 23 DTD Operator: XTO PERMIAN OPERATING LLC Well Number: 441H ### **APD Package Report Contents** - Form 3160-3 - Operator Certification Report - Application Report - Application Attachments - -- Well Plat: 1 file(s) - Drilling Plan Report - Drilling Plan Attachments - -- Blowout Prevention Choke Diagram Attachment: 1 file(s) - -- Blowout Prevention BOP Diagram Attachment: 1 file(s) - -- Casing Spec Documents: 2 file(s) - -- Casing Taperd String Specs: 2 file(s) - -- Casing Design Assumptions and Worksheet(s): 4 file(s) - -- Hydrogen sulfide drilling operations plan: 1 file(s) - -- Proposed horizontal/directional/multi-lateral plan submission: 1 file(s) - -- Other Facets: 6 file(s) - -- Other Variances: 3 file(s) - SUPO Report - SUPO Attachments - -- Existing Road Map: 1 file(s) - -- Attach Well map: 1 file(s) - -- Water source and transportation map: 1 file(s) - -- Well Site Layout Diagram: 1 file(s) - -- Recontouring attachment: 4 file(s) - -- Other SUPO Attachment: 1 file(s) - PWD Report - PWD Attachments - -- None - Bond Report - Bond Attachments - -- None Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. **BUREAU OF LAND MANAGEMENT** APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. DRILL REENTER 1a. Type of work: 1b. Type of Well: Gas Well Oil Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone 9. API Well No. 2. Name of Operator 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory 11. Sec., T. R. M. or Blk. and Survey or Area 4. Location of Well (Report location clearly and in accordance with any State requirements.*) At surface At proposed prod. zone 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see Item 20 above). 2. A Drilling Plan. 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the BLM. Name (Printed/Typed) Date 25. Signature Title Approved by (Signature) Date Name (Printed/Typed) Title Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. ### INSTRUCTIONS GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices. ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well. ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions. ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices. ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone. ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started. ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices. ### NOTICES The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application. AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160 PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved;
and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts. ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities. EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease. The Paperwork Reduction Act of 1995 requires us to inform you that: The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number. **BURDEN HOURS STATEMENT:** Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240. ### **Additional Operator Remarks** ### **Location of Well** 0. SHL: NWNE / 1152 FNL / 1771 FEL / TWSP: 24S / RANGE: 30E / SECTION: 23 / LAT: 32.207469 / LONG: -103.848705 (TVD: 0 feet, MD: 0 feet) PPP: NENW / 100 FNL / 1475 FWL / TWSP: 24S / RANGE: 30E / SECTION: 23 / LAT: 32.210347 / LONG: -103.855509 (TVD: 12214 feet, MD: 13100 feet) PPP: NENW / 0 FSL / 1490 FWL / TWSP: 24S / RANGE: 30E / SECTION: 26 / LAT: 32.196133 / LONG: -103.855484 (TVD: 12214 feet, MD: 18400 feet) BHL: SENW / 2627 FNL / 1475 FWL / TWSP: 24S / RANGE: 30E / SECTION: 35 / LAT: 32.174413 / LONG: -103.855444 (TVD: 12214 feet, MD: 25426 feet) ### **BLM Point of Contact** Name: MARIAH HUGHES Title: Land Law Examiner Phone: (575) 234-5972 Email: mhughes@blm.gov ### **Review and Appeal Rights** A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information. | | <u>C-102</u> | | | | | | v Mexico
Il Resources Departmer
ON DIVISION | nt | | Re | vised July, 09 2 | |--|---|--|---|------------------------------------|--------------------------------|---|---|-----------------|-------------------|-----------------------------|------------------| | | | electronically
D Permitting | | | | | | | | — | | | | | | | | | | | | Submital | ☑ Initial Subr | | | | | | | | | | | | Type: | Amended F | Report | | | | | | | | | | | | ☐ As Drilled | | | | | | | T | | | TION INFORMATION | | | | | | | API Nui | | 5- 55 910 | Pool Code | 98220 | I . | Pool Name PUR | PLE SAGE | ; WOLF | CAMP (GAS) | | | | Property Code | | | Property N | lame | | | | | Well Number | | | | OGRID | | 598 | Operator N | Jame | POKER LA | AKE UNIT 23 DTD | | | Ground Level | Elevation | | | | 37307 | 75 | • | | XTO PERMIA | N OPERATING, LL | C. | | | ,429' | | | Surface (| Owner: S | State | Tribal 🛮 Fe | deral | | Mineral Owner: | State □Fee | □Tribal 🗵 | Federal | | | | | | | | | Surface | e Hole Location | | | | | | | UL | Section | Township | Range | Lot | Ft. from N/S | Ft. from E/W | Latitude | | Longitude | County | | | В | 23 | 248 | 30E | | 1,152' FNL | 1,771' FEL | 32.207 | 469 | -103.848705 | EDDY | | | | | | | | Botton | 1 Hole Location | | | | | | | UL | Section | Township | Range | Lot | Ft. from N/S | Ft. from E/W | Latitude | | Longitude | County | | | F | 35 | 248 | 30E | | 2,627' FNL | 1,475' FWL | 32.174 | 413 | -103.855444 | EDDY | | | | | | | | | | | | | | | | | ed Acres | Infill or Defin | - | Defining | g Well API | Overlapping Spacing | Unit (Y/N) | Consolida | tion Code | | | | Order N | lumbers. | | | | | Well Setbacks are un | der Common C | wnership: | ĭ Yes □ No | | | g | | | | | | Kick O | off Point (KOP) | | | | | | É | UL | Section | Township | Range | Lot | Ft. from N/S | Ft. from E/W | Latitude | | Longitude | County | | | В | 23 | 24S | 30E | | 1,152' FNL | 1,771' FEL | 32.207 | 469 | -103.848705 | EDDY | | - | | | | 1 | | | ake Point (FTP) | | | | | | - 441H \DWG \441H | UL | Section | Township | Range | Lot | Ft. from N/S | Ft. from E/W | Latitude | | Longitude | County | | | С | 23 | 24S | 30E | | 100' FNL | 1,475' FWL | 32.210 | 347 | -103.855509 | EDDY | | 2 C Z | | T | Τ | | 1. | 1 | nke Point (LTP) | 1 | | | | | 3 | UL | Section | Township | Range | Lot | Ft. from N/S | Ft. from E/W | Latitude | | Longitude | County | | 8 | _ F | 35 | 24S | 30E | | 2,537' FNL | 1,475' FWL | 32.174 | 1000 | -103.855447 | EDDY | | | Unitized | d Area or Are | ea of Interest | | 1 | | | Groun | nd Elevation | 1 | | | EDDY \Wells\- | | NMNN | 1105422429 | | Spacing U | Init Type: Horiz | ontal | | | 3,429' | | | | OPER A | TOR CERT | IFICATIONS | | | | SURVEYOR CERTIFIC | CATIONS | | | | | - DID | | | | contained her | ein is true a | nd complete to the | I hereby certify that the | | hown on this | s plat was plotted f | rom field notes | | 5 | best of n
that this | ny knowledge
organization | e and belief, and,
n either owns a w | , if the well is
vorking intere | vertical or e
est or unleas | directional well,
red mineral interest | actual surveys made by
correct to the best of my | me or under my | | | | | | at this le | ocation pursi | uant to a contrac | t with an own | ier of a worl | | | | | DILLON | | | 2 | | | erest, or a volun
etofore entered b | | | r a compulsory | | | 3 | PAK MEX/C | EARS . | | | 1 | | ontal well, I furti
of at least one le | | | | | | | | | | | | l the consent | | ct (in the targ | et pool or in | ıformation) in | | | PA | 23786 | 2 2 2 3 | | 60./) 0 | received
unleased
which a | d mineral into
my part of the | e well's complete | | | | | | () | $\overline{}$ | / 🚜 / | | Lake Offic \.09 - | received
unleased
which a | d mineral into
my part of the | | | | | ,/ | 1/ | 1 | | · • / | | , | received
unleased
which an
compuls | d mineral into
any part of the
sory pooling | e well's complete
order from the d | ivision. | | | | | Tr. | POVAL S | JAZ | | Lake Unit \.U9 = | received
unleased
which an
compuls | d mineral intent of the sory pooling so | e well's complete
order from the d | | 2024 | | Signature and Seal of Pr | ofessional Surv | veyor | 23786
23786
28/ONAL 9 | und | | • | received
unleased
which as
compuls | d mineral intent of the sory pooling so | e well's complete
order from the d | ivision. | 2024 | | Signature and Seal of Pr | ofessional Surv | veyor | PS/ONAL S | JAN . | | - NM (UUS Poker Lake Unit (.U9 - | received unleased which as compuls Terra Signatur | d mineral into my part of the sory pooling was selected as
Sebastical as Sebastical as Sebast | e well's complete
order from the d | ivision. | 2024 | | MARK DILLON HARP 23 | 786 | eyor | 10/28/2024 | ur" | | - NM (UUS Poker Lake Unit (.U9 - | received unleased which an compuls Terra Signatur Terror Printed | d mineral into my part of the sory pooling | e well's complete
order from the d.
M | <i>10/29/.</i>
Date | | | | 786 | veyor
f Survey | | UR ² | | Eriergy - INM (000 Poker Lake Offic), 08 - | received unleased which an compuls Terra Signatur Terror Printed | d mineral into my part of the sory pooling | e well's complete
order from the d | <i>10/29/.</i>
Date | | | MARK DILLON HARP 23 | 786 | eyor | | | | ∖618.013 X10 Energy — NM∖003 Poker Lake Unit∖.09 — PLU | received unleased which as compuls Tura Signatur Terro Printed 1 terra | d mineral into my part of the sory pooling | e well's complete
order from the d.
M | <i>10/29/.</i>
Date | | | MARK DILLON HARP 23 | 786 | eyor | | | ### ACREAGE DEDICATION PLATS This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is a directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other then the First Take Point and Last Take Point) that is closest to any outer boundary of the tract. tions will be in reference to the New Mexico Principal Meridian. If the land in | LINE TABLE | | | | | | | |------------|------------|-----------|--|--|--|--| | LINE | AZIMUTH | LENGTH | | | | | | L1 | 29671'49" | 2,350.41 | | | | | | L2 | 179*39'27" | 13,072.42 | | | | | | 439,549.1
691,227.9
32.207469
103.848705
IAD 83 NME
440,586.7
689,118.9
32.210347
103.855509 | N
E
°N
°W
)
N
E | Y =
X =
LAT. =
LONG. = | P (NAD 27 NI
439,490.1
650,044.1
32.207345
103.848219 | ME
N
E
°N | |--|--|---------------------------------|---|------------------------------| | 691,227.9
32.207469
103.848705
IAD 83 NME
440,586.7
689,118.9
32.210347
103.855509 | E
°N
°W
)
N
E | X =
LAT. =
LONG. = | 650,044.1
32.207345 | Е | | 32.207469
103.848705
IAD 83 NME
440,586.7
689,118.9
32.210347
103.855509 | °N
°W
)
N
E | LAT. =
LONG. = | 32.207345 | | | 103.848705
IAD 83 NME
440,586.7
689,118.9
32.210347
103.855509 | °W
)
N
E | LONG. = | | °N | | 440,586.7
689,118.9
32.210347
103.855509 |)
N
E | | 103.848219 | | | 440,586.7
689,118.9
32.210347
103.855509 | N
E | FTP (I | | °W | | 689,118.9
32.210347
103.855509 | Е | | VAD 27 NME | .) | | 32.210347
103.855509 | | Y = | 440,527.6 | N | | 32.210347
103.855509 | 08. | X = | 647,935.2 | Е | | 103.855509 | °N | LAT. = | 32.210223 | °N | | | °W | | 103.855023 | °۷ | | (NAD 83 NM | _ | | (NAD 27 NM | _ | | 435,416.0 | N. | Y= | 435,357.1 | N | | 689,149.6 | E | X = | 647,965.7 | E | | · · | °N | | | °N | | 32.196133 | _ | LAT. = | 32.196009 | _ | | | | | | ۰W | | • | - - - | | • | <u> </u> | | | _ | | | N | | 689,180.9 | Е | | 647,996.8 | E | | 32.181635 | °N | LAT. = | 32.181511 | ٩N | | 103.855459 | °W | LONG. = | 103.854974 | °۷ | | IAD 83 NME |) | LTP (I | VAD 27 NME | :) | | | _ | Y = | | N | | | _ | X = | | E | | | | | | ۰۷ | | | _ | | | °W | | | | | | _ | | | _ | | | <u> </u> | | | | | | N | | | _ | | | E | | | _ | | | °N | | | | | | °۷ | | NER COOR | DIN | ATES (NA | 4D 83 NME) | | | 440,695.8 | N | A - X = | 690,318.7 | E | | 438,055.8 | N | B-X= | 690,325.0 | E | | 435,421.3 | N | C - X = | 690,331.2 | E | | 432,784.0 | Ν | D-X= | 690,347.4 | E | | 430,145.2 | N | E-X= | | Е | | | N | | | Е | | | | | | E | | | | | | E | | | _ | | | E | | | _ | | _ | - | | | _ | | | E | | | _ | | | E | | | | | | E | | | _ | | | _ | | 440,636.8 | N | A - X = | 649,135.0 | E | | 437,996.8 | N | B-X= | 649,141.1 | E | | 435,362.4 | N | C - X = | 649,147.3 | E | | 432,725.2 | Ν | D - X = | 649,163.4 | E | | | N | | | Е | | | N | | | E | | | | | _ | E | | | | | | E | | | _ | | | - | | | | | _ | E | | | _ | | | E | | | | | _ | E | | 427,445.4 | N | L-X= | 647,873.8 | E | | | 430,141.8
689,180.9
32.181635
1AD 83 NME
427,604.5
689,195.9
32.174660
103.855447
IAD 83 NME
427,514.5
689,197.1
32.174413
103.855444
NER COOR
440,695.8
438,055.8
435,421.3
432,784.0
430,145.2
427,508.2
440,685.6
438,045.3
432,779.2
430,141.2
427,504.1
NER COOR | NAD 83 NME 30,141.8 | NAD 83 NME PPP#2 430,141.8 | NAD 83 NME PP#2 (NAD 27 NM | | 100 FNL 1.475 FWL 1.1771 FEL 1.152 FNL 1.1771 FEL 1.1771 FEL 1.152 FNL 1.1771 FEL 1.152 FNL 1.1771 FEL 1.152 FNL 1.1771 FEL 1.152 FNL 1. | === | G | 7. 14 NMLC 0068905 NMNM 0030452 | |--|--|--------------|---------------------------------------| | □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ | =- | 1,475' FWL | 1,152' FNL
 1,771' FEL
 | | □ QG | 02.dwg | □ 0' FSL | C NMNM 002862 | | 99 | The state of s | | DSEC26
T-24-S
R-30-E | | - - - | 23 DTD - EDDY\Wells\-56 | 0' FSL | | | 1
- 11 · | | 2,52
1,41 | 77 FNL
75 FWL
F SEC. 35 | ### State of New Mexico Energy, Minerals and Natural Resources Department Submit Electronically Via E-permitting Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 ### NATURAL GAS MANAGEMENT PLAN This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well. # Section 1 – Plan Description Effective May 25, 2021 | I. Operator: | _XTO Permian Operating, LLC | OGRID: | 373075 | | 1/_4/2024 | | |---------------------|----------------------------------|------------------|-------------------|---------------------|-------------|--| | II. Type: 🗵 Orig | ginal □ Amendment due to □ 19.15 | .27.9.D(6)(a) NM | AC □ 19.15.27.9.I | O (6)(b) NMA | AC □ Other. | | | If Other, please de | escribe: | | | | | | III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point. | Well Name | API | ULSTR | Footages | Anticipat
ed Oil
BBL/D | 3 yr
Anticipat
ed
Decline
oil BBL/D | Anticipat
ed Gas
MCF/D | 3 yr
anticipated
decline Gas
MCF/D | Anticipated
Produced
Water BBL/D | 3 yr
anticipated
decline
Water
BBL/D | |-----------------------------------|-----|-----------------|----------------------|------------------------------|---|------------------------------|---|--|--| | Poker Lake
Unit 23
DTD 104H | | 14 T24S
R30E | 556 FSL
310 FWL | 1,800 | 200 | 7,500 | 1,200 | 7,000 | 800 | | Poker Lake
Unit 23
DTD 193H | | 14 T24S
R30E | 556 FSL
280 FWL | 1,800 | 200 | 7,500 | 1,200 | 7,000 | 800 | | Poker Lake
Unit 23
DTD 441H | | 23 T24S
R30E | 1152 FNL
1771 FEL | 1,800 | 200 | 7,500 | 1,200 | 7,000 | 800 | | Poker Lake
Unit 23
DTD 442H | | 23 T24S
R30E | 1152 FNL
1741 FEL | 1,800 | 200 | 7,500 | 1,200 | 7,000 | 800 | | Poker Lake
Unit 23
DTD 443H | | 23 T24S
R30E | 1152 FNL
1711 FEL | 1,800 | 200 | 7,500 | 1,200 | 7,000 | 800 | | Poker Lake
Unit 23
DTD 444H | | 23 T24S
R30E | 1152 FNL
1681 FEL | 1,800 | 200 | 7,500 | 1,200 | 7,000 | 800 | | Poker Lake
Unit 23
DTD 445H | | 23 T24S
R30E | 1152 FNL
1651 FEL | 1,800 | 200 | 7,500 | 1,200 | 7,000 | 800 | | Poker Lake
Unit 23
DTD 451H | | 23 T24S
R30E | 1247 FNL
1771 FEL | 1,900 | 200 | 3,250 | 900 | 3,750 | 400 | | Poker Lake
Unit 23
DTD 452H | 23 T24S
R30E | 1247 FNL
1741 FEL | 1,900 | 200 | 3,250 | 900 | 3,750 | 400 | |-----------------------------------|-----------------|----------------------|-------|-----|-------|-------|-------|-----| | Poker Lake
Unit 23
DTD 453H | 23 T24S
R30E | 1247 FNL
1711 FEL | 1,900 | 200 | 3,250 | 900 | 3,750 | 400 | | Poker Lake
Unit 23
DTD 454H | 23 T24S
R30E | 1247 FNL
1681 FEL | 1,800 | 200 | 7,500 | 1,200 | 7,000 | 800 | | Poker Lake
Unit 23
DTD 455H | 23 T24S
R30E | 1247 FNL
1651 FEL | 1,900 | 200 | 3,250 | 900 | 3,750 | 400 | | Poker Lake
Unit 23
DTD 456H | 23 T24S
R30E | 1247 FNL
1621 FEL | 1,900 | 200 | 3,250 | 900 | 3,750 | 400 | | Poker Lake
Unit 23
DTD 541H | 14 T24S
R30E | 645 FSL
637 FEL | 1,800 | 200 | 7,500 | 1,200 | 7,000 | 800 | | Poker Lake
Unit 23
DTD 542H | 14 T24S
R30E | 645 FSL
607 FEL | 1,800 | 200 | 7,500 | 1,200 | 7,000 | 800 | | Poker Lake
Unit 23
DTD 543H | 14 T24S
R30E | 645 FSL
577 FEL | 1,900 | 200 | 3,250 | 900 | 3,750 | 400 | | Poker Lake
Unit 23
DTD 544H | 14 T24S
R30E | 645 FSL
547 FEL | 1,800 | 200 | 7,500 | 1,200 | 7,000 | 800 | | Poker Lake
Unit 23
DTD 545H | 14 T24S
R30E | 645 FSL
517 FEL | 1,900 | 200 | 3,250 | 900 | 3,750 | 400 | | Poker Lake
Unit 23
DTD 546H | 14 T24S
R30E | 645 FSL
487 FEL | 1,800 | 200 | 7,500 | 1,200 | 7,000 | 800 | | Poker Lake
Unit 23
DTD 705H | 14 T24S
R30E | 556 FSL
340 FWL | 1,800 | 200 | 7,500 | 1,200 | 7,000 | 800 | IV. Central Delivery Point Name: PLU 23 DTD CVB [See 19.15.27.9(D)(1) NMAC] V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point. | Well Name | API | Spud Date | TD Reached | Completion | Initial Flow | First Production | |--------------------------------|------------|------------|------------|-------------------|--------------|------------------| | | | | Date | Commencement Date | Back Date | Date | | Poker Lake Unit 23
DTD 104H | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | | Poker Lake Unit 23
DTD 193H | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | | Poker Lake Unit 23
DTD 441H | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | | Poker Lake Unit 23
DTD 442H | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | | Poker Lake Unit 23
DTD 443H | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | | D-1 I -1 II-:4 22 | TDD | TDD | TDD | TDD | TDD | TDD | |--------------------|--------------|--------------|-------------|--|--------------|-------------| | Poker Lake Unit 23 | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | | DTD 444H | | | | | | | | Poker Lake Unit 23 | TBD | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | | DTD 445H | | | | | | | | Poker Lake Unit 23 | TBD | TBD | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | | DTD 451H | | | | | | | | Poker Lake Unit 23 | TBD | TBD | TBD | <u>TBD</u> | TBD | TBD | | DTD 452H | | | | | | | | Poker Lake Unit 23 | TBD | TBD | TBD | TBD | TBD | TBD | | DTD 453H | | | | | | | | Poker Lake Unit 23 | TBD | TBD | TBD | TBD | TBD | TBD | | DTD 454H | | | | | | | | Poker Lake Unit 23 | TBD | TBD | TBD | TBD | TBD | TBD | | DTD 455H | 100 | 100 | 100 | 100 | <u>IDD</u> | 100 | | Poker Lake Unit 23 | TBD | TBD | TBD | TBD | <u>TBD</u> | TBD | | DTD 456H | <u>I DD</u> | 100 | 100 | <u> 100</u> | <u>100</u> | <u>100</u> | | Poker Lake Unit 23 | TBD | TBD | TBD | TBD | TBD | TBD | | DTD 541H | <u> 1 DD</u> | <u> 1 DD</u> | <u> 160</u> | <u> 186</u> | <u> 1 DD</u> | <u>1 DD</u> | | | TDD | TDD | TDD | TDD | TDD | TDD | | Poker Lake Unit 23 | TBD | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | | DTD 542H | TDD | TEND | TDD | The state of s | TDD | TDD | | Poker Lake Unit 23 | TBD | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | | DTD 543H | | | | | | | | Poker Lake Unit 23 | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | | DTD 544H | | | | | | | | Poker Lake Unit 23 | TBD | TBD | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | <u>TBD</u> | | DTD 545H | | | | | | | | Poker Lake Unit 23 | TBD | TBD | TBD | <u>TBD</u> | <u>TBD</u> | TBD | | DTD 546H | | | | | | | | Poker Lake Unit 23 | TBD | TBD | TBD | TBD | TBD | TBD | | DTD 705H | | <u> </u> | | | | | | · | | | | | | | VI. Separation Equipment: ⊠ Attach a complete description of how Operator will size separation equipment to optimize gas capture. VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance. ### Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022 Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for
the applicable reporting area must complete this section. ☑ Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area. ### IX. Anticipated Natural Gas Production: for which confidentiality is asserted and the basis for such assertion. | Well | | API | Anticipated Average
Natural Gas Rate MCF/I | Anticipated Volume of Natural Gas for the First Year MCF | |----------------------|-------------------------|---|---|--| | | | | | | | X. Natural Gas Gat | thering System (NO | GGS): | | | | Operator | System | ULSTR of Tie-in | Anticipated Gathering
Start Date | Available Maximum Daily Capacity of System Segment Tie-in | | | | | | | | production operation | is to the existing or j | planned interconnect of t | | nticipated pipeline route(s) connecting the em(s), and the maximum daily capacity of nected. | | | | thering system ⊠ will [
o the date of first produc | | gather 100% of the anticipated natural gas | | | • | - | • • • • | ted to the same segment, or portion, of the line pressure caused by the new well(s). | | ☐ Attach Operator's | s plan to manage pro | oduction in response to t | he increased line pressure. | | **XIV. Confidentiality:** □ Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information # Section 3 - Certifications Effective May 25, 2021 | | Effective May 25, 2021 | | | | | | | |--|---|--|--|--|--|--|--| | Operator certifies that, af | ter reasonable inquiry and based on the available information at the time of submittal: | | | | | | | | one hundred percent of the | ☑ Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, aking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or | | | | | | | | hundred percent of the an into account the current a | able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one aticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. **Now, Operator will select one of the following: | | | | | | | | Well Shut-In. ☐ Operato | Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection | | | | | | | | D of 19.15.27.9 NMAC; | or | | | | | | | | | on. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential so for the natural gas until a natural gas gathering system is available, including: power generation on lease; power generation for grid; compression on lease; liquids removal on lease; reinjection for underground storage; reinjection for temporary storage; reinjection for enhanced oil recovery; fuel cell production; and other alternative beneficial uses approved by the division. | | | | | | | | | | | | | | | | ### **Section 4 - Notices** - 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud: - (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or - (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement. - 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud. I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act. | Signature: Samantha Weis | |---| | Printed Name: Samantha Weis | | Title: Permitting Advisor | | E-mail Address: samantha.r.bartnik@exxonmobil.com | | Date: 11/4/2024 | | Phone: +1-832-625-7361 | | OIL CONSERVATION DIVISION | | (Only applicable when submitted as a standalone form) | | Approved By: | | Title: | | Approval Date: | | Conditions of Approval: | | | | | | | | | ### VI. Separation Equipment: XTO Permian Operating LLC. utilizes a "stage separation" process in which oil and gas separation is carried out through a series of separators operating at successively reduced pressures. Hydrocarbon liquids are produced into a high-pressure inlet separator, then carried through one or more lower pressure separation vessels before entering the storage tanks. The purpose of this separation process is to attain maximum recovery of liquid hydrocarbons from the fluids and allow maximum capture of produced gas into the sales pipeline. XTO utilizes a series of Low-Pressure Compression units to capture gas off the staged separation and send it to the sales pipeline. This process minimizes the amount of flash gas that enters the end-stage storage tanks that is subsequently vented or flared. ### VII. Operational Practices XTO Permian Operating LLC will employ best management practices and control technologies to maximize the recovery and minimize waste of natural gas through venting and flaring. - During drilling operations, XTO will utilize flares to capture and control natural gas, where technically feasible. If flaring is deemed technically in-feasible, XTO will employ best management practices to minimize or reduce venting to the extent possible. - During completions operations, XTO will utilize Green Completion methods to capture gas produced during well completions that is otherwise vented or flared. If capture is technically infeasible, flares will be used to control flow back fluids entering into frac tanks during initial flowback. Upon indication of first measurable hydrocarbon volumes, XTO Permian Operating LLCwill turn operations to onsite separation vessels and flow to the gathering pipeline. - During production operations, XTO Permian Operating LLC will take every practical effort to minimize waste of natural gas through venting and flaring by: - Designing and constructing facilities in a manner consistent to achieve maximum capture and control of hydrocarbon liquids & produced gas - Utilizing a closed-loop capture system to collect, and route produced gas to sales line via low pressure compression, or to a flare/combustor - Flaring in lieu of venting, where technically feasible - Utilizing auto-ignitors or continuous pilots, with thermocouples connected to Scada, to quickly detect and resolve issues related to malfunctioning flares/combustors - Employ the use of automatic tank gauging to minimize storage tank venting during loading events - Installing air-driven or electric-driven pneumatics & combustion engines, where technically feasible to minimize venting to the atmosphere - Confirm equipment is properly maintained and repaired through a preventative maintenance and repair program to ensure equipment meets all manufacturer specifications • Conduct and document AVO inspections on the frequency set forth in Part 27 to detect and repair any onsite leaks as quickly and efficiently as is feasible. VIII. Best Management Practices during Maintenance XTO Permian Operating LLC. will utilize best management practices to minimize venting during active and planned maintenance activities. XTO is operating under guidance that production facilities permitted under NOI permits have no provisions to allow high pressure flaring and high-pressure flaring is only allowed in disruption scenarios so long as the duration is less than eight hours. When technically feasible, flaring during maintenance activities will be
utilized in lieu of venting to the atmosphere. XTO will work with third-party operators during scheduled maintenance of downstream pipeline or processing plants to address those events ahead of time to minimize venting. Actions considered include identifying alternative capture approaches or planning to temporarily reduce production or shut in the well to address these circumstances. # U.S. Department of the Interior BUREAU OF LAND MANAGEMENT # Drilling Plan Data Report **APD ID**: 10400098055 Submission Date: 04/16/2024 Highlighted data reflects the most recent changes Operator Name: XTO PERMIAN OPERATING LLC Well Number: 441H Well Name: POKER LAKE UNIT 23 DTD Well Type: CONVENTIONAL GAS WELL Well Work Type: Drill **Show Final Text** ### **Section 1 - Geologic Formations** | Formation ID | Formation Name | Elevation | True Vertical | Measured
Depth | Lithologies | Mineral Resources | Producing
Formatio | |--------------|-----------------|-----------|---------------|-------------------|--------------------------------|--|-----------------------| | 14549445 | QUATERNARY | 3429 | 0 | 0 | ALLUVIUM | USEABLE WATER | Z | | 14549446 | RUSTLER | 2115 | 1314 | 1314 | ANHYDRITE | USEABLE WATER | N | | 14549447 | SALADO | 1712 | 1717 | 1717 | POTASH, SALT | NONE | N | | 14549448 | BASE OF SALT | -481 | 3910 | 3910 | ANHYDRITE,
DOLOMITE, POTASH | NONE | N | | 14549449 | DELAWARE | -675 | 4104 | 4104 | LIMESTONE,
SANDSTONE | NATURAL GAS, OIL,
OTHER : PRODUCED
WATER | N | | 14549450 | BRUSHY CANYON | -3181 | 6610 | 6610 | SANDSTONE, SHALE,
SILTSTONE | NATURAL GAS, OIL,
OTHER : PRODUCED
WATER | N | | 14549451 | BONE SPRING | -4470 | 7899 | 7899 | LIMESTONE, SHALE | NATURAL GAS, OIL,
OTHER : PRODUCED
WATER | N | | 14549452 | BONE SPRING 1ST | -5241 | 8670 | 8670 | SANDSTONE, SHALE,
SILTSTONE | NATURAL GAS, OIL,
OTHER : PRODUCED
WATER | N | | 14549453 | BONE SPRING 2ND | -5843 | 9272 | 9272 | LIMESTONE, SHALE | NATURAL GAS, OIL,
OTHER : PRODUCED
WATER | N | | 14549454 | BONE SPRING 3RD | -6610 | 10039 | 10039 | LIMESTONE, SHALE | NATURAL GAS, OIL,
OTHER : PRODUCED
WATER | N | | 14549455 | WOLFCAMP | -8755 | 12184 | 12184 | SANDSTONE, SHALE | NATURAL GAS, OIL,
OTHER : PRODUCED
WATER | Y | ### **Section 2 - Blowout Prevention** Pressure Rating (PSI): 10M Rating Depth: 12214 **Equipment:** Once the permanent WH is installed on the Surface casing, the blow out preventer equipment (BOP) will consist of a 10M BOP. XTO will use a Multi-Bowl system which is attached. Requesting Variance? YES Variance request: A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test chart will be kept on the rig. Attached is an example of a certification and pressure test chart. The manufacturer does not require anchors. XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as Well Name: POKER LAKE UNIT 23 DTD Well Number: 441H per Cactus recommendations, XTO will contact the BLM to skid the rig to drill the remaining wells on the pad. Once surface and both intermediate strings are all completed, XTO will begin drilling the production hole on each of the wells. Testing Procedure: All BOP testing will be done by an independent service company. Operator will test as per 43 CFR 3172 ### **Choke Diagram Attachment:** PLU_23_DTD_10MCM_20240414142153.pdf ### **BOP Diagram Attachment:** PLU_23_DTD_5M10MBOP_20240410151418.pdf ### **Section 3 - Casing** | Casing ID | String Type | Hole Size | Csg Size | Condition | Standard | Tapered String | Top Set MD | Bottom Set MD | Top Set TVD | Bottom Set TVD | Top Set MSL | Bottom Set MSL | Calculated casing length MD | Grade | Weight | Joint Type | Collapse SF | Burst SF | Joint SF Type | Joint SF | Body SF Type | Body SF | |-----------|------------------|--------------------|----------|-----------|------------|----------------|------------|---------------|-------------|----------------|-------------|----------------|-----------------------------|-----------|--------|--|-------------|----------|---------------|----------|--------------|---------| | 1 | SURFACE | 17.5 | 13.375 | NEW | API | N | 0 | 1692 | 0 | 1689 | 3429 | 1740 | 1692 | J-55 | 54.5 | BUTT | 1.53 | 2.88 | DRY | 9.86 | DRY | 9.86 | | 2 | INTERMED
IATE | 12 . 2
5 | 9.625 | NEW | API | N | 0 | 4010 | 0 | 3840 | 3446 | -411 | 4010 | J-55 | 40 | BUTT | 2.84 | 1.47 | DRY | 3.93 | DRY | 3.93 | | 3 | INTERMED
IATE | 8.75 | 7.625 | NEW | API | Y | 0 | 11298 | 0 | 10847 | 3446 | -7418 | 11298 | L-80 | 29.7 | FJ | 3.01 | 1.33 | DRY | 1.9 | DRY | 1.9 | | 4 | PRODUCTI
ON | 6.75 | 5.5 | NEW | NON
API | Υ | 0 | 25426 | 0 | 12214 | 3446 | -8785 | 25426 | P-
110 | 20 | OTHER -
Freedom
HTQ/Talon
HTQ | 1.41 | 1.05 | DRY | 5.17 | DRY | 5.17 | ### **Casing Attachments** Well Name: POKER LAKE UNIT 23 DTD Well Number: 441H | Casing | Attachme | ents | |--------|----------|------| |--------|----------|------| Casing ID: 1 String **SURFACE** **Inspection Document:** **Spec Document:** **Tapered String Spec:** Casing Design Assumptions and Worksheet(s): PLU_23_DTD_441H_Csg_20240413194508.pdf Casing ID: 2 String **INTERMEDIATE** **Inspection Document:** **Spec Document:** **Tapered String Spec:** Casing Design Assumptions and Worksheet(s): PLU 23 DTD 441H Csg 20240413194358.pdf Casing ID: 3 String **INTERMEDIATE** **Inspection Document:** **Spec Document:** **Tapered String Spec:** PLU_23_DTD_441H_Csg_20240413194546.pdf Casing Design Assumptions and Worksheet(s): PLU_23_DTD_441H_Csg_20240413194614.pdf Well Name: POKER LAKE UNIT 23 DTD Well Number: 441H ### **Casing Attachments** Casing ID: 4 String **PRODUCTION** **Inspection Document:** ### **Spec Document:** Freedom_semi_premium_5.5_production_casing_20240806142443.pdf Talon___semiflush_5.5_production_casing_20240806142443.pdf ### **Tapered String Spec:** PLU_23_DTD_441H_Csg_20240413181539.pdf ### Casing Design Assumptions and Worksheet(s): PLU_23_DTD_441H_Csg_20240413194431.pdf ### **Section 4 - Cement** | String Type | Lead/Tail | Stage Tool
Depth | Top MD | Bottom MD | Quantity(sx) | Yield | Density | Cu Ft | Excess% | Cement type | Additives | |--------------|-----------|---------------------|-----------|-----------|--------------|-------|---------|------------|---------|---------------------|-----------| | SURFACE | Lead | 3 | 0 | 1692 | 1450 | 1.33 | 12.8 | 1928.
5 | 100 | EconoCem-
HLTRRC | NA | | SURFACE | Tail | 1 | 0 | 1692 | 310 | 1.33 | 14.8 | 412.3 | 100 | Class C | 2% CaCl | | INTERMEDIATE | Lead | 5 | 0 | 4010 | 840 | 2.06 | 14.8 | 1730.
4 | 100 | Class C | NA | | INTERMEDIATE | Tail | | 0 | 4010 | 60 | 2.06 | 15.6 | 123.6 | 100 | Class C | 2% CaCl | | INTERMEDIATE | Lead | 1 | 3710 | 6610 | 500 | 1.27 | 14.8 | 635 | 100 | Class C | NA | | INTERMEDIATE | Tail | | 6610 | 1129
8 | 130 | 2.77 | 14.8 | 360.1 | 100 | Class C | NA | | PRODUCTION | Lead | | 1099
8 | 1194
5 | 30 | 2.69 | 11.5 | 80.7 | 30 | NeoCem | NA | | PRODUCTION | Tail | | 1194
5 | 2542
6 | 850 | 1.51 | 13.2 | 1283.
5 | 30 | VersaCem | NA | Well Name: POKER LAKE UNIT 23 DTD Well Number: 441H ### **Section 5 - Circulating Medium** Mud System Type: Closed Will an air or gas system be Used? NO Description of the equipment for the circulating system in accordance with Onshore Order #2: Diagram of the equipment for the circulating system in accordance with Onshore Order #2: Describe what will be on location to control well or mitigate other conditions: The necessary mud products for weight addition and fluid loss control will be on location at all times. Describe the mud monitoring system utilized: Spud with fresh water/native mud. Drill out from under surface casing with Saturated Salt solution. Saturated Salt mud will be used while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. A Pason or Totco will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system. ### **Circulating Medium Table** | Top Depth | Bottom Depth | Mud Type | Min Weight (Ibs/gal) | Max Weight (Ibs/gal) | Density (lbs/cu ft) | Gel Strength (lbs/100 sqft) | РН | Viscosity (CP) | Salinity (ppm) | Filtration (cc) | Additional Characteristics | |-----------|--------------|--------------------|----------------------|----------------------|---------------------|-----------------------------|----|----------------|----------------|-----------------|----------------------------| | 1129
8 | 2542
6 | OIL-BASED
MUD | 12.4 | 12.9 | 1 | | | | | | | | 4104 | 1129
8 | OTHER :
BDE/OBM | 9 | 9.5 | | | | | | | | | 1692 | 4104 | SALT
SATURATED | 10.5 | 11 | | | | | | | | | 0 | 1692 | WATER-BASED
MUD | 8.4 | 8.9 | | | | | | | | Well Name: POKER LAKE UNIT 23 DTD Well Number: 441H ### Section 6 - Test, Logging, Coring List of production tests including testing procedures, equipment and safety measures: Open hole logging will not be done on this well. List of open and cased hole logs run in the well: GAMMA RAY LOG, CEMENT BOND LOG, DIRECTIONAL SURVEY, MEASUREMENT WHILE DRILLING, MUD LOG/GEOLOGICAL LITHOLOGY LOG. Coring operation description for the
well: No coring is planned for the well. ### **Section 7 - Pressure** Anticipated Bottom Hole Pressure: 7876 Anticipated Surface Pressure: 5188 Anticipated Bottom Hole Temperature(F): 205 Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO Describe: Contingency Plans geoharzards description: Contingency Plans geohazards Hydrogen Sulfide drilling operations plan required? YES Hydrogen sulfide drilling operations XTO Energy H2S Plan Updated 20240812092429.pdf ### **Section 8 - Other Information** Proposed horizontal/directional/multi-lateral plan submission: PLU 23 DTD 441H DD 20240413184251.pdf Other proposed operations facets description: Other proposed operations facets attachment: PLU_23_DTD_441H_Cmt_20240414122549.pdf PLU 23 DTD 441H RL 20240806143247.pdf PLU_23_DTD_H2S_DiaA_20240806143319.pdf PLU_23_DTD_H2S_DiaD_20240806143319.pdf PLU_23_DTD_H2S_DiaC_20240806143319.pdf PLU 23 DTD MBS 20240812093104.pdf ### Other Variance attachment: Updated Flex Hose 20240806143224.pdf Spudder Rig Request 20240806143224.pdf Offline Cement Variance Surf Interm Csg 20240806143224.pdf # U.S. Department of the Interior BUREAU OF LAND MANAGEMENT # Drilling Plan Data Report **APD ID:** 10400098055 Submission Date: 04/16/2024 Highlighted data reflects the most recent changes Operator Name: XTO PERMIAN OPERATING LLC Well Number: 441H Well Name: POKER LAKE UNIT 23 DTD Well Type: CONVENTIONAL GAS WELL Well Work Type: Drill **Show Final Text** ### **Section 1 - Geologic Formations** | Formation | Formation Name | Elevation | True Vertical | Measured
Depth | Lithologies | Mineral Resources | Producing
Formatio | |-----------|-----------------|-----------|---------------|-------------------|--------------------------------|--|-----------------------| | 14549445 | QUATERNARY | 3429 | 0 | 0 | ALLUVIUM | USEABLE WATER | N | | 14549446 | RUSTLER | 2115 | 1314 | 1314 | ANHYDRITE | USEABLE WATER | N | | 14549447 | SALADO | 1712 | 1717 | 1717 | POTASH, SALT | NONE | N | | 14549448 | BASE OF SALT | -481 | 3910 | 3910 | ANHYDRITE,
DOLOMITE, POTASH | NONE | N | | 14549449 | DELAWARE | -675 | 4104 | 4104 | LIMESTONE,
SANDSTONE | NATURAL GAS, OIL,
OTHER : PRODUCED
WATER | N | | 14549450 | BRUSHY CANYON | -3181 | 6610 | 6610 | SANDSTONE, SHALE,
SILTSTONE | NATURAL GAS, OIL,
OTHER : PRODUCED
WATER | N | | 14549451 | BONE SPRING | -4470 | 7899 | 7899 | LIMESTONE, SHALE | NATURAL GAS, OIL,
OTHER : PRODUCED
WATER | N | | 14549452 | BONE SPRING 1ST | -5241 | 8670 | 8670 | SANDSTONE, SHALE,
SILTSTONE | NATURAL GAS, OIL,
OTHER : PRODUCED
WATER | N | | 14549453 | BONE SPRING 2ND | -5843 | 9272 | 9272 | LIMESTONE, SHALE | NATURAL GAS, OIL,
OTHER : PRODUCED
WATER | N | | 14549454 | BONE SPRING 3RD | -6610 | 10039 | 10039 | LIMESTONE, SHALE | NATURAL GAS, OIL,
OTHER : PRODUCED
WATER | N | | 14549455 | WOLFCAMP | -8755 | 12184 | 12184 | SANDSTONE, SHALE | NATURAL GAS, OIL,
OTHER : PRODUCED
WATER | Y | ### **Section 2 - Blowout Prevention** Pressure Rating (PSI): 10M Rating Depth: 12214 **Equipment:** Once the permanent WH is installed on the Surface casing, the blow out preventer equipment (BOP) will consist of a 10M BOP. XTO will use a Multi-Bowl system which is attached. Requesting Variance? YES Variance request: A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test chart will be kept on the rig. Attached is an example of a certification and pressure test chart. The manufacturer does not require anchors. XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as Well Name: POKER LAKE UNIT 23 DTD Well Number: 441H per Cactus recommendations, XTO will contact the BLM to skid the rig to drill the remaining wells on the pad. Once surface and both intermediate strings are all completed, XTO will begin drilling the production hole on each of the wells. Testing Procedure: All BOP testing will be done by an independent service company. Operator will test as per 43 CFR 3172 ### **Choke Diagram Attachment:** PLU_23_DTD_10MCM_20240414142153.pdf ### **BOP Diagram Attachment:** PLU_23_DTD_5M10MBOP_20240410151418.pdf ### **Section 3 - Casing** | Casing ID | String Type | Hole Size | Csg Size | Condition | Standard | Tapered String | Top Set MD | Bottom Set MD | Top Set TVD | Bottom Set TVD | Top Set MSL | Bottom Set MSL | Calculated casing length MD | Grade | Weight | Joint Type | Collapse SF | Burst SF | Joint SF Type | Joint SF | Body SF Type | Body SF | |-----------|------------------|--------------------|----------|-----------|------------|----------------|------------|---------------|-------------|----------------|-------------|----------------|-----------------------------|-----------|--------|--|-------------|----------|---------------|----------|--------------|---------| | 1 | SURFACE | 17.5 | 13.375 | NEW | API | N | 0 | 1692 | 0 | 1689 | 3429 | 1740 | 1692 | J-55 | 54.5 | BUTT | 1.53 | 2.88 | DRY | 9.86 | DRY | 9.86 | | 2 | INTERMED
IATE | 12 . 2
5 | 9.625 | NEW | API | N | 0 | 4010 | 0 | 3840 | 3446 | -411 | 4010 | J-55 | 40 | BUTT | 2.84 | 1.47 | DRY | 3.93 | DRY | 3.93 | | 3 | INTERMED
IATE | 8.75 | 7.625 | NEW | API | Υ | 0 | 11298 | 0 | 10847 | 3446 | -7418 | 11298 | L-80 | 29.7 | FJ | 3.01 | 1.33 | DRY | 1.9 | DRY | 1.9 | | 4 | PRODUCTI
ON | 6.75 | 5.5 | NEW | NON
API | Υ | 0 | 25426 | 0 | 12214 | 3446 | -8785 | 25426 | P-
110 | 20 | OTHER -
Freedom
HTQ/Talon
HTQ | 1.41 | 1.05 | DRY | 5.17 | DRY | 5.17 | ### **Casing Attachments** Well Name: POKER LAKE UNIT 23 DTD Well Number: 441H | Casing | Attach | ments | |--------|--------|-------| |--------|--------|-------| Casing ID: 1 String **SURFACE** **Inspection Document:** **Spec Document:** **Tapered String Spec:** Casing Design Assumptions and Worksheet(s): PLU_23_DTD_441H_Csg_20240413194508.pdf Casing ID: 2 String **INTERMEDIATE** **Inspection Document:** **Spec Document:** **Tapered String Spec:** Casing Design Assumptions and Worksheet(s): PLU 23 DTD 441H Csg 20240413194358.pdf Casing ID: 3 String **INTERMEDIATE** **Inspection Document:** **Spec Document:** **Tapered String Spec:** PLU_23_DTD_441H_Csg_20240413194546.pdf Casing Design Assumptions and Worksheet(s): PLU_23_DTD_441H_Csg_20240413194614.pdf Well Name: POKER LAKE UNIT 23 DTD Well Number: 441H ### **Casing Attachments** Casing ID: 4 String **PRODUCTION** **Inspection Document:** ### **Spec Document:** Freedom_semi_premium_5.5_production_casing_20240806142443.pdf Talon___semiflush_5.5_production_casing_20240806142443.pdf ### **Tapered String Spec:** PLU_23_DTD_441H_Csg_20240413181539.pdf ### Casing Design Assumptions and Worksheet(s): PLU_23_DTD_441H_Csg_20240413194431.pdf ### **Section 4 - Cement** | String Type | Lead/Tail | Stage Tool
Depth | Top MD | Bottom MD | Quantity(sx) | Yield | Density | Cu Ft | Excess% | Cement type | Additives | |--------------|-----------|---------------------|-----------|-----------|--------------|-------|---------|------------|---------|---------------------|-----------| | SURFACE | Lead | \sim | 0 | 1692 | 1450 | 1.33 | 12.8 | 1928.
5 | 100 | EconoCem-
HLTRRC | NA | | SURFACE | Tail | 1 | 0 | 1692 | 310 | 1.33 | 14.8 | 412.3 | 100 | Class C | 2% CaCl | | INTERMEDIATE | Lead | | 0 | 4010 | 840 | 2.06 | 14.8 | 1730.
4 | 100 | Class C | NA | | INTERMEDIATE | Tail | | 0 | 4010 | 60 | 2.06 | 15.6 | 123.6 | 100 | Class C | 2% CaCl | | INTERMEDIATE | Lead | 1 | 3710 | 6610 | 500 | 1.27 | 14.8 | 635 | 100 | Class C | NA | | INTERMEDIATE | Tail | 1 | 6610 | 1129
8 | 130 | 2.77 | 14.8 | 360.1 | 100 | Class C | NA | | PRODUCTION | Lead | | 1099
8 | 1194
5 | 30 | 2.69 | 11.5 | 80.7 | 30 | NeoCem | NA | | PRODUCTION | Tail | | 1194
5 | 2542
6 | 850 | 1.51 | 13.2 | 1283.
5 | 30 | VersaCem | NA | Well Name: POKER LAKE UNIT 23 DTD Well Number: 441H ### **Section 5 - Circulating Medium** Mud System Type: Closed Will an air or gas system be Used? NO Description of the equipment for the circulating system in accordance with Onshore Order #2: Diagram of the equipment for the circulating system in accordance with Onshore Order #2: Describe what will be on location to control well or mitigate other conditions: The necessary mud products for weight addition and fluid loss control will be on location at all times. Describe the mud monitoring system utilized: Spud with fresh water/native mud. Drill out from under surface casing with Saturated Salt solution. Saturated Salt mud will be used while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. A Pason or Totco will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system. ### **Circulating Medium Table** | Top Depth | Bottom Depth | Mud Type | Min Weight (lbs/gal) | Max Weight (lbs/gal) | Density (lbs/cu ft) | Gel Strength (lbs/100 sqft) | РН | Viscosity (CP) | Salinity (ppm) | Filtration (cc) | Additional Characteristics | |-----------|--------------|--------------------|----------------------|----------------------|---------------------|-----------------------------|----|----------------|----------------
-----------------|----------------------------| | 1129
8 | 2542
6 | OIL-BASED
MUD | 12.4 | 12.9 | | | | | | | | | 4104 | 1129
8 | OTHER :
BDE/OBM | 9 | 9.5 | | | | | | | | | 1692 | 4104 | SALT
SATURATED | 10.5 | 11 | | | | | | | | | 0 | 1692 | WATER-BASED
MUD | 8.4 | 8.9 | | | | | | | | Well Name: POKER LAKE UNIT 23 DTD Well Number: 441H ### Section 6 - Test, Logging, Coring List of production tests including testing procedures, equipment and safety measures: Open hole logging will not be done on this well. List of open and cased hole logs run in the well: GAMMA RAY LOG, CEMENT BOND LOG, DIRECTIONAL SURVEY, MEASUREMENT WHILE DRILLING, MUD LOG/GEOLOGICAL LITHOLOGY LOG. Coring operation description for the well: No coring is planned for the well. ### **Section 7 - Pressure** Anticipated Bottom Hole Pressure: 7876 Anticipated Surface Pressure: 5188 Anticipated Bottom Hole Temperature(F): 205 Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO Describe: Contingency Plans geoharzards description: Contingency Plans geohazards Hydrogen Sulfide drilling operations plan required? YES Hydrogen sulfide drilling operations XTO_Energy_H2S_Plan_Updated_20240812092429.pdf ### **Section 8 - Other Information** Proposed horizontal/directional/multi-lateral plan submission: PLU 23 DTD 441H DD 20240413184251.pdf Other proposed operations facets description: Other proposed operations facets attachment: PLU_23_DTD_441H_Cmt_20240414122549.pdf PLU 23 DTD 441H RL 20240806143247.pdf PLU 23 DTD H2S DiaA 20240806143319.pdf PLU_23_DTD_H2S_DiaD_20240806143319.pdf PLU_23_DTD_H2S_DiaC_20240806143319.pdf PLU 23 DTD MBS 20240812093104.pdf Other Variance attachment: Updated Flex Hose 20240806143224.pdf Spudder Rig Request 20240806143224.pdf Offline Cement Variance Surf Interm Csg 20240806143224.pdf # Casing Assumptions | | ٢ | | | |---|-----|---|---| | | ζ | |) | | ۰ | • | | | | | Ç | ı | 7 | | | (| 1 | | | ĺ | | | ١ | | | | | | | | _ | | | | | ζ | | | | | 2 | |) | | | 2 | | | | | 2 | | | | • | 200 | | | | . 12/3/2 | 024 11 | 1.01.0 | 3 AM | - 1 | : | g 50 | |-------------------|------------|------------|-------------|----------------|--------------|-----------------| | SF
Tension | 98.6 | £6.E | 99.1 | 1.90 | 1.84 | 21.5 | | SF
Collapse | 1.53 | 2.84 | 2.84 | 3.01 | 1.54 | 1.41 | | SF Burst | 2.88 | 1.47 | 1.82 | 1.33 | 1.05 | 1.05 | | New/Used SF Burst | New | New | New | New | New | New | | Collar | BTC | Э18 | Flush Joint | Flush Joint | Semi-Premium | Semi-Flush | | Grade | J-55 | J-55 | RY P-110 | HC L-80 | RY P-110 | RY P-110 | | Weight | 54.5 | 40 | 29.7 | 29.7 | 20 | 20 | | OD Csg | 13.375 | 9.625 | 7.625 | 7.625 | 5.5 | 5.5 | | Depth | 0' – 1692' | 0' – 4010' | 0' – 4110' | 4110' – 11298' | 0'-11198' | 11198' - 25426' | | Hole Size | 17.5 | 12.25 | 8.75 | 8.75 | 6.75 | 6.75 | ### **Cement Variance Request** ### **Intermediate Casing:** XTO requests to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brush Canyon (6610') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to 3710'. If cement is not visually confirmed to circulate to surface, the final cement top after the second stage job will be verified by Echo-meter. If necessary, a top out consisting of 1,500 sack of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. If cement is still unable to circulate to surface, another Echo-meter run will be performed for cement top verification. XTO will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. XTO will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures. XTO requests to pump an Optional Lead if well conditions dictate in an attempt to bring cement inside the first intermediate casing. If cement reaches the desired height, the BLM will be notified and the second stage bradenhead squeeze and subsequent TOC verification will be negated. XTO requests the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval from BLM when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure the first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. ### **Production Casing:** XTO requests the option to offline cement and remediate (if needed) surface and intermediate casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence. XTO respectfully requests approval to utilize a spudder rig to pre-set surface casing. ### **Description of Operations:** - Spudder rig will move in to drill the surface hole and pre-set surface casing on the well. - a. After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations). - b. The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used. - 2. The wellhead will be installed and tested as soon as the surface casing is cut off and WOC time has been reached. - 3. A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wing valves. - a. A means for intervention will be maintained while the drilling rig is not over the well. - 4. Spudder rig operations are expected to take 2-3 days per well on the pad. - 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations. - 6. Drilling Operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well. - a. The larger rig will move back onto the location within 90 days from the point at which the wells are secured and the spudder rig is moved off location. - b. The BLM will be notified 24 hours before the larger rig moves back on the pre-set locations - 7. XTO will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations. - 8. Once the rig is removed, XTO will secure the wellhead area by placing a guard rail around the cellar area. GATES ENGINEERING & SERVICES NORTH AMERICA 7603 Prairie Oak Dr. Houston, TX. 77086 PHONE: +1 (281) 602-4100 FAX: +1 (281) 602-4147 EMAIL: gesna.quality@gates.com WEB: www.gates.com/oilandgas NEW CHOKE HOSE INSTAUED 02-10-2024 # CERTIFICATE OF CONFORMANCE This is to verify that the items detailed below meet the requirements of the Customer's Purchase Order referenced herein, and are in Conformance with applicable specifications, and that Records of Required Tests are on file and subject to examination. The following items were inspected and hydrostatically tested at **Gates Engineering & Services North America** facilities in Houston, TX, USA. | CUSTOMER: | |-----------| |-----------| NABORS DRILLING TECHNOLOGIES USA DBA NABORS DRILLING USA CUSTOMER P.O.#: 15582803 (TAG NABORS PO #15582803 SN 74621 ASSET 66-1531) CUSTOMER P/N: IMR RETEST SN 74621 ASSET #66-1531 PART DESCRIPTION: RETEST OF CUSTOMER 3" X 45 FT 16C CHOKE & KILL HOSE ASSEMBLY C/W 4 1/16" 10K FLANGES SALES ORDER #: 529480 QUANTITY: 1 SERIAL #: 74621 H3-012524-1 SIGNATURE: F. OUSTWOE TITLE: QUALITY ASSURANCE DATE: 1/25/2024 # H3-15/16 1/25/2024 11:48:06 AM # **TEST REPORT** CUSTOMER Company: Nabors Industries Inc. **TEST OBJECT** Serial number: H3-012524-1 Lot number: Production description: Description: 74621/66-1531 Sales order #: 529480 Part number: Customer reference: FG1213 74621/66-1531 Hose ID: 3" 16C CK TEST INFORMATION Test procedure: GTS-04-053 Fitting 1: Test pressure: 15000.00 3600.00 Part number: 3.0 x 4-1/16 10K Test pressure hold: sec 10000.00 Description: Work pressure: psi Fitting 2: 3.0 x 4-1/16 10K Work pressure hold: Length difference: 900.00 0.00 sec % inch psi Part number: Description: Length difference: 0.00 Length: feet n. . . . 170 45 Visual check: Pressure test result: PASS Length measurement result: Test operator: Travis H3-15/16 1/25/2024 11:48:06 AM # **TEST REPORT** ### **GAUGE TRACEABILITY** | Description | Serial number | Calibration date | Calibration due date | |-------------|---------------|------------------|----------------------| | S-25-A-W | 110D3PHO | 2023-06-06 | 2024-06-06 | | S-25-A-W | 110IQWDG | 2023-05-16 | 2024-05-16 | | Comment | Released to Imaging: 12/24/2024 7:02:54 AM Released to Imaging: 12/24/2024 7:02:54 AM ### **XTO Permian Operating, LLC Offline Cementing Variance Request** XTO requests the option to cement the surface and intermediate casing strings offline as a prudent batch
drilling efficiency of acreage development. ### 1. Cement Program No changes to the cement program will take place for offline cementing. ### 2. Offline Cementing Procedure The operational sequence will be as follows. If a well control event occurs, the BLM will be contacted for approval prior to conducting offline cementing operations. - 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment (float collar and shoe) - 2. Land casing with mandrel - 3. Fill pipe with kill weight fluid, do not circulate through floats and confirm well is static - 4. Set annular packoff shown below and pressure test to confirm integrity of the seal. Pressure ratings of wellhead components and valves is 5,000 psi. - 5. After confirmation of both annular barriers and internal barriers, nipple down BOP and install cap flange. - a. If any barrier fails to test, the BOP stack will not be nippled down until after the cement job is completed with cement 500ft above the highest formation capable of flow with kill weight mud above or after it has achieved 50-psi compressive strength if kill weight fluid cannot be verified. Annular packoff with both external and internal seals ### **XTO Permian Operating, LLC Offline Cementing Variance Request** Wellhead diagram during skidding operations - 6. Skid rig to next well on pad. - 7. Confirm well is static before removing cap flange, flange will not be removed and offline cementing operations will not commence until well is under control. If well is not static, casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing or nippling up for further remediation. - a. Well Control Plan - i. The Drillers Method will be the primary well control method to regain control of the wellbore prior to cementing, if wellbore conditions do not permit the drillers method other methods of well control may be used - ii. Rig pumps or a 3rd party pump will be tied into the upper casing valve to pump down the casing ID - iii. A high pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure - iv. Once influx is circulated out of the hole, kill weight mud will be circulated - v. Well will be confirmed static - vi. Once confirmed static, cap flange will be removed to allow for offline cementing operations to commence - 8. Install offline cement tool - 9. Rig up cement equipment ### XTO Permian Operating, LLC Offline Cementing Variance Request Wellhead diagram during offline cementing operations - 10. Circulate bottoms up with cement truck - a. If gas is present on bottoms up, well will be shut in and returns rerouted through gas buster to handle entrained gas - b. Max anticipated time before circulating with cement truck is 6 hrs - 11. Perform cement job taking returns from the annulus wellhead valve - 12. Confirm well is static and floats are holding after cement job - 13. Remove cement equipment, offline cement tools and install night cap with pressure gauge for monitoring. # Well Plan Report - Poker Lake Unit 23 DTD South 441H | Well Plan Report - P | Measured Depth: | | Cartographic
Reference System: | Northing: | Easting: | | Ground Level: | North Reference: | |-------------------------------------|-----------------|-------------|-----------------------------------|--------------|--------------|------------|---------------|------------------| | - Poker Lake Unit 23 DTD South 441H | 25425.52 ft | 12214.00 ft | New Mexico East -
NAD 27 | 439490.10 ft | 650044.10 ft | 3461.00 ft | 3429.00 ft | Grid | | | | | | | | | | | | | Dogleg | Rate | (Deg/100ft) Target | 0.00 | 0.00 | 2.00 | 0.00 | 2.00 | 0.00 | 8.00 | 0.00 LTP 7 | 0.00 BHL 7 | |----------------------------|----------|-------------|--------------------|-------|---------|---------|----------|----------|----------|----------|------------|------------| | | Turn | Rate | (Deg/100ft) | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | | | Build | Rate | (Deg/100ft) | 0.00 | 00.00 | 2.00 | 00.00 | -2.00 | 00.00 | 8.00 | 00.00 | 0.00 | | | | X Offset | (#) | 00.00 | 00.00 | -204.56 | -1904.34 | -2108.90 | -2108.90 | -2104.68 | -2032.32 | -2031.79 | | | | Y Offset | (ff) | 0.00 | 00.00 | 100.64 | 936.86 | 1037.50 | 1037.50 | 321.32 | -11943.77 | -12034.20 | | DTD South 441H | DVT | RKB | (#) | 00.00 | 1100.00 | 2219.92 | 80.0899 | 7800.00 | 11497.80 | 12214.00 | 12214.00 | 12214.00 | | Poker Lake Unit 23 DTD Sou | | Azimuth | (Deg) | 0.00 | 00.00 | 296.20 | 296.20 | 0.00 | 00.00 | 179.66 | 179.66 | 179.66 | | Po | | Inclination | (Deg) | 0.00 | 00.00 | 23.01 | 23.01 | 0.00 | 00.00 | 90.00 | 00.00 | 90.00 | | Plan Sections | Measured | Depth | (ff) | 0.00 | 1100.00 | 2250.61 | 7096.38 | 8246.99 | 11944,79 | 13069.79 | 25335.09 | 25425.52 | | | Tool | Nsed | |-----------------------------|---------------------------------|---------------------------| | | Semi- Semi- Tool
minor minor | Azimuth | | | Semi-
minor | Error | | | Semi-
major | Error | | | Magnitude | of Bias | | | | Bias | | | Vertical | Error | | I | | Bias | | South 441 | Latera | Error | | 3 DTD (| | Bias | | Lake Unit 23 DTD South 441H | Highside | Error | | Poker L | DVT | RKB | | ıty | | Depth Inclination Azimuth | | ncertain | | Inclinat | | Position Uncertainty | Measured | Depth | | | | | | | (,) | 0.000 MWD+IFR1+MS | 112.264 MWD+IFR1+MS | 122.711 MWD+IFR1+MS | 125.469 MWD+IFR1+MS | 126.713 MWD+IFR1+MS | 127.419 MWD+IFR1+MS | 127.873 MWD+IFR1+MS | 128.190 MWD+IFR1+MS | 128.423 MWD+IFR1+MS | 128.602 MWD+IFR1+MS | 128.744 MWD+IFR1+MS | 128.859 MWD+IFR1+MS | 123.769 MWD+IFR1+MS | 97.847 MWD+IFR1+MS | 51.265 MWD+IFR1+MS | 46.295 MWD+IFR1+MS | 44.797 MWD+IFR1+MS | 44.147 MWD+IFR1+MS | 43.846 MWD+IFR1+MS | 43.735 MWD+IFR1+MS | 43.751 MWD+IFR1+MS | 43.867 MWD+IFR1+MS | 44.072 MWD+IFR1+MS | 44.282 MWD+IFR1+MS | 44.583 MWD+IFR1+MS | 45.445 MWD+IFR1+MS | 46.537 MWD+IFR1+MS | 47.714 MWD+IFR1+MS | 48.980 MWD+IFR1+MS | 50.337 MWD+IFR1+MS | 51.789 MWD+IFR1+MS | 53.335 MWD+IFR1+MS | 54.974 MWD+IFR1+MS | |------------------|---|-------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------| | | (#) | 0.000 | 0.220 | 0.627 | 0.986 | 1.344 | 1.701 | 2.059 | 2.417 | 2.775 | 3.133 | 3.491 | 3.849 | 4.352 | 5.228 | 5.644 | 5.961 | 6.280 | 6.604 | 6.935 | 7.274 | 7.621 | 7.978 | 8.346 | 8.537 | 8.725 | 9.118 | 9.522 | 9.930 | 10.343 | 10.759 | 11.176 | 11.596 | 12.017 | | | (#) | 0.000 | 0.751 | 1.259 | 1.698 | 2.108 | 2.503 | 2.888 | 3.267 | 3.642 | 4.014 | 4.384 | 4.752 | 5.071 | 5.409 | 6.097 | 6.813 | 7.479 | 8.104 | 8.697 | 9.262 | 9.805 | 10.328 | 10.836 | 11.007 | 11.148 | 11,437 | 11.747 | 12.065 | 12.393 | 12.729 | 13.074 | 13.426 | 13.786 | | Plan Report | (#) | 0.000 | | Well | (ft) (ft) 0.000 2.300 0.000 2.310 0.000 2.310 0.000 2.326 0.000 2.347 0.000 2.445 0.000 2.486 0.000 2.533 0.000 2.533 0.000 2.693 0.000 2.818 0.000 2.818 0.000 2.818 0.000 3.440 0.000 3.301 0.000 3.301 0.000 3.301 0.000 4.129 0.000 4.129 0.000 4.263 0.000 4.402 0.000 4.695 0.000 4.695 0.000 4.695 0.000 | | | | | | | | | | | | | | | 5.004 0.000 | (ft) (ft) | 0.000 0.000 | 0.350 0.000 | 0.861 0.000 | 1.271 0.000 | 1.658 0.000 | 2.034 0.000 | 2.405 0.000 | 2.773 0.000 | 3.138 0.000 | 3.502 0.000 | 3.865 0.000 | 4.228 0.000 | 5.059 0.000 | 5.391 0.000 | 5.728 0.000 | 0.008 0.000 | 6.412 0.000 | 6.761 0.000 | 7.115 0.000 | 7.476 0.000 | 7.845 0.000 | 8.223 0.000 | 8.612 0.000 | 8.805 0.000 | 8.995 0.000 | 9.398 0.000 | 9.818 0.000 | 10.244 0.000 | 10.675 0.000 | 11.113 0.000 | 11.554 0.000 | 12.000 0.000 | 12.449 0.000 | | | (ft) (ft) | 0.000 0.000 | 0.700 0.000 | 1.112 0.000 | 1.497 0.000 | 1.871 0.000 | 2.240 0.000 | 2.607 0.000 | 2.971 0.000 | 3.334 0.000 | 3.696 0.000 | 4.058 0.000 | 4.419 0.000 | 4.364 0.000 | 5.239 0.000 | 6.002 0.000 | 6.691 0.000 | 7.325 0.000 | 7.917 0.000 | 8.473 0.000 | 9.001 0.000 | 9.504 0.000 | 9.986 0.000 | 10,450 0.000 | 10.586 0.000 | 10.732 0.000 | 11.032 0.000 | 11.350 0.000 | 11.676 0.000 | 12.011 0.000 | 12.353 0.000 | 12.702 0.000 | 13.058 0.000 | 13.419 0.000 | | | (#) | 0.000 | 100.000 | 200.000 | 300.000 | 400.000 | 200.000 | 000.009 | 700.000 | 800.000 | 900.006 | 1000.000 | 1100.000 | 1199.980 | 1299.838 | 1399.452 | 1498.702 | 1597.465 | 1695.623 | 1793.055 | 1889.643 | 1985.268 | 2079.816 | 2173.169 | 2219.922 | 2265.383 | 2357.426 | 2449.468 | 2541.510 | 2633.552 | 2725.594 | 2817.636 | 2909.679 | 3001.721 | | | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 296.195 | 296.195 | 296 195 | 296.195 | 296 195 | 296 195 | 296 195 | 296 195 | 296.195 | 296 195 |
296.195 | 296.195 | 296 195 | 296 195 | 296 195 | 296 195 | 296 195 | 296.195 | 296.195 | 296.195 | 296 195 | | | (0) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 2.000 | 4.000 | 0000'9 | 8.000 | 10.000 | 12.000 | 14.000 | 16.000 | 18.000 | 20.000 | 22.000 | 23.012 | 23.012 | 23.012 | 23.012 | 23.012 | 23.012 | 23.012 | 23.012 | 23.012 | 23.012 | | 3/14/24, 6:18 AM | (ff. | 0.000 | 100.000 | 200.000 | 300.000 | 400.000 | 500.000 | 000'009 | 700.000 | 800.000 | 900.000 | 1000.000 | 1100.000 | 1200.000 | 1300.000 | 1400.000 | 1500.000 | 1600.000 | 1700.000 | 1800.000 | 1900.000 | 2000.000 | 2100.000 | 2200.000 | 2250.608 | 2300.000 | 2400.000 | 2500.000 | 2600.000 | 2700.000 | 2800.000 | 2900.000 | 3000.000 | 3100.000 | | | leas | ed t | o In | nagi | ing: | 12/ | 24/2 | 2024 | 7:0 | 92:5 | 4 A | M | 56.700 MWD+IFR1+MS | 58.506 MWD+IFR1+MS | 60.381 MWD+IFR1+MS | 62.311 MWD+IFR1+MS | 64.279 MWD+IFR1+MS | 66.266 MWD+IFR1+MS | 68.252 MWD+IFR1+MS | 70.218 MWD+IFR1+MS | 72.144 MWD+IFR1+MS | 74.015 MWD+IFR1+MS | 75.817 MWD+IFR1+MS | 77.540 MWD+IFR1+MS | 79,176 MWD+IFR1+MS | 80.722 MWD+IFR1+MS | 82.176 MWD+IFR1+MS | 83,539 MWD+IFR1+MS | 84.814 MWD+IFR1+MS | 86.003 MWD+IFR1+MS | 87.112 MWD+IFR1+MS | 88.144 MWD+IFR1+MS | 89.105 MWD+IFR1+MS | 90,000 MWD+IFR1+MS | 90.834 MWD+IFR1+MS | 91.611 MWD+IFR1+MS | 92.336 MWD+IFR1+MS | 93.012 MWD+IFR1+MS | 93.644 MWD+IFR1+MS | 94.236 MWD+IFR1+MS | 94.790 MWD+IFR1+MS | 95.310 MWD+IFR1+MS | 95.798 MWD+IFR1+MS | 96.256 MWD+IFR1+MS | 96.688 MWD+IFR1+MS | 97.094 MWD+IFR1+MS | |------------------|--|--------------------| | + | 14.154 12.438 | 14.530 12.859 | 14.912 13.279 | 15.302 13.699 | 15.699 14.117 | 16.103 14.534 | 16.513 14.949 | 16.929 15.363 | 17.351 15.775 | 17.779 16.185 | 18.212 16.594 | 18.649 17.002 | 19.091 17.408 | 19.537 17.814 | 19.987 18.218 | 20.440 18.622 | 20.896 19.025 | 21.355 19.428 | 21.817 19.830 | 22.281 20.232 | 22.747 20.634 | 23.214 21.037 | 23.684 21.439 | 24.155 21.841 | 24.627 22.243 | 25.101 22.646 | 25.576 23.049 | 26.052 23.452 | 26.529 23.855 | 27.007 24.259 | 27.485 24.663 | 27.965 25.068 | 28.445 25.472 | 28.926 25.878 | | Well Plan Report | 0.000 | | Well | 5.164 0.000 | 5.327 0.000 | 5.493 0.000 | 5.662 0.000 | 5.834 0.000 | 0000 0000 | 6.184 0.000 | 6.362 0.000 | 6.543 0.000 | 6.725 0.000 | 6.910 0.000 | 7.096 0.000 | 7.284 0.000 | 7.473 0.000 | 7.664 0.000 | 7.857 0.000 | 8.051 0.000 | 8.246 0.000 | 8.443 0.000 | 8.642 0.000 | 8.842 0.000 | 9.043 0.000 | 9.245 0.000 | 9,449 0,000 | 9.655 0.000 | 9.861 0.000 | 10.069 0.000 | 10.278 0.000 | 10.489 0.000 | 10.701 0.000 | 10.914 0.000 | 11.128 0.000 | 11.344 0.000 | 11.562 0.000 | | | 2 0.000 | 000.0 7 | 3 0.000 | 9 0.000 | 00000 6 | 4 0.000 | 000.0 0 | 3 0.000 | 3 0.000 | 000.0 6 | 0.000 | 4 0.000 | 000.0 | 4 0.000 | 0.000 | 3 0.000 | 00000 | 2 0.000 | 4 0.000 | 4 0.000 | 2 0.000 | 3 0.000 | 3 0.000 | 00000 0 | 3 0.000 | 00000 | 00000 0 | 4 0.000 | 3 0.000 | 3 0.000 | 3 0.000 | 4 0.000 | 000.0 6 | 2 0.000 | | | 12.902 0.000 5.164 0.000 13.357 0.000 5.327 0.000 13.816 0.000 5.493 0.000 14.739 0.000 5.662 0.000 14.739 0.000 5.662 0.000 15.204 0.000 5.834 0.000 15.670 0.000 6.184 0.000 16.608 0.000 6.725 0.000 17.551 0.000 6.743 0.000 18.499 0.000 6.910 0.000 18.499 0.000 6.910 0.000 19.451 0.000 6.944 0.00 20.406 0.000 8.642 0.00 20.406 0.000 8.443 0.00 20.455 0.000 8.443 0.00 21.844 0.000 8.642 0.00 22.325 0.000 8.443 0.00 23.770 0.000 9.449 0.00 25.704 0.000 9.861 0.00 25.704 0.000 9.65 | | | | | | | | | | | | | | | 28.615 | 13.786 0.000 | 14.158 0.000 | 14.534 0.000 | 14.915 0.000 | 15.300 0.000 | 15.688 0.000 | 16.080 0.000 | 16.475 0.000 | 16.872 0.000 | 17.273 0.000 | 17.676 0.000 | 18.081 0.000 | 18.489 0.000 | 18.898 0.000 | 19.310 0.000 | 19.723 0.000 | 20.139 0.000 | 20.555 0.000 | 20.974 0.000 | 21.393 0.000 | 21.814 0.000 | 22.236 0.000 | 22.660 0.000 | 23.084 0.000 | 23.510 0.000 | 23.937 0.000 | 24.364 0.000 | 24.793 0.000 | 25.222 0.000 | 25.652 0.000 | 26.083 0.000 | 26.515 0.000 | 26.947 0.000 | 27.380 0.000 | | | 3093.763 | 3185.805 | 3277.847 | 3369.890 | 3461.932 | 3553.974 | 3646.016 | 3738.058 | 3830.101 | 3922.143 | 4014.185 | 4106.227 | 4198,269 | 4290.311 | 4382.354 | 4474.396 | 4566.438 | 4658.480 | 4750.522 | 4842.565 | 4934.607 | 5026.649 | 5118.691 | 5210.733 | 5302.776 | 5394.818 | 5486.860 | 5578.902 | 5670.944 | 5762.986 | 5855.029 | 5947.071 | 6039.113 | 6131.155 | | | 296 195 | 296.195 | 296.195 | 296.195 | 296.195 | 296 195 | 296.195 | 296.195 | 296 195 | 296.195 | 296 195 | 296.195 | 296.195 | 296.195 | 296 195 | 296.195 | 296 195 | 296.195 | 296 195 | 296 195 | 296 195 | 296.195 | 296 195 | 296 195 | 296.195 | 296 195 | 296 195 | 296 195 | 296 195 | 296.195 | 296.195 | 296.195 | 296.195 | 296 195 | | | 23.012 | | 3/14/24, 6:18 AM | 3200.000 | 3300.000 | 3400.000 | 3500,000 | 3600.000 | 3700.000 | 3800.000 | 3900.000 | 4000.000 | 4100.000 | 4200.000 | 4300.000 | 4400.000 | 4500.000 | 4600.000 | 4700.000 | 4800.000 | 4900.000 | 2000.000 | 5100.000 | 5200.000 | 5300.000 | 5400.000 | 5500.000 | 2600.000 | 5700.000 | 2800 000 | 2900.000 | 000.0009 | 6100.000 | 6200.000 | 6300.000 | 6400.000 | 0200.000 | | | leas | ed t | o In | nagi | ng: | 12/ | 24/2 | 2024 | 7:0 | 92:5 | 4 A | M | 97.478 MWD+IFR1+MS | 97.840 MWD+IFR1+MS | 98.183 MWD+IFR1+MS | 98.507 MWD+IFR1+MS | 98.814 MWD+IFR1+MS | 99.100 MWD+IFR1+MS | 99.112 MWD+IFR1+MS | 99.265 MWD+IFR1+MS | 98.914 MWD+IFR1+MS | 98.507 MWD+IFR1+MS | 98.049 MWD+IFR1+MS | 97.543 MWD+IFR1+MS | 96.992 MWD+IFR1+MS | 96.402 MWD+IFR1+MS | 95.778 MWD+IFR1+MS | 95.124 MWD+IFR1+MS | 94.447 MWD+IFR1+MS | 93.755 MWD+IFR1+MS | 93.710 MWD+IFR1+MS | 93.762 MWD+IFR1+MS | 93.886 MWD+IFR1+MS | 94.044 MWD+IFR1+MS | 94.200 MWD+IFR1+MS | 94.353 MWD+IFR1+MS | 94.504 MWD+IFR1+MS | 94.653 MWD+IFR1+MS | 94.800 MWD+IFR1+MS | 94.945 MWD+IFR1+MS | 95.088 MWD+IFR1+MS | 95.229 MWD+IFR1+MS | 95.367 MWD+IFR1+MS | 95.504 MWD+IFR1+MS | 95.639 MWD+IFR1+MS | 95.772 MWD+IFR1+MS | |--|--------------------| | + | 29.408 26.283 | 29.890 26.689 | 30.373 27.095 | 30.856 27.502 | 31.339 27.909 | 31.805 28.302 | 31.823 28.316 | 32.294 28.735 | 32.764 29.192 | 33.214 29.643 | 33.646 30.085 | 34.059 30.517 | 34,454 30,937 | 34.831 31.346 | 35.192 31.742 | 35.536 32.123 | 35.865 32.491 | 36.180 32.843 | 36.315 32.979 | 36.463 33.127 | 36.743 33.410 | 37.027 33.697 | 37.312 33.985 | 37.599 34.274 | 37.887 34.564 | 38.176 34.855 | 38 466 35 148 | 38.758 35.442 | 39.050 35.737 | 39.344
36.033 | 39.639 36.330 | 39,935 36.628 | 40.232 36.928 | 40.530 37.228 | | Well Plan Report | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 000.0 | 0.000 | 0.000 | 0.000 | 0.000 | 000'0 | 0.000 | 0.000 | 000'0 | 0.000 | 000'0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 000'0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | Well | 11.780 0.000 | 12.000 0.000 | 12.221 0.000 | 12.444 0.000 | 12.668 0.000 | 12.885 0.000 | 12.893 0.000 | 13.120 0.000 | 13.355 0.000 | 13.574 0.000 | 13.778 0.000 | 13.968 0.000 | 14 145 0 000 | 14.312 0.000 | 14.468 0.000 | 14.616 0.000 | 14.757 0.000 | 14.893 0.000 | 14.955 0.000 | 15.025 0.000 | 15.159 0.000 | 15.296 0.000 | 15.437 0.000 | 15.580 0.000 | 15.728 0.000 | 15.878 0.000 | 16.032 0.000 | 16.189 0.000 | 16.350 0.000 | 16.514 0.000 | 16.682 0.000 | 16.853 0.000 | 17.028 0.000 | 17.206 0.000 | | | 0.000 | 0.000 | 000'0 | 000.0 | 000.0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 000'0 | 000.0 | 000'0 | 0.000 | 000'0 | 0.000 | 0.000 | 0.000 | 00000 | 0.000 | 000'0 | 0.000 | 0.000 | | | 29.101 | 29.588 | 30.075 | 30.562 | 31.049 | 31.518 | 31.535 | 32.008 | 32.464 | 32.901 | 33.317 | 33.713 | 34.091 | 34.450 | 34.790 | 35.114 | 35.421 | 35.713 | 32.994 | 33.142 | 33.426 | 33.714 | 34.003 | 34.294 | 34.585 | 34.878 | 35.172 | 35.468 | 35.764 | 36.062 | 36.360 | 36.660 | 36.961 | 37.263 | | | 27.814 0.000 | 28.248 0.000 | 28.683 0.000 | 29.119 0.000 | 29.555 0.000 | 29.975 0.000 | 29.993 0.000 | 30.496 0.000 | 31.019 0.000 | 31.493 0.000 | 31.918 0.000 | 32.294 0.000 | 32.620 0.000 | 32.896 0.000 | 33.122 0.000 | 33.299 0.000 | 33.425 0.000 | 33.502 0.000 | 36.301 0.000 | 36.449 0.000 | 36.729 0.000 | 37.011 0.000 | 37.295 0.000 | 37.581 0.000 | 37.867 0.000 | 38.155 0.000 | 38.444 0.000 | 38.734 0.000 | 39.025 0.000 | 39.318 0.000 | 39.611 0.000 | 39.906 0.000 | 40.201 0.000 | 40.498 0.000 | | | 6223.197 | 6315.240 | 6407.282 | 6499.324 | 6591.366 | 6680.078 | 6683.409 | 6776.162 | 6870.163 | 6965.296 | 7061.446 | 7158.496 | 7256.328 | 7354.822 | 7453.858 | 7553.316 | 7653.075 | 7753.012 | 7800.000 | 7853.010 | 7953.010 | 8053.010 | 8153.010 | 8253.010 | 8353.010 | 8453.010 | 8553.010 | 8653.010 | 8753.010 | 8853.010 | 8953.010 | 9053.010 | 9153.010 | 9253.010 | | 296.195 6223.1
296.195 6315.2
296.195 6407.2
296.195 6409.3
296.195 6499.3
296.195 6683.4
296.195 6776.1
296.195 6776.1
296.195 7753.0
296.195 7253.3
296.195 7253.3
296.195 7253.3
296.195 7253.0
0.000 7853.0
0.000 8053.0
0.000 8253.0
0.000 8253.0 | | | | | | | | | | | 0.000 | 0.000 | 23.012 | 23.012 | 23.012 | 23.012 | 23.012 | 23.012 | 22.940 | 20.940 | 18.940 | 16.940 | 14.940 | 12.940 | 10.940 | 8.940 | 6.940 | 4.940 | 2.940 | 0.940 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | 3/14/24, 6:18 AM | 000.0099 | 000.0079 | 000.0089 | 000'0069 | 7000,000 | 7096.382 | 7100.000 | 7200.000 | 7300.000 | 7400.000 | 7500.000 | 7600.000 | 7700.000 | 7800.000 | 7900.000 | 8000,000 | 8100.000 | 8200,000 | 8246.990 | 8300.000 | 8400.000 | 8500,000 | 8600.000 | 8700.000 | 8800.000 | 8900.000 | 000'0006 | 9100.000 | 9200.000 | 9300.000 | 9400.000 | 9200'000 | 000'0096 | 9700.000 | | | eleas | ed t | o In | nagi | ing: | 12/ | 24/2 | 2024 | 17:0 | 92:5 | 4 A. | M | XTO respectfully requests approval to utilize a spudder rig to pre-set surface casing. ### **Description of Operations:** - 1. Spudder rig will move in to drill the surface hole and pre-set surface casing on the well. - a. After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations). - b. The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used. - 2. The wellhead will be installed and tested as soon as the surface casing is cut off and WOC time has been reached. - 3. A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wing valves. - a. A means for intervention will be maintained while the drilling rig is not over the well. - 4. Spudder rig operations are expected to take 2-3 days per well on the pad. - 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations. - 6. Drilling Operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well. - a. The larger rig will move back onto the location within 90 days from the point at which the wells are secured and the spudder rig is moved off location. - b. The BLM will be notified 24 hours before the larger rig moves back on the pre-set locations - 7. XTO will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations. - 8. Once the rig is removed, XTO will secure the wellhead area by placing a guard rail around the cellar area. file:///C:/Users/arsriva/Landmark/DecisionSpace/WellPlanning/Reports/PokerLakeUnit23DTDSouth441H,HTML | | MWD+IFR1+MS |------------------|--|-------------| | | MWD+ | HMWD+ | MWD+ | MWD+ | HMWD+ | MWD+ | MWD+ | MWD+ | MWD+ | | | MWD+ | MWD+ | | MWD+ | | MWD+ HMWD+ | | | | MWD+ | MWD+ | MWD+ | MWD+ | | MWD+ | HMWD+ | | | 95.903 | 96.033 | 96.160 | 96.286 | 96.410 | 96.532 | 96.653 | 96.772 | 96.889 | 97.005 | 97.120 | 97.232 | 97.344 | 97.453 | 97.562 | 97.669 | 97.774 | 97.879 | 97.981 | 98.083 | 98.183 | 98.282 | 98.303 | 98.301 | 97.750 | 97.148 | 96.840 | 96.691 | 96.621 | 96.573 | 96.497 | 96.345 | 96.065 | 95.604 | | | 37.529 | 37.831 | 38.135 | 38.439 | 38.744 | 39 050 | 39.356 | 39.664 | 39.972 | 40.281 | 40.591 | 40.902 | 41.213 | 41.526 | 41.839 | 42.152 | 42.467 | 42.782 | 43.097 | 43.413 | 43.730 | 44.048 | 44.189 | 44.355 | 44.632 | 44.886 | 45.113 | 45.312 | 45.484 | 45.630 | 45.752 | 45.851 | 45.928 | 45.985 | | | 40.829 | 41.129 | 41.430 | 41.732 | 42.034 | 42.338 | 42.643 | 42.948 | 43.254 | 43.562 | 43.869 | 44.178 | 44.488 | 44.798 | 45.109 | 45.420 | 45.733 | 46.046 | 46.360 | 46.674 | 46.989 | 47.305 | 47.445 | 47.623 | 48.402 | 49.436 | 50.340 | 51.096 | 51.695 | 52.138 | 52.437 | 52.610 | 52.685 | 52.696 | | an Report | 000.0 | 0.000 | | Well PI |
0.000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000 | 17 388 0 | 17.573 0 | 17 762 0 | 17 954 0 | 18.151 0. | 18.350 0. | 18.553 0 | 18.760 0. | 18.971 0 | 19.185 0. | 19.403 0. | 19.624 0. | 19.849 0. | 20.078 0. | 20.310 0. | 20.546 0. | 20.785 0. | 21.028 0. | 21.275 0. | 21.526 0. | 21.780 0 | 22.038 0. | 22 154 0 | 22.298 0 | 22.587 0. | 22 992 0 | 23.559 0 | 24 326 0 | 25.306 0. | 26 490 0 | 27 847 0 | 29 334 0 | 30.899 0. | 32.489 0. | | | 0.000 | -0.000 | -0.000 | -0.000 | 0000 | -0.000 | 0.000 | 0.000 | -0.000 | 0000 | -0.000 | 000.0- | | | 37.566 | 37 869 | 38 174 | 38.480 | 38.786 | 39.094 | 39.402 | 39.711 | 40.021 | 40.332 | 40.644 | 40.956 | 41.269 | 41.583 | 41.897 | 42.213 | 42.529 | 42.845 | 43.162 | 43.480 | 43.799 | 44.118 | 44.260 | 44 432 | 44.710 | 44 967 | 45.199 - | 45.404 | 45.581 | 45.731 | 45.853 | 45 949 | 46.019 | 46.062 | | | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 000.0 | 000.0 | 000.0 | 0000 | 0.000 | 0.000 | 0000 | 000.0 | , 000'0 | 000.0 | 00000 | 00000 | 0.000 | 000.0 | , 000.0 | , 000.0 | 0000 | 0000 | , 000.0 | 000.0 | , 000.0 | 000.0 | , 000.0 | 000.0 | 00000 | | | 40.795 | 41 094 | 41.393 | 41 694 | 41.995 | 42.297 | 42.600 | 42.904 | 43.209 | 43.515 | 43.821 | 44.128 | 44.436 | 44.745 | 45.054 | 45.364 | 45.675 | 45.987 | 46.299 | 46.612 | 46.925 | 47.240 | 47.379 | 47.113 | 46.585 | 45.764 | 44.366 | 42.506 | 40.337 | 38 059 | 35.916 | 34 189 | 33 162 | 33.058 | | | 9353.010 | 9453.010 | 9553.010 | 9653.010 | 9753.010 | 9853.010 | 9953.010 | 10053.010 | 10153.010 | 10253.010 | 10353.010 | 10453.010 | 10553.010 | 10653.010 | 10753.010 | 10853.010 | 10953.010 | 11053,010 | 11153.010 | 11253.010 | 11353.010 | 11453.010 | 11497.800 | 11552.955 | 11651.798 | 11747.643 | 11838.626 | 11922.974 | 11999 047 | 12065.364 | 12120.634 | 12163.781 | 12193.965 | 12210.600 | | | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 100 | 0.000 101 | 0.000 102 | 0.000 103 | 0.000 104 | 0.000 105 | 0.000 106 | 0.000 107 | 0.000 108 | 0.000 109 | 0.000 110 | 0.000 111 | 0.000 112 | 0.000 113 | 0.000 114 | 0.000 114 | | | | | - | 7 179.662 | 7 179.662 | 7 179,662 | 7 179.662 | 7 179.662 | 7 179.662 | 7 179.662 | 7 179.662 | 7 179.662 | 7 179.662 | 7 179.662 | | | 0.000 | 4 417 | 12.417 | 20.417 | 28.417 | 36.417 | 44.417 | 52.417 | 60.417 | 68.417 | 76.417 | 84.417 | | 3/14/24, 6:18 AM | 9800.000 | 000.0066 | 10000.000 | 10100.000 | 10200.000 | 10300.000 | 10400.000 | 10500.000 | 10600.000 | 10700.000 | 10800.000 | 10900.000 | 11000.000 | 11100.000 | 11200.000 | 11300.000 | 11400.000 | 11500.000 | 11600.000 | 11700.000 | 11800.000 | 11900.000 | 11944 790 | 12000.000 | 12100.000 | 12200.000 | 12300.000 | 12400.000 | 12500.000 | 12600.000 | 12700.000 | 12800.000 | 12900.000 | 13000.000 | | 3/14/24, | 980 |)66 | 1000 | 1010 | 1020 | 1030 | 1040 | 1050 | 1060 | 1070 | 1080 | 1090 | 1100 | 1110 | 1120 | 1130 | 114(| 1150 | 1160 | 1170 | 1180 | 1190 | 1194 | 1200 | 1210 | 122(| 123(| 124(| 125(| 1260 | 127(| 128(| 1290 | 1300 | | Re | leas | ed t | o In | nagi | ng: | 12/ | 24/2 | 2024 | 17:0 | 92:5 | 4 A. | M | 95.142 MWD+IFR1+MS | 94.919 MWD+IFR1+MS | 94.184 MWD+IFR1+MS | 93.448 MWD+IFR1+MS | 92.706 MWD+IFR1+MS | 91.953 MWD+IFR1+MS | 91.183 MWD+IFR1+MS | 90.393 MWD+IFR1+MS | 89.575 MWD+IFR1+MS | 88.725 MWD+IFR1+MS | 87.833 MWD+IFR1+MS | 86.893 MWD+IFR1+MS | 85.895 MWD+IFR1+MS | 84.828 MWD+IFR1+MS | 83.679 MWD+IFR1+MS | 82.435 MWD+IFR1+MS | 81.078 MWD+IFR1+MS | 79.590 MWD+IFR1+MS | 77.949 MWD+IFR1+MS | 76.131 MWD+IFR1+MS | 74.111 MWD+IFR1+MS | 71.864 MWD+IFR1+MS | 69.370 MWD+IFR1+MS | 66.614 MWD+IFR1+MS | 63.598 MWD+IFR1+MS | 60.343 MWD+IFR1+MS | 56.898 MWD+IFR1+MS | 53.339 MWD+IFR1+MS | 49.758 MWD+IFR1+MS | 46.252 MWD+IFR1+MS | 42.909 MWD+IFR1+MS | 39.791 MWD+IFR1+MS | 36.934 MWD+IFR1+MS | 34.349 MWD+IFR1+MS | |------------------|--------------------| | + | 52.687 46.010 | 52.683 46.018 | 52.671 46.058 | 52.661 46.114 | 52.654 46.185 | 52.650 46.270 | 52.649 46.370 | 52.650 46.483 | 52.654 46.610 | 52.661 46.751 | 52.672 46.905 | 52.685 47.071 | 52.702 47.251 | 52.724 47.442 | 52.749 47.644 | 52.780 47.857 | 52.816 48.079 | 52.859 48.310 | 52.909 48.548 | 52.968 48.793 | 53.037 49.041 | 53.118 49.291 | 53.214 49.541 | 53.326 49.787 | 53.458 50.027 | 53.614 50.257 | 53.794 50.473 | 54.003 50.675 | 54.242 50.859 | 54.511 51.024 | 54.810 51.172 | 55.137 51.303 | 55.490 51.418 | 55.868 51.520 | | Well Plan Report | 0.000 | | Well | 33.135 0.000 | 33.231 0.000 | 33.511 0.000 | 33.810 0.000 | 34.124 0.000 | 34.453 0.000 | 34.797 0.000 | 35.155 0.000 | 35.527 0.000 | 35.912 0.000 | 36.309 0.000 | 36.720 0.000 | 37.142 0.000 | 37.576 0.000 | 38.021 0.000 | 38.478 0.000 | 38.944 0.000 | 39.421 0.000 | 39.907 0.000 | 40.403 0.000 | 40.908 0.000 | 41.422 0.000 | 41.944 0.000 | 42.474 0.000 | 43.012 0.000 | 43.557 0.000 | 44.110 0.000 | 44.669 0.000 | 45.235 0.000 | 45.808 0.000 | 46.387 0.000 | 46.972 0.000 | 47.562 0.000 | 48.159 0.000 | | | 46.075 -0.000 | 46.078 -0.000 | 46.102 -0.000 | 46.145 -0.000 | 46.205 -0.000 | 46.281 -0.000 | 46.374 -0.000 | 46.484 -0.000 | 46.610 -0.000 | 46.752 -0.000 | 46.911 -0.000 | 47.085 -0.000 | 47.275 -0.000 | 47.481 -0.000 | 47.702 -0.000 | 47.938 -0.000 | 48.190 -0.000 | 48.455 -0.000 | 48.736 -0.000 | 49.030 -0.000 | 49.339 -0.000 | 49.661 -0.000 | 49.997 -0.000 | 50.346 -0.000 | 50.707 -0.000 | 51.082 -0.000 | 51.468 -0.000 | 51.867 -0.000 | 52.278 -0.000 | 52.700 -0.000 | 53.133 -0.000 | 53.577 -0.000 | 54.032 -0.000 | 54.498 -0.000 | | | 33.135 0.000 | 33.231 0.000 | 33.511 0.000 | 33.810 0.000 | 34.124 0.000 | 34.453 0.000 | 34.797 0.000 | 35.155 0.000 | 35.527 0.000 | 35.912 0.000 | 36.309 0.000 | 36.720 0.000 | 37.142 0.000 | 37.576 0.000 | 38.021 0.000 | 38.478 0.000 | 38.944 0.000 | 39.421 0.000 | 39.907 0.000 | 40.403 0.000 | 40.908 0.000 | 41.422 0.000 | 41.944 0.000 | 42.474 0.000 | 43.012 0.000 | 43.557 0.000 | 44.110 0.000 | 44.669 0.000 | 45.235 0.000 | 45.808 0.000 | 46.387 0.000 | 46.972 0.000 | 47.562 0.000 | 48.159 0.000 | | | 362 12213.997 | 362
12213.997 | 362 12213.997 | 362 12213.997 | | | 00 179 662 | 00 179.662 | 00 179 662 | 00 179 662 | 00 179.662 | 00 179.662 | 00 179.662 | 00 179,662 | 00 179.662 | 00 179.662 | 00 179.662 | 00 179.662 | 00 179,662 | 00 179.662 | 00 179.662 | 00 179.662 | 00 179.662 | 00 179,662 | 00 179.662 | 00 179.662 | 00 179.662 | 00 179,662 | 00 179.662 | 00 179.662 | 00 179.662 | 00 179.662 | 00 179.662 | 00 179.662 | 00 179 662 | 00 179.662 | 00 179.662 | 00 179.662 | 00 179.662 | 00 179.662 | | | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90,000 | 90.000 | 000 06 | | 3/14/24, 6:18 AM | 13069.790 | 13100.000 | 13200.000 | 13300.000 | 13400.000 | 13500,000 | 13600.000 | 13700.000 | 13800.000 | 13900,000 | 14000.000 | 14100.000 | 14200.000 | 14300.000 | 14400.000 | 14500.000 | 14600.000 | 14700.000 | 14800.000 | 14900.000 | 15000.000 | 15100.000 | 15200.000 | 15300,000 | 15400.000 | 15500.000 | 15600,000 | 15700.000 | 15800.000 | 15900.000 | 16000.000 | 16100.000 | 16200.000 | 16300.000 | | | leas | ed t | o In | nagi | ing: | 12/ | 24/2 | 2024 | 7:0 | 92:5 | 4 A. | M | 32.031 MWD+IFR1+MS | 29.961 MWD+IFR1+MS | 28.117 MWD+IFR1+MS | 26.473 MWD+IFR1+MS | 25.005 MWD+IFR1+MS | 23.691 MWD+IFR1+MS | 22.510 MWD+IFR1+MS | 21.446 MWD+IFR1+MS | 20.483 MWD+IFR1+MS | 19.608 MWD+IFR1+MS | 18.810 MWD+IFR1+MS | 18.080 MWD+IFR1+MS | 17.409 MWD+IFR1+MS | 16.791 MWD+IFR1+MS | 16.220 MWD+IFR1+MS | 15.691 MWD+IFR1+MS | 15.198 MWD+IFR1+MS | 14.739 MWD+IFR1+MS | 14.309 MWD+IFR1+MS | 13.907 MWD+IFR1+MS | 13.529 MWD+IFR1+MS | 13.174 MWD+IFR1+MS | 12.838 MWD+IFR1+MS | 12.521 MWD+IFR1+MS | 12.221 MWD+IFR1+MS | 11.937 MWD+IFR1+MS | 11.667 MWD+IFR1+MS | 11.410 MWD+IFR1+MS | 11.165 MWD+IFR1+MS | 10.932 MWD+IFR1+MS | 10.709 MWD+IFR1+MS | 10.495 MWD+IFR1+MS | 10.291 MWD+IFR1+MS | 10.096 MWD+IFR1+MS | |------------------|--------------------| | | 56.268 51.610 | 56.688 51.691 | 57.126 51.763 | 57.581 51.829 | 58.051 51.890 | 58.535 51.946 | 59.032 51.998 | 59.541 52.048 | 60.061 52.094 | 60.591 52.139 | 61.132 52.182 | 61.682 52.224 | 62.241 52.264 | 62.809 52.304 | 63.385 52.343 | 63.968 52.381 | 64.559 52.419 | 65.158 52.457 | 65.763 52.494 | 66.375 52.532 | 66.994 52.569 | 67.618 52.607 | 68.249 52.644 | 68.885 52.682 | 69.528 52.719 | 70.175 52.757 | 70.828 52.796 | 71.486 52.834 | 72.149 52.873 | 72.816 52.912 | 73.489 52.951 | 74.165 52.991 | 74.846 53.031 | 75.532 53.072 | | Well Plan Report | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 000'0 | 0.000 | 0.000 | | Well | 48.760 0.000 | 49.367 0.000 | 49.978 0.000 | 50.595 0.000 | 51.216 0.000 | 51.841 0.000 | 52.471 0.000 | 53.105 0.000 | 53.743 0.000 | 54.384 0.000 | 55.030 0.000 | 55.679 0.000 | 56.331 0.000 | 56.987 0.000 | 57.646 0.000 | 58.308 0.000 | 58.973 0.000 | 59.641 0.000 | 60.312 0.000 | 000'0 986'09 | 61.662 0.000 | 62.341 0.000 | 63.022 0.000 | 63.705 0.000 | 64.391 0.000 | 000'0 62'029 | 65.770 0.000 | 66.462 0.000 | 67.156 0.000 | 67.853 0.000 | 68.551 0.000 | 69.251 0.000 | 69.953 0.000 | 70.657 0.000 | | | 54.973 -0.000 | 55.459 -0.000 | 55.954 -0.000 | 56.459 -0.000 | 56.972 -0.000 | 57.495 -0.000 | 58.026 -0.000 | 58.566 -0.000 | 59.114 -0.000 | 59.669 -0.000 | 60.233 -0.000 | 60.804 -0.000 | 61.383 -0.000 | 61.968 -0.000 | 62.561 -0.000 | 63.160 -0.000 | 63.765 -0.000 | 64.378 -0.000 | 64.996 -0.000 | 65.620 -0.000 | 66.250 -0.000 | 66.886 -0.000 | 67.527 -0.000 | 68.174 -0.000 | 68.825 -0.000 | 69.482 -0.000 | 70.144 -0.000 | 70.810 -0.000 | 71.481 -0.000 | 72.157 -0.000 | 72.837 -0.000 | 73.521 -0.000 | 74.210 -0.000 | 74.902 -0.000 | | | 48.760 0.000 | 49.367 0.000 | 49.978 0.000 | 50.595 0.000 | 51.216 0.000 | 51.841 0.000 | 52.471 0.000 | 53.105 0.000 | 53.743 0.000 | 54.384 0.000 | 55.030 0.000 | 55.679 0.000 | 56.331 0.000 | 56.987 0.000 | 57.646 0.000 | 58.308 0.000 | 58.973 0.000 | 59.641 0.000 | 60.312 0.000 | 000.0 986.09 | 61.662 0.000 | 62.341 0.000 | 63.022 0.000 | 63,705 0,000 | 64.391 0.000 | 65.079 0.000 | 65.770 0.000 | 66.462 0.000 | 67.156 0.000 | 67.853 0.000 | 68.551 0.000 | 69.251 0.000 | 69.953 0.000 | 70.657 0.000 | | | 362 12213.997 | | | 90.000 179.662 | 90.000 179.662 | 000 179.662 | 000 179.662 | 90.000 179.662 | 90.000 179.662 | 90.000 179.662 | 90.000 179.662 | 000 179.662 | 000 179.662 | 000 179.662 | 000 179.662 | 000 179,662 | 000 179.662 | 90.000 179.662 | 90.000 179.662 | 90.000 179.662 | 90.000 179.662 | 90.000 179.662 | 90.000 179.662 | 000 179.662 | 000 179.662 | 000 179.662 | 000 179.662 | 000 179.662 | 90.000 179.662 | 90.000 179.662 | 90.000 179.662 | 000 179.662 | 90.000 179.662 | 000 179.662 | 000 179.662 | 90.000 179.662 | 90.000 179.662 | | Σ | 90. | 90. | 90.000 | 90.000 | 90. | 90. | 90. | 0.06 | 90.000 | 90.000 | 90.000 | 90.000 | 900'06 | 900'06 | 90.0 | 0.06 | 90. | 90. | 90. | 90.0 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 06 | 0.06 | 90.0 | 90.000 | 90. | 90.000 | 90.000 | 90. | 90.0 | | 3/14/24, 6:18 AM | 16400.000 | 16500.000 | 16600.000 | 16700.000 | 16800.000 | 16900.000 | 17000.000 | 17100.000 | 17200.000 | 17300.000 | 17400.000 | 17500.000 | 17600.000 | 17700.000 | 17800.000 | 17900.000 | 18000.000 | 18100.000 | 18200.000 | 18300.000 | 18400.000 | 18500.000 | 18600.000 | 18700.000 | 18800.000 | 18900.000 | 19000,000 | 19100.000 | 19200.000 | 19300.000 | 19400.000 | 19500.000 | 19600.000 | 19700.000 | | | leas | ed t | o In | nagi | ing: | 12/ | 24/2 | 2024 | 7:6 | 02:5 | 4 A | M | MWD+IFR1+MS |------------------|-------------------| | | 9.908 MW | 9.728 MW | 9.555 MW | 9.388 MW | 9.227 MW | 9.073 MW | 8.923 MW | 8.779 MW | 8.640 MW | 8.506 MW | 8.375 MW | 8.249 MW | 8.127 MW | 8.009 MW | 7.894 MW | 7.783 MW | 7.675 MW | 7.570 MW | 7.468 MW | 7.369 MW | 7.272 MW | 7.179 MW | 7.087 MW | 6.998 MW | 6.911 MW | 6.827 MW | 6.744 MW | 6.664 MW | 6.585 MW | 6.509 MW | 6.434 MW | 6.361 MW | 6.289 MW | 6.220 MW | | | 76.221 53.112 | 76.915 53.154 | 77.612 53.195 | 78.313 53.238 | 79.018 53.280 | 79.727 53.323 | 80.438 53.367 | 81.154 53.410 | 81.872 53.455 | 82.594 53.500 | 83.318 53.545 | 84.046 53.591 | 84,777 53,637 | 85.510 53.684 | 86.247 53.731 | 86.986 53.778 | 87.728 53.826 | 88.472 53.875 | 89.219 53.924 | 89.968 53.974 | 90.719 54.024 | 91.473 54.074 | 92.230 54.125 | 92.988 54.177 | 93.749 54.229 | 94.511 54.281 | 95.276 54.334 | 96.043 54.388 | 96.811 54.442 | 97.582 54.496 | 98.354 54.551 | 99.128 54.606 | 99.904 54.662 | 100.682 54.719 | | Well Plan Report | 0.000 | | Wel | 71.362 0.000 | 72.069 0.000 | 72.778 0.000 | 73.488 0.000 | 74.200 0.000 | 74.913 0.000 | 75.627 0.000 | 76.343 0.000 | 77.061 0.000 | 77.779 0.000 | 78.499 0.000 | 79.220 0.000 | 79.942 0.000 | 80.666 0.000 | 81.390 0.000 | 82.116 0.000 | 82.843 0.000 | 83.571 0.000 | 84.300 0.000 | 85.029 0.000 | 85.760 0.000 | 86.492 0.000 | 87.225 0.000 | 87.958 0.000 | 88.693 0.000 | 89.428 0.000 | 90.164 0.000 | 90.901 0.000 | 91.639 0.000 | 92.377 0.000 | 93.117 0.000 | 93.857 0.000 | 94.597 0.000 | 95.339 0.000 | | | 75.598 -0.000 | 76.299 -0.000 | 77.002 -0.000 | 77.710 -0.000 | 78.421 -0.000 | 79.135 -0.000 | 79.853 -0.000 | 80.574 -0.000 | 81.298 -0.000 | 82.025 -0.000 | 82.755 -0.000 | 83.488 -0.000 | 84.224 -0.000 | 84.963 -0.000 | 85.704 -0.000 | 86.448 -0.000 | 87.195 -0.000 | 87.943 -0.000 | 88.695 -0.000 | 89.449 -0.000 | 90.205 -0.000 | 90.963 -0.000 | 91.723 -0.000 | 92.486 -0.000 | 93.251 -0.000 | 94.017 -0.000 | 94.786 -0.000 | 95.557 -0.000 | 96.329 -0.000 | 97.103 -0.000 | 97.879 -0.000 | 98.657 -0.000 | 99.437 -0.000 | 100.218
-0.000 | | | 71.362 0.000 | 72.069 0.000 | 72.778 0.000 | 73.488 0.000 | 74.200 0.000 | 74.913 0.000 | 75.627 0.000 | 76.343 0.000 | 77.061 0.000 | 77.779 0.000 | 78.499 0.000 | 79.220 0.000 | 79.942 0.000 | 80.666 0.000 | 81.390 0.000 | 82.116 0.000 | 82.843 0.000 | 83.571 0.000 | 84.300 0.000 | 85.029 0.000 | 85.760 0.000 | 86.492 0.000 | 87.225 0.000 | 87.958 0.000 | 88.693 0.000 | 89.428 0.000 | 90.164 0.000 | 90.901 0.000 | 91.639 0.000 | 92.377 0.000 | 93.117 0.000 | 93.857 0.000 | 94.597 0.000 | 95.339 0.000 | | | 12213.997 | 179.662 12213.997 | | | 179.662 | | | 90.000 | 90.000 | 90.000 | 000 06 | 90.000 | 90.000 | 000 06 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 000'06 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 000 06 | 90.000 | 90.000 | 90.000 | 000 06 | 90.000 | 90.000 | 90.000 | 000 06 | 90.000 | 90.000 | 000 06 | 90.000 | 90.000 | | 3/14/24, 6:18 AM | 19800.000 | 19900.000 | 20000.000 | 20100.000 | 20200.000 | 20300.000 | 20400.000 | 20500.000 | 20600.000 | 20700.000 | 20800.000 | 20900.000 | 21000.000 | 21100.000 | 21200.000 | 21300.000 | 21400.000 | 21500.000 | 21600.000 | 21700.000 | 21800.000 | 21900.000 | 22000.000 | 22100.000 | 22200.000 | 22300.000 | 22400.000 | 22500.000 | 22600.000 | 22700.000 | 22800.000 | 22900.000 | 23000.000 | 23100.000 | | | leas | ed t | o In | nagi | ing: | 12/ | 24/2 | 2024 | 7:0 | 02:5 | 4 A. | M | file:///C:/Users/arsriva/Landmark/DecisionSpace/WellPlanning/Reports/PokerLakeUnit23DTDSouth441H,HTML | | 6.151 MWD+IFR1+MS | 6.085 MWD+IFR1+MS | 6.019 MWD+IFR1+MS | 5.955 MWD+IFR1+MS | 5.893 MWD+IFR1+MS | 5.832 MWD+IFR1+MS | 5.772 MWD+IFR1+MS | 5.713 MWD+IFR1+MS | 5.655 MWD+IFR1+MS | 5.599 MWD+IFR1+MS | 5.544 MWD+IFR1+MS | 5.489 MWD+IFR1+MS | 5.436 MWD+IFR1+MS | 5.384 MWD+IFR1+MS | 5.333 MWD+IFR1+MS | 5.283 MWD+IFR1+MS | 5.233 MWD+IFR1+MS | 5.185 MWD+IFR1+MS | 5.137 MWD+IFR1+MS | 5.091 MWD+IFR1+MS | 5.918 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_23 | 5.919 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_23 | 5.919 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_23 | 5.919 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_23 | 5.919 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_23 | |------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--| | Well Plan Report | 0.000 101.461 54.775 | 0.000 102.242 54.833 | 0.000 103.025 54.891 | 0.000 103.809 54.949 | 0.000 104.595 55.008 | 0.000 105.382 55.067 | 0.000 106.171 55.127 | 0.000 106.961 55.187 | 0.000 107.753 55.248 | 0.000 108.546 55.309 | 0.000 109.340 55.370 | 0.000 110.136 55.433 | 0.000 110.933 55.495 | 0.000 111.731 55.558 | 0.000 112.530 55.622 | 0.000 113.331 55.686 | 0.000 114.133 55.750 | 0.000 114.936 55.815 | 0.000 115.740 55.880 | 0.000 116.545 55.946 | 0.000 117.116 62.950 | 0.000 117.266 63.033 | 0.000 117.319 63.063 | 0.000 117.419 63.118 | 0.000 117.459 63.139 | | IIAW | 179.662 12213.997 96.081 0.000 101.001 -0.000 96.081 0.000 | 179.662 12213.997 96.824 0.000 101.786 -0.000 96.824 0.000 | 179.662 12213.997 97.567 0.000 102.572 -0.000 97.567 0.000 | 179.662 12213.997 98.311 0.000 103.359 -0.000 98.311 0.000 | 179.662 12213.997 99.056 0.000 104.148 -0.000 99.056 0.000 | 179.662 12213.997 99.801 0.000 104.939 -0.000 99.801 0.000 | 179.662 12213.997 100.547 0.000 105.731 -0.000 100.547 0.000 | 179.662 12213.997 101.294 0.000 106.524 -0.000 101.294 0.000 | 179.662 12213.997 102.041 0.000 107.319 -0.000 102.041 0.000 | 179.662 12213.997 102.789 0.000 108.115 -0.000 102.789 0.000 | 179.662 12213.997 103.537 0.000 108.912 -0.000 103.537 0.000 | 179.662 12213.997 104.286 0.000 109.711 -0.000 104.286 0.000 | 179.662 12213.997 105.035 0.000 110.511 -0.000 105.035 0.000 | 179.662 12213.997 105.785 0.000 111.312 -0.000 105.785 0.000 | 179.662 12213.997 106.535 0.000 112.114 -0.000 106.535 0.000 | 179.662 12213.997 107.286 0.000 112.918 -0.000 107.286 0.000 | 179.662 12213.997 108.037 0.000 113.722 -0.000 108.037 0.000 | 179.662 12213.997 108.789 0.000 114.528 -0.000 108.789 0.000 | 179.662 12213.997 109.541 0.000 115.335 -0.000 109.541 0.000 | 179.662 12213.997 110.294 0.000 116.143 -0.000 110.294 0.000 | 179.662 12213.997 110.670 0.000 116.620 -0.000 110.670 0.000 | 179.662 12213.997 110.672 0.000 116.770 -0.000 110.672 0.000 | 179.662 12213.997 110.673 0.000 116.823 -0.000 110.673 0.000 | 179.662 12213.997 110.676 0.000 116.923 -0.000 110.676 0.000 | 179.662 12213.997 110.677 0.000 116.962 -0.000 110.677 0.000 | Σ | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 900.000 | 90.000 | 90.000 | 900'06 | 900'06 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | | 3/14/24, 6:18 AM | 23200.000 | 23300.000 | 23400.000 | 23500.000 | 23600.000 | 23700.000 | 23800.000 | 23900.000 | 24000.000 | 24100.000 | 24200.000 | 24300.000 | 24400.000 | 24500.000 | 24600.000 | 24700.000 | 24800.000 | 24900.000 | 25000.000 | 25100.000 | 25200.000 | 25300.000 | 25335.093 | 25400.000 | 25425.520 | | Re | eleas | ed 1 | to In | nagi | ing: | 12/ | 24/2 | 2024 | 7:0 | 02:5 | 4 A) | M | | | | | | | | | | | | | | | | TVD MSL Target Shape | (ft) | 8753.00 RECTANGLE | 7896.73 RECTANGLE | 8753.00 RECTANGLE | 8753.00 RECTANGLE | |-----------------------------------|----------------------|-------------|-------------------|-------------------|-------------------|-------------------| | | Grid Easting | (#) | 647935.20 | 650152.51 | 648011.70 | 648012.90 | | | Grid Northing | (#) | 440527.60 | 439488.89 | 427545.80 | 427455.80 | | Poker Lake Unit 23 DTD South 441H | Measured Depth | (H) | 12796.79 | 15771.16 | 25335.62 | 25426.12 | | Plan Targets | | Target Name | FTP 7 | SHL 10 | LTP 7 | BHL 7 | # PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL OPERATOR'S NAME: XTO LEASE NO.: NMNM030452 LOCATION: Sec. 23, T.24 S, R 30 E COUNTY: Eddy County, New Mexico ▼ WELL NAME & NO.: Poker Lake Unit 23 DTD 441H SURFACE HOLE FOOTAGE: 1152'/N & 1171'/E 2627'/N & 1475'/W COA | H_2S | • | No | O | Yes | |--------------|----------------------|----------------------------|-----------------------------------|----------------------------| | Potash / | None | Secretary | © R-111-Q | Open Annulus | | WIPP | Choose | e an option (including bla | nk option.) | ■ WIPP | | Cave / Karst | C Low | Medium | High | Critical | | Wellhead | Conventional | Multibowl | Both | Diverter | | Cementing | Primary Squeeze | Cont. Squeeze | EchoMeter | DV Tool | | Special Req | Capitan Reef | Water Disposal | COM | Unit | | Waste Prev. | C Self-Certification | C Waste Min. Plan | APD Submitted p | rior to 06/10/2024 | | Additional | Flex Hose | Casing Clearance | Pilot Hole | Break Testing | | Language | Four-String | Offline Cementing | Fluid-Filled | | ### A. HYDROGEN SULFIDE **BOTTOM HOLE FOOTAGE:** Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet 43 CFR 3176 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM. ### **B. CASING** - 1. The 13-3/8 inch surface casing shall be set at approximately 780 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and
ideally between 8-10 hours after completing the cement job. - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8 hours** - or <u>500 pounds compressive strength</u>, whichever is greater. (This is to include the lead cement) - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater. - d. If cement falls back, remedial cementing will be done prior to drilling out that string. Intermediate 1 & 2 casings must be kept fluid filled to meet BLM minimum collapse requirement. - 2. The minimum required fill of cement behind the 9-5/8 inch 1st Intermediate casing is: - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst. - 3. The minimum required fill of cement behind the 7-5/8 inch 2nd Intermediate casing is: Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface. - a. First stage: Operator will cement with intent to reach the top of the Brushy Canyon at 6610'. - b. **Second stage:** Operator will perform bradenhead squeeze and top-out. Cement should tie-back **200 ft** into the previous casing. If cement does not reach the tie-back, the appropriate BLM office shall be notified. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst. ❖ In Medium Cave/Karst Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface. Operator has proposed to pump down Intermediate 1 X Intermediate 2 annulus after primary cementing stage. Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus OR operator shall run a CBL from TD of the Surface casing to tieback requirements listed above after the second stage BH to verify TOC. Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures. If cement does not reach surface, the next casing string must come to surface. - 4. The minimum required fill of cement behind the 5-1/2 inch production casing is: - Cement should tie-back **200 feet** into the previous casing. Operator shall provide method of verification. **Excess calculates to 15%. Additional cement maybe required.** ### C. PRESSURE CONTROL - 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends). - 2. Operator has proposed a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi. - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry. - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal. - c. Manufacturer representative shall install the test plug for the initial BOP test. - d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed. - e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172 must be followed. ### D. SPECIAL REQUIREMENT (S) ### **Unit Wells** The well sign for a unit well shall include the unit number in addition to the surface and bottom hole lease numbers. This also applies to participating area numbers. If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced. ### **Commercial Well Determination** A commercial well determination shall be submitted after production has been established for at least six months. (This is not necessary for secondary recovery unit wells) ### **BOPE Break Testing Variance** - BOPE Break Testing is ONLY permitted for intervals utilizing a 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP.) - BOPE Break Testing is NOT permitted to drilling the production hole section. - Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation. - While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle. - Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations. - A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable). - The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests. - As a minimum, a full BOPE test shall be performed at 21-day intervals. - In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR 3172. - If in the event break testing is not utilized, then a full BOPE test would be conducted. ### **Offline Cementing** Contact the BLM prior to the commencement of any offline cementing procedure. Engineer may elect to vary this language. Speak with Chris about implementing changes and whether that change seems reasonable. ### **Casing Clearance** String does not meet 0.422" clearance requirement per 43 CFR 3172. Cement tieback requirement increased 100' for Production casing tieback. Operator may contact approving engineer to discuss changing casing set depth or grade to meet clearance requirement. ### **GENERAL REQUIREMENTS** The BLM is to be notified in advance for a representative to witness: - a. Spudding well (minimum of 24 hours) - b. Setting and/or Cementing of all casing strings (minimum of 4 hours) - c. BOPE tests (minimum of 4 hours) ### **Contact Eddy County Petroleum Engineering Inspection Staff:** Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220; **BLM NM CFO DrillingNotifications@BLM.GOV**; (575) 361-2822 - 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s). - b. When the operator proposes to set surface casing with Spudder Rig - i. Notify the BLM when moving in and removing the Spudder Rig. - ii. Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location. - iii. BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well. - 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area. - 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports. ### A. CASING 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed. - 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug. - 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test
can be done (prior to the cement setting up) immediately after bumping the plug. - 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string. - 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer. - 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole. - 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations. - 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed. ### **B. PRESSURE CONTROL** - 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR 3172. - 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's - requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. - 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure. - 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met: - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry. - ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal. - iii. Manufacturer representative shall install the test plug for the initial BOP test. - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed. - v. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed. - 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests. - i. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified). - ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve - open. (only applies to single stage cement jobs, prior to the cement setting up.) - iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR 3172** with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item). - iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock. - v. The results of the test shall be reported to the appropriate BLM office. - vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office. - vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure. - viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172. ### C. DRILLING MUD Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented. ### D. WASTE MATERIAL AND FLUIDS All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations. **Approved by Zota Stevens on 10/15/2024** 575-234-5998 / zstevens@blm.gov ### **HYDROGEN SULFIDE (H2S) CONTINGENCY PLAN** ### **Assumed 100 ppm ROE = 3000'** 100 ppm H2S concentration shall trigger activation of this plan. ### **Emergency Procedures** In the event of a release of gas containing H₂S, the first responder(s) must - Isolate the area and prevent entry by other persons into the 100 ppm ROE. - Evacuate any public places encompassed by the 100 ppm ROE. - Be equipped with H₂S monitors and air packs in order to control the release. - Use the "buddy system" to ensure no injuries occur during the response - Take precautions to avoid personal injury during this operation. - Contact operator and/or local officials to aid in operation. See list of phone numbers attached. - Have received training in the - o Detection of H₂S, and - o Measures for protection against the gas, - o Equipment used for protection and emergency response. ### **Ignition of Gas source** Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever this is an ignition of the gas. Characteristics of H₂S and SO₂ | Common Name | Chemical
Formula | Specific Gravity | Threshold Limit | Hazardous Limit | Lethal Concentration | |------------------|---------------------|------------------|-----------------|-----------------|----------------------| | Hydrogen Sulfide | H ₂ S | 1.189 Air = I | 10 ppm | 100 ppm/hr | 600 ppm | | Sulfur Dioxide | SO ₂ | 2.21 Air = I | 2 ppm | N/A | 1000 ppm | ### **Contacting Authorities** All XTO location personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including directions to site. The following call list of essential and potential responders has been prepared for use during a release. (Operator Name)'s response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER). ### **CARLSBAD OFFICE – EDDY & LEA COUNTIES** | 3104 E. Greene St., Carlsbad, NM 88220
Carlsbad, NM | 575-887-7329 | |---|--| | XTO PERSONNEL: Will Dacus, Drilling Manager Brian Dunn, Drilling Supervisor Robert Bartels,
Construction Execution Planner Andy Owens, EH & S Manager Frank Fuentes, Production Foreman | 832-948-5021
832-653-0490
406-478-3617
903-245-2602
575-689-3363 | | SHERIFF DEPARTMENTS: | | | Eddy County | 575-887-7551 | | Lea County | 575-396-3611 | | NEW MEXICO STATE POLICE: | 575-392-5588 | | FIRE DEPARTMENTS: | 911 | | Carlsbad | 575-885-2111 | | Eunice | 575-394-2111 | | Hobbs | 575-397-9308 | | Jal | 575-395-2221 | | Lovington | 575-396-2359 | | HOSPITALS: | 911 | | Carlsbad Medical Emergency | 575-885-2111 | | Eunice Medical Emergency | 575-394-2112 | | Hobbs Medical Emergency | 575-397-9308 | | Jal Medical Emergency | 575-395-2221 | | Lovington Medical Emergency | 575-396-2359 | | AGENT NOTIFICATIONS: For Lea County: | | | Bureau of Land Management – Hobbs | 575-393-3612 | | New Mexico Oil Conservation Division – Hobbs | 575-393-6161 | | For Eddy County: | | | Bureau of Land Management - Carlsbad | 575-234-5972 | | New Mexico Oil Conservation Division - Artesia | 575-748-1283 | **Operator Name: XTO PERMIAN OPERATING LLC** Well Name: POKER LAKE UNIT 23 DTD Well Number: 441H and the contents thereof disposed of in an approved sewage disposal facility. All state and local laws and regulations pertaining to the disposal of human and solid waste will be complied with. This equipment will be properly maintained during the drilling and completion operations and will be removed when all operations are complete. ### Safe containment attachment: Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL **FACILITY** Disposal type description: Disposal location description: A licensed 3rd party contractor to haul and dispose of human waste. Waste type: GARBAGE **Waste content description:** All garbage, junk and non-flammable waste materials will be contained in a self-contained, portable dumpster or trash cage, to prevent scattering and will be removed and deposited in an approve sanitary landfill. Immediately after drilling all debris and other waste materials on and around the well location not contained in the trash cage will be cleaned up and removed from the location. No potentially adverse materials or substances will be left on the location. Amount of waste: 250 pounds Waste disposal frequency: Weekly Safe containment description: All garbage, junk and non-flammable waste materials will be contained in a self-contained, portable dumpster or trash cage, to prevent scattering and will be removed and deposited in an approve sanitary landfill. Immediately after drilling all debris and other waste materials on and around the well location not contained in the trash cage will be cleaned up and removed from the location. No potentially adverse materials or substances will be left on the location. ### Safe containment attachment: Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL **FACILITY** Disposal type description: Disposal location description: A licensed 3rd party contractor will be used to haul and dispose of garbage. ### **Reserve Pit** Reserve Pit being used? NO Temporary disposal of produced water into reserve pit? NO Reserve pit length (ft.) Reserve pit width (ft.) Reserve pit depth (ft.) Reserve pit volume (cu. yd.) Is at least 50% of the reserve pit in cut? Reserve pit liner Reserve pit liner specifications and installation description ### **Cuttings Area** Cuttings Area being used? NO **Operator Name: XTO PERMIAN OPERATING LLC** Well Name: POKER LAKE UNIT 23 DTD Well Number: 441H ### Are you storing cuttings on location? Y **Description of cuttings location** Cuttings. The well will be drilled utilizing a closed-loop mud system. Drill cuttings will be held in roll-off style mud boxes and taken to a New Mexico Oil Conservation Division (NMOCD) approved disposal site. Drilling Fluids. These will be contained in steel mud pits and then taken to a NMOCD approved commercial disposal facility. Produced Fluids. Water produced from the well during completion will be held temporarily in steel tanks and then taken to a NMOCD approved commercial disposal facility. Oil produced during operations will be stored in tanks until sold. Cuttings area length (ft.) Cuttings area width (ft.) Cuttings area depth (ft.) Cuttings area volume (cu. yd.) Is at least 50% of the cuttings area in cut? WCuttings area liner Cuttings area liner specifications and installation description ### **Section 8 - Ancillary** Are you requesting any Ancillary Facilities?: N **Ancillary Facilities** Comments: Section 9 - Well Site Well Site Layout Diagram: PLU 23 DTD 441H Well 20240413185100.pdf Comments: Multi-well pad. ### **Section 10 - Plans for Surface Reclamation** Type of disturbance: No New Surface Disturbance Multiple Well Pad Name: POKER LAKE UNIT 23 DTD Multiple Well Pad Number: C ### Recontouring PLU_23_DTD_IR1_20240411181254.pdf PLU_23_DTD_IR2_20240411181254.pdf PLU_23_DTD_IR3_20240411181254.pdf PLU_23_DTD_IR4_20240411181254.pdf **Drainage/Erosion control construction:** Initial seedbed preparation will consist of recontouring to the appropriate interim or final reclamation standard. All compacted areas to be seeded will be ripped to a minimum depth of 18 inches with a minimum furrow spacing of 2 feet, followed by recontouring the surface and then evenly spreading the stockpiled topsoil. Prior to seeding, the seedbed will be scarified to a depth of no less than 4-6 inches. **Drainage/Erosion control reclamation:** Erosion features are equal to or less than surrounding area and erosion control is sufficient so that water naturally infiltrates into the soil and gullying, headcutting, slumping, and deep or excessive rills (greater than 3 inches) are not observed. Operator Name: XTO PERMIAN OPERATING LLC Well Name: POKER LAKE UNIT 23 DTD Well Number: 441H Well pad proposed disturbance Well pad interim reclamation (acres): 0 Well pad long term disturbance (acres): 0 Road proposed disturbance (acres): Road interim reclamation (acres): 0 Road long term disturbance (acres): 0 Powerline proposed disturbance (acres): (acres): Pipeline proposed disturbance (acres): Other proposed disturbance (acres): Pipeline interim reclamation (acres): 0 Pipeline long term disturbance Powerline interim reclamation (acres): Powerline long term disturbance (acres): 0 (acres): 0 Other interim reclamation (acres): 0 Other long term disturbance (acres): 0 Total proposed disturbance: 0 Total interim reclamation: 0 Total long term disturbance: 0 ### **Disturbance Comments:** Reconstruction method: The original stock piled topsoil will be spread over the areas being reclaimed and the original landform will be restored for all disturbed areas including well pads, production facilities, roads, pipelines, and utility corridors as close as possible to the original topography. The location will then be ripped and seeded Topsoil redistribution: The original stock piled topsoil will be spread over the areas being reclaimed and the original landform will be restored for all disturbed areas including well pads, production facilities, roads, pipelines, and utility corridors as close as possible to the original topography. The location will then be ripped and seeded Soil treatment: A self-sustaining, vigorous, diverse, native (or otherwise approved) plan community will be established on the site with a density sufficient to control erosion and invasion by non-native plants and to re-establish wildlife habitat or forage production. At a minimum, the established plant community will consist of species included in the seed mix and/or desirable species occurring in the surrounding natural vegetation. <style isBold="true">Existing Vegetation at the well pad:</style> Soils are classified as Simona Gravelly Fine Sandy Loam and Simona-Bippus Complex. Simona soils are found on alluvial fans and plans and form in mixed alluvium and/or Aeolian sands. Bippus soils are found on alluvial fans and floodplains and form in mixed alluvium. The Simona Bippus soils are dominant to the east and the Simona Gravelly Fine Sandy Loams are dominant to the West. Dominant vegetation species include: mesquite, sumac snakeweed, and various forbs and grasses. Ground cover is minimal, offering 90 percent visibility. **Existing Vegetation at the well pad** <style isBold="true">Existing Vegetation Community at the road:</style> Soils are classified as Simona Gravelly Fine Sandy Loam and Simona-Bippus Complex. Simona soils are found on alluvial fans and plans and form in mixed alluvium and/or Aeolian sands. Bippus soils are found on alluvial fans and floodplains and form in mixed alluvium. The Simona Bippus soils are dominant to the east and the Simona Gravelly Fine Sandy Loams are dominant to the West. Dominant vegetation species include: mesquite, sumac snakeweed, and various forbs and grasses. Ground cover is minimal, offering 90 percent visibility. ### **Existing Vegetation Community at the road** <style isBold="true">Existing Vegetation Community at the pipeline:</style> Soils are classified as Simona Gravelly Fine Sandy Loam and Simona-Bippus Complex. Simona soils are found on alluvial fans and plans and form in mixed alluvium and/or Aeolian sands. Bippus soils are found on alluvial fans and floodplains and form in mixed alluvium. The Simona Bippus soils are dominant to the east and the Simona Gravelly Fine Sandy Loams are dominant to the West. Dominant vegetation species include: mesquite, sumac snakeweed, and various forbs and grasses. Ground cover is minimal, offering 90 percent visibility. ### **Existing Vegetation Community at the pipeline** <style isBold=&guot;true&guot;>Existing Vegetation Community at other disturbances:</style> Soils are classified as Simona Gravelly Fine Sandy Loam and Simona-Bippus Complex. Simona soils are found on alluvial fans and plans and form in mixed alluvium and/or Aeolian sands. Bippus soils are found on alluvial fans and floodplains and
form in mixed alluvium. The Simona Bippus soils are dominant to the east and the Simona Gravelly Fine Sandy Loams are dominant to the West. Dominant vegetation species include: mesquite, sumac snakeweed, and various forbs and grasses. Ground cover is minimal, offering 90 percent visibility. Sante Fe Main Office Phone: (505) 476-3441 General Information Phone: (505) 629-6116 Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us # State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505 CONDITIONS Action 408867 ### **CONDITIONS** | Operator: | OGRID: | |----------------------------|---| | XTO PERMIAN OPERATING LLC. | 373075 | | 6401 HOLIDAY HILL ROAD | Action Number: | | MIDLAND, TX 79707 | 408867 | | | Action Type: | | | [C-101] BLM - Federal/Indian Land Lease (Form 3160-3) | ### CONDITIONS | Created By | Condition | Condition Date | |-------------|---|----------------| | tsebastian | Cement is required to circulate on both surface and intermediate1 strings of casing. | 12/5/2024 | | tsebastian | If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing. | 12/5/2024 | | ward.rikala | Notify the OCD 24 hours prior to casing & cement. | 12/23/2024 | | ward.rikala | File As Drilled C-102 and a directional Survey with C-104 completion packet. | 12/23/2024 | | ward.rikala | Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string. | 12/23/2024 | | ward.rikala | Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system. | 12/23/2024 |