Sundry Print Reports 01/23/2025

County or Parish/State: EDDY /

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Well Name: CHUCK SMITH MDP1 8-17 Well Location: T24S / R31E / SEC 5 /

FEDERAL COM

SWSW / 32.239885 / -103.804356

NM

Well Number: 32H Type of Well: OIL WELL Allottee or Tribe Name:

Lease Number: NMNM142143 Unit or CA Name: Unit or CA Number:

Notice of Intent

Sundry ID: 2818155

Type of Submission: Notice of Intent

Type of Action: APD Change

Date Sundry Submitted: 10/22/2024 Time Sundry Submitted: 08:00

Date proposed operation will begin: 01/01/2025

Procedure Description: OXY USA Inc. requests updates to the approved APD for the subject well. Please see the attached file labeled 'APDCHGSUNDRYWORKSHEET' that highlights the changes and attachments. General change documents are combined into 1 PDF file and well specific documents are individual attachments. Changes included in the sundry: BHL Change: 20' FSL 1270' FWL to 20' FSL 990' FWL Pool Change: Bone Spring to Purple Sage Wolfcamp TVD Change: 10753' TVD to 12550' TVD Drilling Change: Update to blanket casing design There are no changes to the surface hole location for the subject well.

NOI Attachments

Procedure Description

CHUCKSMITHMDP1817FEDCOM32H_Blanket_Design_A__OXY___3S_Slim_v7.1_20241120071932.pdf

CHUCKSMITHMDP18_17FEDCOM32H_General_Docs_20241022075901.pdf

CHUCKSMITHMDP18_17FEDCOM32H_DirectPlan_20241022075859.pdf

CHUCKSMITHMDP18_17FEDCOM32H_OXY_Blanket_Des_A_Pad_Cover_0501_20241022075859.pdf

CHUCKSMITHMDP18_17FEDCOM32H_DrillPlan_20241022075859.pdf

 $CHUCKSMITHMDP18_17FEDCOM32H_C102_20241022075900.pdf$

CHUCKSMITHMDP1817FEDCOM32H_APDCHGSUNDRYWORKSHEET_10.22.2024_20241022075821.pdf

Well Name: CHUCK SMITH MBPT 8-17 Well Location: T24S / R31E / SEC 5 / County or Parish/State: EDDY? of

FEDERAL COM SWSW / 32.239885 / -103.804356

Type of Well: OIL WELL

Unit or CA Number: Lease Number: NMNM142143 **Unit or CA Name:**

US Well Number: 3001555469 Operator: OXY USA INCORPORATED

Conditions of Approval

Additional

CHUCK SMITH MDP1 8 17 FEDERAL COM 32H SUNDRY COA 20250121123357.pdf

Operator

Well Number: 32H

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: RONI MATHEW Signed on: NOV 20, 2024 07:19 AM

Name: OXY USA INCORPORATED Title: REGULATORY SPECIALIST

Street Address: 5 Greenway Plaza, Suite 110

City: Houston State: TX

Phone: (713) 215-7827

Email address: RONI_MATHEW@OXY.COM

Field

Representative Name: JIM WILSON

Street Address: 6001 DEAUVILLE BLVD.

City: MIDLAND State: TX **Zip:** 79710

Phone: (575)631-2442

Email address: JIM WILSON@OXY.COM

BLM Point of Contact

Signature: KEITH IMMATTY

BLM POC Name: KEITH P IMMATTY BLM POC Title: ENGINEER

BLM POC Phone: 5759884722 BLM POC Email Address: KIMMATTY@BLM.GOV

Disposition: Approved Disposition Date: 01/21/2025

Page 2 of 2

Allottee or Tribe Name:

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED
OMB No. 1004-0137
Expires: October 31, 202

BUREAU OF LAND MANAGEMENT	5. Lease Serial No.				
SUNDRY NOTICES AND REPORTS ON V Do not use this form for proposals to drill or to abandoned well. Use Form 3160-3 (APD) for su	o re-enter an	6. If Indian, Allottee or Tribe N	Vame		
SUBMIT IN TRIPLICATE - Other instructions on pag	ge 2	7. If Unit of CA/Agreement, N	ame and/or No.		
1. Type of Well Oil Well Gas Well Other		8. Well Name and No.			
2. Name of Operator		9. API Well No.			
3a. Address 3b. Phone No.	. (include area code)	10. Field and Pool or Explorate	ory Area		
4. Location of Well (Footage, Sec., T.,R.,M., or Survey Description)		11. Country or Parish, State			
12. CHECK THE APPROPRIATE BOX(ES) TO IN	DICATE NATURE OI	F NOTICE, REPORT OR OTH	IER DATA		
TYPE OF SUBMISSION	TYPE	OF ACTION			
Notice of Intent Acidize Deep Alter Casing Hyd	pen	Production (Start/Resume) Reclamation	Water Shut-Off Well Integrity		
Subsequent Report	Construction and Abandon	Recomplete Temporarily Abandon	Other		
Final Abandonment Notice Convert to Injection Plug	g Back	Water Disposal			
completed. Final Abandonment Notices must be filed only after all requiremen is ready for final inspection.)	ts, including reclamati	on, have been completed and ti	ne operator has detennined that the site		
14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>)	Title				
Signature	Date				
THE SPACE FOR FED	E OFICE USE				
Approved by	Title	Т	Date		
Conditions of approval, if any, are attached. Approval of this notice does not warrar certify that the applicant holds legal or equitable title to those rights in the subject leads which would entitle the applicant to conduct operations thereon.	nt or	1	, m.		
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for a any false, fictitious or fraudulent statements or representations as to any matter with		and willfully to make to any de	partment or agency of the United States		

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Location of Well

0. SHL: SWSW / 280 FSL / 1245 FWL / TWSP: 24S / RANGE: 31E / SECTION: 5 / LAT: 32.239885 / LONG: -103.804356 (TVD: 0 feet, MD: 0 feet) PPP: NWNW / 2 FNL / 1271 FWL / TWSP: 24S / RANGE: 31E / SECTION: 8 / LAT: 32.23911 / LONG: -103.804276 (TVD: 10545 feet, MD: 10725 feet) PPP: NWNW / 100 FNL / 1270 FWL / TWSP: 24S / RANGE: 31E / SECTION: 8 / LAT: 32.238839 / LONG: -103.804278 (TVD: 10624 feet, MD: 11030 feet) PPP: SWSW / 1318 FSL / 1270 FWL / TWSP: 24S / RANGE: 31E / SECTION: 8 / LAT: 32.228219 / LONG: -103.804281 (TVD: 10670 feet, MD: 14702 feet) PPP: NWNW / 2 FNL / 1270 FWL / TWSP: 24S / RANGE: 31E / SECTION: 17 / LAT: 32.224589 / LONG: -103.804283 (TVD: 10687 feet, MD: 16023 feet) BHL: SWSW / 20 FSL / 1270 FWL / TWSP: 24S / RANGE: 31E / SECTION: 17 / LAT: 32.210126 / LONG: -103.804291 (TVD: 10753 feet, MD: 21280 feet)

|--|

Submit Electronically Via OCD Permitting

State of New Mexico Energy, Minerals, & Natural Resources Department OIL CONSERVATION DIVISION

Revised July 9,	2024
PAGE 1 OF 2	

Submittal Type: ▼ Initial Submittal

Amended Report

									Drilled				
					WELL LOCATIO	N INFORMATION							
	015-		Pool Code 9822	0		POOL Name PURPLE SAGE; WOLFCAMP							
Propert			Property Na	ame				Well Number					
334	580				CHUCK SMITH M	DP1 8_17 FED COM	1	32H					
OGRID	No.		Operator N	ame		-		Ground Level Elevat	ion				
	16696	ó			OXYU	ISA INC.		3478	3'				
Surface	e Owner: [State	Fee Tı	ribal 🔽	Federal	Mineral Owner:	State Fee	Tribal 🔽 Federal					
					Surface	Location							
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude (NAD83)	Longitude (NAD83)	County				
M	05	24S	31E		280' FSL	1245' FWL	32.23988457	-103.80435616	EDDY				
		•	•	<u> </u>	Rottom H	ole Location	•	•					
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude (NAD83)	Longitude (NAD83)	County				
M	17	24S	31E		20' FSL	990' FWL	32.21012531	-103.80519622	EDDY				
	ı		1	_		L							
Dedicated Acres					g Well API	Overlapping Spacing Un	it (Y/N)	Consolidation Code					
640.00 INFILL				015-54261	N								
Order 1	Numbers:			1		Well setbacks are unde	er Common Ownership	: Yes No	0				
					Kick Off I	Point (KOP)							
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude (NAD83)	Longitude (NAD83)	County				
M	05	24S	31E		300' FSL	990' FWL	32.23993900	-103.80518075	EDDY				
	<u> </u>	1	1		First Take	Point (FTP)							
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude (NAD83)	Longitude (NAD83)	County				
D	08	24S	31E		100' FNL	990' FWL	32.23883950	-103.80518320	EDDY				
	<u> </u>	1	1		Last Take	Point (LTP)							
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude (NAD83)	Longitude (NAD83)	County				
M	17	24S	31E		100' FSL	990' FWL	32.21034522	-103.80519611	EDDY				
	ı		1			· L							
Unitized	l Area or Area	of Uniform Inter	est	Τ			Ground Floor I	Elevation					
				Spacin	g Unit Type: X Horiz	ontal Vertical		3478'					
							•						
OPER	ATOR CEI	RTIFICATIO	NS			SURVEYOR CERT	CIFICATIONS						
OPERATOR CERTIFICATIONS I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and, if the well is a vertical or directional well, that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of a working interest or unleased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division.						I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.							
If this w	vell is a horizoi	ntal well, I furthe	r certify that t	his organiz	ation has received the	MEL							

If this well is a horizontal well, I further certify that this organization has received the consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division.

Signature 9/30/24

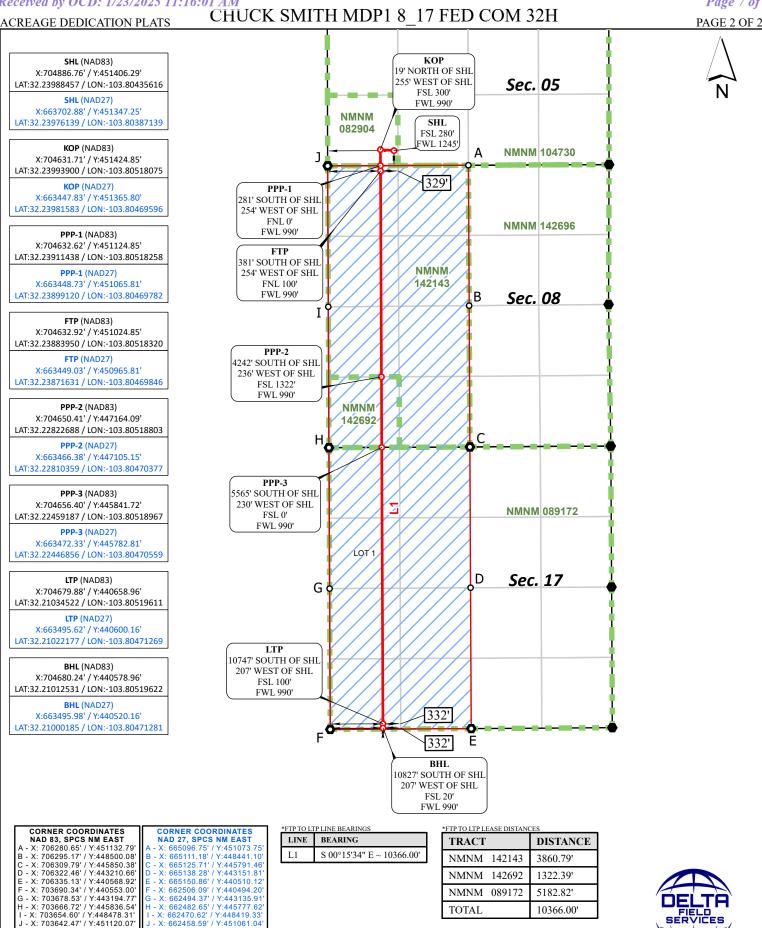
Date

Roni Mathew

Printed Name

roni_mathew@oxy.com

Email Address



Signature and Seal of Professional Surveyor

Certificate Number Date of Survey

21653

SEPTEMBER 18, 2024

-- Dimension Lines

Federal Leases

O HSU Corners

✓ HSU

JOB No. R4289 001 13739

REV 6 NDS 9/17/2024

Section Corners

Drill Line

All bearings and coordinates refer to New Mexico State Plane Coordinate System, East Zone, U.S. Survey Feet.

O Drill Line Events

OXY APD CHANGE SUNDRY LIST FORM

DATE SUNDRY WORKSHEET CREATED	10/22/2024
WELL NAME_NUMBER	Chuck Smith MDP1 8-17 Federal Com #032H
API NUMBER	30-015-55469
ESTIMATED SPUD DATE	1/1/2025

PLEASE SEE ATTACHED OXY APD CHANGE SUNDRY LIST THAT HIGHLIGHTS CHANGES AND ATTACHMENTS. GENERAL CHANGE DOCUMENTS ARE COMBINED INTO 1 PDF FILE AND WELL SPECIFIC DOCUMENTS ARE INDIVIDUAL ATTACHMENTS.

•														•				
ITEM	APD BASE LINE (For Regulatory to Complete)										SUNDRY	PLAN (Groups to	complete the lat	test plan)				
	Date APD/BASE LINE APPROVED: 09/23/2024 DAT								DATE Sundry Worksheet : 10/22/2024									
NAME	Chuck Smith MDP1 8	8-17 Federal Com #032H								Chuck Smith MDP1 8-17 Federal Com #032H								
NSL													Υ	ES				
SHL	280' FSL 1245' FWL I	280' FSL 1245' FWL M-5- 24S-31E											280' FNL 1245' F	WL M-5- 24S-31E				
PAD	SND_DNS_T24SR31E	SND_DNS_T24SR31E_0501											SND_DNS_T2	4SR31E_0501				
BHL		I-17-24S-31E																
		NE SPRING																
TARGET FORMATION	BONE SPRING 2ND																	
Z Z																		Conn.
90	Surface									Surface								BTC
£	Int	9.875	9961'	9961'	7.625	26.4	HCL-80		BTC	Int	9.875	11867	11850	7.625	29.7	L-80 HC		BTC
9																		
AS:		6.75	21280'	10753'	5.5	20	P-110	١	VDG 461		6.75	23168	12550	5.5	23	P-110	Sp	orint-SF
Ü	Liner			1						Liner								
		T -	1 .															
ξ																		Description
26																		CLC_ACC
Q.																		CLC_RET, D
È		TAILBH	1032	1./1	13.3	25%	U	ВН	CL C_ACC		I AIL BH	1033	1./1	13.3	25%	U	ВН	CLC_ACC
<u> </u>								-										
E S		TAIL	007	1 20	12.2	250/	05301	CIDC	CLU DET D.C		TAIL	ccc	1.04	12.2	250/	11267	CIDC	CLC RET
- J	Prod	TAIL	007			2376	3223	CIRC	CL n_RE1,D, 3	Prou	TAIL	000			2376	1150/	CIRC	CLC_RET
	BOD Brook Toring V	arianco	v	AFD DASE LIN						BOR Brook Toring Variance		v	7	II FDIN				
90			^	-									-					
ğ				+								Y Y	-					
IIA			x	+								×	-					
\			<u> </u>								e Variance							
			х															
			1							(Pilot Hole, Logs etc.)								
	NAME NSL SHL PAD	NAME	Date APD/BASE LINE APPROVED: 09/12/12/02/4 NAME	Date APD/BASE LINE APPROVED: 09/23/2024	Date APD/BASE LINE APPROVED: 09/32/2024	Date APP(BASE LINE APPROVED: 09/23/2024	Date APO/BASE LINE APPONDED: 09/23/2024	NAME	NAME	NAME	AMME	Date APP/GASE UNE APP/GASE UNE APP/GASE UNE APP/GASE UNE Sundry Worksheet: 10/22/2024	Date APP/BASE LINE APPROVED: 09/73/2024 OATE Sundry Worksheet: 10/22/2024 Obe	Date APP(BASE LINE APPROVED: 09/12/2028) DATE Sundry Worksheet : 10/22/2028 SMAL SMAL Date APP(BASE LINE APPROVED: 09/12/2028) SMAL SMAL SMAL	Date APPO/ASS LINE PROPERTY DOI: 10.075 PAPENTE DOI: 10.075	Date APP/OASE LINE APPROVED 09/12/2024 OAT'S sundry Worksheet: 10/22/2024 Chuck Smith MIPS 1-27 Federal Com 8022H	DATE SUMPLY Worksheet: 19/21/2028	DATE Sundry Worksheet: 10/22/2024

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: OXY USA INCORPORATED
WELL NAME & NO.: CHUCK SMITH MDP1 8-17 FEDERAL COM 32H
LOCATION: Section 5, T.24 S., R.31 E.
COUNTY: Eddy County, New Mexico

COA

H2S	• Yes	O No	
Potash	O None	Secretary	O R-111-P
Cave/Karst Potential	• Low	O Medium	O High
Cave/Karst Potential	O Critical		
Variance	O None	• Flex Hose	Other
Wellhead	Conventional	Multibowl	O Both
Wellhead Variance	O Diverter		
Other	□4 String	☐ Capitan Reef	□WIPP
Other	☐ Fluid Filled	☐ Pilot Hole	☐ Open Annulus
Cementing	☐ Contingency	☐ EchoMeter	☑ Primary Cement
	Cement Squeeze		Squeeze
Special Requirements	☐ Water Disposal	☑ COM	□ Unit
Special Requirements	☐ Batch Sundry		
Special Requirements	Break Testing	✓ Offline	☐ Casing
Variance	_	Cementing	Clearance

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated AT SPUD. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

Primary Casing Design:

- 1. The **10-3/4** inch surface casing shall be set at approximately **922** feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature

- survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **24 hours in the Potash Area** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The **7-5/8** inch intermediate casing shall be set at approximately **11,867** feet. **KEEP CASING 1/2 FULL FOR COLLAPSE SF. PRESSURE TEST NEEDS EXTERNAL PRESSURE REVIEW AS WELL.** The minimum required fill of cement behind the **7-5/8** inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the **Brushy** Canyon
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified
- ❖ In <u>Secretary Potash Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.

Operator has proposed to pump down 10-3/4" X 7-5/8" annulus. Operator must top out cement after the bradenhead squeeze and verify cement to surface. Operator can also check TOC with Echo-meter. CBL must be run from TD of the 7-5/8" casing to surface if confidence is lacking on the quality of the bradenhead squeeze cement job. Submit results to BLM.

If cement does not tie-back into the previous casing shoe, a third stage remediation BH may be performed. The appropriate BLM office shall be notified.

Bradenhead squeeze in the production interval is only as an edge case remediation measure and is NOT approved in this COA. If production cement job experiences losses and a bradenhead squeeze is needed for tie-back, BLM Engineering should be notified prior to job with volumes and planned wellbore schematic. CBL will be needed when this occurs.

3. The **5-1/2** inch production casing shall be set at approximately **23,168** feet. The minimum required fill of cement behind the **5-1/2** inch production casing is:

Option 1 (Single Stage):

• Cement should tie-back at least **500 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 3500 (70% Working Pressure) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

• The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated

date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.

- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in Onshore Order 1 and 2.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

(Note: For a minimum 5M BOPE or less (Utilizing a 10M BOPE system) BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per Onshore Oil and Gas Order No. 2.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Offline cementing OK for surface and intermediate intervals. Notify the BLM prior to the commencement of any offline cementing procedure.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Eddy County Petroleum Engineering Inspection Staff:

Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220; **BLM NM CFO DrillingNotifications@BLM.GOV**; (575) 361-2822

Contact Lea County Petroleum Engineering Inspection Staff:

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i.Notify the BLM when moving in and removing the Spudder Rig.
 - ii.Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii.BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until

both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.

- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in **43 CFR 3172**.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - ii.If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - iii.Manufacturer representative shall install the test plug for the initial BOP test.

- iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
- v.If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - i.In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - ii.In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
 - iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - v.The results of the test shall be reported to the appropriate BLM office.
 - vi.All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
 - vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
 - viii.BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

KPI 1/21/2025

PRD NM DIRECTIONAL PLANS (NAD 1983) Chuck Smith MDP1 8_17 Chuck Smith MDP1 8_17 Fed Com 32H

Wellbore #1

Plan: Permitting Plan

Standard Planning Report

11 September, 2024

Planning Report

Database: HOPSPP

Company: ENGINEERING DESIGNS

Project: PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Chuck Smith MDP1 8_17

Well: Chuck Smith MDP1 8_17 Fed Com 32H

Wellbore: Wellbore #1

Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference:

MD Reference: North Reference:

Survey Calculation Method:

Well Chuck Smith MDP1 8_17 Fed Com 32H

RKB=25' @ 3503.00ft

RKB=25' @ 3503.00ft Grid

Minimum Curvature

Project PRD NM DIRECTIONAL PLANS (NAD 1983)

Map System: US State Plane 1983 Geo Datum: North American Datum 1983

Map Zone: New Mexico Eastern Zone

System Datum: Mean Sea Level

Using geodetic scale factor

Site Chuck Smith MDP1 8_17

 Site Position:
 Northing:
 450,665.22 usft
 Latitude:
 32.237835

 From:
 Map
 Easting:
 705,784.47 usft
 Longitude:
 -103.801465

Position Uncertainty: 0.89 ft Slot Radius: 13.200 in

Well Chuck Smith MDP1 8_17 Fed Com 32H

Well Position +N/-S 0.00 ft 451.406.29 usf Latitude: 32.239885 Northing: 704,886.76 usf +E/-W 0.00 ft Easting: Longitude: -103.804356 **Position Uncertainty** 2.00 ft Wellhead Elevation: ft **Ground Level:** 3,478.00 ft

Grid Convergence: 0.28 °

Wellbore #1

Magnetics Model Name Sample Date Declination Dip Angle Field Strength (°) (°) (nT)

HDGM_FILE 12/26/2019 6.72 59.92 47,874.60000000

Design Permitting Plan

Audit Notes:

Version:Phase:PROTOTYPETie On Depth:0.00

 Vertical Section:
 Depth From (TVD) (ft)
 +N/-S (ft)
 +E/-W (ft)
 Direction (°)

 0.00
 0.00
 0.00
 181.09

Plan Survey Tool Program Date 9/11/2024

Depth From Depth To

(ft) (ft) Survey (Wellbore) Tool Name Remarks

1 0.00 23,168.04 Permitting Plan (Wellbore #1) B001Mc_MWD+HRGM_R5

MWD+HRGM

Plan Sections										
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	TFO (°)	Target
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
4,300.00	0.00	0.00	4,300.00	0.00	0.00	0.00	0.00	0.00	0.00	
5,299.75	10.00	274.16	5,294.68	6.31	-86.77	1.00	1.00	0.00	274.16	
5,770.57	10.00	274.16	5,758.36	12.25	-168.29	0.00	0.00	0.00	0.00	
6,770.32	0.00	0.00	6,753.04	18.56	-255.07	1.00	-1.00	0.00	180.00	
11,994.32	0.00	0.00	11,977.04	18.56	-255.07	0.00	0.00	0.00	0.00	
12,894.32	90.00	179.74	12,550.00	-554.39	-252.50	10.00	10.00	19.97	179.74	
23,168.04	90.00	179.74	12,550.00	-10,828.00	-206.53	0.00	0.00	0.00	0.00 P	BHL (Chuck Smith

Planning Report

Database: Company: Project:

Site:

HOPSPP

ENGINEERING DESIGNS

PRD NM DIRECTIONAL PLANS (NAD 1983)

Chuck Smith MDP1 8_17

Well: Chuck Smith MDP1 8_17 Fed Com 32H

Wellbore: Wellbore #1

Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Well Chuck Smith MDP1 8_17 Fed Com 32H

RKB=25' @ 3503.00ft RKB=25' @ 3503.00ft

Grid

anned Survey									
ailleu Suivey									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00
200.00	0.00	0.00	200.00	0.00	0.00	0.00	0.00	0.00	0.00
300.00	0.00	0.00	300.00	0.00	0.00	0.00	0.00	0.00	0.00
400.00	0.00	0.00	400.00	0.00	0.00	0.00	0.00	0.00	0.00
500.00	0.00	0.00	500.00	0.00	0.00	0.00	0.00	0.00	0.00
600.00	0.00	0.00	600.00	0.00	0.00	0.00	0.00	0.00	0.00
700.00	0.00	0.00	700.00	0.00	0.00	0.00	0.00	0.00	0.00
800.00	0.00	0.00	800.00	0.00	0.00	0.00	0.00	0.00	0.00
900.00	0.00	0.00	900.00	0.00	0.00	0.00	0.00	0.00	0.00
1,000.00	0.00	0.00	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00
1,100.00	0.00	0.00	1,100.00	0.00	0.00	0.00	0.00	0.00	0.00
1,200.00	0.00	0.00	1,100.00	0.00	0.00	0.00	0.00	0.00	0.00
,			,						
1,300.00	0.00	0.00	1,300.00	0.00	0.00	0.00	0.00	0.00	0.00
1,400.00	0.00	0.00	1,400.00	0.00	0.00	0.00	0.00	0.00	0.00
1,500.00	0.00	0.00	1,500.00	0.00	0.00	0.00	0.00	0.00	0.00
1,600.00	0.00	0.00	1,600.00	0.00	0.00	0.00	0.00	0.00	0.00
1,700.00	0.00	0.00	1,700.00	0.00	0.00	0.00	0.00	0.00	0.00
1,800.00	0.00	0.00	1,800.00	0.00	0.00	0.00	0.00	0.00	0.00
1,900.00	0.00	0.00	1,900.00	0.00	0.00	0.00	0.00	0.00	0.00
			•						
2,000.00	0.00	0.00	2,000.00	0.00	0.00	0.00	0.00	0.00	0.00
2,100.00	0.00	0.00	2,100.00	0.00	0.00	0.00	0.00	0.00	0.00
2,200.00	0.00	0.00	2,200.00	0.00	0.00	0.00	0.00	0.00	0.00
2,300.00	0.00	0.00	2,300.00	0.00	0.00	0.00	0.00	0.00	0.00
2,400.00	0.00	0.00	2,400.00	0.00	0.00	0.00	0.00	0.00	0.00
2,500.00	0.00	0.00	2,500.00	0.00	0.00	0.00	0.00	0.00	0.00
2,600.00	0.00	0.00	2,600.00	0.00	0.00	0.00	0.00	0.00	0.00
2,700.00	0.00	0.00	2,700.00	0.00	0.00	0.00	0.00	0.00	0.00
2,800.00	0.00	0.00	2,800.00	0.00	0.00	0.00	0.00	0.00	0.00
2,900.00	0.00	0.00	2,900.00	0.00	0.00		0.00	0.00	0.00
2,900.00	0.00	0.00	2,900.00		0.00	0.00	0.00	0.00	0.00
3,000.00	0.00	0.00	3,000.00	0.00	0.00	0.00	0.00	0.00	0.00
3,100.00	0.00	0.00	3,100.00	0.00	0.00	0.00	0.00	0.00	0.00
3,200.00	0.00	0.00	3,200.00	0.00	0.00	0.00	0.00	0.00	0.00
3,300.00	0.00	0.00	3,300.00	0.00	0.00	0.00	0.00	0.00	0.00
3,400.00	0.00	0.00	3,400.00	0.00	0.00	0.00	0.00	0.00	0.00
3,500.00	0.00	0.00	3,500.00	0.00	0.00	0.00	0.00	0.00	0.00
3,500.00			,	0.00			0.00	0.00	
-,	0.00	0.00	3,600.00		0.00	0.00			0.00
3,700.00	0.00	0.00	3,700.00	0.00	0.00	0.00	0.00	0.00	0.00
3,800.00	0.00	0.00	3,800.00	0.00	0.00	0.00	0.00	0.00	0.00
3,900.00	0.00	0.00	3,900.00	0.00	0.00	0.00	0.00	0.00	0.00
4,000.00	0.00	0.00	4,000.00	0.00	0.00	0.00	0.00	0.00	0.00
4,100.00	0.00	0.00	4,100.00	0.00	0.00	0.00	0.00	0.00	0.00
4,200.00	0.00	0.00	4,200.00	0.00	0.00	0.00	0.00	0.00	0.00
4.300.00	0.00	0.00	4,300.00	0.00	0.00	0.00	0.00	0.00	0.00
4,400.00	1.00	274.16	4,400.00	0.06	-0.87	-0.05	1.00	1.00	0.00
			•						
4,500.00	2.00	274.16	4,499.96	0.25	-3.48	-0.19	1.00	1.00	0.00
4,600.00	3.00	274.16	4,599.86	0.57	-7.83	-0.42	1.00	1.00	0.00
4,700.00	4.00	274.16	4,699.68	1.01	-13.92	-0.75	1.00	1.00	0.00
4,800.00	5.00	274.16	4,799.37	1.58	-21.75	-1.17	1.00	1.00	0.00
4,900.00	6.00	274.16	4,898.90	2.28	-31.30	-1.68	1.00	1.00	0.00
5.000.00	7.00	274.16	4,998.26	3.10	-42.59	-2.29	1.00	1.00	0.00
5,100.00	8.00	274.16	5,097.40	4.05	-42.59 -55.61	-2.29 -2.99	1.00	1.00	0.00
5,200.00	9.00	274.16	5,196.30	5.12	-70.35	-3.78	1.00	1.00	0.00
5,299.75	10.00	274.16	5,294.68	6.31	-86.77	-4.66	1.00	1.00	0.00
5,300.00	10.00	274.16	5,294.93	6.32	-86.82	-4.66	0.00	0.00	0.00

Planning Report

Database: Company: Project:

Site:

HOPSPP

ENGINEERING DESIGNS

PRD NM DIRECTIONAL PLANS (NAD 1983)

Chuck Smith MDP1 8_17

Well: Chuck Smith MDP1 8_17 Fed Com 32H

Wellbore: Wellbore #1

Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Chuck Smith MDP1 8_17 Fed Com 32H

RKB=25' @ 3503.00ft RKB=25' @ 3503.00ft

Grid

Design:	Permitting Pla	an							
Planned Survey									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
5,400.00	10.00	274.16	5,393.41	7.58	-104.13	-5.59	0.00	0.00	0.00
5,500.00	10.00	274.16	5,491.89	8.84	-121.45	-6.52	0.00	0.00	0.00
5,600.00	10.00	274.16	5,590.38	10.10	-138.76	-7.45	0.00	0.00	0.00
5,700.00	10.00	274.16	5,688.86	11.36	-156.07	-8.38	0.00	0.00	0.00
5,770.57	10.00	274.16	5,758.36	12.25	-168.29	-9.04	0.00	0.00	0.00
5,800.00	9.70	274.16	5,787.35	12.61	-173.32	-9.30	1.00	-1.00	0.00
5,900.00	8.70	274.16	5,886.06	13.77	-189.27	-10.16	1.00	-1.00	0.00
6,000.00	7.70	274.16	5,985.04	14.81	-203.50	-10.92	1.00	-1.00	0.00
6,100.00	6.70	274.16	6,084.25	15.72	-216.00	-11.60	1.00	-1.00	0.00
6,200.00	5.70	274.16	6,183.66	16.50	-226.78	-12.17	1.00	-1.00	0.00
6,300.00	4.70	274.16	6,283.25	17.16	-235.82	-12.66	1.00	-1.00	0.00
6,400.00	3.70	274.16	6,382.98	17.69	-243.13	-13.05	1.00	-1.00	0.00
6,500.00	2.70	274.16	6,482.82	18.10	-248.71	-13.35	1.00	-1.00	0.00
6,600.00	1.70	274.16	6,582.75	18.38	-252.54	-13.56	1.00	-1.00	0.00
6,700.00	0.70	274.16	6,682.72	18.53	-254.64	-13.67	1.00	-1.00	0.00
6,770.32	0.00	0.00	6,753.04	18.56	-255.07	-13.69	1.00	-1.00	0.00
6,800.00	0.00	0.00	6,782.72	18.56	-255.07	-13.69	0.00	0.00	0.00
6,900.00	0.00	0.00	6,882.72	18.56	-255.07	-13.69	0.00	0.00	0.00
7,000.00	0.00	0.00	6,982.72	18.56	-255.07	-13.69	0.00	0.00	0.00
7,100.00	0.00	0.00	7,082.72	18.56	-255.07	-13.69	0.00	0.00	0.00
7,200.00	0.00	0.00	7,182.72	18.56	-255.07	-13.69	0.00	0.00	0.00
7,300.00	0.00	0.00	7,102.72	18.56	-255.07	-13.69	0.00	0.00	0.00
7,400.00	0.00	0.00	7,382.72	18.56	-255.07	-13.69	0.00	0.00	0.00
7,500.00	0.00	0.00	7,482.72	18.56	-255.07	-13.69	0.00	0.00	0.00
7,600.00	0.00	0.00	7,582.72	18.56	-255.07	-13.69	0.00	0.00	0.00
7,700.00	0.00	0.00	7,682.72	18.56	-255.07	-13.69	0.00	0.00	0.00
7,800.00	0.00	0.00	7,782.72	18.56	-255.07	-13.69	0.00	0.00	0.00
7,900.00	0.00	0.00	7,882.72	18.56	-255.07	-13.69	0.00	0.00	0.00
8,000.00	0.00	0.00	7,982.72	18.56	-255.07	-13.69	0.00	0.00	0.00
8,100.00	0.00	0.00	8,082.72	18.56	-255.07	-13.69	0.00	0.00	0.00
8,200.00	0.00	0.00	8,182.72	18.56	-255.07	-13.69	0.00	0.00	0.00
8,300.00	0.00	0.00	8,282.72	18.56	-255.07	-13.69	0.00	0.00	0.00
8,400.00	0.00	0.00	8,382.72	18.56	-255.07	-13.69	0.00	0.00	0.00
8,500.00	0.00	0.00	8,482.72	18.56	-255.07	-13.69	0.00	0.00	0.00
8,600.00	0.00	0.00	8,582.72	18.56	-255.07	-13.69	0.00	0.00	0.00
8,700.00	0.00	0.00	8,682.72	18.56	-255.07	-13.69	0.00	0.00	0.00
8,800.00	0.00	0.00	8,782.72	18.56	-255.07	-13.69	0.00	0.00	0.00
8,900.00	0.00	0.00	8,882.72	18.56	-255.07	-13.69	0.00	0.00	0.00
9,000.00	0.00	0.00	8,982.72	18.56	-255.07	-13.69	0.00	0.00	0.00
9,100.00	0.00	0.00	9,082.72	18.56	-255.07	-13.69	0.00	0.00	0.00
9,200.00	0.00	0.00	9,182.72	18.56	-255.07	-13.69	0.00	0.00	0.00
9,300.00	0.00	0.00	9,282.72	18.56	-255.07	-13.69	0.00	0.00	0.00
9,400.00	0.00	0.00	9,382.72	18.56	-255.07	-13.69	0.00	0.00	0.00
9,500.00	0.00	0.00	9,482.72	18.56	-255.07	-13.69	0.00	0.00	0.00
9,600.00	0.00	0.00	9,582.72	18.56	-255.07	-13.69	0.00	0.00	0.00
9,700.00	0.00	0.00	9,682.72	18.56	-255.07	-13.69	0.00	0.00	0.00
9,800.00	0.00	0.00	9,782.72	18.56	-255.07	-13.69	0.00	0.00	0.00
9,900.00	0.00	0.00	9,882.72	18.56	-255.07	-13.69	0.00	0.00	0.00
10,000.00	0.00	0.00	9,982.72	18.56	-255.07	-13.69	0.00	0.00	0.00
10,100.00	0.00	0.00	10,082.72	18.56	-255.07	-13.69	0.00	0.00	0.00
10,200.00	0.00	0.00	10,182.72	18.56	-255.07	-13.69	0.00	0.00	0.00
10,300.00	0.00	0.00	10,282.72	18.56	-255.07	-13.69	0.00	0.00	0.00
10,400.00	0.00	0.00	10,382.72	18.56	-255.07	-13.69	0.00	0.00	0.00
10,500.00	0.00	0.00	10,482.72	18.56	-255.07	-13.69	0.00	0.00	0.00
10,600.00	0.00	0.00	10,582.72	18.56	-255.07	-13.69	0.00	0.00	0.00

Planning Report

Database: Company: Project:

Site:

HOPSPP

ENGINEERING DESIGNS

PRD NM DIRECTIONAL PLANS (NAD 1983)

Chuck Smith MDP1 8_17

Well: Chuck Smith MDP1 8_17 Fed Com 32H

Wellbore: Wellbore #1

Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Chuck Smith MDP1 8_17 Fed Com 32H

RKB=25' @ 3503.00ft RKB=25' @ 3503.00ft

Grid

Design:	Permitting Pla	an							
Planned Survey									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
10,700.00	0.00	0.00	10,682.72	18.56	-255.07	-13.69	0.00	0.00	0.00
10,800.00	0.00	0.00	10,782.72	18.56	-255.07	-13.69	0.00	0.00	0.00
10,900.00	0.00	0.00	10,882.72	18.56	-255.07	-13.69	0.00	0.00	0.00
11,000.00 11,100.00	0.00 0.00	0.00 0.00	10,982.72 11,082.72	18.56	-255.07 -255.07	-13.69 -13.69	0.00 0.00	0.00 0.00	0.00 0.00
· · · · · · · · · · · · · · · · · · ·				18.56					
11,200.00	0.00	0.00	11,182.72	18.56	-255.07	-13.69	0.00	0.00	0.00
11,300.00	0.00	0.00	11,282.72	18.56	-255.07	-13.69	0.00	0.00	0.00
11,400.00 11,500.00	0.00 0.00	0.00 0.00	11,382.72 11,482.72	18.56 18.56	-255.07 -255.07	-13.69 -13.69	0.00 0.00	0.00 0.00	0.00 0.00
11,600.00	0.00	0.00	11,462.72	18.56	-255.07	-13.69	0.00	0.00	0.00
1									
11,700.00 11,800.00	0.00 0.00	0.00 0.00	11,682.72 11,782.72	18.56 18.56	-255.07 -255.07	-13.69 -13.69	0.00 0.00	0.00 0.00	0.00 0.00
11,900.00	0.00	0.00	11,882.72	18.56	-255.07	-13.69	0.00	0.00	0.00
11,994.32	0.00	0.00	11,977.04	18.56	-255.07	-13.69	0.00	0.00	0.00
12,000.00	0.57	179.74	11,982.72	18.53	-255.07	-13.67	10.00	10.00	0.00
12,100.00	10.57	179.74	12,082.12	8.84	-255.02	-3.98	10.00	10.00	0.00
12,200.00	20.57	179.74	12,178.33	-17.96	-254.90	22.82	10.00	10.00	0.00
12,300.00	30.57	179.74	12,268.42	-61.06	-254.71	65.91	10.00	10.00	0.00
12,400.00	40.57	179.74	12,349.66	-119.16	-254.45	123.99	10.00	10.00	0.00
12,500.00	50.57	179.74	12,419.58	-190.47	-254.13	195.29	10.00	10.00	0.00
12,600.00	60.57	179.74	12,476.05	-272.85	-253.76	277.64	10.00	10.00	0.00
12,700.00	70.57	179.74	12,517.36	-363.78	-253.36	368.54	10.00	10.00	0.00
12,800.00	80.57	179.74	12,542.25	-460.50	-252.92	465.24	10.00	10.00	0.00
12,894.32	90.00	179.74	12,550.00	-554.39	-252.50	559.11	10.00	10.00	0.00
12,900.00	90.00	179.74	12,550.00	-560.07	-252.48	564.78	0.00	0.00	0.00
13,000.00	90.00	179.74	12,550.00	-660.07	-252.03	664.76	0.00	0.00	0.00
13,100.00	90.00	179.74	12,550.00	-760.07	-251.58	764.73	0.00	0.00	0.00
13,200.00	90.00	179.74	12,550.00	-860.07	-251.13	864.70	0.00	0.00	0.00
13,300.00 13,400.00	90.00 90.00	179.74 179.74	12,550.00 12,550.00	-960.07 -1,060.07	-250.69 -250.24	964.67 1,064.65	0.00 0.00	0.00 0.00	0.00 0.00
13,500.00	90.00	179.74	12,550.00	-1,160.06	-249.79	1,164.62	0.00	0.00	0.00
13,600.00 13,700.00	90.00 90.00	179.74 179.74	12,550.00 12,550.00	-1,260.06 -1,360.06	-249.34 -248.90	1,264.59 1,364.56	0.00 0.00	0.00 0.00	0.00 0.00
13,700.00	90.00	179.74	12,550.00	-1,460.06	-248.45	1,364.56	0.00	0.00	0.00
13,900.00	90.00	179.74	12,550.00	-1,560.06	-248.00	1,564.51	0.00	0.00	0.00
14,000.00	90.00	179.74	12,550.00	-1,660.06	-247.55	1,664.48	0.00	0.00	0.00
14,100.00	90.00	179.74	12,550.00	-1,760.06	-247.55 -247.11	1,764.45	0.00	0.00	0.00
14,100.00	90.00	179.74	12,550.00	-1,860.06	-247.11	1,864.42	0.00	0.00	0.00
14,300.00	90.00	179.74	12,550.00	-1,960.06	-246.21	1,964.40	0.00	0.00	0.00
14,400.00	90.00	179.74	12,550.00	-2,060.06	-245.77	2,064.37	0.00	0.00	0.00
14,500.00	90.00	179.74	12,550.00	-2,160.05	-245.32	2,164.34	0.00	0.00	0.00
14,600.00	90.00	179.74	12,550.00	-2,260.05	-244.87	2,264.31	0.00	0.00	0.00
14,700.00	90.00	179.74	12,550.00	-2,360.05	-244.42	2,364.28	0.00	0.00	0.00
14,800.00	90.00	179.74	12,550.00	-2,460.05	-243.98	2,464.26	0.00	0.00	0.00
14,900.00	90.00	179.74	12,550.00	-2,560.05	-243.53	2,564.23	0.00	0.00	0.00
15,000.00	90.00	179.74	12,550.00	-2,660.05	-243.08	2,664.20	0.00	0.00	0.00
15,100.00	90.00	179.74	12,550.00	-2,760.05	-242.63	2,764.17	0.00	0.00	0.00
15,200.00	90.00	179.74	12,550.00	-2,860.05	-242.19	2,864.15	0.00	0.00	0.00
15,300.00	90.00	179.74 170.74	12,550.00	-2,960.05	-241.74	2,964.12	0.00	0.00	0.00
15,400.00	90.00	179.74	12,550.00	-3,060.05	-241.29	3,064.09	0.00	0.00	0.00
15,500.00	90.00	179.74	12,550.00	-3,160.04	-240.84	3,164.06	0.00	0.00	0.00
15,600.00	90.00	179.74	12,550.00	-3,260.04	-240.40	3,264.04	0.00	0.00	0.00
15,700.00	90.00	179.74	12,550.00	-3,360.04	-239.95	3,364.01	0.00	0.00	0.00
15,800.00 15,900.00	90.00 90.00	179.74 179.74	12,550.00 12,550.00	-3,460.04 -3,560.04	-239.50 -239.05	3,463.98 3,563.95	0.00 0.00	0.00 0.00	0.00 0.00
10,300.00	30.00	113.14	12,000.00	0,000.04	200.00		0.00	0.00	0.00

Planning Report

Database: Company: Project:

Site:

HOPSPP

ENGINEERING DESIGNS

PRD NM DIRECTIONAL PLANS (NAD 1983)

Chuck Smith MDP1 8_17

Well: Chuck Smith MDP1 8_17 Fed Com 32H

Wellbore: Wellbore #1

Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Chuck Smith MDP1 8_17 Fed Com 32H

RKB=25' @ 3503.00ft RKB=25' @ 3503.00ft

Grid

Design:	Permitting Pla	Permitting Plan										
Planned Survey												
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)			
16,000.00	90.00	179.74	12,550.00	-3,660.04	-238.61	3,663.92	0.00	0.00	0.00			
16,100.00	90.00	179.74	12,550.00	-3,760.04	-238.16	3,763.90	0.00	0.00	0.00			
16,200.00	90.00	179.74	12,550.00	-3,860.04	-237.71	3,863.87	0.00	0.00	0.00			
16,300.00	90.00	179.74	12,550.00	-3,960.04	-237.26	3,963.84	0.00	0.00	0.00			
16,400.00	90.00	179.74	12,550.00	-4,060.04	-236.82	4,063.81	0.00	0.00	0.00			
16,500.00	90.00	179.74	12,550.00	-4,160.03	-236.37	4,163.79	0.00	0.00	0.00			
16,600.00	90.00	179.74	12,550.00	-4,260.03	-235.92	4,263.76	0.00	0.00	0.00			
16,700.00	90.00	179.74	12,550.00	-4,360.03	-235.47	4,363.73	0.00	0.00	0.00			
16,800.00	90.00	179.74	12,550.00	-4,460.03	-235.03	4,463.70	0.00	0.00	0.00			
16,900.00	90.00	179.74	12,550.00	-4,560.03	-234.58	4,563.67	0.00	0.00	0.00			
17,000.00 17,100.00 17,200.00 17,300.00 17,400.00 17,500.00	90.00 90.00 90.00 90.00 90.00	179.74 179.74 179.74 179.74 179.74	12,550.00 12,550.00 12,550.00 12,550.00 12,550.00 12,550.00	-4,660.03 -4,760.03 -4,860.03 -4,960.03 -5,060.03 -5,160.02	-234.13 -233.68 -233.24 -232.79 -232.34 -231.89	4,663.65 4,763.62 4,863.59 4,963.56 5,063.54 5,163.51	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00			
17,600.00	90.00	179.74	12,550.00	-5,260.02	-231.45	5,263.48	0.00	0.00	0.00			
17,700.00	90.00	179.74	12,550.00	-5,360.02	-231.00	5,363.45	0.00	0.00	0.00			
17,800.00	90.00	179.74	12,550.00	-5,460.02	-230.55	5,463.43	0.00	0.00	0.00			
17,900.00	90.00	179.74	12,550.00	-5,560.02	-230.10	5,563.40	0.00	0.00	0.00			
18,000.00	90.00	179.74	12,550.00	-5,660.02	-229.66	5,663.37	0.00	0.00	0.00			
18,100.00 18,200.00 18,300.00 18,400.00 18,500.00	90.00 90.00 90.00 90.00	179.74 179.74 179.74 179.74 179.74	12,550.00 12,550.00 12,550.00 12,550.00 12,550.00	-5,760.02 -5,860.02 -5,960.02 -6,060.02 -6,160.01	-229.21 -228.76 -228.31 -227.87	5,763.34 5,863.31 5,963.29 6,063.26 6,163.23	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00			
18,600.00 18,700.00 18,800.00 18,900.00	90.00 90.00 90.00 90.00	179.74 179.74 179.74 179.74 179.74	12,550.00 12,550.00 12,550.00 12,550.00 12,550.00	-6,260.01 -6,360.01 -6,460.01 -6,560.01	-226.97 -226.52 -226.08 -225.63 -225.18	6,263.20 6,363.18 6,463.15 6,563.12 6,663.09	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00			
19,100.00	90.00	179.74	12,550.00	-6,760.01	-224.74	6,763.07	0.00	0.00	0.00			
19,200.00	90.00	179.74	12,550.00	-6,860.01	-224.29	6,863.04	0.00	0.00	0.00			
19,300.00	90.00	179.74	12,550.00	-6,960.01	-223.84	6,963.01	0.00	0.00	0.00			
19,400.00	90.00	179.74	12,550.00	-7,060.01	-223.39	7,062.98	0.00	0.00	0.00			
19,500.00	90.00	179.74	12,550.00	-7,160.00	-222.95	7,162.95	0.00	0.00	0.00			
19,600.00	90.00	179.74	12,550.00	-7,260.00	-222.50	7,262.93	0.00	0.00	0.00			
19,700.00	90.00	179.74	12,550.00	-7,360.00	-222.05	7,362.90	0.00	0.00	0.00			
19,800.00	90.00	179.74	12,550.00	-7,460.00	-221.60	7,462.87	0.00	0.00	0.00			
19,900.00	90.00	179.74	12,550.00	-7,560.00	-221.16	7,562.84	0.00	0.00	0.00			
20,000.00	90.00	179.74	12,550.00	-7,660.00	-220.71	7,662.82	0.00	0.00	0.00			
20,100.00	90.00	179.74	12,550.00	-7,760.00	-220.26	7,762.79	0.00	0.00	0.00			
20,200.00	90.00	179.74	12,550.00	-7,860.00	-219.81	7,862.76	0.00	0.00	0.00			
20,300.00	90.00	179.74	12,550.00	-7,960.00	-219.37	7,962.73	0.00	0.00	0.00			
20,400.00	90.00	179.74	12,550.00	-8,060.00	-218.92	8,062.70	0.00	0.00	0.00			
20,500.00	90.00	179.74	12,550.00	-8,159.99	-218.47	8,162.68	0.00	0.00	0.00			
20,600.00	90.00	179.74	12,550.00	-8,259.99	-218.02	8,262.65	0.00	0.00	0.00			
20,700.00	90.00	179.74	12,550.00	-8,359.99	-217.58	8,362.62	0.00	0.00	0.00			
20,800.00	90.00	179.74	12,550.00	-8,459.99	-217.13	8,462.59	0.00	0.00	0.00			
20,900.00	90.00	179.74	12,550.00	-8,559.99	-216.68	8,562.57	0.00	0.00	0.00			
21,000.00	90.00	179.74	12,550.00	-8,659.99	-216.23	8,662.54	0.00	0.00	0.00			
21,100.00	90.00	179.74	12,550.00	-8,759.99	-215.79	8,762.51	0.00	0.00	0.00			
21,200.00	90.00	179.74	12,550.00	-8,859.99	-215.34	8,862.48	0.00	0.00	0.00			
21,300.00	90.00	179.74	12,550.00	-8,959.99	-214.89	8,962.46	0.00	0.00	0.00			
21,400.00	90.00	179.74	12,550.00	-9,059.99	-214.44	9,062.43	0.00	0.00	0.00			

Planning Report

Database: Company: HOPSPP

ENGINEERING DESIGNS

Project: PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Chuck Smith MDP1 8_17

Well: Chuck Smith MDP1 8_17 Fed Com 32H

Wellbore: Wellbore #1

Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference:

MD Reference: North Reference:

Survey Calculation Method:

Well Chuck Smith MDP1 8_17 Fed Com 32H

RKB=25' @ 3503.00ft

RKB=25' @ 3503.00ft Grid

anned Survey									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
21,500.00	90.00	179.74	12,550.00	-9,159.98	-214.00	9,162.40	0.00	0.00	0.00
21,600.00	90.00	179.74	12,550.00	-9,259.98	-213.55	9,262.37	0.00	0.00	0.00
21,700.00	90.00	179.74	12,550.00	-9,359.98	-213.10	9,362.34	0.00	0.00	0.00
21,800.00	90.00	179.74	12,550.00	-9,459.98	-212.65	9,462.32	0.00	0.00	0.00
21,900.00	90.00	179.74	12,550.00	-9,559.98	-212.21	9,562.29	0.00	0.00	0.00
22,000.00	90.00	179.74	12,550.00	-9,659.98	-211.76	9,662.26	0.00	0.00	0.00
22,100.00	90.00	179.74	12,550.00	-9,759.98	-211.31	9,762.23	0.00	0.00	0.00
22,200.00	90.00	179.74	12,550.00	-9,859.98	-210.86	9,862.21	0.00	0.00	0.00
22,300.00	90.00	179.74	12,550.00	-9,959.98	-210.42	9,962.18	0.00	0.00	0.00
22,400.00	90.00	179.74	12,550.00	-10,059.98	-209.97	10,062.15	0.00	0.00	0.00
22,500.00	90.00	179.74	12,550.00	-10,159.97	-209.52	10,162.12	0.00	0.00	0.00
22,600.00	90.00	179.74	12,550.00	-10,259.97	-209.07	10,262.10	0.00	0.00	0.00
22,700.00	90.00	179.74	12,550.00	-10,359.97	-208.63	10,362.07	0.00	0.00	0.00
22,800.00	90.00	179.74	12,550.00	-10,459.97	-208.18	10,462.04	0.00	0.00	0.00
22,900.00	90.00	179.74	12,550.00	-10,559.97	-207.73	10,562.01	0.00	0.00	0.00
23,000.00	90.00	179.74	12,550.00	-10,659.97	-207.28	10,661.98	0.00	0.00	0.00
23,100.00	90.00	179.74	12,550.00	-10,759.97	-206.84	10,761.96	0.00	0.00	0.00
23,168.04	90.00	179.74	12,550.00	-10,828.00	-206.53	10,829.97	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP (Chuck Smith - plan misses targe - Point	0.00 t center by 25	0.00 55.74ft at 0.0	0.00 00ft MD (0.0	18.56 00 TVD, 0.00	-255.07 N, 0.00 E)	451,424.85	704,631.71	32.239939	-103.805181
FTP (Chuck Smith - plan misses targe - Point	0.00 t center by 25		12,550.00 25.29ft MD	-381.46 (12525.25 T\	-253.86 /D, -387.81 N,	451,024.85 , -253.25 E)	704,632.92	32.238840	-103.805183
PBHL (Chuck Smith - plan hits target ce - Point	0.00 nter	0.00	12,550.00	-10,828.00	-206.53	440,578.96	704,680.24	32.210125	-103.805196

Planning Report

Database: HOPSPP

Company: ENGINEERING DESIGNS

Project: PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Chuck Smith MDP1 8_17

Well: Chuck Smith MDP1 8_17 Fed Com 32H

Wellbore: Wellbore #1

Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Chuck Smith MDP1 8_17 Fed Com 32H

RKB=25' @ 3503.00ft RKB=25' @ 3503.00ft

Grid

Formations						
	Measured Depth (ft)	Vertical Depth (ft)	Name	Lithology	Dip (°)	Dip Direction (°)
	621.00	621.00	RUSTLER			
	982.00	982.00	SALADO			
	2,817.00	2,817.00	CASTILE			
	4,233.00	4,233.00	DELAWARE			
	4,254.00	4,254.00	BELL CANYON			
	5,226.03	5,222.00	CHERRY CANYON			
	6,448.11	6,431.00	BRUSHY CANYON			
	8,127.28	8,110.00	BONE SPRING			
	9,159.28	9,142.00	BONE SPRING 1ST			
	9,812.28	9,795.00	BONE SPRING 2ND			
	11,059.28	11,042.00	BONE SPRING 3RD			
	11,511.28	11,494.00	WOLFCAMP			
	11,686.28	11,669.00	WOLFCAMP A			

Plan Annotations					
Measured	Vertical	Local Coordinates			
Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment	
4,300.00	4,300.00	0.00	0.00	Build 1°/100'	
5,299.75	5,294.68	6.31	-86.77	Hold 10° Tangent	
5,770.57	5,758.36	12.25	-168.29	Drop 1°/100'	
6,770.32	6,753.04	18.56	-255.07	Hold Vertical	
11,994.32	11,977.04	18.56	-255.07	KOP, Build 10°/100'	
12,894.32	12,550.00	-554.39	-252.50	Landing Point	
23,168.04	12,550.00	-10,828.00	-206.53	TD at 23168.04' MD	

Oxy USA Inc. - Blanket Design Pad Document

OXY - Blanket Design A

Pad Name: SNDDNS_24S31E_0501 **SHL:** 280' FSL 1215' FWL, Sec 05,T24S-R31E

Oxy requests for the bellow wells to be approved for the two designs listed in the Blanket Design document (Blanket Design A – OXY – 3S Slim v7.) The MDs and TVDs for all intervals are within the boundary conditions. The max inclination and DLS are also within the boundary conditions (directional plans attached separately for review.)

1. Blanket Design - Wells

Well Name	API#	Surf	face	Interm	ediate	Production	
well Name	AFI#	MD	TVD	MD	TVD	MD	TVD
CHUCK SMITH MDP1 8_17 FED COM 31H	30-015-55468	915	915	11922	11850	23086	12400
CHUCK SMITH MDP1 8_17 FED COM 32H	30-015-55469	922	922	11867	11850	23168	12550

2. Review Criteria Table

	Y or N
Is casing new? If used, attach certification as required in 43 CFR 3160	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y
Does the above casing design meet or exceed BLM's minimum standards?	Y
If not provide justification (loading assumptions, casing design criteria).	1
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching	Y
the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	Y
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	Y
500' into previous casing?	1
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
	IN
If yes, are there three strings cemented to surface?	

3. Geologic Formations

Formation	MD-RKB (ft)	TVD-RKB (ft)	Expected Fluids	
Rustler	611	611		
Salado	975	975	Salt	
Castile	2843	2843	Salt	
Delaware	4235	4235	Oil/Gas/Brine	
Bell Canyon	4257	4257	Oil/Gas/Brine	
Cherry Canyon	5217	5213	Oil/Gas/Brine	
Brushy Canyon	6460	6437	Losses	
Bone Spring	8151	8103	Oil/Gas	
Bone Spring 1st	9198	9134	Oil/Gas	
Bone Spring 2nd	9868	9796	Oil/Gas	
Bone Spring 3rd	11115	11043	Oil/Gas	
Wolfcamp	11567	11495	Oil/Gas	
Penn			Oil/Gas	
Strawn			Oil/Gas	

4. Cementing Program (SOPA Only)

Sec	tion	Stage	Slurry:	Sacks	Yield (ft^3/ft)	Density (lb/gal)	Excess:	тос	Placement	Description
Sur	face	1	Surface - Tail	765	1.33	14.8	100%	-	Circulate	Class C+Accel.
In	nt.	1	Intermediate 1S - Tail	700	1.68	13.2	5%	6,710	Circulate	Class C+Ret., Disper.
In	nt.	2	Intermediate 2S - Tail BH	1035	1.71	13.3	25%	-	Bradenhead	Class C+Accel.
Pro	od.	1	Production - Tail	659	1.84	13.3	25%	11,422	Circulate	Class C+Ret.

Received by OCD: 1/23/2025 11:16:01 AM

Page 27 of 86

Oxy USA Inc. - CHUCK SMITH MDP1 8_17 FED COM 32H Drill Plan

1. Geologic Formations

TVD of Target (ft):	12550	Pilot Hole Depth (ft):	
Total Measured Depth (ft):	23168	Deepest Expected Fresh Water (ft):	621

Delaware Basin

Formation	MD-RKB (ft)	TVD-RKB (ft)	Expected Fluids
Rustler	621	621	
Salado	982	982	Salt
Castile	2817	2817	Salt
Delaware	4233	4233	Oil/Gas/Brine
Bell Canyon	4254	4254	Oil/Gas/Brine
Cherry Canyon	5226	5222	Oil/Gas/Brine
Brushy Canyon	6448	6431	Losses
Bone Spring	8127	8110	Oil/Gas
Bone Spring 1st	9159	9142	Oil/Gas
Bone Spring 2nd	9812	9795	Oil/Gas
Bone Spring 3rd	11059	11042	Oil/Gas
Wolfcamp	11511	11494	Oil/Gas
Penn			Oil/Gas
Strawn			Oil/Gas

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

		MD		TVD					
	Hole	From	То	From	То	Csg.	Csg Wt.		
Section	Size (in)	(ft)	(ft)	(ft)	(ft)	OD (in)	(ppf)	Grade	Conn.
Surface	14.75	0	922	0	922	10.75	45.5	J-55	ВТС
Intermediate	9.875	0	11867	0	11850	7.625	29.7	L-80 HC	ВТС
Production	6.75	0	23168	0	12550	5.5	23	P-110	Sprint-SF

All casing strings will be tested in accordance with 43 CFR part 3170 Subpart 3172

Page 28 of 86

Occidental - Permian New Mexico CHUCK SMITH MDP1 8_17 FED COM 32H

All Casing SF Values will meet or exceed								
those below								
SF	SF SF Body SF Join							
Collapse	Burst	Tension	Tension					
1.00	1.100	1.4	1.4					

	Y or N
Is casing new? If used, attach certification as required in 43 CFR 3160	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y
Does the above casing design meet or exceed BLM's minimum standards?	Y
If not provide justification (loading assumptions, casing design criteria).	1
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching	Y
the collapse pressure rating of the casing?	I
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	Y
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	Y
500' into previous casing?	I
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there strings cemented to surface?	

3. Cementing Program

Section Stag		Slurry:	Sacks	Yield (ft^3/ft)	Density (lb/gal)	Excess:	тос	Placement	Description	
Surface	1	Surface - Tail	771	1.33	14.8	100%	-	Circulate	Class C+Accel.	
Int.	1	Intermediate 1S - Tail	694	1.68	13.2	5%	6,698	Circulate	Class C+Ret., Disper.	
Int.	2	Intermediate 2S - Tail BH	1033	1.71	13.3	25%	-	Bradenhead	Class C+Accel.	
Prod.	1	Production - Tail	666	1.84	13.3	25%	11,367	Circulate	Class C+Ret.	

Offline Cementing Request

Oxy requests a variance to cement the 9.625" and/or 7.625" intermediate casing strings offline in accordance to the approved variance, EC Tran 461365. Please see Offline Cementing Variance attachment for further details.

Bradenhead CBL Request

Oxy requests permission to adjust the CBL requirement after bradenhead cement jobs, on 7-5/8" intermediate casings, as per the agreement reached in the OXY/BLM meeting on September 5, 2019. Please see Bradenhead CBL Variance attachment for further details.

4. Pressure Control Equipment

BOP installed and tested before drilling Size? which hole?		Min. Required WP			✓	Tested to:	Deepest TVD Depth (ft) per Section:
		5M		Annular	✓	70% of working pressure	
				Blind Ram	✓		
9.875" Hole	13-5/8"	 5M	Pipe Ram			250 psi / 5000 psi	11850
		Sivi	Double Ram		✓	230 psi / 3000 psi	
			Other*				
		5M		Annular	✓	100% of working pressure	
				Blind Ram			12550
6.75" Hole	13-5/8"	10M	Pipe Ram			250 psi / 10000 psi	
I				Double Ram		200 μ31 / 10000 μ31	
I			Other*				

*Specify if additional ram is utilized

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per 43 CFR part 3170 Subpart 3172 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke

5M Annular BOP Request

Per BLM's Memorandum No. NM-2017-008: *Decision and Rationale for a Variance Allowing the Use of a 5M Annular Preventer with a 10M BOP Stack,* Oxy requests to employ a 5M annular with a 10M BOPE stack in the pilot and lateral sections of the well and will ensure that two barriers to flow are maintained at all times. Please see Annular BOP Variance attachment for further details.

Page 30 of 86

Formation integrity test will be performed per 43 CFR part 3170 Subpart 3172.

On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with 43 CFR part 3170 Subpart 3172.

A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.

Y Are anchors required by manufacturer?

A multibowl or a unionized multibowl wellhead system will be employed. The wellhead and connection to the BOPE will meet all API 6A requirements. The BOP will be tested per 43 CFR part 3170 Subpart 3172 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015.

See attached schematics.

BOP Break Testing Request

Oxy requests permission to adjust the BOP break testing requirements as per the agreement reached in the OXY/BLM meeting on September 5, 2019. Please see BOP Break Testing Variance attachment for further details.

Oxy will use Cameron ADAPT wellhead system that uses an OEC top flange connection. This connection has been fully vetted and verified by API to Spec 6A and carries an API monogram.

5. Mud Program

Section	Depth - MD		Depth - TVD		Tyme	Weight	Viscosity	Water
Section	From (ft)	To (ft)	From (ft)	To (ft)	Type	(ppg)	Viscosity	Loss
Surface	0	922	0	922	Water-Based Mud	8.6 - 8.8	40-60	N/C
Intermediate	922	11867	922	11850	Saturated Brine-Based or Oil-Based Mud	8.0 - 10.0	35-45	N/C
Production	11867	23168	11850	12550	Water-Based or Oil- Based Mud	9.5 - 13.5	38-50	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls,

What will be used to monitor the	DVT/NAD Totas/Visual Manitoring	
loss or gain of fluid?	PVT/MD Totco/Visual Monitoring	

6. Logging and Testing Procedures

Logg	Logging, Coring and Testing.							
Vac	Will run GR from TD to surface (horizontal well – vertical portion of hole).							
Yes	Stated logs run will be in the Completion Report and submitted to the BLM.							
No	Logs are planned based on well control or offset log information.							
No	Drill stem test? If yes, explain							
No	Coring? If yes, explain							

Addi	tional logs planned	Interval
No	Resistivity	
No	Density	
Yes	CBL	Production string
Yes	Mud log	Bone Spring – TD
No	PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	8811 psi
Abnormal Temperature	No
BH Temperature at deepest TVD	181°F

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of 43 CFR part 3170 Subpart 3172. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N H2S is present

Y H2S Plan attached

8. Other facets of operation

Will the well be drilled with a walking/skidding operation? If yes, describe.	
We plan to drill the 2 well pad in batch by section: all surface sections, intermediate	Vac
sections and production sections. The wellhead will be secured with a night cap whenever	Yes
the rig is not over the well.	
Will more than one drilling rig be used for drilling operations? If yes, describe.	
Oxy requests the option to contract a Surface Rig to drill, set surface casing, and cement for	
this well. If the timing between rigs is such that Oxy would not be able to preset surface,	Yes
the Primary Rig will MIRU and drill the well in its entirety per the APD. Please see the	
attached document for information on the spudder rig.	

Total Estimated Cuttings Volume: 1732 bbls

Oxy Bulk Design - Casing Design "A"

1. Casing Program

The designs and associated details listed in this document are the "worst case scenario" boundaries for design safety factors.

Location and lithology have NOT been accounted for in these designs; however, the designs are NOT valid for wells within KPLA Boundaries or Capitan Reef areas. The specific well details will be based on the APD/Sundry package and the information listed in the COA.

The mud program listed below will remain the same between each design variation.

Hole will be full during casing run for well control and tensile SF.

Casing will be kept at least half full during run for these designs to meet BLM collapse SF requirement.

Design Variation "A1"

		I	MD	T	VD				
Section	Hole Size (in)	From (ft)	To (ft)	From (ft)	To (ft)	Csg. OD (in)	Csg Wt. (ppf)	Grade	Conn.
Surface	14.75	0	1200	0	1200	10.75	45.5	J-55	ВТС
Intermediate	9.875	0	13111*	0	12775*	7.625	26.4	L-80 HC	BTC Axis HT
Production	6.75	0	23361	0	12775	5.5	20	P-110	Wedge 461 Sprint SF DWC/C-HT-IS

^{*}Curve could be in intermediate or production section

Design Variation "A2" - Option to Pivot to Design "B" for Contingency 4S

			MD	-	TVD				
Section	Hole Size (in)	From (ft)	To (ft)	From (ft)	To (ft)	Csg. OD (in)	Csg Wt. (ppf)	Grade	Conn.
Surface	17.5	0	1200	0	1200	13.375	54.5	J-55	ВТС
Intermediate	12.25†	0	13111*	0	12775*	7.625	26.4	L-80 HC	BTC Axis HT
Production	6.75	0	23361	0	12775	5.5	20	P-110	Wedge 461 Sprint SF DWC/C-HT-IS

^{*}Curve could be in intermediate or production section

All casing strings will be tested in accordance with 43 CFR part 3170 Subpart 3172

All Casing SF Values will meet or						
exceed those below						
SF	SF Body SF Joint S					
J I	31	Douy 31	JUILL 3F			
Collapse	-	Tension				

[†]If 4S Contingency is not required, Oxy requests permission to transition from 12.25" to 9.875" Intermediate at some point during the hole section. Cement volumes will be updated on C103 submission.

Oxy Bulk Design - Casing Design "A"

§Annular Clearance Variance Request

As per the agreement reached in the Oxy/BLM face-to-face meeting on Feb 22, 2018, Oxy requests permission to allow deviation from the 0.422" annular clearance requirement. Please see Annular Clearance Variance attachment for further details.

§Annular Clearance Variance Request may not apply to all connections used or presented.

2. Trajectory / Boundary Conditions

	MC)	TV	D		
Section	Deepest KOP (ft)	End Build (ft)	Deepest KOP (ft)	End Build (ft)	Max. Angle	Max. Planned DLS
Surface	0	1200	0	1200	5°	1°/100 ft
Intermediate	5000 (inside Cherry Canyon)	6500	4980	6390	20°	2°/100 ft
	12211	13111	12202	12775	92°‡	12°/100 ft ‡
Production	12211 (~100' MD past ICP)	13111	12202	12775	92°‡	12°/100 ft ‡

[‡] Applies only when intermediate casing depth is deepened to landing point to match TVD of production in some areas where required to accommodate higher MWs in depleted areas.

Oxy has reviewed casing burst, collapse, and axial loadcases in Landmark StressCheck with the boundary conditions in the table above which satisfies Oxy and BLM minimum design criteria. Triaxial plots for each casing string is shown in Section 7 and intermediate load case inputs are shown in Section 8.

Oxy Bulk Design - Casing Design "A"

3. Cementing Program

NOTE: Blanket design is for technical review only. The cement volumes will be adjusted to ensure cement tops meet BLM requirements.

Design Variation "A1"

Section	Stage	Slurry:	Sacks	Yield (ft^3/ft)	Density (lb/gal)	Excess:	тос	Placement	Description
Surface	1	Surface - Tail	819	1.33	14.8	100%	1	Circulate	Class C+Accel.
Int.	1	Intermediate 1S - Tail	658	1.68	13.2	5%	7,206	Circulate	Class C+Ret., Disper.
Int.	2	Intermediate 2S - Tail BH	1111	1.71	13.3	25%		Bradenhead	Class C+Accel.
Prod.	1	Production - Tail	665	1.84	13.3	25%	11,611	Circulate	Class C+Ret.
							500' inside	_	
Prod.	2*	Production - Tail BH*	TBD	1.84	13.3	50%	prev csg	Circulate	Class C+Ret.

^{*}Only applies in scenario where planned single stage job TOC is not 500' above previous shoe as designed/programmed requiring bradenhead 2nd stage to meet requirements

Design Variation "A2"

Section	Stage	Slurry:	Sacks	Yield (ft^3/ft)	Density (lb/gal)	Excess:	тос	Placement	Description
Surface	1	Surface - Tail	1023	1.33	14.8	100%	-	Circulate	Class C+Accel.
Int.	1	Intermediate 1S - Tail	658	1.68	13.2	5%	7,206	Circulate	Class C+Ret., Disper.
Int.	2	Intermediate 2S - Tail BH	1293	1.71	13.3	25%	-	Bradenhead	Class C+Accel.
Prod.	1	Production - Tail	665	1.84	13.3	25%	11,611	Circulate	Class C+Ret.
Prod.	2*	Production - Tail BH*	TBD	1.84	13.3	50%	500' inside prev csg	Circulate	Class C+Ret.

^{*}Only applies in scenario where planned single stage job TOC is not 500' above previous shoe as designed/programmed requiring bradenhead 2nd stage to meet requirements

Offline Cementing Request

Oxy requests a variance to cement the 9.625" and/or 7.625" intermediate casing strings offline in accordance to the approved variance, EC Tran 461365. Please see Offline Cementing Variance attachment for further details.

Bradenhead CBL Request

Oxy requests permission to adjust the CBL requirement after bradenhead cement jobs, on 7-5/8" intermediate casings, as per the agreement reached in the OXY/BLM meeting on September 5, 2019. Please see Bradenhead CBL Variance attachment for further details.

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP		Туре	1	Tested to:	Deepest TVD Depth (ft) per Section:
		5M		Annular	✓	70% of working pressure	
				Blind Ram	✓		12775**
9.875" Hole	13-5/8"	5M		Pipe Ram		250 psi / 5000 psi	
		Sivi	Double Ram ✓				
			Other*				
		5M		Annular	✓	100% of working pressure	
			Blind Ram		✓		
6.75" Hole	13-5/8"	101/		Pipe Ram		250 psi / 10000 psi	12775
		TOIVI		Double Ram		200 psi / 10000 psi	
			Other*				

^{*}Specify if additional ram is utilized

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per 43 CFR part 3170 Subpart 3172 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

5M Annular BOP Request

Per BLM's Memorandum No. NM-2017-008: *Decision and Rationale for a Variance Allowing the Use of a 5M Annular Preventer with a 10M BOP Stack*, Oxy requests to employ a 5M annular with a 10M BOPE stack in the pilot and lateral sections of the well and will ensure that two barriers to flow are

^{**}Curve could be in intermediate or production section

Formation integrity test will be performed per 43 CFR part 3170 Subpart 3172.

On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with 43 CFR part 3170 Subpart 3172.

A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. Coflex hoses are in compliance with API 16C and meets inspection and testing requirements. See attached for specs and hydrostatic test chart.

Υ

Are anchors required by manufacturer?

A multibowl or a unionized multibowl wellhead system will be employed. The wellhead and connection to the BOPE will meet all API 6A requirements. The BOP will be tested per 43 CFR part 3170 Subpart 3172 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015.

See attached Schematics.

BOP Break Testing Request

Oxy requests permission to adjust the BOP break testing requirements as per the agreement reached in the OXY/BLM meeting on September 5, 2019. Please see BOP Break Testing Variance attachment for further details.

Hammer Union Variance

Oxy requests permission for hammer unions behind the choke to be routed to the gas buster. The hammer unions will not be subject to wellbore pressure in compliance with API STD 53.

Oxy will use Cameron ADAPT wellhead system that uses an OEC top flange connection. This connection has been fully vetted and verified by API to Spec 6A and carries an API monogram.

5. Mud Program & Drilling Conditions

Continu	Depth - MD Depth - TVD		Weight	V ¹ • • • • • • • • • • • • • • • • • • •	Water			
Section	From (ft)	To (ft)	From (ft)	To (ft)	Туре	(ppg)	Viscosity	Loss
Surface	0	1200	0	1200	Water-Based Mud	8.6 - 8.8	40-60	N/C
Intermediate	1200	13111*	1200	12775*	Saturated Brine-Based or Oil-Based Mud	8.0 - 10.0	35-45	N/C
Production	13111	23361	12775	12775	Water-Based or Oil- Based Mud	9.5 - 13.5	38-50	N/C

^{*}Curve could be in intermediate or production section*

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products:

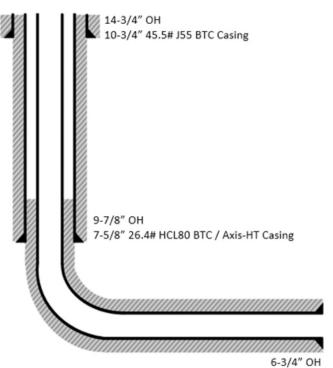
Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. Oxy will use a closed mud system.

Drilling Blind Request

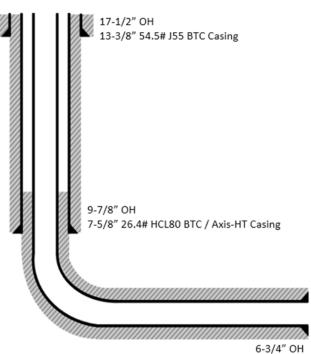
In the event total losses are encountered in the intermediate section, Oxy requests permission to drill blind due to depleted formations where risk of hydrocarbon kicks are unlikely.

- Oxy will first attempt to cure losses before proceeding with drilling blind
- Drilling blind will only be allowed in the Castille and formations below
- While drilling blind, will monitor backside by filling-up on connections and utilize gas monitors
- Depths at which losses occurred and attempt to cure losses with relevant details (LCM sweep info, etc.) will be documented in the drillers log and Subsequent Reports to the BLM.
- If a well control event (hydrocarbon kick) occurs while drilling blind, the BLM will be notified after the well is secured and returned to static.

What will be used to monitor the	PVT/MD Totco/Visual Monitoring
loss or gain of fluid?	F V 1/1VID TOLCO/ VISUAL IVIOLITOTING


Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation.

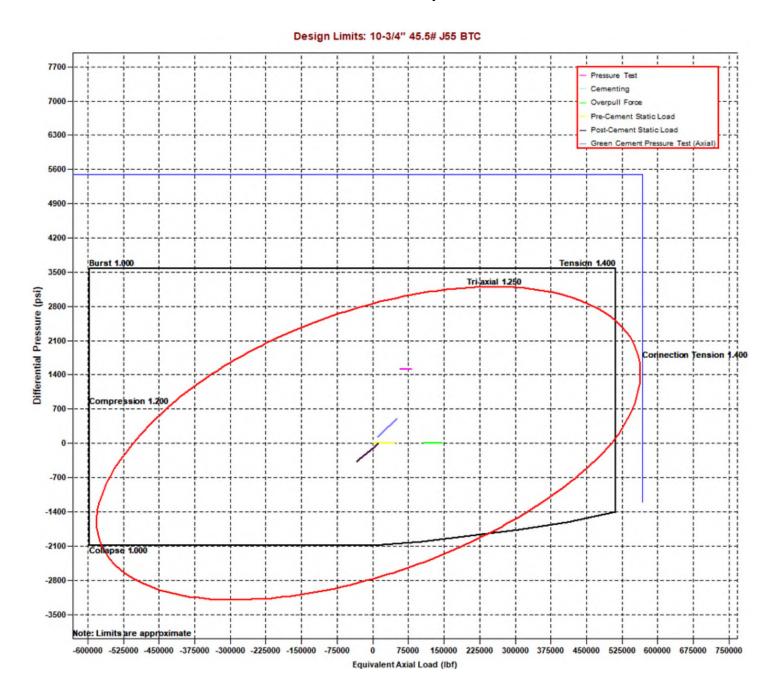
6. Wellbore Diagram(s)


Design Variation "A1"

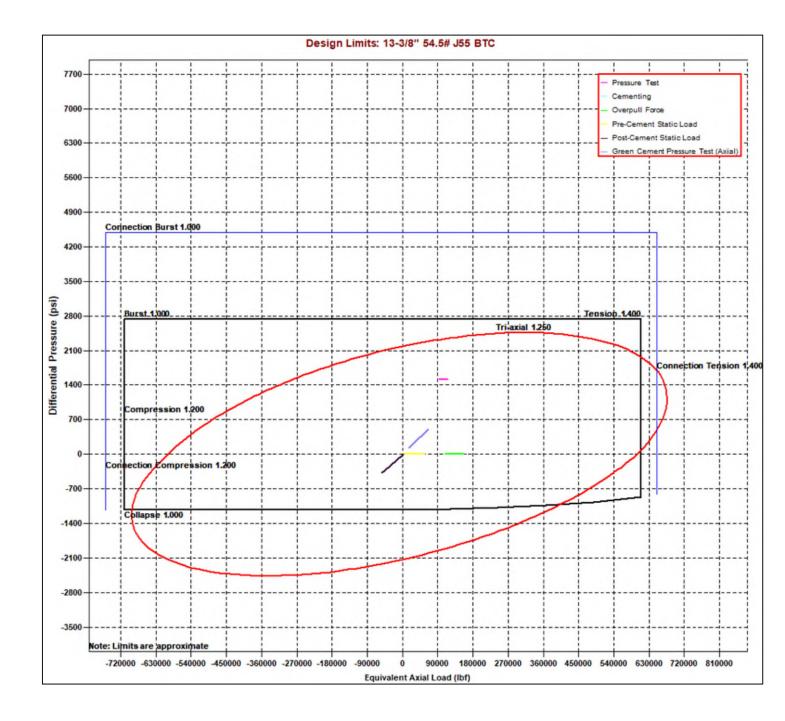
5-1/2" 20# P110 Wedge 461 / Sprint SF / DWC/C-HT-IS Casing

TOC @ 500' Above Prev. CSG

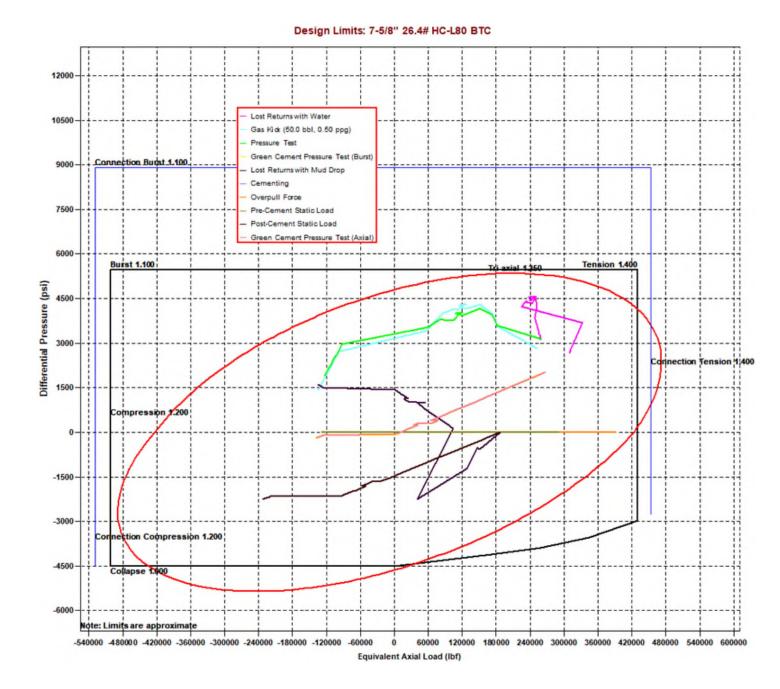
Design Variation "A2"

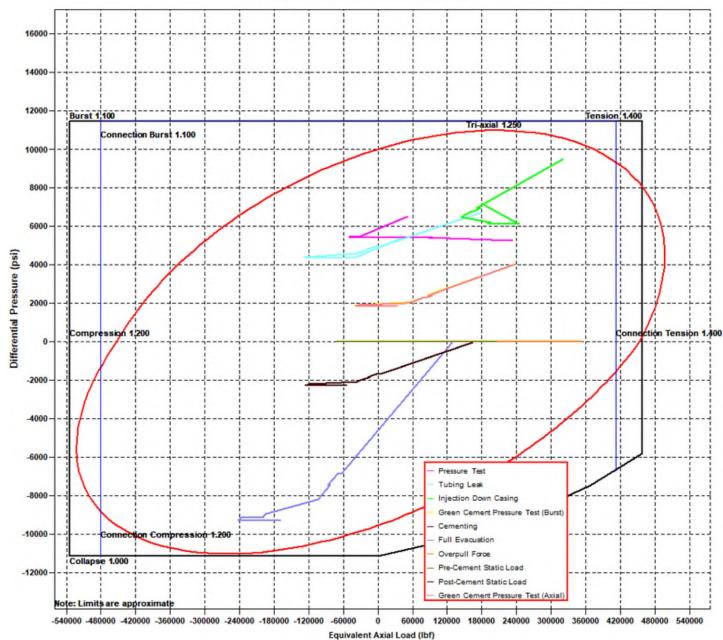

5-1/2" 20# P110 Wedge 461 / Sprint SF / DWC/C-HT-IS Casing

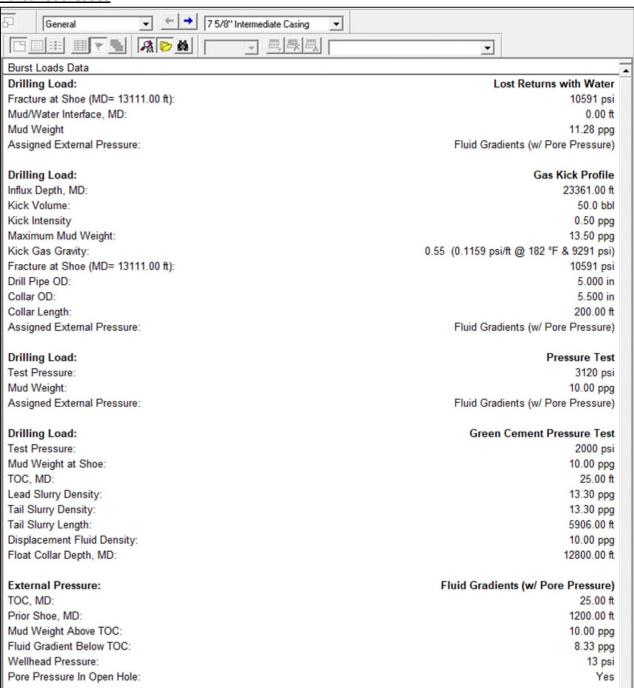
TOC @ 500' Above Prev. CSG



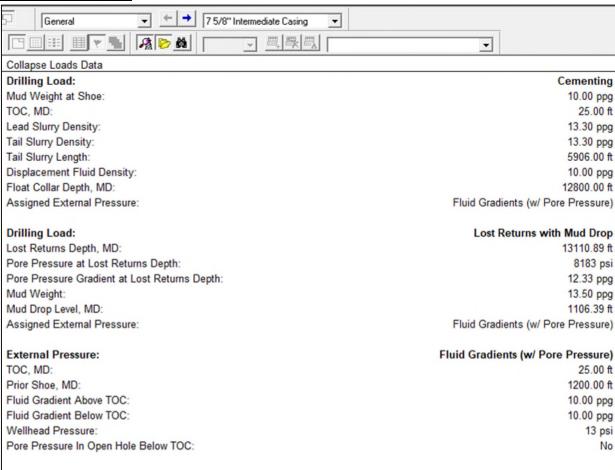
7. Landmark StressCheck Screenshots - Triaxial Output

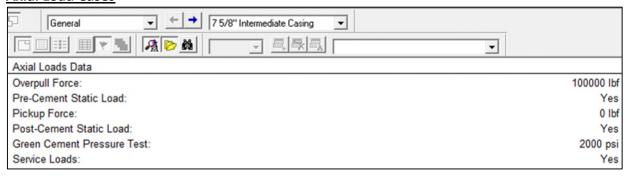




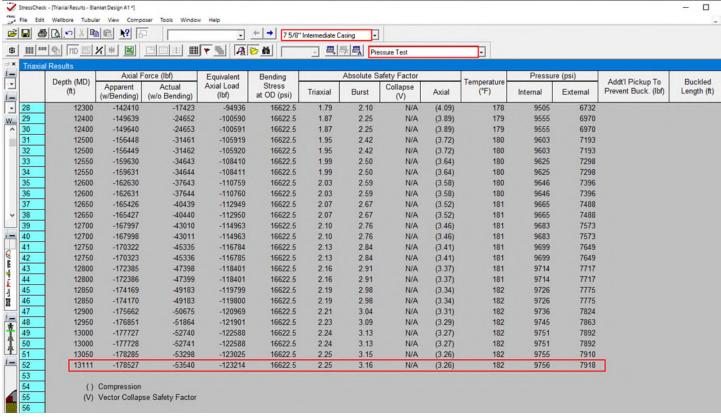


8. Landmark StressCheck Screenshots – Inputs for Intermediate CSG Load Cases


Burst Load Cases



Collapse Load Cases


Axial Load Cases

9. Landmark StressCheck Screenshot – Int. Casing Triaxial Results Table (Pressure Test)

Internal Pressure = Surface Pressure + Hydrostatic = 9756 psi External Pressure = Fluid Gradient w/ Pore Pressure = 7918 psi Burst SF = 3.16

NOTE: Specific load case inputs for the pressure test can be seen in **Section 8** above. The test pressure does not exceed 70% of the minimum internal yield.

10. Intermediate Non-API Casing Spec Sheet

Technical Data Sheet

7 5/8" 26.40 lbs/ft. L80HC - Axis HT

Mec	hanical	Properties	
Minimum Yield Strength	psi.	80,000	
Maximum Yield Strength	psi.	95,000	
Minimum Tensile Strength	psi.	95,000	
	Dimei	nsions	
		Pipe	AXIS HT
Outside Diameter	in.	7.625	8.500
Wall Thickness	in.	0.328	-
Inside Diameter	in.	6.969	-
Standard Drift	in.	6.844	6.844
Alternate Drift	in.	-	-
Plain End Weight	lbs/ft.	-	-
Nominal Linear Weight	lbs/ft.	26.40	-
	Perfor	mance	
		Pipe	AXIS HT
Minimum Collapse Pressure	psi.	4,320	-
Minimum Internal Yield Pressure	psi.	6,020	6,020
Minimum Pipe Body Yield Strength	lbs.	602 x 1,000	-
Joint Strength	lbs.	-	635 x 1,000
M	ake-Up	Torques	
		Pipe	AXIS HT
Ontinum Make He Terrire	ft/lbs.		8,000
Optimum Make-Up Torque	14105.		0,000

Disclaimer: The content of this Technical Data Sheet is for general information only and does not guarantee performance and/or accuracy, which can only be determined by a professional expert with the specific installation and operation parameters. Information printed or downloaded may not be current and no longer in control by Axis Pipe and Tube. Anyone using the information herein does so at his or her own risk. To verify that you have the latest technical information, please contact Axis Pipe and Tube Technical Sales +1 (979) 599-7600, www.axisoipeandtube.com

11. Production Non-API Casing Spec Sheets

Coupling	Pipe Body
Grade: P1104CY	Grade: P110-ICY
Body: White	1st Band: White
1st Band: Pale Green	2nd Band: Pale Green
2nd Band: -	3rd Band: Pale Green
3rd Band: -	4th Band: -
	5th Band: -
	6th Band: -

Outside Diameter	5.500 in.	Wall Thickness	0.361 in.	Grade	P110-ICY
Min. Wall Thickness	87.50 %	Pipe Body Drift	API Standard	Туре	Casing
Connection OD Option	MS				

Pipe Body Data

Geometry			
Nominal OD	5.500 in.	Wall Thickness	0.361 in.
Nominal Weight	20 lb/ft	Plain End Weight	19.83 lb/ft
Drift	4.653 in.	OD Tolerance	API
Nominal ID	4.778 in.		

Performance	
Body Yield Strength	729 x1000 lb
Min. Internal Yield Pressure	14,360 psi
SMYS	125,000 psi
Collapse Pressure	12,300 psi

Connection Data

Geometry	
Connection OD	6.050 in.
Coupling Length	7.714 in.
Connection ID	4.778 in.
Make-up Loss	3.775 in.
Threads per inch	3.40
Connection OD Option	Ms

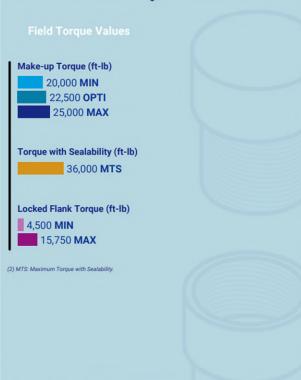
Performance	
Tension Efficiency	100 %
Joint Yield Strength	729 x1000 lb
Internal Pressure Capacity	14,360 psi
Compression Efficiency	100 %
Compression Strength	729 x1000 lb
Max. Allowable Bending	104 °/100 ft
External Pressure Capacity	12,300 psi
Coupling Face Load	273,000 lb

Make-Up Torques	
Minimum	17,000 ft-lb
Optimum	18,000 ft-lb
Maximum	21,600 ft-lb
Operation Limit Torques	
Operating Torque	43,000 ft-lb
Yield Torque	51,000 ft-lb
Buck-On	
Minimum	21,600 ft-lb
Maximum	23,100 ft-lb

This connection is fully interchangeable with:
Wedge 441®-5.5 in. - 0.304 / 0.361 in.
Wedge 461®-5.5 in. - 0.304 / 0.415 / 0.476 in.
Connections with Dopeless® Technology are fully compatible with the same connection in its Standard version
In October 2019, TenarisHydril Wedge XP® 2.0 was renamed TenarisHydril Wedge 461™. Product dimensions and properties remain identical and both connections are fully interchangeable

For the lastest performance data, always visit our website: www.tenaris.com

Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently werified any information—if any-provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of any kind for any loss, damage or injury resulting from, or in connection with any Information contained hereunder or any use thereof. The Information in this document is subject to change or modification without notice. Tenaris's reproducts and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com . ©Tenaris 2021. All rights reserved.



Generated on May 21, 2024

CONNECTION DATA SHEET

PIPE B	ODY PROPERTIES -	
Nomina	al OD	
Nomina	al ID	4
Nomina	al Wall Thickness	(
Minimu	ım Wall Thickness	5

Nominai OD	5.500	in.
Nominal ID	4.778	in.
Nominal Wall Thickness	0.361	in.
Minimum Wall Thickness	87.5	%
Nominal Weight (API)	20.00	lb/ft
Plain End Weight	19.83	lb/ft
Drift	4.653	in.
Grade Type	API 5CT	
Minimum Yield Strength	110	ksi
Maximum Yield Strength	140	ksi
Minimum Ultimate Tensile Strength	125	ksi
Pipe Body Yield Strength	641	klb
Internal Yield Pressure	12,640	psi
Collapse Pressure	11,100	psi

CONNECTION PROPERTIES •

Connection Type	Semi-Pre	mium Integral
Nominal Connection OD	5.783	in.
Nominal Connection ID	4.718	in.
Make-up Loss	5.965	in.
Tension Efficiency	90	% Pipe Body
Compression Efficiency	90	% Pipe Body
Internal Pressure Efficiency	100	% Pipe Body
External Pressure Efficiency	100	% Pipe Body

JOINT PERFORMANCES

Tension Strength	577	klb
Compression Strength	577	klb
Internal Pressure Resistance	12,640	psi
External Pressure Resistance	11,100	psi
Maximum Bending, Structural	78	°/100 ft
Maximum Bending, with Sealability(1)	30	°/100 ft

(1) Sealability rating demonstrated as per API RP 5C5 / ISO 13679

Scan the QR code to contact us

Connection Data Sheet

OD (in.)	WEIGHT (lbs./ft.)	WALL (in.)	GRADE	API DRIFT (in.)	RBW%	CONNECTION
5.500	Nominal: 20.00 Plain End: 19.83	0.361	‡VST P110MY	4.653	87.5	DWC/C-HT-IS

PIPE PROPERTIES		
PIPE PROPERTIES		
		_
Nominal OD	5.500	in.
Nominal ID	4.778	in.
Nominal Area	5.828	sq.in.
Grade Type		API 5CT
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Tensile Strength	135	ksi
Yield Strength	729	klb
Ultimate Strength	787	klb
Min. Internal Yield Pressure	14,360	psi
Collapse Pressure	12,090	psi

CONNECTION PROPERTIES		
Connection Type	Semi-Pren	nium T&C
Connection OD (nom)	6.050	in.
Connection ID (nom)	4.778	in.
Make-Up Loss	4.125	in.
Coupling Length	9.250	in.
Critical Cross Section	5.828	sq.in.
Tension Efficiency	89.1%	of pipe
Compression Efficiency	88.0%	of pipe
Internal Pressure Efficiency	86.1%	of pipe
External Pressure Efficiency	100.0%	of pipe

CONNECTION PERFORMANCES		
Yield Strength	649	klb
Parting Load	729	klb
Compression Rating	641	klb
Min. Internal Yield Pressure	12,360	psi
External Pressure Resistance	12,090	psi
Maximum Uniaxial Bend Rating	91.7	°/100 ft
Reference String Length w 1.4 Design Factor	22,890	ft.

FIELD TORQUE VALUES		
Min. Make-up torque	16,600	ft.lb
Opti. Make-up torque	17,950	ft.lb
Max. Make-up torque	19,300	ft.lb
Min. Shoulder Torque	1,660	ft.lb
Max. Shoulder Torque	13,280	ft.lb
Max. Delta Turn	0.200	Turns
†Maximum Operational Torque	23,800	ft.lb
†Maximum Torsional Value (MTV)	26,180	ft.lb

† Maximum Operational Torque and Maximum Torsional Value only valid with Vallourec P110MY Material.

‡ P110MY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi.

"VST = Vallourec Star as the mill source for the pipe, "P110EC" is the grade name"

Need Help? Contact: tech.support@vam-usa.com

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof, and on an ""AS IS"" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

03/04/2024 08:36:50 PM

VAM USA
2107 CityWest Boulevard Suite 1300
Houston, TX 77042
Phone: 713-479-3200
Fax: 713-479-3234
VAM® USA Sales E-mail: VAMUSAsales@vam-usa.com
Tech Support Email: tech.support@vam-usa.com

DWC Connection Data Sheet Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- 4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque value's listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or impfed, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

03/04/2024 08:36:50 PM

5M Annluar BOP Variance Request

Per BLM's Memorandum No. NM-2017-008: *Decision and Rationale for a Variance Allowing the Use of a 5M Annular Preventer with a 10M BOP Stack*, Oxy requests to employ a 5M annular with a 10M BOPE stack in the pilot and lateral sections of the well and will ensure that two barriers to flow are maintained at all times. Please see Well Control Plan below.

Oxy Well Control Plan

A. Component and Preventer Compatibility Table

The table below, which covers the drilling and casing of the >5M MASP portion of the well, outlines the tubulars and the compatible preventers in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Pilot hole and Lateral sections, 10M requirement

Component	OD	Preventer	RWP
Drillpipe	4-1/2"-5"	Lower 3-1/2 - 5-1/2" VBR	10M
		Upper 3-1/2 - 5-1/2" VBR	
HWDP	4-1/2"-5"	Lower 3-1/2 - 5-1/2" VBR	10M
		Upper 3-1/2 - 5-1/2" VBR	
Drill collars and MWD tools	4-3/4" – 5-1/2"	Lower 3-1/2 - 5-1/2" VBR	10M
		Upper 3-1/2 - 5-1/2" VBR	
Mud Motor	4-3/4"	Lower 3-1/2 - 5-1/2" VBR	10M
		Upper 3-1/2 - 5-1/2" VBR	
Production casing	5-1/2"	Lower 3-1/2 - 5-1/2" VBR	10M
		Upper 3-1/2 - 5-1/2" VBR	
ALL	0" - 13-5/8"	Annular	5M
Open-hole	6-3/4"	Blind Rams	10M

VBR = Variable Bore Ram. Compatible range listed in chart.

HWDP = Heavy Weight Drill Pipe

MWD = Measurement While Drilling

B. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the Bottom Hole Assembly (BHA) through the Blowout Preventers (BOP). The pressure at which control is swapped from the annular to another compatible ram will occur when the anticipated pressure is approaching or envisioned to exceed 70% of the 5M annular Rated Working Pressure (RWP) or 3500 PSI.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in Well (uppermost applicable BOP, typically annular preventer first. The Hydraulic Control Remote (HCR) valve and choke will already be in the closed position).
- 5. Confirm shut-in
- 6. Notify tool pusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or expected to reach 70% of the annular RWP during kill operations, crew will reconfirm spacing and swap to the upper pipe ram

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out drill string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. The HCR and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher/company representative
- 7. Read and record the following
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
 - d. Regroup and identify forward plan
 - e. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to the upper pipe ram

General Procedure While Running Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. The HCR and choke will already be in the closed position).
- 5. Confirm shut-in
- 6. Notify tool pusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
 - d. Regroup and identify forward plan.
 - e. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to compatible pipe ram.

General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams or BSR. (The HCR and choke will already be in the closed position)
- 3. Confirm shut-in
- 4. Notify tool pusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

General Procedures While Pulling BHA thru Stack

- 1. PRIOR to pulling last joint of drill pipe thru the stack.
 - a. Perform flow check, if flowing:
 - b. Sound alarm (alert crew)
 - c. Stab full opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper pipe ram
 - e. Shut-in using upper pipe ram. (The HCR and choke will already be in the closed position)
 - f. Confirm shut-in
 - g. Notify tool pusher/company representative
 - h. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - iv. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with upset just beneath the compatible pipe ram
 - d. Shut-in using compatible pipe ram. (The HCR and choke will already be in the closed position.)
 - e. Confirm shut-in
 - f. Notify tool pusher/company representative
 - g. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - iv. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combo immediately available.

- a. Sound alarm (alert crew)
- b. If possible to pick up high enough, pull string clear of the stack and follow "Open Hole" scenario
- c. If impossible to pick up high enough to pull the string clear of the stack
- d. Stab crossover, make up one joint/stand of drill pipe, and full opening safety valve and close
- e. Space out drill string with tool joint just beneath the upper pipe ram
- f. Shut-in using upper pipe ram. (The HCR and choke will already be in the closed position)
- g. Confirm shut-in
- h. Notify tool pusher/company representative
- i. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
- j. Regroup and identify forward plan

Bradenhead Cement CBL Variance Request

Oxy requests permission to adjust the CBL requirement after bradenhead cement jobs, on 7-5/8" intermediate casings, as per the agreement reached in the OXY/BLM meeting on September 5, 2019.

Three string wells:

- CBL will be required on one well per pad
- If the pumped volume of cement is less than permitted in the APD, BLM will be notified and a CBL may be run
- Echometer will be used after bradenhead cement job to determine TOC before pumping top-out cement

Four string wells:

- CBL is not required
- If the pumped volume of cement is less than permitted in the APD, BLM will be notified and a CBL may be run
- Echometer will be used after bradenhead cement job to determine TOC before pumping top-out cement

Certificate of Conformity

0 45 4 11 1	1		ContiTech
Certificate Number H100161	COM Order Reference 1429702		Customer Name & Address HELMERICH & PAYNE DRILLING CO
Customer Purchase Order No: 74038		34	1434 SOUTH BOULDER AVE TULSA, OK 74119
Project:			USA
Test Center Address	A	ccepted by COM Inspection	Accepted by Client Inspection
ContiTech Oil & Marine Corp. 11535 Brittmoore Park Drive Houston, TX 77041 USA	Signed:	Gerson Mejia-Lazo 06/27/22	

We certify that the items detailed below meet the requirements of the customer's Purchase Order referenced above, and are in conformance with the specifications given below.

Item	Part No.	Description	Qnty	Serial Number	Specifications
30	RECERTIFICATION	3" ID 10K Choke and Kill Hose x 35ft OAL	1	70024	ContiTech Standard

Hydrostatic Test Certificate

Certificate Number COM Order Reference **Customer Name & Address** H100161 1429702 HELMERICH & PAYNE DRILLING CO Customer Purchase Order No: 740382384 1434 SOUTH BOULDER AVE TULSA, OK 74119 Project: USA **Test Center Address** Accepted by COM Inspection **Accepted by Client Inspection** ContiTech Oil & Marine Corp. Gerson Mejia-Lazo 11535 Brittmoore Park Drive Signed: Houston, TX 77041 USA Date: 06/27/22

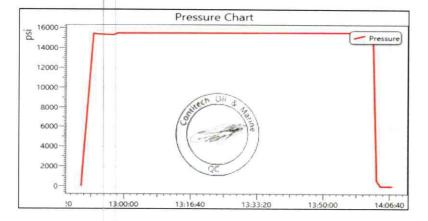
We certify that the goods detailed hereon have been inspected as described below by our Quality Management System, and to the best of our knowledge are found to conform the requirements of the above referenced purchase order as issued to ContiTech Oil & Marine Corporation.

Item	Part No.	Description	Qnty	Serial Number	Work, Press. (psi)	Test Press, (psi)	Test Time (minutes)

30 RECERTIFICATION

3" ID 10K Choke and Kill Hose x 35ft OAL

70024


10,000

15,000

60

Record Information			
Start Time	6/8/2022 12:49:19		
End Time	6/8/2022 14:07:25		
Interval	00:01:00		
Number	79		
MaxValue	15762		
MinValue	-7		
AvgValue	14395		
RecordName	70024-sh		
RecordNumber	235		

Gauge Information		
Model	ADT680	
SN	21817380014	
Range	(0-40000)psi	
Unit	psi	

Released to Imaging: 1/28/2025 10:23:31 AM

00

1286NEDEC 23/22

SERIAL #:

Gates Engineering & Services North America

7603 Prairie Oak Dr. Houston, TX. 77086

PHONE: (281) 602-4119

:XA7

EMAIL: Troy.Schmidt@gates.com

CERTIFICATE OF CONFORMANCE

This is to certify that all parts and materials included in this shipment have manufactured and/or processed in accordance with various Gates and API assembly and test specifications. Records of required tests are on-file and subject to examination. Test reports and subsequent test graphs have been made available with this shipment. Additional supporting documentation related to materials, welding, weld inspections, and heat-treatment activities are available upon request.

:YTITNAUQ	τ
SALES ORDER #:	786915
	CLAMPS
PART DESCRIPTION:	RING GROOVE SUPPLIED WITH SAFETY CLAMPS & SLINGS & LIFT EYE
PART DECEMBRION:	ARMOR C/W 4 1/16 10K FIX X FLOAT H2S SUITED FLANGES WITH BX 155
	3" X 12 FT GATES CHOKE & KILL HOSE ASSEMBLY WITH STAINLESS STEEL
CUSTOMER P/N:	JOKER3.012.0CK411610KFIXXFLT SSA SC LE
CUSTOMERS P.O.#:	4128128 (RIG 1 PO 002773)
CUSTOMER:	ASOH NITSUA ABO DNI NITSUA T-A

HS-115019-4

:3TAG	6TOZ/OZ/TI		
:3JTIT	QUALITY ASSURANCE		
:3AUTANƏ	Torna ano		

7603 Prairie Oak Dr.

4128128 (RIG 1 PO 002773) **BEOH NITZUA ABO DNI NITZUA V-A**

286915

Working Pressure: Test Pressure: Assembly Code:

41/20/2019

: aumeuőis : 9160

Production:

certificate to illustrate conformity to test requirements. This hose assembly was pressure tested using equipment Specification API 16C (2nd Edition); sections 7.5.4, 7.5.9, and 10.8.7. A test graph will accompany this test specifications: GTS-04-052 (for 5K assemblies) or GTS-04-053 (10K assemblies), which include reference to

Revision 1_022819 иоптойводяч

management system.

AN23D ont in that has been calibrated in accordance with the requirements set-forth in the GESNA

CUSTOMER P/N:

Oracle Star No.:

Product Description:

:1 gnitting 1:

Invoice No.:

Customer:

Customer Ref.:

F-PRD-005

: Signature :

: ested

Quality:

The following hose assembly has successfully passed all pressure testing requirements set forth in Gates

Gates Engineering & Services North America certifies that:

10KFR3.012.0CK411610KF1XXFLT SSA SC LE 6246486-01000689 4 1/10 10K FLANGES FIXED

SIØZ/OZ/TT

YTIJAUD

End Fitting 2:

10,000 PSI. 'ISA 000'SI F41545 113018 4 1/10 TOK ELANGES FLOAT

FLANGES WITH BX 155 RING GROOVE SUPPLIED WITH SAFETY CLAMPS & SLINGS & LIFT EYE CLAMPS 3" X 12 FT GATES CHOKE & KILL HOSE ASSEMBLY WITH STAINLESS STEEL ARMOR C/W 4 1/16 10K FIX X PLOAT H2S SUITED

Created By:

Test Date:

Hose Serial No.:

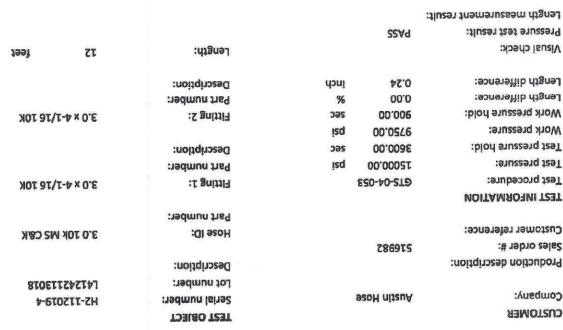
Norma Cabrera HZ-112019-4 6102/02/11

PRESSURE TEST CERTIFICATE

www.gates.com EMAIL: Troy.Schmidt@gates.com

PHONE: (281) 602 - 4119

Houston, TX 7086 GATES ENGINEERING & SERVICES NORTH AMERICA


Test operator:

H2-1987

11/20/2019 12:13:07 PM

TEST REPORT

Roderick Shambra

00:00:00 əmit 70:72:10 0 2000 0000 0009 0008 10000 15000 14000 16000 18000 įsd

Page 1/2

Filename: D:/Certificates/Report_112019-H2-112019-4.pdf

H2-1987

11/20/2019 12:13:07 PM

eropp/

TEST REPORT

GAUGE TRACEABILITY

A F-AO-OFOC	37 70 0100	TTOPMCFO	W-A-22-6
2020-04-14	7076-04-79	TTOAPOZK	W-A-2S-2
			Comment

Page 2/2

Filename: D:/Certificates/Report_112019-H-112019-4.pdf

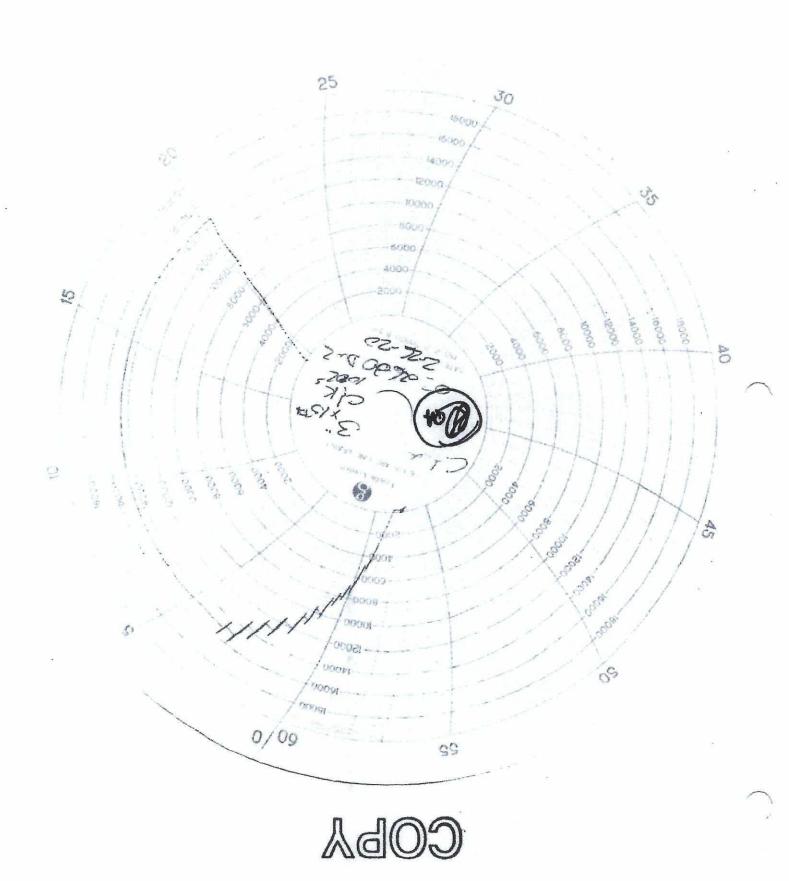
Certificate of Conformance

DW INDUSTRIES INC.

6287 Long Drive Houston, TX 77087

Tel. 713 644-8372 Fax 713-644-4947

NAMER UNIONS	C\M CE 3,, TQ'000 bei M	Part Description:	-2181-01-32-AO 1-2001	Customer Part Number:	Purcha
0707/97/70	:918G yldməssA		ľ	CTY Ordered:	ise Ora
CSZ620DW-2	Serial Number:	p-2001-2184-0492-4O		DW Industries Part Number:	ler Info
20020163	DW Industries Work Order Number:	CONTACT PAUL HOFFMAN FOR		Customer Purchase Order Number:	Purchase Order Information
PAUL HOFFMAN 432-241-5360		Customer Contact:	CITADEL DRILLING		Customer Name:


I DO HEREBY CERTIFY, AS THE AUTHORIZED REPRESENTATIVE OF DW INDUSTRIES, THAT THE PRODUCT LISTED ABOVE ARE OF THE QUALITY SPECIFIED QUALITY CONTROL CLAUSES, DESIGN SPECIFICATIONS, DRAWINGS, PRESERVATION, PACKAGING, PACKING, MARKING, AND PHYSICAL MARKING, AND PHYSICAL SPECIFIED PROCESSED IN ACCORDANCE WITH ISO-9001:2015, API Q1 AND API SPEC 7K.

Certificate Issue Date: 2/27/2020

Carrett Crawford, Director of Quality

DW Industries Inc.

- 1/2 - 1/2 - 1/2 - 1/3

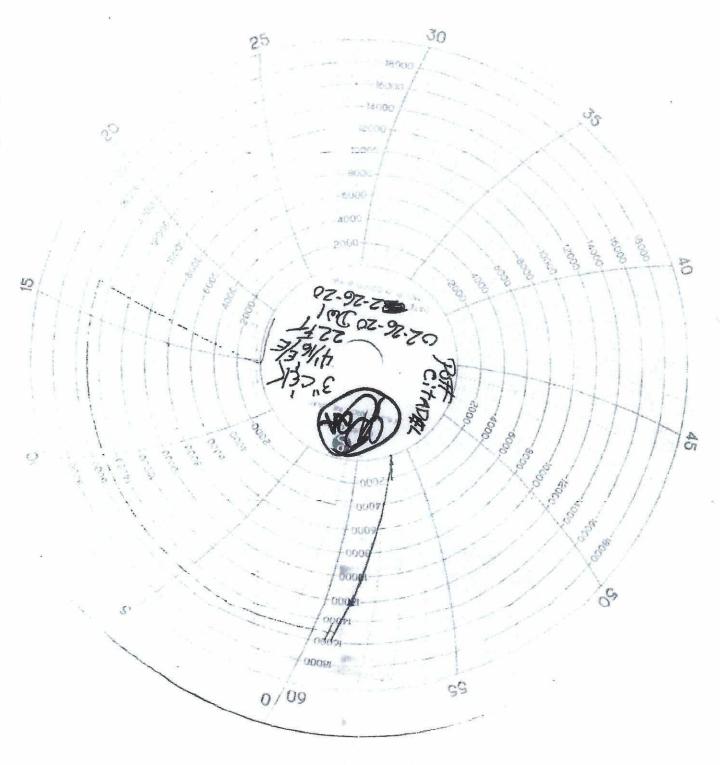
Certificate of Conformance

COBA

DW INDUSTRIES INC.

Houston, TX 77087

/665_550_C1/ V01	7/20		
Fax 713-644-4947	3 644-8372	12	. laT
78077 X	Houston, T		


FLOAT FLANGES	3" 10,000 psi W C/W SS ARMOR	Part Description:	-A-S640-4822-4-	Customer Part Number:	Purcha
07)76/7070	:91eG Vidm922A		τ		se Ord
T-WG029220	Serial Mumber:	OA-5640-4822-4-1/16FXFL-ALE		DW Industries Part Mumber:	erinfo
79102002	DW Industries Work Order Number:	CONTACT PAUL HOFFMAN FOR		Customer Purchase Order Number:	Purchase Order Information
NAM770H JUA9 03E2-142-SE4		Customer Contact:	CITADEL DRILLING		Customer Name:

I DO HEREBY CERTIFY, AS THE AUTHORIZED REPRESENTATIVE OF DW INDUSTRIES, THAT THE PRODUCT LISTED ABOVE ARE OF THE QUALITY SPECIFIED AND CONFORM TO ALL REQUIREMENTS OF THE PURCHASE ORDER, INCLUDING: PRESERVATION, PACKAGING, PACKING, MARKING, AND PHYSICAL IDENTIFICATION REQUIREMENTS AND HAS BEEN PROCESSED IN ACCORDANCE IDENTIFICATION REQUIREMENTS AND HAS BEEN PROCESSED IN ACCORDANCE IDENTIFICATION REQUIREMENTS AND API SPEC 7K.

Certificate Issue Date: 2/27/2020

Garrett Crawford, Director of Quality

DW Industries Inc.

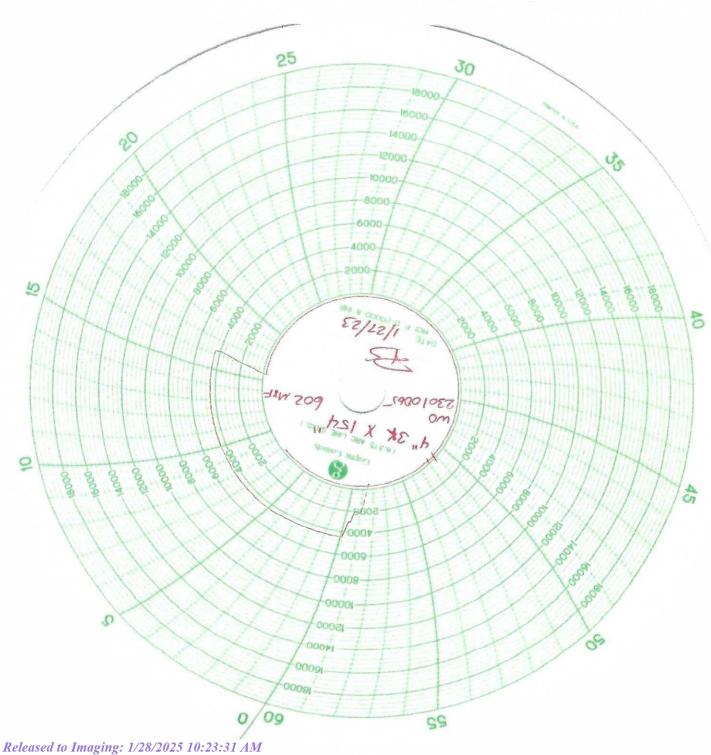
COBA

Certificate of Conformance

DW INDUSTRIES INC, Hollston, TX 77087

Tel. 713 644-8372 Fax 713-644-4947

ל" FIG 602 MXF	u: d"XT24" 3K M\	Part Description		Customer Part Number:	Purcha
1/27/2023	Assembly Date:	and the second s	τ	QTY Ordered:	ise Ord
73010062	Serial Number:	Z09-"42148-850289-AO		DW Industries	ler Info
53010065	DW Industries Work Order Number:	∠∠6 ⊅ 0∠00		Customer Purchase Order Number:	Purchase Order Information
АЯЗ	1NDA FC	ASUTIN HOSE Contact:		1 NITU2A	ustomer:


I DO HEREBY CERTIFY, AS THE AUTHORIZED REPRESENTATIVE OF DW INDUSTRIES, THAT THE PRODUCT LISTED ABOVE ARE OF THE QUALITY SPECIFIED OUALITY CONTROL CLAUSES, DESIGN SPECIFICATIONS, DRAWINGS, PRESERVATION, PACKAGING, PACKING, MARKING, AND PHYSICAL OUALITY CONTROL CLAUSES, DESIGN SPECIFICATIONS, DRAWINGS, PRESERVATION, PACKAGING, PACKING, MARKING, AND PHYSICAL OUTLITY SPECIFIED WITH ISO-9001:2015, API Q1 AND API SPEC 7K.

Certificate Issue Date: 1/27/2023

P. San Sallan

Quality Assurance, DW Industries, Inc.

Released to Imaging: 1/28/2025 10:23:31 AM

IN SERVICE 12-20-21

GATES ENGINEERING & SERVICES NORTH AMERICA 7603 Prairie Oak Dr. Suite 190 Houston, TX. 77086

PHONE: +1 (281) 602-4100 FAX: +1 (281) 602-4147

EMAIL: gesna.quality@gates.com WEB: www.gates.com/ollandgas

PRESSURE TEST CERTIFICATE

Customer:

A-7 AUSTIN INC DBA AUSTIN HOSE

10/15/2021

Customer Ref.:

00595477

Hose Serial No.:

H3-101521-2

Invoice No.:

521925

10K3.035.0CK411610KFIXXFLTW/SSA/SC/LE

Created By:

Test Date:

Micky Mhina

Product Description:

3" X 35' GATES FIRE RATED CHOKE & KILL HOSE ASSEMBLY SUITED FOR H2S SERVICE C/W 4 1/16 10K FIXED X FLOAT HEAT TREATED FLANGES SUPPLIED WITH STAINLESS STEEL ARMOR SAFETY CLAMPS & LIFT EYES

End Fitting 1: Oracle Star No.:

CUSTOMER P/N:

4 1/16 10K FIXED FLANGE

68703010-10074881 Assembly Code:

Test Pressure:

End Fitting 2:

Working Pressure:

4 1/16 10K FLOAT HEAT TREATED FLANGES L41975 091719

15,000 PSI.

10,000 PSI.

Gates Engineering & Services North America certifies that:

The following hose assembly has successfully passed all pressure testing requirements set forth in Gates specifications: GTS-04-052 (for 5K assemblies) or GTS-04-053 (10K assemblies) or GTS-04-048 (15K assemblies), which include reference to Specification API 16C (2nd Edition); sections 7.5.4, 7.5.9, and 10.8.7. A test graph will accompany this test certificate to illustrate conformity to test requirements. This hose assembly was pressure tested using equipment and instrumentation that has been calibrated in accordance with the requirements set-forth in the GESNA management system.

Quality:

Date:

Signature:

QUALITY

10/15/2021

n bull

Production:

Date:

Signature:

PRODUCTION

10/15/2021

Revision 6_05032021

F-PRD-005B

GATES ENGINEERING & SERVICES NORTH AMERICA 7603 Prairie Oak Dr. Houston, TX. 77086

PHONE: +1 (281) 602-4100 FAX: +1 (281) 602-4147

EMAIL: gesna.quality@gates.com WEB: www.gates.com/ollandgas

CERTIFICATE OF CONFORMANCE

This is to certify that all parts and materials included in this shipment have manufactured and/or processed in accordance with various Gates and API assembly and test specifications. Records of required tests are on-file and subject to examination. Test reports and subsequent test graphs have been made available with this shipment. Additional supporting documentation related to materials, welding, weld inspections, and heat-treatment activities are available upon request.

CUSTOMER:

A-7 AUSTIN INC DBA AUSTIN HOSE

CUSTOMER P.O.#:

00595477

CUSTOMER P./N.#:

10K3.035.0CK411610KFIXXFLTW/SSA/SC/LE

3" X 35' GATES FIRE RATED CHOKE & KILL HOSE ASSEMBLY SUITED FOR H2S

PART DESCRIPTION: SERVICE C/W 4 1/16 10K FIXED X FLOAT HEAT TREATED FLANGES SUPPLIED WITH

STAINLESS STEEL ARMOR SAFETY CLAMPS & LIFT EYES

SALES ORDER #:

521925

QUANTITY:

1

SERIAL #:

H3-101521-2

SIGNATURE:	Minya wnew	
TITLE:	QUALITY ASSURANCE	
DATE:	10/15/2021	

H3-6963

10/15/2021 10:15:57 AM

TEST REPORT

CUSTOMER

Company:

Austin Distributing

TEST OBJECT

Serial number:

H3-101521-2

Lot number:

L41975091719

Description:

Production description:

Sales order #:

521925

Customer reference:

Hose ID: Part number: 3" 10k ck

TEST INFORMATION

Test procedure: Test pressure:

Test pressure hold:

Work pressure hold:

GTS-04-053 15000.00

psi

sec

psi

sec

Part number: Description:

Fitting 1:

3.0 x 4-1/16 10K

Work pressure: 10000.00

> 900.00 0.00

3600.00

%

Fitting 2: Part number: Description:

Length:

3.0 x 4-1/16 10K

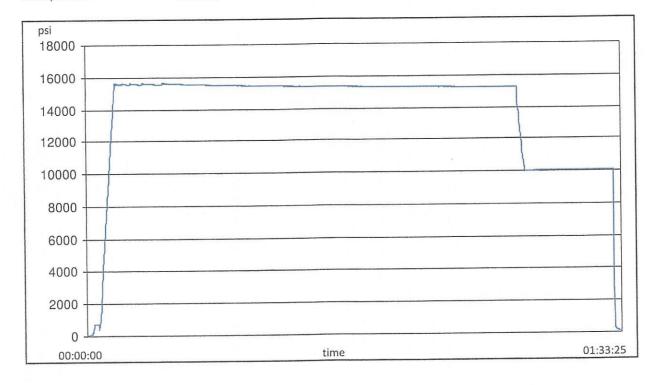
feet

Length difference: Length difference:

inch 0.00

35

Visual check:


Pressure test result:

PASS

Length measurement result:

Test operator:

francisco

H3-6963

10/15/2021 10:15:57 AM

TEST REPORT

GAUGE TRACEABILITY

S-25-A-W 110A			Calibration due date
	QA1S	2021-02-24	2022-02-24
S-25-A-W 110D	3PHQ	2021-03-11	2022-03-11
Comment			

Filename: D:\Certificates\Report_101521-H3-101521-2.pdf

Hydrostatic Test Certificate

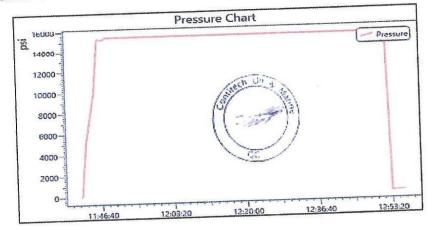
ContiTech **Customer Name & Address COM Order Reference** HELMERICH & PAYNE DRILLING CO Certificate Number 1429702 1434 SOUTH BOULDER AVE H100163 740382384 **Customer Purchase Order No:** TULSA, OK 74119 USA Project: Accepted by Client Inspection **Accepted by COM Inspection Test Center Address** Gerson Mejia-Lazo ContiTech Oil & Marine Corp. Signed: 11535 Brittmoore Park Drive Houston, TX 77041 07/14/22 Date:

We certify that the goods detailed hereon have been inspected as described below by our Quality Management System, and to the best of our USA knowledge are found to conform the requirements of the above referenced purchase order as issued to ContiTech Oil & Marine Corporation.

Item	knowledge are foul Part No.	Description	Qnty	Serial Number	Work, Press. (psi)	Test Press. (psi)	Test Time (minutes)	-
					40.000	15 000	60	

RECERTIFICATION

3" ID 10K Choke and Kill Hose x 35ft OAL


70025

10,000

15,000

Record In	iformation
Start Time	6/14/2022 11:42:08
End Time	6/14/2022 12:56:14
Interval	00:01:00
Number	75
MaxValue	15888
MinValue	-8
AvgValue	14184
RecordName	70025-sh
RecordNumber	237

Gauge Inf	formation
Model	ADT680
SN	21817380014
Range	(0-40000)psi
Unit	psi

RECERTIFICATION

50

intinen

Certificate of Conformity

Certificate of Como	intry		ContiTect
Certificate Number COM Order Reference H100163 1429702		er Reference	Customer Name & Address HELMERICH & PAYNE DRILLING CO
Customer Purchase Order No: 740382384		1434 SOUTH BOULDER AVE TULSA, OK 74119	
Project:			USA
Test Center Address	A	scepted by COM Inspection	Accepted by Client Inspection
ContiTech Oil & Marine Corp. 11535 Brittmoore Park Drive Houston, TX 77041 USA	Signed:	Gerson Mejia-Lazo 07/14/22	

We certify that the items detailed below meet the requirements of the customer's Purchase Order referenced above, and are in conformance with the specifications given below.

Item	Part No.	Description	Qnty	Serial Number	Specifications
1	L				

3" ID 10K Choke and Kill Hose x 35ft OAL

70025

ContiTech Standard

ARMORED CHOKE HOSE

TOSANHAL

4-29-22.

CONTITECH RUBBER Industrial Kft.

No: QC-DB- 120 / 2019

Page: 16 / 91

ContiTech

	QUALITY CONTROL INSPECTION AND TEST CERTIFICATE							
PURCHASER:		P.O. N°:		4501225327				
CONTITECH RUBBER order N°	1127442	HOSE TYPE:	3"	ID		Choke an	d Kill Hose	
HOSE SERIAL N°:	75819	NOMINAL / AC	TUAL LE	NGTH:		10,67 r	n / 10,68 m	
W.P. 69,0 MPa 10	000 psi	T.P. 103,5	MPa	1500	00 psi	Duration:	60	min.
Pressure test with water at ambient temperature See attachment (1 page)								
COUPLINGS Typ	е	Seria	l Nº		Qua	ality	Heat N°	
3" coupling with	1	602	26		AISI	4130	A0607J	
4 1/16" 10K API Swivel F	lange end				AISI	4130	040841	
Hub					AISI 4130		54194	
3" coupling with	1	601	16		AISI 4130		A0607J	
4 1/16" 10K API b.w. Fla	ange end			AISI 4130		4130	040431	
Not Designed For Well Testing API Spec 16 C 2 nd Edition—FSL2 Temperature rate: "B" All metal parts are flawless								
WE CERTIFY THAT THE ABOVE INSPECTED AND PRESSURE TO						H THE TERM	IS OF THE ORDER	
STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.								
Date: Ontite Rubber Industrial Kft. Quality Control Dept. Ontite Rubber Industrial Kft. Ontite Rubber Industrial Kft						5		

Prepared by	С	Cristian Rivera		Date:	8/27/2022		QIN:	N/A	
Customer:	HELI	MERICH & PAYNE, INC		Location:	H&P INT'L DRILLING CO 210 MAGNOLIA DR GALEI PARK,TX,77547-2738		A		
User contact:	MI	TCH MCKINNIS		Phone:	e-mail: mitch.mckinnis@hj		oinc.com		
	-	Parame	ete	ers		Н	ose Deta	ils	Test Status
		PO			740398454 (88000240 SN:70035)				
		Gates SO			525035				
		Serial #:			88000240 SN:70035				
		As Tested Seria	al:		H2-082722-1 RE-TEST				
	Hose ID:			3 IN					
Hose type:		INSPECT AND RETEST CUSTOMER HOSE 3IN X 35FT CHOKE & KILL ASSEMBLY C/W 4-1/16 FLANGES BX155 RING GROOVE EACH END							
Application	า								
Informatio	n	Working press	ure	e:	10000 PSI.				PASS

1. Visual Examination

An API 16C, IN X 35FT CHOKE & KILL ASSEMBLY C/W 4-1/16 FLANGES BX155 RING GROOVE EACH END received from HELMERICH & PAYNE, INC for inspection, testing and external cosmetic repairs. The hydrostatic pressure testing was requested to 15000 PSI., by the customer HELMERICH & PAYNE, INC

Visual inspection and examination of external hose assembly showed some cosmetic dents and repairabledamages to the external armor at distance 32ft 9in. from EF2. (Need to fix a part of the hose.)

Both external & internal hose body and couplings of the hose were examined. Visual Inspection photos are in Table 2, while post inspection/testing pictures are in Table 4.

The hose was hydrostatically tested at 15000 PSI. test pressure with an hour-long hold. On completion of hydrostatic testing, an internal baroscopic examination was carried out, to check the condition of internal hose areas, mainly hose tube and coupling hose interface.

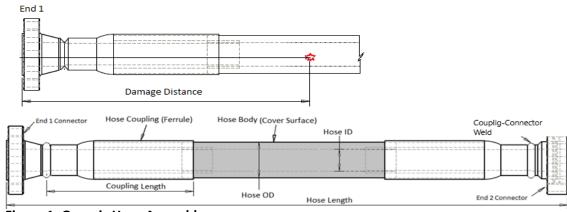
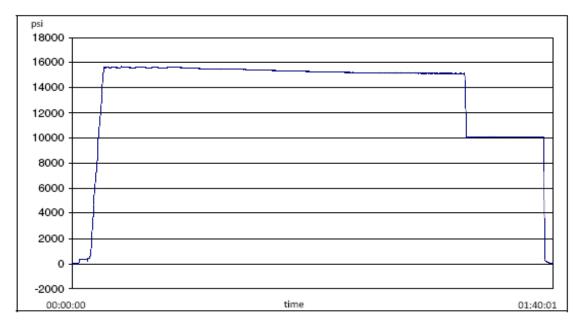


Figure 1: Generic Hose Assembly

1.0 **Observations and comments**



2. Hydro Static Pressure test

2.1 Hydrostatic Pressure test Procedures

	Hose Type	Test Specification	Test Date	Technician
1	IN X 35FT CHOKE & KILL	3 10K C&K	2022-08-27	Martin Orozco
	ASSEMBLY C/W 4-1/16	3 TOK CAN	2022-06-27	Martin Orozco

2.2 **Gates Hydrostatic Pressure tester**

	Test Equipment	Serial No	Last Cal Date	Cal Due Date
1	S-25-A-W	110AMCLO	2022-01-10	2023-01-10
2	S-25-A-W	110BSEUZ	2022-03-09	2023-03-09

	Details	Results					
1	Hydrostatic Test Results (1)	Pass	Fail				
2	Failure Mode	None					
3	Hose Dispatched to the customer?	Yes	No				

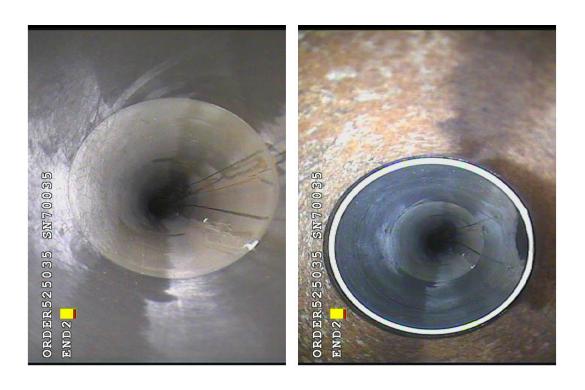
Note:

1. Hydrostatic Pressure report is given in Appendix 1

3. Hose borescope inspection

3.2 Internal Failure Details

	Type of Failure	Location of Defect	Ref. Photo	Defect Details
1	Liner breach/ collapse	None		None
2	Bulges/ Blisters	None		None
3	Other breach/failures	None		None



Photos: Liner/Coupling Interface END 1

F-ENG-001 Page: 5 of 9 Revision_0_042419

Photos: Liner/Coupling Interface END 2

<u>Note</u>

Borescope completed? Yes

4. Summary

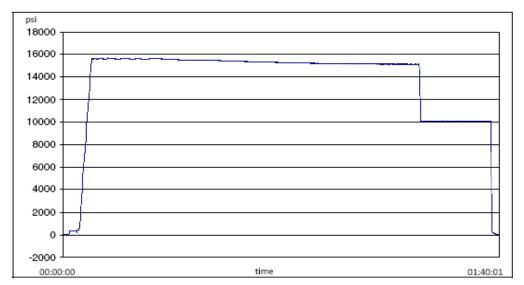
Hose assembly successfully tested to requested test pressure of 15000 PSI. with an hour hold. It was then serialized and stamped, as H2-082722-1 RE-TEST. The bore scope showed no blisters or delamination in the internal lining/tube area. External damages were repaired as agreed with the customer.

F-ENG-001 Page: 6 of 9 Revision_0_042419

APPENDIX 1: Pressure Chart

H2-8316

8/27/2022 8:51:22 AM


TEST REPORT

TEST OBJECT CUSTOMER Company: Serial number: H2-082722-1 Lot number: Production description: Description: Sales order #: 525035 740398454 (88000240 | Customer reference: Hose ID: 3 10k C&K SN:70035) Part number: TEST INFORMATION 3 10K C&K 3.0 x 4-1/16 10K Test procedure: Fitting 1: 15000.00 Test pressure: Part number: psi Test pressure hold: 3600.00 Description: Work pressure: 10000.00 Work pressure hold: 900.00 Fitting 2: 3.0 x 4-1/16 10K sec Length difference: 0.00 % Part number: Length difference: 0.00 Description: Visual check: Length: 35 feet

PASS Pressure test result:

Length measurement result:

Test operator: Martin

Filename: D:\Certificates\Report_082722-H2-082722-1.pdf Page 1/2

H2-8316

8/27/2022 8:51:22 AM

TEST REPORT

GAUGE TRACEABILITY

Description	Serial number	Calibration date	Calibration due date
S-25-A-W	110AMCLO	2022-01-10	2023-01-10
S-25-A-W	110BSEUZ	2022-03-09	2023-03-09
Comment			

Filename: D:\Certificates\Report_082722-H2-082722-1.pdf Page 2/2

APPENDIX 2: Certificate of Conformance

GATES ENGINEERING & SERVICES NORTH AMERICA 7603 Prairie Oak Dr.

Houston, TX. 77086

PHONE: +1 (281) 602-4100 FAX: +1 (281) 602-4147 EMAIL: gesna.quality@gates.com WEB: www.gates.com/ollandgas

CERTIFICATE OF CONFORMANCE

This is to verify that the items detailed below meet the requirements of the Customer's Purchase Order referenced herein, and are in Conformance with applicable specifications, and that Records of Required Tests are on file and subject to examination. The following items were inspected and hydrostatically tested at Gates Engineering & Services North America facilities in Houston, TX, USA.

CUSTOMER:

HELMERICH & PAYNE, INC

CUSTOMER P.O.#:

740398454 (88000240 | SN:70035)

CUSTOMER P/N:

88000240 | SN:70035

PART DESCRIPTION:

INSPECT AND RETEST CUSTOMER HOSE 3IN X 35FT CHOKE & KILL ASSEMBLY C/W 4-1/16

FLANGES BX155 RING GROOVE EACH END

SALES ORDER #:

525035

QUANTITY: SERIAL #:

H2-082722-1 RE-TEST

SIGNATURE: **QUALITY ASSURANCE** TITLE: 8/27/2022 DATE:

Page: 9 of 9 F-ENG-001 Revision_0_042419 Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 424082

CONDITIONS

Operator:	OGRID:
OXY USA INC	16696
P.O. Box 4294	Action Number:
Houston, TX 772104294	424082
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
ward.rikala	Cement is required to circulate on both surface and intermediate1 strings of casing.	1/28/2025
ward.rikala	If cement is not circulated to surface during cementing operations, a Cement Bond Log (CBL) is required.	1/28/2025
ward.rikala	Any previous COA's not addressed within the updated COA's still apply.	1/28/2025