U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Report 04/24/2025
Well Name: JRU APACHE U FEDERAL COM	Well Location: T22S / R30E / SEC 24 / NENE / 32.383805 / -103.82866	County or Parish/State: EDDY / NM
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM89051	Unit or CA Name:	Unit or CA Number:
US Well Number:	Operator: XTO PERMIAN OPERATING LLC	

Notice of Intent

Sundry ID: 2839810

Type of Submission: Notice of Intent

Date Sundry Submitted: 03/04/2025

Date proposed operation will begin: 03/07/2025

Type of Action: APD Change Time Sundry Submitted: 08:48

Procedure Description: XTO Permian Operating, LLC. respectfully requests approval to make changes to the drilling program in the approved APD & requests permission for a primary and a contingency drilling program for this well. Primary will be a 4-string design with an engineered weak point (R-111-Q: Figure F) & the contingency will be a 3-string design with an open production casing annulus (R-111-Q: Figure B). See attached drilling program for the primary & contingency design with updated casing design, cement program & mud circulation system. There will be no new surface disturbance.

NOI Attachments

Procedure Description

Sundry_Attachments___JRU_Apache_U_Federal_Com_708H_20250304084629.pdf

Received by OCD: 4/24/2025 8:12:24 AM Well Name: JRU APACHE U FEDERAL COM	Well Location: T22S / R30E / SEC 24 / NENE / 32.383805 / -103.82866	County or Parish/State: EDDY? of A
Well Number: 708H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM89051	Unit or CA Name:	Unit or CA Number:
US Well Number:	Operator: XTO PERMIAN OPERATING LLC	

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: SRINIVAS LAGHUVARAPU

Signed on: MAR 04, 2025 08:46 AM

Name: XTO PERMIAN OPERATING LLC

Title: REGULATORY ANALYST

Street Address: 22777 SPRINGWOODS VILLAGE PARKWAY

City: SPRING

State: TX

Phone: (720) 539-1673

Email address: SRINIVAS.N.LAGHUVARAPU@EXXONMOBIL.COM

State:

Field

Representative Name: Street Address: City: Phone: Email address:

BLM Point of Contact

BLM POC Name: ZOTA M STEVENS BLM POC Phone: 5752345998 Disposition: Approved Signature: Zota Stevens BLM POC Title: Petroleum Engineer

BLM POC Email Address: ZSTEVENS@BLM.GOV

Disposition Date: 04/24/2025

Zip:

Form 3160-5 (June 2019) DEI	UNITED STATES PARTMENT OF THE INTERIO	R	Ex	FORM APPROVED OMB No. 1004-0137 Expires: October 31, 2021			
BUR	EAU OF LAND MANAGEMEN	ЛТ	5. Lease Serial No.	NMNM89051			
Do not use this	NOTICES AND REPORTS ON form for proposals to drill of Use Form 3160-3 (APD) for s	ו	6. If Indian, Allottee or Tribe Name				
SUBMIT IN	TRIPLICATE - Other instructions on p	page 2	7. If Unit of CA/Agreement,	7. If Unit of CA/Agreement, Name and/or No.			
1. Type of Well Image: Contract of Well Image: Contract of Well Image: Contract of Well Image: Contract of Well	Well Other	8. Well Name and No. JRU APACHE U FEDERAL COM708H					
2. Name of Operator XTO PERMIAN	OPERATING LLC		9. API Well No.				
3a. Address 6401 HOLIDAY HILL R		No. (include area cod - 2277	le) 10. Field and Pool or Exploration LOS MEDANOS/Bone Spring	atory Area			
4. Location of Well <i>(Footage, Sec., T.,</i> SEC 24/T22S/R30E/NMP	R.,M., or Survey Description)		11. Country or Parish, State EDDY/NM				
12. CHE	CCK THE APPROPRIATE BOX(ES) TO	INDICATE NATUR	E OF NOTICE, REPORT OR OT	HER DATA			
TYPE OF SUBMISSION		TY	PE OF ACTION				
✓ Notice of Intent	Alter Casing	Deepen Iydraulic Fracturing	Production (Start/Resume) Reclamation	Well Integrity			
Subsequent Report		lew Construction	Recomplete	Other			
Final Abandonment Notice		lug and Abandon lug Back	Temporarily Abandon Water Disposal				
is ready for final inspection.) XTO Permian Operating, LLC permission for a primary and a (R-111-Q: Figure F) & the cor	tices must be filed only after all requiren . respectfully requests approval to ma a contingency drilling program for this tingency will be a 3-string design with for the primary & contingency design disturbance.	ake changes to the well. Primary will b n an open production	drilling program in the approve be a 4-string design with an en- on casing annulus (R-111-Q: Fi	ed APD & requests gineered weak point igure B).			
14. I hereby certify that the foregoing is SRINIVAS LAGHUVARAPU / Ph:	s true and correct. Name (<i>Printed/Typed</i>) (720) 539-1673		TORY ANALYST				
(Electronic Submissio	on)	03/04/2	2025				
	THE SPACE FOR FE	EDERAL OR S	TATE OFICE USE				
Approved by							
ZOTA M STEVENS / Ph: (575) 23	4-5998 / Approved	Title Pet	roleum Engineer	04/24/2025 Date			
	hed. Approval of this notice does not was equitable title to those rights in the subject induct operations thereon.	rrant or	ARLSBAD	1			
	3 U.S.C Section 1212, make it a crime for ents or representations as to any matter v			lepartment or agency of the United States			

(Instructions on page 2)

Released to Imaging: 5/2/2025 11:11:08 AM

.

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Location of Well

0. SHL: NENE / 380 FNL / 949 FEL / TWSP: 22S / RANGE: 30E / SECTION: 24 / LAT: 32.383805 / LONG: -103.82866 (TVD: 0 feet, MD: 0 feet) PPP: SWSW / 332 FSL / 1334 FWL / TWSP: 22S / RANGE: 30E / SECTION: 13 / LAT: 32.385773 / LONG: -103.838557 (TVD: 9572 feet, MD: 14200 feet) PPP: SESE / 610 FSL / 330 FEL / TWSP: 22S / RANGE: 30E / SECTION: 13 / LAT: 32.38317 / LONG: -103.826655 (TVD: 9617 feet, MD: 10200 feet) BHL: SWSE / 610 FSL / 2629 FEL / TWSP: 22S / RANGE: 30E / SECTION: 14 / LAT: 32.383208 / LONG: -103.851405 (TVD: 9532 feet, MD: 17703 feet)

Primary Design DRILLING PLAN: BLM COMPLIANCE (Supplement to BLM 3160-3)

JRU APACHE U FEDERAL COM 708H Projected TD: 17186' MD / 9809' TVD SHL: 380' FNL & 949' FEL , Section 24, T22S, R30E BHL: 610' FNL & 2629' FEL , Section 23, T22S, R30E EDDY County, NM

1. Geologic Name of Surface Formation

A.

Quaternary

2. Estimated Tops of Geological Markers & Depths of Anticipated Fresh Water, Oil or Gas

Formation	Well Deoth	Water/Oil/Gas
Rustler	483'	Water
Top of Salt	773'	Water
MB 126	1467'	Water
Base of Salt	3628'	Water
Delaware	3886'	Water
Cherry Canyon	5129'	Water/Oil/Gas
Brushy Canyon	6629'	Water/Oil/Gas
Bone Spring Lime	7765'	Water/Oil/Gas
Avalon Shale	8144'	Water/Oil/Gas
Lower Avalon Shale	8256'	Water/Oil/Gas
1st Bone Spring Lime	8685'	Water/Oil/Gas
1st Bone Spirng Sand	8822'	Water/Oil/Gas
2nd Bone Spring shale	9271'	Water/Oil/Gas
2nd Bone Spring A sand	9565'	Water/Oil/Gas
2nd Bone Spring A/B Carb	9728'	Water/Oil/Gas
2nd Bone Spring B sand	9779'	Water/Oil/Gas
Landing	9809'	Water/Oil/Gas
3rd Bone Spring Lime	9913'	Water/Oil/Gas

Section 2 Summary:

*** Deepest Expected Groundwater Depth: 40' (per NM State Engineers Office).

No other formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting 13-3/8" inch casing at 748' and circulating cement back to surface.

3. Casing Design

Primary Casing Design:

Hole Size	MD	Casing TVD	OD Csg	Weight	Grade	Collar	New/Used	SF Burst	SF Collapse	SF Tension
17.5	0' – 748'	748'	13-3/8"	54.5	J55	BTC	New	11.94	3.49	6.30
12.25	0' – 3885'	3884'	9-5/8"	40	L80-IC	BTC	New	4.82	4.60	3.95
8.75	0' – 3985'	3984'	7-5/8"	29.7	P110-ICY	Tenaris Wedge 511	New	6.00	8.53	3.31
8.75	3985' - 8937'	8893'	7-5/8"	29.7	L80-IC	Tenaris Wedge 511	New	3.30	5.50	3.65
6.75	0' – 17186'	9809'	5-1/2"	20	P110-IC	Tenaris Wedge 441	New	1.18	2.89	2.14

Section 3 Summary:

XTO will keep casing fluid filled to meet BLM's collapse requirement. The planned kick off point is located at: 9137' MD / 9093' TVD.

Wellhead:

A multi-bowl wellhead system will be utilized. The well design chosen is:4-String Slim Potash (Non-Capitan Reef)

Wellhead will be installed by manufacturer's representatives.

Manufacturer will monitor welding process to ensure appropriate temperature of seal.

4. Cement Program

			Р	rimary Cementi	ng			
Casing	Slurry Type	No. Sacks	Density (ppg)	Yield (ft3/sack)	TOC (ft)	Casing Setting Depth (MD)	Excess (%)	Slurry Description
Surface 1	Lead	295	12.4	2.11	0	748	100%	Surface Class C Lead Cement
Surface 1	Tail	313	14.8	1.33	448	748	100%	Surface Class C Tail Cement
Intermediate 1	Lead	834	12.9	2.02	0	3885	50%	Intermediate Class C Lead Cement
Intermediate 1	Tail	87	14.8	1.45	3585	3885	35%	Intermediate Class C Tail Cement
Intermediate 2	Lead							
Intermediate 2	Tail	216	14.8	1.45	6629	8937	35%	Intermediate Class C Tail Cement
Production 1	Lead							
Production 1	Tail	660	13.2	1.44	8437	17186	30%	Production Class C Tail Cement
	· · · · ·		Re	emedial Cement	ing			
Casing	Slurry Type	No. Sacks	Density (ppg)	Yield (ft3/sack)	Cement	ed Interval	Excess (%)	Slurry Description
Intermediate 2	Bradenhead Squeeze	337	14.8	1.45	3385	5 - 6629'	50%	Intermediate Class C Bradenhead Squeeze Cement

Remedial Cementing

*Bradenhead Squeeze 2nd Stage Offline

5. Pressure Control Equipment

Section 5 Summary:

Once the permanent WH is installed on the casing, the blow out preventer equipment (BOP) will consist of a minimum 5M Hydril and a minimum 10M triple Ram BOP.

All BOP testing will be done by an independent service company. Operator will Test as per 43CFR-3172

Requested Variances

4A) Offline Cementing Variance

XOM requests the option to offline cement and remediate (if needed) surface and intermediate casing strings where batch drilling is approved and if unplanned remediation is needed. XOM will ensure well is static with no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence. The TA cap will also be installed when applicable per wellhead manufacturer's procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

5A) Break Test Variance

A break testing variance is requested to ONLY test broken pressure seals on the BOP equipment when moving from wellhead to wellhead for the intermediate hole sections which is in compliance with API Standard 53.

5B) Flex Hose Variance

A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test chart will be kept on the rig. Attached is an example of a certification and pressure test chart. The manufacturer does not require anchors.

8A) Open Hole Logging Variance Open hole logging will not be done on this well.

10A) Spudder Rig Variance

XOM requests the option to utilize a spudder rig (Atlas Copco RD20 or Equivalent) to set and cement surface casing.

10B) Batch Drilling Variance

XOM requests a variance to be able to batch drill this well. In doing so, XOM will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. XOM will contact the BLM to skid the rig to drill the remaining wells on the pad. Once surface and intermediate strings are all completed, XOM will begin drilling the production hole on each of the wells.

6. Proposed Mud Circulation System

INTERVAL	Hole Size	Mud Type	MW (ppg)	Viscosity (sec/qt)	Fluid Loss (cc)	Comments
0' – 748'	17.5"	FW/Native	8.3 - 8.7	35-40	NC	Fresh Water or Native Water
748' – 3885'	12.25"	BDE/OBM or FW/Brine	9.5 - 10	30-32	NC	Fluid type will be based upon on well conditions. A fully saturated system will be used across the salt interval.
3885' – 3985'	8.75"	BDE/OBM or FW/Brine	9.5 - 10	30-32	NC	Fluid type will be based upon on well conditions. A fully saturated system will be used across the salt interval.
3985' – 8937'	8.75"	BDE/OBM or FW/Brine	9.5 - 10	30-32	NC	Fluid type will be based upon on well conditions. A fully saturated system will be used across the salt interval.
8937' – 17186'	6.75"	OBM	9 - 9.6	NC - 20	OBM	

Section 6 Summary:

The necessary mud products for weight addition and fluid loss control will be on location at all times.

Spud with fresh water/native mud. Drill out from under surface casing with a fully saturated brine while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. An EDR (Electronic Drilling Recorder) will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system.

7. Auxiliary Well Control and Monitoring Equipment

Section 7 Summary:

A Kelly cock will be in the drill string at all times.

A full opening drill pipe stabbing valve having appropriate connections will be on the rig floor at all times.

H2S monitors will be on location when drilling below the 13-3/8" casing.

8. Logging, Coring and Testing Program

Section 8 Summary:

Open hole logging will not be done on this well.

9. Abnormal Pressures and Temperatures / Potential Hazards

Section 9 Summary:

The estimated bottom hole temperature of 163F to 183F. No H2S is expected but monitors will be in place to detect any H2S occurrences. Should these circumstances be encountered the operator and drilling contractor are prepared to take all necessary steps to ensure safety of all personnel and environment. Lost circulation is possible throughout the well.

10. Anticipated Starting Date and Duration of Operations

Section 10 Summary:

Anticipated spud date will be after BLM approval. Move in operations and drilling is expected to take 40 days.

Contingency Design

DRILLING PLAN: BLM COMPLIANCE (Supplement to BLM 3160-3) JRU APACHE U FEDERAL COM 708H

Contingency Design

Contingency Casing Design:

Hole Size	MD	Casing TVD	OD Csg	Weight	Grade	Collar	New/Used	SF Burst	SF Collapse	SF Tension
17.5	0' – 748'	748'	13-3/8"	54.5	J55	BTC	New	11.94	3.49	6.30
12.25	0' – 3885'	3884'	9-5/8"	40	L80-IC	BTC	New	5.17	4.60	3.95
8.75" / 6.75"	0' – 17186'	9809'	5-1/2"	20	P110-IC	Tenaris Wedge 441	New	1.18	2.89	2.14
XTO will keep cas	ing fluid filled to i	meet BLM's o	collapse requ	iirement.						

Wellhead: A multi-bowl wellhead system will be utilized. The well design chosen is: 3-String Potash (Non-Capitan Reef) [2nd BSP or Shallower]

Wellhead will be installed by manufacturer's representatives.

Manufacturer will monitor welding process to ensure appropriate temperature of seal.

Cement Program

	Primary Cementing											
Casing	Slurry Type	No. Sacks	Density (ppg)	Yield (ft3/sack)	TOC (ft)	Casing Setting Depth (MD)	Excess (%)	Slurry Description				
Surface 1	Lead	295	12.4	2.11	0	748	100%	Surface Class C Lead Cement				
Surface 1	Tail	313	14.8	1.33	448	748	100%	Surface Class C Tail Cement				
Intermediate 1	Lead	834	12.9	2.02	0	3885	50%	Intermediate Class C Lead Cement				
Intermediate 1	Tail	87	14.8	1.45	3585	3885	35%	Intermediate Class C Tail Cement				
Production 1	Lead											
Production 1	Tail	2349	13.2	1.44	6885	17186	30%	Production Class C Tail Cement				

Proposed Mud Circulation System

INTERVAL	Hole Size	Mud Type	MW (ppq)	Viscosity (sec/qt)	Fluid Loss (cc)	Comments
0' – 748'	17.5"	FW/Native	8.3 - 8.7	35-40	NC	Fresh Water or Native Water
748' - 3885'	12.25"	BDE/OBM or FW/Brine	9.5 - 10	30-32	NC	Fluid type will be based upon on well conditions. A fully saturated system will be used across the salt interval.
3885' – 17186'	8.75" / 6.75"	OBM	9 - 9.6	50-60	NC - 20	

Well Plan Report

Measured Depth:	17185.75 ft
TVD RKB:	9809.00 ft
Location	
Cartographic	New Mexico East -
Reference System:	NAD 27
Northing:	503666.50 ft
Easting:	655944.40 ft
RKB:	3407.00 ft
Ground Level:	3375.00 ft
North Reference:	Grid
Convergence Angle:	0.27 Deg

Plan Sections

Measured			TVD			Build	Turn	Dogleg
Depth	Inclination	Azimuth	RKB	Y Offset	X Offset	Rate	Rate	Rate
(ft)	(Deg)	(Deg)	(ft)	(ft)	(ft)	(Deg/100ft)	(Deg/100ft)	(Deg/100ft) Target
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3700.00	0.00	0.00	3700.00	0.00	0.00	0.00	0.00	0.00
4091.01	7.82	110.17	4089.80	-9.19	25.01	2.00	0.00	2.00
8552.91	7.82	110.17	8510.20	-218.51	594.89	0.00	0.00	0.00
8943.92	0.00	0.00	8900.00	-227.70	619.90	-2.00	0.00	2.00
9136.72	0.00	0.00	9092.80	-227.70	619.90	0.00	0.00	0.00
10261.72	90.00	269.84	9809.00	-229.75	-96.29	8.00	0.00	8.00
17135.69	90.00	269.84	9809.00	-249.43	-6970.24	0.00	0.00	0.00 LTP 1
17185.75	90.00	269.84	9809.00	-249.57	-7020.30	0.00	0.00	0.00 BHL 1
Position Uncertainty								

Measured T

TVD Highside

Lateral Vertical

tical

Magnitude Semi-major Semi-minor Semi-minor Tool

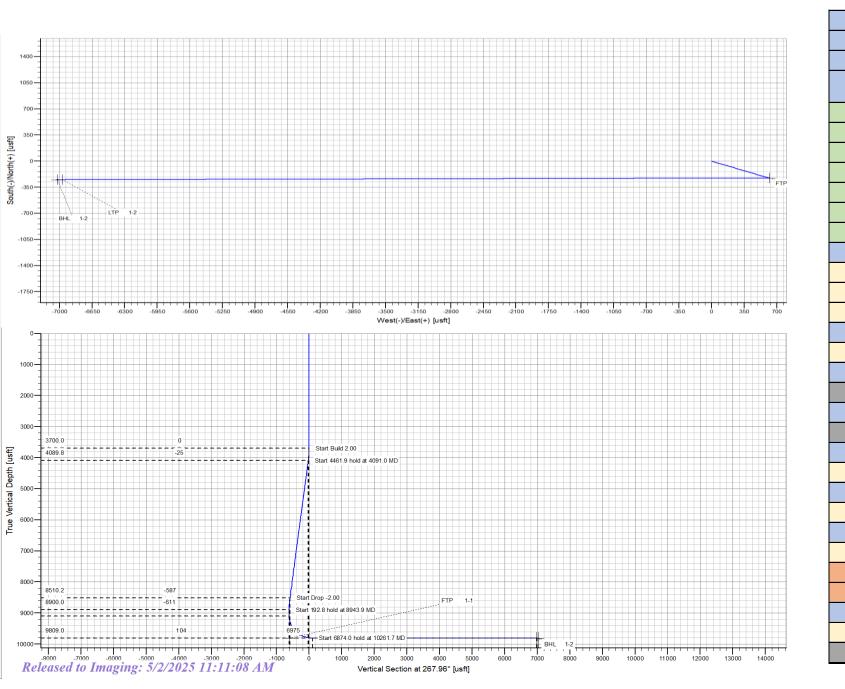
Received by OF	p: 4/24/2025	8:12:24 A	M					W	ell Plan R	Report				Page 12 of 42
Depth	Inclination	Azimuth	RKB	Error	Bias	Error	Bias	Error	Bias	of Bias	Error	Error	Azimuth	Used
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(°)	
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	MWD+IFR1+MS
100.000	0.000	0.000	100.000	0.700	0.000	0.350	0.000	2.300	0.000	0.000	0.751	0.220	112.264	MWD+IFR1+MS
200.000	0.000	0.000	200.000	1.112	0.000	0.861	0.000	2.310	0.000	0.000	1.259	0.627	122.711	MWD+IFR1+MS
300.000	0.000	0.000	300.000	1.497	0.000	1.271	0.000	2.325	0.000	0.000	1.698	0.986	125.469	MWD+IFR1+MS
400.000	0.000	0.000	400.000	1.871	0.000	1.658	0.000	2.347	0.000	0.000	2.108	1.344	126.713	MWD+IFR1+MS
500.000	0.000	0.000	500.000	2.240	0.000	2.034	0.000	2.374	0.000	0.000	2.503	1.701	127.419	MWD+IFR1+MS
600.000	0.000	0.000	600.000	2.607	0.000	2.405	0.000	2.407	0.000	0.000	2.888	2.059	127.873	MWD+IFR1+MS
700.000	0.000	0.000	700.000	2.971	0.000	2.773	0.000	2.444	0.000	0.000	3.267	2.417	128.190	MWD+IFR1+MS
800.000	0.000	0.000	800.000	3.334	0.000	3.138	0.000	2.486	0.000	0.000	3.642	2.775	128.423	MWD+IFR1+MS
900.000	0.000	0.000	900.000	3.696	0.000	3.502	0.000	2.532	0.000	0.000	4.014	3.133	128.602	MWD+IFR1+MS
1000.000	0.000	0.000	1000.000	4.058	0.000	3.865	0.000	2.581	0.000	0.000	4.384	3.491	128.744	MWD+IFR1+MS
1100.000	0.000	0.000	1100.000	4.419	0.000	4.228	0.000	2.635	0.000	0.000	4.752	3.849	128.859	MWD+IFR1+MS
1200.000	0.000	0.000	1200.000	4.779	0.000	4.589	0.000	2.691	0.000	0.000	5.119	4.207	128.954	MWD+IFR1+MS
1300.000	0.000	0.000	1300.000	5.140	0.000	4.950	0.000	2.751	0.000	0.000	5.484	4.565	129.034	MWD+IFR1+MS
1400.000	0.000	0.000	1400.000	5.500	0.000	5.311	0.000	2.814	0.000	0.000	5.849	4.924	129.102	MWD+IFR1+MS
1500.000	0.000	0.000	1500.000	5.860	0.000	5.672	0.000	2.879	0.000	0.000	6.213	5.282	129.161	MWD+IFR1+MS
1600.000	0.000	0.000	1600.000	6.219	0.000	6.032	0.000	2.946	0.000	0.000	6.577	5.640	129.212	MWD+IFR1+MS
1700.000	0.000	0.000	1700.000	6.579	0.000	6.392	0.000	3.016	0.000	0.000	6.939	5.999	129.257	MWD+IFR1+MS
1800.000	0.000	0.000	1800.000	6.938	0.000	6.752	0.000	3.088	0.000	0.000	7.302	6.357	129.297	MWD+IFR1+MS
1900.000	0.000	0.000	1900.000	7.298	0.000	7.112	0.000	3.161	0.000	0.000	7.664	6.715	129.333	MWD+IFR1+MS
2000.000	0.000	0.000	2000.000	7.657	0.000	7.471	0.000	3.237	0.000	0.000	8.026	7.074	129.365	MWD+IFR1+MS
2100.000	0.000	0.000	2100.000	8.016	0.000	7.831	0.000	3.314	0.000	0.000	8.387	7.432	129.394	MWD+IFR1+MS
2200.000	0.000	0.000	2200.000	8.375	0.000	8.190	0.000	3.393	0.000	0.000	8.748	7.791	129.420	MWD+IFR1+MS
2300.000	0.000	0.000	2300.000	8.734	0.000	8.550	0.000	3.473	0.000	0.000	9.109	8.149	129.444	MWD+IFR1+MS
2400.000	0.000	0.000	2400.000	9.093	0.000	8.909	0.000	3.555	0.000	0.000	9.470	8.507	129.466	MWD+IFR1+MS
2500.000	0.000	0.000	2500.000	9.452	0.000	9.268	0.000	3.638	0.000	0.000	9.831	8.866	129.486	MWD+IFR1+MS
2600.000	0.000	0.000	2600.000	9.811	0.000	9.627	0.000	3.722	0.000	0.000	10.191	9.224	129.505	MWD+IFR1+MS
2700.000	0.000	0.000	2700.000	10.170	0.000	9.986	0.000	3.808	0.000	0.000	10.552	9.583	129.522	MWD+IFR1+MS
2800.000	0.000	0.000	2800.000	10.529	0.000	10.345	0.000	3.896	0.000	0.000	10.912	9.941	129.538	MWD+IFR1+MS
2900.000	0.000	0.000	2900.000	10.888	0.000	10.705	0.000	3.984	0.000	0.000	11.272	10.299	129.552	MWD+IFR1+MS
3000.000	0.000	0.000	3000.000	11.247	0.000	11.063	0.000	4.074	0.000	0.000	11.632	10.658	129.566	MWD+IFR1+MS

RElective International Action Control Control

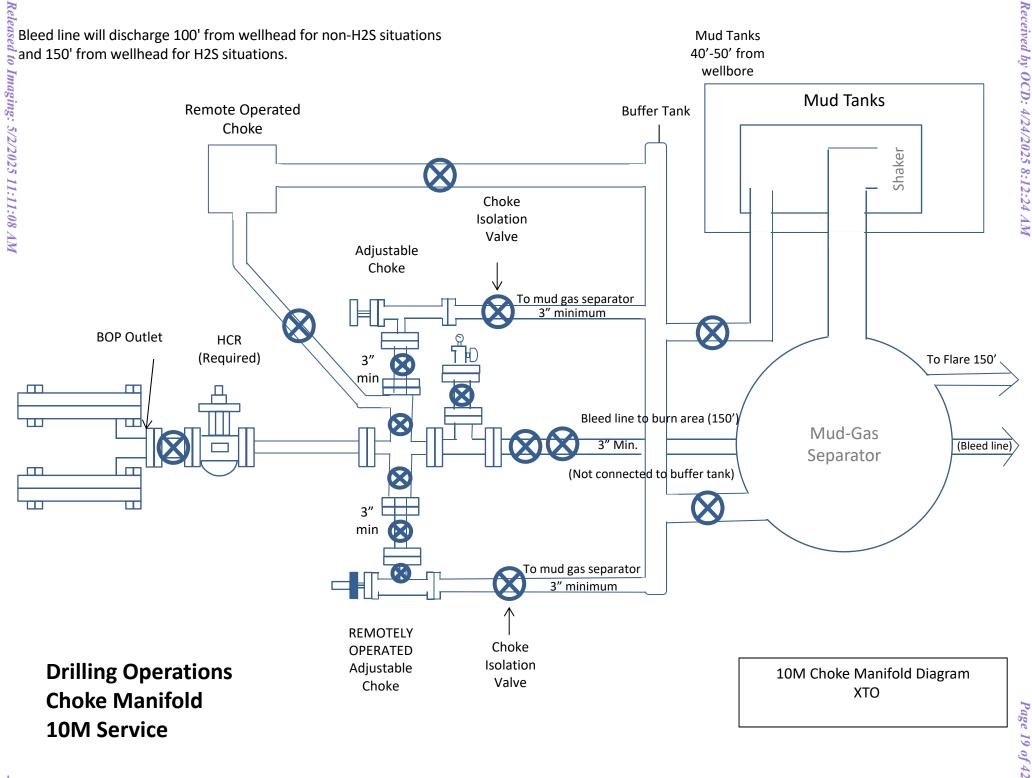
Receized by OGD.	: 4/24/2025	8:12:24 A	M					W	ell Plan R	Report			Page 13 of 42
3100.000	0.000	0.000	3100.000	11.606	0.000	11.422	0.000	4.165	0.000	0.000	11.992	11.016	129.579 MWD+IFR1+MS
3200.000	0.000	0.000	3200.000	11.965	0.000	11.781	0.000	4.258	0.000	0.000	12.352	11.375	129.591 MWD+IFR1+MS
3300.000	0.000	0.000	3300.000	12.323	0.000	12.140	0.000	4.352	0.000	0.000	12.712	11.733	129.603 MWD+IFR1+MS
3400.000	0.000	0.000	3400.000	12.682	0.000	12.499	0.000	4.447	0.000	0.000	13.071	12.092	129.613 MWD+IFR1+MS
3500.000	0.000	0.000	3500.000	13.041	0.000	12.858	0.000	4.543	0.000	0.000	13.431	12.450	129.623 MWD+IFR1+MS
3600.000	0.000	0.000	3600.000	13.400	0.000	13.217	0.000	4.641	0.000	0.000	13.790	12.809	129.633 MWD+IFR1+MS
3700.000	0.000	0.000	3700.000	13.758	0.000	13.576	0.000	4.741	0.000	0.000	14.150	13.167	129.642 MWD+IFR1+MS
3800.000	2.000	110.169	3799.980	13.680	0.000	14.372	-0.000	4.841	0.000	0.000	14.484	13.569	130.952 MWD+IFR1+MS
3900.000	4.000	110.169	3899.838	14.180	0.000	14.702	-0.000	4.944	0.000	0.000	14.800	14.106	132.530 MWD+IFR1+MS
4000.000	6.000	110.169	3999.452	14.654	0.000	15.034	-0.000	5.049	0.000	0.000	15.121	14.629	-44.799 MWD+IFR1+MS
4091.012	7.820	110.169	4089.799	15.036	0.000	15.335	-0.000	5.146	0.000	0.000	15.415	15.063	-41.242 MWD+IFR1+MS
4100.000	7.820	110.169	4098.703	15.065	0.000	15.364	-0.000	5.154	0.000	0.000	15.444	15.093	-41.252 MWD+IFR1+MS
4200.000	7.820	110.169	4197.773	15.390	0.000	15.691	-0.000	5.261	0.000	0.000	15.763	15.423	-42.406 MWD+IFR1+MS
4300.000	7.820	110.169	4296.843	15.724	0.000	16.028	-0.000	5.370	0.000	0.000	16.086	15.768	-44.459 MWD+IFR1+MS
4400.000	7.820	110.169	4395.913	16.060	0.000	16.366	-0.000	5.482	0.000	0.000	16.412	16.114	133.301 MWD+IFR1+MS
4500.000	7.820	110.169	4494.983	16.397	0.000	16.706	-0.000	5.595	0.000	0.000	16.741	16.459	130.883 MWD+IFR1+MS
4600.000	7.820	110.169	4594.053	16.736	0.000	17.047	-0.000	5.710	0.000	0.000	17.073	16.804	128.309 MWD+IFR1+MS
4700.000	7.820	110.169	4693.123	17.077	0.000	17.389	-0.000	5.827	0.000	0.000	17.407	17.149	125.614 MWD+IFR1+MS
4800.000	7.820	110.169	4792.193	17.418	0.000	17.732	-0.000	5.947	0.000	0.000	17.744	17.494	122.845 MWD+IFR1+MS
4900.000	7.820	110.169	4891.263	17.761	0.000	18.077	-0.000	6.068	0.000	0.000	18.084	17.839	120.058 MWD+IFR1+MS
5000.000	7.820	110.169	4990.333	18.105	0.000	18.422	-0.000	6.191	0.000	0.000	18.426	18.183	117.310 MWD+IFR1+MS
5100.000	7.820	110.169	5089.403	18.450	0.000	18.768	-0.000	6.317	0.000	0.000	18.770	18.527	114.654 MWD+IFR1+MS
5200.000	7.820	110.169	5188.473	18.796	0.000	19.116	-0.000	6.444	0.000	0.000	19.116	18.871	112.134 MWD+IFR1+MS
5300.000	7.820	110.169	5287.543	19.143	0.000	19.464	-0.000	6.574	0.000	0.000	19.464	19.215	109.779 MWD+IFR1+MS
5400.000	7.820	110.169	5386.613	19.490	0.000	19.813	-0.000	6.705	0.000	0.000	19.814	19.560	107.607 MWD+IFR1+MS
5500.000	7.820	110.169	5485.683	19.839	0.000	20.163	-0.000	6.839	0.000	0.000	20.164	19.904	105.624 MWD+IFR1+MS
5600.000	7.820	110.169	5584.753	20.189	0.000	20.513	-0.000	6.975	0.000	0.000	20.517	20.249	103.825 MWD+IFR1+MS
5700.000	7.820	110.169	5683.823	20.539	0.000	20.865	-0.000	7.113	0.000	0.000	20.870	20.594	102.203 MWD+IFR1+MS
5800.000	7.820	110.169	5782.893	20.890	0.000	21.217	-0.000	7.254	0.000	0.000	21.224	20.940	100.743 MWD+IFR1+MS
5900.000	7.820	110.169	5881.963	21.241	0.000	21.569	-0.000	7.396	0.000	0.000	21.579	21.286	99.433 MWD+IFR1+MS
6000.000	7.820	110.169	5981.033	21.594		21.922		7.541	0.000	0.000	21.935	21.632	98.258 MWD+IFR1+MS
6100.000	7.820	110.169	6080.103	21.947	0.000	22.276	-0.000	7.688	0.000	0.000	22.292	21.979	97.203 MWD+IFR1+MS
6200.000	7.820	110.169	6179.173	22.300	0.000	22.630	-0.000	7.837	0.000	0.000	22.649	22.327	96.255 MWD+IFR1+MS

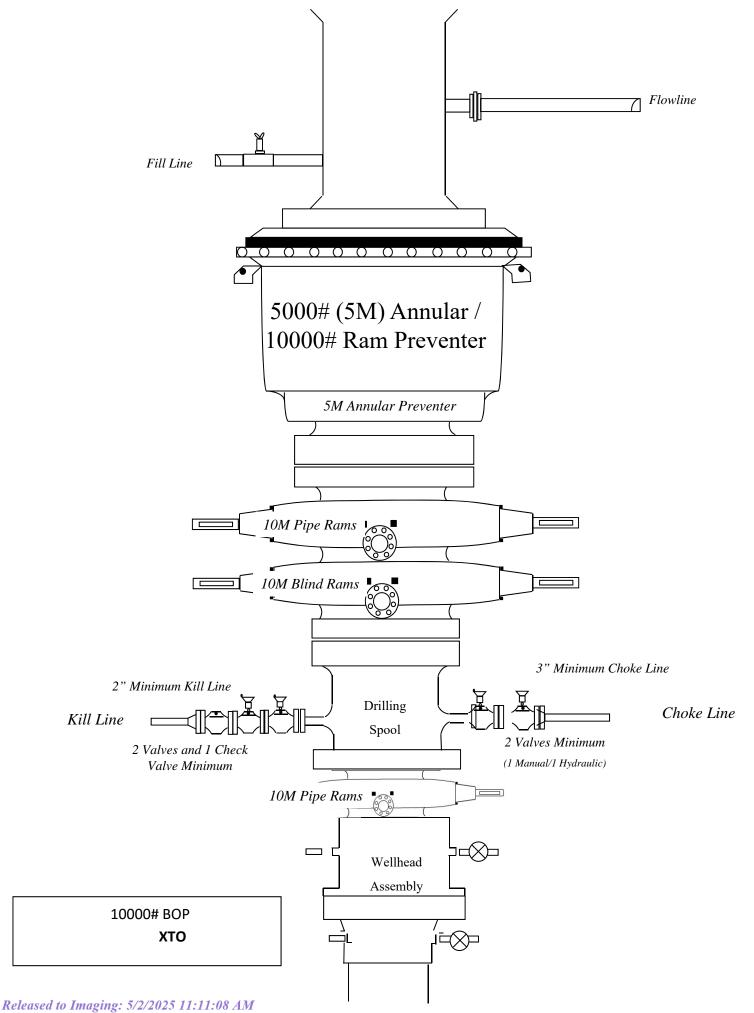
Received by 196D	: 4/24/2025	8:12:24 A	M					W	ell Plan R	Report			Page 14 of 42
6300.000	7.820	110.169	6278.243	22.654	0.000	22.985	-0.000	7.989	0.000	0.000	23.006	22.675	95.403 MWD+IFR1+MS
6400.000	7.820	110.169	6377.313	23.009	0.000	23.340	-0.000	8.143	0.000	0.000	23.365	23.024	94.636 MWD+IFR1+MS
6500.000	7.820	110.169	6476.383	23.364	0.000	23.696	-0.000	8.299	0.000	0.000	23.723	23.373	93.944 MWD+IFR1+MS
6600.000	7.820	110.169	6575.453	23.720	0.000	24.052	-0.000	8.458	0.000	0.000	24.082	23.723	93.319 MWD+IFR1+MS
6700.000	7.820	110.169	6674.523	24.076	0.000	24.409	-0.000	8.619	0.000	0.000	24.442	24.073	92.753 MWD+IFR1+MS
6800.000	7.820	110.169	6773.593	24.432	0.000	24.766	-0.000	8.783	0.000	0.000	24.802	24.424	92.241 MWD+IFR1+MS
6900.000	7.820	110.169	6872.663	24.789	0.000	25.124	-0.000	8.949	0.000	0.000	25.162	24.775	91.777 MWD+IFR1+MS
7000.000	7.820	110.169	6971.733	25.147	0.000	25.482	-0.000	9.117	0.000	0.000	25.522	25.127	91.355 MWD+IFR1+MS
7100.000	7.820	110.169	7070.803	25.504	0.000	25.840	-0.000	9.288	0.000	0.000	25.883	25.480	90.971 MWD+IFR1+MS
7200.000	7.820	110.169	7169.873	25.863	0.000	26.198	-0.000	9.461	0.000	0.000	26.244	25.832	90.621 MWD+IFR1+MS
7300.000	7.820	110.169	7268.943	26.221	0.000	26.557	-0.000	9.637	0.000	0.000	26.606	26.186	90.303 MWD+IFR1+MS
7400.000	7.820	110.169	7368.013	26.580	0.000	26.917	-0.000	9.816	0.000	0.000	26.967	26.539	90.013 MWD+IFR1+MS
7500.000	7.820	110.169	7467.083	26.939	0.000	27.276	-0.000	9.997	0.000	0.000	27.329	26.894	89.748 MWD+IFR1+MS
7600.000	7.820	110.169	7566.153	27.299	0.000	27.636	-0.000	10.180	0.000	0.000	27.691	27.248	89.506 MWD+IFR1+MS
7700.000	7.820	110.169	7665.223	27.659	0.000	27.996	-0.000	10.366	0.000	0.000	28.053	27.603	89.285 MWD+IFR1+MS
7800.000	7.820	110.169	7764.293	28.019	0.000	28.357	-0.000	10.555	0.000	0.000	28.415	27.959	89.084 MWD+IFR1+MS
7900.000	7.820	110.169	7863.363	28.379	0.000	28.717	-0.000	10.746	0.000	0.000	28.778	28.315	88.900 MWD+IFR1+MS
8000.000	7.820	110.169	7962.433	28.740	0.000	29.078	-0.000	10.940	0.000	0.000	29.141	28.671	88.732 MWD+IFR1+MS
8100.000	7.820	110.169	8061.503	29.101	0.000	29.440	-0.000	11.136	0.000	0.000	29.504	29.027	88.579 MWD+IFR1+MS
8200.000	7.820	110.169	8160.573	29.462	0.000	29.801	-0.000	11.335	0.000	0.000	29.867	29.384	88.440 MWD+IFR1+MS
8300.000	7.820	110.169	8259.643	29.824	0.000	30.163	-0.000	11.537	0.000	0.000	30.230	29.741	88.313 MWD+IFR1+MS
8400.000	7.820	110.169	8358.713	30.185	0.000	30.525	-0.000	11.742	0.000	0.000	30.593	30.099	88.198 MWD+IFR1+MS
8500.000	7.820	110.169	8457.783	30.547	0.000	30.887	-0.000	11.949	0.000	0.000	30.957	30.457	88.093 MWD+IFR1+MS
8552.910	7.820	110.169	8510.201	30.737	0.000	31.076	-0.000	12.059	0.000	0.000	31.146	30.646	88.213 MWD+IFR1+MS
8600.000	6.878	110.169	8556.903	30.929	0.000	31.244	-0.000	12.159	0.000	0.000	31.313	30.814	88.268 MWD+IFR1+MS
8700.000	4.878	110.169	8656.372	31.356	0.000	31.601	-0.000	12.372	0.000	0.000	31.682	31.200	85.793 MWD+IFR1+MS
8800.000	2.878	110.169	8756.138	31.784	0.000	31.956	-0.000	12.586	0.000	0.000	32.069	31.603	80.619 MWD+IFR1+MS
8900.000	0.878	110.169	8856.079	32.174	0.000	32.308	-0.000	12.799	0.000	0.000	32.460	31.993	75.334 MWD+IFR1+MS
8943.922	0.000	0.000	8900.000	32.580	0.000	32.177	0.000	12.893	0.000	0.000	32.609	32.147	75.268 MWD+IFR1+MS
9000.000	0.000	0.000	8956.078	32.772	0.000	32.367	0.000	13.013	0.000	0.000	32.801	32.338	75.560 MWD+IFR1+MS
9100.000	0.000	0.000	9056.078	33.115	0.000	32.708	0.000	13.230	0.000	0.000	33.141	32.682	76.156 MWD+IFR1+MS
9136.722	0.000	0.000	9092.800	33.240	0.000	32.833	0.000	13.310	0.000	0.000	33.265	32.807	76.276 MWD+IFR1+MS
9200.000	5.062	269.836	9155.995	32.812	-0.000	33.449	0.000	13.448	0.000	0.000	33.478	33.056	74.396 MWD+IFR1+MS

Received by 1960:	4/24/2025	8:12:24 A	M					W	ell Plan R	eport				Page 15 of 42
9300.000	13.062	269.836	9254.667	33.126	-0.000	33.763	0.000	13.717	0.000	0.000	34.262	33.713	17.354	MWD+IFR1+MS
9400.000	21.062	269.836	9350.188	33.344	-0.000	34.064	0.000	14.172	0.000	0.000	35.636	34.031	8.003	MWD+IFR1+MS
9500.000	29.062	269.836	9440.699	33.073	-0.000	34.348	0.000	14.874	0.000	0.000	36.834	34.314	6.378	MWD+IFR1+MS
9600.000	37.062	269.836	9524.439	32.385	-0.000	34.613	0.000	15.859	0.000	0.000	37.827	34.576	5.816	MWD+IFR1+MS
9700.000	45.062	269.836	9599.778	31.375	-0.000	34.860	0.000	17.122	0.000	0.000	38.611	34.819	5.634	MWD+IFR1+MS
9800.000	53.062	269.836	9665.248	30.167	-0.000	35.090	0.000	18.625	0.000	0.000	39.193	35.045	5.658	MWD+IFR1+MS
9900.000	61.062	269.836	9719.577	28.915	-0.000	35.306	0.000	20.308	0.000	0.000	39.589	35.256	5.826	MWD+IFR1+MS
10000.000	69.062	269.836	9761.706	27.801	-0.000	35.509	0.000	22.108	0.000	0.000	39.827	35.454	6.109	MWD+IFR1+MS
10100.000	77.062	269.836	9790.816	27.020	-0.000	35.701	0.000	23.957	0.000	0.000	39.944	35.640	6.480	MWD+IFR1+MS
10200.000	85.062	269.836	9806.339	26.751	-0.000	35.881	0.000	25.794	0.000	0.000	39.982	35.814	6.901	MWD+IFR1+MS
10261.722	90.000	269.836	9808.997	26.299	0.000	35.982	0.000	26.299	0.000	0.000	39.987	35.912	7.137	MWD+IFR1+MS
10300.000	90.000	269.836	9808.997	26.384	0.000	36.044	0.000	26.384	0.000	0.000	39.990	35.973	7.288	MWD+IFR1+MS
10400.000	90.000	269.836	9808.997	26.559	0.000	36.235	0.000	26.559	0.000	0.000	39.997	36.158	7.759	MWD+IFR1+MS
10500.000	90.000	269.836	9808.997	26.759	0.000	36.462	0.000	26.759	0.000	0.000	40.005	36.378	8.353	MWD+IFR1+MS
10600.000	90.000	269.836	9808.997	26.981	0.000	36.721	0.000	26.981	0.000	0.000	40.016	36.630	9.102	MWD+IFR1+MS
10700.000	90.000	269.836	9808.997	27.223	0.000	37.013	0.000	27.223	0.000	0.000	40.030	36.911	10.061	MWD+IFR1+MS
10800.000	90.000	269.836	9808.997	27.486	0.000	37.337	0.000	27.486	0.000	0.000	40.047	37.221	11.314	MWD+IFR1+MS
10900.000	90.000	269.836	9808.997	27.769	0.000	37.690	0.000	27.769	0.000	0.000	40.070	37.556	12.996	MWD+IFR1+MS
11000.000	90.000	269.836	9808.997	28.071	0.000	38.074	0.000	28.071	0.000	0.000	40.101	37.914	15.335	MWD+IFR1+MS
11100.000	90.000	269.836	9808.997	28.391	0.000	38.487	0.000	28.391	0.000	0.000	40.144	38.288	18.724	MWD+IFR1+MS
11200.000	90.000	269.836	9808.997	28.729	0.000	38.927	0.000	28.729	0.000	0.000	40.211	38.667	23.842	MWD+IFR1+MS
11300.000	90.000	269.836	9808.997	29.084	0.000	39.394	0.000	29.084	0.000	0.000	40.322	39.030	31.686	MWD+IFR1+MS
11400.000	90.000	269.836	9808.997	29.456	0.000	39.888	0.000	29.456	0.000	0.000	40.512	39.341	42.732	MWD+IFR1+MS
11500.000	90.000	269.836	9808.997	29.844	0.000	40.406	0.000	29.844	0.000	0.000	40.815	39.564	54.767	MWD+IFR1+MS
11600.000	90.000	269.836	9808.997	30.248	0.000	40.949	0.000	30.248	0.000	0.000	41.227	39.703	64.334	MWD+IFR1+MS
11700.000	90.000	269.836	9808.997	30.666	0.000	41.515	0.000	30.666	0.000	0.000	41.717	39.788	70.740	MWD+IFR1+MS
11800.000	90.000	269.836	9808.997	31.098	0.000	42.103	0.000	31.098	0.000	0.000	42.259	39.844	74.929	MWD+IFR1+MS
11900.000	90.000	269.836	9808.997	31.544	0.000	42.713	0.000	31.544	0.000	0.000	42.838	39.884	77.765	MWD+IFR1+MS
12000.000	90.000	269.836	9808.997	32.003	0.000	43.343	0.000	32.003	0.000	0.000	43.446	39.916	79.772	MWD+IFR1+MS
12100.000	90.000	269.836	9808.997	32.474	0.000	43.992	0.000	32.474	0.000	0.000	44.080	39.942		MWD+IFR1+MS
12200.000	90.000	269.836	9808.997	32.958	0.000	44.660	0.000	32.958	0.000	0.000	44.737	39.966	82.383	MWD+IFR1+MS
12300.000	90.000	269.836	9808.997	33.452	0.000	45.347	0.000	33.452	0.000	0.000	45.413	39.987	83.269	MWD+IFR1+MS
12400.000	90.000	269.836	9808.997	33.958	0.000	46.050	0.000	33.958	0.000	0.000	46.109	40.007	83.982	MWD+IFR1+MS


Released to states in a submar 29 or is in Space (WellPlanning/Reports/JamesRanchUnitApache708H.HTML

Receized by OGD:	4/24/2025	8:12:24 A	M					W	ell Plan R	eport			Page	16 of 42
12500.000	90.000	269.836	9808.997	34.474	0.000	46.769	0.000	34.474	0.000	0.000	46.823	40.026	84.566 MWD+IFR1+M	S
12600.000	90.000	269.836	9808.997	35.001	0.000	47.504	0.000	35.001	0.000	0.000	47.553	40.045	85.052 MWD+IFR1+M	S
12700.000	90.000	269.836	9808.997	35.536	0.000	48.254	0.000	35.536	0.000	0.000	48.298	40.064	85.462 MWD+IFR1+M	S
12800.000	90.000	269.836	9808.997	36.081	0.000	49.019	0.000	36.081	0.000	0.000	49.059	40.082	85.813 MWD+IFR1+M	S
12900.000	90.000	269.836	9808.997	36.635	0.000	49.796	0.000	36.635	0.000	0.000	49.833	40.101	86.116 MWD+IFR1+M	S
13000.000	90.000	269.836	9808.997	37.197	0.000	50.587	0.000	37.197	0.000	0.000	50.621	40.120	86.380 MWD+IFR1+M	S
13100.000	90.000	269.836	9808.997	37.766	0.000	51.390	0.000	37.766	0.000	0.000	51.421	40.139	86.612 MWD+IFR1+M	S
13200.000	90.000	269.836	9808.997	38.344	0.000	52.204	0.000	38.344	0.000	0.000	52.234	40.158	86.817 MWD+IFR1+M	S
13300.000	90.000	269.836	9808.997	38.928	0.000	53.030	0.000	38.928	0.000	0.000	53.058	40.177	87.000 MWD+IFR1+M	S
13400.000	90.000	269.836	9808.997	39.520	0.000	53.867	0.000	39.520	0.000	0.000	53.893	40.197	87.163 MWD+IFR1+M	S
13500.000	90.000	269.836	9808.997	40.118	0.000	54.713	0.000	40.118	0.000	0.000	54.738	40.217	87.311 MWD+IFR1+M	S
13600.000	90.000	269.836	9808.997	40.723	0.000	55.570	0.000	40.723	0.000	0.000	55.593	40.238	87.444 MWD+IFR1+M	S
13700.000	90.000	269.836	9808.997	41.333	0.000	56.435	0.000	41.333	0.000	0.000	56.457	40.259	87.565 MWD+IFR1+M	S
13800.000	90.000	269.836	9808.997	41.950	0.000	57.310	0.000	41.950	0.000	0.000	57.331	40.280	87.675 MWD+IFR1+M	S
13900.000	90.000	269.836	9808.997	42.572	0.000	58.193	0.000	42.572	0.000	0.000	58.213	40.302	87.776 MWD+IFR1+M	S
14000.000	90.000	269.836	9808.997	43.199	0.000	59.084	0.000	43.199	0.000	0.000	59.103	40.324	87.869 MWD+IFR1+M	S
14100.000	90.000	269.836	9808.997	43.831	0.000	59.983	0.000	43.831	0.000	0.000	60.001	40.347	87.955 MWD+IFR1+M	S
14200.000	90.000	269.836	9808.997	44.469	0.000	60.889	0.000	44.469	0.000	0.000	60.906	40.370	88.034 MWD+IFR1+M	S
14300.000	90.000	269.836	9808.997	45.110	0.000	61.802	0.000	45.110	0.000	0.000	61.819	40.394	88.107 MWD+IFR1+M	S
14400.000	90.000	269.836	9808.997	45.757	0.000	62.722	0.000	45.757	0.000	0.000	62.738	40.418	88.175 MWD+IFR1+M	S
14500.000	90.000	269.836	9808.997	46.407	0.000	63.649	0.000	46.407	0.000	0.000	63.664	40.443	88.238 MWD+IFR1+M	S
14600.000	90.000	269.836	9808.997	47.062	0.000	64.582	0.000	47.062	0.000	0.000	64.596	40.468	88.297 MWD+IFR1+M	S
14700.000	90.000	269.836	9808.997	47.721	0.000	65.520	0.000	47.721	0.000	0.000	65.534	40.494	88.352 MWD+IFR1+M	S
14800.000	90.000	269.836	9808.997	48.383	0.000	66.464	0.000	48.383	0.000	0.000	66.477	40.520	88.404 MWD+IFR1+M	S
14900.000	90.000	269.836	9808.997	49.049	0.000	67.414	0.000	49.049	0.000	0.000	67.427	40.546	88.452 MWD+IFR1+M	S
15000.000	90.000	269.836	9808.997	49.718	0.000	68.369	0.000	49.718	0.000	0.000	68.381	40.574	88.498 MWD+IFR1+M	S
15100.000	90.000	269.836	9808.997	50.391	0.000	69.329	0.000	50.391	0.000	0.000	69.340	40.601	88.540 MWD+IFR1+M	S
15200.000	90.000	269.836	9808.997	51.067	0.000	70.293	0.000	51.067	0.000	0.000	70.305	40.629	88.581 MWD+IFR1+M	S
15300.000	90.000	269.836	9808.997	51.746	0.000	71.263	0.000	51.746	0.000	0.000	71.273	40.658	88.619 MWD+IFR1+M	S
15400.000	90.000	269.836	9808.997	52.428	0.000	72.236	0.000	52.428	0.000	0.000	72.247	40.687	88.655 MWD+IFR1+M	S
15500.000	90.000	269.836	9808.997	53.113	0.000	73.214	0.000	53.113	0.000	0.000	73.224	40.717	88.689 MWD+IFR1+M	S
15600.000	90.000	269.836	9808.997	53.800	0.000	74.196	0.000	53.800	0.000	0.000	74.206	40.747	88.722 MWD+IFR1+M	S
15700.000	90.000	269.836	9808.997	54.491	0.000	75.182	0.000	54.491	0.000	0.000	75.191	40.777	88.753 MWD+IFR1+M	S


Received by 196P:	4/24/2025	8:12:24 A	M					W	ell Plan R	eport				Page 17 of 42
15800.000	90.000	269.836	9808.997	55.183	0.000	76.171	0.000	55.183	0.000	0.000	76.181	40.809	88.782	MWD+IFR1+MS
15900.000	90.000	269.836	9808.997	55.878	0.000	77.164	0.000	55.878	0.000	0.000	77.173	40.840	88.810	MWD+IFR1+MS
16000.000	90.000	269.836	9808.997	56.576	0.000	78.161	0.000	56.576	0.000	0.000	78.170	40.872	88.836	MWD+IFR1+MS
16100.000	90.000	269.836	9808.997	57.276	0.000	79.161	0.000	57.276	0.000	0.000	79.169	40.905	88.862	MWD+IFR1+MS
16200.000	90.000	269.836	9808.997	57.978	0.000	80.164	0.000	57.978	0.000	0.000	80.172	40.938	88.886	MWD+IFR1+MS
16300.000	90.000	269.836	9808.997	58.682	0.000	81.171	0.000	58.682	0.000	0.000	81.178	40.972	88.909	MWD+IFR1+MS
16400.000	90.000	269.836	9808.997	59.388	0.000	82.180	0.000	59.388	0.000	0.000	82.187	41.006	88.931	MWD+IFR1+MS
16500.000	90.000	269.836	9808.997	60.096	0.000	83.192	0.000	60.096	0.000	0.000	83.199	41.040	88.952	MWD+IFR1+MS
16600.000	90.000	269.836	9808.997	60.806	0.000	84.207	0.000	60.806	0.000	0.000	84.214	41.076	88.972	MWD+IFR1+MS
16700.000	90.000	269.836	9808.997	61.517	0.000	85.224	0.000	61.517	0.000	0.000	85.231	41.111	88.992	MWD+IFR1+MS
16800.000	90.000	269.836	9808.997	62.231	0.000	86.244	0.000	62.231	0.000	0.000	86.251	41.147	89.010	MWD+IFR1+MS
16900.000	90.000	269.836	9808.997	62.946	0.000	87.267	0.000	62.946	0.000	0.000	87.274	41.184	89.028	MWD+IFR1+MS
17000.000	90.000	269.836	9808.997	63.663	0.000	88.292	0.000	63.663	0.000	0.000	88.299	41.221	89.045	MWD+IFR1+MS
17100.000	90.000	269.836	9808.997	64.381	0.000	89.319	0.000	64.381	0.000	0.000	89.326	41.259	89.062	MWD+IFR1+MS
17135.695	90.000	269.836	9808.997	64.637	0.000	89.686	0.000	64.637	0.000	0.000	89.692	41.272	89.067	MWD+IFR1+MS
17185.754	90.000	269.836	9808.997	64.996	0.000	90.200	0.000	64.996	0.000	0.000	90.206	41.291	89.075	MWD+IFR1+MS


Plan Targets

	Measured Depth	Grid Northing	Grid Easting	TVD MSL Target Shape
Target Name	(ft)	(ft)	(ft)	(ft)
FTP 1	9996.66	503438.80	656564.30	6402.00 CIRCLE
LTP 1	17135.76	503417.10	648974.10	6402.00 CIRCLE
BHL 1	17185.82	503417.00	648924.10	6402.00 CIRCLE

<u>Formation</u>	<u>TVDSS (feet)</u>	<u>MD TVD (feet)</u>
Alluvium	surface	surface
Rustler	2,924'	483'
Salado/Top of Salt	2,634'	773'
MB 126	1,940'	1,467'
Castile Anhydrite 1 Top	880'	2,527'
Castile Anhydrite 1 Base	455'	2,952'
Castile Anhydrite 2 Top	219'	3,188'
Castile Anhydrite 2 Base	124'	3,283'
Base Salt	-221'	3,628'
De law are/Lam ar	-479'	3,886'
Bell Canyon	-530'	3,937'
Cherry Canyon	-1,722'	5,129'
Brushy Canyon Ss.	-3,222'	6,629'
Bone Spring Lm.	-4,358'	7,765'
Avalon Ss.	-4,434'	7,841'
Upper Avalon Carb.	-4,654'	8,061'
Upper Avalon Sh.	-4,737'	8,144'
Middle Avalon Carb.	-4,783'	8,190'
Lw. Avalon Sh.	-4,849'	8,256'
First Bone Spring Carb.	-5,278'	8,685'
First Bone Spring Ss.	-5,415'	8,822'
Second Bone Spring Carb.	-5,864'	9,271'
Second Bone Spring A Ss.	-6,158'	9,565'
Second Bone Spring A/B Carb.	-6,321'	9,728'
Second Bone Spring B Ss.	-6,372'	9,779'
Landing Point	-6,402'	9,809'
TD	-6,352'	9,759'
Third Bone Spring Carb.	-6,506'	9,913'
Harkey Ss.	-6,707'	10,114'
Third Bone Spring Shale	-6,789'	10,196'

Tenaris

TenarisHydril Wedge 511

Printed on: Rage 21 of 42

Fipe Bouy
Grade: P110-ICY
1st Band: White
2nd Band: Pale Green
3rd Band: Pale Green
4th Band: -
5th Band: -
6th Band: -

Pine Rody

Outside Diameter	7.625 in.	Wall Thickness	0.375 in.	Grade	P110-ICY
Min. Wall Thickness	90.00 %	Pipe Body Drift	API Standard	Туре	Casing
Connection OD Option	REGULAR				

Pipe Body Data

Geometry	
Nominal OD	7.625 in.
Nominal Weight	29.70 lb/ft
Drift	6.750 in.
Nominal ID	6.875 in.

Wall Thickness	0.375 in.
Plain End Weight	29.06 lb/ft
OD Tolerance	API

Performance

Coupling

Grade: P110-ICY Body: White

2nd Band: -

3rd Band: -

1st Band: Pale Green

Body Yield Strength	1068 x1000 lb
Min. Internal Yield Pressure	11,070 psi
SMYS	125,000 psi
Collapse Pressure	7360 psi

Connection Data

Geometry	
Connection OD	7.625 in.
Connection ID	6.787 in.
Make-up Loss	3.704 in.
Threads per inch	3.28
Connection OD Option	Regular

Performance	
Tension Efficiency	61.10 %
Joint Yield Strength	653 x1000 lb
Internal Pressure Capacity	11,070 psi
Compression Efficiency	73.80 %
Compression Strength	788 x1000 lb
Max. Allowable Bending	45.83 °/100 ft
External Pressure Capacity	7360 psi

Make-Up Torques	
Minimum	5900 ft-lb
Optimum	7100 ft-lb
Maximum	10,300 ft-lb
Operation Limit Torques	
Operating Torque	55,000 ft-lb
Yield Torque	82,000 ft-lb

Notes

For the lastest performance data, always visit our website: www.tenaris.com For further information on concepts indicated in this datasheet, download the Datasheet Manual from www.tenaris.com

Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information –if any-provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of any kind for any loss, damage or injury resulting from, or in connection with any Information contained hereunder or any use thereof. The Information in this document is subject to change or modification without notice. Tenaris's products and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com . ©Tenaris 2025. All rights reserved.

Tenaris

TenarisHydril Wedge 511

Pipe Body
Grade: L80-IC
1st Band: Red
2nd Band: Brown
3rd Band: Pale Green
4th Band: -
5th Band: -
6th Band: -

Outside Diameter	7.625 in.	Wall Thickness	0.375 in.	Grade	L80-IC
Min. Wall Thickness	87.50 %	Pipe Body Drift	API Standard	Туре	Casing
Connection OD Option	REGULAR				

Pipe Body Data

Geometry	
Nominal OD	7.625 in.
Nominal Weight	29.70 lb/ft
Drift	6.750 in.
Nominal ID	6.875 in.

Wall Thickness	0.375 in.
Plain End Weight	29.06 lb/ft
OD Tolerance	API

Performance

Malea Lin Tananaa

Coupling

Grade: 180-IC Body: Red

1st Band: Brown 2nd Band: -3rd Band: -

Body Yield Strength	683 x1000 lb
Min. Internal Yield Pressure	6890 psi
SMYS	80,000 psi
Collapse Pressure	5900 psi

Connection Data

Geometry	
Connection OD	7.625 in.
Connection ID	6.787 in.
Make-up Loss	3.704 in.
Threads per inch	3.28
Connection OD Option	Regular

Performance	
Tension Efficiency	61.10 %
Joint Yield Strength	417 x1000 lb
Internal Pressure Capacity	6890 psi
Compression Efficiency	73.80 %
Compression Strength	504 x1000 lb
Max. Allowable Bending	29.33 °/100 ft
External Pressure Capacity	5900 psi

Make-Up lorques	
Minimum	5900 ft-lb
Optimum	7100 ft-lb
Maximum	10,300 ft-lb
Operation Limit Torques	
Operating Torque	35,000 ft-Ib
Yield Torque	52,000 ft-lb

Notes

For the lastest performance data, always visit our website: www.tenaris.com For further information on concepts indicated in this datasheet, download the Datasheet Manual from www.tenaris.com

Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information –if any-provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of any kind for any loss, damage or injury resulting from, or in connection with any Information contained hereunder or any use thereof. The Information in this document is subject to change or modification without notice. Tenaris's products and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com . ©Tenaris 2024.All rights reserved.

Tenaris

TenarisHydril Wedge 441[®]

12,300 psi

Coupling	Pipe Body
Grade: P110-IC	Grade: P110-IC
Body: White	1st Band: White
1st Band: -	2nd Band: Pale Green
2nd Band: -	3rd Band: -
3rd Band: -	4th Band: -
	5th Band: -
	6th Band: -

Outside Diameter	5.500 in.	Wall Thickness	0.361 in.	Grade	P110-IC
Min. Wall Thickness	87.50 %	Pipe Body Drift	API Standard	Туре	Casing
Connection OD Option	REGULAR				

Pipe Body Data

Geometry			
Nominal OD	5.500 in.	Wall Thickness	0.361 in.
Nominal Weight	20.00 lb/ft	Plain End Weight	19.83 lb/ft
Drift	4.653 in.	OD Tolerance	API
Nominal ID	4.778 in.		

Dorformonoc

Connection Data

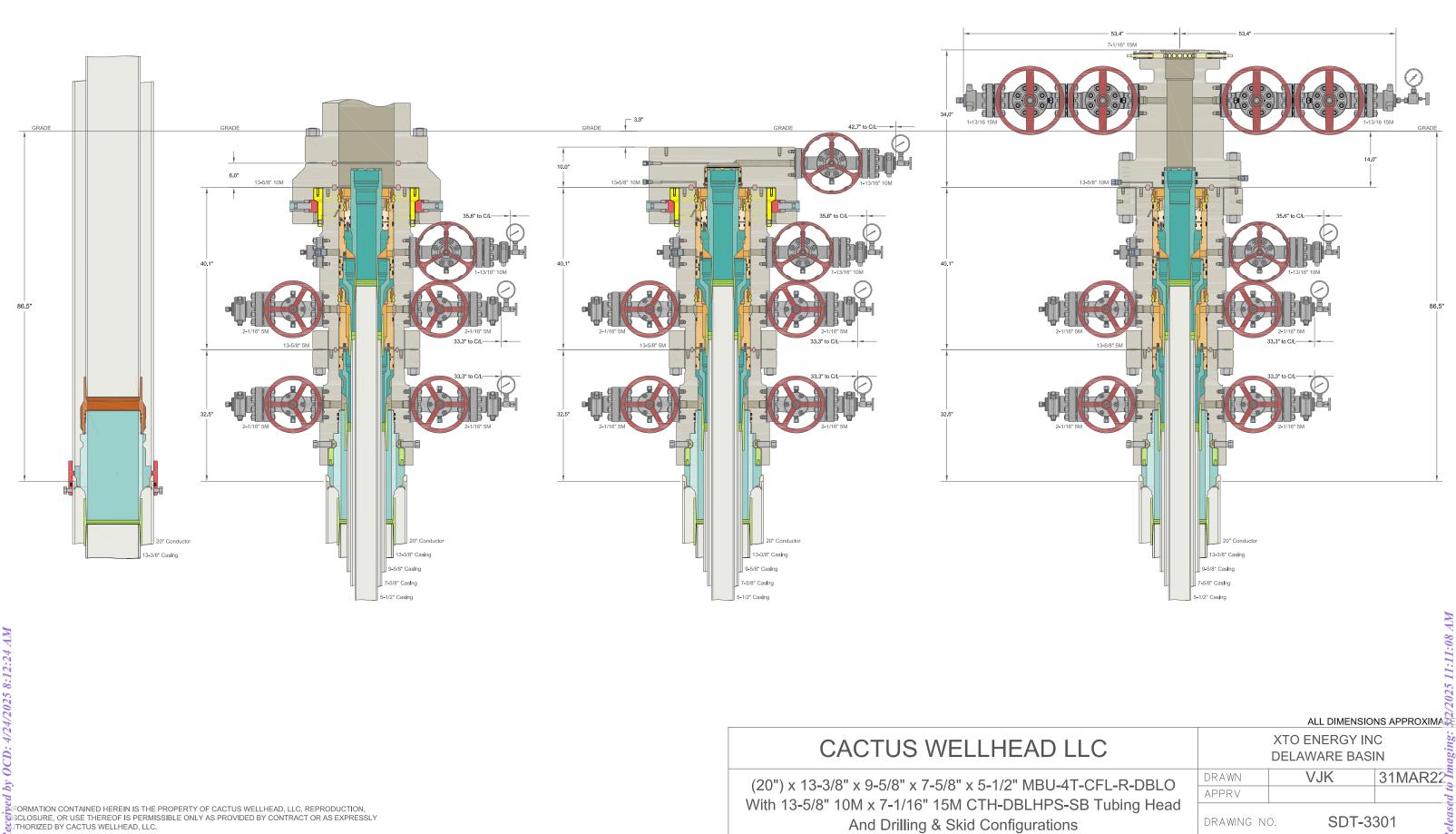
Geometry	
Connection OD	5.852 in.
Coupling Length	8.714 in.
Connection ID	4.778 in.
Make-up Loss	3.780 in.
Threads per inch	3.40
Connection OD Option	Regular

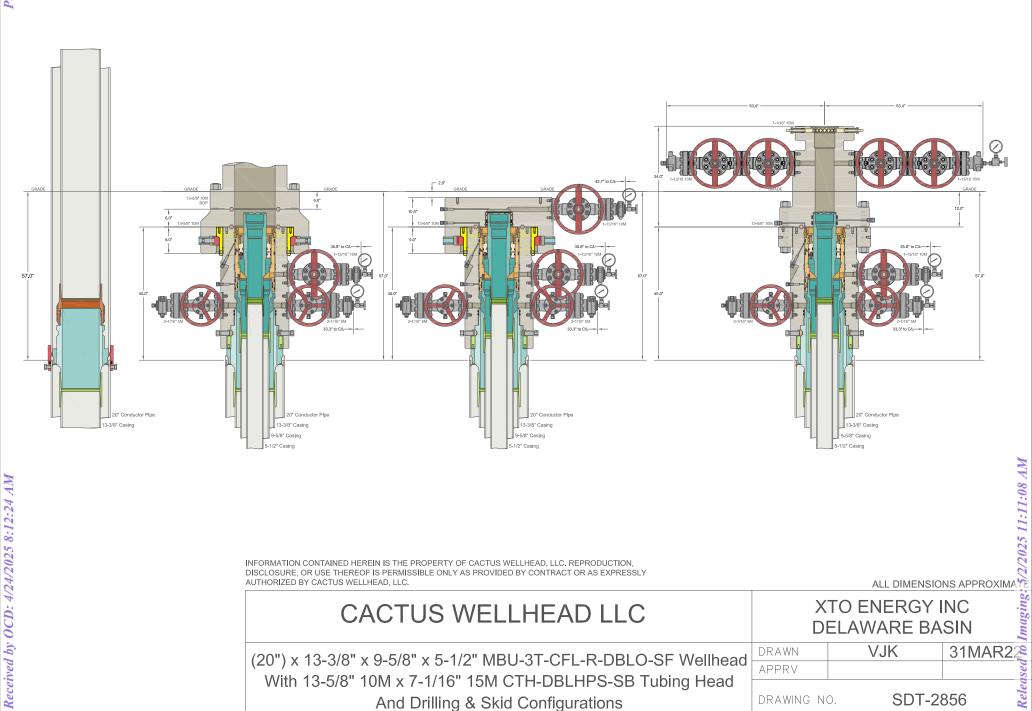
Performance	
Tension Efficiency	81.50 %
Joint Yield Strength	522 x1000 lb
Internal Pressure Capacity	12,640 psi
Compression Efficiency	81.50 %
Compression Strength	522 x1000 lb
Max. Allowable Bending	74.98 °/100 ft
External Pressure Capacity	12,300 psi

SMYS	110,000 psi
Min. Internal Yield Pressure	12,640 psi
Body Yield Strength	641 x1000 lb
Performance	

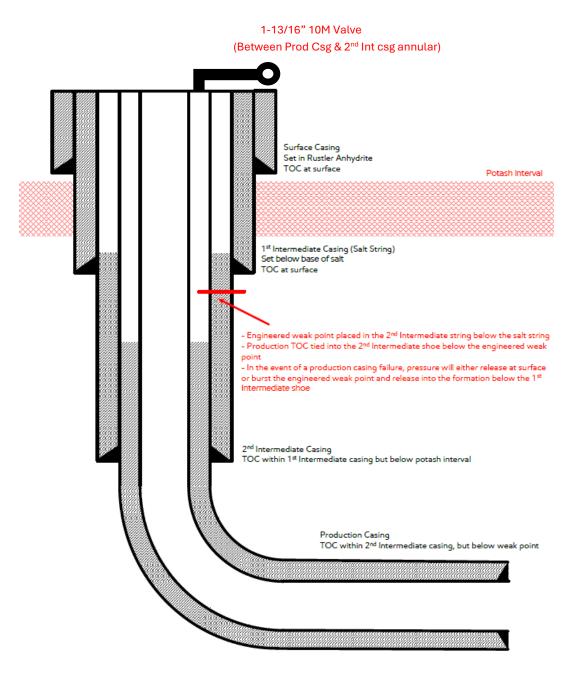
Collapse Pressure

Make-Up Torques	
Minimum	15,000 ft-Ib
Optimum	16,000 ft-Ib
Maximum	19,200 ft-Ib
Operation Limit Torques	
Operating Torque	32,000 ft-Ib
Yield Torque	38,000 ft-Ib
Buck-On	
Minimum	19,200 ft-Ib
Maximum	20,700 ft-lb


Notes

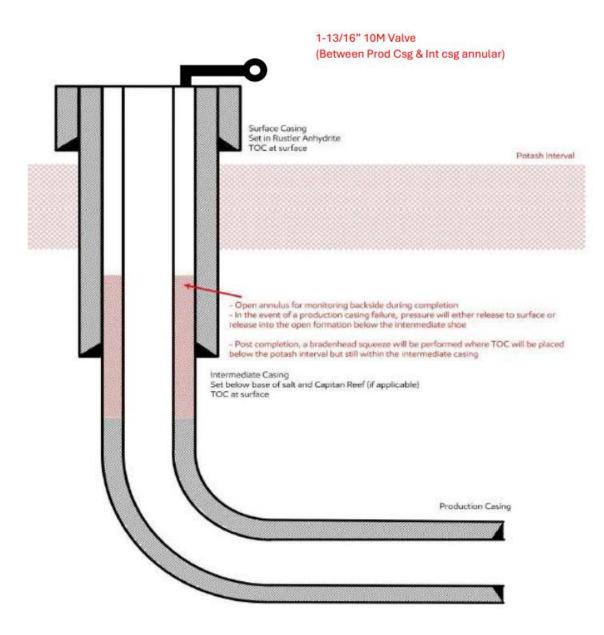

This connection is fully interchangeable with: Wedge 441®-5.5 in. - 0.304 (17.00) in. (lb/ft) Wedge 461®-5.5 in. - 0.304 (17.00) / 0.361 (20.00) / 0.415 (23.00) in. (lb/ft) Connections with Dopeless® Technology are fully compatible with the same connection in its doped version Connection performance values are related to structural capabilities. For sealability-related performance information, request the Connection Service Envelope from your local Tenaris Representative.

For the lastest performance data, always visit our website: www.tenaris.com For further information on concepts indicated in this datasheet, download the Datasheet Manual from www.tenaris.com


Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information —if any-provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of any kind for any loss, damage or injury resulting from, or in connection with any Information contained hereunder on the source of the contraction without notice. Tenaris's products and services are subject to Tenaris's and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com . ©Tenaris 2025. All rights reserved.

Released to Imaging: 5/2/2025 11:11:08 AM

SDT-2856



[Figure F] 4 String – 2nd Intermediate casing engineered weak point

Update May 2024:

XTO is aware of R-111-Q update and will comply with these requirements including (but not limited to):

- 1) Alignment with KPLA requirements per schematic below, with engineering weak point casing design and utilizing new casing that meets API standards.
- 2) Contingency plans in place to divert fluids away from salt interval in event of production casing failure.
- 3) Intermediate 2 casing will consist of a primary cement job with TOC at the top of the Brushy Canyon formation within the Delaware Mountain Group.
 - a. Bradenhead squeeze to be completed after primary cement job to tie back TOC to intermediate 1 "Salt string" & below Marker Bed 126 "Potash Interval".
- 4) Production cement to be tied back no less than 500' inside previous casing shoe (intermediate 2 casing) and below the engineered weak point.

Figure B – 3 String Design – Open Production Casing Annulus (Updated May 2024):

XTO is aware of the R-111-Q update & will comply with these requirements including (but not limited to):

- 1. Alignment with KPLA requirements per schematic above, leaving open annulus for pressure monitoring during frac and utilizing new casing that meets API standards
- 2. Contingency plans in place to divert formation fluids away from salt interval in event of production casing failure
- 3. TOC in the annulus between intermediate & production casing string shall stand uncemented at least 500 feet below the intermediate casing shoe
- Bradenhead squeeze to be completed within 180 days after hydraulic frac operations have been concluded to ensure at least a 500 feet tie-back has been established inside salt string but with top below MB 126

GATES ENGINEERING & SERVICES NORTH AMERICA 7603 Prairle Oak Dr. Houston, TX. 77086 PHONE: +1 (281) 602-4100 FAX: +1 (281) 602-4147 EMAIL: gesna.quality@gates.com WEB: www.gates.com/ollandgas

NEW CHOKE HOSE INSTALED 02-10-2024

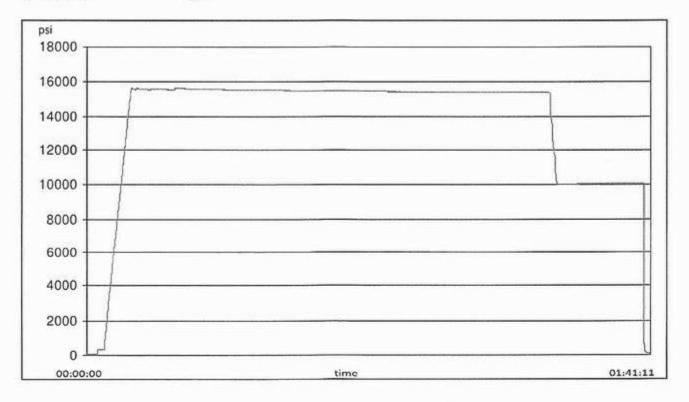
CERTIFICATE OF CONFORMANCE

This is to verify that the items detailed below meet the requirements of the Customer's Purchase Order referenced herein, and are in Conformance with applicable specifications, and that Records of Required Tests are on file and subject to examination. The following items were inspected and hydrostatically tested at **Gates Engineering & Services North America** facilities in Houston, TX, USA.

CUSTOMER: CUSTOMER P.O.#: CUSTOMER P/N:	NABORS DRILLING TECHNOLOGIES USA DBA NABORS DRILLING USA 15582803 (TAG NABORS PO #15582803 SN 74621 ASSET 66-1531) IMR RETEST SN 74621 ASSET #66-1531
PART DESCRIPTION:	RETEST OF CUSTOMER 3" X 45 FT 16C CHOKE & KILL HOSE ASSEMBLY C/W 4 1/16" 10K FLANGES
SALES ORDER #: QUANTITY:	529480 1
SERIAL #:	74621 H3-012524-1
SIGNATURE	FOISMOS
TITLE	
DATE:	1/25/2024

Page 29 of 42

1/25/2024 11:48:06 AM


H3-15/16

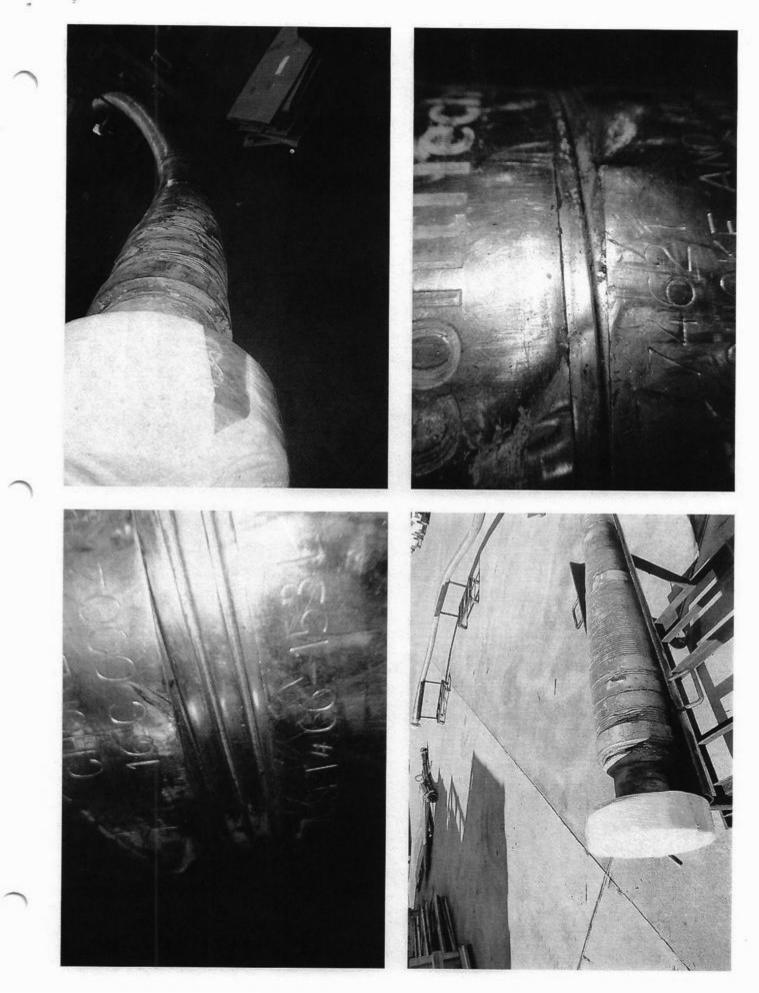
TEST REPORT

CUSTOMER			TEST OBJECT		
Company:	Nabors Ind	ustries Inc.	Serial number:	H3-0125	24-1
			Lot number:		
Production description:	74621/66-1	531	Description:	74621/6	6-1531
Sales order #:	529480				
Customer reference:	FG1213		Hose ID:	3" 16C C	к
			Part number:		
TEST INFORMATION					
Test procedure:	GTS-04-053		Fitting 1:	3.0 x 4-1	/16 10K
Test pressure:	15000.00	psi	Part number:		
Test pressure hold:	3600.00	sec	Description:		
Work pressure:	10000.00	psi			
Work pressure hold:	900.00	sec	Fitting 2:	3.0 x 4-1	/16 10K
Length difference:	0.00	%	Part number:		
Length difference:	0.00	inch	Description:		
Visual check:			Length:	45	feet
Pressure test result:	PASS				
Length measurement result	t:				

Test operator:

Travis

TEST REPORT


H3-15/16 1/25/2024 11:48:06 AM

GAUGE TRACEABILITY

Description	Serial number	Calibration date	Calibration due date
S-25-A-W	110D3PHO	2023-06-06	2024-06-06
S-25-A-W	110IQWDG	2023-05-16	2024-05-16

Comment

	Fil	D.I.C	 36
Released to	Imaging: 5/	2/2025 11:11:08 AM	

XTO respectfully requests approval to utilize a spudder rig to pre-set surface casing.

Description of Operations:

- 1. Spudder rig will move in to drill the surface hole and pre-set surface casing on the well.
 - a. After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - b. The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used.
- 2. The wellhead will be installed and tested as soon as the surface casing is cut off and WOC time has been reached.
- 3. A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wing valves.
 - a. A means for intervention will be maintained while the drilling rig is not over the well.
- 4. Spudder rig operations are expected to take 2-3 days per well on the pad.
- 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 6. Drilling Operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well.
 - a. The larger rig will move back onto the location within 90 days from the point at which the wells are secured and the spudder rig is moved off location.
 - b. The BLM will be notified 24 hours before the larger rig moves back on the pre-set locations
- 7. XTO will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 8. Once the rig is removed, XTO will secure the wellhead area by placing a guard rail around the cellar area.

Subject: Request for a Variance Allowing break Testing of the Blowout Preventer Equipment (BOPE)

XTO Energy requests a variance to ONLY test broken pressure seals on the BOPE and function test BOP when skidding a drilling rig between multiple wells on a pad.

Background

Onshore Oil and Gas Order CFR Title 43 Part 3170, Drilling Operations, Sections III.A.2.i.iv.B states that the BOP test must be performed whenever any seal subject to test pressure is broken. The current interpretation of the Bureau of Land Management (BLM) requires a complete BOP test and not just a test of the affected component. CFR Title 43 Part 3170 states, "Some situation may exist either on a well-by- well basis or field-wide basis whereby it is commonly accepted practice to vary a particular minimum standard(s) established in this order. This situation can be resolved by requesting a variance...". XTO Energy feels the break testing the BOPE is such a situation. Therefore, as per CFR Title 43 Part 3170, XTO Energy submits this request for the variance.

Supporting Documentation

CFR Title 43 Part 3170 became effective on December 19, 1988 and has remained the standard for regulating BLM onshore drilling operations for over 30 years. During this time there have been significant changes in drilling technology. BLM continues to use the variance request process to allow for the use of modern technology and acceptable engineering practices that have arisen since CFR Title 43 Part 3170 was originally released. The XTO Energy drilling rig fleet has many modern upgrades that allow the intact BOP stack to be moved between well slots on a multi-well pad, as well as, wellhead designs that incorporate quick connects facilitating release of the BOP from the wellhead without breaking any BOP stack components apart. These technologies have been used extensively offshore, and other regulators, API, and many operators around the world have endorsed break testing as safe and reliable.

Figure 1: Winch System attached to BOP Stack

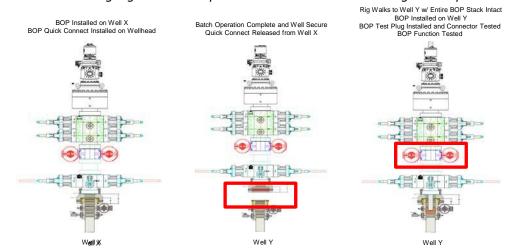
Figure 2: BOP Winch System

American Petroleum Institute (API) standards, specification and recommended practices are considered the industry standard and are consistently utilized and referenced by the industry. CFR Title 43 Part 3170recognizes API recommended Practices (RP) 53 in its original development. API Standard 53, *Well Control Equipment Systems for Drilling Wells* (Fifth Edition, December 2018, Annex C, Table C.4) recognizes break testing as an acceptable practice. Specifically, API Standard 53, Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component." See Table C.4 below for reference.

	Pressure Test-Low	Pressure Test—High Pressure ^{ac}		
Component to be Pressure Tested	Pressure ^{ac} psig (MPa)	Change Out of Component, Elastomer, or Ring Gasket	No Change Out of Component, Elastomer, or Ring Gasket	
Annular preventer ^b	250 to 350 (1.72 to 2.41)	RWP of annular preventer	MASP or 70% annular RWP, whichever is lower.	
Fixed pipe, variable bore, blind, and BSR preventers ^{bd}	250 to 350 (1.72 to 2.41)	RWP of ram preventer or wellhead system, whichever is lower	ITP	
Choke and kill line and BOP side outlet valves below ram preventers (both sides)	250 to 350 (1.72 to 2.41)	RWP of side outlet valve or wellhead system, whichever is lower	ITP	
Choke manifold—upstream of chokes ^e	250 to 350 (1.72 to 2.41)	RWP of ram preventers or wellhead system, whichever is lower	ITP	
Choke manifold—downstream of chokes ^e	250 to 350 (1.72 to 2.41)	RWP of valve(s), line(s), or M whichever is lower	ASP for the well program,	
Kelly, kelly valves, drill pipe safety valves, IBOPs	250 to 350 (1.72 to 2.41)	MASP for the well program		
Annular(s) and VBR(s) shall be pre	during the evaluation period. The p ssure tested on the largest and sm	pressure shall not decrease below the allest OD drill pipe to be used in well	program.	
	from one wellhead to another withi when the integrity of a pressure se	n the 21 days, pressure testing is req al is broken.	uired for pressure-containing an	

The Bureau of Safety and Environmental Enforcement (BSEE), Department of Interior, has also utilized the API standards, specification and best practices in the development of its offshore oil and gas regulations and incorporates them by reference within its regulations.

Break testing has been approved by the BLM in the past with other operators based on the detailed information provided in this document.


XTO Energy feels break testing and our current procedures meet the intent of CFR Title 43 Part 317 Oand often exceed it. There has been no evidence that break testing results in more components failing than seen on full BOP tests. XTO Energy's internal standards requires complete BOPE tests more often than that of CFR Title 43 Part 3170 (Every 21 days). In addition to function testing the annular, pipe rams and blind rams after

each BOP nipple up, XTO Energy performs a choke drill with the rig crew prior to drilling out every casing shoe. This is additional training for the rig crew that exceeds the requirements of the CFR Title 43 Part 3170.

Procedures

- XTO Energy will use this document for our break testing plan for New Mexico Delaware basin. The summary below will be referenced in the APD or Sundry Notice and receive approval prior to implementing this variance.
- 2. XTO Energy will perform BOP break testing on multi-wells pads where multiple intermediate sections can be drilled and cased within the 21-day BOP test window.
 - a. A full BOP test will be conducted on the first well on the pad.
 - b. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower.
 - i. Our Lower WC targets set the intermediate casing shoe no deeper than the Wolfcamp B.
 - ii. Our Upper WC targets set the intermediate casing shoe shallower than the Wolfcamp B.
 - c. A Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
 - d. A full BOP test will be required prior to drilling any production hole.
- 3. After performing a complete BOP test on the first well, the intermediate hole section will be drilled and cased, two breaks would be made on the BOP equipment.
 - a. Between the HCV valve and choke line connection
 - b. Between the BOP quick connect and the wellhead
- 4. The BOP is then lifted and removed from the wellhead by a hydraulic system.
- 5. After skidding to the next well, the BOP is moved to the wellhead by the same hydraulic system and installed.
- 6. The connections mentioned in 3a and 3b will then be reconnected.
- 7. Install test plug into the wellhead using test joint or drill pipe.
- 8. A shell test is performed against the upper pipe rams testing the two breaks.
- 9. The shell test will consist of a 250 psi low test and a high test to the value submitted in the APD or Sundry (e.g. 5,000 psi or 10,000psi).
- 10. Function test will be performed on the following components: lower pipe rams, blind rams, and annular.

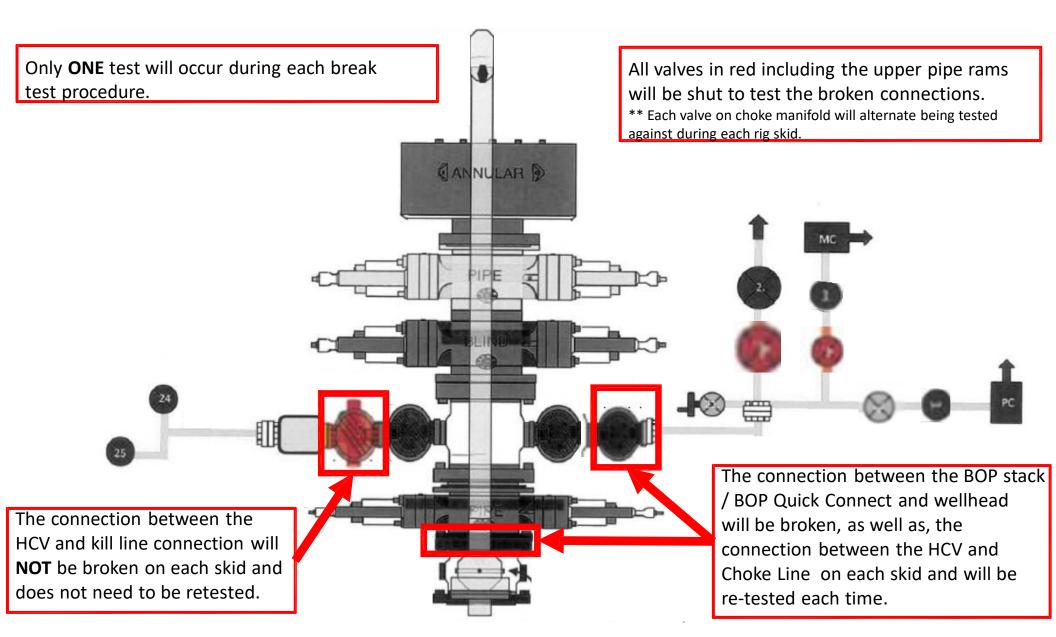
- 11. For a multi-well pad the same two breaks on the BOP would be made and on the next wells and steps 4 through 10 would be repeated.
- 12. A second break test would only be done if the intermediate hole section being drilled could not be completed within the 21 day BOP test window.

Note: Picture below highlights BOP components that will be tested during batch operations

Summary

A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API Standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken.

The BOP will be secured by a hydraulic carrier or cradle. The BLM will be contacted if a Well Control event occurs prior to the commencement of a BOPE Break Testing operation.


Based on discussions with the BLM on February 27th 2020 and the supporting documentation submitted to the BLM, we will request permission to ONLY retest broken pressure seals if the following conditions are met:

1. After a full BOP test is conducted on the first well on the pad.

2. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower.

3. Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.

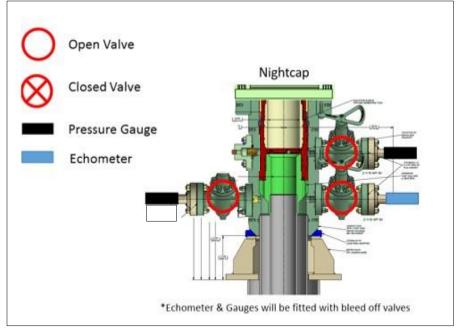
4. Full BOP test will be required prior to drilling the production hole.

XTO Permian Operating, LLC Offline Cementing Variance Request

XTO requests the option to cement the surface and intermediate casing strings offline as a prudent batch drilling efficiency of acreage development.

1. Cement Program

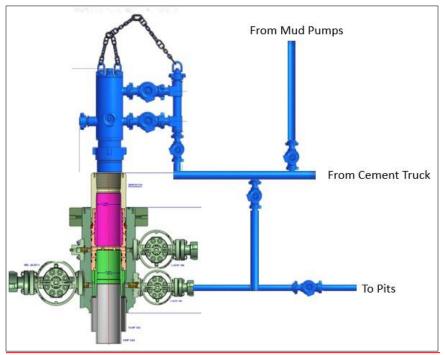
No changes to the cement program will take place for offline cementing.


2. Offline Cementing Procedure

The operational sequence will be as follows. If a well control event occurs, the BLM will be contacted for approval prior to conducting offline cementing operations.

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment (float collar and shoe)
- 2. Land casing with mandrel
- 3. Fill pipe with kill weight fluid, do not circulate through floats and confirm well is static
- 4. Set annular packoff shown below and pressure test to confirm integrity of the seal. Pressure ratings of wellhead components and valves is 5,000 psi.
- 5. After confirmation of both annular barriers and internal barriers, nipple down BOP and install cap flange.
 - a. If any barrier fails to test, the BOP stack will not be nippled down until after the cement job is completed with cement 500ft above the highest formation capable of flow with kill weight mud above or after it has achieved 50-psi compressive strength if kill weight fluid cannot be verified.

Annular packoff with both external and internal seals



XTO Permian Operating, LLC Offline Cementing Variance Request

Wellhead diagram during skidding operations

- 6. Skid rig to next well on pad.
- 7. Confirm well is static before removing cap flange, flange will not be removed and offline cementing operations will not commence until well is under control. If well is not static, casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing or nippling up for further remediation.
 - a. Well Control Plan
 - i. The Drillers Method will be the primary well control method to regain control of the wellbore prior to cementing, if wellbore conditions do not permit the drillers method other methods of well control may be used
 - ii. Rig pumps or a 3rd party pump will be tied into the upper casing valve to pump down the casing ID
 - iii. A high pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - iv. Once influx is circulated out of the hole, kill weight mud will be circulated
 - v. Well will be confirmed static
 - vi. Once confirmed static, cap flange will be removed to allow for offline cementing operations to commence
- 8. Install offline cement tool
- 9. Rig up cement equipment

Wellhead diagram during offline cementing operations

- 10. Circulate bottoms up with cement truck
 - a. If gas is present on bottoms up, well will be shut in and returns rerouted through gas buster to handle entrained gas
 - b. Max anticipated time before circulating with cement truck is 6 hrs
- 11. Perform cement job taking returns from the annulus wellhead valve
- 12. Confirm well is static and floats are holding after cement job
- 13. Remove cement equipment, offline cement tools and install night cap with pressure gauge for monitoring.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
XTO PERMIAN OPERATING LLC.	373075
6401 HOLIDAY HILL ROAD	Action Number:
MIDLAND, TX 79707	455194
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By		Condition Date
ward.rikala	Operator must comply with all of the R-111-Q requirements.	5/2/2025
ward.rikala	Any previous COA's not addressed within the updated COA's still apply.	5/2/2025

Action 455194

Page 42 of 42