

Pre-Plugging Methane Emissions Monitoring Report

Haley Chaveroo 39

Prepared by TS-Nano, Inc.
For NM Energy, Minerals and Natural Resources Department, Oil Conservation Division PO# 52100-000079762

Well information

ID #: 30-005-10541 *Name:* Haley Chaveroo 39

Coordinates: 33.64785, -103.55117
Surface Location: Roosevelt County

Measurement notes

Device used: Ventbuster device VB100-0138

Test operator: Dwayne Smith

Gas sample taken from well: 6/23/25 12:05 Ventbuster connected to well: 6/23/25 10:56

Continuous monitoring of well flowrate, pressure,

and temperature

Hourly measurement of weather data

Ventbuster disconnected from well: 6/24/25 7:31

Notes: No wellhead pressure. Precipitation around 12 am on 6/24.

Gas sample delivered to laboratory: 6/30/25

Laboratory Name/Location: Laboratory Services / Hobbs, NM

Pre-Plugging Methane Emissions Monitoring Report

Haley Chaveroo 39

Measurement data

Wellhead pressure (kPa gage)*: less than detection limit (<10 kPa)

Average flow rate (Sm³/d): 0.040

Average methane mass flow rate (g/hr)

using methane % from lab analysis: 0.07

Methane mass flowrate calculation

Variable	Unit	Value
Pressure (P)	kPaA	Std pressure, 101.3 KPaA
Volumetric flow (V)	Std m^3/day	Measured from the Unit
% methane	% (methane/gas)	Measured from lab sample
Temperature (T)	Kelvin	Std temperature, 288.13 K
Gas constant (R)	m^3 Pa/(K mol)	8.3144626
Molecular weight of methane (Mw)	g/mole	16.04

$$Mass\,flow\,of\,\,methane\,\, \left(\frac{g}{hr}\right) = \frac{\%, methane}{100\%} *V*P*\frac{Mw}{R\,T}*\frac{1000}{24}$$

Pre-Plugging Methane Emissions Monitoring Report

Haley Chaveroo 39

Weather data

Precipitation during measurement period (in): 0.230

Air	Relative	Barometric	Wind
Temperature	Humidity	Pressure	Speed
(°C)	(%)	(kPaA)	(mph)
26.2	100.0	87.03	0.0
24.0	80.1	87.03	0.0
23.5	78.7	87.06	0.0
23.7	97.2	87.06	0.0
23.1	85.8	87.03	0.0
25.9	76.4	86.93	0.0
25.4	74.0	86.93	0.0
24.0	71.6	86.89	0.0
20.5	89.3	87.03	0.0
19.2	94.2	87.06	0.0
18.7	94.8	87.06	0.0
18.6	96.5	87.10	0.0
18.8	95.6	87.10	0.0
18.6	95.2	87.00	0.0
18.4	95.9	87.06	0.0
18.4	95.8	87.17	0.0
18.7	96.5	87.20	0.0
19.0	95.1	87.17	0.0
18.5	95.6	87.06	0.0
18.6	95.1	87.17	0.0
18.7	96.4	87.23	0.0
19.2	97.2	87.37	0.0
21.3	100.0	88.11	0.0
	Temperature (°C) 26.2 24.0 23.5 23.7 23.1 25.9 25.4 24.0 20.5 19.2 18.7 18.6 18.8 18.6 18.4 18.7 19.0 18.5 18.6 18.7 19.0	Temperature (°C) (%) 26.2 100.0 24.0 80.1 23.5 78.7 23.7 97.2 23.1 85.8 25.9 76.4 25.4 74.0 24.0 71.6 20.5 89.3 19.2 94.2 18.7 94.8 18.6 96.5 18.8 95.6 18.6 95.2 18.4 95.9 18.4 95.9 18.4 95.8 18.7 96.5 19.0 95.1 18.5 95.6 18.6 95.1 18.7 96.4 19.2 97.2	Temperature (°C) Humidity (%) Pressure (kPaA) 26.2 100.0 87.03 24.0 80.1 87.03 23.5 78.7 87.06 23.7 97.2 87.06 23.1 85.8 87.03 25.9 76.4 86.93 25.4 74.0 86.89 20.5 89.3 87.03 19.2 94.2 87.06 18.7 94.8 87.06 18.6 96.5 87.10 18.8 95.6 87.10 18.4 95.9 87.06 18.4 95.8 87.17 18.7 96.5 87.20 19.0 95.1 87.17 18.5 95.6 87.06 18.6 95.1 87.17 18.7 96.4 87.23 19.2 97.2 87.37

25033G 30-005-10541 HALEY CHAVEROO #39
Sample Point Code Sample Point Name Sample Point Location

Laborator	y Services	2025113059	BAG		DWAYNE - Spot						
Source L	aboratory	Lab File No	Container Ide	ntity	Sampler						
USA		USA	USA		New Mexico						
District		Area Name	Field Name		Facility Name						
May 27,	2025	May 1, 2025		May 30, 2025 1	4:11	1 Jun 2, 2025 Date Reported					
Date San	npled	Date Effective		Date Received	1						
		Admin									
Ambient Temp (°F)	Flow Rate (Mcf)	Analyst		@ Temp °F Conditions							
TS-N	ano					NG					
Opera	ator	_			Lab Source	ce Description					

Component	Normalized Mol %	Un-Normalized Mol %	GPM
H2S (H2S)	0.0000	0	
Nitrogen (N2)	92.6940	92.6944	
CO2 (CO2)	0.5180	0.51791	
Methane (C1)	6.1800	6.17973	
Ethane (C2)	0.2250	0.22491	0.0600
Propane (C3)	0.0440	0.0438	0.0120
I-Butane (IC4)	0.0090	0.00944	0.0030
N-Butane (NC4)	0.0360	0.03586	0.0110
I-Pentane (IC5)	0.0000	0	0.0000
N-Pentane (NC5)	0.0000	0	0.0000
Hexanes Plus (C6+)	0.2940	0.29393	0.1280
TOTAL	100.0000	100.0000	0.2140

Method(s): Gas C6+ - GPA 2261, Extended Gas - GPA 2286, Calculations - GPA 2172

Analyzer	Information

Device Type: Gas Chromatograph Device Make: Shimadzu
Device Model: GC-2014 Last Cal Date: May 27, 2025

Gross Heating Values (Real, BTU/ft³) 14.696 PSI @ 60.00 °F Dry Saturated Dry Saturated 84.4 83.8 84.6 84.0										
Dry Saturated Dry Saturated	Gross Heating Values (Real, BTU/ft³)									
,	14.696 PSI (⊉ 60.00 °F	14.73 PSI (@ 60.00 °F						
84.4 83.8 84.6 84.0	Dry	Saturated	Dry	Saturated						
	84.4	83.8	84.6	84.0						

Calculated Total Sample Properties					
GPA2145-16 *Calculated at Contract Conditions					
Relative Density Real	Relative Density Ideal				
0.9520 0.9520					
Malagulay Waight					

Molecular Weight 27.5733

C6+ Group Properties

Assumed Composition
C6 - 60.000%
C7 - 30.000%
C8 - 10.000%

Field H2S **0 PPM**

PROTREND STATUS:Passed By Validator on Jun 2, 2025

Imported

PASSED BY VALIDATOR REASON:

First sample taken @ this point, composition looks reasonable

VALIDATOR:

Alexus Sepeda

VALIDATOR COMMENTS:

OK

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

www.permianls.com 575.397.3713 2609 W Marland Hobbs, NM 88240

Company Name: TS- Nano, Inc.								BILL TO				Analysis Request															
Project Manager: John Stormont									PO #:							1											
Address: 5901 Indian School Rd. NE									Comp	any:	TS- N	ano, Inc.							1 '					,	1		
City: Albuquerque State: NM Zip: 87110										Attn:	Jay K	itows	ki							i '						ı	
Phone #: 505-907-4095		Ema	il: jstormon	t@ts-ı	nano.	com				Addr	ess: S	ame									1 '					,	1
Project #:		Proje	ect Owner:							City:											1 '					,	1
Project Name:										State	:		Zip:								1 '					,	1
Project Location:										Phon	e #: 5	05-46	64-4836								1 '					,	1
Sampler Name:										Email	: jkitc	wski	@ts-nano.co	om							1 '					,	1
						Ма	trix			Pr	eser	ve	Sam	pling							1 '					,	1
Lab I.D.	Sample I.D.	(S)POT or (C)OMP	# Container	Groudwater	Wastewater	GAS	Oil	Solid	Other	Acid/Base	Ice/Cool	Other		Time	C-6+ RGA	C-10+ Ext											
200 1101	Sumple IIS	_	**	۲		X	U	0)	Ŭ	_	-	U	Duto		Х									=		-	\Box
	HALEY CHAVEROO #13	ς	BAG			X							30-May	2DM	X						$\overline{}$		\vdash			\dashv	
	HALEY CHAVEROO #25		BAG			X							30-May		X									=		-	
	HALEY CHAVEROO #17		BAG			X							30-May		X									=		-	
	HALEY CHAVEROO #19	5	BAG			X							30-May		X						$\overline{}$		\vdash			\dashv	
	HALEY CHAVEROO #41	ς .	BAG			X							30-May		X						$\overline{}$		\vdash			\dashv	
	HALEY CHAVEROO #18		BAG			Х							30-May		Х						$\overline{}$	\vdash	$\vdash \vdash$		\rightarrow	-	
	HALEY CHAVEROO #24		BAG			X							30-May		X								$\vdash \vdash \vdash$		\rightarrow		
	HALEY CHAVEROO #28		BAG			X							30-May		X									=		-	
		S	BAG			X							30-May		X									=		-	
	HALEY CHAVEROO #40	_	BAG			X							30-May		X						$\overline{}$		$\overline{}$		\rightarrow	-	\Box
	HALEY CHAVEROO #36		BAG			Х							30-May		Х												
	HALEY CHAVEROO #39		BAG			X							•														
													30-May		X								\vdash			-	
	HALEY CHAVEROO #33		BAG			Х							30-May		Х								\vdash			\dashv	
	HALEY CHAVEROO #34		BAG BAG			X X							30-May		X							₩	$\vdash \vdash$				-
	HALEY CHAVEROO #35	5	BAG			Х							30-May	ZPIVI	Χ							\vdash	$\vdash \vdash$				-
																						╁	\vdash				
																						₩	\mapsto		\rightarrow		
	30-May-25		ļ	Recei	ved h	<i>,</i> .							Phone Resu	l+·	П	Yes		No	Add'l	Dhone							-
Duragne Smit	Time: 2 pm			Recei	veu b	у.							Email Resul		H	Yes		No	Auu	riione							
Relinguished by	Date:			Recei	ved h	v:							REMARKS:	••	_	163	ш	140									
Time:																											
Deliver by: (circle one) Sample Condition					Chi	ecked	hv																				
Cool Intact					nitials	-																					
Sampler - UPS - Bu	s - other:				Yes			Yes		(1	iiiliais	,															
					No			No																			

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

DEFINITIONS

Action 478407

DEFINITIONS

Operator:	OGRID:
RIDGEWAY ARIZONA OIL CORP.	164557
575 N. Dairy Ashford	Action Number:
Houston, TX 77079	478407
	Action Type:
	[UF-OMA] Pre-Plug Methane Monitoring (UF-OMA-MMA)

DEFINITIONS

The Orphan Well Mitigation Activity (OMA) forms are a subset of the OCD's forms exclusively designed for activities related to State of New Mexico's contracted plugging and reclamation activities. Specifically, these forms are used for orphan wells or associated facilities which are in a "Reclamation Fund Approved" status. This status represents wells or facilities where the OCD has acquired a hearing order allowing the OCD to perform plugging or reclamation on wells and associated facilities that no longer have a viable operator to perform the necessary work. These forms are not to be utilized for any other purpose.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 478407

QUESTIONS

Operator:	OGRID:
RIDGEWAY ARIZONA OIL CORP.	164557
575 N. Dairy Ashford	Action Number:
Houston, TX 77079	478407
	Action Type:
	[UF-OMA] Pre-Plug Methane Monitoring (UF-OMA-MMA)

QUESTIONS

Prerequisites							
[OGRID] Well Operator	[164557] RIDGEWAY ARIZONA OIL CORP.						
[API] Well Name and Number	[30-005-10541] HALEY CHAVEROO SA UNIT #039						
Well Status	Active						

Monitoring Event Information						
Please answer all the questions in this group.						
Reason For Filing	Pre-Plug Methane Monitoring					
Date of monitoring	06/23/2025					
Latitude	33.64785					
Longitude	-103.55117					

Monitoring Event Details		
Please answer all the questions in this group.		
Flow rate in cubic meters per day (m³/day)	0.04	
Test duration in hours (hr)	20.6	
Average flow temperature in degrees Celsius (°C)	24.3	
Average gauge flow pressure in kilopascals (kPag)	1.2	
Methane concentration in part per million (ppm)	61,800	
Methane emission rate in grams per hour (g/hr)	0.07	
Testing Method	Steady State	

	Monitoring Contractor Please answer all the questions in this group.	
	Name of monitoring contractor	TS-Nano, Inc.