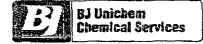


Chemical Analysis of Fresh Water

Analytical Laboratory Report for:BJ Unichem
Chemical ServicesChevronTexacoUNICHEM Representative: Offutt, John


Production Water Analysis

Listed below please find water analysis report from: Central Vacuum Unit, Water Supply Well 1

Lab Test No: Specific Gravity:	2003135449 1.002	Sample Date:		08/22/2003
TDS: pH:	644 6.76			
Cations:		mg/L	as:	
Calcium		24.06	(Ca [↔])	
Magnesium		12.07	(Mg	
Sodium		119	(Na)	
Iron		0.00	(Fe ⁺)	
Barium		0.11	(Ba [°])	
Strontium		0.72	(Sr ⁺⁺)	
Manganese		0.00	(Mn)	
Anions:		mg/L	as:	
Bicarbonate		220	(HCO,)	
Sulfate		50	(SO,")	
Chloride		218	(CÍ)	
Gases:	-		()	
Carbon Dioxide			(CO ₂)	
Hydrogen Sulfide	9		(H ₂ S)	

ChevronTexaco

Lab Test No: 2003135449

DownHole SAT[™] Scale Prediction @ 100 deg. F

Mineral Scale	Saturation Index	Momentary Excess (Ibs/1000 bbis)	
Calcite (CaCO3)	.108	464	
Aragonite (CaCO3)	.0917	555	
Witherite (BaCO3)	< 0.001	-5.5	
Strontianite (SrCO3)	.00846	-1.82	
Magnesite (MgCO3)	.0513	844	
Anhydrite (CaSO4)	.00587	-288.16	
Gypsum (CaSO4*2H2O)	.00721	-291.65	
Barite (BaSO4)	.596	044	
Celestite (SrSO4)	.0038	-50.96	
Silica (SiO2)	0	-57.08	
Brucite (Mg(OH)2)	< 0.001	-1.58	
Magnesium silicate	0	-78.7	
Siderite (FeCO3)	0	0444	
Halite (NaCI)	< 0.001	-145532	
Thenardite (Na2SO4)	< 0.001	-33592	
Iron sulfide (FeS)	0	185	

Interpretation of DHSat Results:

The Saturation Index is calculated for each mineral species independently and is a measure of the degree of supersaturation (driving force for precipitation) under the conditions modeled. This value ranges from 0 to infinity with 1.0 representing a condition of equilibrium where scale will neither dissolve nor precipitate. Values less than 1.0 are undersaturated and values greater than 1.0 are supersaturated. The scale is logarithmic, i.e. a Saturation index of 3 is 10 times more saturated than a value of 2.

The Momentary excess is a measure of how much scale would have to precipitate to bring the system back to a non-scaling condition. This value ranges from negative (dissolving) infinity to positive (precipitating) infinity. The Momentary Excess represents the amount of scale possible while the Saturation Level represents the probability that scale will form.