1R - 398

REPORTS

DATE:

6-20-13

AMARILLO 921 North Bivins Amarilio, Teras 79107 Phone 806.487,0607 Fax 806.467.0622

MOBILE DUAL PHASE EXTRACTION REPORT OCD LIVINGSTON RIDGE TO HUGH-P.SIMS PIPELINE RELEASE LEA COUNTY, NEW MEXICO

SRS # 2001-1005

NMOCD# 1R-0398

ARTESIA

HOSBS

408 Wes, Taxas Ave Artesia, New Mexico 88210 Phone 575.746.8768 Fax 575,748,8905

PREPARED FOR:

333 CLAY STREET

SUITE 1600

PLAINS MARKETING, L.P.

HOUSTON, TEXAS 77002

318 East Taylor Street Hobbs, New Mexico 88241

Phone 505,393,4261 Fax 505,393 4658

WIDLAND

2901 State Highway 349 Midland, Texas 79706 Phone 432.522.2133

Fax 432 522 2180

OKLAHOMA CITY 7700 North Hudson Ave

Oklahoma City, Oklahoma 73116

Phone 405,486,7030 Fax 806.467 0622

PREPARED BY:

SAM AMTONIO

11 Commercial Place Suite 102

Scherlz, Texas 78154 Phone 210,265 8025

Fax 210.568.2191

TALON/LPE

921 N. BIVINS

AMARILLO, TEXAS 79107

TULSA

525 South Main

Suica 535

Tuisa, Oklahoma, 74103 Phone 918.742.0871

Fax 918.382.0232

DISTRIBUTION:

COPY 1 - PLAINS MARKETING, L.P. - MIDLAND

COPY 2 - PLAINS MARKETING, L.P. - HOUSTON

ENVIRONMENTAL CONSULTING COPY 3 – NMOCD – SANTA FE

ENGINEERING

DRILLING

CONSTRUCTION

SPILL MANAGEMENT

GENERAL CONTRACTING

COPY 4 - TERRACON

COPY 5 - TALON/LPE

Toll Free: 866.742.0742 www.talonipe.com

JUNE 20, 2013

TABLE OF CONTENTS

Section	<u>on</u>	Page
Δ	DPE SUMMARY REPORT AND WASTE DISPOSITION	1
II.SY	STEM OPERATION DATA AND MASS RECOVERY CALCULATIONS	2
Table	e 1	3
Attac	chments:	

Attachment 1 - MDPE field logs Attachment 2 - Laboratory Analytical Results Attachment 3 - Oxidizer Charts Attachment 4 - Waste Ticket

I. MDPE SUMMARY REPORT AND WASTE DISPOSITION

A. MDPE Results

The following report summarizes data collected during the 12-hour High Vacuum Multi-Phase Extraction (MDPE) event conducted on April 9, 2013 at the Livingston Ridge to Hugh-P.Sims Pipeline release site, located in Lea County, New Mexico. The objective of the MDPE treatment was to remove both vapor and liquid phase separated hydrocarbons (PSH) from onsite groundwater wells. Talon/LPE utilized an MDPE unit which consisted of an SVE extraction pump capable of generating vacuum up to 25" hg. Off gas vapors extracted from the extraction wells were destroyed using a propane-fired 1000-SCFM thermal oxidizer capable of processing 172.96 lbs/hr of gasoline.

A total of 12 hours (0.5 days) of PSH recovery was performed on TMW1 for 12 hours.

Prior to and immediately following the event, the groundwater wells were gauged for groundwater elevation and PSH. Depth to groundwater ranges were measured in feet below the top of casing. Refer to Attachment 1 for a summary of data collected during the MDPE event.

The volume of PSH removed during the MDPE event is shown to reflect the portions of PSH in the liquid phase and as off-gas vapor. Air removal rates were calculated from velocity measurements recorded at the influent manifold prior to entry into the MDPE unit. PSH recovery and air flow data has been detailed and is contained in Table 1. Two influent air samples were collected over the course of the event. These samples were submitted for laboratory testing in order to compare the predicted vapor concentrations (based on field-screening or calculated based on fuel consumption) to the actual vapor concentrations. Both influent samples were tested for Total-Gas Analysis (Hydrocarbon Composition) by GPA 2261-C6+. Laboratory analytical results can be found in Attachment 2.

Based on a combination of field vapor screening and collected laboratory samples, a combined estimated total of 10.79 equivalent gallons of hydrocarbons (Total) were removed during the event. The combined volume of hydrocarbons were comprised of approximately 3 gallons of PSH (liquid phase) and approximately 7.79 gallons as offgas vapor. The calculations used to estimate the off-gas vapor mass recovered reflect the mass of total hydrocarbons recovered and does not necessarily equate to an equal mass of the product released. The mass recovery calculations may be affected by variations in the type of product released, age of release, activity of aerobic and/or anaerobic processes, and site specific geochemical factors.

The cumulative air flow measurements for the MDPE event were calculated using a combination of field data measurements and Preso® B+ manufacturer provided formulas. Air flow rates extracted from the recovery wells averaged 54.95 SCFM during the event.

A portion of the extracted air flow rates measured is attributable to compressed air, which was "injected" into the extraction wells. This "injected" air is introduced into the extraction wells for the purpose of enhancing liquid recovery rates.

B. Air Quality

Two influent air samples were collected during the event. These samples were submitted for laboratory testing in order to compare the predicted vapor concentrations (based on field-screening or calculated based on fuel consumption) to the actual vapor concentrations. The maximum concentration in air influent was recorded as 30,800 ppmv for Hydrocarbon Composition. Laboratory analytical results can be found in Attachment 2.

C. Waste Management and Disposition

A cumulative total of 682 gallons of fluid were generated during this event. The fluids were temporarily transferred to an on-site storage tank prior to being transported to an authorized disposal facility. A copy of the waste ticket can be found in Attachment 4.

II. SYSTEM OPERATION DATA AND MASS RECOVERY CALCULATIONS

Formulae:

Concentration (C_mg/l) = $\frac{\text{C ppmv x Mol. wt. in mg(estimated)} \times 1000 \times 0.000001}{0.0821 \text{ x Temp (K)}}$ Recovery Rate (lbs/hr) = $\frac{\text{(C mg/l)} \times 2.2 \times \text{(Flowrate)} \times 60 \times 28.32}{1,000,000}$ Recovery (lbs) = (lbs/hr) x (hrs)

Correction Factor (CF) = PID Reading(ppm)
PID Reading at Time of Laboratory Analysis

Table 1 System Operation Data and Mass Recovery Calculations

	System Operation Data and Mass Recovery Calculations														
Time	Period (hours)	influent Temp. (°n)	Vacuum (In. hg)	Vacuum (In. h20)	Differential pressure (In. h20)	Flow (SCFM)	FID Readings (ppm)	Lab Result (ppmv)	Assigned Lab Result (ppmv)	Correction Factor (CF)	Adjusted Lab Result (ppmv)	Adjusted Lab Result (mg/L)	Recovery (ibs/hr)	Recovery in Period (lbs)	Total Recovery (lbs)
11:15	0.5	80	22.5	306.20	10.2	55.19	12300		30800.00	0.25	7577	8.78	1.81	0.91	0.91
11:45	0.5	80	22.5	306.20	10	54.64	50000	30800.00	30800.00	1.00	30800	35.69	7,29	3.65	4.55
12:45	1	82	22.5	306.20	10.5	55.89	50000		30800.00	1.00	30800	35.56	7.43	7.43	11.98
13:45	1	82	22	299.40	10.1	56.62	50000	-	30800.00	1.00	30800	35.56	7.53	7.53	19.51
14:45	1	83	22.5	306.20	10.6	56.10	50000	-	30800.00	1.00	30800	35,50	7.44	7.44	26.95
15:45	1	79	23	313.01	11.3	56.16	50000		30800.00	1.00	30800	35.76	7.51	7.51	34.46
16:45	1	78	19	258.57	5	46.92	38726		30800.00	0.77	23855	27.75	4.87	4.87	39.33
17:45	1	78	19	258.57	5.1	47.39	50000		12520.00	1.00	12520	14.57	2.58	2.58	41.91
18:45	1	76	19	258.57	7.3	56.80	24556	-	12520.00	0.49	6149	7.18	1.52	1.52	43.43
19:45	1	72	19	258.57	7	55.83	21341	-	12520.00	. 0.43	5344	6.29	1.31	1.31	44.75
20:45	1	66	19	258.57	7,5	58.12	32294		12520.00	0.65	8086	9.63	2.09	2.09	46.84
21:45	1	62	18	244.96	6.8	58.03	50000	12520.00	12520.00	1.00	12520	15.02	3.26	3.26	50.09
22:45	1	62	18	244.96	6.5	56.73	50000		12520.00	1.00	12520	15.02	3.18	3.18	53.28
Averages:		75.38	20.46	278.46	8.30	54.95	40709.00						Total	53.28	

FID maximum Concentration = 50,000 PPM

Ex: Conversion from ppmv to mg/L (influent 1)											
Measured Conc.			Gas Constant	Temp.	Temp.	Conc.					
(ppmv)	(ppmv) (Grams)		(atm.liter/K.mole)	(F)	(K)	(C_mg/l)					
7577	28.5118	920-113 ST	0.0821	80	299.666667	8.78068925					

Inputs are the green values. Calculated values are yellow. Constants are purple satural.

Output are the blue values.

Liquid-phase Hydrocarbon Recovery

∏ * r2 * h = volume

	Gallons removed determined at	time of pick up
,	PSH Volume in Gallons=	3
	PSH Mass in Pounds=	20.52

Total Hydroca	rbon Rec	overy	
PSH Mass Recovered in Vapor Phase =	ſ	53.28	lbs
	Γ	7.79	gallons
PSH Mass Recovered in Liquid Phase =	Γ	20.52	lbs
	[3.00	galons
	TOTAL =	73.80	lbs

PSH Mass Recovered in Vapor Phase =

7.79 gallons

	% Vol. Hydrocarbon to pp	my - Influent		Molecular Weight Calculations			
	A Vol. Hydrocarbon to pp	IIIV - BISIGOIL	•		component	Molecular Weight (g/mol)	mol%
Compound	Molecular Weight (g/mol)	% Vol	=	ppmv	Nitrogen (N2)	28.016	91.8480
Methane (CH4)	16.04	2.05		20500.00	Methane (CH4)	16.0425	3.6410
Ethane (C2H6)	30.07	0		0.00	Carbon Dioxide (CO2)	44.011	4.0120
Propane (C3H8)	44.10	0.002		20.00	Ethane (C2H6)	30.069	0.0000
Iso-Butane (C4H10)	58.12	0.005		50.00	Propane (C3H8)	44.0956	0.0060
N-Butane (C4H10)	58.12	0.001		10.00	Iso-Butane (C4H10)	58.1222	0.0140
iso-Pentane (C4H12)	72.15	0.033		330.00	N-Butane (C4H10)	58.1222	0.0020
N-Pentane (C5H12)	72.15	0.034		340.00	Iso-Pentane (C4H12)	72.1488	0.0910
Hexane+ (C6H14)	97.40	0.955		9550.00	N-Pentane (C5H12)	72.1488	0.0940
			Total	30800.00	Hexane+	97.3966	0.2920
*Hexane+ is treat	ed as 60% hexanes, 30 % heptar	nes, and 10 % oct	anes, as such	its		Total	100
(0.6	5*93.1887)+(0.3*100.2019)+(0.1*	114,2285) = 97.39	966			Calculated MW	28.5118

	% Vol. Hydrocarbon to pp	my . Influent	2		Molecular Weight Calculations				
	won. Hydrocarbon to pp	my - mnuem	4		component	Molecular Weight (g/mol)	mol%		
Compound	Molecular Weight (g/mol)	% Vol	=	ppmv	Nitrogen (N2)	28.016	96.5320		
Methane (CH4)	16.04	0.451		4510	Methane (CH4)	16.0425	0.8020		
Ethane (C2H6)	30.07	0		0.00	Carbon Dioxide (CO2)	44.011	2.2350		
Propane (C3H8)	44.10	0.003		30.00	Ethane (C2H6)	30,069	0.0000		
iso-Butane (C4H10)	58.12	0.016		160.00	Propane (C3H8)	44.0956	0.0020		
N-Butane (C4H10)	58.12	0.084		840.00	Iso-Butane (C4H10)	58.1222	0.0080		
Iso-Pentane (C4H12)	72,15	0.152		1520.00	N-Butane (C4H10)	58.1222	0.0410		
N-Pentane (C5H12)	72.15	0.164		1640.00	Iso-Pentane (C4H12)	72.1488	0.0600		
Hexane+ (C6H14)	97.40	0.833		8330.00	N-Pentane (C5H12)	72.1488	0.0650		
, ,			Total	12520.00	Hexane+	97.3966	0.2550		
*Hexane+ is treate	ed as 60% hexanes, 30 % heptar	es, and 10 % or	tanes, as suc	h its	1	Total	100		
	*93.1887)+(0.3*100.2019)+(0.1*				i	Calculated MW	28,5246		

Calculated MW=

sum (individual component MW x their reported mol%)

3

% Vol x 10,000

ppmv≕

MDPE Field Logs

					MDPF FIR	ELD NOTE:	S		
Site Name	a.	Livingston	Ride to Hu	ugh P-Sims		LEDITOTE		Event #:	4
Location:		NE of Eur							: 4/9/2013 10:15
Date:		4/9/2013							
Job#:		700376.10	00.04		SRS#:	2001-100	 5	Start Vac:	4/9/2013 10:45
Phase:		MDPE4			Unit:	1107		Stop Vac:	4/9/2013 23:15
Onsite Pe	rsonnel:		& B. Hunti	naton	10	17.55		Leave Site:	4/9/2013 23:45
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0. 27, 10.10.						
					GAUGI	NG DATA			
WELL#		BEFORE		·	AFTER			COMME	NTS
	PSH	GW	PSH-T	PSH	GW	PSH-T			
TMW1	34.66	37.72	3.06	-	35.57	-	Stinger @ 37'		
MW4	-	35.53	-		Not Gauge	ed .			
MW1	-	37.24	-		Not Gauge				
MW5	_	33.67	-		Not Gauge				
MW6	-	39.98			Not Gauge				
MW9	_	38.77	-		Not Gauge				
MW8	_	36.38	-		Not Gauge				
						Ī			
						 	 		
		<u> </u>				 	1		
		· · · · · · · · · · · · · · · · · · ·				 			
		 				 			
		 				 			
		 				 	 		
						 	1		
						 	 		
						†			
						 			
						 			
						 			
						 	 		
						 			
						 	 		
WASTE:	H2O:	679		PSH:	3	 	TOTAL (GAL):	682	1
VVAOTE.	1120.	0/8		F 3(1).			TIOTAL (OAL).	002	
Sample	Name	Ana	lvsis	Date:	Ti	me:	Comments:		
NFLUENT			D 1945	4/9/2013		:45		PID = >:	50k
NFLUEN		ASTM		4/9/2013		:45		PID = >	
NFLUEN				-		-		-	
EFFLUEN		<u> </u>		-		-			
	<u> </u>	I					4		
Notes:		1							
	Total = 26	.5 Inches w	ith PSH = 1	26 3/8 Inch	es = Total	682 gallon	s with PSH = 3 (Gallons	
						3			

Start Date:	4/9/2013		MDPE FIELD DATA											
			Well Flow							Well Data				
TIME	SAMPLE	Inflent temp.	Diff.	Vac	PID	Propane	EXHAUST	COMMENTS:						
	TAKEN	(°f)	Pressure	(In.Hg)	Composite	Tank	TEMPF	TMW1		><	$>\!\!<$	$\searrow \swarrow$		
			(INH20)		(PPM)	(%-size)		VAC (INH2O)	VAC (INH2O)	VAC (INH2O)	VAC (INH2O)	VAC (INH2O)		
	*		2" Preso			500 Gal.		VAO (IIVI 120)	VAG (INT120)	VAC (111120)	VAC (INTIZO)	VAC (1141120)		
11:15		80	10.2	22.5	12300	59	1409	62.3				$\times\!\!\!\times$		
11:45	*	80	10	22.5	>50000	56	1410	64.7		\searrow		$\times\!\!\!\times$		
12:45		82	10.5	22.5	>50000	54	1411	64.1				$\times\!\!\times$		
13:45		82	10.1	22	>50000	52	1411	63.2				$\times\!\!\times$		
14:45		83	10.6	22.5	>50000	50	1410	64.7		\rightarrow		$\times\!\!\times$		
15:45		79	11.3	23	>50000	49	1409	40.3				$\times \times$		
16:45		78	5	19	38726	47	1416	48.1				$\times \times$		
17:45		78	5.1	19	>50000	45	1411	47.4				$\times \times$		
18:45		76	7.3	19	24556	43	1408	52.8				$\times \times$		
19:45		72	7	19	21341	41	1405	53.4				$\times\!\!\!\times$		
20:45		66	7.5	19	32294	39	1412	54.2				\times		
21:45	*	62	6.8	18	>50000	37	1405	56.4				\times		
22:45		62	6.5	18	>50000	35	1409	56.8				\times		

Soil Vacuum Influence

Observation Well	MW5
Extraction Well (EW)	TMW1
Time:	In. H2O
11:45	0
21:45	0.05

Laboratory Analytical Results

HOUSTON LABORATORIES

8820 INTERCHANGE DRIVE HOUSTON, TEXAS 7705-1 PHONE (713) 660-0901

Certificate of Analysis

Number: 1030-2013040312-001A

Simon I. Walshe, CAPM

Talon/LPE 921 N. Bivins St. Amarillo Texas 79107 April 15, 2013

Sample ID:

Station Name:

Sample Point:

Influent #1

Sampled By:

Sample Of:

Gas

Spot

Station Number:

Station Location: Eunice, NM. Sample Date:

04/09/2013 11:45

Sample Conditions: N.G. Pres. ,

N.G. Temp.

PO / Ref. No:

ANALYTICAL DATA

Components	Mol %	Wt %	GPM at 14.650 psia	Method	Lab Tech.	Date Analyzed
And the supplier of the substitute of the substi				GPA-2261 M	DK	4/15/2013 3:18:44 AM
Nitrogen	91.848	90.289				
Carbon Dioxide	4.012	6.196				
Methane	3.641	2.050				
Propane	0.006	0.009	0.002			
Iso Butane	0.014	0.029	0.005			
n-Butane	0.002	0.004	0.001			
Iso Pentane	0.091	0.230	0.033			
n-Pentane	0.094	0.238	0.034			
Hexanes Plus	0.292	0.955	0.127			
	100.000	100.000	0.202			
	C2 +	C3 +	iC5 +			
GPM TOTAL:	0.202	0.202	0.194			
Relative Density	Real Gas			0.9840		
Calculated Molecular	Weight			28.50		
Compressibility Factor	r			0.9995		
Calculated Gross BT		psia & 60°F				

Real Gas:

Dry BTU:

60

Water Sat. Gas_Base BTU:

59

Comments:

H2O Moi% - 1.75_Wt% - 1.113

Staley

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP or GPA guidelines for quality assurance, unless otherwise stated

HOUSTON LABORATORIES

3826 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PRICHE (713) 660 0901

Certificate of Analysis

Number: 1030-2013040312-002A

Simon I. Walshe, CAPM

Talon/LPE

921 N. Bivins St.

Amarillo Texas 79107

Sample ID:

Station Name:

Influent #2

Station Number:

Station Location:

Eunice, NM.

Sample Point:

April 15, 2013

Sampled By:

Sample Of:

Gas

Spot

Sample Date:

04/09/2013 21:45

Sample Conditions: N.G. Pres.,

PO / Ref. No:

N.G. Temp.

ANALYTICAL DATA

Components	Mol %	Wt %	GPM at 14.650 psia	Method	Lab Tech.	Date Analyzed
			en transferinge vision, transferingsparigives par elleberte et transfer	GPA-2261 M	DK	4/15/2013 3:34:49 AM
Nitrogen	96.532	94.847				
Carbon Dioxide	2.235	3.450				
Methane	0.802	0.451				
Propane	0.002	0.003	0.001			
Iso Butane	0.008	0.016	0.003			
n-Butane	0.041	0.084	0.013			
Iso Pentane	0.060	0.152	0.022			
n-Pentane	0.065	0.164	0.023			
Hexanes Plus	0.255	0.833	0.111			
	100.000	100.000	0.173			
	C2 +	C3 +	iC5 +			
GPM TOTAL:	0.173	0.173	0.156			
Relative Density	Real Gas			0.9844		
Calculated Molecular	Weight			28.51		
Compressibility Factor	r			0.9996		

Calculated Gross BTU per ft³ @14.650 psia & 60°F

Real Gas: Dry BTU:

Water Sat. Gas_Base BTU:

28 27

Comments:

H2O Mol% - 1.75_Wt% - 1.113

Staley

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP or GPA guidelines for quality assurance, unless otherwise stated

SPL, Inc. Analysis Request Chain of Custody Record

							SPL Work Order No.:					Acct. Mate Code:							Dept. Code			SPL	
BB L												NEEDS CLIENT C				CODE				Page 1	of1		
Report To: (Company Name):	Taion/LPE, Ltd.						LILLY CACHE KADE					ation Number;			Project/Station Location:						Requeste	sted TAT	
Address:	921 N. Bivins St.						المال	70	057	576.100.09			Eun. C. NM				in						
						Special Instructions:																	
City/State/Zip:	Amarillo			TX	79	107																10 husi	ness days
	Simon I. Walshe, CAPM swalshe@talonipe.com					Indicate Billing Type: Net 30 day Acct.					Check #										10 500.		
							t '	(Place "X", where			1 1												
Invoice To:	806-350-8872 Fax: 806-467-062				22	appron	Crec						ct SPL, Inc for CC payment arrangements. quested Analysis							ges May Apply			
(Company Name):	Talon/LPE, Ltd.											(Place an "X" next to Sar) belo	ow)			(See quo	te for details;
Address:	921 N. Bivins St							linders will be rented for			Ì												
							\$10/cyl. All cylinders checked out are to be returned within 21 days.									į			İ				
City/State/Zip:	Amarillo TX 79107					whether the	ģ	1					j	ì			l						
	Taion - Accounts Payable acctpayables@taionipe.com					Cylinders no		1					1										
Phone: Client PO# or Ref. No.:	806-467-0607 Fax: 806-37				72-66	03		idered lost and will be rent replacement cost.		19	į		ĺ										
Contract/Proposal #:	SPLQ5270						Cylinders not returned after 30 days will be considered lost and will be billed at current replacement cost.									!	1						
(i.e. SPLQ####)		371		AdS						ĺ						1	-		ì				
	Campia		Sample	ate	site	_	Cylina	er Tracking Info			į							. !					
Sample ID (used to log/track sample)	Sample Date	Sample Time	Type (Gas/Liq. /Solid)	Ouplicate	Composite	Spot	Cylinder #	Date Out	Date In							1						Co	mments
Inflored the	4-9-15	1145	4	1						V			<u> </u>					_		1	1		
TOHOASLZ	4-9-14	2/45	6							X	1										1		
	1-7	217																		\top	1	<u> </u>	
				1												_				+-	+-	1	
			 	+			 						1							+-	+	1	
			<u> </u>	1			 				-		1	<u> </u>				-	 	+-	+-	+	
	 		 	+			 			1			+	-	\vdash				 	+	+-	 	
				+-			 		 	-			-	 				 	 		+		
				+	 	 				-			 . 		-				┼	+	+-		
				+	-		-			1			┼	 	-			1	-	+-	+		
	 		 	+				 					-	-	1-1			-	 	+-	+		
	1		 		!	<u> </u>							-	1					_	1			
Sampled By-Print Name:	A JAN	HUN	415/0-					Received B	By-Compar	ıy:						_							
Signature: Relinquished By Frinchame:						Time: Received By-Print Name:						Jus 65REAR									Date:	Time:	
Computation by Printerior						Signature:						Levis Land Hotel 13									4/12/1	1	
Signature: 4-1/ Relinquished By-Print Name: Date:						Time:												Date:	Time:				
Signature:							Signature:							*****									
Onto.						Time:									Date:	Time:							
Reinquisned by-Print Name,							Signature:										1						
Signature:							<u> </u>	Oignature.															
Choose SPL Facility>>>	Corpor	ate HQ - Ho	ston, TX	I	Shi	to Ac	idress:	882	0 Intercha	nge D	r., Ho	usto	n,TX 7	7054				F	Phone	e:		713.660.0	901

Oxidizer Charts

Waste Ticket

MOUNT TOTAL SATE GAND Y COPPEDITY ON GILL TRUOKS - VACUUM TRUCKS - WINGHT TRUCKS - WINGHT TRUCKS - MINGH TRUCKS -Brine Water Salt Water Anthorized by Diesel Orade Oil