

DCP Midstream 370 17th Street, Suite 2500 Denver, CO 80202 **303-595-3331** 303-605-2226 *FAX*

RECEIVED OCD

2014 JAM 14 P 2: 20

January 13, 2014

Mr. Leonard Lowe Environmental Engineer New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

RE: 3rd Quarter 2013 Groundwater Monitoring Results

DCP Hobbs Gas Plant (AP-122)

Unit G, Section 36, Township 18 South, Range 36 East

Lea County, New Mexico

Dear Mr. Lowe:

DCP Midstream, LP (DCP) is pleased to submit for your review, one copy of the 3rd Quarter 2013 Groundwater Monitoring Results for the DCP Hobbs Gas Plant located in Lea County, New Mexico (Unit G, Section 36, Township 18 South, Range 36 East).

If you have any questions regarding the report or work plan, please call me at 303-605-1718.

Sincerely

DCP Midstream, LP

Stephen Weathers, P.G.

Principal Environmental Specialist

cc: Geoffrey Leking, OCD Hobbs District Office (Copy on CD)

Environmental Files

THIRD QUARTER 2013 GROUNDWATER MONITORING REPORT

DCP HOBBS GAS PLANT

AP-122

LATITUDE: N 32.70533º LONGITUDE: W 103.3066º

LEA COUNTY, NEW MEXICO

Prepared For:

Mr. Steve Weathers
DCP Midstream, LP
370 17th Street, Suite 2500
Denver, Colorado 80202

Signation Pritehard, P.G.

Senior Project Geologist

John Ri**zz**i, P.G.

Senior Project Geologist

Prepared by: Conestoga-Rovers & Associates

14998 West 6th Avenue Suite 800

Golden, Colorado 80401

Office: (720) 974-0935 Fax: (720) 974-0936

web: http://www.CRAworld.com

DECEMBER 2013 REF. NO. 059097 (20)

Table of Contents

		Page
Section 1.0	Introduction	1
Section 2.0	Groundwater Monitoring and Sampling	1
Section 3.0	Analytical results	2
Section 4.0	Conclusions	2

List of Figures (Following Text)

Figure 1 Site Location Map

Figure 2 Groundwater Elevation Contour Map

Figure 3 Groundwater BTEX Analytical Results

List of Tables (Following Text)

Table 1 Current Groundwater Analytical Results

Table 2 Historical Groundwater Analytical Results

List of Appendices

Appendix A Standard Operating Procedures for Groundwater Monitoring and Sampling

Appendix B Laboratory Analytical Report

Appendix C Survey Results

Section 1.0 Introduction

Conestoga-Rovers & Associates (CRA) is submitting this *Third Quarter 2013 Groundwater Monitoring Report* to DCP Midstream, LP (DCP) for the Hobbs Gas Plant in Lea County, New Mexico. This report summarizes the September 2013 groundwater sampling event. Groundwater monitoring and sampling details, analytical results, and conclusions are presented below.

Site Background

The site is a cryogenic processing plant located in Lea County, New Mexico approximately nine miles west of Hobbs, New Mexico (Figure 1). The site occupies approximately 3.5 acres in an undeveloped area. Facilities include a laboratory, an amine unit, compressors, sumps, mol sieve dehydration, tank batteries and an onsite water production well used for non-potable water. The DCP Apex Compressor Station is located approximately 750 feet (ft) north of the Hobbs Gas Plant. There are seven groundwater monitoring wells onsite.

Hydrogeology

Historical static groundwater elevations have ranged between 3,691.46 (MW-E) and 3,695.74 (MW-A) ft below mean seal level (msl). Static groundwater elevations ranged from 3,692.02 (MW-G) to 3,693.64 ft msl (MW-AR) on September 16, 2013. Groundwater flows to the southeast with a gradient of 0.005 ft/ft (Figure 2).

Section 2.0 Groundwater Monitoring and Sampling

CRA gauged groundwater monitoring wells MW-AR and MW-B through MW-G on September 16, 2013. CRA collected samples from groundwater monitoring wells MW-AR and MW-D through MW-G on September 17, 2013. Light non-aqueous phase liquids (LNAPL) were measured at thicknesses of 2.44 ft in well MW-B and 0.20 ft in MW-C and samples were not collected. Each well cap was removed to allow groundwater levels to stabilize and equilibrate prior to gauging. All sampled groundwater monitoring wells were purged of approximately three well-casing volumes while temperature, pH, and conductivity were measured. Groundwater samples, including a duplicate sample, were collected using clean disposable bailers and decanted into clean containers supplied by the analytical laboratory. Groundwater samples were submitted under chain-of-custody to Accutest Laboratories of Texas. CRA's standard operating procedures for groundwater monitoring and sampling are presented as Appendix A.

Purged Groundwater

Purged groundwater from monitoring wells MW-D, MW-E and MW-F has been determined to be below cleanup levels and was discharged to the ground surface. Purged groundwater from wells MW-AR and MW-G is stored onsite in United States Department of Transportation approved 55-gallon drums.

Section 3.0 Analytical Results

Groundwater Analytical Methods

Groundwater samples collected from MW-AR and MW-D through MW-G were analyzed for:

Benzene, toluene, ethylbenzene, and xylenes (BTEX) by SW-846 8260B.

Groundwater Sampling Results

BTEX was not detected above the New Mexico Water Quality Control Commission (NMWQCC) cleanup levels in the groundwater samples collected from monitoring wells MW-AR and MW-D through MW-F. Sample MW-G contained the highest concentrations of benzene (113 micrograms per liter (μ g/L)) and xylenes (720 μ g/L). BTEX concentrations in groundwater are presented on Figure 3. Current groundwater analytical results are summarized in Table 1. Historical groundwater analytical results are summarized in Table 2. The laboratory analytical report is presented as Appendix B.

Section 4.0 Conclusions

Groundwater sample MW-G contained concentrations above NMWQCC cleanup levels for benzene and xylenes. BTEX has not been detected above the NMWQCC cleanup levels in samples MW-D, MW-E or MW-F since 2008. LNAPL thickness was measured in wells MW-B at 2.44 ft and MW-C at 0.20 ft. CRA will continue quarterly monitoring and sampling in 2013 to evaluate site groundwater conditions.

Figures

Figure 1: Vicinity Map
Figure 2: Groundwater Elevation Contour Map
Figure 3: Groundwater BTEX Analytical Map

CONESTOGA-ROVERS

Figure 1
SITE LOCATION MAP
DCP HOBBS GAS PLANT
LEA COUNTY, NEW MEXICO
DCP Midstream

GROUNDWATER ELEVATION CONTOUR MAP - THIRD QUARTER 2013
DCP HOBBS GAS PLANT
LEA COUNTY, NEW MEXICO
DCP Midstream
September 16, 2013

Tables

Table 1: Current Groundwater Analytical Results
Table 2: Historical Groundwater Analytical Results

Table 1.	Current Ground	dwater Anal	ytical Result	s - DCP Hob	bs Gas Plant,	Lea County,	New Mexico	
	Date	TOC	DTW	GWE*	Benzene	Toluene	Ethyl -	Total
Well ID	Date	100	DIVV	GWL	benzene	Toluene	benzene	Xylenes
		(ft msl)	(ft bgs)	(ft msl)		Concentrat	ions in μg/l	
NMWQCC	Cleanup Levels				10	750	750	620
MW-AR	9/17/2013	3755.73	62.09	3693.64	<1.0	<1.0	<1.0	<3.0
MW-B	9/16/2013	3755.70	64.84	3692.84		LNAPL	present	
MW-C	9/16/2013	3755.35	62.73	3692.78		LNAPL	present	
MW-D	9/17/2013	3755.19	62.14	3693.05	<1.0	<1.0	<1.0	<3.0
MW-E	9/17/2013	3754.11	61.90	3692.21	<1.0	<1.0	<1.0	<3.0
MW-F	9/17/2013	3755.88	63.41	3692.47	<1.0/<1.0	<1.0/<1.0	<1.0/<1.0	<3.0/<3.0
MW-G	9/17/2013	3754.67	62.65	3692.02	113	449	77.3	720

Notes and Abbreviations:

ID = Identification

TOC = Top of casing

DTW = Depth to water

GWE = Groundwater elevation

* = Groundwater elevation corrected using a LNAPL specific gravity of 0.81

Wells were re-surveyed on 9/25/2013

BTEX = Benzene, toluene, ethylbenzene, and total xylenes by SW-846 8021 or 8260B

ft msl = Feet above mean sea level

ft bgs = Feet below ground surface

μg/l = Micrograms per liter

<x = Not detected above x µg/l

x/y = Sample results/blind duplicate results

BOLD = Indicates concentration above the NMQCC Cleanup Levels

NMWQCC = New Mexico Water Quality Control Commission

LNAPL = Light non-aqueous phase liquids

	Date	тос	DTW	LNAPL	GWE*	pН	Conductivitiy	Temperature	DO	ORP	Benzene	Toluene	Ethylbenzene	Total Xylenes
Well ID	oate			thickness			μS/cm	€C	mg/l			Concentrati		
NMWOCC	Cleanup Levels	(ft msl)	(ft bgs)	feet	(ft msl)	s.u.	µ5/ст	<u> </u>	mg/i	шА	10	750	750	620
						7.00	424		44.45	24.2			3.8	15.0
MW-A	03/05/08	3755.87	60.18		3695.69	7.20	431 573	17.46	11.42	21.3	11 <0.46	<5.0 <0.48	<0.45	<1.4
	06/02/08		60.19		3695.68	7.31	533	20.57	5.49	31.1	<0.46	<0.48	< 0.45	<1.4
	09/15/08		60.58		3695.29	6.81		19.27	4.96	238.7				
	12/03/08		60.41		3695.46	7.37	505	18.20	7.17	183.9	<0.46	<0.48	<0.45	<1.4
	02/27/09		60.18	••	3695.69	7.29	505	19.34	8.15	64.1	<0.46	<0.48	<0.45	<1.4
	06/25/09		60.21		3695.66	6.90	660	19.80	8.20	145.0	<2.0	<2.0	<2.0	<6.0
	09/01/09		60.37		3695.50	7.07	670	19.86	8.11	69.0	<2.0	<2.0	<2.0	<6.0
	11/17/09		60.40		3695.47	7.82	576	17.67			<2.0	<2.0	<2.0	<6.0
	03/25/10		60.40		3695.47	7.51	567	21.70		*-	<2.0	<2.0	<2.0	<6.0
	06/08/10		60.39		3695.48	7.36	513				<2.0	<2.0	<2.0	<6.0
	09/21/10		60.13	••	3695.74	7.11	585.0	20.30		••	<0.50	<0.43	<0.55	<1.7
	12/16/10		60.24		3695.63	7.27	225.7	18.00			<0.50	<0.43	<0.55	<1.7
	03/11/11		60.39		3695.48	7.31	556.5	19.40	**		<2.0	<2.0	<2.0	<6.0
	06/14/11		60.63		3695.24	6.93	582.3	21.00			<1.0	<1.0	<1.0	<3.0
	09/27/11		61.04		3694.83	7.65	538.6	20.80			<1.0	<1.0	<1.0	<3.0
	12/13/11		61.24		3694.63	7.50	574.1	17.5			<1.0	<1.0	<1.0	<3.0
	03/27/12		61.39		3694.48	7.79	515.8	19.7	**		<1.0	<1.0	<1.0	<3.0
	06/19/12		61.54		3694.33	7.53	518.1	20.2			<1.0	<1.0	<1.0	<3.0
	09/24/12		61.71	**	3694.16	7.86	553.6	20.5			<1.0	<1.0	<1.0	<3.0
	12/10/12		61.91		3693.96	7.10	554.2	19.7	**		<1.0	<1.0	<1.0	<3.0
	03/11/13									Destroye	d			
MW-AR	09/17/13	3755.73	62.09		3693.64	7.67	581.00	19.20			<1.0	<1.0	<1.0	<3.0
MW-8	03/05/08	3755.94	61.66		3694.28	6.67	836	16.99	2.49	-214.1	550	64	130	730
	06/02/08		61.69		3694.25	7.08	868	19.99	1.09	-150.1	444	86.5	155	716
	09/15/08		62.04		3693.90	6.60	902	19.63	0.56/0.56	1.0	398/488	36.6/46.0	157/200	947/1,210
	12/03/08		61.93	**	3694.01	6.93	889	18.39	1.57	-161.4	25.6	0.56 J	7.1	29.2
	02/27/09		61.68		3694.26	6.87	921	18.83	0.96	-115.7	592	86.3	176	1,230
	06/25/09		61.63		3694.31	6.60	130	19.80	2.50	-131.0	1,490	270	411	2,750
	09/01/09		61.81		3694.13	6.60	130	20.36	1.92	206.0	1,420	195	380	2,930
	11/17/09		61.85		3694.09	6.99	822	17.50	2.52		199	2.9	68.5	159
	03/25/10		61.70		3694.24	6.99	1007	20.80			199	7.8	112	375
	06/08/10		61.77		3694.17	6.98	866	21.56			438/631	20.2/26.8	161/191	836/1,230
	09/21/10		61.58		3694.36	6.73	981.4	19.70			572	21.7	167	885
					3694.33	7.04	994.3	17.50			154	14.6	52.8	239
	12/16/10		61.61											
	03/11/11		61.74		3694.20	6.89	945.9	19.5			360"/295"	19.9	175	742
	06/14/11		61.95		3693.99	6.69	997.8	20.1		••	295*/448*	9.2/11.0	135/162	5 84/932 °
	09/27/11		62.43		3693.51	7.3	872.7	20.8			225*	0.8	147	464"
	12/13/11		62.60		3693.34	7.07	1006	18.2			357	10	157	581"
	03/27/12		62.94	0.29	3693.23				l	NAPL pres	sent			
	06/19/12		64.10	1.65	3693.18					NAPL pres				
	09/24/12		64.60	2.10	3693.04					NAPL pres				
	12/10/12		65.07	2.57	3692.95					NAPL pres				
	03/11/13		65.00	3.60	3693.86					NAPL pres				
	06/11/13		65.02	2.57	3693.00					NAPL pre				
	09/16/13	3755.70	64.84	2.44	3692.84					NAPL pre				

Table 2.	Historical Ground	water Analytica	l Results - D		Plant, Lea Cour	ity, New Mexico								
Well ID	Date	тос	DTW	LNAPL thickness	GWE*	pН	Conductivitiy	Temperature	DO	ORP	Benzene	Toluene	Ethylbenzene	Total Xylene
		(ft msl)	(ft bgs)	feet	(ft msi)	s.u.	μS/cm	3C	mg/l	mV	<u> </u>	Concentration		
NMWQC	C Cleanup Levels										10	750	750	620
MW-C	03/05/08	3755.59	61.18		3694.41	6.91	535	17.46	6.50	-104.1	61/160	5.3/<25	19.0/160	78.0/140
	06/02/08		61.22		3694.37	6.90	781	20.00	2.64	-121.2	75.4/103	4.9/8.1	26.3/36.9	121/170
	09/15/08		61.54		3694.05	6.51	679	18.99	1.97	160.3	130	5.7	47.3	222
	12/03/08		61.48		3694.11	6.88	621	18.24	2.31	-17.8	39.0/50.6	<0.48/<0.48	10.5/13.6	33.3/44.5
	02/27/09		61.15		3694.44	6.90	614	18.56	1.96	-8.7	69.9/36.6	0.48/ ا	20.1/10.0	86.8/43.3
	06/25/09		61.16		3694.43	6.60	760	19.60	4.42	54.0	54.3/64.2	0.72 J/0.87 J	11.9/19.0	53.0/82.4
	09/01/09		61.35		3694.24	6.78	990	19.27	2.66	40.0	82.8/71.5	1.3 J/ 1.0J	23.1/19.8	132/110
	11/17/09		61.37		3694.22	7.26	631	17.17			30/25.7	<2.0/<2.0	9.3/7.7	53.0/44.3
	03/25/10		61.27		3694.32	7.13	686	19.20			48.2/52.2	3.0/2.9	16.9/20.3	141/123
	06/08/10		61.33		3694.26	6.92	621	23.06			20.4	1.1	8.5	52.3
	09/21/10		61.10		3694.49	6.58	741.8	19.2			124	3.1	50.4	276
	12/16/10		61.15		3694.44	6.95	760.5	18.1		••	10.7/ 5.4	0.59/<0.43	5.1/2.8	25.2/12.6
	03/11/11		61.28		3694.31	6.80	725.3	19.3			95.8	5.7	42.4	235
	06/14/11		61.52		3694.07	6.60	737.1	21.2			66.0	2.8	29.8	145
	09/27/11		62.00		3693.59	7.34	677.2	20.5			40.3	0.7	19.9	94.4
	12/13/11		62.20		3693.39	7.06	730.1	16.5			112/44.1	4.3/1.9	29.8/14.4	200/97.7
	03/27/12		62.33		3693.26	7.26	652.3	19.2			37.0/52.0	1.2/1.8	11.4/15.0	75.8/104
	06/19/12		62.45		3693.14	7.15	701.2	20.0			66.8	1.9	20.1	135
	09/24/12		62.67		3692.92	7.76	732.2	20.6			2.1	< 0.33	0.89	5.6
	12/10/12		62.73		3692.86	7.08	669.6	17.6			26.6	2.2	8.2	57.8
	03/11/13		61.70		3693.89	7.64	800.5	18.4			8.6/4.7	0.66 J/0.37 J	2.9/1.6	19.8/11.1
	06/11/13		62.73	0.03	3692.88					LNAPL pres	sent			
	09/16/13	3755.35	62.73	0.20	3692.78					LNAPL pres	sent			

Table 2.	Historical Grounds	water Analytica	l Results - Di	CP Hobbs Gas	Plant, Lea Cou	nty, New Mexico								
Well ID	Date	тос	DTW	LNAPL thickness	GWE*	рН	Conductivitiy	Temperature	DO	ORP	Benzene	Toluene		Total Xylenes
		(ft msl)	(ft bgs)	feet	(ft msl)	s.u.	μS/cm	ōC .	mg/l	m۷		Concentration		
NMWQC	Cleanup Levels										10	750	750	620
MW-D	03/05/08	3755.43	60.77		3694.66	6.85	507	17.23	9.66	22.5	<1.0	<5.0	<1.0	<3.0
	06/02/08		60.77		3694.66	7.13	668	19.99	5.39	29.2	< 0.46	<0.48	< 0.45	<1.4
	09/15/08		61,10		3694.33	6.64	646	19.42	3.65	233.1	<0.46	<0.48	< 0.45	<1.4
	12/03/08		61.08		3694.35	7.09	587	17.95	5.46	175.5	< 0.46	< 0.48	< 0.45	<1.4
	02/27/09		60.79		3694.64	7.01	589	19.59	7.22	77.1	< 0.46	<0.48	< 0.45	<1.4
	06/25/09		60.77		3694.66	6.70	820	20.10	6.38	177.0	<2.0	<2.0	<2.0	<6.0
	09/01/09		60.96	**	3694.47	6.81	860	19.90	6.11	118.0	<2.0	<2.0	<2.0	<6.0
	11/17/09		60.96		3694.47	7.67	658	16.67			<2.0	<2.0	<2.0	<6.0
	03/25/10		60.89		3694.54	7.18	706	19.50			<2.0	<2.0	<2.0	<6.0
	06/08/10		60.91		3694.52	7.09	636	22.28			<2.0	<2.0	<2.0	<6.0
	09/21/10		60.66	**	3694.77	6.84	730.5	19.30			<0.50	< 0.43	<0.55	<1.7
	12/16/10		60.72		3694.71	7.03	794.7	18.70			<0.50	< 0.43	<0.55	<1.7
	03/11/11		60.84		3694.59	6.82	760.7	19.40			<2.0	<2.0	<2.0	<6.0
	06/14/11		61.09		3694.34	6.65	842.4	20.00		**	<1.0	<1.0	<1.0	<3.0
	09/27/11		61.55		3693.88	7.21	708.7	20.60			<1.0	<1.0	<1.0	<3.0
	12/13/11		61.70		3693.73	7.28	771.7	16.7			<1.0	<1.0	<1.0	<3.0
	03/27/12		61.84		3693.59	7.18	659.7	20.5			<1.0	<1.0	<1.0	<3.0
	06/19/12		61.97	4.5	3693.46	7.26	706.4	21.1			<1.0	<1.0	<1.0	<3.0
	09/24/12		62.12		3693.31	8.18	717.9	23.0			<1.0	<1.0	<1.0	<3.0
	12/10/12		62.26		3693.17	6.92	676.4	18.3			<1.0/<1.0	<1.0/<1.0	<1.0/<1.0	<3.0/<3.0
	03/11/13		62.20		3693.23	8.14	706.9	18.8			<1.0	<1.0	<1.0	<3.0
	06/11/13		62.26		3693.17	7.01	658.0	20.5			<1.0/<1.0	<1.0/<1.0	<1.0/<1.0	<3.0/<3.0
	09/17/13	3755.19	62.14		3693.05	7.38	694.0	19.5	***		<1.0	<1.0	<1.0	<3.0
MW-E	03/05/08	3754.36	60.75		3693.61	6.89	487	17.29	8.99	38.4	14	< 5.0	3.9	14
	06/02/08	5.5	60.78		3693.58	7.07	633	19.91	3.72	9.4	< 0.46	<0.48	< 0.45	<1.4
	09/15/08		61.21		3693.15	6.74	601	19.27	4.02	228.3	< 0.46	<0.48	< 0.45	<1.4
	12/03/08		61.13		3693.23	7.03	592	18.58	5.25	186.2	< 0.46	<0.48	< 0.45	<1.4
	02/27/09		60.81		3693.55	7.01	590	19.10	6.29	91.2	< 0.46	<0.48	< 0.45	<1.4
	06/25/09		60.74		3693.62	6.80	270	20.10	5.19	60.0	<2.0	<2.0	<2.0	<6.0
	09/01/09		60.93		3693.43	6.84	780	20.94	5.95	16.0	<2.0	<2.0	<2.0	<6.0
	11/17/09		60.94		3693.42	7.32	610	17.06			<2.0	<2.0	<2.0	<6.0
	03/25/10		60.82		3693.54	7.14	654	19.50			<2.0	<2.0	<2.0	<6.0
	06/08/10		60.83		3693.53	7.00	612	22.50			<2.0	<2.0	<2.0	<6.0
	09/21/10		60.65		3693.71	6.72	730	19.40			<0.50/<0.50	<0.43/<0.43	<0.55/<0.55	
	12/16/10		60.65		3693.71	7.01	698.8	18.10	**		<0.50	< 0.43	<0.55	<1.7
	03/11/11		60.75		3693.61	6.82	684.9	19.30			<2.0/<2.0	<2.0/<2.0	<2.0/<2.0	<6.0/<6.0
	06/14/11		60.91	••	3693.45	6.63	727.9	21.00			<1.0	<1.0	<1.0	<3.0
	09/27/11		61.43		3692.93	7.42	607.3	20.90			<1.0/<1.0	<1.0/<1.0	<1.0/<1.0	<3.0/<3.0
	12/13/11		61.59		3692.77	7.19	682.3	15.9			<1.0	<1.0	<1.0	<3.0
	03/27/12		61.66		3692.70	7.55	630.1	20.0			<1.0	<1.0	<1.0	<3.0
	06/19/12		61.81		3692.55	7.25	641.0	19.9			<1.0/<1.0	<1.0/<1.0	<1.0/<1.0	<3.0/<3.0
	09/24/12		61.94		3692.42	7.83	706.9	23.0			<1.0/<1.0	<1.0/<1.0	<1.0/<1.0	<3.0/<3.0
	12/10/12		62.90		3691.46	6.21	652.7	17.1			<1.0/<1.0	<1.0/<1.0	<1.0	<3.0
	03/11/13		61.91		3692.45	8.17	697.3	18.8			<1.0	<1.0	<1.0	<3.0
	06/11/13		61.97		3692.43	6.98	687.0	23.4	-		<1.0	<1.0	<1.0	<3.0
	09/17/13	3754.11	61.90		3692.21	7.30	717.0	19.2			<1.0	<1.0	<1.0	<3.0
	09/1//13	3/34.11	61.90		3032.21	7.30	/1/.0	15.2			<1.0	1.0	1.0	\3.0

Table 2.	Historical Ground	water Analytica	l Results - DO	P Hobbs Gas	Plant, Lea Cour	nty, New Mexic	0							
	Date	тос	DTW	LNAPL	GWE*	рН	Conductivitiy	Temperature	DO	ORP	Benzene	Toluene	Ethylbenzene	Total Xylenes
Well ID		(ft msl)	(ft bgs)	thickness feet	(ft msi)	ş.u.	μ5/cm	ēC	mg/i	mV	-	Concentration	ons in ug/l —	
NMWQC	C Cleanup Levels	\(\text{it iiisij}	(11 0 23)	1000	(13.11131)		100				10	750	750	620
MW-F	03/05/08	3756.13	62.01		3694.12	6.76	657	17.01	9.71	3.6	1.9	< 5.0	< 1.0	3.8
	06/02/08	-,	62.06		3694.07	6.76	879	19.00	3.08	21.4	< 0.46	<0.48	< 0.45	<1.4
	09/15/08		62.44		3693.69	6.43	876	19.17	2.52	234.3	< 0.46	<0.48	< 0.45	<1.4
	12/03/08		62.22		3693.91	6.76	917	17.79	3.79	188.4	< 0.46	< 0.48	< 0.45	<1.4
	02/27/09		61.97		3694.16	6.77	857	18.61	3.85	93.4	< 0.46	<0.48	< 0.45	<1.4
	06/25/09		61.96		3694.17	6.20	100	19.80	5.56	221.0	<2.0	<2.0	<2.0	<6.0
	09/01/09		62.18		3693.95	6.51	110	19.25	5.27	108.0	<2.0	<2.0	<2.0	<6.0
	11/17/09		62.13		3694.00	6.93	1,030	18.67			<2.0	<2.0	<2.0	<6.0
	03/25/10		62.02		3694.11	6.94	1,053	19.00			<2.0	<2.0	<2.0	<6.0
	06/08/10		62.12		3694.01	7.03	900	22.06			<2.0	<2.0	<2.0	<6.0
	09/21/10		61.92		3694.21	6.67	1,003	19.10			< 0.50	< 0.43	< 0.55	<1.7
	12/16/10		61.93		3694.20	6.90	1,058	17.60			< 0.50	< 0.43	< 0.55	<1.7
	03/11/11		62.05		3694.08	6.84	1,017	19.00			<2.0	<2.0	<2.0	<6.0
	06/14/11		62.35		3693.78	6.53	1,053	20.10			<1.0	<1.0	<1.0	<3.0
	09/27/11		62.85		3693.28	7.05	890	20.40			<1.0	<1.0	<1.0	<3.0
	12/13/11		63.05		3693.08	7.12	922.0	16.7			<1.0	<1.0	<1.0	<3.0
	03/27/12		63.16		3692.97	7.20	754.8	20.6			<1.0	<1.0	<1.0	<3.0
	06/19/12		63.30		3692.83	7.23	776.1	19.7			<1.0	<1.0	<1.0	<3.0
	09/24/12		63.50		3692.63	7.64	769.8	21.6			< 0.34	< 0.33	< 0.32	<0.87
	12/10/12		63.65		3692.48	6.97	753.7	15.8			<1.0	<1.0	<1.0	<3.0
	03/11/13		63.50		3692.63	7.96	829.7	18.4			<1.0	<1.0	<1.0	<3.0
	06/11/13		63.51		3692.62	7.04	740.1	20.2			<1.0	<1.0	<1.0	<3.0
	09/17/13	3755.88	63.41		3692.47	7.39	781.0	19.1			<1.0/<1.0	<1.0/<1.0	<1.0/<1.0	<3.0/<3.0
MW-G	09/17/13	3754.67	62.65		3692.02		Well not pu	rged due to dar	nage		113	449	77.3	720

Notes and Abbreviations: ID = Identification

TOC = Top of casing

DTW = Depth to water

LNAPL = Light non-aqueous phase liquids

GWE = Groundwater elevation

* = Groundwater elevation corrected using a LNAPL specific gravity of 0.81

DO = Dissolved oxygen

ORP = Oxidation reduction potential

BTEX = Benzene, toluene, ethylbenzene, and total xylenes by SW-846 8021 or 82608 ft msl = Feet above mean sea level

ft bgs = Feet below ground surface

s.u. = Standard unit

µS/cm = Microsiemens per centimeter

PC = Degrees Celcius mg/l = Milligrams per liter

mV = Millivolts µg/l = Micrograms per liter

NMWQCC = New Mexico Water Quality Control Commission

<x = Not detected above x µg/1

BOLD = Indicates concentration above the NMWQCC Cleanup Levels

-- = Not measured/not analyzed

x / y = Sample results / blind duplicate results

Wells were re-surveyed on 9/25/2013
\[\Den-s1\ghaned\Project Files\0590(059097-HOBBS\059097-REPORTS\05959097-RPT11-3Q 2011 GWMR\059097-11-T1 good.rb\Groundwater Analytical Results

Appendix A

Standard Operating Procedures for Groundwater Monitoring and Sampling

STANDARD FIELD PROCEDURES FOR GROUNDWATER MONITORING AND SAMPLING

This document presents standard field methods for groundwater monitoring, purging and sampling, and well development. These procedures are designed to comply with Federal, State and local regulatory guidelines. Conestoga-Rovers & Associates' specific field procedures are summarized below.

Groundwater Monitoring

Prior to performing monitoring activities, the historical monitoring and analytical data of each monitoring well shall be reviewed to determine if any of the wells are likely to contain separate phase hydrocarbons (SPH) and to determine the order in which the wells will be monitored (i.e. cleanest to dirtiest). Groundwater monitoring should not be performed when the potential exists for surface water to enter the well (i.e. flooding during a rainstorm).

Prior to monitoring, each well shall be opened and the well cap removed to allow water levels to stabilize and equilibrate. The condition of the well box and well cap shall be observed and recommended repairs noted. Any surface water that may have entered and flooded the well box should be evacuated prior to removing the well cap. In wells with no history of SPH, the static water level and total well depth shall be measured to the nearest 0.01 foot with an electronic water level meter. Wells with the highest contaminant concentrations shall be monitored last. In wells with a history of SPH, the SPH level/thickness and static water level shall be measured to the nearest 0.01 foot using an electronic interface probe. The water level meter and/or interface probe shall be thoroughly cleaned and decontaminated at the beginning of the monitoring event and between each well. Monitoring equipment shall be washed using soapy water consisting of Liqui-noxTM or AlconoxTM followed by one rinse of clean tap water and then two rinses of distilled water.

Groundwater Purging and Sampling

Prior to groundwater purging and sampling, the historical analytical data of each monitoring well shall be reviewed to determine the order in which the wells should be purged and sampled (i.e. cleanest to dirtiest). No purging or groundwater sampling shall be performed on wells with a measurable thickness of SPH or floating SPH globules. If a sheen is observed, the well should be purged and a groundwater sample collected only if no SPH is present. Wells shall be purged either by hand using a disposal or PVC bailer or by using an aboveground pump (e.g. peristaltic or WatteraTM) or down-hole pump (e.g. GrundfosTM or DC Purger pump).

Groundwater wells shall be purged approximately three to ten well-casing volumes (depending on the regulatory agency requirements) or until groundwater parameters of temperature, pH, and conductivity have stabilized to within 10% for three consecutive readings. Temperature, pH, and conductivity shall be measured and recorded at the start of purging, once per well casing volume removed, and at the completion of purging. The total volume of groundwater removed shall be recorded along with any other notable physical characteristic such as color and odor. If required, field parameters such as turbidity, dissolved oxygen (DO), and oxidation-reduction potential (ORP) shall be measured prior to collection of each groundwater sample.

Groundwater samples shall be collected after the well has been purged and allowed to recharge to 80% of the pre-purging static water level, or if the well is slow to recharge, after waiting a minimum of 2 hours. Groundwater samples shall be collected using clean disposable bailers or

pumps (if an operating remediation system exists on site and the project manager approves of its use for sampling) and shall be decanted into clean containers supplied by the analytical laboratory. New latex gloves and disposable tubing or bailers shall be used for sampling each well. If a PVC bailer or down-hole pump is used for groundwater purging, it shall be decontaminated before purging each well by using soapy water consisting of Liqui-noxTM or AlconoxTM followed by one rinse of clean tap water and then two rinses of distilled water. If a submersible pump with non-dedicated discharge tubing is used for groundwater purging, both the inside and outside of pump and discharge tubing shall be decontaminated as described above.

Sample Handling

Except for samples that will be tested in the field, or that require special handling or preservation, samples shall be stored in coolers chilled to 4° C for shipment to the analytical laboratory. Samples shall be labeled, placed in protective foam sleeves or bubble wrap as needed, stored on crushed ice at or below 4° C, and submitted under chain-of-custody (COC) to the laboratory. The laboratory shall be notified of the sample shipment schedule and arrival time. Samples shall be shipped to the laboratory within a time frame to allow for extraction and analysis to be performed within the standard sample holding times.

Sample labels shall be filled out using indelible ink and must contain the site name; field identification number; the date, time, and location of sample collection; notation of the type of sample; identification of preservatives used; remarks; and the signature of the sampler. Field identification must be sufficient to allow easy cross-reference with the field datasheet.

All samples submitted to the laboratory shall be accompanied by a COC record to ensure adequate documentation. One copy of the COC shall be kept in the QA/QC file and another copy shall be retained in the project file. Information on the COC shall consist of the project name and number; project location; sample numbers; sampler/recorder's signature; date and time of collection of each sample; sample type; analyses requested; name of person receiving the sample; and date of receipt of sample.

Laboratory-supplied trip blanks shall accompany the samples and be analyzed to check for cross-contamination, if requested by the project manager.

Well Development

Wells shall be developed using a combination of groundwater surging and extraction. A surge block shall be used to swab the well and agitate the groundwater in order to dislodge any fine sediment from the sand pack. After approximately ten minutes of swabbing the well, groundwater shall be extracted from the well using a bailer, pump and/or reverse air-lifting through a pipe to remove the sediments from the well. Alternating surging and extraction shall continue until the sediment volume in the groundwater (i.e. turbidity) is negligible, which typically requires extraction of approximately ten well-casing volumes of groundwater. Preliminary well development usually is performed during well installation prior to placing the sanitary surface seal to ensure sand pack stabilization. Well development that is performed after surface seal installation, should occur 72 hours after seal installation to ensure that the cement has had adequate time to set.

Waste Handling and Disposal

Groundwater extracted during development and sampling shall be stored onsite in sealed U.S. DOT H17 55-gallon drums. Each drum shall be labeled with the contents, date of generation, generator identification and consultant contact. If hydrocarbon concentrations in the purged groundwater are below ADEC cleanup levels or the site is in a remote area (pending ADEC approval) groundwater will be discharged to the ground surface, at least 100 feet from the nearest surface water body.

\\DEN-S1\Shared\Denver\Alaska\AK SOP\CRA Alaska SOP\AK Groundwater Monitoring and Sampling SOP - CRA.doc

Appendix B

Laboratory Analytical Report

HOBBS Quarterly Groundwater Sampling Field Sheet

Well ID	Time	DTP	DTW	Depth to Bottom	Product Thickness	Amount of Product Removed	Casing Diam.	Comments
MW-A 🎗	1243		62.09	70.04	0	0	7"	
MW-B	1314	22,40	64.84	NA		0	211	
MW-C	1309	62.53	62.73	NA.		O	211	
MW-D	1256	_	62.14	69.76	0	0	2"	
MW-E	1301)	61,90	71.26	0	0	2"	
MW-F	1234	-	63.41	73.81	0	0	2"	
MW-G	1305		62,65	70.34	0	2	2"	Casing duniqued

Project Name:	Holds Gas Plant	Project Number: 059097
Field Staff: Jo	e Mireles Studt Menrel	Date: 9-16-13

Site ID: Hobbs	CRA Mgr: Siobhan Pritchard	Well ID: MW-A R
CRA Project No.: 059097	Date: 9-17-13	Field Staff:) M 5 M

Depth to Water: 62.09	Depth to Bottom: 70.04	Water Column Height: 7, 95
Volume/ft: 0000 016	1 Casing Volume: 1, 37	3 Casing Volumes: 3, 9
Well Diameter: 7,"	Did Well Dewater?: Yes No	Total Gallons Purged: 0.59
Purged groundwater: Drum Surf	ace X	,

	Well Diam.	Volume/ft (galions)
1 Casing Volume = Water column height x Volume/ ft.	2"	0.16
	4"	0.65
	6"	1.47

Time	Volume Purged (gallons)	Temp. (°C) ± 10%	Ph ± 0.1	Cond. (Ms) ± 3%	Comments
1060	0:25	19.9	7.69	0.549	
1052	0.25	19.3	7.69	0.570	
1054	0.25	19-2	7.67	65 81.	

*** A minimum of three parameters must be monitored and recorded.***
NOTE: If well is purged dry, DO NOT collect sample until it has recharged to approximately 80% of its pre-purge volume.

Sample ID	Date	Time	Analytes / Analytical Method	
Mw.AR-041113	9-17-13	1055	Ø BTEX by SW-846 8260B	
Additional Comments:	air Dobble	ાંપ ઈલ	a of the door's smaller than pin her	1

Site ID: Hobbs			C	CRAN	Mgr: Sie	bhan Pi	itchard	Well ID: MW-Ø						
CRA Project No.:	05909	97	E	Date:	9-17	13		Field Staff: JM SM						
Depth to Water:	, 2,	14	Г	Depth	to Botte	om: 6	9.76	Water Column Height: 7,62						
			1	Casi	ng Volu	me: \	, 33	Water Column Height: 7,6 3 3 Casing Volumes: 3,65 Total Gallons Purged: 6,75 Well Diam. Volume/ft (gallons) 2" 0.16 4" 0.65 6" 1.47 Comments Analytical Method	3 Casing Volumes: 3, 65					
Well Diameter:	み"		Depth to Bottom: 69.76 Water Column Height: 7,62 1 Casing Volume: 1,32 3 Casing Volumes: 3,65 Did Well Dewater?: Yes No Total Gallons Purged: 6,75 Surface Mell Diam. Volume/ft (gallons)											
Purged groundwate	er: Dr	um Sı	urface	eX										
1 Casing Volum	ne= \	Water colum	ın heiş	ght x V	/olume/ f	ìt.	We	2" 0.16 4" 0.65						
Time Volume Purged (gallons)	1				1		(s) Comments							
1107 0.25	1		7,	71										
1111 033	19	5	7.	18 38		Field Staff: JM 5 M Bottom: 69 76 Water Column Height: 7,62 Volume: 1,32 3 Casing Volumes: 3,65 Dewater?: Yes (No) Total Gallons Purged: 6,75 ume/ft. 2" 0.16 4" 0.65 6" 1.47 Cond. (Ms) comments ± 3% O. 70 5 O. 71 2 O. 694 ged to approximately 80% of its pre-purge volume. Mell Diam. Volume/ft (gallons) 1.47 Comments ± 3% O. 71 2 O. 694 Ged to approximately 80% of its pre-purge volume. Mell Diam. Volume/ft (gallons) 1.47 Comments ± 3% O. 71 2 O. 694 Ged to approximately 80% of its pre-purge volume.								
					1. 1144	1	80% of its pre-purge	volume.						
Sample ID	pepth to Water: 62, 14 Depth to Bottom: 69.76 Water Column Height: 7,63 plume/ft: , 16 1 Casing Volume: 1, 3 3 Casing Volumes: 3, 65 cll Diameter: 3" Did Well Dewater?: Yes No Total Gallons Purged: 6, 75 preed groundwater: Drum Surface 1 Casing Volume = Water column height x Volume/ft. 1 Casing Volume = Water column height x Volume/ft. 1 Casing Volume = Water column height x Volume/ft. 2" O.65 6" 0.65 6" 0.65 6" 1.47 Temp. (°C) Ph Cond. (Ms) Comments ± 10% ± 0.1 ± 3% Comments 2													
Mu-10-09171	′3	9-19-	13	111	15									
Additional Comments			monant and the											

Site ID:	Hobbs		CRA I	Mgr: Siobhan Pi	ritchard	Well ID: MW-E				
CRA Pi	roject No.: (159097	Date:	9-17-13		Field Staff: JM 5M				
Depth to	o Water: 💪	.1.90	Depth	to Bottom: Z	1.26	Water Column Height: 9,36				
Volume	e/ft:	,16	1 Casi	ng Volume:	.49	3 Casing Volumes: 4,49				
Well Di	ameter:	<i>ን</i>	Did W	ell Dewater?:	Yes No	Total Gallons Purged: 0,5				
Purged	groundwate	r: Drum S	Surface 🛛		-					
1 (Casing Volun	ne = Water colun	mn height x \	Volume/ ft.	<u>We</u>	Diam. Volume/ft (gallons)				
Time	Volume Purged (gallons)	Temp. (°C)	Ph ± 0.1	Cond. (Ms) ± 3%		Comments				
1127	0.33	193	7.51	0.714						
1129	0.33	19.7	7.30			The state of the s				
*** A minim				f. ***	80% of its pre-purge	volume.				
Sa	Depth to Bottom: 7/26 Water Column Height: 9.36 Ift: , 1 Casing Volume: 1,49 3 Casing Volumes: 4,49 Ameter: A Did Well Dewater?: Yes No Total Gallons Purged: 6,5 Broundwater: Drum Surface Casing Volume = Water column height x Volume/ft. Casing Volume = Water column height x Volume/ft. Volume Purged (gallons) 1.47 Volume Temp. (°C) Ph Cond. (Ms) 2 0.65 6" 1.47 Comments 4.33 19 3 7.5/ 0.1/4 0.35 19.1 7.37 0.724 0.35 19.1 7.37 0.724 0.35 19.1 7.37 0.724 0.35 19.2 7.30 0.7/7 In of three parameters must be monitored and recorded. *** It is purged dry, DO NOT collect sample until t has recharged to approximately 80% of its pre-purge volume. Temple ID Date Time Analytes / Analytical Method OBSTEX by SW-846 8260B									
mw-E	-09171	3 9-17-	13 1/3	-	y SW-846 8260B					
Additions	d Comments:									

Site ID: Hobbs	CRA Mgr: Siobhan Pritchard	Well ID: MW OC. P.
CRA Project No.: 059097	Date: 9-17-13	Field Staff: JA Sin
	,	
Depth to Water: 63.4/	Depth to Bottom: 73, &	Water Column Height: [0,4
Volume/ft: (6	1 Casing Volume: 1.146	3 Casing Volumes: 4,99

Yes

No

 Well Diam.
 Volume/ft (gallons)

 2"
 0.16

 4"
 0.65

 6"
 1.47

Total Gallons Purged: 1, 75

1 Casing Volume = Water column height x Volume/ft.
--

Time	Volume Purged (gallons)	Temp. (°C) ± 10%	Ph ± 0.1	Cond. (Ms) ± 3%	Comments
1030	0,33	19.5	7.65	0,834	
1031	0.66	19,4	7.58	0.818	
1039-	0.99	19.1	7.39	0.781	

*** A minimum of three parameters must be monitored and recorded. ***
NOTE: If well is purged dry, DO NOT collect sample until it has recharged to approximately 80% of its pre-purge volume.

Sample ID	Date	Time	Analytes / Analytical Method
MW-F-0417/3	9-17-13	10.35	ØBTEX by SW-846 8260B
Additional Comments:		Life of the second seco	

SM

Well ID: MW-D G-

Field Staff: JM

WELL SAMPLING FORM DISPOSABLE BAILER SAMPLING

CRA Mgr: Siobhan Pritchard

Date: 9-17.13

Depth to	o Water:	62.65		Depth	to Botto	om: 76	2.34	1	Water Column Height: 7.69		
Volume	e/ft: 0 · /	16		1 Casii	ng Volu	me:],	2		3 Casing Volumes: 3. 6		
Well Dia		211		Did We	ell Dew	vater?:	Yes	(No)	Total Gallons Purged:		
Purged g	groundwate	r: Drum] Surfa	ace 🛮	N	4					
10	Casing Volum	ac = Water	column h	ieight x V	⁷ olume/↑	ft.		Wel	Diam. Volume/ft (gallons) 2" 0.16 4" 0.65 6" 1.47		
Time	Volume Purged (gallons)	Temp. (** ± 10%	- 1	Ph ± 0.1	1	d. (Ms) : 3%			Comments		
1010	0	19.6		5-8	0.8	16	$\mathcal{N}_{\mathfrak{d}}$. boil	well damugad		
Name of the last o											
	nun of three para ell is purged dry, l					pproximately	80% of its	s pre-purge	volume.		
Sai	mple ID]	Date	Ti	ime		A	nalyte	es / Analytical Method		
mw- G	r-09171	3 9-	17-13	101	<i>C</i> '	ØBTEX by SW-846 8260B					
Additiona	d Comments:		**************************************								

Site ID: Hobbs

CRA Project No.: 059097

CHAIN OF CUSTODY

Bottle Order Control #

	10165 Harwin, Suite I	150 - Housto	n, IX 77	036 -	/13-2/1	-4700) fax	: 7	13-	27	1-4	770			Accutes	t Quote					Accutes	t Job #				
																100					7		. Alex	7 ST		
	Client / Reporting Information	on	***		P	oject in	formatic	n			y Program		10 × 10 ×	(74)	5 - 2 th	1872		*		Reque	sted Ar	nalyses	8	40		Matrix Codes
Company Nam	•	······		Project N																						DW - Drinking Water
Conestoga	Rovers and Associates			DCP N	didstream	-Hobb	s 0590	97-	201	3-0	2														- 1	GW - Ground Water
Project Contac	t	E-Mail		Bill to			· · · · · · · · · · · · · · · · · · ·		Invoi	ce At	tn.															WW - Wastewater
Jeffrey Clou	ıd			DCP M	idstream-l	lobbs		Ste	ve V	Vea	thers	\$														SO = Soil
Address				Address			,																		- 1	SL - Słudge
2135 South	Loop 250 W																								1	OI - Oil
City	State		Zip	City				State	è				Zip												1	LHQ - Liquid
Midland	Texas	79703	3																							SOL - Other Solid
Phone No.		Fax No	•	Phone No).							Fax N	ło.													
432 686-00	86														m											
Samplers's Na				Client Pu	rchase Order	#									8260											
11 0 11	Steert	Munder													-82											
Accutest	E-141545 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		c	ollection	1			Nu			-	erved	7		×										-	
Sample #	Field ID / Point of Col	liection	Date		Time	Matrix	# of bottles	₹	Ž.	HWO	1280	OSH4	ЖЕОН	NONE	втех										-	LAB USE ONLY
	MW-A	09/7.3	G-17.		1055	GW	3	x	-	7	-	 2	1		X										$\neg \uparrow$	
	MW-B		15777	<u></u>	1032	GW	3	Х	\dashv		十	+			X										\dashv	
	MW-C		 			GW	3	х		T	十	+	\vdash		X			-						\vdash	\dashv	
	MW-D -	09/7/3	9-17-	, 400		GW	3	х		+	+	+	\vdash		X									\vdash	\dashv	
		09/7/3	9117-		1175	GW	-3	X	\dashv	\dashv	+	+	\vdash		<u> </u>									-	\dashv	
				, , , , , , , , , , , , , , , , , , , 	-	GW	3	X	\dashv	\dashv	+	╫	\vdash		×	-									\dashv	
		91713	9-17-		10.35	GW	3	x	-	+	+	+	\vdash		×		-	-							\dashv	
	Trip Blank	09/7/13	9-17-	1 2	Acquire				-	+	+	+-	\vdash											-	-	
	,	: E & com (cm			-	ТВ	2	X	\dashv	+	-	+	-		X	_	-190							-	+	
100	Turnaround Time (Business days	- 69/7/3	9-17-	3	1010	Data C	3 Deliverabi	e Info	rmatic	n n		1			Y	N. Salar		Jan 19		Cor	nments	/ Remar	ks			
	10 Day STANDARD	Approved By:/ [ate:		Comm	ercial */	<i>(*</i>	$\overline{}$	TRA	P-13						T										
	7 Day				Comn	nercial "E	3**	$\overline{}$	EDE	Fon	mat_					1										
-	4 Day RUSH				Redu	ed Tier 1			Oth	er																
	3 Day EMERGENCY				Full D	ata Pack	age																			
	2 Day EMERGENCY																									
	1 Day EMERGENCY				Comme	ercial "A"	= Result	ts On	ty																	
	Other	10 calendar	day		Comm	ercial "B"	= Resul	ts & S	Stand	ard C	C					-										
Real tim	ne analytical data available v																									
		SAMPLE CUSTOR		UMENTE			SAMPLE	S CH	ANGE					DING	COUR											
Relinquished			Date Time:		Received By	:				F	Relinqu	ished l	Ву;				Date Ti	me;			Receive	d By:				
1 2 /	n s			734	1					_	2	·····		······							2					
	by:		Date Time:		Received By	:				F	lelingu	ished l	By:				Date Ti	me:			Receive	d By:				
3 Relinquished	hu		Date Time:		Some in the					-4			*			Dra	nd . +				4		<u> </u>			
Relinquished 5	.ny:		Date Jime:		Received By					1	ustod	y Seal i	•			Preserv	ed whe	re appli	cable				On le	ne (Coaler T	emp.
2			1		[3																					

WELL DEVELOPMENT FORM

Project Name:	CRA Mgr:	Well ID: Mu AR
Project Number:	Date: 9-16-13	Well Yield:
Site Address:	Development Method:	Well Diameter: 2''
	hand baile	Technician(s): JM SM
Initial Depth to Water: 62.09	Total Well Depth: 70.04	Water Column Height: 7. ₹ 95
Volume/ft: 0.16	1 Casing Volume: /, スフ	10 Casing Volumes: ノスフ
Purging Device: Lq:/00	Did Well Dewater?: 92 S	Total Gallons Purged: 10.5

| Volume | Water column height x Volume | ft. | Vol

Time	Activity	Water Depth	Gallons Purged	Comments
1440	develope MW AR	62.09	10.5	

Appendix C

Survey Results

Sample Results		
Report of Analysis		
1		

Report of Analysis

Page 1 of 1

Client Sample ID: MW-AR-091713

Lab Sample ID: TC37234-1

Matrix: AQ - Ground Water

Method: SW846 8260B

Project: CRA: DCP Midstream-Hobbs

Date Sampled: 09/17/13 **Date Received:** 09/20/13

Percent Solids: n/a

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 C002592657.D 1 09/23/13 CF n/a n/a VC1518

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0010 0.0010 0.0010 0.0030	0.00034 0.00033 0.00032 0.00087	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	93% 106% 103% 98%	72-122% 68-124% 80-119% 72-126%		24% 9%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

By

CF

n/a

Page 1 of 1

Client Sample ID: MW-D-091713 Lab Sample ID: TC37234-2

File ID

Matrix: AQ - Ground Water Method: SW846 8260B

Project: CRA: DCP Midstream-Hobbs

DF

Date Sampled: 09/17/13 **Date Received:** 09/20/13

Percent Solids: n/a

n/a

Prep Date Prep Batch **Analytical Batch**

VC1518

Run #1 Run #2

Purge Volume

C002592658.D

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL Units	Q
71-43-2	Benzene	ND	0.0010	0.00034 mg/l	
108-88-3	Toluene	ND	0.0010	0.00033 mg/l	
100-41-4	Ethylbenzene	ND	0.0010	0.00032 mg/l	
1330-20-7	Xylene (total)	ND	0.0030	0.00087 mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits	
1868-53-7	Dibromofluoromethane	93%	72-122%		
17060-07-0	1,2-Dichloroethane-D4	107%	68-124%		
2037-26-5	Toluene-D8	102%	80-119%		
460-00-4	4-Bromofluorobenzene	98%	72-126%		

Analyzed

09/23/13

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = 1ndicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: MW-E-091713 Lab Sample ID: TC37234-3

 Lab Sample ID:
 TC37234-3
 Date Sampled:
 09/17/13

 Matrix:
 AQ - Ground Water
 Date Received:
 09/20/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: CRA: DCP Midstream-Hobbs

Run #1 C002592659.D 1 09/23/13 CF n/a Prep Date n/a VC1518
Run #2

Purge Volume
Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL Units	Q
71-43-2	Benzene	ND	0.0010	0.00034 mg/l	
108-88-3	Toluene	ND	0.0010	0.00033 mg/l	
100-41-4	Ethylbenzene	ND	0.0010	0.00032 mg/l	
1330-20-7	Xylene (total)	ND	0.0030	0.00087 mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		
1868-53-7	Dibromofluoromethane	94%	72-122%		
17060-07-0	1,2-Dichloroethane-D4	106%	68-124%		
2037-26-5	Toluene-D8	102%	80-119%		
460-00-4	4-Bromofluorobenzene	101% 72-126%			

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-F-091713

Lab Sample ID: TC37234-4

Matrix: AQ - Ground Water Method: SW846 8260B

Project: CRA: DCP Midstream-Hobbs **Date Sampled:** 09/17/13

Date Received: 09/20/13

VC1518

Percent Solids: n/a

Analytical Batch

File ID DF Analyzed By **Prep Date Prep Batch** Run #1 C002592660.D 09/23/13 CF n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0010 0.0010 0.0010 0.0030	0.00034 mg/l 0.00033 mg/l 0.00032 mg/l 0.00087 mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	93% 108% 103% 102%		72-122% 68-124% 80-119% 72-126%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: DUP-1-091713

Lab Sample ID: TC37234-5
Matrix: AQ - Ground Water

Method: SW846 8260B

Project: CRA: DCP Midstream-Hobbs

Date Sampled: 09/17/13 **Date Received:** 09/20/13

Percent Solids: n/a

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 C002592661.D 1 09/23/13 CF n/a n/a VC1518
Run #2

Purge Volume

Run #1 5.0 ml

Run #2

Purgeable Aromatics

Compound	Result	RL	MDL Units	Q
Benzene	ND	0.0010	0.00034 mg/l	
Toluene	ND	0.0010	0.00033 mg/l	
Ethylbenzene	ND	0.0010	0.00032 mg/l	
Xylene (total)	ND	0.0030	0.00087 mg/l	
Surrogate Recoveries	Run# 1	Run# 2	Limits	
Dibromofluoromethane	93%		72-122%	
1,2-Dichloroethane-D4	106%		68-124%	
Toluene-D8	104%		80-119%	
4-Bromofluorobenzene	101%		72-126%	
	Benzene Toluene Ethylbenzene Xylene (total) Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4	Benzene ND Toluene ND Ethylbenzene ND Xylene (total) ND Surrogate Recoveries Run# 1 Dibromofluoromethane 93% 1,2-Dichloroethane-D4 106% Toluene-D8 104%	Benzene ND 0.0010 Toluene ND 0.0010 Ethylbenzene ND 0.0010 Xylene (total) ND 0.0030 Surrogate Recoveries Run# 1 Run# 2 Dibromofluoromethane 93% 1,2-Dichloroethane-D4 106% Toluene-D8 104%	Benzene ND 0.0010 0.00034 mg/l Toluene ND 0.0010 0.00033 mg/l Ethylbenzene ND 0.0010 0.00032 mg/l Xylene (total) ND 0.0030 0.00087 mg/l Surrogate Recoveries Run# 1 Run# 2 Limits Dibromofluoromethane 93% 72-122% 1,2-Dichloroethane-D4 106% 68-124% Toluene-D8 104% 80-119%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TRIP BLANK

Lab Sample ID: TC37234-6

Matrix:

AQ - Trip Blank Water

Method: SW846 8260B

CRA: DCP Midstream-Hobbs

Date Sampled: 09/17/13

Date Received: 09/20/13 Percent Solids: n/a

Analytical Batch

DF By **Prep Date** Prep Batch File ID Analyzed VC1518 Run #1 C002592649.D 09/23/13 CF n/a n/a

Run #2

Project:

Purge Volume

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3	Benzene Toluene	ND ND	0.0010 0.0010	0.00034 0.00033	-	
100-41-4 1330-20-7	Ethylbenzene Xylene (total)	ND ND	0.0010 0.0030	0.00032 0.00087	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	93% 105% 103% 100%		72-12 68-12 80-11 72-12	24% 9%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-G-091713 Lab Sample ID: TC37234-7

Matrix: AQ - Ground Water Method: SW846 8260B

Project: CRA: DCP Midstream-Hobbs

Date Sampled: 09/17/13 **Date Received:** 09/20/13

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	C002592662.D	1	09/23/13	CF	n/a	n/a	VC1518
Run #2	X0094890.D	10	09/24/13	CF	n/a	n/a	VX2031

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3	Benzene Toluene	0.113 0.449 ^a	0.0010 0.010	0.00034 0.0033	mg/l mg/l	
100-41-4 1330-20-7	Ethylbenzene Xylene (total)	0.0773 0.720 a	0.0010 0.030	0.00032 0.0087	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	93% 107% 102% 101%	109% 122% 107% 98%	72-12 68-12 80-11 72-12	4% 9%	

⁽a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Misc. Forms
Custody Documents and Other Forms
raludas the following whom ambigobles
ncludes the following where applicable: Chain of Custody

CHAIN OF CUSTODY

	C	3	l	J	٦		Ŀ	Ξ	٤	3	٦	
				0		_		_			_	

	Laboratories												F	ED-EX	Tracking				В	otte Or	der Contro	1			
	10165 Harwin, Suite 150 - Ho	ouston, TX 77	036 - 1	713-271	-4700) fax	: 71	13-2	271	-47	70		1	cculest	Quote #				A	ccutest	Job #	K	37	23	4
														100	Sec. 1	1	655	\$ J	N S		\$ 0 XX	100	200	Matrix	8 - 1 Sept
Company Nan		and the second second	Project N		oject In	ormatic	on L	18.2	200	1. 1.	11,00	17 Sq 163	-+	289		7	9,00	T	quest	ed An	iyses	11.3%	1	DW - Drini	
. ,	Rovers and Associates			lidstream	-Hohb	- 0500	107_1	2011	1_∩2				- 1			- 1			- 1	- 1	1			GW - Gros	-
Project Contact		1	Bill to	ildaticati	-11000	3 0000		Invaic	_			_	-			- 1	- 1	- 1		- 1	İ	1		ww-w	
Jeffrey Clo				idstream-l	Inhhe			ve W					1			- 1		- 1	- 1	- 1		1		80 -	Soil
Address			Address	add Call	10003		0101	10 11	cui	1010	_	_	-						- 1	- 1		1		5L-S	iludge
2135 South	h Loop 250 W															- 1	- 1						-	01-	- Oil
City	State	Zip	City				State		_	_	_	Zip	_		1	- 1	- 1	- 1						LIQ -	Liquid
Midland	Texas	79703																	- 1					SOL-O	her Solid
Phone No.		Fax No.	Phone No).						F	ax N	0.				- 1	- 1	- 1		- 1		İ		1	
432 686-00														a 1		l			- 1	- 1					
Samplers's Na			Client Pur	rchase Order	#									8260B			- 1	- 1	- 1	- 1					
Joe P	Pirelas Styert Mue.	er												8		- 1		- 1	- 1						
Accutest	Field ID / Point of Collection		Collection				Nu	mber		reser		_	_	×		- 1			- 1	- 1	- 1				
Sample #	Field (D7 Point of Collection	Date		Time	Matrix	# of bottles	₽	ğ	080	1 2	Par-SO	HEOH	NO.	BTEX		- 1		- 1	- 1	- 1		1		LABUS	E ONLY
	MW-AR-09/7/3			1065	GW	3	х		+	1	1	-		x											
	MW-B				GW	3	x							Х											
	MW-C				GW	3	х							Х											
2	MW-D -09/7/	13 9-17	-/3	1115	GW	3	x							Х											
3	MW-E - 09171	3 9-17-	13	1135	GW	3	х							Х											
4	MW-F-09171	3 9-17-		10.35	GW	3	x							Х											
_5	DUP-1 - 09/7 /	3 9-17-	-13	_	GW	3	x	\perp						х						_			_		
6	Trip Blank				тв	2	X	\perp	\perp	-				Х		_	_	_		_			_		
	mw-G-0977	13 9-17-	13	1010	Gw	3	r		_	1				Y									1		
2.00		17 8 17 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.			eliverabl	e Intor	TRR		100	154.5	7.37	Va. 4	10 (A)	0.03000	ne stat	2.38		Comn	nents /	Remarks		135	<u> </u>	
	7 Day	ved By:/ Date:			nercial " <i>A</i> nercial "E		닉	EDD																	
	4 Day RUSH				ced Tier 1		뭐	Othe				_				_									
	3 Day EMERGENCY				ata Pack		_	Oute																	
	2 Day EMERGENCY				mia i gon	ugu																			
-	1 Day EMERGENCY			Comm	ercial "A"	= Resul	is Onl	v														,			
		alendar day		l .	ercial "B"				rd OC	:							_	++		A			,		
Real tir	me analytical data available via Lablink	,				.,												10		11	í	11	À		
	SAMPLE	CUSTODY MUST BE DO	CUMENTED			SAMPLE	S CHA	NGE					DING	COURI	ER DELI	VERY	-6	10	1	1/2	n		1000	1.30,700	C 12
	d by Sampler:	Date Time:	!	Received By	:	1	,		Re	linquis	hed B	y: \	ΙX	2	-	Date Tir	10 :	900	R	ecfive)	Dr L	P	\checkmark		
1 100	Mineles	9-14-13/	730	1			_		2		_		\underline{V}				_	ישר	2	Ψ	$v \sim c$	1	_0		
Relinquished 3	d by·	Date Time:		Received By					Re 4	linquis	hed B	y:				Jalo Tir	M :		R.	eceived	By:	'			
Relinquishe	d by:	Date Time:		Received By	:		_	_	Cu	stody	Seal #	_			Preserve	d wher	applic	able				On Ice	Coole	r Temp.	
5				5																					

TC37234: Chain of Custody

Page 1 of 3

Accutest Laboratories Sample Receipt Summary

Page 1 of 2

Accutest Job Number: TC372	234 Clie	ent: CRA		Project: DCP MIDSTREAM	и новвѕ	059097-2	013-02
Date / Time Received: 9/20/2	013	Delivery Me	thod:	Airbill #'s: 571549653608			
No. Coolers: 1	Therm ID: IR-5;			Temp Adjustment Factor: 0			
Cooler Temps (Initial/Adjusted	l): #1: (2,2/2.2);						
Cooler Security Y	or N		Y or N	Sample Integrity - Documentation	_Y _c	r N	
1. Custody Seals Present:	3. CO	C Present:	2	Sample labels present on bottles:	V		
2. Custody Seals Intact:	4. Smpl I	Dates/Time OK		Container labeling complete:	✓		
Cooler Temperature	Y or N			Sample container label / COC agree:	Y		
Temp criteria achieved:	₹ □			Sample Integrity - Condition	<u>Y</u> 0	or N	
Cooler temp verification:				Sample recvd within HT:	✓		
Cooler media:	Ice (Bag)			2. All containers accounted for:	$\overline{\mathbf{V}}$		
Quality Control Preservation	Y or N	N/A W	TB STB	3. Condition of sample:	Int	tact	 ,
1. Trip Blank present / cooler:	2		Z	Sample Integrity - Instructions	Υo	r N	N/A
2. Trip Blank listed on COC:				Analysis requested is clear:	<u> </u>		
3. Samples preserved properly:				Bottles received for unspecified tests		₹	
4. VOCs headspace free:	2			Sufficient volume recvd for analysis:	V		
				Compositing instructions clear:			$\overline{\checkmark}$
				5. Filtering instructions clear:			✓
Comments							
Accutest Laboratories V:713.271.4700				anvin Drive 271.4770			ouston, TX 77036 ww/accutest.com

TC37234: Chain of Custody Page 2 of 3

Sample Receipt Log

Job #: TC37234

Date / Time Received: 9/20/2013 9:00:00 AM

Initials: BG

Client: CRA

Cooler#	Sample ID:	Vol	Bot #	Location	Pres	pH	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TC37234-1	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.2	0	2.2
1	TC37234-1	40mł	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.2	0	2.2
1	TC37234-1	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.2	0	2.2
1	TC37234-2	40mi	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.2	0	2.2
1	TC37234-2	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.2	0	2.2
1	TC37234-2	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.2	0	2.2
1	TC37234-3	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.2	0	2.2
1	TC37234-3	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.2	0	2.2
1	TC37234-3	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.2	0	2.2
1	TC37234-4	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.2	0	2.2
1	TC37234-4	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.2	0	2.2
1	TC37234-4	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.2	0	2.2
1	TC37234-5	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.2	0	2.2
1	TC37234-5	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.2	0	2.2
1	TC37234-5	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.2	0	2.2
	TC37234-6	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
	TC37234-6	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.				
1	TC37234-7	40ml	1	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.2	0	2.2
1	TC37234-7	40ml	2	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.2	0	2.2
1	TC37234-7	40ml	3	VR	HCL	Note #1 - Preservative to be checked by analyst at the instrument.	IR-5	2.2	0	2.2

TC37234: Chain of Custody Page 3 of 3

QC Data Summaries	

Method Blank Summaries Blank Spike Summaries

Matrix Spike and Duplicate Summaries

Method Blank Summary Job Number: TC37234

Account: DUKE DCP Midstream, LLC Project: CRA: DCP Midstream-Hobbs

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VC1518-MB	C0025926	42.ID	09/23/13	CF	n/a	n/a	VC1518

The QC reported here applies to the following samples:

TC37234-1, TC37234-2, TC37234-3, TC37234-4, TC37234-5, TC37234-6, TC37234-7

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	ND ND ND ND	1.0 1.0 1.0 3.0	0.34 0.32 0.33 0.87	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries		Limits	i		
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	85% 73% 107% 111%	72-122 68-124 80-119 72-126	1% 1%		

Page 1 of 1

Method: SW846 8260B

Method Blank Summary Job Number: TC37234

Account: Project:

DUKE DCP Midstream, LLC CRA: DCP Midstream-Hobbs

Sample	File ID	DF	Analyzed 09/24/13	By	Prep Date	Prep Batch	Analytical Batch
VX2031-MB	X0094880.D	1		CF	n/a	n/a	VX2031

80-119%

72-126%

The QC reported here applies to the following samples:

TC37234-7

2037-26-5 Toluene-D8

460-00-4 4-Bromofluorobenzene

CAS No.	Compound	Result	RL	MDL	Units Q
108-88-3 1330-20-7	Toluene Xylene (total)	ND ND	1.0 3.0	0.33 0.87	ug/l ug/l
CAS No.	Surrogate Recoveries		Limits	;	
1868-53-7 17060-07-0	Dibromofluoromethane 1,2-Dichloroethane-D4	111% 11 8%	72-122 68-124		

106%

99%

Page 1 of 1

Method: SW846 8260B

Page 1 of 1

Account: Project:

DUKE DCP Midstream, LLC CRA: DCP Midstream-Hobbs

Sample VC1518-BS	File 1D C0025926	DF 40. D	Analyzed 09/23/13	By CF	Prep Date	Prep Batch n/a	Analytical Batch VC1518	
							<u>.</u>	

The QC reported here applies to the following samples:

Method: SW846 8260B

TC37234-1, TC37234-2, TC37234-3, TC37234-4, TC37234-5, TC37234-6, TC37234-7

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	25	22.3	89	68-119
100-41-4	Ethylbenzene	25	25.6	102	71-117
108-88-3	Toluene	25	25.2	101	73-119
1330-20-7	Xylene (total)	75	77.8	104	74-119
CAS No.	Surrogate Recoveries	BSP	Liı	mits	
1868-53-7	Dibromofluoromethane	86%	72-	-122%	
17060-07-0	1,2-Dichloroethane-D4	76%	68-	-124%	
2037-26-5	Toluene-D8	106%	80-	-119%	
460-00-4	4-Bromofluorobenzene	107%	72-	-126%	

^{* =} Outside of Control Limits.

Blank Spike Summary Job Number: TC37234

Account: Project:

DUKE DCP Midstream, LLC CRA: DCP Midstream-Hobbs

Sample	File ID	DF	Analyzed 09/24/13	By	Prep Date	Prep Batch	Analytical Batch
VX2031-BS	X0094878.D	1		CF	n/a	n/a	VX2031

The QC reported here applies to the following samples:

Method: SW846 8260B

TC37234-7

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
108-88-3	Toluene	25	26.2	105	73-119
1330-20-7	Xylene (total)	75	77.7	104	74-119
CAS No.	Surrogate Recoveries	BSP	Lin	nits	
1868-53-7	Dibromofluoromethane	110%	72-	122%	
17060-07-0	1,2-Dichloroethane-D4	116%	68-	124%	
2037-26-5	Toluene-D8	108%	80-	119%	
460-00-4	4-Bromofluorobenzene	93%	72-	126%	

^{* =} Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: TC37234

Account: DUKE DCP Midstream, LLC Project: CRA: DCP Midstream-Hobbs

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
TC37013-25MS	C002592645.	. 10 00	09/23/13	CF	n/a	n/a	VC1518
TC37013-25MSD	C002592646.	ID 00	09/23/13	CF	n/a	n/a	VC1518
TC37013-25	C002592643.	. IDO	09/23/13	CF	n/a	n/a	VC1518
TC37013-25	C002592644.	. ID OO	09/23/13	CF	n/a	n/a	VC1518

TC37234-1, TC37234-2, TC37234-3, TC37234-4, TC37234-5, TC37234-6, TC37234-7

CAS No.	Compound	TC37013-25 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	3990 a	2500	6150	86	6080	84	1	68-119/12
100-41-4	Ethylbenzene	608	2500	3260	106	3210	104	2	71-117/12
108-88-3	Toluene	5.8	2500	2630	105	2580	103	2	73-119/13
1330-20-7	Xylene (total)	3290	7500	11300	107	11100	104	2	74-119/13
CAS No.	Surrogate Recoveries	MS	MSD	TC	37013-25	TC3701	3-25 Li	imits	
1868-53-7	Dibromofluoromethane	85%	86%	85%	•	84%	72	2-122%	
17060-07-0	1,2-Dichloroethane-D4	70%	70%	71%	, •	72%	68	3-124%	
2037-26-5	Toluene-D8	109%	109%	1079	%	108%	80	-119%	
460-00-4	4-Bromofluorobenzene	110%	111%	110	%	114%	72	2-126%	

⁽a) Result is from Run #2.

Či,

Page 1 of 1

Method: SW846 8260B

^{* =} Outside of Control Limits.

Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Summary Job Number: TC37234

DUKE DCP Midstream, LLC Account: Project: CRA: DCP Midstream-Hobbs

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
TC37127-3MS	X0094885.D	50	09/24/13	CF	n/a	n/a	VX2031
TC37127-3MSD	X0094886.D	50	09/24/13	CF	n/a	n/a	VX2031
TC37127-3	X0094882.D	50	09/24/13	CF	n/a	n/a	VX2031

The QC reported here applies to the following samples: Method: SW846 8260B

TC37234-7

CAS No.	Compound	TC37127-3 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
108-88-3 1330-20-7	Toluene Xylene (total)	149 842	1250 3750	1540 5040	111 112	1490 4970	107 110	3	73-119/13 74-119/13
CAS No.	Surrogate Recoveries	MS	MSD	TC3	37127-3	Limits			
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	112% 118% 108% 96%	111% 118% 110% 99%	1089 1179 1079 97%	% %	72-122% 68-124% 80-119% 72-126%	•		

^{* =} Outside of Control Limits.