HIP - __123___

GENERAL CORRESPONDENCE

YEAR(S): 2013 to Present

Jones, Brad A., EMNRD

From:

Jones, Brad A., EMNRD

Sent:

Tuesday, November 19, 2013 11:09 AM

To:

'Eileen Shannon'

Cc:

jagwhite@eprod.com (jagwhite@eprod.com); Runell Seale (RSeale@eprod.com); Luke

Davis (luke1d@msn.com); Theresa Ancell

Subject:

RE: HIP-123 WEP III - Seg 1 Additional Source - Blanco Trading Post

The Oil Conservation Division hereby approves the Blanco Trading Post Commercial Well (36.356565, -107.811107) as an additional hydrostatic test water source under permit HIP-123 for Enterprise Products Operating Company LLC's Western Expansion Pipeline III Segment 1 pipeline project. If you have any questions regarding this matter, please do not hesitate to contact me.

Brad

Brad A. Jones

Environmental Engineer Environmental Bureau NM Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, New Mexico 87505

E-mail: brad.a.jones@state.nm.us

Office: (505) 476-3487 Fax: (505) 476-3462

From: Eileen Shannon [mailto:EShannon@kleinfelder.com]

Sent: Thursday, November 14, 2013 4:18 PM

To: Jones, Brad A., EMNRD

Cc: jagwhite@eprod.com (jagwhite@eprod.com); Runell Seale (RSeale@eprod.com); Luke Davis (luke1d@msn.com);

Theresa Ancell

Subject: WEP III - Seg 1 Additional Source - Blanco Trading Post

Hi Brad,

On behalf of Enterprise Products Operating Company LLC (Enterprise), Kleinfelder West, Inc. is submitting this notice of a change in source water for hydrostatic testing of Segment 1 of Enterprise's Western Expansion Pipeline III. Because of dropping water levels, the original proposed sources for water for testing are not likely to have sufficient water available to Enterprise for use in the hydrostatic test. In addition to the previously proposed Odie Chapman Ponds, the Hill Top Well, and the Bloomfield Water Supply System, Enterprise would like to add the following as a potential source of water for the Segment 1 hydrostatic testing:

Blanco Trading Post Commercial Well (36.356565, -107.811107)

Radium concentrations for the Blanco Trading Post Well are:

- o Rad-266 0.0747 +/- 0.341 pCi/L
- o Rad-228 0.435 +/- 0.408 pci/L

Please call me or Barbara if you have questions.

Eileen

Eileen Shannon P.G.
Project Manager
9019 Washington NE, Building A
Albuquerque, NM 87113
o| 505.344.7373 Ext. 254
c| 505.307.0722
f| 505.344.1711

Jones, Brad A., EMNRD

From:

Eileen Shannon < EShannon@kleinfelder.com>

Sent:

Thursday, November 14, 2013 4:18 PM

To:

Jones, Brad A., EMNRD

Cc:

jagwhite@eprod.com (jagwhite@eprod.com); Runell Seale (RSeale@eprod.com); Luke

Davis (luke1d@msn.com); Theresa Ancell

Subject:

WEP III - Seg 1 Additional Source - Blanco Trading Post

Attachments:

Blanco Trading Post.pdf

Hi Brad,

On behalf of Enterprise Products Operating Company LLC (Enterprise), Kleinfelder West, Inc. is submitting this notice of a change in source water for hydrostatic testing of Segment 1 of Enterprise's Western Expansion Pipeline III. Because of dropping water levels, the original proposed sources for water for testing are not likely to have sufficient water available to Enterprise for use in the hydrostatic test. In addition to the previously proposed Odie Chapman Ponds, the Hill Top Well, and the Bloomfield Water Supply System, Enterprise would like to add the following as a potential source of water for the Segment 1 hydrostatic testing:

Blanco Trading Post Commercial Well (36.356565, -107.811107)

Radium concentrations for the Blanco Trading Post Well are:

- o Rad-266 0.0747 +/- 0.341 pCi/L
- o Rad-228 0.435 +/- 0.408 pci/L

Please call me or Barbara if you have questions. Eileen

Eileen Shannon P.G. Project Manager 9019 Washington NE, Building A Albuquerque, NM 87113 o| 505.344.7373 Ext. 254 c| 505.307.0722 f| 505.344.1711

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

OrderNo.: 1310E19

November 12, 2013

Kay Lambert HRL Compliance Solutions 2385 F 1/2 Road Grand Junction, CO 81505 TEL: (970) 243-3271

FAX

RE: Enterprise WEP III Water Sampling

Dear Kay Lambert:

Hall Environmental Analysis Laboratory received 2 sample(s) on 10/30/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1310E19

Date Reported: 11/12/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample ID: Blanco Trading Post

Project: Enterprise WEP III Water Sampling

Collection Date: 10/30/2013 9:19:00 AM

Lab ID: 1310E19-001

Matrix: AQUEOUS Received Date: 10/30/2013 12:33:00 PM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8011/504.1: EDB					Analyst:	LRW
1,2-Dibromoethane	ND	0.010	μg/L	1	10/30/2013 4:31:39 PM	10106
EPA METHOD 8082: PCB'S					Analyst:	SCC
Aroclor 1016	ND	1.0	μg/L	1	10/31/2013 6:07:16 PM	
Aroclor 1221	ND	1.0	μg/L	1	10/31/2013 6:07:16 PM	
Aroclor 1232	ND	1.0	μg/L	1	10/31/2013 6:07:16 PM	10118
Aroclor 1242	ND	1.0	μg/L	1	10/31/2013 6:07:16 PM	10118
Aroclor 1248	ND	1.0	μg/L	1	10/31/2013 6:07:16 PM	10118
Aroclor 1254	ND	1.0	μg/L	1	10/31/2013 6:07:16 PM	10118
Aroclor 1260	ND	1.0	μg/L	1	10/31/2013 6:07:16 PM	10118
Surr: Decachlorobiphenyl	93.6	17-123	%REC	1	10/31/2013 6:07:16 PM	10118
Surr: Tetrachloro-m-xylene	80.8	22.6-113	%REC	1	10/31/2013 6:07:16 PM	10118
EPA METHOD 8310: PAHS					Analyst:	SCC
Naphthalene	ND	2.0	μg/L	1	10/31/2013 4:13:50 PM	10092
1-Methylnaphthalene	ND	2.0	μg/L	1	10/31/2013 4:13:50 PM	10092
2-Methylnaphthalene	ND	2.0	μg/L	1	10/31/2013 4:13:50 PM	10092
Acenaphthylene	ND	2.5	μg/L	1	10/31/2013 4:13:50 PM	10092
Acenaphthene	ND	5.0	μg/L	1	10/31/2013 4:13:50 PM	10092
Fluorene	ND	0.80	μg/L	1	10/31/2013 4:13:50 PM	10092
Phenanthrene	ND	0.60	μg/L	1	10/31/2013 4:13:50 PM	10092
Anthracene	ND	0.60	μg/L	1	10/31/2013 4:13:50 PM	10092
Fluoranthene	ND	0.30	μg/L	1	10/31/2013 4:13:50 PM	10092
Pyrene	ND	0.30	μg/L	1	10/31/2013 4:13:50 PM	10092
Benz(a)anthracene	ND	0.070	μg/L	1	10/31/2013 4:13:50 PM	10092
Chrysene	ND	0.20	μg/L	1	10/31/2013 4:13:50 PM	10092
Benzo(b)fluoranthene	ND	0.10	μg/L	1	10/31/2013 4:13:50 PM	10092
Benzo(k)fluoranthene	N D	0.070	μg/L	1	10/31/2013 4:13:50 PM	10092
Benzo(a)pyrene	ND	0.070	μg/L	1	10/31/2013 4:13:50 PM	10092
Dibenz(a,h)anthracene	ND	0.12	μg/L	1	10/31/2013 4:13:50 PM	10092
Benzo(g,h,i)perylene	ND	0.12	μg/L	1	10/31/2013 4:13:50 PM	10092
Indeno(1,2,3-cd)pyrene	ND	0.25	μg/L	1	10/31/2013 4:13:50 PM	10092
Surr: Benzo(e)pyrene	73.7	43.2-113	%REC	1	10/31/2013 4:13:50 PM	10092
EPA METHOD 300.0: ANIONS					Analyst:	JRR
Fluoride	0.24	0.10	mg/L	1	10/30/2013 3:46:02 PM	
Chloride	3.1	0.50	mg/L	1	10/31/2013 4:00:55 PM	R14510
Nitrogen, Nitrate (As N)	ND	0.10	mg/L	1	10/30/2013 3:46:02 PM	R14478
Sulfate	400	10	mg/L	20	10/30/2013 4:23:17 PM	R14478

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range

EPA METHOD 200.7: DISSOLVED METALS

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.

Analyst: JLF

RL Reporting Detection Limit

Date Reported: 11/12/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample ID: Blanco Trading Post

Project: Enterprise WEP III Water Sampling Collection Date: 10/30/2013 9:19:00 AM

Lab ID: 1310E19-001 Matrix: AQUEOUS

Received Date: 10/30/2013 12:33:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 200.7: DISSOLVED ME	TALS				Analyst	JLF
Aluminum	ND	0.020	mg/L	1	11/5/2013 3:55:02 PM	R14586
Barium	0.021	0.0020	mg/L	1	10/31/2013 1:31:22 PM	R14514
Boron	0.049	0.040	mg/L	1	11/5/2013 3:55:02 PM	R14586
Cadmium	ND	0.0020	mg/L	1	10/31/2013 1:31:22 PM	R14514
Chromium	ND	0.0060	mg/L	1	10/31/2013 1:31:22 PM	R14514
Cobalt	ND	0.0060	mg/L	1	11/5/2013 3:55:02 PM	R14586
Copper	ND	0.0060	mg/L	1	10/31/2013 1:31:22 PM	R14514
Iron	0.060	0.020	mg/L	1	10/31/2013 1:31:22 PM	R14514
Lead	ND	0.0050	mg/L	1	11/5/2013 3:55:02 PM	R14586
Manganese	0.011	0.0020	mg/L	1	10/31/2013 1:31:22 PM	R14514
Molybdenum	ND	0.0080	mg/L	1	11/5/2013 3:55:02 PM	R14586
Nickel	ND	0.010	mg/L	1	10/31/2013 1:31:22 PM	R14514
Silver	ND	0.0050	mg/L	1	10/31/2013 1:31:22 PM	R14514
Zinc	0.19	0.010	mg/L	1	10/31/2013 1:31:22 PM	R14514
EPA 200.8: DISSOLVED METALS					Analyst	DBD
Arsenic	ND	0.0010	mg/L	1	11/4/2013 2:49:08 PM	R14570
Selenium	ND	0.0010	mg/L	1	11/4/2013 2:49:08 PM	R14570
Uranium	ND	0.0010	mg/L	1	11/4/2013 2:49:08 PM	R14570
EPA METHOD 245.1: MERCURY					Analyst:	JML
Mercury	ND	0.00020	mg/L	1	11/4/2013 5:24:49 PM	10167
EPA METHOD 8260B: VOLATILES					Analyst	cadg
Benzene	ND	1.0	μg/L	1	10/31/2013 12:07:25 AM	/ R14462
Toluene	ND	1.0	μg/L	1	10/31/2013 12:07:25 AM	/I R14462
Ethylbenzene	ND	1.0	μg/L	1	10/31/2013 12:07:25 AM	/ R14462
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	10/31/2013 12:07:25 AM	/ R14462
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	10/31/2013 12:07:25 AM	/I R14462
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	10/31/2013 12:07:25 AM	/ R14462
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	10/31/2013 12:07:25 AM	AR14462
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	10/31/2013 12:07:25 AM	/ R14462
Naphthalene	ND	2.0	μg/L	1	10/31/2013 12:07:25 AM	/ R14462
1-Methylnaphthalene	ND	4.0	μg/L	1	10/31/2013 12:07:25 AM	/I R14462
2-Methylnaphthalene	ND	4.0	μg/L	1	10/31/2013 12:07:25 AM	/I R14462
Acetone	ND	10	μg/L	1	10/31/2013 12:07:25 AM	/ R14462
Bromobenzene	ND	1.0	μg/L	1	10/31/2013 12:07:25 AM	/I R14462
Bromodichloromethane	ND	1.0	μg/L	1	10/31/2013 12:07:25 AM	/I R14462
Bromoform	ND	1.0	μg/L	1	10/31/2013 12:07:25 AM	A R14462
Bromomethane	ND	3.0	μg/L	1	10/31/2013 12:07:25 AM	/ R14462
2-Butanone	ND	10	μg/L	1	10/31/2013 12:07:25 AM	/I R14462

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit
- Page 2 of 22 Sample pH greater than 2 for VOA and TOC only
- Reporting Detection Limit RL

Lab Order 1310E19

Date Reported: 11/12/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions Client Sample ID: Blanco Trading Post

Project:Enterprise WEP III Water SamplingCollection Date: 10/30/2013 9:19:00 AMLab ID:1310E19-001Matrix: AQUEOUSReceived Date: 10/30/2013 12:33:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Anal	yst: cadg
Carbon disulfide	ND	10	μg/L	1	10/31/2013 12:07:25	AM R1446
Carbon Tetrachloride	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
Chlorobenzene	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
Chloroethane	ND	2.0	μg/L	1	10/31/2013 12:07:25	AM R1446
Chloroform	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
Chloromethane	ND	3.0	μg/L	1	10/31/2013 12:07:25	AM R1446
2-Chlorotoluene	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
4-Chlorotoluene	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
cis-1,2-DCE	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	10/31/2013 12:07:25	AM R1446
Dibromochloromethane	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
Dibromomethane	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
1,2-Dichlorobenzene	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
1,3-Dichlorobenzene	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
1,4-Dichlorobenzene	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
Dichlorodifluoromethane	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
1,1-Dichloroethane	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
1,1-Dichloroethene	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
1,2-Dichloropropane	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
1,3-Dichloropropane	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
2,2-Dichloropropane	ND	2.0	μg/L	1	10/31/2013 12:07:25	AM R1446
1,1-Dichloropropene	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
Hexachlorobutadiene	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
2-Hexanone	ND	10	μg/L	1	10/31/2013 12:07:25	AM R1446
Isopropylbenzene	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
4-Isopropyltoluene	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
4-Methyl-2-pentanone	ND	10	μg/L	1	10/31/2013 12:07:25	
Methylene Chloride	ND	3.0	μg/L	1	10/31/2013 12:07:25	AM R1446
n-Butylbenzene	ND	3.0	μg/L	1	10/31/2013 12:07:25	AM R1446
n-Propylbenzene	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
sec-Butylbenzene	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
Styrene	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
tert-Butylbenzene	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	10/31/2013 12:07:25	AM R1446
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
trans-1,2-DCE	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R1446
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	10/31/2013 12:07:25	AM R14462

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - porting Limit Page 3 of 22
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Lab Order 1310E19

Date Reported: 11/12/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample ID: Blanco Trading Post

Project: Enterprise WEP III Water Sampling

Collection Date: 10/30/2013 9:19:00 AM

Lab ID: 1310E19-001

Matrix: AQUEOUS Received Date: 10/30/2013 12:33:00 PM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Anal	yst: cadg
1,2,3-Trichlorobenzene	ND	1.0		μg/L	1	10/31/2013 12:07:25	AM R14462
1,2,4-Trichlorobenzene	ND	1.0		μg/L	1	10/31/2013 12:07:25	AM R14462
1,1,1-Trichloroethane	ND	1.0		μg/L	1	10/31/2013 12:07:25	AM R14462
1,1,2-Trichloroethane	ND	1.0		μg/L	1	10/31/2013 12:07:25	AM R14462
Trichloroethene (TCE)	ND	1.0		μg/L	1	10/31/2013 12:07:25	AM R14462
Trichlorofluoromethane	ND	1.0		μg/L	1	10/31/2013 12:07:25	AM R14462
1,2,3-Trichloropropane	ND	2.0		μg/L	1	10/31/2013 12:07:25	AM R14462
Vinyl chloride	ND	1.0		μg/L	1	10/31/2013 12:07:25	AM R14462
Xylenes, Total	ND	1.5		μg/L	1	10/31/2013 12:07:25	AM R14462
Surr: 1,2-Dichloroethane-d4	103	70-130		%REC	1	10/31/2013 12:07:25	AM R14462
Surr: 4-Bromofluorobenzene	98.8	70-130		%REC	1	10/31/2013 12:07:25	AM R14462
Surr: Dibromofluoromethane	107	70-130		%REC	1	10/31/2013 12:07:25	AM R14462
Surr: Toluene-d8	96.9	70-130		%REC	1	10/31/2013 12:07:25	AM R14462
TOTAL PHENOLICS BY SW-846 9067						Analy	/st: SCC
Phenolics, Total Recoverable	ND	2.5		μg/L	1	10/31/2013	10096
SM4500-H+B: PH						Analy	st: JML
рН	8.65	1.68	*H	pH units	1	10/30/2013 8:23:22 F	PM R14479
SM2540C MOD: TOTAL DISSOLVED SO	OLIDS					Analy	/st: KS
Total Dissolved Solids	884	20.0	*	mg/L	1	11/1/2013 3:46:00 PI	M 10139

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 22

- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Lab Order 1310E19

Date Reported: 11/12/2013

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: TRIP BLANK **CLIENT:** HRL Compliance Solutions

Collection Date: Project: Enterprise WEP III Water Sampling

Received Date: 10/30/2013 12:33:00 PM Lab ID: 1310E19-002 Matrix: TRIP BLANK

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8011/504.1: EDB						Analyst	: LRW
1,2-Dibromoethane	ND	0.010		μg/L	1	10/30/2013 4:45:24 PM	10106
EPA METHOD 8260B: VOLATILES						Analyst	cadg
Benzene	ND	1.0		µg/L	1	10/31/2013 1:04:48 AM	R14462
Toluene	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	
Ethylbenzene	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	R14462
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	
1,2,4-Trimethylbenzene	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	R14462
1,3,5-Trimethylbenzene	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	
1,2-Dibromoethane (EDB)	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	R14462
Naphthalene	ND	2.0		μg/L	1	10/31/2013 1:04:48 AM	
1-Methylnaphthalene	ND	4.0		μg/L	1	10/31/2013 1:04:48 AM	
2-Methylnaphthalene	ND	4.0		μg/L	1	10/31/2013 1:04:48 AM	
Acetone	ND	10		μg/L	1	10/31/2013 1:04:48 AM	
Bromobenzene	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	
Bromodichloromethane	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	
Bromoform	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	
Bromomethane	ND	3.0		μg/L	1	10/31/2013 1:04:48 AM	
2-Butanone	ND	10		μg/L	1	10/31/2013 1:04:48 AM	
Carbon disulfide	ND	10		μg/L	1	10/31/2013 1:04:48 AM	
Carbon Tetrachloride	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	
Chlorobenzene	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	
Chloroethane	ND	2.0		μg/L	1	10/31/2013 1:04:48 AM	
Chloroform	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	
Chloromethane	ND	3.0		μg/L	1	10/31/2013 1:04:48 AM	
2-Chlorotoluene	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	
4-Chlorotoluene	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	
cis-1,2-DCE	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	
1,2-Dibromo-3-chloropropane	ND	2.0		μg/L	1	10/31/2013 1:04:48 AM	
Dibromochloromethane	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	
Dibromomethane	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	R14462
1,2-Dichlorobenzene	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	R14462
1,3-Dichlorobenzene	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	
1,4-Dichlorobenzene	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	R14462
Dichlorodifluoromethane	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	R14462
1,1-Dichloroethane	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	R14462
1,1-Dichloroethene	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	R14462
1,2-Dichloropropane	ND	1.0		μg/L	1	10/31/2013 1:04:48 AM	R14462

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Page 5 of 22 Sample pH greater than 2 for VOA and TOC only.
- RLReporting Detection Limit

Lab Order 1310E19

Date Reported: 11/12/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample ID: TRIP BLANK

Project: Enterprise WEP III Water Sampling **Collection Date:**

Lab ID: 1310E19-002 Matrix: TRIP BLANK

Received Date: 10/30/2013 12:33:00 PM

1,3-Dichloropropane	Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
2,2-Dichloropropane	EPA METHOD 8260B: VOLATILES					Analyst	cadg
1,1-Dichloropropene	1,3-Dichloropropane	ND	1.0	μg/L	1	10/31/2013 1:04:48 AM	R14462
Hexachlorobutadiene	2,2-Dichloropropane	ND	2.0	μg/L	1	10/31/2013 1:04:48 AM	R14462
2-Hexanone ND 10 μg/L 1 10/31/2013 1:04:48 AM R14462 Isopropylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 4-Isopropylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 4-Isopropylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Methylene Chloride ND 3.0 μg/L 1 10/31/2013 1:04:48 AM R14462 n-Butylbenzene ND 3.0 μg/L 1 10/31/2013 1:04:48 AM R14462 n-Propylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 sec-Butylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 sec-Butylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 sec-Butylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 tert-Butylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 tert-Butylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 tert-Butylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1.1,1,2-Tetrachloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1.1,2-Tetrachloroethane ND 2.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1.1,2-Tetrachloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,2-DCE ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,2-DCE ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,3-Dichloropropene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,3-Dichloropropene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1.2,3-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1.2,2-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1.2,2-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1.2,2-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1.1,2-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1.1,2-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1.1,2-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1.1,2-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1.1,2-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1.1,2-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1.1,2-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1.1,2-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1.1,2-Trichloroethane ND 1.0 μg	1,1-Dichloropropene	ND	1.0	μg/L	1	10/31/2013 1:04:48 AM	R14462
Isopropylbenzene	Hexachlorobutadiene	ND	1.0	μg/L	1	10/31/2013 1:04:48 AM	R14462
4-Isopropyltoluene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 4-Methyl-2-pentanone ND 10 μg/L 1 10/31/2013 1:04:48 AM R14462 Methylene Chloride ND 3.0 μg/L 1 10/31/2013 1:04:48 AM R14462 n-Butylbenzene ND 3.0 μg/L 1 10/31/2013 1:04:48 AM R14462 n-Propylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 sec-Butylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Styrene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 tert-Butylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 tert-Butylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2-Tetrachloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,3-Dichloropropene	2-Hexanone	ND	10	μg/L	1	10/31/2013 1:04:48 AM	R14462
4-Isopropyltoluene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 4-Methyl-2-pentanone ND 10 μg/L 1 10/31/2013 1:04:48 AM R14462 Methylene Chloride ND 3.0 μg/L 1 10/31/2013 1:04:48 AM R14462 n-Butylbenzene ND 3.0 μg/L 1 10/31/2013 1:04:48 AM R14462 n-Propylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 sec-Butylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Styrene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 tert-Butylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 tert-Butylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2-Tetrachloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,2-DCE ND	Isopropylbenzene	ND	1.0	μg/L	1	10/31/2013 1:04:48 AM	R14462
Methylene Chloride ND 3.0 μg/L 1 10/31/2013 1:04:48 AM R14462 n-Butylbenzene ND 3.0 μg/L 1 10/31/2013 1:04:48 AM R14462 n-Propylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 sec-Butylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Styrene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 tert-Butylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1.1,1,2-Tetrachloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1.1,1,2-Tetrachloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1.1,2-Tetrachloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,3-Dichloropropene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,2,3-Trichlorobe	4-Isopropyltoluene	ND	1.0		1	10/31/2013 1:04:48 AM	R14462
n-Butylbenzene ND 3.0 μg/L 1 10/31/2013 1:04:48 AM R14462 n-Propylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 sec-Butylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Styrene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 tert-Butylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,1,1,2-Tetrachloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2,2-Tetrachloroethane ND 2.0 μg/L 1 10/31/2013 1:04:48 AM R14462 tetrachloroethane (PCE) ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,3-Dichloropropene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R1462 1,2,3-Trichlorobenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R1462 1,1,1-Trichloro	4-Methyl-2-pentanone	ND	10	μg/L	1	10/31/2013 1:04:48 AM	R14462
n-Butylbenzene ND 3.0 μg/L 1 10/31/2013 1:04:48 AM R14462 n-Propylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 sec-Butylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Styrene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 tert-Butylbenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,1,1,2-Tetrachloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2,2-Tetrachloroethane ND 2.0 μg/L 1 10/31/2013 1:04:48 AM R14462 tetrachloroethane (PCE) ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,3-Dichloropropene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R1462 1,2,3-Trichlorobenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R1462 1,1,1-Trichloro	Methylene Chloride	ND	3.0	μg/L	1	10/31/2013 1:04:48 AM	R14462
n-Propylbenzene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 sec-Butylbenzene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 Styrene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 tert-Butylbenzene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2-Tetrachloroethane ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2-Tetrachloroethane ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2-Tetrachloroethane ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,2-DCE ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,3-Dichloropropene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,2,3-Trichlorobenzene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,1,1-Trichloroetha	n-Butylbenzene	ND	3.0		1	10/31/2013 1:04:48 AM	R14462
Styrene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 tert-Butylbenzene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,1,1,2-Tetrachloroethane ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2,2-Tetrachloroethane ND 2.0 µg/L 1 10/31/2013 1:04:48 AM R14462 Tetrachloroethane (PCE) ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,2-DCE ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,3-Dichloropropene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,2,3-Trichlorobenzene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,2,4-Trichlorobenzene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2-Trichloroethane ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 Tri	n-Propylbenzene	ND	1.0		1	10/31/2013 1:04:48 AM	R14462
Styrene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 tert-Butylbenzene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,1,1,2-Tetrachloroethane ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2,2-Tetrachloroethane ND 2.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2,2-Tetrachloroethane ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,2-DCE ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,3-Dichloropropene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,2,3-Trichlorobenzene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,2,4-Trichlorobenzene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,1,1-Trichloroethane ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1	sec-Butylbenzene	ND	1.0		1	10/31/2013 1:04:48 AM	R14462
tert-Butylbenzene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,1,1,2-Tetrachloroethane ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2,2-Tetrachloroethane ND 2.0 µg/L 1 10/31/2013 1:04:48 AM R14462 Tetrachloroethene (PCE) ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,2-DCE ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,3-Dichloropropene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,2,3-Trichlorobenzene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,1,1-Trichloroethane ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2-Trichloroethane ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2-Trichloroethane ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462	Styrene	ND	1.0	. •	1	10/31/2013 1:04:48 AM	R14462
1,1,1,2-Tetrachloroethane ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2,2-Tetrachloroethane ND 2.0 µg/L 1 10/31/2013 1:04:48 AM R14462 Tetrachloroethene (PCE) ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,2-DCE ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,3-Dichloropropene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,2,3-Trichlorobenzene ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,2,4-Trichloroethane ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,1,1-Trichloroethane ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2-Trichloroethane ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 Trichloroethane (TCE) ND 1.0 µg/L 1 10/31/2013 1:04:48 AM R14462 Trichlorofluoromethane ND 1.0 µg/L 1 10/31/	tert-Butylbenzene	ND	1.0		1	10/31/2013 1:04:48 AM	R14462
1,1,2,2-Tetrachloroethane ND 2.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Tetrachloroethene (PCE) ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,2-DCE ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,3-Dichloropropene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,2,3-Trichlorobenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,2,4-Trichlorobenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,1,1-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Trichloroethane (TCE) ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Trichlorofluoromethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Vinyl chloride ND 1.0 μg/L 1 10/31/2013 1:04	1,1,1,2-Tetrachloroethane	ND	1.0		1	10/31/2013 1:04:48 AM	R14462
trans-1,2-DCE ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 trans-1,3-Dichloropropene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,2,3-Trichlorobenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,2,4-Trichlorobenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,1,1-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Trichloroethene (TCE) ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Trichlorofluoromethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Vinyl chloride ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Xylenes, Total ND 1.5 μg/L 1 10/31/2013 1:04:48 AM R14462 Surr: 1	1,1,2,2-Tetrachloroethane	ND	2.0		1	10/31/2013 1:04:48 AM	R14462
trans-1,3-Dichloropropene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,2,3-Trichlorobenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,2,4-Trichlorobenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,1,1-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Trichloroethane (TCE) ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Trichlorofluoromethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,2,3-Trichloropropane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Vinyl chloride ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Xylenes, Total ND 1.5 μg/L 1 10/31/2013 1:04:48 AM R14462 <t< td=""><td>Tetrachloroethene (PCE)</td><td>ND</td><td>1.0</td><td>μg/L</td><td>1</td><td>10/31/2013 1:04:48 AM</td><td>R14462</td></t<>	Tetrachloroethene (PCE)	ND	1.0	μg/L	1	10/31/2013 1:04:48 AM	R14462
trans-1,3-Dichloropropene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,2,3-Trichlorobenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,2,4-Trichlorobenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,1,1-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Trichloroethane (TCE) ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Trichlorofluoromethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,2,3-Trichloropropane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Vinyl chloride ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Xylenes, Total ND 1.5 μg/L 1 10/31/2013 1:04:48 AM R14462 <t< td=""><td>trans-1,2-DCE</td><td>ND</td><td>1.0</td><td>μg/L</td><td>1</td><td>10/31/2013 1:04:48 AM</td><td>R14462</td></t<>	trans-1,2-DCE	ND	1.0	μg/L	1	10/31/2013 1:04:48 AM	R14462
1,2,3-Trichlorobenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,2,4-Trichlorobenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,1,1-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Trichloroethene (TCE) ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Trichlorofluoromethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,2,3-Trichloropropane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Vinyl chloride ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Xylenes, Total ND 1.5 μg/L 1 10/31/2013 1:04:48 AM R14462 Surr: 1,2-Dichloroethane-d4 98.6 70-130 %REC 1 10/31/2013 1:04:48 AM R14462 Surr: 2-Dibromofluoromethane 11 70-130 %REC 1 10	trans-1,3-Dichloropropene	ND	1.0		1		
1,2,4-Trichlorobenzene ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,1,1-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Trichloroethene (TCE) ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Trichlorofluoromethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,2,3-Trichloropropane ND 2.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Vinyl chloride ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Xylenes, Total ND 1.5 μg/L 1 10/31/2013 1:04:48 AM R14462 Surr: 1,2-Dichloroethane-d4 98.6 70-130 %REC 1 10/31/2013 1:04:48 AM R14462 Surr: 2-Bromofluorobenzene 100 70-130 %REC 1 10/31/2013 1:04:48 AM R14462 Surr: Dibromofluoromethane 111 70-130 %REC 1		ND	1.0		1	10/31/2013 1:04:48 AM	R14462
1,1,1-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,1,2-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Trichloroethene (TCE) ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Trichlorofluoromethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,2,3-Trichloropropane ND 2.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Vinyl chloride ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Xylenes, Total ND 1.5 μg/L 1 10/31/2013 1:04:48 AM R14462 Surr: 1,2-Dichloroethane-d4 98.6 70-130 %REC 1 10/31/2013 1:04:48 AM R14462 Surr: 4-Bromofluorobenzene 100 70-130 %REC 1 10/31/2013 1:04:48 AM R14462 Surr: Dibromofluoromethane 111 70-130 %REC 1 10/31/2013 1:04:48 AM R14462	1,2,4-Trichlorobenzene	ND	1.0		1	10/31/2013 1:04:48 AM	R14462
1,1,2-Trichloroethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Trichloroethene (TCE) ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Trichlorofluoromethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,2,3-Trichloropropane ND 2.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Vinyl chloride ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Xylenes, Total ND 1.5 μg/L 1 10/31/2013 1:04:48 AM R14462 Surr: 1,2-Dichloroethane-d4 98.6 70-130 %REC 1 10/31/2013 1:04:48 AM R14462 Surr: 2-Bromofluorobenzene 100 70-130 %REC 1 10/31/2013 1:04:48 AM R14462 Surr: Dibromofluoromethane 111 70-130 %REC 1 10/31/2013 1:04:48 AM R14462	1,1,1-Trichloroethane	ND	1.0		1	10/31/2013 1:04:48 AM	R14462
Trichloroethene (TCE) ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Trichlorofluoromethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,2,3-Trichloropropane ND 2.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Vinyl chloride ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Xylenes, Total ND 1.5 μg/L 1 10/31/2013 1:04:48 AM R14462 Surr: 1,2-Dichloroethane-d4 98.6 70-130 %REC 1 10/31/2013 1:04:48 AM R14462 Surr: 4-Bromofluorobenzene 100 70-130 %REC 1 10/31/2013 1:04:48 AM R14462 Surr: Dibromofluoromethane 111 70-130 %REC 1 10/31/2013 1:04:48 AM R14462	1,1,2-Trichloroethane	ND	1.0		1	10/31/2013 1:04:48 AM	R14462
Trichlorofluoromethane ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 1,2,3-Trichloropropane ND 2.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Vinyl chloride ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Xylenes, Total ND 1.5 μg/L 1 10/31/2013 1:04:48 AM R14462 Surr: 1,2-Dichloroethane-d4 98.6 70-130 %REC 1 10/31/2013 1:04:48 AM R14462 Surr: 4-Bromofluorobenzene 100 70-130 %REC 1 10/31/2013 1:04:48 AM R14462 Surr: Dibromofluoromethane 111 70-130 %REC 1 10/31/2013 1:04:48 AM R14462	Trichloroethene (TCE)	ND	1.0		1	10/31/2013 1:04:48 AM	R14462
1,2,3-Trichloropropane ND 2.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Vinyl chloride ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Xylenes, Total ND 1.5 μg/L 1 10/31/2013 1:04:48 AM R14462 Surr: 1,2-Dichloroethane-d4 98.6 70-130 %REC 1 10/31/2013 1:04:48 AM R14462 Surr: 4-Bromofluorobenzene 100 70-130 %REC 1 10/31/2013 1:04:48 AM R14462 Surr: Dibromofluoromethane 111 70-130 %REC 1 10/31/2013 1:04:48 AM R14462		ND	1.0		1	10/31/2013 1:04:48 AM	R14462
Vinyl chloride ND 1.0 μg/L 1 10/31/2013 1:04:48 AM R14462 Xylenes, Total ND 1.5 μg/L 1 10/31/2013 1:04:48 AM R14462 Surr: 1,2-Dichloroethane-d4 98.6 70-130 %REC 1 10/31/2013 1:04:48 AM R14462 Surr: 4-Bromofluorobenzene 100 70-130 %REC 1 10/31/2013 1:04:48 AM R14462 Surr: Dibromofluoromethane 111 70-130 %REC 1 10/31/2013 1:04:48 AM R14462	1,2,3-Trichloropropane	ND	2.0		1	10/31/2013 1:04:48 AM	R14462
Xylenes, Total ND 1.5 μg/L 1 10/31/2013 1:04:48 AM R14462 Surr: 1,2-Dichloroethane-d4 98.6 70-130 %REC 1 10/31/2013 1:04:48 AM R14462 Surr: 4-Bromofluorobenzene 100 70-130 %REC 1 10/31/2013 1:04:48 AM R14462 Surr: Dibromofluoromethane 111 70-130 %REC 1 10/31/2013 1:04:48 AM R14462	Vinyl chloride	ND	1.0		1	10/31/2013 1:04:48 AM	R14462
Surr: 1,2-Dichloroethane-d4 98.6 70-130 %REC 1 10/31/2013 1:04:48 AM R14462 Surr: 4-Bromofluorobenzene 100 70-130 %REC 1 10/31/2013 1:04:48 AM R14462 Surr: Dibromofluoromethane 111 70-130 %REC 1 10/31/2013 1:04:48 AM R14462	Xylenes, Total	ND	1.5	. •	1	10/31/2013 1:04:48 AM	R14462
Surr: Dibromofluoromethane 111 70-130 %REC 1 10/31/2013 1:04:48 AM R14462	Surr: 1,2-Dichloroethane-d4	98.6	70-130		1	10/31/2013 1:04:48 AM	R14462
	Surr: 4-Bromofluorobenzene	100	70-130	%REC	1	10/31/2013 1:04:48 AM	R14462
Surr: Toluene-d8 95.9 70-130 %REC 1 10/31/2013 1:04:48 AM R14462	Surr: Dibromofluoromethane	111	70-130	%REC	1	10/31/2013 1:04:48 AM	R14462
	Surr: Toluene-d8	95.9	70-130	%REC	1	10/31/2013 1:04:48 AM	R14462

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

- Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D · Spokane WA 99202 · (509) 838-3999 · Fax (509) 838-4433 · email spokane@anatekiabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

131031009

Address:

4901 HAWKINS NE SUITE D

Project Name:

1310E19

Sampling Time 9:19 AM

CRW

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

131031009-001

Sampling Date 10/30/2013

mg/L

0.01

Date/Time Received 10/31/2013 11:25 AM

EPA 335.4

Client Sample ID

1310E19-001I / BLANCO TRADING POST

Sample Location

ND

Matrix

Comments

Parameter Cyanide

Result	Units	PQL	Anaivsis Date	Analyst	Method	Qualifier

11/1/2013

Authorized Signature

John Coddington, Lab Manager

MCL POL

EPA's Maximum Contaminant Level

ND

Not Detected

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

ANALYTICAL RESULTS

Project:

1310E19

Pace Project No.: 30106454

Sample: 1310E19-001 Blanc Trading

Lab ID: 30106454001

Collected: 10/30/13 09:19 Received: 10/31/13 10:10 Matrix: Water

Post PWS:

Site ID:

Sample Type:

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Radium-226 Radium-228	EPA 903.1 EPA 904.0	0.0747 ± 0.341 (0.202) 0.435 ± 0.406 (0.829)	pCi/L pCi/L	11/11/13 16:50 11/11/13 13:30		

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project:

1310E19

Pace Project No.:

30106454

QC Batch:

RADC/17666

Analysis Method:

EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description:

903.1 Radium-226

Associated Lab Samples:

Associated Lab Samples:

30106454001

Matrix: Water

METHOD BLANK: 653690

30106454001

Parameter

Act ± Unc (MDC)

Units

Analyzed

Qualifiers

Radium-226

 $-0.172 \pm 0.376 \quad (0.758)$

pCi/L

11/11/13 15:11

QUALITY CONTROL DATA

Project:

1310E19

Pace Project No.:

30106454

QC Batch:

RADC/17668

Analysis Method:

EPA 904.0

QC Batch Method:

EPA 904.0

Analysis Description:

904.0 Radium 228

Associated Lab Samples: 30106454001

METHOD BLANK: 653692

Matrix: Water

Associated Lab Samples:

30106454001

Parameter

Act ± Unc (MDC)

Units

Analyzed

Qualifiers

Radium-228

-0.0191 ± 0.258 (0.608)

pCI/L

11/11/13 12:22

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Hall Environmental Analysis Laboratory, Inc.

WO#:

1310E19

12-Nov-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB	Samp	Туре: М	BLK	Tes	TestCode: EPA Method 200.7: Dissolved Metals						
Client ID: PBW	Bato	ch ID: R1	4514	F	RunNo: 1	4514					
Prep Date:	Analysis	Date: 10	0/31/2013	9	SeqNo: 4	16837	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Barium	ND	0.0020									
Cadmium	ND	0.0020									
Chromium	ND	0.0060									
Copper	ND	0.0060									
Iron	ND	0.020									
Manganese	ND	0.0020									
Nickel	ND	0.010									
Silver	ND	0.0050									
Zinc	ND	0.010									

Sample ID LCS	Samp	Type: LC	s	Tes	TestCode: EPA Method 200.7: Dissolved Metals					
Client ID: LCSW	Bato	h ID: R1	4514	F	RunNo: 14514					
Prep Date:	Analysis	Date: 10)/31/2013	8	SeqNo: 4	16838	Units: mg/L	•		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.48	0.0020	0.5000	0	96.3	85	115			
Cadmium	0.50	0.0020	0.5000	0	100	85	115			
Chromium	0.51	0.0060	0.5000	0	101	85	115			
Copper	0.49	0.0060	0.5000	0	97.3	85	115			
Iron	0.48	0.020	0.5000	0	96.3	85	115			
Manganese	0.50	0.0020	0.5000	0	99.1	85	115			
Nickel	0.49	0.010	0.5000	0	98.7	85	115			
Silver	0.10	0.0050	0.1000	0	102	85	115			
Zinc	0.49	0.010	0.5000	0	97.7	85	115			

Sample ID MB	SampType	: MBLK	Tes	tCode: El	PA Method	200.7: Dissol	ved Metal	ls	
Client ID: PBW	Batch ID:	R14586	F	RunNo: 14	4586				
Prep Date:	Analysis Date:	11/5/2013	8	SeqNo: 4	19170	Units: mg/L			
Analyte	Result Po	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	ND 0.0	020							
Boron	ND 0.0	040							
Cobalt	ND 0.00	060							
Lead	ND 0.00	050							
Molybdenum	ND 0.00	080							

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 7 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#:

1310E19 12-Nov-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID LCS	Samp	Type: LC	S	Tes	TestCode: EPA Method 200.7: Dissolved Metals						
Client ID: LCSW	Bato	h ID: R1	4586	F	RunNo: 14586						
Prep Date:	Analysis	Date: 1 1	/5/2013	S	SeqNo: 4	19171	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Aluminum	0.54	0.020	0.5000	0	107	85	115				
Boron	0.49	0.040	0.5000	0	98.1	85	115				
Cobalt	0.49	0.0060	0.5000	0	98.6	85	115				
Lead	0.49	0.0050	0.5000	0	98.6	85	115				
Molybdenum	0.49	0.0080	0.5000	0	98.5	85	115				

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 8 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#:

1310E19

12-Nov-13

Client:

HRL Compliance Solutions

Project:		Enterprise WEP II	l Water	Sampling							
Sample ID	LCS	Samp	Type: LC	s	Tes	tCode: E	PA 200.8: I	Dissolved Me	tals	****	
Client ID:	LCSW	Bate	ch ID: R1	4570	F	RunNo: 1	4570				
Prep Date:		Analysis	Date: 1	1/4/2013	\$	SeqNo: 4	18605	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		0.025	0.0010	0.02500	0	101	85	115			
Selenium		0.025	0.0010	0.02500	0	100	85	115			
Uranium		0.024	0.0010	0.02500	0	97.9	85	115			
Sample ID	LCS	Samp	Type: LC	s	Tes	tCode: El	PA 200.8: I	Dissolved Me	tals		
Client ID:	LCSW	Bato	ch ID: R1	4570	F	RunNo: 1	4570				
Prep Date:		Analysis	Date: 1	1/4/2013	5	SeqNo: 4	18606	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		0.025	0.0010	0.02500	0	99.2	85	115			
Selenium		0.024	0.0010	0.02500	0	97.2	85	115			
Jranium		0.025	0.0010	0.02500	0	101	85	115			
Sample ID	МВ	Samp	Туре: МЕ	BLK	Tes	tCode: El	PA 200.8: [Dissolved Me	tals		
Client ID:	PBW	Bato	h ID: R1	4570	F	RunNo: 14	4570				
Prep Date:		Analysis	Date: 1 1	1/4/2013	5	SeqNo: 4	18609	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		ND	0.0010								
Selenium		ND	0.0010								
Jranium	,	ND	0.0010								
Sample ID	мв	Samp	Туре: МЕ	BLK	Tes	tCode: El	PA 200.8: [Dissolved Me	tals		
Client ID:	PBW	Bato	h ID: R1	4570	F	RunNo: 14	4570				
Prep Date:		Analysis	Date: 11	/4/2013	S	SeqNo: 4	18610	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		ND	0.0010					<u> </u>			
Selenium		ND	0.0010								
Jranium		ND	0.0010								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDImit
- RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 9 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#:

1310E19

12-Nov-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB-10167

SampType: MBLK

TestCode: EPA Method 245.1: Mercury

Client ID: PBW

Batch ID: 10167

Prep Date: 11/4/2013

RunNo: 14559

Analysis Date: 11/4/2013

SeqNo: 418032

Units: mg/L HighLimit

%RPD **RPDLimit**

Qual

Analyte Mercury

Result **PQL** ND 0.00020

Sample ID LCS-10167

SampType: LCS

TestCode: EPA Method 245.1: Mercury

Client ID: LCSW

Batch ID: 10167

RunNo: 14559

Prep Date: 11/4/2013

Analysis Date: 11/4/2013

SeqNo: 418033

Units: mg/L

HighLimit

Analyte

Result **PQL** SPK value SPK Ref Val

%REC

%RPD

0.0050 0.00020 0.005000 99.0

LowLimit

Mercury

RPDLimit

Qual

SPK value SPK Ref Val %REC LowLimit

120

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit 0
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits S
- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Sample pH greater than 2 for VOA and TOC only. Ρ
- Reporting Detection Limit RL

Page 10 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#:

1310E19

12-Nov-13

Client:

HRL Compliance Solutions

Project:	Enterprise WEP									
Sample ID A6	Sam	рТуре: С	CV_6	Tes	tCode: E	PA Method	300.0: Anion	s		
Client ID: Batch	QC Ba	tch ID: R1	14478	F	RunNo: 1	4478				
Prep Date:	Analysi	s Date: 1	0/30/2013	5	SeqNo: 4	15934	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	2.4	0.10	2.400	0	100	90	110			
Nitrogen, Nitrate (As N)	7.4	0.10	7.200	0	103	90	110			
Sulfate	30	0.50	30.00	0	99.7	90	110	_		
Sample ID MB	Sam	pType: MI	BLK	Tes	tCode: E	PA Method	300.0: Anion	s		
Client ID: PBW	Ba	tch ID: R1	14478	F	RunNo: 1	4478				
Prep Date:	Analysis	s Date: 1	0/30/2013	5	SeqNo: 4	15936	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Nitrogen, Nitrate (As N)	ND	0.10								
Sulfate	ND	0.50								
Sample ID LCS	Sam	pType: LC	s	Tes	tCode: E	PA Method	300.0: Anions	5		-
Client ID: LCSW	Ba	tch ID: R1	4478	F	RunNo: 1	4478				
Prep Date:	Analysis	s Date: 10	0/30/2013	9	SeqNo: 4	15937	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.49		0.5000	0	97.4	90	110			
Nitrogen, Nitrate (As N)			2.500	0	94.4	90	110			
Sulfate	9.3	0.50	10.00	0	93.3	90	110			
Sample ID 1310E	19-001EMS Sam	рТуре: М	S	Tes	tCode: E	PA Method	300.0: Anions	3		
Client ID: Blanc	o Trading Pos Ba	tch ID: R1	4478	F	RunNo: 1	4478				
Prep Date:	Analysis	s Date: 10	0/30/2013	8	SeqNo: 4	15943	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.72	0.10	0.5000	0.2359	97.6	76.9	114			
Nitrogen, Nitrate (As N)	2.4	0.10	2.500	0	95.1	93	113			
Sample ID 1310E	19-001EMSD Sam	рТуре: М	SD	Tes	tCode: E	PA Method	300.0: Anions			
Client ID: Blanc	o Trading Pos Ba	tch ID: R1	4478	F	RunNo: 1	4478				
Prep Date:	Analysis	Date: 10	0/30/2013	S	SeqNo: 4	15944	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
EL		0.40	0.5000	0.0050				0.540		

Qualifiers:

Fluoride

Nitrogen, Nitrate (As N)

* Value exceeds Maximum Contaminant Level.

0.73

2.4

0.10

0.10

0.5000

2.500

0.2359

0

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

76.9

93

114

113

0.716

1.58

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

98.7

96.6

- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 11 of 22

20

20

Hall Environmental Analysis Laboratory, Inc.

WO#:

1310E19 12-Nov-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Project: Enterp	rise WEP III	water	Sampling							
Sample ID A4	Samp	Гуре: СС	CV_4	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID: BatchQC	Batcl	h ID: R1	4478	F	RunNo: 1	4478				
Prep Date:	Analysis D	Date: 10	0/30/2013	5	SeqNo: 4	15946	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.96	0.10	1.000	0	96.1	90	110			
Nitrogen, Nitrate (As N)	2.8	0.10	3.000	0	92.6	90	110			
Sulfate	11	0.50	12.50	0	90.9	90	110			
Sample ID A5	SampT	Гуре: СС	CV_5	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID: BatchQC	Batcl	h ID: R1	4478	F	RunNo: 1	4478				
Prep Date:	Analysis D	Date: 10	0/30/2013	5	SeqNo: 4	15958	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	1.6	0.10	1.600	0	98.8	90	110			
Nitrogen, Nitrate (As N)	4.6	0.10	4.800	0	96.8	90	110			
Sulfate	19	0.50	20.00	0	94.6	90	110			
Sample ID A6	SampT	Гуре: СС	CV_6	Tes	tCode: El	PA Method	300.0: Anion	S		
Client ID: BatchQC	Batcl	h ID: R1	4478	F	RunNo: 1	4478				
Prep Date:	Analysis D	Date: 10	0/30/2013	5	SeqNo: 4	15970	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	2.5	0.10	2.400	0	102	90	110			
Nitrogen, Nitrate (As N)	7.4	0.10	7.200	0	102	90	110			
Sulfate	30	0.50	30.00	0	98.5	90	110			
Sample ID A4	SampT	уре: СС	CV_4	Tes	tCode: El	PA Method	300.0: Anion	S		
Client ID: BatchQC	Batch	h ID: R1	4478	F	RunNo: 1	4478				
Prep Date:	Analysis D	Date: 10	0/31/2013	5	SeqNo: 4	15982	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
luoride	0.98	0.10	1.000	0	97.8	90	110			
Nitrogen, Nitrate (As N)	2.8	0.10	3.000	0	92.7	90	110			
Sulfate	11	0.50	12.50	0	91.4	90	110			
Sample ID A5	SampT	уре: СС	CV_5	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID: BatchQC	Batch	h ID: R1	4478	F	RunNo: 1	4478				
Prep Date:	Analysis D)ate: 10	0/31/2013	5	SeqNo: 4	15994	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
	1.6	0.10	1.600	0	103	90	110			
luoride	1.0	• • • • • • • • • • • • • • • • • • • •								
Fluoride Nitrogen, Nitrate (As N)	4.7 19	0.10 0.50	4.800 20.00	0	97.1	90	110 110			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDImit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 12 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: 1310E19

12-Nov-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Project:	Enterpr	ise WEP III Wa	ter Sampling							
Sample ID	A6	SampType:	CCV_6	Tes	tCode: EP	A Method	300.0: Anions	5		
Client ID:	BatchQC	Batch ID:	R14478	F	RunNo: 14	478				
Prep Date:		Analysis Date:	10/31/2013	8	SeqNo: 41	6002	Units: mg/L			
Analyte		Result PC	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride			.10 2.400	0	105	90	110			
Nitrogen, Nitra Sulfate	te (As N)		.10 7.200 .50 30.00	0	102 98.5	90 90	110 110			
		30 0	.50 50.00		90.5		110			
Sample ID	A5	SampType:	CCV_5	Tes	tCode: EP	A Method	300.0: Anions	3		:
Client ID:	BatchQC	Batch ID:	R14510	F	RunNo: 14	510				
Prep Date:		Analysis Date:	10/31/2013	8	SeqNo: 41	6675	Units: mg/L			
Analyte		Result PC		SPK Ref Val		LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		7.7 0.	.50 8.000	0	96.6	90	110			
Sample ID	МВ	SampType:	MBLK	Tes	tCode: EP	A Method	300.0: Anions			
Client ID:	PBW	Batch ID:	R14510	F	RunNo: 14	510				
Prep Date:		Analysis Date:	10/31/2013	8	SeqNo: 41	6677	Units: mg/L			
Analyte		Result PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND 0.	.50							
Sample ID	LCS-b	SampType:	LCS	Tes	tCode: EP	A Method	300.0: Anions	3		
Client ID:	LCSW	Batch ID:	R14510	F	RunNo: 14	510				
Prep Date:		Analysis Date:	10/31/2013	S	SeqNo: 41	6679	Units: mg/L			
Analyte		Result PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		4.7 0.	50 5.000	0	93.4	90	110			
Sample ID	A6	SampType:	CCV_6	Tes	tCode: EP	A Method	300.0: Anions	3		
Client ID:	BatchQC	Batch ID:	R14510	F	RunNo: 14	510				
Prep Date:		Analysis Date:	10/31/2013	S	SeqNo: 41	6688	Units: mg/L			
Analyte		Result PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		12 0.	50 12.00	0	102	90	110			
Sample ID	A4	SampType:	CCV_4	Test	tCode: EP	A Method	300.0: Anions			
Client ID:	BatchQC	Batch ID:	_		RunNo: 14					
Prep Date:		Analysis Date:	10/31/2013	S	SeqNo: 41	6700	Units: mg/L			Ì
Analyte		Result PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
- 3.0.7.0										400.

Qualifiers:

Chloride

Value exceeds Maximum Contaminant Level.

4.6

0.50

5.000

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

90

110

ND Not Detected at the Reporting Limit

92.3

- Page 13 of 22
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

0

Hall Environmental Analysis Laboratory, Inc.

WO#:

1310E19

12-Nov-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID A5

SampType: CCV 5

TestCode: EPA Method 300.0: Anions

Client ID: BatchQC

Batch ID: R14510

RunNo: 14510

Prep Date:

Analysis Date: 10/31/2013

Units: mg/L

SeqNo: 416724

HighLimit

110

Analyte Chloride

Result **PQL**

SPK value SPK Ref Val

SPK value SPK Ref Val

8.000

12.00

%REC I owLimit

TestCode: EPA Method 300.0: Anions

LowLimit

%RPD

Sample ID A6

Client ID: BatchQC

Client ID: BatchQC

Client ID: BatchQC

SampType: CCV_6 Batch ID: R14510

0.50

0.50

96.5

RunNo: 14510

Prep Date: Analyte

Analysis Date: 10/31/2013

12

SeqNo: 416736 %REC

Units: mg/L

Chloride

PQL Result

HighLimit

RPDLimit %RPD

RPDLimit

Qual

Qual

Qual

Sample ID A4

SampType: CCV_4 Batch ID: R14510 TestCode: EPA Method 300.0: Anions

RunNo: 14510

101

Prep Date:

Analysis Date: 11/1/2013

SeqNo: 416748

Units: mg/L

%RPD

Analyte

PQL 0.50

SPK value SPK Ref Val %REC LowLimit

HighLimit 110 **RPDLimit** Qual

Chloride

Result 4.6 5.000

92.7

Sample ID A5

SampType: CCV_5

TestCode: EPA Method 300.0: Anions

RunNo: 14510

Prep Date:

Batch ID: R14510

Result

7.7

SeqNo: 416760

Analysis Date: 11/1/2013

0.50

Units: mg/L

Analyte Chloride

SPK value SPK Ref Val **PQL**

%REC LowLimit

HighLimit

%RPD **RPDLimit**

8.000

96.7 90 110 0

Oualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit
- Sample pH greater than 2 for VOA and TOC only. P
- Reporting Detection Limit RL

Page 14 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#:

1310E19

12-Nov-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB-10106

SampType: MBLK

TestCode: EPA Method 8011/504.1: EDB

Client ID:

PBW

Batch ID: 10106

RunNo: 14451

Units: µg/L

Qual

Prep Date: Analyte

10/30/2013

Analysis Date: 10/30/2013

SeqNo: 415342 SPK value SPK Ref Val %REC LowLimit

HighLimit

RPDLimit %RPD

%RPD

1,2-Dibromoethane

Result **PQL** 0.010

ND

TestCode: EPA Method 8011/504.1: EDB

Client ID: LCSW

SampType: LCS Batch ID: 10106

RunNo: 14451

Prep Date: 10/30/2013

Sample ID LCS-10106

Analysis Date: 10/30/2013

SeqNo: 415343

Units: µg/L

RPDLimit

Analyte

SPK value SPK Ref Val Result **PQL**

104

70

HighLimit

1,2-Dibromoethane

0.10 0.010

0.1000

%REC LowLimit

130

Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Analyte detected below quantitation limits

0 RSD is greater than RSDI imit

RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit

P Sample pH greater than 2 for VOA and TOC only.

Reporting Detection Limit

Page 15 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: 1310E19

12-Nov-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Project: Ente	rprise WEP III	Water	Sampling						***	
Sample ID MB-10118	Samp	Туре: М	BLK	Tes	tCode: E	PA Method	8082: PCB's	···		
Client ID: PBW	Batc	h ID: 10	118	F	RunNo: 1	4494				
Prep Date: 10/31/2013	Analysis [Date: 10	0/31/2013		SeqNo: 4	16283	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	ND	1.0								
Aroclor 1221	ND	1.0								
Aroclor 1232	ND	1.0								
Aroclor 1242	ND	1.0								
Aroclor 1248	ND	1.0								
Aroclor 1254	ND	1.0								
Aroclor 1260	ND	1.0								
Surr: Decachlorobiphenyl	2.5		2.500		99.6	17	123			
Surr: Tetrachloro-m-xylene	2.2		2.500		86.0	22.6	113			
Sample ID LCS-10118	Samp [*]	Type: LC	s	Tes	tCode: El	PA Method	8082: PCB's			
Client ID: LCSW	Batc	h ID: 10	118	F	RunNo: 1	4494				
Prep Date: 10/31/2013	Analysis [Date: 10)/31/2013	5	SeqNo: 4	16284	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	4.1	1.0	5.000	0	81.4	18.6	134			
Aroclor 1260	5.0	1.0	5.000	0	100	35.7	137			
Surr: Decachlorobiphenyl	2.3		2.500		92.0	17	123			
Surr: Tetrachloro-m-xylene	2.0		2.500		81.6	22.6	113			
Sample ID 1310E19-001	DMS Samp	Гуре: М5	3	Tes	tCode: El	PA Method	8082: PCB's			
Client ID: Blanco Tradi	ing Pos Batc	h ID: 10	118	F	Run N o: 1	4494				
Prep Date: 10/31/2013	Analysis [Date: 10	/31/2013	5	SeqNo: 4	16297	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	2.3	1.0	5.000	0	45.4	70	130			S
Arodor 1260	3.5	1.0	5.000	0	70.4	61.1	129			
Surr: Decachlorobiphenyl	2.0		2.500		78.0	17	123			
Surr: Tetrachloro-m-xylene	1.5		2.500	·	60.8	22.6	113			
Sample ID 1310E19-001	DMSD Samp	Гуре: М .	SD	Tes	tCode: El	PA Method	8082: PCB's			
Client ID: Blanco Tradi	ing Pos Batci	h ID: 10 '	118	F	RunNo: 1	4494				
Prep Date: 10/31/2013	Analysis E	Date: 10	/31/2013	8	SeqNo: 4	16298	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	2.5	1.0	5.000	0	50.9	70	130	11.5	20	S
Aroclor 1260	3.9	1.0	5.000	0	78.7	61.1	129	11.1	12.9	
Surr: Decachlorobiphenyl	2.2		2.500		87.2	17	123	0	0	
O - T - 11 - 1								_	_	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

1.7

2.500

E Value above quantitation range

Surr: Tetrachloro-m-xylene

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

22.6

113

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

67.2

- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 16 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#:

1310E19

12-Nov-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 5mL rb	SampT	ype: MB	LK	Tes	tCode: El	A Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	1D: R1 4	4462	F	RunNo: 14	4462				
Prep Date:	Analysis D	ate: 10	/30/2013	S	SeqNo: 41	15438	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
· p·· · p·····························		0								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 17 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: 1310E19

12-Nov-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 5mL rb	SampT	ype: Mi	3LK	Test	Code: E	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	1D: R1	4462	R	RunNo: 1	4462				
Prep Date:	Analysis D	ate: 10	0/30/2013	s	SeqNo: 4	15438	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		100	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		99.9	70	130			
Surr: Dibromofluoromethane	11		10.00		106	70	130			
Surr: Toluene-d8	9.5		10.00		94.9	70	130			

Sample ID 100ng Ics	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	1D: R1	4462	F	RunNo: 1	4462				
Prep Date:	Analysis D	ate: 10	/30/2013	8	SeqNo: 4	15440	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	23	1.0	20.00	0	114	70	130			
Toluene	21	1.0	20.00	0	105	82.2	124			
Chlorobenzene	20	1.0	20.00	0	98.6	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 18 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#:

1310E19

12-Nov-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 100ng Ics	SampT	ype: LC	s	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	ID: R1	4462	F	RunNo: 1	4462				
Prep Date:	Analysis D	ate: 10	/30/2013	8	SeqNo: 4	15440	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	26	1.0	20.00	0	132	83.5	155			
Trichloroethene (TCE)	20	1.0	20.00	0	102	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		104	70	130			
Surr: Dibromofluoromethane	9.8		10.00		98.0	70	130			
Surr: Toluene-d8	9.8		10.00		98.0	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 19 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#:

1310E19 12-Nov-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB-10092	Samp1	ype: ME	BLK	Tes	tCode: E	PA Method	8310: PAHs	*		
Client ID: PBW	Batcl	h ID: 10	092	F	RunNo: 1	4492				
Prep Date: 10/30/2013	Analysis E	Date: 10)/31/2013	5	SeqNo: 4	16243	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC_	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	2.0								
2-Methylnaphthalene	ND	2.0								
Acenaphthylene	ND	2.5								
Acenaphthene	ND	5.0								
Fluorene	ND	0.80								
Phenanthrene	ND	0.60								
Anthracene	ND	0.60								
Fluoranthene	ND	0.30								
Pyrene	ND	0.30								
Benz(a)anthracene	ND	0.070								
Chrysene	ND	0.20								
Benzo(b)fluoranthene	ND	0.10								
Benzo(k)fluoranthene	ND	0.070								
Benzo(a)pyrene	ND	0.070								
Dibenz(a,h)anthracene	ND	0.12								
Benzo(g,h,i)perylene	ND	0.12								
Indeno(1,2,3-cd)pyrene	ND	0.25								
Surr: Benzo(e)pyrene	16		20.00		77.8	43.2	113			

Sample ID LCS-10092	Samp	ype: LC	s	Tes	tCode: El	PA Method	8310: PAHs			
Client ID: LCSW	Batc	h ID: 10	092	F	RunNo: 14	4492				
Prep Date: 10/30/2013	Analysis [Date: 10	/31/2013	S	SeqNo: 4	16245	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	45	2.0	80.00	0	55.9	50.3	86.5			
1-Methylnaphthalene	48	2.0	80.20	0	60.0	50.3	91.6			
2-Methylnaphthalene	48	2.0	80.00	0	60.4	48.2	94.9			
Acenaphthylene	48	2.5	80.20	0	59.8	53.2	93.7			
Acenaphthene	48	5.0	80.00	0	59.9	51.6	95.9			
Fluorene	4.1	0.80	8.020	0	51.0	31.9	97.4			
Phenanthrene	2.3	0.60	4.020	0	58.0	52.7	90.3			
Anthracene	2.4	0.60	4.020	0	59.7	49.9	88.1			
Fluoranthene	4.9	0.30	8.020	0	61.1	51.4	94.4			
Pyrene	4.0	0.30	8.020	0	49.4	47.7	89.5			
Benz(a)anthracene	0.46	0.070	0.8020	0	57.4	34.2	108			
Chrysene	2.3	0.20	4.020	0	56.5	32.9	96.8			
Benzo(b)fluoranthene	0.60	0.10	1.002	0	59.9	55.9	103			
Benzo(k)fluoranthene	0.30	0.070	0.5000	0	60.0	57.9	108			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 20 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: 1310E19

12-Nov-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID LCS-10092	Samp	ype: LC	s	Tes	tCode: El	PA Method	8310: PAHs			
Client ID: LCSW	Batc	h ID: 10	092	F	RunNo: 1	4492				
Prep Date: 10/30/2013	Analysis [Date: 10)/31/2013	8	SeqNo: 4	16245	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzo(a)pyrene	0.30	0.070	0.5020	0	59.8	55.6	107			
Dibenz(a,h)anthracene	0.59	0.12	1.002	0	58.9	57.9	104			
Benzo(g,h,i)perylene	0.58	0.12	1.000	0	58.0	57.2	105			
Indeno(1,2,3-cd)pyrene	1.3	0.25	2.004	0	63.9	53.5	102			
Surr: Benzo(e)pyrene	17		20.00		84.7	43.2	113			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 21 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#:

1310E19

12-Nov-13

Client:

HRL Compliance Solutions

Project:

Analyte

Enterprise WEP III Water Sampling

Sample ID MB-10139

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW

Batch ID: 10139

RunNo: 14519

Prep Date: 10/31/2013 Analysis Date: 11/1/2013

SeqNo: 417139

Units: mg/L

%RPD

Qual

Total Dissolved Solids

ND

PQL SPK value SPK Ref Val %REC LowLimit 20.0

HighLimit

RPDLimit

Result

Sample ID LCS-10139

Client ID: LCSW

SampType: LCS Batch ID: 10139

RunNo: 14519

LowLimit

Prep Date:

10/31/2013

Analysis Date: 11/1/2013

SeqNo: 417140 %REC

Units: mg/L HighLimit

%RPD

RPDLimit Qual

Total Dissolved Solids

20.0

PQL

1000

SPK value SPK Ref Val

104

Analyte

Result 1040

TestCode: SM2540C MOD: Total Dissolved Solids

120

Qualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Analyte detected below quantitation limits

RSD is greater than RSDlimit O

RPD outside accepted recovery limits R

S Spike Recovery outside accepted recovery limits В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Sample pH greater than 2 for VOA and TOC only.

RLReporting Detection Limit Page 22 of 22

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: HRL COMPLIANCE SOL Work Order	or Number: 1310E19		RcptNo: 1
Received by/date: AG 10/30	//3		
Logged By: Michelle Garcia 10/30/2013 1	12:33:00 PM	Minul Co	ruie)
Completed By: Michelle Garcia 10/30/2013 1		Michael Ga	
Reviewed By: 10 30 1	2	, 4	
Chain of Custody			
1. Custody seals intact on sample bottles?	Yes 🗌	No 🗌	Not Present
2. Is Chain of Custody complete?	Yes 🗹	No 🗆	Not Present
3. How was the sample delivered?	Client		
<u>Log In</u>			
4. Was an attempt made to cool the samples?	Yes 🗹	No 🗌	na 🗆
5. Were all samples received at a temperature of >0° C to 6		No 🗹	NA 🗆
6. Sample(s) in proper container(s)?	mples were collected the Yes	same day and No 🗌	d chilled.
7. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗆	
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗹	No ∐	
9. Was preservative added to bottles?	Yes 📙	No 🗹	NA 🗆
10.VOA vials have zero headspace?	Yes 🗹	No 🗆	No VOA Vials
11. Were any sample containers received broken?	Yes	No 🗹	# of preserved
12. Does paperwork match bottle labels?	Yes 🔽	No 🗆	bottles checked 7 for pH:
(Note discrepancies on chain of custody) 13, Are matrices correctly identified on Chain of Custody?	Yes ∀	No 🗆	(<2 or 12 unless noted) Adjusted?
14. Is it clear what analyses were requested?	Yes 🗹	No 🗆	
15. Were all holding times able to be met?	Yes 🗹	No 🗆	Checked by:
(If no, notify customer for authorization.)		l	
Special Handling (if applicable)			
16. Was client notified of all discrepancies with this order?	Yes 🗌	No 🗆	NA 🗹
Person Notified:	Date:		
By Whom:	•	hone 🔲 Fax	☐ In Person
Regarding:			
Client Instructions:			
17. Additional remarks:			
18. Cooler information Cooler No Temp °C Condition Seal Intact Se 1 8.9 Good Not Present	pal No Seal Date	Signed By	

C	Chain-	of-Cu	stody Record	Turn-Around	Time:								_								
Client:	HRL	Compl		□ Standard	Rush					_									NT \TC		
9	,	•		Project Name	Entero	rrse															•
Mailing	Address	234	SFY2 Rd	□ Standard Project Name	I -wo	Jas	amples	www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109													
61	and	tw	retion (0 8150s	Project #:										-							
Phone	#: 97	0-46	retion (0 81505 2-5440	13-11	0.2			Tel. 505-345-3975 Fax 505-345-4107 Analysis Request													
email o	r Fax#: /	ancel	lahr comp.com	Project Mana	ger:				(yار	(Ĉ				(†)					\Box		
QA/QC	Package:			Kan L	anbers	L		3021	IS OF	Σ		ĺ		, S(B's						
Ď Star			☐ Level 4 (Full Validation)	0		·		3) s,	ဖွ	읾				اچّ ا	2 P(
Accred NEL		D 04h -		Sampler:		res .		TMB's (8021)	+ TPH (Gas only)	믜	<u> </u>	04.1) 0270 CIMC)		S S	808						Î
A EDD		□ Othe			Mayes :			+	+	終	418) S	ျှ	Š	es/		(AO				5
A EDL	(Type)_				erature:		A BEZ	IΤΒΙ	ITBI) N	pour !	בון ל	deta	Ş	licid	\vert\(\vert\)	η-ίπ	Y			Se (
Date	Time	Matrix	Sample Request ID		Preservative			+	+	8	Met		8	S (F	Pes	8	(Ser	00			Yqq
Date	10/30		Cample Request ID	Type and #	Туре	MP 17	isia sa	BTEX + MTBE	BTEX + MTBE	TPH 8015B (GRO / DRO / MRO)	TPH (Method 418.1)	EDB (Method 504.1)	RCRA 8 Metals	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB'	8260B (VOA)	8270 (Semi-VOA)	\supset			Air Bubbles (Y or N)
0-30-13	1919	รฟ	Blanco Trading Post	see vario	see		-601	<u> </u>	-	ᅴ	- 	<u>" </u>	+=	▼	8	80	œ		\dashv	+	-
1 <u>30.13</u>	0919	JW_	Diance Trainerist	container	contama		- 001		-	-	-+	+	+	┼					\dashv	\dashv	+
												_	+	-	-		ļ	\square	-	\dashv	
										_		_	+	_	<u> </u>			Ш	\dashv	\dashv	-
	<u> </u>																		Щ	\perp	$\perp \! \! \perp \! \! \! \! \! \perp \! \! \! \! \! \! \! \! \! \!$
																				\perp	
	l																				
														T							
									П			\top								\neg	
Date:	Time:	Relinquish	ed by:	Redeived by:		Date	Time	Rer	narks						1	•					
3/3413	12.33		CYC A		10/3	013	12:33														
Date:	Time:	Relinquish	ed by:	Received by:	9	Date	Time														
	If necessary,	samples sub	mitted to Hall Environmental may be subc	ontracted to other a	ccredited laboratori	es. This serve	s as notice of thi	s possi	bility. A	ny su	b-contra	cted d	ta will	be dea	rty not	ated o	n the s	analytic	al repo	ort	

Jones, Brad A., EMNRD

From: Eileen Shannon < EShannon@kleinfelder.com>

Sent: Thursday, October 10, 2013 3:42 PM

Jones, Brad A., EMNRD Cc: jagwhite@eprod.com (jagwhite@eprod.com); Runell Seale (RSeale@eprod.com);

Theresa Ancell; Luke Davis (luke1d@msn.com)

Subject: WEP III - Seg 1 additional water source

Attachments: Blanco Trading Post Water Analysis.pdf.pdf

Hi Brad,

To:

On behalf of Enterprise Products Operating Company LLC (Enterprise), Kleinfelder West, Inc. is submitting this notice of a change in source water for hydrostatic testing of Segment 1 of Enterprise's Western Expansion Pipeline III.

Because of dropping water levels, the original proposed sources for water for testing are not likely to have sufficient water available to Enterprise for use in the hydrostatic test. In addition to the previously proposed Odie Chapman Ponds and Hill Top Well, Enterprise would like to add the following as potential sources of water for the Segment 1 hydrostatic testing:

- Bloomfield Water Supply System (Water System No. NM3510124); and
- Blanco Trading Post (36.356565, -107.811107)

Radium concentrations are as follows:

- **Bloomfield Water Supply System**
 - Rad-266 0.04 pci/L
 - Rad-228 0.2 pci/L
- Blanco Trading Post (Radium results pending sample to be collected 10/11/13)

Laboratory analytical data is attached (probably in 2 emails)

Please call if you have questions.

Eileen

Eileen Shannon P.G. **Project Manager** 9019 Washington NE, Building A Albuquerque, NM 87113 o 505.344.7373 Ext. 254 c 505.307.0722 fl 505.344.1711

75 Suttle Street Durango, CO 81303 970.247.4220 Phone 970.247.4227 Fax www.greenanalytical.com

15 July 2011

Kurt Fagrelius

Dugan Production Corporation
709 E. Murray Dr

Farmington, NM 87401

RE: Dugan Prod. Corp.

Enclosed are the results of analyses for samples received by the laboratory on 06/17/11 16:00. If you any any further assistance, please feel free to contact me.

Sincerely,

Debbie Zufelt

Reports Manager

Dellie Zufett

dzufelt/a/greenanalytical.com p. 970.247.4220 f: 970.247.4227 75 Suttle Street Durango. CO 81303

www.GreenAnalytical.com

Dugan Production Corporation

Project: Dugan Prod. Corp.

709 E. Murray Dr

Project Name / Number: [none]

Reported:

Farmington NM, 87401

Project Manager: Kurt Fagrelius 07/15/11 12:47

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received				
Commercial Well	1106110-01	Water	06/17/11 14:35	06/17/11 16:00				
House Well	1106110-02	Water	06/17/11 14:45	06/17/11 16:00				

Green Analytical Laboratories

Seldie Zufett

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Laboratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

dzufelt/@greenanalytical.com.pt/970.247.4220 ft 970.247.4227 75 Suttle Street Durango, CO 81303

www.GreenAnalytical.com

Dugan Production Corporation

709 E. Murray Dr Farmington NM, 87401 Project: Dugan Prod. Corp.

Project Name / Number: [none] Project Manager: Kurt Fagrelius

Reported: 07/15/11 12:47

Commercial Well

1106110-01 (Water)

		Reporting	10-01 (Wa	,				
Analyte	Result	Limit	Units	Dilution	Analyzed	Method	Notes	Analyst
Dissolved Metals by ICP								
Calcium	3.11	1.00	mg/L	1	06/24/11	200.7		JGS
Hardness	7.77	6.62	mg/L	1	06/24/11	Calc		JGS
Iron	0.152	0.050	mg/L	1	06/24/11	200.7		JGS
Magnesium	ND	1.00	mg/L	1	06/24/11	200.7		JGS
Potassium	ND	1.00	mg/L	1	06/24/11	200.7		JGS
Sodium	281	1.00	mg/L	1	06/24/11	200.7		JGS
Dissolved Metals by ICPMS								
Antimony	ND	0.0005	mg/L	1	06/28/11	200.8		JGS
Arsenic	ND	0.0005	mg/L	1	06/28/11	200.8		JGS
Barium	0.0184	0.0005	mg/L	1	06/28/11	200.8		JGS
Beryllium	ND	0.0005	mg/L	1	06/28/11	200.8		JGS
Cadmium	ND	0.0001	mg/L	1	06/28/11	200.8		JGS
Chromium	0.0014	0.0010	mg/L	1	06/28/11	200.8		JGS
Copper	0.0026	0.0001	mg/L	1	06/28/11	200.8		JGS
Lead	ND	0.0005	mg/L	1	06/28/11	200.8		JGS
Nickel	ND	0.0005	mg/L	1	06/28/11	200.8		JGS
Selenium	ND	0.0010	mg/L	1	06/28/11	200.8		JGS
Thallium	ND	0.0001	mg/L	1	06/28/11	200.8		JGS
Dissolved Mercury								
Mercury	ND	0.0002	mg/L	1	06/30/11	245.1		JGS
General Chemistry								
Alkalinity, Bicarbonate	220	10.0	mg/L	1	07/06/11	2320 B	H2	ABP
Alkalinity, Carbonate	16.0	10.0	mg/L	1	07/06/11	2320 B	H2	ABP
Alkalinity, Hydroxide	ND	10.0	mg/L	1	07/06/11	2320 B	H2	ABP
Alkalinity, Total	236	10.0	mg/L	1	07/06/11	2320 B	H2	ABP
Chloride	ND	10.0	mg/L	1	06/27/11	4500Cl B		ABP
Conductivity	1360	1.00	uS/cm	1	06/23/11	2510B		ABP
luoride	ND	0.200	mg/L	1	07/11/11	4500F C		ABP
Nitrate/Nitrite as N	ND	0.020	mg/L	1	06/23/11	353.2		KLJ
Н	9.12		pH Units	1	06/23/11	150.1	H4	ABP
Sulfate	410	100	mg/L	1	07/12/11	4500SO4		ABP
rds	800	10.0	mg/L	1	06/28/11	160.1/2540C	H2	ABP
Cation/Anion Balance	-1.63							

Green Analytical Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Laboratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

Deldie Zufett

dzufelt/@greenanalytical.com p. 970,247.4220 f: 970,247.4227 75 Suttle Street Durango. CO 81303

www.GreenAnalytical.com

Dugan Production Corporation

Project: Dugan Prod. Corp.

709 E. Murray Dr Farmington NM, 87401 Project Name / Number: [none]
Project Manager: Kurt Fagrelius

Reported:

07/15/11 12:47

House Well

1106110-02 (Water)

Reporting												
Analyte	Result	Limit	Units	Dilution	Analyzed	Method	Notes	Analyst				
Dissolved Metals by ICP												
Calcium	1.64	1.00	mg/L	1	06/24/11	200.7		JGS				
Hardness	ND	6.62	mg/L	1	06/24/11	Calc		JGS				
l̃ron .	ND	0.050	mg/L	1	06/24/11	200.7		JGS				
Magnesium	ND	1.00	mg/L	1	06/24/11	200.7		JGS				
Potassium	ND	1.00	mg/L	1	06/24/11	200.7		JGS				
Sodium	239	1.00	mg/L	1	06/24/11	200.7		JGS				
Dissolved Metals by ICPMS												
Antimony	ND	0.0005	mg/L	1	06/28/11	200.8		JGS				
Arsenic	0.0007	0.0005	mg/L	1	06/28/11	200.8		JGS				
Barium	0.0235	0.0005	mg/L	1	06/28/11	200.8		JGS				
Beryllium	ND	0.0005	mg/L	1	06/28/11	200.8		JGS				
Cadmium	ND	0.0001	mg/L	1	06/28/11	200.8		JGS				
Chromium	0.0026	0.0010	mg/L	1	06/28/11	200.8		JGS				
Copper	0.0021	0.0001	mg/L	1	06/28/11	200.8		JGS				
ead	ND	0.0005	mg/L	1	06/28/11	200.8		JGS				
Nickel	ND	0.0005	mg/L	1	06/28/11	200.8		JGS				
Selenium	ND	0.0010	mg/L	1	06/28/11	200.8		JGS				
Γhallium	ND	0.0001	mg/L	1	06/28/11	200.8		JGS				
Dissolved Mercury												
Mercury	ND	0.0002	mg/L	1	06/30/11	245.1		JGS				
General Chemistry												
Alkalinity, Bicarbonate	316	10.0	mg/L	1	07/06/11	2320 B	H2	ABP				
Alkalinity, Carbonate	48.0	10.0	mg/L	1	07/06/11	2320 B	H2	ABP				
Alkalinity, Hydroxide	ND	10.0	mg/L	1	07/06/11	2320 B	H2	ABP				
Alkalinity, Total	364	10.0	mg/L	1	07/06/11	2320 B	H2	ABP				
Chloride	ND	10.0	mg/L	1	06/27/11	4500Cl B		ABP				
Conductivity	1110	1.00	uS/cm	1	06/23/11	2510B		ABP				
luoride	0.482	0.200	mg/L	1	07/11/11	4500F C		ABP				
Nitrate/Nitrite as N	ND	0.020	mg/L	1	06/23/11	353.2		KLJ				
Н	9.13		pH Units	1	06/23/11	150.1	H4	ABP				
Sulfate	145	50.0	mg/L	1	07/12/11	4500SO4		ABP				
ГDS	580	10.0	mg/L	1	06/28/11	160.1/2540C	H2	ABP				
Cation/Anion Balance	2.66											

Green Analytical Laboratories

Deldie Zufett

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Laboratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

dzufelt digreenanalytical.com p. 970.247.4220 f. 970.247.4227 75 Suttle Street Durango, CO 81303

www.GreenAnalytical.com

Dugan Production Corporation

Project: Dugan Prod. Corp.

709 E. Murray Dr Farmington NM, 87401 Project Name / Number: [none]

Reported:

Project Manager: Kurt Fagrelius

07/15/11 12:47

Dissolved Metals by ICPMS - Quality Control

Analyte	Result	Reporting Limit	Linita	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
and y to	Kesuit	Limit	Units	Level	Result	/ONEC	Citills	Kr D	Lillit	Note
atch B106205 - Dissolved Metals							1.50			
lank (B106205-BLK1)	M MOOT 1 1 4			Prepared: (6/27/11 A	nalyzed: 06	/28/11			
ntimony	ND	0.0005	mg/L							
rsenic	ND	0.0005	mg/L							
arium	ND	0.0005	mg/L							
eryllium	ND	0.0005	mg/L							
admium	ND	0.0001	mg/L							
hromium	ND	0.0010	mg/L							
оррег	ND	0.0001	mg/L							
ead	ND	0.0005	mg/L							
ickel	ND	0.0005	mg/L							
elenium	ND	0.0010	mg/L							
allium	ND	0.0001	mg/L							
CS (B106205-BS1)				Prepared: 0	6/27/11 Ar	nalyzed: 06	/28/11			
ntimony	0.0473	0.0005	mg/L	0.0500		94.7	85-115			
senic	0.0472	0.0005	mg/L	0.0500		94.4	85-115			
rium	0.0473	0.0005	mg/L	0.0500		94.5	85-115			
ryllium	0.0508	0.0005	mg/L	0.0500		102	85-115			
dmium	0.0476	0.0001	mg/L	0.0500		95.2	85-115			
nromium	0.0515	0.0010	mg/L	0.0500		103	85-115			
ppper	0.0522	0.0001	mg/L	0.0500		104	85-115			
ad	0.0493	0.0005	mg/L	0.0500		98.7	85-115			
ckel	0.0496	0.0005	mg/L	0.0500		99.1	85-115			
lenium	0.232	0.0010	mg/L	0.250		92.8	85-115			
allium	0.0485	0.0001	mg/L	0.0500		96.9	85-115			
CS Dup (B106205-BSD1)				Prepared: 0	6/27/11 Ar	nalyzed: 06/	/28/11			
ıtimony	0.0482	0.0005	mg/L	0.0500		96.4	85-115	1.82	20	
senic	0.0489	0.0005	mg/L	0.0500		97.7	85-115	3.50	20	
nrium	0.0475	0.0005	mg/L	0.0500		95.0	85-115	0.461	20	
eryllium	0.0501	0.0005	mg/L	0.0500		100	85-115	1.39	20	
dmium	0.0490	0.0001	mg/L	0.0500		98.0	85-115	2.96	20	
romium	0.0489	0.0010	mg/L	0.0500		97.8	85-115	5.22	20	
pper	0.0503	0.0001	mg/L	0.0500		101	85-115	3.63	20	
ad	0.0492	0.0005	mg/L	0.0500		98.5	85-115	0.190	20	
ekel	0.0497	0.0005	mg/L	0.0500		99.5	85-115	0.307	20	
lenium	0.241	0.0010	mg/L	0.250		96.6	85-115	3.94	20	
allium	0.0496	0.0001	mg/L	0.0500		99.1	85-115	2.24	20	

Green Analytical Laboratories

Seldie Zufett

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Laboratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall he limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

dzufelt/@greenanalytical.com p: 970.247.4220 f: 970.247.4227 75 Suttle Street Durango, CO 81303

www.GreenAnalytical.com

Dugan Production Corporation

Project: Dugan Prod. Corp.

709 E. Murray Dr Farmington NM, 87401 Project Name / Number: [none]
Project Manager: Kurt Fagrelius

Reported: 07/15/11 12:47

Dissolved Mercury - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B106225 - EPA 245.1/7470			- Cinto		resur	/MIDE	Diffic		Dillin	710103
Blank (B106225-BLK1)				Prepared: 06	5/20/11 A	nalyzed: 06	/30/11			
Mercury	ND	0.0002	mg/L	ricpated. Of	J127111 A1	naryzeu. 00/	50/11			
LCS (B106225-BS1)				Prepared: 06	5/29/11 Ar	nalyzed: 06/	30/11			
Mercury	0.0023	0.0002	mg/L	0.00200		115	85-115			
LCS Dup (B106225-BSD1)				Prepared: 06	5/29/11 Ar	nalyzed: 06/	30/11			
Mercury	0.0023	0.0002	mg/L	0.00200		115	85-115	0.0435	20	

Green Analytical Laboratories

Deldie Zufett

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Laboratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

dzufelt@greenanalytical.com p: 970.247.4220 f: 970.247.4227 75 Suttle Street Durango, CO 81303

www.GreenAnalytical.com

Dugan Production Corporation

Project: Dugan Prod. Corp.

709 E. Murray Dr Farmington NM, 87401 Project Name / Number: [none]
Project Manager: Kurt Fagrelius

Reported: 07/15/11 12:47

General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B106167 - General Prep - Wet Chem										
Blank (B106167-BLK1)				Prepared &	Analyzed:	06/23/11				
Nitrate/Nitrite as N	ND	0.020	mg/L							
LCS (B106167-BS1)				Prepared &	Analyzed:	06/23/11				
Nitrate/Nitrite as N	0.110	0.020	mg/L	0.100		110	85-115			
LCS Dup (B106167-BSD1)				Prepared &	: Analyzcd:	06/23/11				
Nitrate/Nitrite as N	0.113	0.020	mg/L	0.100		113	85-115	2.69	20	
Batch B106169 - General Prep - Wet Chem										
Reference (B106169-SRM1)				Prepared &	: Analyzed:	06/23/11				
рН	8.73		pH Units	8.80		99.2	90-110			
Batch B106172 - General Prep - Wet Chem										
Blank (B106172-BLK1)				Prepared &	Analyzed:	06/23/11				
Conductivity	ND	1.00	uS/cm							
Reference (B106172-SRM1)				Prepared &	Analyzed:	06/23/11				
Conductivity	435		uS/cm	414		105	90-110			
Batch B106212 - General Prep - Wet Chem										
Blank (B106212-BLK1)				Prepared &	Analyzed:	06/27/11				
Chloride	ND	10.0	mg/L							

Green Analytical Laboratories

Deldie Zufett

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Lahoratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

dzufelt/a/greenanalytical.com pt 970.247.4220 ft 970.247.4227 75 Suttle Street Durango, CO 81303

www.GreenAnalytical.com

Dugan Production Corporation

Project: Dugan Prod. Corp.

709 E. Murray Dr

Project Name / Number: [none]

Reported: 07/15/11 12:47

Farmington NM, 87401

Project Manager: Kurt Fagrelius

General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B106212 - General Prep - Wet Chem										
LCS (B106212-BS1)				Prepared &	: Analyzed:	06/27/11				
Chloride	99.0	10.0	mg/L	100		99.0	85-115			
LCS Dup (B106212-BSD1)				Prepared &	Analyzed:	06/27/11				
Chloride	98.0	10.0	mg/L	100		98.0	85-115	1.02	20	
Batch B107004 - General Prep - Wet Chem										
Blank (B107004-BLK1)				Prepared &	Analyzed:	06/28/11				
rds	ND	10.0	mg/L							
Reference (B107004-SRM1)				Prepared &	Analyzcd:	06/28/11				
TDS	4090		mg/L	4030		101	85-115			
Batch B107068 - General Prep - Wet Chem										
Blank (B107068-BLK1)				Prepared &	Analyzed:	07/06/11				
Alkalinity, Total	ND	10.0	mg/L							
LCS (B107068-BS1)				Prepared &	Analyzed:	07/06/11				
Alkalinity, Total	98.0	10.0	mg/L	100		98.0	85-115			
LCS Dup (B107068-BSD1)				Prepared &	Analyzed:	07/06/11				
Alkalinity, Total	104	10.0	mg/L	100		104	85-115	5.94	20	
Batch B107077 - General Prep - Wet Chem										
Blank (B107077-BLK1)				Prepared &	Analyzed:	07/11/11				
Fluoride	ND	0.200	mg/L							

Green Analytical Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Laboratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

Deldie Zufett

dzufelt/d/greenanalytical.com p: 970.247.4220 f: 970.247.4227 75 Suttle Street Durango, CO 81303

www.GreenAnalytical.com

Dugan Production Corporation

Project: Dugan Prod. Corp.

709 E. Murray Dr

Project Name / Number: [none]

Reported:

Farmington NM, 87401

Project Manager: Kurt Fagrelius

07/15/11 12:47

General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B107077 - General Prep - Wet Chem										
LCS (B107077-BS1)				Prepared &	Analyzed:	07/11/11				
Fluoride	1.01	0,200	mg/L	1.00		101	80-120			
LCS Dup (B107077-BSD1)				Prepared &	Analyzed: (07/11/11				
Fluoride	1.01	0.200	mg/L	1.00		101	80-120	0.00	20	
Batch B107084 - General Prep - Wet Chem										
Blank (B107084-BLK1)				Prepared &	Analyzed: (07/12/11				
Sulfate	ND	10.0	mg/L							
LCS (B107084-BS1)				Prepared &	Analyzed: (07/12/11				
Sulfate	50.0	10.0	mg/L	50,0		100	80-120			
LCS (B107084-BS2)				Prepared &	Analyzed: (07/12/11				
Sulfate	55.0	10.0	mg/L	50.0		110	80-120			

Green Analytical Laboratories

Deldie Zufett

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Laboratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

RPD

LCS

dzufelt@greenanalytical.com p: 970.247.4220 f: 970.247.4227 75 Suttle Street Durango. CO 81303

www.GreenAnalytical.com

 Dugan Production Corporation
 Project:
 Dugan Prod. Corp.

 709 E. Murray Dr
 Project Name / Number:
 [none]
 Reported:

 Farmington NM, 87401
 Project Manager:
 Kurt Fagrelius
 07/15/11 12:47

Notes and Definitions

H4 pH analysis performed more than 48 hours after sampling.
H2 Sample analysis performed past hold time.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

*Results reported on as received basis unless designated as dry.

Relative Percent Difference

Laboratory Control Sample (Blank Spike)

Green Analytical Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Laboratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

Debbie Zufett

CHAIN OF CUSTODY RECORD

Page	of	

Client: Dugan Popd- Corps.
Contact: Kurt Feartlins
Address: 709 E- Murray Drive
Formington, NM Phone Number: 505- 320-8248
Phone Number: 505- 320-8248

FAX Number:

N	O	I,	E	S	:

- 1) Ensure proper container packaging.
- 2) Ship samples promptly following collection.
- 3) Designate Sample Reject Disposition.

PO#

Project Name:

Table 1. - Matrix Type

1 = Surface Water, 2 = Ground Water

3 = Soil/Sediment, 4 = Rinsate, 5 = Oil

6 = Waste, 7 = Other (Specify)

Samplers Signature:

GAL JOB #

Analyses Required Green Analytical Laboratories (970) 247-4220 FAX (970) 247-4227 Lab Name: Per K-r+ F. 6-21-11 Address: 75 Suttle Street, Durango, CO 81303 Miscellaneous Preservative(s) Collection run vituote Unpreserved (Ice Only) poured off Sample Filtered ? Y/N Collected by: (Init.) 6-21-11 16:00 No. of Containers Other (Specify) Comments Sample ID Date Time H2S04 NAOH HN03 eman analysis 3.80 10. Dates -17-11 Tintolo Relinquished by: Time: Relinquished by: Time:

* Sample Reject: [] Return [] Dispose [] Store (30 Days)

Kfagrelius aduganproduction. com L

CHAIN OF CUSTODY RECORD

Edboratories	CIMIN OF COSTODING	<u>DCOID</u>	1 agc 01
Client: Duarn Prod- Corp.	NOTES:		
Contact: Kurt Fearthis	1) Ensure proper container packaging.	Table 1. – Matrix Type	FOR GAL USE ONLY
Address: 709 E. Muire Drive	2) Ship samples promptly following collection.	1 = Surface Water, 2 = Ground Water	GAL JOB #
Formington, NM	3) Designate Sample Reject Disposition.	3 = Soil/Sediment, 4 = Rinsate, 5 = Oil	
Phone Number: 505- 320-8218	PO#	6 = Waste, 7 = Other (Specify)	
FAX Number:	Project Name:	Samplers Signature:	

Lab Name: Green Ana	lytical Labor	atories	(9	70) 24	7-4220) FA	X (9	970)	247-	4227	,		Analyses Required												
Address: 75 Suttle S	Street, Duran	go, CO 813	303																						
	, Collec	ction]	Miscell	aneous	5		Pre	serv	ative	(s)											ļ			
Sample ID	Date	Time	Collected by: (Init.)	Matrix Type From Table 1	No. of Containers	Sample Filtered ? Y/N	Unpreserved (Ice Only)	HNO3	HCL	H2SO4	NAOH	Other (Specify)	Porther 2	/	P. 1500 1								Con	mments	S
1. Communicial	6-17-11	2.5€													X							ĺ			
2. Well 21																									
3 Commercial	6-11-4	2.30											X												
4. Well *2																									
5.																									
6. HOUSE WILL !	6-17-11	300													X			Ī							
6. House Will 1 7. House Will #2	6-17-11	24 70											X												
8.																									
9.																									
10.										1	11			1	in		-				,				
Relinquished by:	+ Fagi	d	-	Dater	-/7-	11	Time	e:		Réce	ived t	by:	lu		Ta	th		·	•	•	Date	1/1/	11	Tinte	00
Relinquished by:				Date:		·	Time	e:		Rece	ived l	by:		4,,,,,							Date			Time:	

Jones, Brad A., EMNRD

From:

Eileen Shannon < EShannon@kleinfelder.com >

Sent:

Thursday, October 10, 2013 3:45 PM

To:

Jones, Brad A., EMNRD

Cc:

jagwhite@eprod.com (jagwhite@eprod.com); Runell Seale (RSeale@eprod.com);

Theresa Ancell; Luke Davis (luke1d@msn.com)

Subject:

RE: WEP III - Seg 1 additional water source 2nd of 2 emails

Attachments:

Bloomfield WS System.pdf

Chem/Rad Sample Results

Return Links

Chem/Rad Samples

Water System Detail

Water Systems

Water System Search

County Map

Water System No. :

NM3510124

SAN JUAN

1309259-001B

Federal Type:

 \mathbf{C}

Water System Name:

Lab Sample No.:

BLOOMFIELD WATER

State Type:

Principal County Served: Status:

SUPPLY SYSTEM

Primary Source: SW

06-01-1977 **Activity Date:**

Collection Date : 09-04-2013

This list displays sample/results of all non-microbial analytes

(TSAANLYT.TYPE_CODE <> MOR) associated to the selected sample. Results for

Microbial Analytes are not included.

Glossary

Ana Co	-	Analyte Name	Method Code	Less than Indicator			Concentration	Monitoring Period Begin Date	Period End
10	27	ALKALINITY,	2320B	N	MRI.	20 MG/L	82.00 MG/L	09-01-2013	09-30-2013

Chem/Rad Sample Results

Return Links

Chem/Rad Samples

Water System Detail

Water Systems

Water System Search

County Map

Glossary

Water System No. :	NM3510124	Federal Type :	С
Water System Name :	BLOOMFIELD WATER SUPPLY SYSTEM	State Type :	C
Principal County Served :	SAN JUAN	Primary Source :	sw
Status : Lab Sample No. :	A 1309258-001A	Activity Date : Collection Date :	06-01-1977 09-04-2013

This list displays sample/results of all non-microbial analytes (TSAANLYT.TYPE_CODE <> MOR) associated to the selected sample. Results for Microbial Analytes are not included.

	Analyte Code	Analyte Name	Method Code	Less than Indicator			Concentration		Monitoring Period End Date
I	79711	CARBON, TOTAL	5310B	N	MRL	1 MG/L	4.8 MG/L	09-01-2013	09-30-2013

Chem/Rad Sample Results

Return Links

Water System No. :

NM3510124

Federal Type:

 \mathbf{C}

Water System Name:

BLOOMFIELD WATER SUPPLY SYSTEM

State Type:

 \mathbf{C}

Chem/Rad

Principal County Served : SAN JUAN

Primary Source: Activity Date:

SW06-01-1977

Samples

Status: 1308479-001A Lab Sample No. :

Collection Date:

08-06-2013

Water System Detail

This list displays sample/results of all non-microbial analytes (TSAANLYT.TYPE_CODE <> MOR) associated to the selected sample. Results for Microbial Analytes are not included.

Water

Systems Water System

Search

County Map

Analyte Code	Analyte Name	Method Code	Less than Indicator	Tvne	~	Concentration level	Monitoring Period Begin Date	Period End
2941	CHLOROFORM	524.2	N	MRL	25 UG/L	50.8 UG/L		
2942	BROMOFORM	524.2	Y	MRL	5 UG/L			
2943	BROMODICHLOROMETHANE	524.2	N	MRL	5 UG/L	8.94 UG/L		
2944	DIBROMOCHLOROMETHANE	524.2	Y	MRL	5 UG/L			
2950	ТТНМ	524.2	N	MRL	0 UG/L	59.7 UG/L	07-01-2013	09-30-2013

Glossary

Chem/Rad Sample Results Page 1 of 1

Drinking Water Branch

Chem/Rad Sample Results

Return Links

Chem/Rad Samples

Water System Detail

Water Systems

Water System Search

County Map

Glossary

Water System No. :	NM3510124	Federal Type :	С
Water System Name :	BLOOMFIELD WATER SUPPLY SYSTEM	State Type :	C
Principal County Served :	SAN JUAN	Primary Source :	sw
Status : Lab Sample No. :	A 1308888-001A	Activity Date : Collection Date :	06-01-1977 08-14-2013

This list displays sample/results of all non-microbial analytes (TSAANLYT.TYPE_CODE <> MOR) associated to the selected sample. Results for Microbial Analytes are not included.

	nalyte Code	Analyte Name	Method Code	Less than Indicator		. 9	Concentration level		Monitoring Period End Date
	1077	COPPER, FREE	200.8	N	MRL	.001 MG/L	0.0068 MG/L	01-01-2011	12-31-2013
Г	1030	LEAD	200.8	Y	MRL	.001 MG/L		01-01-2011	12-31-2013

Chem/Rad Sample Results

Return Links

Chem/Rad Samples

Water System Detail

Water Systems

Water System Search

County Map

Water System No.: NM3510124

BLOOMFIELD WATER

SUPPLY SYSTEM

State Type:

Federal Type:

Primary Source: SW

Activity Date: 06-01-1977 Collection Date: 09-09-2013

C

C

2013031284 This list displays sample/results of all non-microbial analytes

SAN JUAN

(TSAANLYT.TYPE_CODE <> MOR) associated to the selected sample. Results for

Microbial Analytes are not included.

Water System Name:

Principal County

Lab Sample No.:

Served:

Status:

Glossary

Analyte Code		Method Code	Less than Indicator			Concentration level		Monitoring Period End Date
1024	CYANIDE	10-204- 00-1X	Y	MRL	.005 MG/L		01-01-2013	12-31-2013

Chem/Rad Sample Results

Return Links

Chem/Rad Samples

Water System Detail

Water Systems

Water System Search

County Map

Water System No.:

NM3510124

Federal Type:

C

C

Water System Name: **Principal County**

BLOOMFIELD WATER SUPPLY SYSTEM

State Type:

Served:

SAN JUAN

Primary Source: SW

Status: Lab Sample No.:

2013031289

Activity Date: Collection Date:

09-09-2013

This list displays sample/results of all non-microbial analytes

(TSAANLYT.TYPE_CODE <> MOR) associated to the selected sample. Results for

Microbial Analytes are not included.

Glossary

-	Analyte Code	Analyte Name	Method Code	Less than Indicator			Concentration level	9	Monitoring Period End Date
	1025	FLUORIDE	4500F-C	N	MRL	.1 MG/L	0.23 MG/L	01-01-2013	12-31-2013

Chem/Rad Sample Results

Return Links

Chem/Rad Samples

Analyte List

Water System Detail

Water Systems

Water System Search

County Map

Glossary

Water System No.: NM3510124 Federal Type: **BLOOMFIELD WATER** Water System Name: State Type: C SUPPLY SYSTEM **Principal County** SAN JUAN Primary Source: SW Served: Status: **Activity Date:** 06-01-1977

Collection Date: 08-09-2012

This list displays sample/results of all non-microbial analytes (TSAANLYT.TYPE_CODE <> MOR) associated to the selected sample. Results for Microbial Analytes are not included.

2012028418

Lab Sample No. :

Analyte Code	Analyte Name	Method Code		Tyne		Concentration level		Monitoring Period End Date
1005	ARSENIC	200.8	Y	MRL	.001 MG/L		01-01-2012	12-31-2012
1010	BARIUM	200.8	Y	MRL	.1 MG/L		01-01-2012	12-31-2012
1015	CADMIUM	200.8	Y	MRL	.001 MG/L		01-01-2012	12-31-2012
1020	CHROMIUM	200.8	Y	MRL	.001 MG/L		01-01-2012	12-31-2012
1035	MERCURY	245.1	Y	MRL	.0002 MG/L		01-01-2012	12-31-2012
1036	NICKEL	200.8	Y	MRL	.01 MG/L		01-01-2012	12-31-2012
1045	SELENIUM	200.9	Y	MRL	.005 MG/L		01-01-2012	12-31-2012
1 1074 1	ANTIMONY, TOTAL	200.8	Y	MRL	.001 MG/L		01-01-2012	12-31-2012
1 1075 1	BERYLLIUM, TOTAL	200.8	Y	MRL	.001 MG/L		01-01-2012	12-31-2012
ו ווואר ו	THALLIUM, TOTAL	200.8	Y	MRL	.001 MG/L		01-01-2012	12-31-2012

Chem/Rad Sample Results

Return Links

Chem/Rad Samples

Water System Detail

Water Systems

Water System Search

County Map

Water System No. :

NM3510124

Federal Type:

: C

_

Water System Name : $_{SU}^{DL}$

BLOOMFIELD WATER SUPPLY SYSTEM

State Type:

C

Principal County Served :

SAN JUAN

Primary Source: SW

06-01-1977

Status : Lab Sample No. :

A 2013031299 Activity Date :

Collection Date: 09-09-2013

This list displays sample/results of all non-microbial analytes (TSAANLYT.TYPE_CODE <> MOR) associated to the selected sample. Results for

Microbial Analytes are not included.

Glossary

Analyte Code	Analyte Name	Method Code	Less than Indicator			Concentration level		Monitoring Period End Date
1 1113X I	NITRATE- NITRITE	353.2	Y	MRL	.1 MG/L		01-01-2013	12-31-2013

Chem/Rad Sample Results

Return Links

Chem/Rad Samples

Analyte List

Water System Detail

Water Systems

Water System Search

County Map

Glossary

Water System No.: NM3510124

BLOOMFIELD WATER Water System Name: SUPPLY SYSTEM

Principal County

SAN JUAN Served:

Status: WC201103274 Lab Sample No.:

Federal Type:

State Type: \mathbf{C}

Primary Source: SW

Activity Date: 06-01-1977 Collection Date : 11-07-2011

This list displays sample/results of all non-microbial analytes (TSAANLYT.TYPE_CODE >> MOR) associated to the selected sample. Results for Microbial Analytes are not included.

Analyte Code	Analyte Name	ann'i	i inan	Tyna		Concentration level	Monitoring Period Begin Date	Period End
1 11176	BICARBONATE AS HCO3	SM 4500H+ B	N	MRL	3 MG/L	93.7 MG/L		
1925	PH	SM 4500H+ B	N	MRL	0 PH	7.69 PH		
1927	ALKALINITY, TOTAL	2320B	N	MRL	2.5 MG/L	76.8 MG/L	11-01-2011	11-30-2011
1 1474 1	ALKALINITY, CARBONATE	SM 4500H+ B	N	MRL	0 MG/L	0.0 MG/L		

Chem/Rad Sample Results

Return Links

Chem/Rad Samples

Analyte List

Water System Detail

Water Systems

Water System Search

County Map

Glossary

Water System No.: NM3510124 Federal Type: \mathbf{C} **BLOOMFIELD WATER** C Water System Name: State Type: SUPPLY SYSTEM **Principal County** SAN JUAN Primary Source: SW

Collection Date:

11-17-2004

Served: 06-01-1977 **Activity Date:** Status:

RC200400497

Lab Sample No.:

This list displays sample/results of all non-microbial analytes (TSAANLYT.TYPE_CODE <> MOR) associated to the selected sample. Results for Microbial Analytes are not included.

Analyte Code	Analyte Name	Method Code	Less than Indicator	IVNA	Reporting Level	Concentration level	Monitoring Period Begin Date	· ·
	GROSS ALPHA, EXCL. RADON & U	900	N		1.1 PCI/L	2.7 PCI/L		
1 411116	COMBINED URANIUM	200.8	N		1 UG/L	2 UG/L		
1 4000	URANIUM- 238	200.8	N		1 UG/L	2 UG/L		
4010	COMBINED RADIUM (- 226 & -228)	null	null		null null	0.2 PCI/L		
4020	RADIUM-226	903.1	N		.02 PCI/L	.04 PCI/L		
4030	RADIUM-228	904.0	N		.3 PCI/L	.2 PCI/L		
	GROSS BETA PARTICLE ACTIVITY	900	Z		I PCI/L	3.2 PCI/L		
4109	GROSS ALPHA PARTICLE ACTIVITY	900	N	MRL	1.I PCI/L	2.7 PCI/L		

Chem/Rad Sample Results

Return Links

Chem/Rad Samples

Analyte List

Water System Detail

Water Systems

Water System Search

County Map

Glossary

BLOOMFIELD WATER Water System Name:

Water System No.:

Principal County

Lab Sample No.:

Served:

Status:

SUPPLY SYSTEM

SAN JUAN

Primary Source: SW

Federal Type:

State Type:

06-01-1977 **Activity Date:** Collection Date: 02-25-1997

 \mathbf{C}

C

WC970622 This list displays sample/results of all non-microbial analytes

NM3510124

(TSAANLYT.TYPE_CODE >> MOR) associated to the selected sample. Results for Microbial Analytes are not included.

Analyte Code	Analyte Name	Method Code	Less than Indicator		Concentration level	-	Monitoring Period End Date
1055	SULFATE	300.0	N	0 null	47 MG/L		

Chem/Rad Sample Results

Return Links

Water System No.: Water System Name:

Status: Lab Sample No.: NM3510124 **BLOOMFIELD WATER SUPPLY**

2012028402

Federal Type:

C C

Chem/Rad

SYSTEM Principal County Served: SAN JUAN State Type: Primary Source : **Activity Date:**

Collection Date :

SW 06-01-1977 08-09-2012

Samples

Analyte

This list displays sample/results of all non-microbial analytes (TSAANLYT.TYPE_CODE >> MOR)

associated to the selected sample. Results for Microbial Analytes are not included.

Water System Detail

List

Water Systems Water System

County Map

Search

Glossar

Analyte Code	Analyte Name	Method Code	Less than Indicator	Type		Concentration level		Monitoring Period End Date
2005	ENDRIN	525.2	Y	MRL	.02 UG/L		01-01-2011	12-31-2013
2010	BHC-GAMMA	525.2	Y	MRL	.08 UG/L		01-01-2011	12-31-2013
2015	METHOXYCHLOR	525.2	Y	MRL	.09 UG/L		01-01-2011	12-31-2013
2020	TOXAPHENE	508.1	Y	MRL	.072 UG/L		01-01-2011	12-31-2013
2031	DALAPON	515.4	Y	MRL	.22 UG/L		01-01-2011	12-31-2013
2032	DIQUAT	549.2	Y	MRL	.32 UG/L		01-01-2011	12-31-2013
2033	ENDOTHALL	548.1	Y	MRL	12.5 UG/L		01-01-2011	12-31-2013
2034	GLYPHOSATE	547	Y	MRL	4.7 UG/L		01-01-2011	12-31-2013
2035	DI(2-ETHYLHEXYL) ADIPATE	525.2	Y	MRL	.12 UG/L		01-01-2011	12-31-2013
2036	OXAMYL	531.2	Y	MRL	.6 UG/L		01-01-2011	12-31-2013
2037	SIMAZINE	525.2	Y	MRL	.08 UG/L		01-01-2011	12-31-2013
2039	DI(2-ETHYLHEXYL) PHTHALATE	525.2	Y	MRL	.11 UG/L		01-01-2011	12-31-2013
2040	PICLORAM	515.4	Y	MRL	.11 UG/L		01-01-2011	12-31-2013
2041	DINOSEB	515.4	Y	MRL	.29 UG/L		01-01-2011	12-31-2013
2042	HEXACHLOROCYCLOPENTADIENE	525.2	Y	MRL	.02 UG/L		01-01-2011	12-31-2013
2046	CARBOFURAN	531.2	Y	MRL	.7 UG/L		01-01-2011	12-31-2013
2050	ATRAZINE	525.2	Y	MRL	.05 UG/L		01-01-2011	12-31-2013
2051	LASSO	525.2	Y	MRL	.04 UG/L		01-01-2011	12-31-2013
2065	HEPTACHLOR	525.2	Y	MRL	.06 UG/L		01-01-2011	12-31-2013
2067	HEPTACHLOR EPOXIDE	525.2	Y	MRL	.04 UG/L		01-01-2011	12-31-2013
2105	2,4-D	515.4	Y	MRL	.19 UG/L		01-01-2011	12-31-2013
2110	2,4,5-TP	515.4	Y	MRL	.05 UG/L		01-01-2011	12-31-2013
2274	HEXACHLOROBENZENE	525.2	Y	MRL	.02 UG/L		01-01-2011	12-31-2013
2306	BENZO(A)PYRENE	525.2	Y	MRL	.02 UG/L		01-01-2011	12-31-2013
	PENTACHLOROPHENOL	515.4	Y	MRL	.02 UG/L		01-01-2011	12-31-2013
1 7484 1	TOTAL POLYCHLORINATED BIPHENYLS (PCB)	508.1	Y	MRL	.004 UG/L		01-01-2011	12-31-2013
2931	1,2-DIBROMO-3-CHLOROPROPANE	504.1	Y	MRL	.004 UG/L		01-01-2011	12-31-2013
2946	ETHYLENE DIBROMIDE	504.1	Y	MRL	.004 UG/L		01-01-2011	12-31-2013
2959	CHLORDANE	508.1	Y	MRL	.003 UG/L		01-01-2011	12-31-2013

Chem/Rad Sample Results

Return Links

Water System No.:

Lab Sample No. :

NM3510124

Federal Type:

C

Water System Name:

BLOOMFIELD WATER SUPPLY **SYSTEM**

State Type:

 \mathbf{C} SW

Chem/Rad Samples

Principal County Served: SAN JUAN Status:

OR200600676

Primary Source : **Activity Date: Collection Date:**

06-01-1977 04-12-2006

Analyte List

This list displays sample/results of all non-microbial analytes (TSAANLYT.TYPE_CODE > MOR)

associated to the selected sample. Results for Microbial Analytes are not included.

Water System Detail

Water Systems

Water System Search

County Map

Glossary

	Analyte		Method	Less	Leve	Reporting	Concentration	Monitoring	Monitoring
	Code	Analyte Name	Code	than Indicator	Type	Level	level	Period Begin Date	
	2030	P-ISOPROPYLTOLUENE	524.2	Y	MRL	.071 UG/L	null		
	2210	CHLOROMETHANE	524.2	Y	MRL	.351 UG/L	null		
	2212	DICHLORODIFLUOROMETHANE	524.2	Y	MRL	.269 UG/L	null		
	2214	BROMOMETHANE	524.2	Y	MRL	.494 UG/L	null		
	2216	CHLOROETHANE	524.2	Y	MRL	.342 UG/L	null		
	2218	TRICHLOROFLUOROMETHANE	524.2	Y	MRL	.126 UG/L	null		
	2224	TRANS-1,3-DICHLOROPROPENE	null	Y	MRL	.096 UG/L	null		
-	2246	HEXACHLOROBUTADIENE	524.2	Y	MRL	.129 UG/L	null		
	2247	METHYL ETHYL KETONE	null	N		0 null	1.3 UG/L		
	2248	NAPHTHALENE	524.2	Y	MRL	.162 UG/L	null		
y	2251	METHYL TERT-BUTYL ETHER	null	Y	MRL	.102 UG/L	null		
	2254	NITROBENZENE	null	Y	MRL	3.299 UG/L	null		
	2263	TETRAHYDROFURAN	null	Y	MRL	1.153 UG/L	null		
1	2378	1,2,4-TRICHLOROBENZENE	524.2	Y	MRL	.133 UG/L	null	01-01-2006	12-31-2006
1	2380	CIS-1,2-DICHLOROETHYLENE	524.2	Y	MRL	.103 UG/L	null	01-01-2006	12-31-2006
	2408	DIBROMOMETHANE	524.2	Y	MRL	.111 UG/L	null		
	2410	1,1-DICHLOROPROPENE	524.2	Y	MRL	.108 UG/L	null		
	2412	1,3-DICHLOROPROPANE	524.2	Y	MRL	.054 UG/L	null		
	2413	1,3-DICHLOROPROPENE	524.2	Y	MRL	.0 79 UG/L	null		
	2414	1,2,3-TRICHLOROPROPANE	524.2	Y	MRL	.085 UG/L	null		
	2416	2,2-DICHLOROPROPANE	524.2	Y	MRL	.332 UG/L	null		
	2418	1,2,4-TRIMETHYLBENZENE	524.2	Y	MRL	.06 UG/L	null		
	2420	1,2,3-TRICHLOROBENZENE	524.2	Y	MRL	.11 7 UG/L	null		
	2422	N-BUTYLBENZENE	524.2	Y	MRL	.122 UG/L	null		
	2424	1,3,5-TRIMETHYLBENZENE	524.2	Y	MRL	.058 UG/L	null		
	2426	TERT-BUTYLBENZENE	524.2	Y	MRL	.056 UG/L	null		
	2428	SEC-BUTYLBENZENE	524.2	Y	MRL	.073 UG/L	null		
		BROMOCHLOROMETHANE	524.2	Y	MRL	.118 UG/L	null		
	7041 1	1,2-DIBROMO-3- CHLOROPROPANE	null	Y	MRL	.143 UG/L	null		
	2941	CHLOROFORM	524.2	N		0 null	27 UG/L		
	2942	BROMOFORM	524.2	Y	MRL	.071 UG/L	null		
	2943	BROMODICHLOROMETHANE	524.2	N		0 null	5.74 UG/L		
	2944 I	DIBROMOCHLOROMETHANE	524.2	N		0 null	0.41 UG/L		
	2946	ETHYLENE DIBROMIDE	null	Y	MRL	.054 UG/L	null		
	2950	ГТНМ	524.2	N		0 null	33 UG/L		
	2955	XYLENES, TOTAL	524.2	N		0 null	0 UG/L	01-01-2006	12-3I-2006
۲									

2964	DICHLOROMETHANE	524.2	Y	MRL	.405 UG/L	null	01-01-2006	12-31-2006
2965	O-CHLOROTOLUENE	524.2	Y	MRL	.054 UG/L	null		
2966	P-CHLOROTOLUENE	524.2	Y	MRL	.138 UG/L	null		
2967	M-DICHLOROBENZENE	524.2	Y	MRL	.079 UG/L	null		
2968	O-DICHLOROBENZENE	524.2	Y	MRL	.071 UG/L	null	01-01-2006	12-31-2006
2969	P-DICHLOROBENZENE	524.2	Y	MRL	.077 UG/L	null	01-01-2006	12-31-2006
2976	VINYL CHLORIDE	524.2	Y	MRL	.221 UG/L	null	01-01-2006	12-31-2006
2977	1,1-DICHLOROETHYLENE	524.2	Y	MRL	.121 UG/L	null	01-01-2006	12-31-2006
2978	1,1-DICHLOROETHANE	524.2	Y	MRL	.119 UG/L	null		
2979	TRANS-1,2- DICHLOROETHYLENE	524.2	Y	MRL	.095 UG/L	null	01-01-2006	12-31-2006
2980	1,2-DICHLOROETHANE	524.2	Y	MRL	.093 UG/L	null	01-01-2006	12-31-2006
2981	1,1,1-TRICHLOROETHANE	524.2	Y	MRL	.115 UG/L	null	01-01-2006	12-31-2006
2982	CARBON TETRACHLORIDE	524.2	Y	MRL	.143 UG/L	null	01-01-2006	12-31-2006
2983	1,2-DICHLOROPROPANE	524.2	Y	MRL	.098 UG/L	null	01-01-2006	12-31-2006
2984	TRICHLOROETHYLENE	524.2	Y	MRL	.113 UG/L	null	01-01-2006	12-31-2006
2985	1,1,2-TRICHLOROETHANE	524.2	Y	MRL	.056 UG/L	null	01-01-2006	12-31-2006
2986	1,1,1,2-TETRACHLOROETHANE	524.2	Y	MRL	.057 UG/L	null		
2987	TETRACHLOROETHYLENE	524.2	Y	MRL	.073 UG/L	null	01-01-2006	12-31-2006
2988	1,1,2,2-TETRACHLOROETHANE	524.2	Y	MRL	.069 UG/L	null		
2989	CHLOROBENZENE	524.2	Y	MRL	.05 UG/L	null	01-01-2006	12-31-2006
2990	BENZENE	524.2	Y	MRL	.098 UG/L	null	01-01-2006	12-31-2006
2991	TOLUENE	524.2	Y	MRL	.055 UG/L	null	01-01-2006	12-31-2006
2992	ETHYLBENZENE	524.2	Y	MRL	.052 UG/L	null	01-01-2006	12-31-2006
2993	BROMOBENZENE	524.2	Y	MRL	.067 UG/L	null		
2994	ISOPROPYLBENZENE	524.2	Y	MRL	.059 UG/L	null		
2995	M-XYLENE	524.2	Y	MRL	.112 UG/L	null		
2996	STYRENE	524.2	Y	MRL	.056 UG/L	null	01-01-2006	12-31-2006
2997	O-XYLENE	524.2	Y	MRL	.052 UG/L	null		
2998	N-PROPYLBENZENE	524.2	Y	MRL	.08 UG/L	null		

Total Number of Records Fetched = 65

Chem/Rad Sample Results

Return Links

Chem/Rad Samples

Water System Detail

Water System No.:

Principal County

Lab Sample No.:

Served:

Status:

Water System Name:

NM3510124

BLOOMFIELD WATER SUPPLY

SYSTEM

SAN JUAN

2013031309

Primary Source:

Federal Type:

State Type:

SW06-01-1977

 \mathbf{C}

Activity Date: Collection Date: 09-09-2013

This list displays sample/results of all non-microbial analytes (TSAANLYT.TYPE_CODE <> MOR) associated to the selected sample. Results for Microbial Analytes are not included.

Water Systems

Water System Search

County Map

Glossary

Analyte Code	Analyte Name	Method Code	Less than Indicator	Type		Concentration level	Monitoring Period Begin Date	Monitoring Period End Date
2378	1,2,4- TRICHLOROBENZENE	524.2	Y	MRL	.1 UG/L		01-01-2013	12-31-2013
2380	CIS-1,2- DICHLOROETHYLENE	524.2	Y	MRL	.1 UG/L		01-01-2013	12-31-2013
2955	XYLENES, TOTAL	524.2	Y	MRL	.1 UG/L		01-01-2013	12-31-2013
2964	DICHLOROMETHANE	524.2	Y	MRL	.1 UG/L		01-01-2013	12-31-2013
2968	O-DICHLOROBENZENE	524.2	Y	MRL	.1 UG/L		01-01-2013	12-31-2013
2969	P-DICHLOROBENZENE	524.2	Y	MRL	.1 UG/L		01-01-2013	12-31-2013
2976	VINYL CHLORIDE	524.2	Y	MRL	.2 UG/L		01-01-2013	12-31-2013
2977	1,1-DICHLOROETHYLENE	524.2	Y	MRL	.1 UG/L		01-01-2013	12-31-2013
2979	TRANS-1,2- DICHLOROETHYLENE	524.2	Y	MRL	.1 UG/L		01-01-2013	12-31-2013
2980	1,2-DICHLOROETHANE	524.2	Y	MRL	.1 UG/L		01-01-2013	12-31-2013
2981	1,1,1-TRICHLOROETHANE	524.2	Y	MRL	.1 UG/L		01-01-2013	12-31-2013
2982	CARBON TETRACHLORIDE	524.2	Y	MRL	.1 UG/L		01-01-2013	12-31-2013
2983	1,2-DICHLOROPROPANE	524.2	Y	MRL	.1 UG/L		01-01-2013	12-31-2013
2984	TRICHLOROETHYLENE	524.2	Y	MRL	.1 UG/L		01-01-2013	12-31-2013
2985	1,1,2-TRICHLOROETHANE	524.2	Y	MRL	.1 UG/L		01-01-2013	12-31-2013
2987	TETRACHLOROETHYLENE	524.2	Y	MRL	.1 UG/L		01-01-2013	12-31-2013
2989	CHLOROBENZENE	524.2	Y	MRL	.1 UG/L		01-01-2013	12-31-2013
2990	BENZENE	524.2	Y	MRL	.3 UG/L		01-01-2013	12-31-2013
2991	TOLUENE	524.2	Y	MRL	.1 UG/L		01-01-2013	12-31-2013
2992	ETHYLBENZENE	524.2	Y	MRL	.1 UG/L		01-01-2013	12-31-2013
2996	STYRENE	524.2	Y	MRL	.1 UG/L		01-01-2013	12-31-2013

Chem/Rad Sample Results

Return Links

Chem/Rad Samples

Analyte List

Water System Detail

Water Systems

Water System Search

County Map

Glossary

Water System No.: NM3510124 Federal Type: \mathbf{C} **BLOOMFIELD WATER** Water System Name: State Type: C

SUPPLY SYSTEM **Principal County**

Served:

SAN JUAN

Primary Source: SW

06-01-1977 Status: **Activity Date:** Lab Sample No.: 0911270-02A **Collection Date:** 11-09-2009

This list displays sample/results of all non-microbial analytes (TSAANLYT.TYPE_CODE <> MOR) associated to the selected sample. Results for Microbial Analytes are not included.

Analyte	Analyte	Method	Less than	Level	Reporting	Concentration	Monitoring Period	Monitoring Period End
Code	Name	Code	Indicator	Туре	Level	level	Begin Date	
1005	ARSENIC	200.8	Y	MRL	.001 MG/L		01-01-2009	12-31-2009
1010	BARIUM	200.7	N	MRL	.002 MG/L	0.068 MG/L	01-01-2009	12-31-2009
1015	CADMIUM	200.7	Y	MRL	.002 MG/L		01-01-2009	12-31-2009
1020	CHROMIUM	200.7	Y	MRL	.006 MG/L		01-01-2009	12-31-2009
1035	MERCURY	245.1	Y	MRL	.0002 MG/L		01-01-2009	12-31-2009
1036	NICKEL	200.7	Y	MRL	.01 MG/L		01-01-2009	12-31-2009
1045	SELENIUM	200.8	Y	MRL	.001 MG/L		01-01-2009	12-31-2009
1052	SODIUM	200.7	N	MRL	1 MG/L	13.00 MG/L		
1074	ANTIMONY, TOTAL	200.8	Y	MRL	.001 MG/L		01-01-2009	12-31-2009
1075	BERYLLIUM, TOTAL	200.7	Y	MRL	.002 MG/L		01-01-2009	12-31-2009
1085	THALLIUM, TOTAL	200.8	Y	MRL	.001 MG/L		01-01-2009	12-31-2009
1095	ZINC	200.7	Y	MRL	.01 MG/L			

State of New Mexico Energy, Minerals and Natural Resources Department

Susana Martinez

Governor

David Martin
Cabinet Secretary-Designate

Brett F. Woods, Ph.D.Deputy Cabinet Secretary

Jami Bailey, Division Director Oil Conservation Division

September 17, 2013

Ms. Shiver Nolan Enterprise Products Operating LLC P.O. Box 4324 Houston, Texas 77210

Re: Hydrostatic Test Discharge Permit

Permit: HIP-123

Enterprise Products Operating, LLC Western Expansion Pipeline III, Segment 1

Locations: Unit H of Section 7, Township 24 North, Range 9 West, NMPM,

San Juan County, New Mexico

Dear Ms. Nolan:

The Oil Conservation Division (OCD) has received Enterprise Products Operating LLC's (Enterprise) notice of intent, dated September 12, 2013 and received by OCD on September 16, 2013, for authorization to discharge approximately 675,000 gallons of wastewater generated from a hydrostatic test of a new 16-inch diameter natural gas gathering system transmission pipeline approximately 45.3 miles (239,184 feet) long, located approximately 28 miles southeast of Bloomfield, New Mexico. The proposed discharge/collection/retention location is within Enterprise's pipeline easement right-of-way, located within Unit H of Section 7, Township 24 North, Range 9 West, NMPM, San Juan County, New Mexico. The submittal provided the required information in order to deem the application "administratively" complete. OCD approves the Farmington Daily Times as the newspaper of general circulation for the published notice and the discharge and/or collection location (within Enterprise's pipeline easement right-of-way) and the post office in Bloomfield, New Mexico as proposed posting locations.

Therefore, the July 2006 New Mexico Water Quality Control Commission (WQCC) regulations notice requirements (20.6.2.3108 NMAC) must be satisfied and demonstrated to the OCD. The hydrostatic test discharge event shall not be initiated until Enterprise's and OCD's notice periods pass, the permit is issued, and the additional permit fee is paid, if applicable.

If there are any questions regarding this matter, please do not hesitate to contact me at (505) 476-3487 or brad.a.jones@state.nm.us.

Enterprise Products Operating LLC

Permit: HIP-123 September 17, 2013

Page 2 of 2

Sincerely,

Brad A. Jones
Environmental Engineer

BAJ/baj

cc: OCD District III Office, Aztec

Mr. James White, Enterprise Products Operating, LLC, Houston, TX 77210-4324 Ms. Runell Seale, Enterprise Products Operating, LLC, Farmington, NM 87401

ACKNOWLEDGEMENT OF RECEIPT OF CHECK/CASH

I hereby acknowledge receipt of Check No. 689544 dated 8/1/3						
or cash received on $\frac{9/16/13}{100.00}$ in the amount of \$ 700.00						
from KLEINFELDER WEST, INC.						
for HIP 123						
Submitted by: BRAD JONES Date: 9/17/13						
Submitted to ASD by: LUPE SHERMAN Date: 9/17/13						
Received in ASD by: Date:						
Filing Fee New Facility: Renewal:						
Modification Other \(\int \) \(\int						
Organization Code 521.07 Applicable FY 14						
To be deposited in the Water Quality Management Fund.						
Full Payment or Annual Increment						

NEW MEXICO ENVIRONMENT DEPARTMENT - ALBUQUERQUE FIELD OFFICE DAILY CHECK RECEIPT LOG PROGRAM DATE OF CHECK/MONEY ACCOUNT AMOUNT RECEIVED IN MAIL NAME ON CHECK CHECK ORDER# CODE OF CHECK DATE DEPOSITED **DEPOSITED BY:** 689544 \$ 700.00 \$ 700,00 **TOTAL REVENUE TRANSMITTAL SHEET** Fund Share Acct Sub Acct Amount Description Dept. Liquid Waste 496402 34000 Z3200 496402 Water Recreation Facilities 40000 Z8501

Z2600

232900

496402

2329029000

99100

34100

Food Permit Fees

OTHER

ENTERPRISE PRODUCTS PARTNERS L.P. ENTERPRISE PRODUCTS HOLDINGS LLC (General Partner) PECEIVED ()CD

2013 SEP 16 A 10: 20

September 12, 2013

VIA Fed Ex

Mr. Brad Jones New Mexico Energy, Minerals, and Natural Resources Department Oil Conservation Division 1220 St. Francis Drive Santa Fe, NM 87505

Dear Mr. Jones:

RE: Enterprise Products Operating LLC
Submittal of Notice of Intent to Discharge Hydrostatic Test Water
Western Expansion Pipeline III, Segment 1
San Juan County, New Mexico

Enterprise Products Operating LLC (Enterprise) will be constructing Segment 1 of the Western Expansion Pipeline III as an expansion to their natural gas gathering system. Please find enclosed an application for authorization to discharge hydrostatic test water following hydrostatic testing of the new pipeline. The enclosed application includes the requested revisions to the unofficial drafts that you reviewed.

Thank you for your assistance with this request. If you have any questions or require additional information, please feel free to call Enterprise's environmental consultant, Ms. Eileen Shannon, 505.307.0722, or myself at 713.392.2458.

Sincerely,

James G. White

Sr. Environmental Scientist

8 n n. Wage

cc: Runell Seale, Enterprise Shiver Nolan, Enterprise

TRANSMITTAL

To: Enterprise Products Operating LLC 1100 Louisiana St. Room 13.61

Attn: Ms. Shiver Nolan Houston TX 77002 713.381.6595 Date: Reference No: Copies to: 9/11/2013 134288 Jimmy White (email of transmittal)

Subject: WEP III – Segment 1 Not	Subject: WEP III – Segment 1 Notice of Intent (134288.3-ALB13RP002)							
We are sending the following:		☐ Under separate cover						
- 1 Notice of Intent for Discharge >	25K gallons Revision 0							
Instructions Submit the following to:								
Mr. Brad Jones New Mexico Energy, Minerals, and Na Oil Conservation Division 1220 St. Francis Drive Santa Fe, NM 87505	atural Resources Departme	nt						
Via:								
☐ Messenger/Courier☐ First Class Mail	Please note:							
⊠ FedEx	Hard copy will follow FedEx	overnight (9/11/2013).						
Transmitted:								
☐ As Requested ☐ For Approval								
For Your Use For Review & Comment								
	Bv· File	en Shannon						

Project Manager

September 12, 2013 Project No.: 134288

Mr. Brad Jones New Mexico Energy, Minerals, and Natural Resources Department Oil Conservation Division 1220 St. Francis Drive Santa Fe. NM 87505

Subject: Submittal of a Notice of Intent to Perform Hydrostatic Test

Segment 1

San Juan County, New Mexico

Dear Mr. Jones:

On behalf of Enterprise Products Operating Company LLC (Enterprise), Kleinfelder West, Inc. (Kleinfelder) is submitting this Notice of Intent (NOI) for a hydrostatic test to be conducted on Segment 1 of Enterprise's Western Expansion Pipeline III (WEP III).

Kleinfelder has included the required information for the NOI as stated in the "Guidelines for Hydrostatic Test Dewatering" dated January 11, 2007. Attached to this NOI are the following:

- Background Information;
- Notice of Intent Plan;
- Figure 1 New Enterprise Pipeline Undergoing Hydrostatic Testing;
- Figure 2 Discharge Location Detail;
- Figure 3 Dissipation and Discharge Area;
- Appendix A Certification of Siting Criteria;
- Appendix B Water Feature, Water Well Information and Floodplain information;
- Appendix C Area Mine Information;
- Appendix D Geology;
- Appendix E Area Landownership;
- Appendix F Public Notice;
- Appendix G Electro-Coagulation Process Information; and
- Appendix H Odie Chapman Ponds/Hill Top Well Analytical Data.

A check totaling \$700 made out to the New Mexico Water Quality Management Fund is included with this NOI for the \$100 filing fee and the \$600 permit fee.

Kleinfelder prepared this NOI in a manner consistent with the level of care and skill ordinarily exercised by other members of Kleinfelder's profession practicing in the same locality, under similar conditions and at the date the services are provided. The information provided in this document is based on our understanding of the information provided by Enterprise.

Should you have any questions, please feel free to contact Eileen Shannon (Kleinfelder) at 505.344.7373 or Jimmy White (Enterprise) at 713.381.1785.

Respectfully submitted,

KLEINFELDER WEST, INC.

Professional

Reviewed by:

Eileen L. Shannon, PG

Project Manager

cc: James White, Enterprise Products Operating LLC, PO Box 4324, Houston, TX 77210

Background Information

- The U.S. Department of Transportation (DOT) Pipeline and Hazardous Materials Safety Administration (PHMSA) requires periodic pressurized tests on all DOT-regulated pipelines and all newly installed pipelines to verify the integrity and safety of pipeline systems. Because the pipeline is part of a natural gas gathering system, waste water generated during hydrostatic testing is classified as RCRA-exempt waste water and does not require management as a RCRA waste or disposal at a RCRA-approved facility;
- The Enterprise Western Expansion Pipeline (WEP) III line is a new, welded, steel 16-inch diameter line. The section to be hydrostatically tested, Segment 1 of the WEP III pipeline, is 45.3 miles or 239,184 feet long (Figure 1);
- The pipeline is part of a gathering system that transports natural gas from the Piceance and San Juan Basins to processing facilities located in Hobbs, New Mexico and Houston, Texas;
- The source water for the hydrostatic testing is:
 - Turtle Mountain from spring-fed Odie Chapman Ponds #1 and #2 (36.268826°, -107.633543°); and
 - Hilltop well (36.544845°, -107.973076°), if needed (should insufficient Turtle Mountain water be available).
- Placement of water will be into the pipeline at approximately MP 376.3 (Figure 1) on approximately October 22, 2013. Hydrostatic testing of various sections of the Segment 1 will be conducted. Once a section is tested, the water will be held in that section until the next section of the pipeline is completed. The water will then be moved to the next section of the pipe and hydrostatic testing will occur. The sequence of testing is:
 - o MP 370.4 to 376.3
 - o MP 376.3 to 389.8
 - o MP 389.8 to 400.7
 - o MP 400.7 to 409.7
 - o MP 409.7 to 411.9
 - o MP 411.9 to 415.7
- After the final section is tested, water will be pushed back through the pipeline and discharged at location MP 389.8. The approximate date of discharge to the pipeline ROW is on or about November 1, 2013;
- Per NMAC 20.6.2.3108, a sample of the public notice is included in Appendix F; and
- Per NMAC 20.6.2.3108, public notice will be made in English by the following methods:
 - 1. A 2 feet by 3 feet in size sign will be posted at the discharge location;
 - 2. Written notice will be posted at the Bloomfield, New Mexico post office;
 - 3. Written notice of the discharge by mail to owners of record of all properties adjacent to the property where the discharge site is located;

- 4. The notice will be sent by certified mail, return receipt requested, to the owner of the discharge site; and
- 5. A synopsis of the notice will be published in a display ad at least three inches by four inches in size in *The Daily Times* newspaper. Public notice is published every day, and the paper requires the information four to five days prior to publication.

Notice of Intent Plan

On behalf of Enterprise, Kleinfelder is submitting this NOI plan as outlined in NMOCD Guidance document, "Guidelines for Hydrostatic Test Dewatering," (revised January 11, 2007). The NOI plan includes the following items:

Item a. Name and address of the proposed discharger:

Legally Responsible Party Mr. Leonard W. Mallett, Group Sr. VP, Engineering

POC: Ms. Shiver Nolan, Sr. Compliance Administrator

P.O. Box 4324

Houston, Texas 77210

713-381-6595

Local Representative Ms. Runell Seale

Enterprise Products Operating LLC

614 Reilly Ave.

Farmington, NM 87401

505-599-2124

Item b. Location of the discharge, including a street address, if available, and sufficient information to locate the facility with respect to surrounding landmarks:

The segment of the pipeline to be tested is located in San Juan and Sandoval Counties. Water from the hydrostatic testing will be discharged to the ground in the 125-foot right-of-way at the central portion of WEP III Segment 1 at MP 389.8. The discharge area is approximately 125 feet wide by 200 long, or approximately 25,000 square feet in size. The location of the pipeline to be hydrostatically tested and the proposed discharge location are shown in Figures 1 and 2.

The location of the hydrostatic discharge area is located approximately 28 miles southeast of Bloomfield, New Mexico. Directions to the discharge site from Bloomfield, New Mexico are:

- From the intersection of W Broadway Ave and US-550 in Bloomfield, New Mexico, head south on US-550 for 28.2 miles:
- Turn right onto NM-57 for 2.3 miles;
- Turn left (unnamed road) towards CR 7776 for 1.2 miles; and
- Discharge site be on the right side of the road.

The approximate coordinates for the discharge area location are: Latitude 36.331288; Longitude -107.822324.

Item c. Legal description of the discharge location:

The discharge location is located:

- In the SE/4; NE/4; Section 7, T24N, R9W (Figure 1).
- The latitude and longitude coordinates are provided in *item b*.

Item d. Maps (site-specific and regional) indicating the location of the pipelines to be tested:

- Figure 1 Regional map showing topography, the pipeline section undergoing testing, and the hydrostatic test water discharge location.
- Figure 2 Site-specific map showing the hydrostatic test water discharge area.

Item e. A demonstration of compliance to the following siting criteria or justification for any exceptions:

Shapefiles were downloaded from various electronic sources and were included in a Geographic Information System (GIS) database for preparation of this NOI. The maps generated from this database were reviewed between June 24 and July 1, 2013. Detailed references for the various shape files are included in the Reference section. Sources used for preparation of the maps in this NOI are included on the individual figures.

Within 200 feet of a watercourse, lakebed, sinkhole, or playa lake;

No watercourses, lakebeds, sinkholes, or playa lakes were observed within 200 feet of the discharge area during the site visit (Appendix A). A search of watercourses, lakebeds, sinkholes, and playa lakes in the vicinity of the discharge area was completed by reviewing a topographic map and using the GIS database. None were indicated during the review. A copy of the site-specific topographic map is included in Appendix B, Figure B-1.

ii. Within an existing wellhead protection area or 100-year floodplain;

No springs were identified on the topographic map within 1,000 feet of the discharge area (Figure B-1, Appendix B) nor were they observed during the site inspection (Appendix A). No water supply wells are located within 1,000 feet of the discharge area. The New Mexico Office of the State Engineer (OSE) website was checked for water supply wells located in the vicinity of the site. Based on data obtained from the OSE and Go-Tech websites, accessed on June 24, 2013, two wells are located approximately 0.83 miles to the northwest (SJ 01255 and SJ 0179 S), and one well (SJ 01242) is located 0.45 miles to the southwest of the proposed discharge area, respectively (Figure B-2, Appendix B).

According to the Federal Emergency Management Administration (FEMA) DFIRM Panel 35045C2075F map, the discharge area is not located within a 100-year floodplain. The discharge and surrounding areas are located in Zone X (Figure B-3, Appendix B).

iii. Within, or within 500 feet of, a wetland;

Wetlands were not observed in or within 500 feet of the perimeter of the discharge area (Figure B-1, Appendix B) and none were observed during the site inspection (Appendix A).

iv. Within the area overlying a subsurface mine; or

A map generated from the New Mexico Mining and Minerals Division GIS database was reviewed for active mines. No active mines were noted at or in the vicinity of the proposed discharge area (Figure C-1 in Appendix C). Mr. Mike Tompson, with the New Mexico Abandoned Mine Lands Program, was contacted on June 24, 2013 to assess the presence of abandoned subsurface mines in the vicinity of the proposed discharge area. According to Mr. Tompson, no record of abandoned subsurface mines were noted within a half mile radius of the proposed discharge site were found (see email, Appendix C).

v. Within 500 feet from the nearest permanent residence, school, hospital, institution or church.

No permanent residences, school, hospital, institution or church were noted on aerial photographs of the area (Figure 2), nor were they noted during the site visit (Appendix A).

Item f. A brief description of the activities that produce the discharge;

Pressure testing with water, also known as hydrostatic testing, is one of the tools pipeline operators use to verify pipeline integrity. The purpose of hydrostatic testing of a pipeline is to determine the extent to which potential defects might threaten the pipeline's ability to sustain maximum allowable operation pressure. Because this is new piping, previous contents of the pipe do not need to be cleared. Source water will be introduced into the pipeline and then the pipeline will be pressurized to a pressure higher than the standard operating pressure for approximately eight hours. If leaks or breaks occur, the pipeline is repaired or the affected piping is replaced, and then re-tested. Once the test is complete, the water will be discharged from the pipeline into the dissipation and discharge system.

Item g. The method and location for collection and retention of fluids and solids;

Because the piping is new, solids are not anticipated to be produced as a result of the hydrostatic testing. Once the hydrostatic testing has been, the water will be tested for water quality as described in *item j*. Once approval to discharge has been received, the test water will be allowed to flow from the pipeline onto the approximately 25,000 square feet of the right-of-way.

Item h. A brief description of best management practices to be implemented to contain the discharge onsite and to control erosion;

Non-woven geotextile fabric will be installed beneath the dissipation structure to prevent scouring. Hay bales will be used to control erosion as the water is discharged from the pipeline at a rate of approximately 1,500 gallons per minute (gpm) into the hydrostatic waste water dissipation and discharge system. A connector pipe is attached to the end of the pipeline and to a baffle "T" located within the dissipation structure. Pipeline water will gradually be released and allowed to flow onto the area described in *item g*. The dissipation and discharge structure

will be built to maintain the proper flow rate to avoid scouring the landscape. A diagram of the hydrostatic waste water dissipation and discharge system is shown in Figure 3.

Item i. A request for approval of an alternative treatment, use, and/or discharge location (other than the original discharge site), if necessary;

No alternate use or discharge location is proposed.

If hydrostatic test water analytical results exceed the greater of the standards of NMAC 20.6.2.3103 for discharge, the test water will be treated using an electro-coagulation cleaning process and a separate filtering system. This process is described in Appendix G.

After the electro-coagulation process is completed, the water will be tested again as described in Appendix G. If it does still not meet the greater of standards of NMAC 20.6.2.3103, the water will be hauled and disposed of as described in *item k*.

Item j. A proposed hydrostatic test wastewater sampling plan;

Enterprise requests that it not be required to test for Radium 226/228. Analytical results (in pCi/L) for the proposed source locations are summarized below:

- Odie Chapman Pond #1, sampled on March 26, 2013: Radium 226 at 0.0462 ± 0.211; and Radium 228 at 0.994 ± 0.440;
- Odie Chapman Pond #2, sampled on March 26, 2013: Radium 226 at 0.000 ± 0.258 ; and Radium 228 at 0.435 ± 0.371 ; and
- Hilltop well, sampled on March 27, 2013: Radium 226 at -0.128 ± 0.354; and Radium 228 at 0.921 ± 0.519.

These levels are below the 30 pCi/L standard in NMAC 20.6.2.3103.

Once the tests have been completed, prior to discharge, Enterprise will collect and analyze a sample of the water obtained from the discharge location (MP 389.8). The sample will be analyzed using the following methods.

SAMPLING PLAN FOR COMPLIANCE WITH NMAC 20.6.3103 (A), (B), (C)			
ANALYTES	METHOD	BOTTLE TYPE/PRESERVATIVE	
Volatile Organics	8260B	3 x 40 ml VOA's / HCI	
Ethlylene dibromide	504.1	2 x 40 ml VOA's / Na ₂ S ₂ O ₃	
Polychlorinated Biphenols	8082	2 x liter amber / unpreserved	
Polynuclear Aromatic Hydrocarbons	8310	1 x liter amber / unpreserved	
Phenois	9067	1 x liter amber / H ₂ S0 ₄	
	300 0	1 x 500 ml plastic / unpreserved	
Anions, TDS, pH	SM 2540C SM 4500-H+B	1 x 125 ml plastic / H ₂ S04	
Mercury	245.1	1 x 500 ml plastic / HN0 ₃	
Dissolved Metals	200 7 / 200.8	1 x 125 ml plastic + filter & syringe / HNO ₃	
Total Cyanide	335 4	1 x 500 ml plastic amber / NaOH	

Once the results have been received, they will be forwarded to the NMOCD. Upon NMOCD concurrence that the discharge water meets the water quality standards of NMAC 20.6.2.3103, Enterprise will discharge the water in accordance with the approved discharge permit.

134288.3-ALB13RP002 Copyright 2013 Kleinfelder Page 7 of 12

September 12, 2013

Item k. A proposed method of disposal of fluids and solids after test completion, including closure of any pits, in case the water generated from test exceeds the standards as set forth in Subsections A, B, and C of the 20.6.2.3103 NMAC (the New Mexico Water Quality Control Commission Regulations);

As described in Appendix G, if after the electro-coagulation process, if the test water still exceeds discharge requirements, the water will be transported from the project site in DOT-approved tanker trucks to one of the following waste water disposal companies:

- Basin Disposal, Inc. (API 30-045-26862, Disposal Well No. 1: IPI-149-0) in Aztec, New Mexico;
- Agua Moss, LLC (Permit # UIC-I-005) on Crouch Mesa, in Bloomfield New Mexico; or
- Gandy Marley, Inc. (Permit # NM1-19-0) on Highway 380 between Tatum and Roswell, New Mexico.

The water will be transported by one or more of the following NMOCD-approved haulers:

- Dawn Trucking Co. (C133-31);
- M&R Trucking, Inc. (C133-399);
- Three Rivers Trucking, Inc. (C133-335); or
- Triple S Trucking Co., Inc. (C133-372).

Any solids generated using the electro-coagulation process will be disposed of at one of the following NMOCD-approved commercial surface waste management facilities:

- Gandy Marley Inc., in Chaves County (Permit No. 19);
- Lea Land Inc. in Lea County (Permit No. 24); or
- R360 Permian Basin LLC (formerly Controlled Recovery Inc.) in Lea County (Permit No. 6).

C-138 manifest forms will be prepared and provided with all liquid and solid waste that is hauled for disposal.

Item I. A brief description of the expected quality and volume of the discharge;

The volume of the hydrostatic test water is expected to be discharged is approximately 675,000 gallons. The source of water used for the hydrostatic test will be water from spring-fed Odie Chapman Ponds #1 and #2, and/or the Hilltop well, as described on page 3. The laboratory analytical results are included in Appendix H. According to these results, the following constituents exceed the NMAC 20.6.2.3103 standards (in milligrams/liter):

- Fluoride (1.7) in Odie Chapman Pond #1 (NMAC 20.6.2.3103 standard is 1.6);
- Sulfate (640) in Odie Chapman Pond #2 (NMAC 20.6.2.3103 standard is 600); and
- Total Dissolved Solids (1,260) in Odie Chapman Pond #2 (NMAC 20.6.2.3103 standard is 1,000).

New piping will be tested which should not impact the quality of the water to be discharged.

Item m. Geological characteristics of the subsurface at the proposed discharge site;

Information regarding the soil characteristics was obtained from the United States Department of Agriculture (USDA) soil survey (USDA, 2008). Based on that information, soils in the area are dominated by Doak-Sheppard-Shiprock association surface soils comprised of deep loam, loamy fine sand, and fine sandy loam that has well to somewhat excessive drainage. Doak soil is formed in alluvium derived dominantly from sandstone and shale. Sheppard soil is formed in eolian material derived from mixed sources. Shiprock soil is formed in alluvial and eolian material derived predominantly from sandstone. Doak-Sheppard-Shiprock association soils are rolling soils with 0 to 15 percent slopes located on mesas, plateaus, and terraces.

The soil overlies the Nacimiento Formation (Tn) of the San Juan Basin (Figure D-1, Appendix D). The Nacimiento Formation is comprised primarily of sandstone, with some shale and conglomerates (USGS, 2013).

Item n. The depth to and total dissolved solids concentration of the ground water most likely to be affected by the discharge; and

Based on a search of the OSE and Go-Tech websites on June 21, 2013:

- Depth to water in two wells located approximately 0.83 mile from the site had depths of water of 628 and 1073 feet below grade. No depth to water data was available for the well located approximately 0.45 mile from the site.
- No analytical data was available for these wells.
- Information regarding the regional water supply wells of the Nacimiento Formation of the San Juan Basin indicated the following:
 - Depth to first water ranges from approximately 160 to 460 feet below ground surface.
 - Based on specific conductivity measurements ranging from approximately 500 to 2,310 micromhos per centimeter, total dissolved solids (TDS) concentrations in the region generally range from 340 to 1,550 parts per million (Klausing, et. al, 1984).

Item o. Identification of landowners at, and adjacent to, the discharge collection/retention site. Landowners within 1/3-mile of the boundary of the discharge point or temporary frac tank storage area within the Enterprise pipeline easement:

According to the San Juan County Tax Assessor's office, the landowner of record for the property at the discharge location is:

Bureau of Land Management Rio Puerco Field Office 435 Montano Road NE Albuquerque, NM 87107 Attn: Connie Maestas, Realty Specialist

Copyright 2013 Kleinfelder

134288.3-ALB13RP002 Page 9 of 12 September 12, 2013

Rev. 0

The landowner of record for properties within 1/3 mile radius of property where the discharge will occur is:

Blancett Land and Cattle, LLC 271 Road 3000 Aztec, NM 87410

References

Go-Tech, New Mexico Water database (NM WAIDS, accessed June 21, 2013, http://octane.nmt.edu/waterquality/data/gwatersearch.aspx.

Klausing, R.L. and Welder, G.E., 1984, "Availability of Hydrologic Data in San Juan County, New Mexico, U.S. Geological Survey and San Juan County Commission, New Mexico, United States Department of the Interior, Open-File Report 84-608.

Office of the State Engineer (OSE) database search accessed in June 21, 2013, http://nmwrrs.ose.state.nm.us/nmwrrs/index.html.

Petroleum Recovery Research Center database (PRRC) database search accessed June 21, 2013, http://ford.nmt.edu/prrc_MF/index5.html.

United States Department of Agriculture, Soil Conservation Service, United States Department of the Interior Bureau of Indian Affairs and Bureau of Reclamation, and the New Mexico Agricultural Experiment Station, 1980. "Soil Survey of San Juan County Area, New Mexico, Eastern Part", 1980.

United States Geological Survey, Mineral Resources On-Line Spatial Data, accessed June 21, 2013, http://mrdata.usgs.gov/geology/state/state.php?state=NM

GIS References – Segment 1

Topographic 7.5' quadrangle maps (Segment 1)

- Arroyo Empedrado, NM
- San Luis, NM
- Holy Ghost Spring, NM
- Guadalupe, NM
- Cabezon Peak, NM
- Ojito Spring, NM

Basemap for inset on Figure 1

- ESRI World Street Map. Sources: ESRI, DeLorme, NAVTEQ, TomTom, USGS, Intermap, iPC, NRCAN, ESRI Japan, METI, ESRI China (Hong Kong), ESRI (Thailand)

Aerial imagery on Figure 2, Segment 1

 ESRI World Imagery; ESRI DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, and the GIS User Community. Date of image: 05/22/2010

State and County boundaries

ESRI Street Map North America dated August 17, 2010

Cities and Towns; Urban areas

- *TIGER urban areas 2010 (tl_2010_35_place10.shp) 2010 Census data
- ESRI Street Map North America dated August 17, 2010

PLSS

*BLM GIS dataset dated June 3, 2013

Surface waters (streams and water bodies)

- *National Hydrography Dataset, USGS, GIS dataset downloaded May 4, 2011

Wetlands

- *National Wetlands Inventory, USF&WS, GIS dataset downloaded May 4, 2011

OSE Wells

- *New Mexico Office of the State Engineer, Excel spreadsheet dated of July 2011
- Unable to find the USGS wells listed on the PRRC references sheet

Floodplains, Segment 1

- *S_FLD_HAZ_LN downloaded from New Mexico Resource Geographic Information System Program, http://rgis.unm.edu/ GIS shapefile downloaded June 5, 2013
- FEMA DFIRM Panel 35043C1075D dated 3/18/2008

Mines

- New Mexico Mining and Minerals Division, February 2012
- *Coal mine permit boundaries shapefile from RGIS, downloaded June 17, 2013
- Potash areas from BLM Carlsbad Field Office basemap, downloaded May 8, 2012

Geology

- USGS OFR 2005-21351. Stoeser, D.B., G.N. Green, L.C. Morath, W.D. Heran, A.B. Wilson, D.W. Moore, and B.S. Van Gosen, 2005. Preliminary Integrated Geologic Map Databases for the United States; Central States: Montana, Wyoming, Colorado, New Mexico, Kansas, Oklahoma, Texas, Missouri, Arkansas, and Louisiana, The State of New Mexico. U.S. Geological Survey Open-File Report 2005-1351
- USGS Fault and Fold Database, GIS shapefiles downloaded November 3, 2010
- BLM Carlsbad Field Office GIS Basemap GIS dataset downloaded on May 8, 2012

Karst

- *USGS OF 2004-1352. Tobin, Bret D., and David J. Weary, 2004. Digital Engineering Aspects of Karst Map: A GIS version of Davies, W.E., Simpson, J.H., Ohlmacher, G.C., Kirk, W.S., and Newton, E.G., 1984, Engineering aspects of karst: U.S. Geological Survey, National Atlas of the United States of America, scale 1:7,500,000. U.S. Geological Survey Open-File Report 2004-1352
- BLM Carlsbad Field Office GIS Basemap, Caves potential GIS shapefile downloaded on May 8, 2012
- BLM NM GIS dataset, Karst potential, GIS shapefile provided by BLM on April 3, 2012.

Land Ownership

- BLM NM GIS dataset downloaded June 3, 2013

*same source as used on Pit Rule Petroleum Recovery Research Center database (PRRC) http://ford.nmt.edu/prrc_MF/index5.html

FIGURES

LEGEND

DISCHARGE LOCATION

MILE POST

APPROXIMATE SEGMENT OF PIPELINE TO BE HYDROSTATICALLY TESTED

T23N, R13W T23N, R12W Locations are Approximate

T29N, R13W

T28N, R13W

T27N, R13W

T26N, R13W

T25N, R13W

T24N, R13W

	PROJECT NO	.: 13	4288	
-	DRAWN:	AUG	2013	
	DRAWN BY:		KFH	
	CHECKED BY	:	ES	SA
	FILE NAME:			OR

Seg1 Figure1.mxd

T29N, R10W

End of Segment 1

Mile Post 415.83

T28N, R10%

127N, R10W

T26N, R10W

MP 393

MP 392

MP 39

MP 400 MP 399

T25N, R10W

T24N, R10W

T23N, R10W

T27N, R9W

T26N, R9W

T25N, R9W

Discharge Location 36.331288, -107.822324

124N; R8M

Mile Post 389.8

T24N, R9W

T23N, R9W

APPROVED BY: ES

T29N, R11W

MP 410

MP 409

T26N, R11W

T25N, R11W

T24N, R11W

T23N; R11W

T27N, R11W MP 407

MP 414

MP 406

T28N, R11W

T29N, R12W

T28N, R12W

T27N, R12W

T26N, R12W

725N, #12W

F24N, R12W

WEP III SEGMENT 1 ENTERPRISE PRODUCTS OPERATING LLC AN JUAN AND SANDOVAL COUNTIES, NEW MEXICO IGINATOR: K. HAGAN DRAWING CATEGORY

NEW ENTERPRISE PIPELINE

Start of Segment 1 Mile Post 370.38

T28N R7W T28H R6W

T27N R7W T27N, R6W

123N, R6W

FIGURE

The information included on this graphic representation has been compiled from a variety of sources and is subject to change without notice. Rieinfelder makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or nights to the use of such information. This document is not intended to use as a land survey product nor is it designed or intended as a construction design document. The use or misuse of the information contained on this graphic representation is at the sole risk of the party using or misusing the information.

APPENDIX A Certification of Siting Criteria

Certification of Siting Criteria

Hydrostatic Discharge Line

I, Theresa Ancell	, have performed a site visit to
look for the presence of the items descri	bed below and have confirmed that
evidence of these items was not observed	within the specified distance from the
discharge location. The discharge location	will be located in the SE 1/4 of the
NE1/4 of Section 7, Township 24 North, R	ange 9 West in San Juan County, NM
(see Figure 2).	

- 1. Within 200 feet of a watercourse, lakebed, sinkhole or playa lake;
- Within an existing wellhead protection area (200 feet from a private, domestic fresh water well or spring used by less than five households for domestic or stock watering purposes or 1,000 feet from any other fresh water well or spring);
- 3. Within a surface expression of a subsurface mining operation or karst feature:
- 4. Within, or within 500 feet of, a wetland; or
- 5. Within 500 feet from the nearest permanent residence, school, hospital, institution or church.

On behalf of Enterprise Products, I state that the above information is complete and true to the best of my knowledge.

Theresa andll	
	6/6/13
Signature	Date of Site Visit
Project Manager Title	

APPENDIX B

Water Feature, Water Well Information and Floodplain Information

APPENDIX C Area Mine Information

RE: Mines in Vicinity of Proposed Hydrostatic Testing

Tompson, Mike, EMNRD [Mike.Tompson@state.nm.us]

Sent: Monday, June 24, 2013 10:37 AM

To: Melissa Cote

Cc: Kretzmann, John, EMNRD [john.kretzmann@state.nm.us]

Melissa,

The New Mexico Abandoned Mine Land Program has no record of any abandoned mines within a 1/2-mile radius of Section 7, Township 24N, Range 9W.

Please let me know if you have any other questions.

Mike

From: Melissa Cote [mailto:MCote@kleinfelder.com]

Sent: Monday, June 24, 2013 10:15 AM

To: Tompson, Mike, EMNRD

Cc: Eileen Shannon

Subject: Mines in Vicinity of Proposed Hydrostatic Testing

Hi Mike,

I am working with Eileen Shannon on a hydrostatic discharge plan for the Enterprise pipeline. We are required to research whether there are any mines in the vicinity of the proposed discharge area. Water will be discharged onto the ground surface (upon receipt of acceptable ground water quality analytical results).

The discharge area is located at:

- the SE quadrant of the NE quadrant of Section 7 of T24N and R9W
- Latitude 36.331288, Longitude -107.822324

Would you be able to tell us whether there are any mines within a 1/2 mile radius of this area?

Thank you,

Melissa Cote

APPENDIX D Geology

APPENDIX E Area Landownership

APPENDIX F Public Notice

PUBLIC NOTICE

The United States Department of Transportation (USDOT) requires periodic pressurized tests on all USDOT-regulated pipelines. Enterprise Products Operating LLC (Enterprise) hereby gives notice that the following discharge permit application has been submitted to the New Mexico Oil Conservation Division (NMOCD) in accordance with Subsection B, C, E, and F of 20.6.2.3108 New Mexico Administrative Code. The local Enterprise mailing address is: Enterprise Products Operating LLC, 614 Reilly Ave., Farmington, NM 87401.

The purpose of hydrostatic (testing with water) pipeline testing is to determine the extent to which potential defects might threaten the pipeline's ability to sustain maximum allowable operation pressure. The pipeline will be filled with water, and then pressurized to a pressure higher than the standard operating pressure for a specified duration of time.

Enterprise has submitted an application for hydrostatic test water discharge that will occur on the pipeline right-of-way at Latitude 36.331288; Longitude -107.822324 (SE/4; NE/4; Section 7, T24N, R9W) in San Juan County, New Mexico. The location of the hydrostatic discharge area is approximately 28 miles southeast of Bloomfield, New Mexico. To reach the discharge site from Bloomfield, New Mexico, from the intersection of W Broadway Ave and US-550 head south on US-550 for 28.2 miles, then turn right onto NM-57 for 2.3 miles, then turn left on an unnamed road (towards CR 7776) for 1.2 miles. The discharge location will be on the right side of the road. The discharge will take place in the 125-foot pipeline easement right-of-way (ROW). The hydrostatic test is scheduled on or about October 22, 2013 with discharge of the test water scheduled on or about November 1, 2013.

The new piping, called the Western Expansion Pipeline (WEP) III, Segment 1, will be hydrostatically tested. Up to 675,000 gallons of water obtained from the Odie Chapman springfed ponds and the Hilltop Well will be hauled to the site and pumped via hose into the pipeline. Once the test has been completed, and prior to discharge, Enterprise will collect and analyze a sample of the water obtained from the discharge location (MP 389.8) of the pipeline. The sample will be analyzed for water quality. Once the results have been received, the results will be forwarded to the NMOCD. Upon NMOCD concurrence that the discharge water meets the water quality standards of NMAC 20.6.2.3103, Enterprise will discharge the water in accordance with the approved discharge permit. If discharge to the ground surface is approved, the water will be released from a pipeline and the test water will be discharged to the dissipation and discharge system and allowed to flow onto ground surface within the ROW.

If test water exceeds discharge requirements, it will be treated using electro-coagulation to remove constituents that exceed the discharge requirements. 400-barrel storage tanks will temporarily hold the treated water while post-treatment samples are collected and submitted for laboratory analysis. The analytical results will be sent to NMOCD for approval and upon NMOCD concurrence that the discharge water meets the water quality standards of NMAC 20.6.2.3103; Enterprise will discharge the water in accordance with the approved discharge permit.

If after this treatment process, water still exceeds discharge requirements, it will be transported from the project site in DOT-approved tanker trucks by an NMOCD-approved hauler to an NMOCD-approved waste water disposal facility.

Limited data on shallow groundwater conditions was available from wells located near the discharge site. Based on a literature review, regional shallow groundwater in the Nacimiento Formation has a depth to water ranging from 160 to 460 feet below ground surface with a general total dissolved solid concentration ranging from 340 to 1,550 parts per million.

The notice of intent and discharge plan outlines how produced water and waste will be properly managed, including handling, storage, and final disposition. The plan also includes procedures for the proper management of leaks, accidental discharges, and spills to protect the waters of the State of New Mexico.

For additional information, to be placed on a facility-specific mailing list for future notices, or to submit comments please contact:

Brad Jones, Environmental Engineer
New Mexico Energy, Minerals and Natural Resources Department
Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, NM 87505
Phone: (505) 476-3487

The NM Energy, Minerals and Natural Resources Department will accept comments and statements of interest regarding this hydrostatic test and will provide future notices for this pipeline upon request.

AVISO PUBLICO

El Departamento de Transporte de los Estados Unidos (United States Department of Transportation, USDOT) requiere hacer pruebas (presurizadas) periódicamente en toda tubería regulada por USDOT. La compañía Enterprise Products Operating, LLC (Enterprise) da aviso por este medio que la siguiente aplicación de permiso de descarga ha sido sometida al New Mexico Oil Conservation Division (NMOCD) de acuerdo con las Sub-Sección B, C, E, y F del Código Administrativo de Nuevo México (New Mexico Administrative Code, NMAC, 20.6.2.3108). La dirección de correo local de la compañía Enterprise es: Enterprise Products Operating LLC, 614 Reilly Ave., Farmington, NM 87401.

El propósito de la prueba hidro-estática (prueba con agua) en la tubería es para evaluar el potencial de defectos que puedan afectar la habilidad de la tubería de sostener la máxima presión de operación permisible. La tubería será llenada con agua, y luego presurizada a una presión mayor a la presión de operación estándar por periodo de tiempo especificado.

Enterprise ha sometido una aplicación para descargar agua de pruebas hidro-estática que ocurrirá en el área de la servidumbre de paso a una Latitud de 36.331288°; Longitud de -107.822324° (SE/4; NE/4; Sección 7, T24N, R9W) en el Condado de San Juan, Nuevo México. El lugar de la descarga está aproximadamente 28 millas al sureste de Bloomfield, Nuevo México. Para llegar al lugar de la descarga desde Bloomfield, Nuevo México, desde la intersección de W Broadway Ave y US-550; viajar hacia el sur sobre US-550 por 28.2 millas, luego dar vuelta a la derecha sobre NM-57 por 2.3 millas, luego dar vuelta a la izquierda sobre una calle sin nombre (hacia CR 7776) por 1.2 millas. El área de descarga estará sobre la derecha de la calle. La descarga tomará lugar los 125 pies de servidumbre de paso de la tubería. La prueba hidro-estática está programada para o aproximadamente Octubre 22, 2013 con la descarga del agua de prueba programada para o approximadamente Noviembre 1, 2013.

La nueva tubería, llamada Western Expansion Pipeline (WEP) III, Segmento 1, será probada hidro-estáticamente. Hasta 675,000 galones de agua obtenidos de los lagos Odie Chapman y el pozo Hilltop serán transportados al sitio y bombeados por medio de una manguera a la tubería. Una vez que la prueba se haya completado, y antes de la descarga, Enterprise obtendrá y analizara una muestra de agua obtenida del área de descarga (MP 389.8) de la tubería. La muestra será analizada para evaluar la calidad del agua. Una vez que se reciban los resultados, los resultados serán enviados a NMOCD. Una vez que NMOCD concurra que el agua de descarga cumple con los estándares de calidad de agua de NMAC 20.6.2.3103, Enterprise descargara el agua de acuerdo con el permiso de descarga aprobado. Si descarga en la superficie del suelo es aprobado, el agua será desalojada de una tubería y el agua de prueba será descargada al sistema de descarga y permitida fluir sobre la superficie del suelo en el área de la servidumbre de paso de la tubería.

Si el agua de prueba excede los requisitos de descarga, será primero tratada usando electrocoagulación para remover componentes que excedan los requisitos de descarga. 400-barriles usados como tanques de almacén temporalmente guardaran el agua tratada hasta que las muestras de después de tratamiento sean obtenidas y sometidas para análisis de laboratorio. Los resultados analíticos serán enviados a NMOCD para ser aprobados y cuando NMOCD concurra que el agua de descarga tiene los estándares de calidad de agua de NMAC 20.6.2.3103; Enterprise descargara el agua de acuerdo con el permiso de descarga aprobado.

Si después de este proceso de tratamiento, agua todavía excede los requisitos de descarga, será transportada del sitio del proyecto en camiones-pipa aprobados por el departamento de transporte por un transportista aprobado por NMOCD a un lugar aprobado por NMOCD para deshacerse del agua de prueba.

Datos limitados acerca del nivel freático más cercano a la superficie del suelo estaban disponibles de pozos localizados cerca del sitio de descarga. En base a una revisión de literatura, el nivel freático regional en el Formación Nacimiento tiene una profundidad al agua con un rango de 160 a 460 pies debajo de la superficie del suelo con una concentración total de solidos disueltos general con un rango de 340 a 1,550 partes por millón.

El aviso del plan de intención de descarga resume como el agua que se produzca será manejada, incluyendo su guardado y el proceso final para deshacerse del agua. El plan también incluye procesos para el manejo apropiado de fugas, descargas accidentales, y derrames para proteger las aguas del estado de Nuevo México (New Mexico).

Para información adicional, ser puesto en una lista de correo de particular a este proyecto, o para someter comentarios, favor de contactar:

Brad Jones, Environmental Engineer
New Mexico Energy, Minerals and Natural Resources Department
Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, NM 87505
Teléfono: (505) 476-3487

El Departamento de NM de Energia, Minerales y Recursos Naturales (NM Energy, Minerales and Natural Resources Department) aceptará comentarios al respecto de esta prueba hidroestática y proporcionará avisos futuros para esta tubería en base a petición.

APPENDIX G Electro-Coagulation Process Information

Post-Hydrostatic Test Water On-Site Electrocoagulation Treatment

Introduction

The electro-coagulation (EC) process is one that uses an electrical current to coagulate organic constituents and suspended solids in water. The coagulated organics have the ability to adsorb ionic constituents which makes it possible to separate out a flocculent with the majority of suspended organics and some of the ionic constituents removed (ITRC, 2013). At this site, it will be used to treat hydrostatic test water after the completion of testing and prior to discharge onto the ground surface.

EC Process

Water will be transferred from the pipeline with a pump and hose into two 21,000-gallon closed top weir tanks to allow for consistent volumes to feed supply pumps. The water will be pumped from the weir tanks to the water treatment system tank. The hydrostatic test water will be treated with a zero toxicity bio-polymer and will be run through a quad filtration vessel containing 80, 5-micron filtration socks. Material Data Safety Sheets for any chemical or additives used are attached. The water will then be pumped through a series of holding tanks and filtering systems, and then pumped with hoses and pipes into the water storage tanks. An illustration of the areas of secondary containment, EC treatment system, and the storage tanks is shown in Figure G-1. A detailed schematic of the EC treatment and filtration system setup is shown in Figure G-2.

As the water is processed through the treatment vessel, the system is continuously monitored for water pressure, pH, nephelometric turbidity units (NTU), flow rate and residual bio-fouling to ensure system is operating within specifications. As filtration cartridges are expended, the system is transferred to the secondary filtration system while maintenance is performed on the primary system. Treated water will be discharged by hose into approximately 41 interconnected, 400-barrel storage tanks. The water will be held in the storage tanks until analytical testing is conducted. Processing of the water through the EC system is anticipated to take approximately 3 days. All processing will occur within secondary containment and will occur in the pipeline ROW. The secondary containment is described under best management practices below

Solid waste generated as part of this process consists of a synthetic filtration socks with particulate matter generated during the filtration process. As the sock becomes full, it will be manually removed from the filtration unit and placed into 42-gallon drums located within the secondary containment.

Post-treatment Sampling

Up to four water samples will be collected from the tanks at the end of the EC treatment process. Samples will be from the following intervals/tank locations: 1,000 gallons (1st tank); 235,200 gallons (14th tank); 470,400 gallons (28th tank); and 675,000 gallons (41st tank). Samples will be submitted for laboratory analysis, as described in *item j*. Analytical testing is anticipated to take approximately 4 days to receive the results.

Once the results have been received, they will be forwarded to the NMOCD. Upon NMOCD concurrence that the discharge water meets the water quality standards of NMAC 20.6.2.3103, Enterprise will discharge the water as described in *item h*.

If the results do not meet the required water quality standards, the water will pumped from the storage tanks into water trucks, using a hose or temporary piping. Transportation and disposal of the water is described in *item k*.

Any solids generated during the EC process will be managed as described in item k.

Best management practices

Secondary containment will be designed to hold 1 1/3 of the total volume of the 41 water storage tanks. It will be comprised of hay or dirt berms approximately 4.5 feet high with plastic lining the bottom of the containment area and draped over the sides of the containment. The approximate dimensions of the containment are 315 feet long by 85 feet wide. Because of the close proximity to ephemeral streams, the discharge area could not be lengthened to include the entire secondary containment area. Although the secondary containment extends past the discharge area by approximately 150 feet, the containment will be lined and have walls that are 4.5 feet high to prevent discharge into the streams.

Each individual vessel of the EC treatment system will have its own secondary containment. The storage tanks and EC treatment system will be contained within a single containment area located in the ROW.

If the test water needs to be transferred to water trucks for disposal, drip pans will be placed under hose connections and valves to prevent leaks from reaching the ground surface. Valves will be present on the water tanks and at various transfer areas to stop the flow of water if needed. Personnel will be present during transfer operations to close valves in case of leaks. Personnel will be located in the surrounding area to conduct pipeline construction and maintenance activities and can help prevent vandalism to the water tanks. Visual inspections will be conducted while the hydrostatic test water is stored in the storage tanks to ensure the absence of leaks and damage due to vandalism.

Approximately five 42-gallon drums will be used to store the spent filtration socks. The drums will be sealed and will be left inside the secondary containment area, until the EC process is complete and the solids are transported off site for disposal.

TimelineThe anticipated timeline if post treated water is approved for discharge to the ground surface:

	Activity	Duration	Cumulative Days
1	Tested water in pipeline does not meet standards for discharge to the ground surface	0	0
2	Secondary containment constructed and tanks placed inside. IDW mobilizes to site and sets up system	7	7
3	Treatment of water through EC system	3	10
4	Collection and analysis of post – treatment water samples	4	14
5	EC system removed	1	15
6	Discharge approved by NMOCD	1	16
7	Test water discharged to ground surface and drummed solids removed from disposal area	2	18
8	Empty storage tanks removed and secondary containment dismantled	7	25

The anticipated timeline if post treated water needs to be hauled off for disposal:

	Activity	Duration	Cumulative Days
1	Tested water in pipeline does not meet standards for discharge to the ground surface	0	0
2	Secondary containment constructed and tanks placed inside. IDW mobilizes to site and sets up system	7	7
3	Treatment of water through EC system	3	10
4	Collection and analysis of post – treatment water samples	4	14
5	EC system removed	1	15
6	Test water cannot be discharged	0	15
7	Test water is transferred into water trucks and hauled offsite for disposal. Drummed solids removed for disposal	3	18
8	Empty storage tanks removed and secondary containment dismantled	7	25

Closure Plan

Upon completion of the treatment, the EC system will be removed from the site. Once the water in the storage tanks has been removed, the storage tanks will be dismantled and removed from the site. The drummed solids will be removed for disposal and the secondary containment will be dismantled. The site will be returned to the same condition it was prior to the hydrostatic test water discharge.

References

Interstate Technology Regulatory Council (ITRC), 2013, Technology Overview as Part of a Web-based Technical and Regulatory Guidance, Electrocoagulation, http://www.itrcweb.org/miningwaste-guidance/to_electrocoagulation.htm.

Date: 7/24/2012 Revision: 00

Material Safety Data Sheet

HaloKlear: DBP-2100

SECTION 1: PRODUCT AND COMPANY IDENTIFICATION

Manufacturer's Name: HaloSource, Inc.

Corporate Address: 1631 220th St. SE, Suite 100, Bothell, WA 98021

Manufacturer's Telephone: (425) 881-6464 (Monday-Friday, 8AM-5PM PDT)

Emergency Telephone (24 Hours): 800-424-9300 CHEMTREC (Domestic, North America)

703-527-3887 CHEMTREC (International, collect calls accepted)

Material/Trade/Product Name: HaloKlear: DBP-2100

Synonyms: Poly X Socks
Chemical Name: Proprietary
Chemical Formula: Proprietary
CAS No.: Proprietary
EPA Registration #: Not applicable
Product Use: Flocculant

SECTION 2: COMPOSITION/INFORMATION ON INGREDIENTS

CAS NO.	COMPONENT	%	OSHA HAZARDOUS?
Trade Secret	Trade Secret	Trade Secret	YES

NOTE: See Section 8 for permissible exposure limits.

SECTION 3: HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

Off-white to tan, odorless powder.

May cause irritation to eyes and respiratory tract. May cause drying or chapping or skin.

WARNING! Can contain sufficient fines to cause a combustible dust explosion. Product will burn when in contact with a flame. See Section 5 Fire Fighting Measures for more information.

POTENTIAL HEALTH EFFECTS

EYE: Dry powder may cause foreign body irritation in some individuals.

SKIN: Prolonged contact with the dry powder may cause drying or chapping.

HaloKlear: DBP-2100 Page Number: 2 of 6

INHALATION: Hygroscopic properties of the product can form a paste or gel in the airway. Inhalation of dust may cause respiratory tract irritation. Excessive inhalation of dust may cause coughing and sneezing.

INGESTION: Not toxic if swallowed (less than a mouthful) based on available information.

CHRONIC EXPOSURE/CARCINOGENICITY: None of the components present in this material at concentrations of equal to or greater than 0.1% are listed by IARC, NTP, OSHA or ACGIH as a carcinogen.

AGGRAVATION OF PRE-EXISTING CONDITIONS: None known.

POTENTIAL ENVIRONMENTAL EFFECTS: Contains no substances known to be hazardous to the environment.

SECTION 4: FIRST AID MEASURES

FIRST AID PROCEDURES

EYE CONTACT: Remove contact lenses (if applicable), flush with water for 15 minutes. Call a physician.

SKIN CONTACT: Cleansing the skin after exposure is advisable.

INHALATION: If large amounts are inhaled, remove to fresh air and consult a physician.

INGESTION: Consult a physician if necessary.

NOTE TO PHYSICIANS: None.

SECTION 5: FIRE FIGHTING MEASURES

FLASH POINT: Not applicable

UPPER FLAMMABLE LIMIT: Not available

AUTOIGNITION TEMPERATURE: Not available

LOWER FLAMMABLE LIMIT: Not available

FLAMMABLITY CLASS (OSHA): Not applicable FLAME PROPAGATION/BURNING RATE: Not available

UNIQUE FIRE PROPERTIES: Combustible dust which can contain sufficient fines to cause a combustible dust explosion.

HAZARDOUS COMBUSTION PRODUCTS: Carbon dioxide, carbon monoxide.

EXTINGUISHING MEDIA: Water, dry chemical, carbon dioxide.

PROTECTION OF FIREFIGHTERS: Treat as a "Class A" fire. Product will burn when in contact with a flame. Self extinguishers when ignition source is removed. Tends to smolder. As in any fire, wear self-contained breathing apparatus pressure-demand, and full protective gear.

SECTION 6: ACCIDENTAL RELEASE MEASURES

PERSONAL PROTECTIVE EQUIPMENT: See Section 8 (Personal Protective Equipment).

ENVIRONMENTAL PRECAUTIONS: None known.

METHODS FOR CLEANING UP: Wet material on walking surfaces will be extremely slipper. Avoid dust formation. Use equipment designed specifically for combustible dust. Take precautionary measures against static discharges.

HaloKlear: DBP-2100 Page Number: 3 of 6

SECTION 7: HANDLING AND STORAGE

SAFE HANDLING RECOMMENDATIONS

VENTILATION: Avoid dust formation. Provide appropriate exhaust ventilation in places where dust is formed.

FIRE PREVENTION: Product may form combustible dust-air mixtures. Keep away from heat, flames, sparks, and other ignition sources. Avoid emptying package in or near flammable vapors. Static charges may cause flash fire.

SPECIAL HANDLING REQUIREMENTS: Remove material from eyes, skin and clothing.

SAFE STORAGE RECOMMENDATIONS

CONTAINMENT: No special containment needed.

STORAGE ROOM RECOMMENDATIONS: Store in a cool, dry, well-ventilated area away from direct heat.

INCOMPATIBLE MATERIALS: Strong oxidizing agents.

STORAGE CONDITIONS: Store in cool, dry place. Keep container closed when not in use; keep out of the reach of children.

SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

ENGINEERING CONTROLS: Provide natural or mechanical ventilation to control exposure levels below airborne exposure limits in this section.

PERSONAL PROTECTIVE EQUIPMENT (PPE)

EYE/FACE PROTECTION: This product does not cause significant eye irritation or eye toxicity requiring special protection. Where there is significant potential for eye contact, wear chemical goggles and have eye flushing equipment available.

SKIN PROTECTION: Although this product does not present a significant skin concern, minimizes skin contamination by following good industrial practice.

HAND PROTECTION: Chemical resistant gloves are recommended to minimize potential irritation from handling.

RESPIRATORY PROTECTION: A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements must be followed whenever workplace conditions warrant a respirator's use. Respirator use is not required for this product.

GOOD HYGEIENE/WORK PRACTICES: Always follow good hygiene/work practices by avoiding vapors or mists and contact with eyes and skin. Thoroughly wash hands after handling and before eating or drinking. Always wear the appropriate PPE when repairing or performing maintenance on contaminated equipment.

EXPOSURE GUIDELINES

PERMISSIBLE EXPOSURE LIMITS					
INGREDIENT	INGREDIENT OSHA WISHA ACGIH (TLV)				

HaloKlear: DBP-2100 Page Number: 4 of 6

CAS NO.	TWA	STEL	TWA	STEL	TWA	STEL
Not Applicable	Not	Not	Not	Not	Not	Not
Not Applicable	Applicable	Applicable	Applicable	Applicable	Applicable	Applicable

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

COLOR: Off white to tan SHAPE: Powder PHYSICAL FORM: Solid, powder ODOR: Odorless

pH: Approximately neutral (1% solution)
 VAPOR PRESSURE: Not known
 MELTING POINT: Not known
 BOILING POINT: Not known
 FREEZING POINT: Not known

SOLUBILITY IN WATER: Fully soluble SPECIFIC GRAVITY OR DENSITY: Not known

NOTE: These physical data are typical values based on material tested but may vary from sample to sample. Values should not be construed as a guaranteed analysis of any specific lot or as specifications.

SECTION 10: STABILITY AND REACTIVITY

CHEMICAL STABILITY: Stable under recommended storage conditions

CONDITIONS TO AVOID: Avoid dust formation

MATERIALS TO AVOID (INCOMPATIBILITY): Strong oxidizing agents

HAZARDOUS DECOMPOSITION PRODUCTS: Carbon monoxide, carbon dioxide

HAZARDOUS POLYMERIZATION: Will not occur

SECTION 11: TOXICOLOGICAL INFORMATION

ORAL LD₅₀ (rat): >5,000 mg/kg

DERMAL LD₅₀ (rabbit): Not available

DERMAL LD₅₀ (rat): Not available

SKIN IRRITATION: Non-irritating (rabbit)

EYE IRRITATION: Non-irritating (rabbit)

SKIN SENSITIZATION: No skin allergy observed in gui8nea pig following repeated skin exposure

ADDITIONAL INFORMATION: The dry powder may cause foreign body irritation in some individuals. Prolonged contact with the dry powder may cause drying or chapping of the skin. Excessive inhalation of dust may be annoying and can mechanically impede respiration. Due to the hygroscopic properties, they can form a paste or gel in the airway.

SECTION 12: ECOLOGICAL INFORMATION

HaloKlear: DBP-2100 Page Number: 5 of 6

ECOTOXICITY: Contains no substances known to be hazardous to the environment or not degradable in waste water

treatment plants.

MOBILITY: Not available

PERSISTENCE AND DEGRADABILITY: This product is biodegradable.

BIOACCUMULATIVE POTENTIAL: Inherently biodegradable.

ADDITIONAL INFORMATION:

- 96 Hour Acute Survival
 - o Rainbow Trout: LC₅₀ 491 mg/L, LC₂₅ 347 mg/L
 - Fathead Minnow: LC₅₀ 1110 mg/L, LC₂₅ 678 mg/L
- 7-Day Chronic Survival and Growth
 - Rainbow Trout: LC₅₀ 510 mg/L, LC₂₅ 390 mg/L
 - Fathead Minnow: LC₅₀ 605 mg/L, LC₂₅ 443 mg/L
 - Ceriodaphnia Dubia: LC₅₀ 352 mg/L, LC₂₅ 289 mg/L
- Rainbow Trout (Biomass): LC₅₀ 386 mg/L, LC₂₅ 262 mg/L
- Fathead Minnow (Biomass): LC₅₀ 505 mg/L, LC₂₅ 256 mg/L

SECTION 13: DISPOSAL CONSIDERATIONS

If this product as supplied becomes a waste, it <u>does not</u> meet the criteria of a hazardous waste as defined under the Resource Conservation and Recovery Act (RCRA) 40 CFR 261. Please be advised that state and local requirements for waste disposal may be more restrictive or otherwise different from federal regulations. Consult state and local regulations regarding the proper disposal of this material.

NOTE: Chemical additions, processing or otherwise altering this material may make the waste management information presented in this MSDS incomplete, inaccurate or otherwise inappropriate.

SECTION 14: TRANSPORT INFORMATION

U.S. DEPARTMENT OF TRANSPORTATION (DOT):

Proper Shipping Name:
Hazard Class:
Identification Number (UN Number):
Packing Group (PG):

Not Regulated
Not Regulated
Not Regulated
Not Regulated

SECTION 15: REGULATORY INFORMATION

TSCA STATUS: Component(s) listed

CERCLA REPORTABLE QUANTITY (RQ):

CHEMICAL NAME	RQ
Not applicable	Not applicable

SARA TITLE III SECTION 302 EXTREMELY HAZARDOUS SUBSTANCES (EHS):

HaloKlear: DBP-2100 Page Number: 6 of 6

CHEMICAL NAME	TPQ	RQ
Not applicable	Not applicable	Not applicable

SARA TITLE III SECTION 311/312 HAZARD CATEGORIES: Does this product/material meet the definition of the following hazard classes according to the EPA 'Hazard Categories' promulgated under Sections 311 and 312 of SARA Title III?

ACUTE HEALTH HAZARD	CHRONIC HEALTH HAZARD	FIRE HAZARD	REACTIVE HAZARD	SUDDEN RELEASE OF PRESSURE
YES	NO	YES	NO	NO

SARA TITLE III SECTION 313 TOXIC CHEMICALS INFORMATION:

CHEMICAL NAME	CAS NO.	CONCENTRATION (%)
Not applicable	Not applicable	Not applicable

CALIFORNIA PROPOSITION 65: The following chemical(s) is/are known to the state of California to cause cancer or reproductive toxicity:

CHEMICAL NAME	CAS NO.	CONCENTRATION (%)
Not applicable	Not applicable	Not applicable

SECTION 16: OTHER INFORMATION

REVISION INFORMATION:

MSDS sections(s) changed since last revision of document:

· None, this is a new MSDS.

DISCLAIMER:

The above information is based upon information HaloSource, Inc. believes to be reliable and is supplied for informational purposes only. HaloSource, Inc. disclaims any liability for damage which results from the use of the above information and nothing contained therein shall constitute a guarantee, warranty (including fitness for a particular purpose) or representation with respect to the accuracy or completeness of the data, the product described or their use for any specific purpose even if that purpose is known to HaloSource, Inc. The final determination of the suitability of the information, the manner of use of the information or product and potential infringement is the sole responsibility of the user.

MSDS PREPARED BY: Jeremy Heath, EH&S Manager

Date: 9/27/2011 Revision: 00

Material Safety Data Sheet

HaloKlear: Gel-Floc

SECTION 1: PRODUCT AND COMPANY IDENTIFICATION

Manufacturer's Name: HaloSource, Inc.

Corporate Address: 1631 220th St. SE, Suite 100, Bothell, WA 98021

Manufacturer's Telephone: (425) 881-6464 (Monday-Friday, 8AM-5PM PDT)

Emergency Telephone (24 Hours): 800-424-9300 CHEMTREC (Domestic, North America)

703-527-3887 CHEMTREC (International, collect calls accepted)

Material/Trade/Product Name: HaloKlear: Gel-Floc MB

Synonyms: Chitosan Lactate

Chemical Name: Chitosan, 2-hydroxypropanoate (salt)

Chemical Formula: Not available CAS No.: 66267-50-3

Product Use: Flocculates soil contamination in storm water.

SECTION 2: COMPOSITION/INFORMATION ON INGREDIENTS

CAS NO.	HAZARDOUS INGREDIENT (S)	%	OSHA HAZARDOUS?
Trade Secret	Trade Secret	85 – 95	YES
Trade Secret	Trade Secret	15 – 5	YES

NOTE: See Section 8 for permissible exposure limits.

SECTION 3: HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

A fine, off-white powder with no odor.

This material/product may cause eye or skin irritation.

POTENTIAL HEALTH EFFECTS

EYE: May cause mechanical irritation. Will tend to form film on the surface of the eye causing blurred vision.

SKIN: Possible skin irritation or rash.

INHALATION: May aggravate pre-existing respiratory conditions or allergies. It may accumulate on linings of the nose and lungs resulting in dryness & coughing.

INGESTION: While it is not likely to be hazardous by ingestion, it may start dissolving and form a film on mucous membranes.

HaloKlear: Gel-Floc Page Number: 2 of 6

CHRONIC EXPOSURE/CARCINOGENICITY: Not known.

SIGNS AND SYMPTOMS OF OVEREXPOSURE: May cause mechanical irritation. Will tend to form film on the surface of the eye causing blurred vision. Skin irritation. It may accumulate on linings of the nose and lungs resulting in dryness & coughing. May start dissolving and form a film on mucous membranes.

AGGRAVATION OF PRE-EXISTING CONDITIONS: May aggravate pre-existing respiratory conditions or allergies.

<u>POTENTIAL ENVIRONMENTAL EFFECTS</u>: Avoid water if material is spilled; water will dissolve chitosan lactate forming a thick viscous solution or gelatinous mass.

SECTION 4: FIRST AID MEASURES

FIRST AID PROCEDURES

EYE CONTACT: Remove contact lenses (when applicable) and flush eyes with water for 15 minutes. Get medical attention if irritation persists.

SKIN CONTACT: Wash with soap and water. Get medical attention if irritation develops or persists.

INHALATION: If exposed to excessive levels of dust, remove to fresh air and get medical attention if cough or other symptoms develop.

INGESTION: Never give anything by mouth to an unconscious person. If swallowed, do not induce vomiting. Give large quantities of water. If available give several glasses of milk. Call a physician or poison control center immediately.

NOTE TO PHYSICIANS: None.

SECTION 5: FIRE FIGHTING MEASURES

FLASH POINT: Not available
UPPER FLAMMABLE LIMIT: Not available
FLAMMABLITY CLASS (OSHA): Not applicable

AUTOIGNITION TEMPERATURE: Not available
LOWER FLAMMABLE LIMIT: Not available
FLAME PROPAGATION/BURNING RATE: Not available

UNIQUE FIRE PROPERTIES: Keep away from oxidizing agents and avoid open flames. Product may ignite at temperatures in excess of 400°F. Depending on moisture content and particle size, airborne dust of Chitosan lactate might explode in the presence of an ignition source. It is comparable to flour and wood dust.

HAZARDOUS COMBUSTION PRODUCTS: None known

EXTINGUISHING MEDIA: Water spray, CO₂ (carbon dioxide), foam or dry chemical.

PROTECTION OF FIREFIGHTERS: Do not enter confined fire space without full bunker gear (helmet with face shield, bunker coat, gloves and rubber boots), including a positive pressure NIOSH approved self-contained breathing apparatus. Water may be used to keep fire-exposed containers cool until fire is out.

SECTION 6: ACCIDENTAL RELEASE MEASURES

PERSONAL PROTECTIVE EQUIPMENT: See Section 8 (Personal Protective Equipment).

HaloKlear: Gel-Floc Page Number: 3 of 6

ENVIRONMENTAL PRECAUTIONS: AVOID WATER; water will dissolve chitosan lactate forming a thick viscous solution or gelatinous mass.

METHODS FOR CLEANING UP: The material may be vacuumed or collected for recovery or disposal.

SECTION 7: HANDLING AND STORAGE

SAFE HANDLING RECOMMENDATIONS

VENTILATION: Use with adequate ventilation.

FIRE PREVENTION: No special requirements.

SPECIAL HANDLING REQUIREMENTS: None.

SAFE STORAGE RECOMMENDATIONS

CONTAINMENT: Keep container closed when not in use.

STORAGE ROOM RECOMMENDATIONS: Store in cool, dry areas and away from incompatible substances.

INCOMPATIBLE MATERIALS: Strong oxidizing agents.

STORAGE CONDITIONS: Store in cool, dry areas and away from incompatible substances.

SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

ENGINEERING CONTROLS: No special ventilation is required. None required under normal conditions of use.

PERSONAL PROTECTIVE EQUIPMENT (PPE)

EYE/FACE PROTECTION: For operations where eye contact can occur, wear safety glasses.

SKIN PROTECTION: For operations where skin contact can occur, wear impervious rubber or neoprene apron.

HAND PROTECTION: For operations where hand contact can occur, wear impervious rubber or neoprene gloves.

RESPIRATORY PROTECTION: If dust is generated, a dust mask may be needed. A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements must be followed whenever workplace conditions warrant a respirator's use.

GOOD HYGEIENE/WORK PRACTICES: Always follow good hygiene/work practices by avoiding vapors or mists and contact with eyes and skin. Thoroughly wash hands after handling and before eating or drinking. Always wear the appropriate PPE when repairing or performing maintenance on contaminated equipment.

EXPOSURE GUIDELINES

PERMISSIBLE EXPOSURE LIMITS						
INGREDIENT	OS	HA	WIS	SHA	ACGIF	l (TLV)
CAS NO.	TWA	STEL	TWA	STEL	TWA	STEL

HaloKlear: Gel-Floc Page Number: 4 of 6

Not Applicable	Not	Not	Not	Not	Not	Not
Not Applicable	Applicable	Applicable	Applicable	Applicable	Applicable	Applicable

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

COLOR: Off-white. **SHAPE:** Fine powder.

PHYSICAL FORM: Fine powder. ODOR: None

pH: Not available

VAPOR PRESSURE: Not available

VAPOR DENSITY: Not available

BOILING POINT: Not available

MELTING POINT: Not available

FREEZING POINT: Not available

SOLUBILITY IN WATER: Soluble SPECIFIC GRAVITY OR DENSITY: Not available

NOTE: These physical data are typical values based on material tested but may vary from sample to sample. Values should not be construed as a guaranteed analysis of any specific lot or as specifications.

SECTION 10: STABILITY AND REACTIVITY

CHEMICAL STABILITY: Stable.

CONDITIONS TO AVOID: None known.

MATERIALS TO AVOID (INCOMPATIBILITY): Strong oxidizing agents.

HAZARDOUS DECOMPOSITION PRODUCTS: None known.

HAZARDOUS POLYMERIZATION: Not known.

SECTION 11: TOXICOLOGICAL INFORMATION

ORAL LD₅₀ (mice): >10g/kg

DERMAL LD₅₀ (rabbit): Not available.

SKIN IRRITATION: Not available.

EYE IRRITATION: Not available.

SKIN SENSITIZATION: Not available.

ADDITIONAL INFORMATION: Not available.

SECTION 12: ECOLOGICAL INFORMATION

ECOTOXICITY (in water):

Acute Toxicity

- Daphnia: LC50 135 mg/L
- Daphnia: LC25 Not Calculable
- Fathead Minnows: LC50 22.8 mg/L
- Fathead Minnows: LC25 16.9 mg/L

HaloKlear: Gel-Floc Page Number: 5 of 6

- Rainbow Trout: LC50 6.4 mg/L
- Rainbow Trout: LC25 4.4 mg/L

Chronic Toxicity

- Rainbow Trout: LC50 (survival) 5.3 mg/L, 7 days
- Rainbow Trout: LC25 (survival) 4.8 mg/L, 7 days
- Rainbow Trout: EC25 (biomass) 3.5 mg/L, 7 days
- Fathead Minnows: LC50 (survival) 25.4 mg/L, 7 days
- Fathead Minnows: LC25 (survival) Not Calculable
- Fathead Minnows: EC25 (biomass) 13.9 mg/L, 7 days

MOBILITY: Not available.

PERSISTENCE AND DEGRADABILITY: Not available.

BIOACCUMULATIVE POTENTIAL: Not available.

ADDITIONAL INFORMATION: Not available.

SECTION 13: DISPOSAL CONSIDERATIONS

If this product as supplied becomes a waste, it <u>does not</u> meet the criteria of a hazardous waste as defined under the Resource Conservation and Recovery Act (RCRA) 40 CFR 261. Please be advised that state and local requirements for waste disposal may be more restrictive or otherwise different from federal regulations. Consult state and local regulations regarding the proper disposal of this material.

NOTE: Chemical additions, processing or otherwise altering this material may make the waste management information presented in this MSDS incomplete, inaccurate or otherwise inappropriate.

SECTION 14: TRANSPORT INFORMATION

U.S. DEPARTMENT OF TRANSPORTATION (DOT):

Proper Shipping Name:
Hazard Class:
Identification Number (UN Number):
Packing Group (PG):
Not Regulated
Not Regulated
Not Regulated
Not Regulated

SECTION 15: REGULATORY INFORMATION

TSCA STATUS: Listed

CERCLA REPORTABLE QUANTITY (RQ):

CHEMICAL NAME	RQ
Not applicable	Not applicable

SARA TITLE III SECTION 302 EXTREMELY HAZARDOUS SUBSTANCES (EHS):

CHEMICAL NAME	TPQ	RQ

HaloKlear: Gel-Floc Page Number: 6 of 6

SARA TITLE III SECTION 311/312 HAZARD CATEGORIES: Does this product/material meet the definition of the following hazard classes according to the EPA 'Hazard Categories' promulgated under Sections 311 and 312 of SARA Title III?

ACUTE HEALTH HAZARD	CHRONIC HEALTH HAZARD	FIRE HAZARD	REACTIVE HAZARD	SUDDEN RELEASE OF PRESSURE
YES	NO	NO	NO	NO

SARA TITLE III SECTION 313 TOXIC CHEMICALS INFORMATION:

CHEMICAL NAME	CAS NO.	CONCENTRATION (%)	
Not applicable	Not applicable	Not applicable	

CALIFORNIA PROPOSITION 65: The following chemical(s) is/are known to the state of California to cause cancer or reproductive toxicity:

CHEMICAL NAME	CAS NO.	CONCENTRATION (%)
Not applicable	Not applicable	Not applicable

SECTION 16: OTHER INFORMATION

REVISION INFORMATION:

MSDS sections(s) changed since last revision of document:

None, this is a new MSDS.

DISCLAIMER:

The above information is based upon information HaloSource, Inc. believes to be reliable and is supplied for informational purposes only. HaloSource, Inc. disclaims any liability for damage which results from the use of the above information and nothing contained therein shall constitute a guarantee, warranty (including fitness for a particular purpose) or representation with respect to the accuracy or completeness of the data, the product described or their use for any specific purpose even if that purpose is known to HaloSource, Inc. The final determination of the suitability of the information, the manner of use of the information or product and potential infringement is the sole responsibility of the user.

MSDS PREPARED BY: Jeremy Heath, EH&S Manager

APPENDIX H Odie Chapman Ponds/Hill Top Well

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 1303A24

April 19, 2013

Kay Lambert HRL Compliance Solutions 2385 F 1/2 Road Grand Junction, CO 81505

TEL: (970) 243-3271

FAX

RE: Enterprise WEP III Water Sampling

Dear Kay Lambert:

Hall Environmental Analysis Laboratory received 2 sample(s) on 3/26/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

andel

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 4/19/2013

CLIENT: HRL Compliance Solutions

Client Sample ID: ODIE Chapman Pond 1

Project: Enterprise WEP III Water Sampling

Collection Date: 3/26/2013 9:30:00 AM

Lab ID: 1303A24-001

Matrix: AQUEOUS

Received Date: 3/26/2013 3:40:00 PM

Dab 1D. 1505A24-001	1,1401111	AQUEOUS		Received Date: 3/20/2013 3.40.00 1 W			
Analyses	Result	RL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8011/504.1: EDB					Analyst: LRV		
1,2-Dibromoethane	ND	0.010	μg/L	1	3/27/2013 2:51:35 PM		
EPA METHOD 8082: PCB'S					Analyst: SCC		
Aroclor 1016	ND	1.0	μg/L	1	3/30/2013 9:45:46 AM		
Aroclor 1221	ND	1.0	μg/L	1	3/30/2013 9:45:46 AM		
Aroclor 1232	ND	1.0	μg/L	1	3/30/2013 9:45:46 AM		
Aroclor 1242	ND	1.0	μg/L	1	3/30/2013 9:45:46 AM		
Aroclor 1248	ND	1.0	μg/L	1	3/30/2013 9:45:46 AM		
Aroclor 1254	ND	1.0	µg/L	1	3/30/2013 9:45:46 AM		
Aroclor 1260	ND	1.0	μg/L	1	3/30/2013 9:45:46 AM		
Surr: Decachlorobiphenyl	119	23.9-124	%REC	1	3/30/2013 9:45:46 AM		
Surr: Tetrachloro-m-xylene	98.4	28.1-139	%REC	1	3/30/2013 9:45:46 AM		
EPA METHOD 8310: PAHS					Analyst: SCC		
Naphthalene	ND	2.0	μg/L	1	4/9/2013 9:28:24 PM		
1-Methylnaphthalene	ND	2.0	μg/L	1	4/9/2013 9:28:24 PM		
2-Methylnaphthalene	ND	2.0	μg/L	1	4/9/2013 9:28:24 PM		
Acenaphthylene	ND	2.5	μg/L	1	4/9/2013 9:28:24 PM		
Acenaphthene	ND	5.0	μg/L	1	4/9/2013 9:28:24 PM		
Fluorene	ND	0.80	μg/L	1	4/9/2013 9:28:24 PM		
Phenanthrene	ND	0.60	μg/L	1	4/9/2013 9:28:24 PM		
Anthracene	ND	0.60	μg/L	1	4/9/2013 9:28:24 PM		
Fluoranthene	ND	0.30	μg/L	1	4/9/2013 9:28:24 PM		
Pyrene	ND	0.30	μg/L	1	4/9/2013 9:28:24 PM		
Benz(a)anthracene	ND	0.070	μg/L	1	4/9/2013 9:28:24 PM		
Chrysene	ND	0.20	μg/L	1	4/9/2013 9:28:24 PM		
Benzo(b)fluoranthene	ND	0.10	μg/L	1	4/9/2013 9:28:24 PM		
Benzo(k)fluoranthene	ND	0.070	μg/L	1	4/9/2013 9:28:24 PM		
Benzo(a)pyrene	ND	0.070	μg/L	1	4/9/2013 9:28:24 PM		
Dibenz(a,h)anthracene	ND	0.12	μg/L	1	4/9/2013 9:28:24 PM		
Benzo(g,h,i)perylene	ND	0.080	μg/L	1	4/9/2013 9:28:24 PM		
Indeno(1,2,3-cd)pyrene	ND	0.080	μg/L	1	4/9/2013 9:28:24 PM		
Surr: Benzo(e)pyrene	58.7	46.4-106	%REC	1	4/9/2013 9:28:24 PM		
EPA METHOD 300.0: ANIONS					Analyst: JRR		
Fluoride	1.7	0.10	mg/L	1	3/27/2013 2:16:11 PM		
Chloride	18	10	mg/L	20	3/27/2013 2:28:35 PM		
Nitrogen, Nitrate (As N)	ND	0.10	mg/L	1	3/27/2013 2:16:11 PM		
Sulfate	300	10	mg/L	20	3/27/2013 2:28:35 PM		
EPA METHOD 200.7: DISSOLVED M	ETALS				Analyst: JLF		
Aluminum	ND	0.020	mg/L	1	4/2/2013 6:49:57 PM		
Barium	0.055	0.0020	mg/L	1	4/2/2013 6:49:57 PM		
Boron	0.045	0.040	mg/L	1	4/2/2013 6:49:57 PM		

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range

Reporting Detection Limit

- Analyte detected below quantitation limits
- Р Sample pH greater than 2

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits 1 of 24

Date Reported: 4/19/2013

CLIENT: HRL Compliance Solutions

Client Sample ID: ODIE Chapman Pond 1

Project: Enterprise WEP III Water Sampling

Collection Date: 3/26/2013 9:30:00 AM

Lab ID: 1303A24-001

Matrix: AQUEOUS Received Date: 3/26/2013 3:40:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 200.7: DISSOLVED	METALS				Analyst: JLF
Cadmium	ND	0.0020	mg/L	1	4/2/2013 6:49:57 PM
Chromium	ND	0.0060	mg/L	1	4/2/2013 6:49:57 PM
Cobalt	ND	0.0060	mg/L	1	4/2/2013 6:49:57 PM
Copper	ND	0.0060	mg/L	1	4/2/2013 6:49:57 PM
Iron	ND	0.020	mg/L	1	4/2/2013 6:49:57 PM
Lead	ND	0.0050	mg/L	1	4/5/2013 1:26:46 PM
Manganese	0.024	0.0020	mg/L	1	4/2/2013 6:49:57 PM
Molybdenum	ND	0.0080	mg/L	1	4/2/2013 6:49:57 PM
Nickel	ND	0.010	mg/L	1	4/2/2013 6:49:57 PM
Silver	ND	0.0050	mg/L	1	4/2/2013 6:49:57 PM
Zinc	ND	0.010	mg/L	1	4/5/2013 1:26:46 PM
EPA 200.8: DISSOLVED METALS					Analyst: DBD
Arsenic	0.0031	0.0010	mg/L	1	4/5/2013 3:45:01 PM
Selenium	0.0052	0.0010	mg/L	1	4/5/2013 3:45:01 PM
Uranium	0.030	0.0050	* mg/L	5	4/12/2013 11:22:02 AM
EPA METHOD 245.1: MERCURY					Analyst: IDC
Mercury	ND	0.00020	mg/L	1	4/10/2013 12:01:34 PM
EPA METHOD 8260B: VOLATILES	;				Analyst: RAA
Benzene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
Toluene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
Ethylbenzene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
Naphthalene	ND	2.0	μg/L	1	3/27/2013 8:30:47 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	3/27/2013 8:30:47 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	3/27/2013 8:30:47 PM
Acetone	ND	10	μg/L	1	3/27/2013 8:30:47 PM
Bromobenzene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
Bromodichloromethane	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
Bromoform	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
Bromomethane	ND	3.0	μ g/L	1	3/27/2013 8:30:47 PM
2-Butanone	ND	10	µg/L	1	3/27/2013 8:30:47 PM
Carbon disulfide	ND	10	µg/L	1	3/27/2013 8:30:47 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
Chlorobenzene	ND	1.0	µg/L	1	3/27/2013 8:30:47 PM
Chloroethane	ND	2.0	µg/L	1	3/27/2013 8:30:47 PM
Chloroform	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits Page 2 of 24

Date Reported: 4/19/2013

CLIENT: HRL Compliance Solutions

Client Sample ID: ODIE Chapman Pond 1

Project: Enterprise WEP III Water Sampling

Collection Date: 3/26/2013 9:30:00 AM

Lab ID: 1303A24-001

Matrix: AQUEOUS

Received Date: 3/26/2013 3:40:00 PM

nalyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RA
Chloromethane	ND	3.0	µg/L	1	3/27/2013 8:30:47 PM
2-Chlorotoluene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
4-Chlorotoluene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
cis-1,2-DCE	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	3/27/2013 8:30:47 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
Dibromomethane	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	3/27/2013 8:30:47 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
2-Hexanone	ND	10	µg/L	1	3/27/2013 8:30:47 PM
Isopropylbenzene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	3/27/2013 8:30:47 PM
Methylene Chloride	ND	3.0	μg/L	1	3/27/2013 8:30:47 PM
n-Butylbenzene	ND	3.0	μg/L	1	3/27/2013 8:30:47 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
Styrene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	3/27/2013 8:30:47 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/27/2013 8:30:47 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
trans-1,2-DCE	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/27/2013 8:30:47 PM
Vinyl chloride	ND	1.0	μg/L	1	3/27/2013 8:30:47 PM

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits 3 of 24

Analytical Report

Lab Order 1303A24

Date Reported: 4/19/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample ID: ODIE Chapman Pond 1

Enterprise WEP III Water Sampling Project:

Collection Date: 3/26/2013 9:30:00 AM

Lab ID: 1303A24-001 Matrix: AQUEOUS

Received Date: 3/26/2013 3:40:00 PM

Analyses	Result	Result RL Qual Uni		Units	DF	Date Analyzed	
EPA METHOD 8260B: VOLATILES						Analyst: RAA	
Xylenes, Total	ND	1.5		μg/L	1	3/27/2013 8:30:47 PM	
Surr: 1,2-Dichloroethane-d4	86.7	70-130		%REC	1	3/27/2013 8:30:47 PM	
Surr: 4-Bromofluorobenzene	104	69.5-130		%REC	1	3/27/2013 8:30:47 PM	
Surr: Dibromofluoromethane	93.1	70-130		%REC	1	3/27/2013 8:30:47 PM	
Surr: Toluene-d8	96.5	70-130		%REC	1	3/27/2013 8:30:47 PM	
TOTAL PHENOLICS BY SW-846 906	7					Analyst: SCC	
Phenolics, Total Recoverable	ND	2.5		µg/L	1	4/15/2013	
SM4500-H+B: PH						Analyst: JML	
pH	8.32	1.68	н	pH units	1	3/27/2013 6:19:45 PM	
SM2540C MOD: TOTAL DISSOLVED	SOLIDS					Analyst: KS	
Total Dissolved Solids	855	20.0	*	mg/L	1	4/1/2013 8:51:00 AM	

Qualifiers:

- Value above quantitation range Е

Reporting Detection Limit

- J Analyte detected below quantitation limits
- P Sample pH greater than 2

RL

- Value exceeds Maximum Contaminant Level.
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits 4 of 24 \mathbf{S}

Date Reported: 4/19/2013

CLIENT: HRL Compliance Solutions Client Sample ID: TRIP BLANK

Project: Enterprise WEP III Water Sampling Collection Date:

Lab ID: 1303A24-003 **Matrix:** Received Date: 3/26/2013 3:40:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8011/504.1: EDB					Analyst: LRW
1,2-Dibromoethane	ND	0.010	μg/L	1	3/27/2013 3:07:00 PM
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Benzene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
Toluene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
Ethylbenzene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
Naphthalene	ND	2.0	μg/L	1	3/27/2013 8:58:35 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	3/27/2013 8:58:35 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	3/27/2013 8:58:35 PM
Acetone	ND	10	μg/L	1	3/27/2013 8:58:35 PM
Bromobenzene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
Bromodichloromethane	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
Bromoform	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
Bromomethane	ND	3.0	μg/L	1	3/27/2013 8:58:35 PM
2-Butanone	ND	10	μg/L	1	3/27/2013 8:58:35 PM
Carbon disulfide	ND	10	μg/L	1	3/27/2013 8:58:35 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
Chlorobenzene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
Chloroethane	ND	2.0	μg/L	1	3/27/2013 8:58:35 PM
Chloroform	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
Chloromethane	ND	3.0	μg/L	1	3/27/2013 8:58:35 PM
2-Chlorotoluene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
4-Chlorotoluene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
cis-1,2-DCE	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	3/27/2013 8:58:35 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
Dibromomethane	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
1,2-Dichlorobenzene	ND	1.0	μg/ L	1	3/27/2013 8:58:35 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
Dichlorodifluoromethane	ND	1.0	µg/L	1	3/27/2013 8:58:35 PM
1,1-Dichloroethane	ND	1.0	µg/L	1	3/27/2013 8:58:35 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	3/27/2013 8:58:35 PM
1,2-Dichloropropane	ND	1.0	µg/L	1	3/27/2013 8:58:35 PM
1,3-Dichloropropane	ND	1.0	µg/ L	1	3/27/2013 8:58:35 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	3/27/2013 8:58:35 PM

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits Page 5 of 24

Analytical Report

Lab Order 1303A24

Date Reported: 4/19/2013

Hall Environmental Analysis Laboratory, Inc.

Enterprise WEP III Water Sampling

CLIENT: HRL Compliance Solutions

Client Sample ID: TRIP BLANK

Collection Date:

Lab ID: 1303A24-003

Project:

Matrix:

Received Date: 3/26/2013 3:40:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
1,1-Dichloropropene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
2-Hexanone	ND	10	μg/L	1	3/27/2013 8:58:35 PM
Isopropylbenzene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	3/27/2013 8:58:35 PM
Methylene Chloride	ND	3.0	μg/L	1	3/27/2013 8:58:35 PM
n-Butylbenzene	ND	3.0	μg/L	1	3/27/2013 8:58:35 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
Styrene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	3/27/2013 8:58:35 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/27/2013 8:58:35 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
trans-1,2-DCE	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/27/2013 8:58:35 PM
Vinyl chloride	ND	1.0	μg/L	1	3/27/2013 8:58:35 PM
Xylenes, Total	ND	1.5	μg/L	1	3/27/2013 8:58:35 PM
Surr: 1,2-Dichloroethane-d4	89.1	70-130	%REC	1	3/27/2013 8:58:35 PM
Surr: 4-Bromofluorobenzene	106	69.5-130	%REC	1	3/27/2013 8:58:35 PM
Surr: Dibromofluoromethane	96.9	70-130	%REC	1	3/27/2013 8:58:35 PM
Surr: Toluene-d8	95.6	70-130	%REC	1	3/27/2013 8:58:35 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits Page 6 of 24

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Address:

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

130328028

Project Name:

1303A24

Analytical Results Report

Sample Number Client Sample ID 130328028-001

Sampling Date 3/26

3/26/2013

Date/Time Received 3/28/2013

Sampling Time 9:30 AM

12:00 PM

1303A24-001I / ODIE CHAPMAN POND 1

Matrix

Water

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide	. ND	mg/L	0.01	4/8/2013	CRW	EPA 335.4	

Authorized Signature

John Coddington, Lab Manager

MCL

EPA's Maximum Conteminant Level

ND

Not Detected

PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatak Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatak Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0096

Thursday, April 11, 2013

Page 1 of 1

Quai

ANALYTICAL RESULTS

Project:

PWS:

1303A24

Pace Project No.: 3090656

Sample: 1303A24-001 ODIE

Chapman Pond

Lab ID: 3090656001

Collected: 03/26/13 09:30 Received: 03/28/13 09:55 Matrix: Water

Site ID:

Sample Type:

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed CAS N	lo.
Radium-226	EPA 903.1	0.0462 ± 0.211 (0.429)	pCi/L	04/17/13 15:08 13982-63	3-3
Radium-228	EPA 904.0	0.994 ± 0.440 (0.744)	pCi/L	04/11/13 11:30 15262-20	J-1

QUALITY CONTROL DATA

Project:

1303A24

Pace Project No.:

3090656

QC Batch:

RADC/15217

QC Batch Method: E

EPA 904.0

Analysis Method:

EPA 904.0

Analysis Description:

904.0 Radium 228

Associated Lab Samples:

oles: 3090656001

Matrix: Water

METHOD BLANK: 562215 Associated Lab Samples:

3090656001

Parameter

Act ± Unc (MDC)

Units

Analyzed

Qualifiers

Radium-228

 $0.728 \pm 0.400 \quad (0.718)$

pCi/L

04/11/13 12:00

QUALITY CONTROL DATA

Project:

1303A24

Pace Project No.:

3090656

QC Batch:

RADC/15211

Analysis Method:

EPA 903.1

QC Batch Method: Associated Lab Samples:

EPA 903.1

Analysis Description:

903.1 Radium-226

METHOD BLANK: 561615

Parameter

Matrix: Water

Associated Lab Samples:

3090656001

3090656001

Act ± Unc (MDC)

Units

Analyzed

Qualifiers

Radium-226

 $-0.164 \pm 0.356 \quad (0.822)$

pCi/L

04/17/13 14:21

Date: 04/18/2013 10:37 AM

REPORT OF LABORATORY ANALYSIS

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A24

19-Apr-13

Client:

HRL Compliance Solutions

Project: Enterprise WEP III Water Sampling

Sample ID MB	SampType: MBLK			Tes	tCode: El	PA Method	200.7: Dissol	ved Meta	ls		
Client ID: PBW	Bato	h ID: R9	603	F	RunNo: 9603						
Prep Date: 2/22/2013	Analysis I	Date: 4/	2/2013	\$	SeqNo: 273747			Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Aluminum	ND	0.020									
Barium	ND	0.0020									
Boron	ND	0.040									
Cadmium	ND	0.0020									
Chromium	ND	0.0060									
Cobalt	ND	0.0060									
Copper	ND	0.0060									
Iron	ND	0.020									
Manganese	ND	0.0020									
Molybdenum	ND	0.0080									
Nickel	ND	0.010									
Silver	ND	0.0050									

Sample ID LCS	Samp	Type: LC	s	Tes	tCode: El	PA Method	200.7: Dissol	ved Meta	ls		
Client ID: LCSW	Bato	ch ID: R9	603	F	RunNo: 9	603					
Prep Date:	Analysis	Date: 4/	2/2013	S	SeqNo: 2	73748	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Aluminum	0.55	0.020	0.5000	0	110	85	115				
Barium	0.49	0.0020	0.5000	0	98.8	85	115				
Boron	0.50	0.040	0.5000	0	101	85	115				
Cadmium	0.49	0.0020	0.5000	0	99.0	85	115				
Chromium	0.50	0.0060	0.5000	0	101	85	115				
Cobalt	0.49	0.0060	0.5000	0	97.1	85	115				
Copper	0.49	0.0060	0.5000	0	99.0	85	115				
Iron	0.49	0.020	0.5000	0	97.7	85	115				
Manganese	0.51	0.0020	0.5000	0	101	85	115				
Molybdenum	0.49	0.0080	0.5000	0	98.9	85	115				
Nickel	0.47	0.010	0.5000	0	94.9	85	115				
Silver	0.096	0.0050	0.1000	0	95.8	85	115				

Sample ID 1303B6	9-012AMS S	ampType: M	S	Tes	TestCode: EPA Method 200.7: Dissolved Metals						
Client ID: BatchQ	С	Batch ID: R	9603	F	RunNo: 9603						
Prep Date:	Analy	sis Date: 4	/2/2013	8	SeqNo: 2	73802	Units: mg/L				
Analyte	Res	ult PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Aluminum	0.	57 0.020	0.5000	0.02401	110	70	130			-	
Barium	0.	50 0.0020	0.5000	0.01066	97.2	70	130				
Cadmium	0.	52 0.0020	0.5000	0	104	70	130				
Chromium	0.	47 0.0060	0.5000	0	94.2	70	130				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 7 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303A24

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 1303B69-012AM	Samp	Type: MS	3	Tes	TestCode: EPA Method 200.7: Dissolved Metals						
Client ID: BatchQC	Bato	h ID: R9	603	F	603						
Prep Date:	Analysis	Date: 4/	2/2013	SeqNo: 273802 U			Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Cobalt	0.49	0.0060	0.5000	0.01697	94.3	70	130				
Copper	0.52	0.0060	0.5000	0	104	70	130				
Molybdenum	0.47	0.0080	0.5000	0	94.0	70	130				
Nickel	0.47	0.010	0.5000	0.03147	87.2	70	130				
Silver	0.11	0.0050	0.1000	0	106	70	130				

Sample ID 1303B69-012AM	SD Samp	Type: MS	SD	Tes	tCode: El	PA Method	200.7: Disso	olved Meta	ls	
Client ID: BatchQC	Bato	h ID: R9	603	F	RunNo: 9	603				
Prep Date:	Analysis	Date: 4/	2/2013	8	SeqNo: 2	73803	Units: mg/l	L		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	0.57	0.020	0.5000	0.02401	108	70	130	1.54	20	
Barium	0.50	0.0020	0.5000	0.01066	97.2	70	130	0.0242	20	
Cadmium	0.52	0.0020	0.5000	0	104	70	130	0.319	20	
Chromium	0.47	0.0060	0.5000	0	94.3	70	130	0.0934	20	
Cobalt	0.49	0.0060	0.5000	0.01697	94.3	70	130	0.00819	20	
Copper	0.51	0.0060	0.5000	0	103	70	130	0.959	20	
Molybdenum	0.47	0.0080	0.5000	0	94.9	70	130	1.04	20	
Nickel	0.47	0.010	0.5000	0.03147	87.5	70	130	0.261	20	
Silver	0.11	0.0050	0.1000	0	108	70	130	1.39	20	

Sample ID LCS	Samp	Type: LC	S	Tes	tCode: El	PA Method	200.7: Dissol	ved Meta	ls	
Client ID: LCSW	Bato	ch ID: R9	603	F	RunNo: 9	603				
Prep Date:	Analysis	Date: 4/	2/2013	8	SeqNo: 2	73828	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	0.54	0.020	0.5000	0	109	85	115			
Barium	0.48	0.0020	0.5000	0	96.2	85	115			
Boron	0.50	0.040	0.5000	0	99.8	85	115			
Cadmium	0.49	0.0020	0.5000	0	98.3	85	115			
Chromium	0.50	0.0060	0.5000	0	99.7	85	115			
Cobalt	0.48	0.0060	0.5000	0	95.3	85	115			
Copper	0.50	0.0060	0.5000	0	99.4	85	115			
Iron	0.48	0.020	0.5000	0	96.4	85	115			
Manganese	0.49	0.0020	0.5000	0	98.8	85	115			
Molybdenum	0.49	0.0080	0.5000	0	98.8	85	115			
Nickel	0.47	0.010	0.5000	0	94.7	85	115			
Silver	0.098	0.0050	0.1000	0	98.0	85	115			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 8 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303A24

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

SampType: MSD

Sample ID 1303988-002AMS	Samp	Type: MS	}	Tes	TestCode: EPA Method 200.7: Dissolved Metals						
Client ID: BatchQC	Bato	h ID: R9	603	F	Run N o: 9	603					
Prep Date:	Analysis I	Date: 4/	2/2013		SeqNo: 273865						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Aluminum	0.59	0.020	0.5000	0.02253	114	70	130				
Barium	0.51	0.0020	0.5000	0.008750	100	70	130				
Cadmium	0.54	0.0020	0.5000	0	107	70	130				
Chromium	0.49	0.0060	0.5000	0	97.2	70	130				
Cobalt	0.50	0.0060	0.5000	0.01029	97.7	70	130				
Copper	0.53	0.0060	0.5000	0	106	70	130				
Iron .	0.53	0.020	0.5000	0.05043	95.8	70	130				
Manganese	0.75	0.0020	0.5000	0.2698	95.2	70	130				
Molybdenum	0.52	0.0080	0.5000	0.03517	97.1	70	130				
Nickel	0.46	0.010	0.5000	0	91.3	70	130				
Silver	0.10	0.0050	0.1000	0	103	70	130				

l '										
Client ID: BatchQC	Batc	h ID: R9	603	F	RunNo: 9	603				
Prep Date:	Analysis [Date: 4/	2/2013	8	SeqNo: 2	73866	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	0.59	0.020	0.5000	0.02253	114	70	130	0.0288	20	
Barium	0.52	0.0020	0.5000	0.008750	101	70	130	1.14	20	
Cadmium	0.54	0.0020	0.5000	0	109	70	130	1.42	20	
Chromium	0.49	0.0060	0.5000	0	98.6	70	130	1.34	20	
Cobalt	0.51	0.0060	0.5000	0.01029	99.5	70	130	1.82	20	
Copper	0.53	0.0060	0.5000	0	106	70	130	0.713	20	
Iron	0.53	0.020	0.5000	0.05043	96.3	70	130	0.409	20	
Manganese	0.75	0.0020	0.5000	0.2698	96.4	70	130	0.804	20	
Molybdenum	0.53	0.0080	0.5000	0.03517	99.6	70	130	2.34	20	
Nickel	0.47	0.010	0.5000	0	93.2	70	130	2.06	20	
Silver	0.11	0.0050	0.1000	0	107	70	130	3.57	20	

Sample ID MB	SampType: MBLK	TestCode: EPA Method 200.7: Dissolved Metals
Client ID: PBW	Batch ID: R9737	RunNo: 9737
Prep Date: 2/22/2013	Analysis Date: 4/5/2013	SeqNo: 277371 Units: mg/L
Analyte	Result PQL SPK value	e SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Lead	ND 0.0050	

Lead	ND	0.0050
Zinc	ND	0.010

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2

Sample ID 1303988-002AMSD

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

TestCode: EPA Method 200.7: Dissolved Metals

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Page 9 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A24

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID LCS TestCode: EPA Method 200.7: Dissolved Metals SampType: LCS RunNo: 9737 Client ID: LCSW Batch ID: R9737 SeqNo: 277372 Units: mg/L Prep Date: Analysis Date: 4/5/2013 SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Analyte Result PQL LowLimit 85 115 0.48 0.0050 0.5000 96.6 Lead 0 115 0.48 0.010 0.5000 0 96.3 85 Zinç

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Page 10 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303A24

19-Apr-13

Client: HRL Compliance Solutions

Project: Enterprise WEP III Water Sampling

Sample ID LCS	SampType: LCS			Tes	tCode: El					
Client ID: LCSW	Bato	Batch ID: R9693			RunNo: 9693					
Prep Date:	Analysis [Analysis Date: 4/5/2013			SeqNo: 276270			Units: mg/L		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.026	0.0010	0.02500	0	103	85	115			
Selenium	0.024	0.0010	0.02500	0	97.9	85	115			

Sample ID MB SampType: MBLK TestCode: EPA 200.8: Dissolved Metals Client ID: PBW Batch ID: R9693 RunNo: 9693 Prep Date: Analysis Date: 4/5/2013 SeqNo: 276271 Units: mg/L **RPDLimit** Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD Qual ND 0.0010 Arsenic 0.0010 ND Selenium

Sample ID 1303A24-001GMS SampType: MS TestCode: EPA 200.8: Dissolved Metals

Client ID: ODIE Chapman Pon Batch ID: R9693 RunNo: 9693

Prep Date: Analysis Date: 4/5/2013 SeqNo: 276273 Units: mg/L

%RPD SPK value SPK Ref Val %REC **RPDLimit** Qual Analyte Result **PQL** LowLimit HighLimit Arsenic 0.030 0.0010 0.02500 0.003074 108 70 130 0.031 0.0010 0.02500 0.005241 70 130 Selenium 102

Sample ID 1303A24-001GMS SampType: MS TestCode: EPA 200.8: Dissolved Metals Client ID: **ODIE Chapman Pon** Batch ID: R9819 RunNo: 9819 Prep Date: Analysis Date: 4/12/2013 SeqNo: 279839 Units: mg/L PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Analyte Result LowLimit 0.03007 130 Uranium 0.16 0.0050 0.1250 100 70

Sample ID LCS TestCode: EPA 200.8: Dissolved Metals SampType: LCS Client ID: LCSW Batch ID: R9819 RunNo: 9819 Prep Date: Analysis Date: 4/12/2013 SeqNo: 279843 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0.025 0.0010 0.02500 99.4 Uranium

Sample ID MB SampType: MBLK TestCode: EPA 200.8: Dissolved Metals Client ID: PBW Batch ID: R9819 RunNo: 9819 Prep Date: Analysis Date: 4/12/2013 SeqNo: 279844 Units: mg/L Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte

Uranium ND 0.0010

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Page 11 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303A24

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB-6886 SampType: mblk

TestCode: EPA Method 245.1: Mercury

Client ID: **PBW** Batch ID: 6886

RunNo: 9762

%REC

Prep Date: 4/9/2013 Analysis Date: 4/10/2013

PQL

SeqNo: 278088

Units: mg/L

HighLimit

RPDLimit Qual

Analyte Mercury

ND 0.00020

Sample ID LCS-6886

SampType: Ics

TestCode: EPA Method 245.1: Mercury

LowLimit

Client ID: LCSW Batch ID: 6886

RunNo: 9762

Prep Date: 4/9/2013

Analysis Date: 4/10/2013

SeqNo: 278089

Units: mg/L

%RPD

%RPD

Analyte

PQL SPK value SPK Ref Val

%REC LowLimit HighLimit

Mercury

0.0049 0.00020

Result

0.005000

SPK value SPK Ref Val

98.7

120

RPDLimit

Qual

Sample ID 1304188-001AMS

SampType: ms

TestCode: EPA Method 245.1: Mercury

Client ID: Prep Date: 4/9/2013

BatchQC

Batch ID: 6886

Analysis Date: 4/10/2013

RunNo: 9762 SeqNo: 278092

Units: mg/L

125

Analyte

0.0047 0.00020

PQL SPK value SPK Ref Val 0.005000

0.005000

%REC 94.9 LowLimit HighLimit %RPD **RPDLimit** Qual

Mercury

TestCode: EPA Method 245.1: Mercury

Client ID: Prep Date:

Sample ID 1304188-001AMSD **BatchQC** 4/9/2013

SampType: msd Batch ID: 6886

RunNo: 9762

75

80

Units: mg/L

Analyte Mercury

0.0048 0.00020

Analysis Date: 4/10/2013

PQL

0

SeqNo: 278093 SPK value SPK Ref Val %REC LowLimit 96.2

HighLimit 125 %RPD 1.31 **RPDLimit**

Qual

Oualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Analyte detected below quantitation limits

Sample pH greater than 2

RL Reporting Detection Limit В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits

Page 12 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303A24

19-Apr-13

Client:

HRL Compliance Solutions

Project:	Enterprise	e WEP III	Water	Sampling								
Sample ID	MB	SampT	ype: ME	BLK	TestCode: EPA Method 300.0: Anions							
Client ID:	PBW	Batch	ID: R9	473	F							
Prep Date:		Analysis D	ate: 3/	27/2013	s	SeqNo: 2	70383	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Fluoride		ND	0.10									
Chloride		ND	0.50									
Nitrogen, Nitrat	e (As N)	ND	0.10									
Sulfate ———————		ND	0.50									
Sample ID	LCS	SampT	ype: LC	s	Tes	tCode: El	PA Method	300.0: Anion	S			
Client ID:	LCSW Batch ID: R9473				F	RunNo: 9	473					
Prep Date:		Analysis D	ate: 3/	27/2013	8	SeqNo: 2	70385	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Fluoride		0.49	0.10	0.5000	0	97.7	90	110				
Chloride		4.7	0.50	5.000	0	93.8	90	110				
Nitrogen, Nitrat	e (As N)	2.5	0.10	2.500	0	98.1	90	110				
Sulfate		9.5	0.50	10.00	0	94.8	90	110				
Sample ID	1303A25-001EMS	SampT	ype: MS	3	Tes	tCode: El	PA Method	300.0: Anion	5			
Client ID:	BatchQC	Batch	ID: R9	473	F	RunNo: 9	473					
Prep Date:		Analysis D	ate: 3/	27/2013	8	SeqNo: 2	70410	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Fluoride		0.66	0.10	0.5000	0.1862	94.3	76.6	110				
Chloride		7.5	0.50	5.000	2.616	96.8	87.8	111				
Vitrogeп, Nitrat	e (As N)	2.5	0.10	2.500	0.03120	98.0	90.4	113	-			
Sample ID	1303A25-001EMSI) SampT	ype: MS	SD	Tes	tCode: El	PA Method	300.0: Anion	<u> </u>			
Client 1D:	BatchQC	Batch	ID: R9	473	F	RunNo: 9	473					
Prep Date:		Analysis D	ate: 3/	27/2013	8	SeqNo: 2	70411	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Fluoride		0.66	0.10	0.5000	0.1862	94.8	76.6	110	0.395	20		
Chloride		7.5	0.50	5.000	2.616	98.4	87.8	111	1.04	20		
Cilionae	to (Ac NI)	2.5	0.10	2.500	0.03120	98.5	90.4	113	0.462	20		
	le (A3 N)											
Nitrogen, Nitrat	1303A26-001EMS	SampT	ype: MS	3	Tes	tCode: El	PA Method	300.0: Anion	s			
Nitrogen, Nitrat		-	ype: MS			tCode: El RunNo: 9		300.0: Anion	S			
Nitrogen, Nitrat Sample ID Client ID:	1303A26-001EMS	-	ID: R9	473	F		473	300.0: Anion				
Nitrogen, Nitrat	1303A26-001EMS	Batch	ID: R9	473 27/2013	F	RunNo: 9 SeqNo: 2	473			RPDLimit	Qual	

Qualifiers:

Nitrogen, Nitrate (As N)

Chloride

* Value exceeds Maximum Contaminant Level.

0.50

0.10

18

2.8

5.000

2.500

12.88

0.2940

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

87.8

90.4

111

113

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

109

98.7

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Page 13 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A24 19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 1303A26-001EN	ISD SampT	ype: M \$	SD	TestCode: EPA Method 300.0: Anions						
Client ID: BatchQC	Batch	1D: R9	473	F	RunNo: 9					
Prep Date:	Analysis Date: 3/27/2013			SeqNo: 270414			Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	1.3	0.10	0.5000	1.003	56.0	76.6	110	5.24	20	S
Chloride	18	0.50	5.000	12.88	108	87.8	111	0.117	20	
Nitrogen, Nitrate (As N)	2.8	0.10	2.500	0.2940	98.9	90.4	113	0.214	20	
Sample ID MB	TestCode: EPA Method 300.0: Anions									
Client ID: PBW	Client ID: PBW Batch ID: R9473			F	RunNo: 9	473				
Prep Date:	Analysis D	ate: 3/	27/2013	5	SeqNo: 270445 Units: ma/L					

1	,			7		,		•		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Chloride	ND	0.50								
Nitrogen, Nitrate (As N)	ND	0.10								
Sulfate	ND	0.50								
Sample ID LCS	Sampl	Type: LC	es es	Ter	stCode: F	PA Methoc	300.0: Anion	ns		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,•					.0		

L00	Campi	ype. LC	3	restorde. Et A metilod 300.0, Allions								
LCSW	Batch	1D: R9	473	F	RunNo: 9							
	Analysis Date: 3/27/2013			8	SeqNo: 2	70446	Units: mg/L					
	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
	0.50	0.10	0.5000	0	99.7	90	110					
	4.7	0.50	5.000	0	94.3	90	110					
(As N)	2.5	0.10	2.500	0	98.7	90	110					
	9.6	0.50	10.00	0	95.6	90	110					
	LCSW	Analysis D Result 0.50 4.7 (As N) 2.5	Analysis Date: 3/ Result PQL 0.50 0.10 4.7 0.50 (As N) 2.5 0.10	Analysis Date: 3/27/2013 Result PQL SPK value	Analysis Date: 3/27/2013 SPK Ref Val Result PQL SPK value SPK Ref Val 0.50 0.10 0.5000 0 4.7 0.50 5.000 0 (As N) 2.5 0.10 2.500 0	CSW Batch ID: R9473 RunNo: 9 Analysis Date: 3/27/2013 SeqNo: 2 Result PQL SPK value SPK Ref Val %REC 0.50 0.10 0.5000 0 99.7 4.7 0.50 5.000 0 94.3 (As N) 2.5 0.10 2.500 0 98.7	Batch ID: R9473 RunNo: 9473 Analysis Date: 3/27/2013 SeqNo: 270446 Result PQL SPK value SPK Ref Val %REC LowLimit 0.50 0.10 0.5000 0 99.7 90 4.7 0.50 5.000 0 94.3 90 (As N) 2.5 0.10 2.500 0 98.7 90	Batch D: R9473 RunNo: 9473 Analysis Date: 3/27/2013 SeqNo: 270446 Units: mg/L	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD	Result PQL SPK value SPK Ref Val WREC LowLimit HighLimit WRPD RPDLimit		

Sample ID 1303A75-002AMS	Samp1	Гуре: М	3	Tes	tCode: E					
Client ID: BatchQC	Batc	h ID: R9	473	F	RunNo: 9	473				
Prep Date:	Date: 3/	/28/2013	8	SeqNo: 2	70456	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	1.3	0.10	0.5000	0.8486	93.5	76.6	110			
Nitrogen, Nitrate (As N)	3.5	0.10	2.500	0.9291	103	90.4	113			

Sample ID	1303A75-002AMSD	SampType	: MSD)	Test	Code: El	PA Method	300.0: Anions	3		
Client ID:	BatchQC	Batch ID	R947	73	R	RunNo: 9	473				
Prep Date:		Analysis Date	3/28	3/2013	S	eqNo: 2	70457	Units: mg/L			
Analyte		Result P	QL S	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Fluoride			QL 5	SPK value 0.5000	SPK Ref Val 0.8486	%REC 95.6	LowLimit 76.6	HighLimit 110	%RPD 0.795	RPDLimit 20	Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits
 S Spike Recovery outside accepted recovery limits

Page 14 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A24 19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB-6695

SampType: MBLK

TestCode: EPA Method 8011/504.1: EDB

Client ID:

PBW

Batch ID: 6695

RunNo: 9472

Prep Date: 3/27/2013 Analysis Date: 3/27/2013

SeqNo: 270323

Units: µg/L

1,2-Dibromoethane

Analyte

Result **PQL** ND 0.010

SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit**

Qual

SampType: LCS

TestCode: EPA Method 8011/504.1: EDB

LCSW Client ID:

Batch ID: 6695

RunNo: 9472

Prep Date: 3/27/2013

Sample ID LCS-6695

Analysis Date: 3/27/2013

Units: µg/L

SeqNo: 270324

0.11

PQL SPK value SPK Ref Val 0.010

%REC

LowLimit

HighLimit %RPD

1,2-Dibromoethane

0.1000

106

70 130 **RPDLimit** Qual

Client ID:

Sample ID LCSD-6695 LCSW

SampType: LCS Batch ID: 6695

TestCode: EPA Method 8011/504.1: EDB RunNo: 9472

Units: µg/L

Analyte

Analysis Date: 3/27/2013

PQL

SPK value SPK Ref Val

%REC

0

70

HighLimit

%RPD

RPDLimit

Qual

1,2-Dibromoethane

Prep Date: 3/27/2013

Result 0.11

0.010 0.1000

108

SeqNo: 270326

130

1.87

Qualifiers:

E

Value exceeds Maximum Contaminant Level.

Analyte detected below quantitation limits

Value above quantitation range

P Sample pH greater than 2

ND

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Not Detected at the Reporting Limit

Page 15 of 24

Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A24

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

	200									
Sample ID MB-6681	SampT	уре: МЕ	BLK	TestCode: EPA Method 8082: PCB's						
Client ID: PBW	Batcl	n ID: 668	B1	R	unNo: 9	533				
Prep Date: 3/27/2013	Analysis D	Date: 3/	29/2013	S	eqNo: 2	72050	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	ND	1.0								
Aroclor 1221	ND	1.0								
Aroclor 1232	ND	1.0								
Aroclor 1242	ND	1.0								
Aroclor 1248	ND	1.0								
Aroclor 1254	ND	1.0								
Aroclor 1260	ND	1.0								
Surr: Decachlorobiphenyl	2.5		2.500		99.6	23.9	124			
Surr: Tetrachloro-m-xylene	2.1		2.500		82.4	28.1	139			
Sample ID LCS-6681	TestCode: EPA Method 8082: PCB's									
Client ID: LCSW	Batc	n ID: 668	81	F	lunNo: 9	533				
Prep Date: 3/27/2013	Analysis [Date: 3/	29/2013	S	eqNo: 2	72052	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	2.8	1.0	5.000	0	55.8	32.3	121			
Aroclor 1260	4.1	1.0	5.000	0	82.5	34	128			
Surr: Decachlorobiphenyl	2.3		2.500		93.6	23.9	124			
Surr: Tetrachloro-m-xylene	1.8		2.500		74.0	28.1	139			
Sample ID LCSD-6681	Samp	ype: LC	SD	Tes	Code: E	PA Method	8082: PCB's			
Client ID: LCSS02	Batc	h ID: 66	81	F	lunNo: 9	9533				
Prep Date: 3/27/2013	Analysis [Date: 3/	29/2013	S	SeqNo: 2	72054	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	2.4	1.0	5.000	0	47.4	32.3	121	16.3	29.9	
				_			400			
Aroclor 1260	3.5	1.0	5.000	0	69.2	34	128	17.5	25.9	
Aroclor 1260 Surr: Decachlorobiphenyl	3.5 1.9	1.0	5.000 2.500	0	69.2 77.2	34 23.9	128 124	17.5 0	25.9 0	

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

NO Not Detected at the Reporting Limit

R RPD outside accepted recovery limitsS Spike Recovery outside accepted recovery limits

Page 16 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A24

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 5ml-rb	SampT	ype: ME	BLK	Test	Code: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	1D: R9	466	R	tunNo: 94	466				
Prep Date:	Analysis D	ate: 3/	27/2013	S	eqNo: 27	70282	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 17 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A24

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 5ml-rb	SampT	ype: ME	BLK	Test	Code: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: R9	466	R	lunNo: 9	466				
Prep Date:	Analysis D	ate: 3/	27/2013	s	SeqNo: 2	70282	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Hexachlorobutadiene	ND	1.0								-2
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.7		10.00		87.2	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		106	69.5	130			
Surr: Dibromofluoromethane	9.6		10.00		95.8	70	130			
Surr: Toluene-d8	9.6		10.00		96.1	70	130			

Sample ID 100ng Ics	SampT	SampType: LCS			tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	Batch ID: R9466			RunNo: 9					
Prep Date:	Analysis D	ate: 3/	27/2013	8	SeqNo: 2	70285	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	106	70	130			
Toluene	20	1.0	20.00	0	99.2	80	120			
Chlorobenzene	19	1.0	20.00	0	96.0	70	130			
1,1-Dichloroethene	21	1.0	20.00	0	104	85.8	133			
Trichloroethene (TCE)	19	1.0	20.00	0	93.6	70	130			

 \mathbf{S}

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 18 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303A24

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 100ng Ics	SampT	SampType: LCS		Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	ID: R9	466	F	RunNo: 9	466				
Prep Date:	Analysis D	ate: 3/	27/2013	S	SeqNo: 2	70285	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	8.8		10.00		88.1	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		106	69.5	130			
Surr: Dibromofluoromethane	9.2		10.00		92.4	70	130			
Surr: Toluene-d8	9.4		10.00		94.4	70	130			

Sample ID 1303a13-001a ms	SampT	SampType: MS TestCode: EPA Method 8260B: VOLATILES								
Client ID: BatchQC	Batch	Batch ID: R9466 RunNo: 9466								
Prep Date:	Analysis D	ate: 3/	27/2013	S	SeqNo: 2	70301	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	102	70	130			
Toluene	20	1.0	20.00	0	98.7	68.5	128			
Chlorobenzene	19	1.0	20.00	0	97.4	70	130			
1,1-Dichloroethene	21	1.0	20.00	0	104	70	130			
Trichloroethene (TCE)	19	1.0	20.00	0	93.6	61.3	102			
Surr: 1,2-Dichloroethane-d4	8.7		10.00		87.1	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		102	69.5	130			
Surr: Dibromofluoromethane	9.4		10.00		94.3	70	130			
Surr: Toluene-d8	9.5		10.00		95.1	70	130			

Sample ID 1303a13-001a m	sd SampT	SampType: MSD			tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: BatchQC	Batch	ID: R9	466	F	RunNo: 9	466				
Prep Date:	Analysis D	ate: 3/	27/2013	S	SeqNo: 2	70302	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	102	70	130	0.0383	20	
Toluene	19	1.0	20.00	0	95.1	68.5	128	3.73	20	
Chlorobenzene	19	1.0	20.00	0	94.0	70	130	3.53	20	
1,1-Dichloroethene	20	1.0	20.00	0	101	70	130	3.66	20	
Trichloroethene (TCE)	18	1.0	20.00	0	91.8	61.3	102	1.98	20	
Surr: 1,2-Dichloroethane-d4	9.1		10.00		91.0	70	130	0	0	
Surr: 4-Bromofluorobenzene	10		10.00		101	69.5	130	0	0	
Surr: Dibromofluoromethane	9.5		10.00		95.3	70	130	0	0	
Surr: Toluene-d8	9.4		10.00		94.1	70	130	0	0	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Page 19 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A24

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Console ID, MD 0000	Comer	\$45	21.14	T	Cada: E	DA 14-46-3	9240. DALI-			
Sample ID MB-6682		ype: ME					8310: PAHs			
Client ID: PBW	Batch	n ID: 66	82	F	RunNo: 9	739				
Prep Date: 3/27/2013	Analysis D)ate: 4/	9/2013	\$	SeqNo: 2	77429	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	2.0								
2-Methylnaphthalene	ND	2.0								
Acenaphthylene	ND	2.5								
Acenaphthene	ND	5.0								
Fluorene	ND	0.80								
Phenanthrene	ND	0.60								
Anthracene	ND	0.60								
Fluoranthene	ND	0.30								
Pyrene	ND	0.30								
Benz(a)anthracene	ND	0.070								
Chrysene	ND	0.20								
Benzo(b)fluoranthene	ND	0.10								
Benzo(k)fluoranthene	ND	0.070								
Benzo(a)pyrene	ND	0.070								
Dibenz(a,h)anthracene	ND	0.12								
Benzo(g,h,i)perylene	ND	0.080								
Indeno(1,2,3-cd)pyrene	ND	0.080								
Surr: Benzo(e)pyrene	14		20.00		69.0	46.4	106			

Sample ID LCS-6682	SampT	ype: LC	S	Test	tCode: El	PA Method	8310: PAHs			
Client ID: LCSW	Batch	1D: 668	32	F	RunNo: 97	739				
Prep Date: 3/27/2013	Analysis D	Analysis Date: 4/9/2013		S	SeqNo: 2	77437	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	55	2.0	80.00	0	69.3	46	82.9			
1-Methylnaphthalene	58	2.0	80.20	0	72.3	47.2	85.8			
2-Methylnaphthalene	58	2.0	80.00	0	72.1	48. 4	8 4 .6			
Acenaphthylene	100	2.5	80.20	0	130	58.7	78.7			S
Acenaphthene	59	5.0	80.00	0	74.3	55.3	85.1			
Fluorene	5.0	0.80	8.020	0	62.1	31.9	82.2			
Phenanthrene	2.4	0.60	4.020	0	60.4	54.5	81.9			
Anthracene	2.5	0.60	4.020	0	61.2	51.9	82.7			
Fluoranthene	5.3	0.30	8.020	0	66.1	57.6	83.7			
Pyrene	4.7	0.30	8.020	0	59.1	53.1	70.4			
Benz(a)anthracene	0.58	0.070	0.8020	0	72.3	48	85.7			
Chrysene	2.6	0.20	4.020	0	65.7	44.3	78.2			
Benzo(b)fluoranthene	0.74	0.10	1.002	0	73.9	60	90.4			
Benzo(k)fluoranthene	0.44	0.070	0.5000	0	88.0	61.4	89			
Benzo(a)pyrene	0.43	0.070	0.5020	0	85.7	63.5	88.6			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - R RPD outside accepted recovery limits
 - S Spike Recovery outside accepted recovery limits

Page 20 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A24

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Diberz(a,h)anthracene 0.88 0.12 1.002 0 87.8 57 92.6 95.9											
Prep Date: 3/27/2013 Analysis Date: 4/9/2013 SeqNo: 277437 Units: µg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Dibenz(a,h)alptracene 0.88 0.12 1.002 0 87.8 57 92.6 92.0 92.6 92.7 92.0 92.0 92.0 92.0 92.0 92.0 <	Sample ID LCS-6682	Samp	Гуре: LC	s	Test	Code: El	Code: EPA Method 8310: PAHs				
Analyte Result PQL 1.002 SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual PQL	Client ID: LCSW	Batcl	h ID: 66	82	R	lun N o: 9	739				
Diberz(a,h)anthracene	Prep Date: 3/27/2013	Analysis D	Date: 4/	9/2013	S	eqNo: 2	77437	Units: µg/L			
Sempolar Sempolar	Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sample ID LCSD-6682 SampType: LCSD TestCode: EPA Method 8310: PAHs	Dibenz(a,h)anthracene	0.88	0.12	1.002	0	87.8	57	92.6			
Surr: Benzo(e)pyrene 16 20.00 79.0 46.4 106 Sample ID LCSD-6682 Samplype: LCSD TestCode: EPA Method 8310: PAHs Client ID: LCSS02 Batch ID: 6682 RunNo: 9739 Prep Date: 3/27/2013 Analysis Date: 4/9/2013 SeqNo: 277440 Units: μg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit High Limit %RPD RPD Limit Qual Naphthalene 59 2.0 80.00 0 73.5 46 82.9 5.94 20 11-Methylnaphthalene 62 2.0 80.00 0 76.9 47.2 85.8 6.20 6.20 20 2-Methylnaphthalene 62 2.0 80.00 0 77.3 48.4 84.6 84.6 6.96 20 2.0 80.00 2-Methylnaphthalene 62 2.0 80.00 0 137 58.7 78.7 5.33 20 S Accenaphthylene 110 2.5 80.20 0 137 58.7 78.7 5.33 20 S Accenaphthene 65 5.0 80.00 80.00 31.9 82.2 10.5 20 Phenanthrene 2.8 0.60 4.020 0 69.0 31.9 82.2 10.5 81.9 14.9 20 Anthracene 2.8 0.60 4.020 0 69.9 51.9 82.7 13.3 20 Proprint<	Benzo(g,h,i)perylene	0.88	0.080	1.000	0	88.0	55.4	95.9			
Sample ID LCSD-6682 SampType: LCSD TestCode: EPA Method 8310: PAHs Client ID: LCSS02 Batch ID: 6682 RunNo: 9739 Prep Date: 3/27/2013 Analysis Date: 4/9/2013 SeqNo: 277440 Units: µg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Naphthalene 59 2.0 80.00 0 73.5 46 82.9 5.94 20 1-Methylnaphthalene 62 2.0 80.00 0 76.9 47.2 85.8 6.20 20 2-Methylnaphthalene 62 2.0 80.00 0 77.3 48.4 84.6 6.96 20 2-Methylnaphthalene 65 5.0 80.00 0 137 58.7 78.7 5.33 20 S Accenaphthylene 110 2.5 80.20 0 137 58.7 78.7 5.33 20 S Accenaphthene 65 5.0	Indeno(1,2,3-cd)pyrene	1.6	0.080	2.004	0	80.3	52.7	88.6			
Prep Date 3/27/2013 Analysis Date 4/9/2013 SeqNo: 277440 Units: µg/L	Surr: Benzo(e)pyrene	16		20.00		79.0	46.4	106			
Prep Date: 3/27/2013 Analysis Date: 4/9/2013 SeqNo: 277440 Units: µg/L	Sample ID LCSD-6682	Sampi	Гуре: LC	SD	Tes	Code: El	PA Method	8310: PAHs			
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Naphthalene 59 2.0 80.00 0 73.5 46 82.9 5.94 20 I-Methylnaphthalene 62 2.0 80.20 0 76.9 47.2 85.8 6.20 20 2-Methylnaphthalene 62 2.0 80.00 0 77.3 48.4 84.6 6.96 20 Acenaphthylene 110 2.5 80.20 0 137 58.7 78.7 5.33 20 S Acenaphthene 65 5.0 80.00 0 80.9 55.3 85.1 8.49 20 Fluorene 5.5 0.80 8.020 0 69.0 31.9 82.2 10.5 20 Phenanthrene 2.8 0.60 4.020 0 69.9 51.9 82.7 13.3 20 Anthracene	Client ID: LCSS02	Batc	h ID: 66	82	R	lun N o: 9	739				
Naphthalene 59 2.0 80.00 0 73.5 46 82.9 5.94 20 I-Methylnaphthalene 62 2.0 80.20 0 76.9 47.2 85.8 6.20 20 I-Methylnaphthalene 62 2.0 80.00 0 77.3 48.4 84.6 6.96 20 Acenaphthylene 110 2.5 80.20 0 137 58.7 78.7 5.33 20 S Acenaphthene 65 5.0 80.00 0 80.9 55.3 85.1 8.49 20 I-Iuorene 5.5 0.80 8.020 0 69.0 31.9 82.2 10.5 20 I-Methylnaphthalene 62 2.8 0.60 4.020 0 70.1 54.5 81.9 14.9 20 Anthracene 2.8 0.60 4.020 0 69.9 51.9 82.7 13.3 20 I-Iuoranthene 6.2 0.30 8.020 0 64.3 53.1 70.4 8.48 20 I-Iuoranthene 5.2 0.30 8.020 0 64.3 53.1 70.4 8.48 20	Prep Date: 3/27/2013	Analysis [Date: 4/	9/2013	S	eqNo: 2	77440	Units: µg/L			
1-Methylnaphthalene 62 2.0 80.20 0 76.9 47.2 85.8 6.20 20 2-Methylnaphthalene 62 2.0 80.00 0 77.3 48.4 84.6 6.96 20 3-Acenaphthylene 110 2.5 80.20 0 137 58.7 78.7 5.33 20 S 3-Acenaphthene 65 5.0 80.00 0 80.9 55.3 85.1 8.49 20 3-Inderene 5.5 0.80 8.020 0 69.0 31.9 82.2 10.5 20 3-Inderene 2.8 0.60 4.020 0 70.1 54.5 81.9 14.9 20 3-Inderene 2.8 0.60 4.020 0 69.9 51.9 82.7 13.3 20 3-Inderene 6.2 0.30 8.020 0 69.9 51.9 82.7 13.3 20 3-Inderene 6.2 0.30 8.020 0 64.3 53.1 70.4 8.48 20 3-Inderene 5.2 0.30 8.020 0 64.3 53.1 70.4 8.48 20	Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylnaphthalene 62 2.0 80.00 0 77.3 48.4 84.6 6.96 20 Acenaphthylene 110 2.5 80.20 0 137 58.7 78.7 5.33 20 S Acenaphthylene 65 5.0 80.00 0 80.9 55.3 85.1 8.49 20 Fluorene 5.5 0.80 8.020 0 69.0 31.9 82.2 10.5 20 Phenanthrene 2.8 0.60 4.020 0 70.1 54.5 81.9 14.9 20 Anthracene 2.8 0.60 4.020 0 69.9 51.9 82.7 13.3 20 Fluoranthene 6.2 0.30 8.020 0 69.9 51.9 82.7 13.3 20 Pryrene 5.2 0.30 8.020 0 64.3 53.1 70.4 8.48 20	Naphthalene	59	2.0	80.00	0	73.5	46	82.9	5.94	20	
Acenaphthylene 110 2.5 80.20 0 137 58.7 78.7 5.33 20 S Acenaphthene 65 5.0 80.00 0 80.9 55.3 85.1 8.49 20 Fluorene 5.5 0.80 8.020 0 69.0 31.9 82.2 10.5 20 Phenanthrene 2.8 0.60 4.020 0 70.1 54.5 81.9 14.9 20 Anthracene 2.8 0.60 4.020 0 69.9 51.9 82.7 13.3 20 Fluoranthene 6.2 0.30 8.020 0 76.7 57.6 83.7 14.8 20 Pyrene 5.2 0.30 8.020 0 64.3 53.1 70.4 8.48 20	1-Methylnaphthalene	62	2.0	80.20	0	76.9	47.2	85.8	6.20	20	
Acenaphthene 65 5.0 80.00 0 80.9 55.3 85.1 8.49 20 Fluorene 5.5 0.80 8.020 0 69.0 31.9 82.2 10.5 20 Phenanthrene 2.8 0.60 4.020 0 70.1 54.5 81.9 14.9 20 Anthracene 2.8 0.60 4.020 0 69.9 51.9 82.7 13.3 20 Fluoranthene 6.2 0.30 8.020 0 76.7 57.6 83.7 14.8 20 Pyrene 5.2 0.30 8.020 0 64.3 53.1 70.4 8.48 20	2-Methylnaphthalene	62	2.0	80.00	0	77.3	48.4	84.6	6.96	20	
Fluorene 5.5 0.80 8.020 0 69.0 31.9 82.2 10.5 20 Phenanthrene 2.8 0.60 4.020 0 70.1 54.5 81.9 14.9 20 Anthracene 2.8 0.60 4.020 0 69.9 51.9 82.7 13.3 20 Fluoranthene 6.2 0.30 8.020 0 76.7 57.6 83.7 14.8 20 Pyrene 5.2 0.30 8.020 0 64.3 53.1 70.4 8.48 20	Acenaphthylene	110	2.5	80.20	0	137	58.7	78.7	5.33	20	S
Phenanthrene 2.8 0.60 4.020 0 70.1 54.5 81.9 14.9 20 Anthracene 2.8 0.60 4.020 0 69.9 51.9 82.7 13.3 20 Fluoranthene 6.2 0.30 8.020 0 76.7 57.6 83.7 14.8 20 Pyrene 5.2 0.30 8.020 0 64.3 53.1 70.4 8.48 20	Acenaphthene	65	5.0	80.00	0	80.9	55.3	85.1	8.49	20	
Anthracene 2.8 0.60 4.020 0 69.9 51.9 82.7 13.3 20 Fluoranthene 6.2 0.30 8.020 0 76.7 57.6 83.7 14.8 20 Pyrene 5.2 0.30 8.020 0 64.3 53.1 70.4 8.48 20	Fluorene	5.5	0.80	8.020	0	69.0	31.9	82.2	10.5	20	
Fluoranthene 6.2 0.30 8.020 0 76.7 57.6 83.7 14.8 20 Pyrene 5.2 0.30 8.020 0 64.3 53.1 70.4 8.48 20	Phenanthrene	2.8	0.60	4.020	0	70.1	54.5	81.9	14.9	20	
Pyrene 5.2 0.30 8.020 0 64.3 53.1 70.4 8.48 20	Anthracene	2.8	0.60	4.020	0	69.9	51.9	82.7	13.3	20	
·	Fluoranthene	6.2	0.30	8.020	0	76.7	57.6	83.7	14.8	20	
3enz(a)anthracene 0.68 0.070 0.8020 0 84.8 48 85.7 15.9 20	Pyrene	5.2	0.30	8.020	0	64.3	53.1	70.4	8.48	20	
· · · · · · · · · · · · · · · · · · ·	Benz(a)anthracene	0.68	0.070	0.8020	0	84.8	48	85.7	15.9	20	
Chrysene 3.1 0.20 4.020 0 77.9 44.3 78.2 17.0 20	Chrysene	3.1	0.20	4.020	0	77.9	44.3	78.2	17.0	20	
Benzo(b)fluoranthene 0.81 0.10 1.002 0 80.8 60 90.4 9.03 20	Benzo(b)fluoranthene	0.81	0.10	1.002	0	80.8	60	90.4	9.03	20	
Benzo(k)fluoranthene 0.44 0.070 0.5000 0 88.0 61.4 89 0 20	Benzo(k)fluoranthene	0.44	0.070	0.5000	0	88.0	61.4	89	0	20	
Benzo(a)pyrene 0.43 0.070 0.5020 0 85.7 63.5 88.6 0 20	Benzo(a)pyrene	0.43	0.070	0.5020	0	85.7	63.5	88.6	0	20	
Dibenz(a,h)anthracene 0.79 0.12 1.002 0 78.8 57 92.6 10.8 20	Dibenz(a,h)anthracene	0.79	0.12	1.002	0	78.8	57	92.6	10.8	20	
Benzo(g,h,i)perylene 0.80 0.080 1.000 0 80.0 55.4 95.9 9.52 20	Benzo(g,h,i)perylene	0.80	0.080	1.000	0	80.0	55.4	95.9	9.52	20	
ndeno(1,2,3-cd)pyrene 1.8 0.080 2.004 0 88.3 52.7 88.6 9.47 20	Indeno(1,2,3-cd)pyrene	1.8	0.080	2.004	0	88.3	52.7	88.6	9.47	20	
Surr: Benzo(e)pyrene 16 20.00 78.1 46.4 106 0	Surr: Benzo(e)pyrene	16		20.00		78.1	46.4	106	0		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 21 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A24 19-Apr-13

Client:

HRL Compliance Solutions

Project:

Phenolics, Total Recoverable

Enterprise WEP III Water Sampling

20

2.5

20.00

Sample ID MB-6969 SampType: MBLK TestCode: Total Phenolics by SW-846 9067 Client ID: **PBW** Batch ID: 6969 RunNo: 9846 Prep Date: 4/15/2013 Analysis Date: 4/15/2013 SeqNo: 280297 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit **HighLimit** %RPD **RPDLimit** Qual Phenolics, Total Recoverable ND 2.5 Sample ID LCS-6969 SampType: LCS TestCode: Total Phenolics by SW-846 9067 Client ID: LCSW RunNo: 9846 Batch ID: 6969 Prep Date: 4/15/2013 SeqNo: 280298 Analysis Date: 4/15/2013 Units: µg/L **PQL** SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual LowLimit Phenolics, Total Recoverable 19 2.5 20.00 93.2 81.1 120 Sample ID LCSD-6969 SampType: LCSD TestCode: Total Phenolics by SW-846 9067 Client ID: LCSS02 Batch ID: 6969 RunNo: 9846 Prep Date: 4/15/2013 Analysis Date: 4/15/2013 SeqNo: 280319 Units: µg/L %RPD **RPDLimit** Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit Qual

0

99.0

81.1

120

5.97

20

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

S

Page 22 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A24

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 1303a75-006a dup

SampType: dup

TestCode: SM4500-H+B: pH

BatchQC Client ID:

Batch ID: R9475

RunNo: 9475

Prep Date:

Analysis Date: 3/27/2013

SeqNo: 270581

SPK value SPK Ref Val %REC LowLimit

Units: pH units

Qual

Analyte

Result **PQL** 7.67 1.68 HighLimit %RPD **RPDLimit**

Qualifiers:

Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

Analyte detected below quantitation limits

Sample pH greater than 2 P

RLReporting Detection Limit В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Page 23 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A24

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Analyte

Enterprise WEP III Water Sampling

Sample ID MB-6727

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID:

PBW

Batch ID: 6727

RunNo: 9534

Prep Date: 3/29/2013 Analysis Date: 4/1/2013

SeqNo: 272090

Units: mg/L HighLimit

%RPD

Qual

Total Dissolved Solids

Result **PQL**

ND 20.0

SPK value SPK Ref Val %REC LowLimit

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID:

LCSW

SampType: LCS Batch ID: 6727

RunNo: 9534

Prep Date: 3/29/2013

Sample ID LCS-6727

Analysis Date: 4/1/2013

PQL

SeqNo: 272091

Units: mg/L

RPDLimit

Analyte

%REC LowLimit

HighLimit

1020

1310

Result

1340

SPK value SPK Ref Val 1000

18.00 101 80

%RPD **RPDLimit** Qual

Total Dissolved Solids

20.0

TestCode: SM2540C MOD: Total Dissolved Solids

120

Sample ID 1303A71-003AMS Client ID:

Prep Date:

BatchQC

SampType: MS

Batch ID: 6727

RunNo: 9534 SeqNo: 272111

Units: mg/L

Analyte

3/29/2013

Analysis Date: 4/1/2013 Result PQL

1000

SPK value SPK Ref Val %REC

LowLimit

HighLimit

RPDLimit

Qual

Total Dissolved Solids

Sample ID 1303A71-003AMSD

SampType: MSD

20.0

330.0

TestCode: SM2540C MOD: Total Dissolved Solids

120

Client ID: Prep Date:

Total Dissolved Solids

BatchQC

Batch ID: 6727

RunNo: 9534

98.4

80

Units: mg/L

Analyte

3/29/2013

Analysis Date: 4/1/2013

PQL

20.0

1000

330.0

SeqNo: 272112 101

SPK value SPK Ref Val %REC LowLimit 80

HighLimit 120 %RPD 1.96

%RPD

RPDLimit

Qual

Qualifiers:

RL

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range

Reporting Detection Limit

- Analyte detected below quantitation limits
- Sample pH greater than 2

- В
- Η Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
 - Page 24 of 24

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-410;

Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: HRL COMPLIANCE SOL Work Order Number:	1303A24		RcptNo:	
Received by/date: 03/2013				
Logged By: Ashley Gallegos 3/26/2013 3:40:00 PM				
Completed By: Ashley Gallegos 3/26/2013 4:15:03 PM				
Reviewed By: 53 777 73				
Chain of Custody				
1. Custody seals intact on sample bottles?	Yes	No \square	Not Present 🗹	
2. Is Chain of Custody complete?	Yes 🗹	No 🗆	Not Present	
3. How was the sample delivered?	Client			
Log In				
4. Was an attempt made to cool the samples?	Yes 🗹	No 🗆	NA \square	
5. Were all samples received at a temperature of >0° C to 6.0°C	Yes 🗹	No 🗆	NA \square	
6. Sample(s) In proper container(s)?	Yes 🗹	No 🗌		
7. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗌		
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗹	No 🗌		
9. Was preservative added to bottles?	Yes 🗌	No 🗹	NA 🗆	
10.VOA vials have zero headspace?	Yes 🗹	No 🗆	No VOA Vials	
11, Were any sample containers received broken?	Yes	No 🗹	# of preserved	
			bottles checked	
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗹	No 📙	for pH:	712 inless noted)
13. Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🗔	Adjusted?	10
14, is it clear what analyses were requested?	Yes 🗹	No 🗆		
15. Were all holding times able to be met?	Yes 🗹	No 🗆	Checked by:	mq
(If no, notify customer for authorization.)		L	ALA	
Special Handling (if applicable)				
16. Was client notified of all discrepancies with this order?	Yes 🗌	No 🗌	NA 🗹	
Person Notified: Date:				
By Whom: Via:	eMail P	none Fax	In Person	
Regarding:	وموالة فالماد والاراج والمراز المستودية	to an experimental and a state of the state	. North consequences the course report of the resource and	
Client Instructions:	n mar see san an a		Marie Carlos Car	
17. Additional remarks:				
18. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No 1 4.1 Good Not Present	Seal Date	Signed By		

C'Hont'	VIRONMENTAL
HRL Compliance Solutions Int. (Standard Rush ANALYSIS	S LABORATORY
Project Name: Enterprise WEP III	•
Mailing Address: 2385 F1/2 RD Water Sempling 4901 Hawkins NE - Albuque	
IDecidate	505-345-4107
13-110-2	Request
QA/QC Package:	် ကို ကြ
email or Fax#: KROWE WHRLCOMP.LOM QA/QC Package: Standard Level 4 (Full Validation) Accreditation Somples: Kuy Lamber T (\$\frac{1}{5}\text{U} \text{Somples: Kuy Lamber T}} (\$\frac{1}{5}\text{U} \text{U}	S
Date Time Matrix Sample Request ID Container Type T	8081 Pesticides / 8082 PCB' 8260B (VOA) 8270 (Semi-VOA) [\ightarrow QC.C.]
Accreditation Sampler: Kris Rewe WELAP O'S 00 00 00 00 00 00 00 00 00 00 00 00 00	
□ EDD (Type) □ BB (G P B B (G P B B C P B C P B	S (Y)
Accreditation Date Time Matrix Sample Request ID Container Type and # Type Date Time Matrix Sample Request ID Container Type Wethod 418.1) Container Type Wetals PAH's (8310 or 8270 or	8081 Pesticides / 80 8260B (VOA) 8270 (Semi-VOA) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Date Time Matrix Sample Request ID Type and # Type Type Type Type Type Type Type Type	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	\$\frac{1}{2}\$ \$\frac{1}{2}\$
Jala 13 0932 SW ODE CHAMAN Hond I See cont - OO	XXX
trip Blank = 100	
00300 08213	
	
Date: Time: Refinquished by: Received by: Date Time Remarks:	
Date: Time: Refinquished by: Received by: Received by: Remarks: Remarks: Received by: Received by:	st (wacc)
Date: Time: Relinquished by: Received by: Date Time	De 3126/13
	P /T

WQCC Bottles for ONE sample:

TEST

BOTTLE TYPE AND PRESERVATIVE

8260	3 x 40 mL HCl VOAs
504.1 EDB	2 x 40 mL Na2S2O3 VOAs
8082 PCB	2 x 1 liter unpreserved amber
8310 PAH	1 x 1 liter unpreserved amber
Phenois	1 x 1 liter H2SO4 amber
Anions, TDS, pH	1 x 500 mL unpreserved plastic
•	1 x 125 mL H2SO4 plastic
Mercury	1 x 500 mL HNO3 plastic
Dissolved Metals	1 x 125 HNO3 plastic + filter & syringe
Total Cyanide	1 x 500 NaOH plastic amber
Radium 226/228	2 x 1 liter HNO3 plastic

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: www.hallenvironmental.com

OrderNo.: 1303A26

April 19, 2013

Kay Lambert HRL Compliance Solutions 2385 F 1/2 Road Grand Junction, CO 81505 TEL: (970) 243-3271

FAX

RE: Enterprise WEP III Water Sampling

Dear Kay Lambert:

Hall Environmental Analysis Laboratory received 2 sample(s) on 3/26/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

andel

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/19/2013

CLIENT: HRL Compliance Solutions

Client Sample ID: ODIE Chapman Pond 2

Project: Enterprise WEP III Water Sampling

Collection Date: 3/26/2013 10:15:00 AM

Lab ID: 1303 A26-001 Matrix: AQUEOUS Received Date: 3/26/2013 3:40:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8011/504.1: EDB					Analyst: LRW
1,2-Dibromoethane	ND	0.010	μg/L	1	3/27/2013 3:53:51 PM
EPA METHOD 8082: PCB'S					Analyst: SCC
Aroclor 1016	ND	1.0	μg/L	1	3/30/2013 11:16:31 AM
Aroclor 1221	ND	1.0	μg/L	1	3/30/2013 11:16:31 AM
Aroclor 1232	ND	1.0	μg/L	1	3/30/2013 11:16:31 AM
Aroclor 1242	ND	1.0	μg/L	1	3/30/2013 11:16:31 AM
Aroclor 1248	ND	1.0	μg/L	1	3/30/2013 11:16:31 AM
Aroclor 1254	ND	1.0	μg/L	1	3/30/2013 11:16:31 AM
Aroclor 1260	ND	1.0	μg/L	1	3/30/2013 11:16:31 AM
Surr: Decachlorobiphenyl	110	23.9-124	%REC	1	3/30/2013 11:16:31 AM
Surr: Tetrachloro-m-xylene	93.2	28.1-139	%REC	1	3/30/2013 11:16:31 AM
EPA METHOD 8310: PAHS					Analyst: SCC
Naphthalene	ND	2.0	μg/L	1	4/9/2013 10:27:02 PM
1-Methylnaphthalene	ND	2.0	μg/L	1	4/9/2013 10:27:02 PM
2-Methylnaphthalene	ND	2.0	μg/L	1	4/9/2013 10:27:02 PM
Acenaphthylene	ND	2.5	μg/L	1	4/9/2013 10:27:02 PM
Acenaphthene	ND	5.0	μg/L	1	4/9/2013 10:27:02 PM
Fluorene	ND	0.80	μg/L	1	4/9/2013 10:27:02 PM
Phenanthrene	ND	0.60	μg/L	1	4/9/2013 10:27:02 PM
Anthracene	ND	0.60	μg/L	1	4/9/2013 10:27:02 PM
Fluoranthene	ND	0.30	μg/L	1	4/9/2013 10:27:02 PM
Pyrene	ND	0.30	μg/L	1	4/9/2013 10:27:02 PM
Benz(a)anthracene	ND	0.070	μg/L	1	4/9/2013 10:27:02 PM
Chrysene	ND	0.20	μg/L	1	4/9/2013 10:27:02 PM
Benzo(b)fluoranthene	ND	0.10	μg/L	1	4/9/2013 10:27:02 PM
Benzo(k)fluoranthene	ND	0.070	μg/L	1	4/9/2013 10:27:02 PM
Benzo(a)pyrene	ND	0.070	μg/L	1	4/9/2013 10:27:02 PM
Dibenz(a,h)anthracene	ND	0.12	μg/L	1	4/9/2013 10:27:02 PM
Benzo(g,h,i)perylene	ND	0.080	μg/L	1	4/9/2013 10:27:02 PM
Indeno(1,2,3-cd)pyrene	ND	0.080	μg/L	1	4/9/2013 10:27:02 PM
Surr: Benzo(e)pyrene	60.4	46.4-106	%REC	1	4/9/2013 10:27:02 PM
EPA METHOD 300.0: ANIONS					Analyst: JRR
Fluoride	1.0	0.10	mg/L	1	3/27/2013 4:07:52 PM
Chloride	13	0.50	mg/L	1	3/27/2013 4:07:52 PM
Nitrogen, Nitrate (As N)	0.29	0.10	mg/L	1	3/27/2013 4:07:52 PM
Sulfate	640	10	mg/L	20	3/27/2013 4:45:05 PM
EPA METHOD 200.7: DISSOLVED N	IETALS				Analyst: JLF
Aluminum	ND	0.020	mg/L	1	4/2/2013 7:00:19 PM
Barium	0.038	0.0020	mg/L	1	4/2/2013 7:00:19 PM
Boron	0.065	0.040	mg/L	1	4/2/2013 7:00:19 PM

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits Page 1 of 24

Date Reported: 4/19/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample ID: ODIE Chapman Pond 2

Project: En

Enterprise WEP III Water Sampling

Collection Date: 3/26/2013 10:15:00 AM

Lab ID: 1303A26-001

Matrix: AQUEOUS

Received Date: 3/26/2013 3:40:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 200.7: DISSOLVED N	IETALS				Analyst: JLF
Cadmium	ND	0.0020	mg/L	1	4/2/2013 7:00:19 PM
Chromium	ND	0.0060	mg/L	1	4/2/2013 7:00:19 PM
Cobalt	ND	0.0060	mg/L	1	4/2/2013 7:00:19 PM
Copper	ND	0.0060	mg/L	1	4/2/2013 7:00:19 PM
Iron	ND	0.020	mg/L	1	4/2/2013 7:00:19 PM
Manganese	0.021	0.0020	mg/L	1	4/2/2013 7:00:19 PM
Molybdenum	ND	0.0080	mg/L	1	4/2/2013 7:00:19 PM
Nickel	ND	0.010	mg/L	1	4/2/2013 7:00:19 PM
Silver	ND	0.0050	mg/L	1	4/2/2013 7:00:19 PM
Zinc	ND	0.010	mg/L	1	4/5/2013 1:31:52 PM
EPA 200.8: DISSOLVED METALS					Analyst: DBD
Arsenic	0.0010	0.0010	mg/L	1	4/12/2013 11:41:45 AM
Lead	ND	0.0010	mg/L	1	4/12/2013 11:41:45 AM
Selenium	0.0055	0.0010	mg/L	1	4/12/2013 11:41:45 AM
Uranium	0.029	0.0010	mg/L	1	4/12/2013 11:41:45 AM
EPA METHOD 245.1: MERCURY					Analyst: IDC
Mercury	ND	0.00020	mg/L	1	4/10/2013 12:10:25 PM
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Benzene	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
Toluene	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
Ethylbenzene	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	3/28/2013 1:14:04 AM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	3/28/2013 1:14:04 AM
Naphthalene	ND	2.0	μg/L	1	3/28/2013 1:14:04 AM
1-Methylnaphthalene	ND	4.0	μg/L	1	3/28/2013 1:14:04 AM
2-Methylnaphthalene	ND	4.0	μg/L	1	3/28/2013 1:14:04 AM
Acetone	ND	10	μg/L	1	3/28/2013 1:14:04 AM
Bromobenzene	ND	1.0	µg/L	1	3/28/2013 1:14:04 AM
Bromodichloromethane	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
Bromoform	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
Bromomethane	ND	3.0	μg/L	1	3/28/2013 1:14:04 AM
2-Butanone	ND	10	μg/L	1	3/28/2013 1:14:04 AM
Carbon disulfide	ND	10	µg/L	1	3/28/2013 1:14:04 AM
Carbon Tetrachloride	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
Chlorobenzene	ND.	1.0	μg/L	1	3/28/2013 1:14:04 AM
Chloroethane	ND	2.0	μg/L	1	3/28/2013 1:14:04 AM
Chloroform	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Lab Order 1303A26

Date Reported: 4/19/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample ID: OD1E Chapman Pond 2

Project: Enterprise WEP III Water Sampling

Collection Date: 3/26/2013 10:15:00 AM

Lab ID: 1303A26-001

Matrix: AQUEOUS

Received Date: 3/26/2013 3:40:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RA
Chloromethane	ND	3.0	μg/L	1	3/28/2013 1:14:04 AM
2-Chlorotoluene	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
4-Chlorotoluene	ND	1.0	μg/L	1	3/28/2013 1:14:04 AN
cis-1,2-DCE	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	3/28/2013 1:14:04 AN
Dibromochloromethane	ND	1.0	μg/L	1	3/28/2013 1:14:04 AN
Dibromomethane	ND	1.0	μg/L	1	3/28/2013 1:14:04 AN
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
1,1-Dichloroethene	ND	1.0	µg/L	1	3/28/2013 1:14:04 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/28/2013 1:14:04 Al
1,3-Dichloropropane	ND	1.0	μg/L	1	3/28/2013 1:14:04 Al
2,2-Dichloropropane	ND	2.0	µg/L	1	3/28/2013 1:14:04 Af
1,1-Dichloropropene	ND	1.0	μg/L	1	3/28/2013 1:14:04 Al
Hexachlorobutadiene	ND	1.0	μg/L	1	3/28/2013 1:14:04 Al
2-Hexanone	ND	10	μg/L	1	3/28/2013 1:14:04 Al
Isopropylbenzene	ND	1.0	μg/L	1	3/28/2013 1:14:04 Al
4-Isopropyltoluene	ND	1.0	μg/L	1	3/28/2013 1:14:04 AI
4-Methyl-2-pentanone	ND	10	μg/L	1	3/28/2013 1:14:04 AI
Methylene Chloride	ND	3.0	μg/L	1	3/28/2013 1:14:04 AI
n-Butylbenzene	ND	3.0	μg/L	1	3/28/2013 1:14:04 AI
n-Propylbenzene	ND	1.0	μg/L	1	3/28/2013 1:14:04 Al
sec-Butylbenzene	ND	1.0	μg/L	1	3/28/2013 1:14:04 Al
Styrene	ND	1.0	μg/L	1	3/28/2013 1:14:04 Al
tert-Butylbenzene	ND	1.0	μg/L	1	3/28/2013 1:14:04 Al
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/28/2013 1:14:04 Al
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/28/2013 1:14:04 AM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
trans-1,2-DCE	ND	1.0	μg/L	1	3/28/2013 1:14:04 Af
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/28/2013 1:14:04 Al
1,2,3-Trichlorobenzene	· ND	1.0	μg/L	1	3/28/2013 1:14:04 Al
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/28/2013 1:14:04 Al
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/28/2013 1:14:04 Al
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/28/2013 1:14:04 Al
Trichlorofluoromethane	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/28/2013 1:14:04 AM
Vinyl chloride	ND	1.0	μg/L	1	3/28/2013 1:14:04 AM

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits 3 of 24

Analytical Report

Lab Order 1303A26

Date Reported: 4/19/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample ID: ODIE Chapman Pond 2

Project: Enterprise WEP III Water Sampling

Collection Date: 3/26/2013 10:15:00 AM

Lab ID:

1303A26-001

Matrix: AQUEOUS

Received Date: 3/26/2013 3:40:00 PM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES						Analyst: RAA
Xylenes, Total	ND	1.5		µg/L	1	3/28/2013 1:14:04 AM
Surr: 1,2-Dichloroethane-d4	86.9	70-130		%REC	1	3/28/2013 1:14:04 AM
Surr: 4-Bromofluorobenzene	108	69.5-130		%REC	1	3/28/2013 1:14:04 AM
Surr: Dibromofluoromethane	94.3	70-130		%REC	1	3/28/2013 1:14:04 AM
Surr: Toluene-d8	97.4	70-130		%REC	1	3/28/2013 1:14:04 AM
TOTAL PHENOLICS BY SW-846 9067						Analyst: SCC
Phenolics, Total Recoverable	ND	2.5		µg/L	1	4/15/2013
SM4500-H+B: PH						Analyst: JML
pH	8.05	1.68	Н	pH units	1	3/27/2013 6:27:59 PM
SM2540C MOD: TOTAL DISSOLVED S	SOLIDS					Analyst: KS
Total Dissolved Solids	1260	20.0	*	mg/L	1	4/1/2013 8:51:00 AM

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Analytical Report

Lab Order 1303A26

Date Reported: 4/19/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample ID: TRIP BLANK

Project: Enterprise WEP III Water Sampling Collection Date:

Lab ID: 1303A26-002 Matrix: TRIP BLANK Received Date: 3/26/2013 3:40:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8011/504.1: EDB					Analyst: LRV
1,2-Dibromoethane	ND	0.010	μg/L	1	3/27/2013 4:09:18 PM
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Benzene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
Toluene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
Ethylbenzene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
Naphthalene	ND	2.0	μg/L	1	3/28/2013 1:41:56 AM
1-Methylnaphthalene	ND	4.0	μg/L	1	3/28/2013 1:41:56 AM
2-Methylnaphthalene	ND	4.0	μg/L	1	3/28/2013 1:41:56 AM
Acetone	ND	10	μg/L	1	3/28/2013 1:41:56 AM
Bromobenzene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
Bromodichloromethane	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
Bromoform	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
Bromomethane	ND	3.0	μg/L	1	3/28/2013 1:41:56 AM
2-Butanone	ND	10	μg/L	1	3/28/2013 1:41:56 AM
Carbon disulfide	ND	10	μg/L	1	3/28/2013 1:41:56 AM
Carbon Tetrachloride	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
Chlorobenzene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
Chloroethane	ND	2.0	μg/L	1	3/28/2013 1:41:56 AM
Chloroform	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
Chloromethane	ND	3.0	μg/L	1	3/28/2013 1:41:56 AM
2-Chlorotoluene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
4-Chlorotoluene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
cis-1,2-DCE	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	3/28/2013 1:41:56 AM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	3/28/2013 1:41:56 AM
Dibromochloromethane	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
Dibromomethane	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
2,2-Dichloropropane	ND	2.0	μg/L	1	3/28/2013 1:41:56 AM

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- Analyte detected below quantitation in
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits Page 5 of 24

Analytical Report

Lab Order 1303A26

Date Reported: 4/19/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions Client Sample ID: TRIP BLANK

Project: Enterprise WEP III Water Sampling Collection Date:

Lab ID: 1303A26-002 Matrix: TRIP BLANK Received Date: 3/26/2013 3:40:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
1,1-Dichloropropene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
2-Hexanone	ND	10	μg/L	1	3/28/2013 1:41:56 AM
Isopropylbenzene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
4-Methyl-2-pentanone	ND	10	μg/L	1	3/28/2013 1:41:56 AM
Methylene Chloride	ND	3.0	µg/L	1	3/28/2013 1:41:56 AM
n-Butylbenzene	ND	3.0	μg/L	1	3/28/2013 1:41:56 AM
n-Propylbenzene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
sec-Butylbenzene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
Styrene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
tert-Butylbenzene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/28/2013 1:41:56 AM
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	3/28/2013 1:41:56 AM
trans-1,2-DCE	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
Trichlorofluoromethane	ND	1.0	µg/L	1	3/28/2013 1:41:56 AM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/28/2013 1:41:56 AM
Vinyl chloride	ND	1.0	μg/L	1	3/28/2013 1:41:56 AM
Xylenes, Total	ND	1.5	µg/L	1	3/28/2013 1:41:56 AM
Surr: 1,2-Dichloroethane-d4	87.9	70-130	%REC	1	3/28/2013 1:41:56 AM
Surr: 4-Bromofluorobenzene	104	69.5-130	%REC	1	3/28/2013 1:41:56 AM
Surr: Dibromofluoromethane	93.9	70-130	%REC	1	3/28/2013 1:41:56 AM
Surr: Toluene-d8	96.1	70-130	%REC	1	3/28/2013 1:41:56 AM

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Address:

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

130328026

Project Name:

1303A26

Analytical Results Report

Sample Number

130328026-001

Sampling Date

3/26/2013

Date/Time Received 3/28/2013 12:00 PM

Client Sample ID

1303A26-001I / ODIE CHAPMAN POND 2

Sampling Time 10:15 AM

Matrix

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifler
Cyanide	ND	mg/L	0.01	4/8/2013	CRW	EPA 335.4	

Authorized Signature

John Coddington, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND

Not Detected

PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

04/11/13 11:29 15262-20-1

ANALYTICAL RESULTS

Project:

1303A26

Pace Project No.:

Radium-228

3090660

Sample: 1303A26-001 ODIE

Lab ID: 3090660001

Collected: 03/26/13 10:15 Received: 03/28/13 09:55 Matrix: Water

pCi/L

Chapman Pond PWS:

Site ID:

EPA 904.0

Sample Type:

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.000 ± 0.258 (0.416)	pCi/L	04/17/13 15:38	13982-63-3	

0.435 ± 0.371 (0.753)

Date: 04/18/2013 10:41 AM

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project:

1303A26

Pace Project No.:

3090660

QC Batch:

RADC/15217

EPA 904.0

Analysis Method:

EPA 904.0

Analysis Description:

904.0 Radium 228

Associated Lab Samples:

QC Batch Method:

METHOD BLANK: 562215

Matrix: Water

Associated Lab Samples:

3090660001

3090660001

Parameter

Act ± Unc (MDC)

Units

Analyzed

Qualifiers

Radium-228

 $0.728 \pm 0.400 \quad (0.718)$

pCi/L

04/11/13 12:00

Date: 04/18/2013 10:41 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project:

1303A26

Pace Project No.:

3090660

QC Batch:

RADC/15211

Analysis Method:

EPA 903.1

QC Batch Method:

EPA 903.1

Analysis Description:

903.1 Radium-226

Associated Lab Samples:

METHOD BLANK: 561615

Matrix: Water

Associated Lab Samples:

3090660001

3090660001

Parameter

Act ± Unc (MDC)

Units

Analyzed

Qualiflers

Radium-226

 $-0.164 \pm 0.356 \quad (0.822)$

pCi/L

04/17/13 14:21

Date: 04/18/2013 10:41 AM

REPORT OF LABORATORY ANALYSIS

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303A26

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB		Type: ME					200.7: Disso	lved Meta	ls	
Client ID: PBW	Bato	th ID: R9	603	F	RunNo: 9	603				
Prep Date: 2/22/20	013 Analysis I	Date: 4/	2/2013	S	SeqNo: 2	73747	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	ND	0.020								
Barium	ND	0.0020								
Boron	ND	0.040								
Cadmium	ND	0.0020								
Chromium	ND	0.0060								
Cobalt	ND	0.0060								
Copper	ND	0.0060								
Iron	ND	0.020								
Manganese	ND	0.0020								
Molybdenum	ND	0.0080								
Nickel	ND	0.010								
Silver	ND	0.0050								

Sample ID LCS	Samp	Type: LC	:S	Tes	TestCode: EPA Method 200.7: Dissolved Metals					
Client ID: LCSW	Bato	ch ID: R9	603	F	RunNo: 9	603				
Prep Date:	Analysis	Date: 4/	2/2013	S	SeqNo: 2	73748	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	0.55	0.020	0.5000	0	110	85	115			
Barium	0.49	0.0020	0.5000	0	98.8	85	115			
Boron	0.50	0.040	0.5000	0	101	85	115			
Cadmium	0.49	0.0020	0.5000	0	99.0	85	115			
Chromium	0.50	0.0060	0.5000	0	101	85	115			
Cobalt	0.49	0.0060	0.5000	0	97.1	85	115			
Copper	0.49	0.0060	0.5000	0	99.0	85	115			
Iron	0.49	0.020	0.5000	0	97.7	85	115			
Manganese	0.51	0.0020	0.5000	0	101	85	115			
Molybdenum	0.49	0.0080	0.5000	0	98.9	85	115			
Nickel	0.47	0.010	0.5000	0	94.9	85	115			
Silver	0.096	0.0050	0.1000	0	95.8	85	115			

Sample ID 1303B69-012AMS	Samp	Type: MS	3	Tes	200.7: Dissol	ved Meta	ls			
Client ID: BatchQC	Bato	h ID: R9	603	F	RunNo: 9	603				
Prep Date:	Analysis I	Date: 4/	2/2013	S	SeqNo: 2	73802	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	0.57	0.020	0.5000	0.02401	110	70	130			
Barium	0.50	0.0020	0.5000	0.01066	97.2	70	130			
Cadmium	0.52	0.0020	0.5000	0	104	70	130			
Chromium	0.47	0.0060	0.5000	0	94.2	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 7 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A26

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 1303B69-012AMS	Samp	Type: MS	}	Tes	TestCode: EPA Method 200.7: Dissolved Metals					
Client ID: BatchQC	Bato	h ID: R9	603	F	Run N o: 9	603				
Prep Date:	Analysis I	Date: 4/	2/2013	8	SeqNo: 2	73802	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Cobalt	0.49	0.0060	0.5000	0.01697	94.3	70	130			
Copper	0.52	0.0060	0.5000	0	104	70	130			
Molybdenum	0.47	0.0080	0.5000	0	94.0	70	130			
Nickel	0.47	0.010	0.5000	0.03147	87.2	70	130			
Silver	0.11	0.0050	0.1000	0	106	70	130			

Sample ID 1303B69-01	2AMSD Samp	Type: MS	SD	Tes	tCode: El	PA Method	200.7: Disso	olved Meta	ls	
Client ID: BatchQC	Bato	h ID: R9	603	F	RunNo: 9	603				
Prep Date:	Analysis I	Date: 4/	2/2013	S	SeqNo: 2	73803	Units: mg/l	_		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	0.57	0.020	0.5000	0.02401	108	70	130	1.54	20	
Barium	0.50	0.0020	0.5000	0.01066	97.2	70	130	0.0242	20	
Cadmium	0.52	0.0020	0.5000	0	104	70	130	0.319	20	
Chromium	0.47	0.0060	0.5000	0	94.3	70	130	0.0934	20	
Cobalt	0.49	0.0060	0.5000	0.01697	94.3	70	130	0.00819	20	
Copper	0.51	0.0060	0.5000	0	103	70	130	0.959	20	
Molybdenum	0.47	0.0080	0.5000	0	94.9	70	130	1.04	20	
Nickel	0.47	0.010	0.5000	0.03147	87.5	70	130	0.261	20	
Silver	0.11	0.0050	0.1000	0	108	70	130	1.39	20	

Sample ID LCS	Samp	Type: LC	s	Tes	tCode: El	PA Method	200.7: Dissol	ved Meta	ls	
Client ID: LCSW	Bato	ch ID: R9	603	F	Run N o: 9	603				
Prep Date:	Analysis	Date: 4/	2/2013	S	SeqNo: 2	73828	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	0.54	0.020	0.5000	0	109	85	115			
Barium	0.48	0.0020	0.5000	0	96.2	85	115			
Boron	0.50	0.040	0.5000	0	99.8	85	115			
Cadmium	0.49	0.0020	0.5000	0	98.3	85	115			
Chromium	0.50	0.0060	0.5000	0	99.7	85	115			
Cobalt	0.48	0.0060	0.5000	0	95.3	85	115			
Copper	0.50	0.0060	0.5000	0	99.4	85	115			
Iron	0.48	0.020	0.5000	0	96.4	85	115			
Manganese	0.49	0.0020	0.5000	0	98.8	85	115			
Molybdenum	0.49	0.0080	0.5000	0	98.8	85	115			
Nickel	0.47	0.010	0.5000	0	94.7	85	115			
Silver	0.098	0.0050	0.1000	0	98.0	85	115			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- rting Limit Page 8 of 24

Hall Environmental Analysis Laboratory, Inc.

SampType: MSD

WO#:

1303A26

19-Apr-13

Client: HRL Compliance Solutions

Project: Enterprise WEP III Water Sampling

Sample ID 1303988-002AMS	Samp	Type: MS	•	Tes	tCode: El	PA Method	200.7: Dissol	ved Meta	ls	
Client ID: BatchQC	Bato	h ID: R9	603	F	RunNo: 9	603				
Prep Date:	Analysis I	Date: 4/	2/2013	\$	SeqNo: 2	73865	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	0.59	0.020	0.5000	0.02253	114	70	130			
Barium	0.51	0.0020	0.5000	0.008750	100	70	130			
Cadmium	0.54	0.0020	0.5000	0	107	70	130			
Chromium	0.49	0.0060	0.5000	0	97.2	70	130			
Cobalt	0.50	0.0060	0.5000	0.01029	97.7	70	130			
Copper	0.53	0.0060	0.5000	0	106	70	130			
iron	0.53	0.020	0.5000	0.05043	95.8	70	130			
Manganese	0.75	0.0020	0.5000	0.2698	95.2	70	130			
Molybdenum	0.52	0.0080	0.5000	0.03517	97.1	70	130			
Nickel	0.46	0.010	0.5000	0	91.3	70	130			
Silver	0.10	0.0050	0.1000	0	103	70	130			

Client ID: BatchQC	Bato	h ID: R9	603	F	RunNo: 9	603				
Prep Date:	Analysis I	Date: 4/	2/2013	9	SeqNo: 2	73866	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	0.59	0.020	0.5000	0.02253	114	70	130	0.0288	20	,
Barium	0.52	0.0020	0.5000	0.008750	101	70	130	1.14	20	
Cadmium	0.54	0.0020	0.5000	0	109	70	130	1.42	20	
Chromium	0.49	0.0060	0.5000	0	98.6	70	130	1.34	20	
Cobalt	0.51	0.0060	0.5000	0.01029	99.5	70	130	1.82	20	
Copper	0.53	0.0060	0.5000	0	106	70	130	0.713	20	
Iron	0.53	0.020	0.5000	0.05043	96.3	70	130	0.409	20	
Manganese	0.75	0.0020	0.5000	0.2698	96.4	70	130	0.804	20	
Molybdenum	0.53	0.0080	0.5000	0.03517	99.6	70	130	2.34	20	
Nickel	0.47	0.010	0.5000	0	93.2	70	130	2.06	20	
Silver	0.11	0.0050	0.1000	0	107	70	130	3.57	20	

Sample ID MB	SampType: MBLK	TestCode: EPA Method 200.7: Dissolved Metals
Client ID: PBW	Batch ID: R9737	RunNo: 9737
Prep Date: 2/22/2013	Analysis Date: 4/5/2013	SeqNo: 277371 Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Zinc	ND 0.010	

Sample ID LCS	SampType: LCS	TestCode: EPA Method 2	200.7: Dissolved Metals
Client ID: LCSW	Batch ID: R9737	RunNo: 9737	
Prep Date:	Analysis Date: 4/5/2013	SeqNo: 277372	Units: mg/L
Analyte	Result PQL SPK value SF	PK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

Sample pH greater than 2

Sample ID 1303988-002AMSD

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

TestCode: EPA Method 200.7: Dissolved Metals

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting LimitR RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Page 9 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

RPDLimit

1303A26

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID LCS

SampType: LCS

TestCode: EPA Method 200.7: Dissolved Metals

Client ID: LCSW

Batch ID: R9737

RunNo: 9737

Prep Date:

Analysis Date: 4/5/2013

SeqNo: 277372

Units: mg/L

Qual

Result

%RPD

SPK value SPK Ref Val **PQL** %REC LowLimit HighLimit Analyte 0.48 0.5000 96.3 85 115 0.010 Zinc

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH greater than 2
- RLReporting Detection Limit

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- RPD outside accepted recovery limits R
- S Spike Recovery outside accepted recovery limits

Page 10 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303A26 19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 1303A24-001GMS

SampType: MS

TestCode: EPA 200.8: Dissolved Metals

LowLimit

70

Client ID:

BatchQC

Batch ID: R9819

RunNo: 9819

Prep Date:

Analysis Date: 4/12/2013

SeqNo: 279839

Units: mg/L

Result

Result

0.025

Qual

Analyte

PQL 0.16 0.0050 SPK value SPK Ref Val 0.1250 0.03007

%REC 100

HighLimit

RPDLimit

Uranium

Sample ID LCS

SampType: LCS

TestCode: EPA 200.8: Dissolved Metals

RunNo: 9819

130

0

0

SPK value SPK Ref Val %REC LowLimit

Prep Date:

Client ID:

LCSW

Batch ID: R9819 Analysis Date: 4/12/2013

PQL

0.0010

SeqNo: 279843

Units: mg/L

%RPD

%RPD

%RPD

Analyte Arsenic

0.024 0.0010 0.025 0.0010 0.023

0.02500 0.02500 0.0010 0.02500

0.02500

SPK value SPK Ref Vai %REC 0 95.1 0 100 85 85

85

85

HighLimit 115

115

115

115

RPDLimit

Qual

Lead Selenium Uranium

Sample ID MB

PBW

SampType: MBLK

Batch ID: R9819

TestCode: EPA 200.8: Dissolved Metals RunNo: 9819

SeqNo: 279844

91.3

99.4

HighLimit

Units: mg/L

RPDLimit

Qual

Analyte Arsenic Lead

Client ID:

Prep Date:

PQL Result ND 0.0010 ND 0.0010

Analysis Date: 4/12/2013

Selenium Uranium

0.0010 ND ND 0.0010

Qualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Analyte detected below quantitation limits

P Sample pH greater than 2

RL Reporting Detection Limit В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits Page 11 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A26

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB-6886

SampType: mblk

TestCode: EPA Method 245.1: Mercury

PBW Client ID:

Batch ID: 6886

RunNo: 9762

Prep Date: 4/9/2013 Analysis Date: 4/10/2013

PQL

SeqNo: 278088

Units: mg/L

HighLimit

RPDLimit

Qual

Analyte Mercury

ND 0.00020

Sample ID LCS-6886

SampType: Ics

TestCode: EPA Method 245.1: Mercury

LowLimit

Client ID: LCSW

Batch ID: 6886

RunNo: 9762

Prep Date: 4/9/2013 Analysis Date: 4/10/2013

SeqNo: 278089

Units: mg/L

120

Analyte

%REC

HighLimit

PQL SPK value SPK Ref Val

LowLimit 80 **RPDLimit**

Mercury

0.0049 0.00020 0.005000

SPK value SPK Ref Val %REC

98.7

%RPD

%RPD

%RPD

Qual

Sample ID 1304188-001AMS

SampType: ms

TestCode: EPA Method 245.1: Mercury RunNo: 9762

Client ID: **BatchQC**

4/9/2013

Batch ID: 6886

Analysis Date: 4/10/2013

0.005000

0.005000

SeqNo: 278092

Units: mg/L

Analyte Mercury

0.0047 0.00020

PQL SPK value SPK Ref Val

%REC

HighLimit LowLimit

RPDLimit

Qual

Prep Date:

Sample ID 1304188-001AMSD

SampType: msd

TestCode: EPA Method 245.1: Mercury

Client ID: Prep Date:

BatchQC 4/9/2013

Batch ID: 6886 Analysis Date: 4/10/2013

RunNo: 9762 SeqNo: 278093

94.9

Units: mg/L

125

Qual

Analyte Mercury

0.0048 0.00020

SPK value SPK Ref Val

%REC LowLimit 96.2

75

HighLimit 125 %RPD 1.31

RPDLimit

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

Reporting Detection Limit

Analyte detected below quantitation limits

P

Sample pH greater than 2

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits Spike Recovery outside accepted recovery limits Page 12 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: **1303A26 19-Apr-13**

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	300.0: Anions	•		
Client ID: PBW	Batch	ı ID: R9	473	F	RunNo: 9	473				
Prep Date:	Analysis D	ate: 3/	27/2013	8	SeqNo: 2	70383	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Chloride	ND	0.50								
Nitrogen, Nitrate (As N)	ND	0.10								
Sulfate	ND	0.50								

Sample ID LCS	SampT	ype: LC	S	Tes	tCode: El	PA Method	300.0: Anion:	s		
Client ID: LCSW	Batch	ID: R9	473	F	RunNo: 9	473				
Prep Date:	Analysis D	ate: 3/	27/2013	\$	SeqNo: 2	70385	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.49	0.10	0.5000	0	97.7	90	110			
Chloride	4.7	0.50	5.000	0	93.8	90	110			
Nitrogen, Nitrate (As N)	2.5	0.10	2.500	0	98.1	90	110			
Sulfate	9.5	0.50	10.00	0	94.8	90	110			

Sample ID 1303A25-001EMS	SampT	ype: MS	3	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID: BatchQC	Batch	iD: R9	473	F	RunNo: 9	473				
Prep Date:	Analysis D	ate: 3/	27/2013	S	SeqNo: 2	70410	Units: mg/L	•		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.66	0.10	0.5000	0.1862	94.3	76.6	110			
Chloride	7.5	0.50	5.000	2.616	96.8	87.8	111			
Nitrogen, Nitrate (As N)	2.5	0.10	2.500	0.03120	98.0	90.4	113			

Sample ID	1303A25-001EMSD	SampT	ype: M S	SD	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID:	BatchQC	Batch	ID: R9	473	F	RunNo: 9	473				
Prep Date:	,	Analysis D	ate: 3/	27/2013	S	SeqNo: 2	70411	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride		0.66	0.10	0.5000	0.1862	94.8	76.6	110	0.395	20	
Chloride		7.5	0.50	5.000	2.616	98.4	87.8	111	1.04	20	
Nitrogen, Nitrate	(A c N)	2.5	0.10	2.500	0.03120	98.5	90.4	113	0.462	20	

Sample ID 1303A26-001EM	SampT	уре: М S	;	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID: ODIE Chapman	Pon Batch	ID: R9	473	F	tunNo: 9	473				
Prep Date:	Analysis D	ate: 3/	27/2013	S	SeqNo: 2	70413	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	1.4	0.10	0.5000	1.003	69.8	76.6	110		· -	S
Chloride	18	0.50	5.000	12.88	109	87.8	111			
Nitrogen, Nitrate (As N)	2.8	0.10	2.500	0.2940	98.7	90.4	113			

R

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

RPD outside accepted recovery limits

Page 13 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A26

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 1303A26-00	1EMSD SampT	ype: MS	SD	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID: ODIE Chapr	man Pon Batch	n ID: R9	473	F	RunNo: 9	473				
Prep Date:	Analysis D	ate: 3/	27/2013	5	SeqNo: 2	70414	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	1.3	0.10	0.5000	1.003	56.0	76.6	110	5.24	20	S
Chloride	18	0.50	5.000	12.88	108	87.8	111	0.117	20	
Nitrogen, Nitrate (As N)	2.8	0.10	2.500	0.2940	98.9	90.4	113	0.214	20	

Sample ID MB	SampT	ype: ME	BLK	Tes	tCode: El	ode: EPA Method 300.0: Anions					
Client ID: PBW	Batch	ID: R9	473	F	RunNo: 9	473					
Prep Date:	Analysis D	ate: 3/	27/2013	5	SeqNo: 2	70445	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Fluoride	ND	0.10									
Chloride	ND	0.50									
Nitrogen, Nitrate (As N)	ND	0.10									
Sulfate	ND	0.50									

Sample ID LCS	SampT	ype: LC	S	Tes	tCode: El	PA Method	300.0: Anions	•		
Client ID: LCSW	Batch	ID: R9	473	F	RunNo: 9	473				
Prep Date:	Analysis D	ate: 3/	27/2013	5	SeqNo: 2	70446	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.50	0.10	0.5000	0	99.7	90	110			
Chloride	4.7	0.50	5.000	0	94.3	90	110			
Nitrogen, Nitrate (As N)	2.5	0.10	2.500	0	98.7	90	110			
Sulfate	9.6	0.50	10.00	0	95.6	90	110			

Sample ID	1303A75-002AMS	SampT	ype: MS	6	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID:	BatchQC	Batch	ID: R9	473	F	RunNo: 9	473				
Prep Date:		Analysis D	ate: 3/	28/2013	S	SeqNo: 2	70456	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride		1.3	0.10	0.5000	0.8486	93.5	76.6	110		-	
Nitrogen, Nitrat	te (As N)	3.5	0.10	2.500	0.9291	103	90.4	113			

Sample ID	1303A75-002AMSD	SampTy	/pe: MS	SD	les	tCode: El	PA Method	300.0: Anions	3		
Client ID:	BatchQC	Batch	ID: R9	473	R	RunNo: 9	473				
Prep Date:		Analysis Da	ate: 3/	28/2013	S	SeqNo: 2	70457	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Fluoride		Result 1.3	PQL 0.10	SPK value 0.5000	SPK Ref Val 0.8486	%REC 95.6	LowLimit 76.6	HighLimit 110	%RPD 0.795	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 14 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A26

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB-6695

SampType: MBLK

TestCode: EPA Method 8011/504.1: EDB

Client ID:

PBW

3/27/2013

Batch ID: 6695

RunNo: 9472

Analysis Date: 3/27/2013

SeqNo: 270323

Units: µg/L

Analyte

Prep Date:

Result

SPK value SPK Ref Val %REC LowLimit **PQL**

HighLimit

%RPD **RPDLimit** Qual

1,2-Dibromoethane

ND 0.010

SampType: LCS

Analysis Date: 3/27/2013

TestCode: EPA Method 8011/504.1: EDB

Client ID: LCSW Prep Date: 3/27/2013

Sample ID LCS-6695

Batch ID: 6695

RunNo: 9472

SeqNo: 270324

LowLimit

Units: µg/L

70

Analyte

Client ID:

Result

SPK value SPK Ref Val

%REC

%RPD

0.11

PQL 0.010 0.1000

0

106

HighLimit 130 **RPDLimit**

Qual

1,2-Dibromoethane

Sample ID LCSD-6695

LCSW

Prep Date: 3/27/2013

SampType: LCS

RunNo: 9472

TestCode: EPA Method 8011/504.1: EDB

Units: µg/L

Analysis Date: 3/27/2013

Batch ID: 6695

SeqNo: 270326 %REC SPK value SPK Ref Val

LowLimit

HighLimit

%RPD

RPDLimit

Qual

Analyte 1,2-Dibromoethane Result 0.11

PQL 0.010

0.1000

108

70

130

1.87

Qualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Ī Analyte detected below quantitation limits

Sample pH greater than 2

Reporting Detection Limit RL

Analyte detected in the associated Method Blank В

Η ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Holding times for preparation or analysis exceeded

Page 15 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A26

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Project: Enterpr	ise wer iii	waters	Samping							
Sample ID MB-6681	SampTy	/pe: ME	BLK	Tes	tCode: E	PA Method	8082: PCB's			
Client ID: PBW	Batch	ID: 668	81	F	RunNo: 9	533				
Prep Date: 3/27/2013	Analysis Da	ate: 3/	29/2013	5	SeqNo: 2	72050	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	ND	1.0				-				
Aroclor 1221	ND	1.0								
Aroclor 1232	ND	1.0								
Aroclor 1242	ND	1.0								
Aroclor 1248	ND	1.0								
Aroclor 1254	ND	1.0								
Aroclor 1260	ND	1.0								
Surr: Decachlorobiphenyl	2.5		2.500		99.6	23.9	124			
Surr: Tetrachloro-m-xylene	2.1		2.500		82.4	28.1	139			
Sample ID LCS-6681	SampTy	ype: LC	s	Tes	tCode: E	PA Method	8082: PCB's			
Client ID: LCSW	Batch	ID: 66	81	F	RunNo: 9	533				
Prep Date: 3/27/2013	Analysis Da	ate: 3/	29/2013	5	SeqNo: 2	72052	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	2.8	1.0	5.000	0	55.8	32.3	121			
Aroclor 1260	4.1	1.0	5.000	0	82.5	34	128			
Surr: Decachlorobiphenyl	2.3		2.500		93.6	23.9	124			
Surr: Tetrachloro-m-xylene	1.8		2.500		74.0	28.1	139			
Sample ID LCSD-6681	SampT	ype: LC	SD	Tes	tCode: E	PA Method	8082: PCB's			
Client ID: LCSS02	Batch	ID: 66	81	F	RunNo: 9	533				
Prep Date: 3/27/2013	Analysis Da	ate: 3/	29/2013	5	SeqNo: 2	72054	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	2.4	1.0	5.000	0	47.4	32.3	121	16.3	29.9	
Aroclor 1260	3.5	1.0	5.000	0	69.2	34	128	17.5	25.9	

2.500

2.500

1.9

1.5

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- P Sample pH greater than 2

Surr: Decachlorobiphenyl

Surr: Tetrachloro-m-xylene

Reporting Detection Limit

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit RPD outside accepted recovery limits

77.2

61.6

23.9

28.1

124

139

0

0

R

Page 16 of 24

0

0

Spike Recovery outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A26

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 5mi-rb	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: R9	466	F	RunNo: 9	466				
Prep Date:	Analysis D	ate: 3/	27/2013	S	SeqNo: 2	70282	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- Sample pH greater than 2
- RLReporting Detection Limit

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н

Spike Recovery outside accepted recovery limits

- ND Not Detected at the Reporting Limit
- R
- RPD outside accepted recovery limits

Page 17 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A26

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 5ml-rb	SampT	ype: ME	BLK	Test	Code: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: R9	466	R	lunNo: 9	466				
Prep Date:	Analysis D	ate: 3/	27/2013	S	eqNo: 2	70282	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Hexachlorobutadiene	ND	1.0	-		-					
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.7		10.00		87.2	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		106	69.5	130			
Surr: Dibromofluoromethane	9.6		10.00		95.8	70	130			
Surr: Toluene-d8	9.6		10.00		96.1	70	130			

Sample ID 100ng ics	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	ID: R9	466	F	RunNo: 9	466				
Prep Date:	Analysis D	ate: 3/	27/2013	8	SeqNo: 2	70285	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	106	70	130			
Toluene	20	1.0	20.00	0	99.2	80	120			
Chlorobenzene	19	1.0	20.00	0	96.0	70	130			
1,1-Dichloroethene	21	1.0	20.00	0	104	85.8	133			
Trichloroethene (TCE)	19	1.0	20.00	0	93.6	70	130			

Qualifiers:

Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

Analyte detected below quantitation limits

P Sample pH greater than 2

Reporting Detection Limit

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

Not Detected at the Reporting Limit ND

R RPD outside accepted recovery limits

Page 18 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A26

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Surr: Toluene-d8

Enterprise WEP III Water Sampling

8.7

10

9.4

9.5

10.00

10.00

10.00

10.00

Sample ID 100ng Ics	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	ID: R9	466	F	RunNo: 9	466				
Prep Date:	Analysis D	ate: 3/	27/2013	S	SeqNo: 2	70285	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	8.8		10.00		88.1	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		106	69.5	130			
Surr: Dibromofluoromethane	9.2		10.00		92.4	70	130			
Surr: Toluene-d8	9.4		10.00		94.4	70	130			
Sample ID 1303a13-001a ms	SampT	ype: MS	3	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Sample ID 1303a13-001a ms Client ID: BatchQC	•	ype: MS			tCode: El		8260B: VOL	ATILES		
·	•	n ID: R9	466	F		466	8260B: VOL Units: µg/L	ATILES		
Client ID: BatchQC	Batch	n ID: R9	466 27/2013	F	RunNo: 9	466		ATILES %RPD	RPDLimit	Qual
Client ID: BatchQC Prep Date:	Batch Analysis D	n ID: R9 ate: 3/	466 27/2013	F	RunNo: 9 SeqNo: 2	466 70301	Units: µg/L		RPDLimit	Qual
Client ID: BatchQC Prep Date: Analyte	Batch Analysis D Result	n ID: R9 hate: 3/	27/2013 SPK value	F S SPK Ref Val	RunNo: 9 SeqNo: 2 %REC	466 70301 LowLimit	Units: µg/L HighLimit		RPDLimit	Qual
Client ID: BatchQC Prep Date: Analyte Benzene	Batch Analysis D Result	PQL 1.0	27/2013 SPK value 20.00	SPK Ref Val	RunNo: 9 SeqNo: 2 %REC 102	466 70301 LowLimit 70	Units: µg/L HighLimit		RPDLimit	Qual
Client ID: BatchQC Prep Date: Analyte Benzene Toluene	Batch Analysis D Result 20 20	PQL 1.0 1.0	27/2013 SPK value 20.00 20.00	SPK Ref Val	RunNo: 9. SeqNo: 2 **REC 102 98.7	466 70301 LowLimit 70 68.5	Units: µg/L HighLimit 130 128		RPDLimit	Qual

Sample ID 1303a13-001a ms	sd SampT	ype: MS	SD	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: BatchQC	Batch	ID: R9	466	F	RunNo: 9	466				
Prep Date:	Analysis D	ate: 3/	27/2013	\$	SeqNo: 2	70302	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	102	70	130	0.0383	20	
Toluene	19	1.0	20.00	0	95.1	68.5	128	3.73	20	
Chlorobenzene	19	1.0	20.00	0	94.0	70	130	3.53	20	
1,1-Dichloroethene	20	1.0	20.00	0	101	70	130	3.66	20	
Trichloroethene (TCE)	18	1.0	20.00	0	91.8	61.3	102	1.98	20	
Surr: 1,2-Dichloroethane-d4	9.1		10.00		91.0	70	130	0	0	
Surr: 4-Bromofluorobenzene	10		10.00		101	69.5	130	0	0	
Surr: Dibromofluoromethane	9.5		10.00		95.3	70	130	0	0	
Surr: Toluene-d8	9.4		10.00		94.1	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

70

70

70

69.5

87.1

102

94.3

95.1

130

130

130

130

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 19 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303A26

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB-6682	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8310: PAHs			
Client ID: PBW	Batcl	n iD: 66	B2	F	RunNo: 9	739				
Prep Date: 3/27/2013	Analysis D)ate: 4/	9/2013	S	SeqNo: 2	77429	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	2.0								
2-Methylnaphthalene	ND	2.0								
Acenaphthylene	ND	2.5								
Acenaphthene	ND	5.0								
Fluorene	ND	0.80								
Phenanthrene	ND	0.60								
Anthracene	ND	0.60								
Fluoranthene	ND	0.30								
Pyrene	ND	0.30								
Benz(a)anthracene	ND	0.070								
Chrysene	ND	0.20								
Benzo(b)fluoranthene	ND	0.10								
Benzo(k)fluoranthene	ND	0.070								
Benzo(a)pyrene	ND	0.070								
Dibenz(a,h)anthracene	ND	0.12								
Benzo(g,h,i)perylene	ND	0.080								
Indeno(1,2,3-cd)pyrene	ND	0.080								
Surr: Benzo(e)pyrene	14		20.00		69.0	46.4	106			

Sample ID LCS-6682	SampT	ype: LC	S	Test	tCode: EF	PA Method	8310: PAHs			
Client ID: LCSW	Batch	n ID: 668	82	R	tunNo: 9	739				
Prep Date: 3/27/2013	Analysis D)ate: 4/	9/2013	S	SeqNo: 2	77437	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	55	2.0	80.00	0	69.3	46	82.9			
1-Methylnaphthalene	58	2.0	80.20	0	72.3	47.2	85.8			
2-Methylnaphthalene	58	2.0	80.00	0	72.1	48.4	84.6			
Acenaphthylene	100	2.5	80.20	0	130	58.7	78.7			S
Acenaphthene	59	5.0	80.00	0	74.3	55.3	85.1			
Fluorene	5.0	0.80	8.020	0	62.1	31.9	82.2			
Phenanthrene	2.4	0.60	4.020	0	60.4	54.5	81.9			
Anthracene	2.5	0.60	4.020	0	61.2	51.9	82.7			
Fluoranthene	5.3	0.30	8.020	0	66.1	57.6	83.7			
Pyrene	4.7	0.30	8.020	0	59.1	53.1	70.4			
Benz(a)anthracene	0.58	0.070	0.8020	0	72.3	48	85.7			
Chrysene	2.6	0.20	4.020	0	65.7	44.3	78.2			
Benzo(b)fluoranthene	0.74	0.10	1.002	0	73.9	60	90.4			
Benzo(k)fluoranthene	0.44	0.070	0.5000	0	88.0	61.4	89			
Benzo(a)pyrene	0.43	0.070	0.5020	0	85.7	63.5	88.6			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 20 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

20

20

20

20

20

20

20

20

20

20

20

20

20

1303A26

19-Apr-13

Client:

Fluorene

Phenanthrene

Anthracene

Pyrene

Fluoranthene

Benz(a)anthracene Chrysene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Dibenz(a,h)anthracene Benzo(g,h,i)perylene

Indeno(1,2,3-cd)pyrene

Surr: Benzo(e)pyrene

Benzo(a)pyrene

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

5.5

2.8

2.8

6.2

5.2

0.68

3.1

0.81

0.44

0.43

0.79

0.80

1.8

16

0.80

0.60

0.60

0.30

0.30

0.070

0.20

0.10

0.070

0.070

0.12

0.080

0.080

8.020

4.020

4.020

8.020

8.020

0.8020

4.020

1.002

0.5000

0.5020

1.002

1.000

2.004

20.00

Sample ID LCS-6682	SampT	ype: LC	s	Tes	tCode: El	PA Method	8310: PAHs			
Client ID: LCSW	Batch	1D: 66	82	F	Run N o: 9	739				
Prep Date: 3/27/2013	Analysis D	ate: 4/	9/2013	\$	SeqNo: 2	77437	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Dibenz(a,h)anthracene	0.88	0.12	1.002	0	87.8	57	92.6			
Benzo(g,h,i)perylene	0.88	0.080	1.000	0	88.0	55.4	95.9			
Indeno(1,2,3-cd)pyrene	1.6	0.080	2.004	0	80.3	52.7	88.6			
O D(-)	40		20.00		70.0	40.4	100			
Surr: Benzo(e)pyrene	16		20.00		79.0	46.4	106			
Sample ID LCSD-6682		ype: LC		Tes			8310: PAHs			
	SampT	ype: LC	SD			PA Method				
Sample ID LCSD-6682	SampT	1 ID: 66	SD 82	F	tCode: El	PA Method 739				
Sample ID LCSD-6682 Client ID: LCSS02	SampT Batch	1 ID: 66	SD 82 9/2013	F	tCode: El	PA Method 739	8310: PAHs	%RPD	RPDLimit	Qual
Sample ID LCSD-6682 Client ID: LCSS02 Prep Date: 3/27/2013 Analyte	SampT Batch Analysis D	n ID: 66	SD 82 9/2013	F	tCode: El RunNo: 9 SeqNo: 2	PA Method 739 77440	8310: PAHs Units: μg/L	%RPD 5.94	RPDLimit	Qual
Sample ID LCSD-6682 Client ID: LCSS02 Prep Date: 3/27/2013	SampT Batch Analysis D Result	n ID: 66 Date: 4/	SD 82 9/2013 SPK value	SPK Ref Val	tCode: El RunNo: 9 SeqNo: 2	PA Method 739 77440 LowLimit	8310: PAHs Units: µg/L HighLimit			Qual
Sample ID LCSD-6682 Client ID: LCSS02 Prep Date: 3/27/2013 Analyte Naphthalene	SampT Batch Analysis D Result 59	PQL 2.0	SD 82 9/2013 SPK value 80.00	SPK Ref Val	tCode: El RunNo: 9 SeqNo: 2 %REC 73.5	PA Method 739 77440 LowLimit 46	8310: PAHs Units: µg/L HighLimit 82.9	5.94	20	Qual
Sample ID LCSD-6682 Client ID: LCSS02 Prep Date: 3/27/2013 Analyte Naphthalene 1-Methylnaphthalene	SampT Batch Analysis D Result 59 62	PQL 2.0 2.0	SD 82 9/2013 SPK value 80.00 80.20	SPK Ref Val	tCode: El RunNo: 9 SeqNo: 2 %REC 73.5 76.9	PA Method 739 77440 LowLimit 46 47.2	8310: PAHs Units: µg/L HighLimit 82.9 85.8	5.94 6.20	20 20	Qual

0

0

0

0

0

0

0

0

0

0

0

0

69.0

70.1

69.9

76.7

64.3

84.8

77.9

80.8

88.0

85.7

78.8

80.0

88.3

78.1

31.9

54.5

51.9

57.6

53.1

44.3

61.4

63.5

55.4

52.7

57

48

60

82.2

81.9

82.7

83.7

70.4

85.7

78.2

90.4

88.6

92.6

95.9

88.6

106

89

10.5

14.9

13.3

14.8

8.48

15.9

17.0

9.03

10.8

9.52

9.47

0

0

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

S

Page 21 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A26

19-Apr-13

Client:

HRL Compliance Solutions

Result

Project:

Analyte

Enterprise WEP III Water Sampling

Sample ID MB-6969

SampType: MBLK

TestCode: Total Phenolics by SW-846 9067

Client ID: **PBW** Batch ID: 6969

RunNo: 9846

Prep Date: 4/15/2013

Analysis Date: 4/15/2013

SeqNo: 280297

Units: µg/L

PQL

HighLimit

RPDLimit

Qual

Phenolics, Total Recoverable

ND 2.5

TestCode: Total Phenolics by SW-846 9067

LCSW Client ID:

Sample ID LCS-6969

SampType: LCS Batch ID: 6969

RunNo: 9846

Prep Date: 4/15/2013

Analysis Date: 4/15/2013

PQL

2.5

SeqNo: 280298

Units: µg/L

Qual

Phenolics, Total Recoverable

Result 19 SPK value SPK Ref Val 20.00

%REC 0 93.2

SPK value SPK Ref Val %REC LowLimit

LowLimit

81.1

HighLimit

RPDLimit

Sample ID LCSD-6969

SampType: LCSD

TestCode: Total Phenolics by SW-846 9067

120

Client ID: LCSS02 Prep Date: 4/15/2013

Batch ID: 6969

RunNo: 9846 SeqNo: 280319

Units: µg/L HighLimit

Qual

Analyte

Analysis Date: 4/15/2013 POL

2.5

SPK value SPK Ref Val

%REC 0

99.0

%RPD 5.97

%RPD

%RPD

RPDLimit

Phenolics, Total Recoverable

Result

20

20.00

81.1

LowLimit

120

20

Qualifiers:

RL

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Reporting Detection Limit

J Analyte detected below quantitation limits

P Sample pH greater than 2

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Н ND

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Not Detected at the Reporting Limit Page 22 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303A26

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 1303a75-006a dup

SampType: dup

TestCode: SM4500-H+B: pH

BatchQC Client ID:

Batch ID: R9475

RunNo: 9475

Prep Date:

Analysis Date: 3/27/2013

SeqNo: 270581

Units: pH units

RPDLimit

Analyte

Result **PQL** 7.67 1.68

SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD

Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

Value above quantitation range E

Analyte detected below quantitation limits J

P Sample pH greater than 2

RLReporting Detection Limit Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit Page 23 of 24

RPD outside accepted recovery limits Spike Recovery outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303A26

19-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB-6727

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: **PBW** Batch ID: 6727

RunNo: 9534

Prep Date: 3/29/2013 Analysis Date: 4/1/2013

SeqNo: 272090

Units: mg/L

HighLimit

%RPD **RPDLimit**

Qual

Analyte Total Dissolved Solids Result **PQL** ND 20.0

SampType: LCS

TestCode: SM2540C MOD: Total Dissolved Solids

Sample ID LCS-6727

RunNo: 9534

LCSW Client ID:

3/29/2013

Batch ID: 6727 Analysis Date: 4/1/2013

SeqNo: 272091

Units: mg/L

RPDLimit

Qual

Analyte

Prep Date:

Result 1020 SPK value SPK Ref Val %REC

LowLimit 80

LowLimit

HighLimit 120

Total Dissolved Solids

Prep Date:

20.0

PQL

1000 18.00

SPK value SPK Ref Val %REC

101

%RPD

Sample ID 1303A71-003AMS

SampType: MS

RunNo: 9534

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: **BatchQC**

Batch ID: 6727

Result

1310

Result

1340

SeqNo: 272111

Units: mg/L

Analyte **Total Dissolved Solids**

3/29/2013

Analysis Date: 4/1/2013

PQL SPK value SPK Ref Val

1000

%REC 98.4

LowLimit HighLimit %RPD

RPDLimit

Qual

Sample ID 1303A71-003AMSD

SampType: MSD

20.0

TestCode: SM2540C MOD: Total Dissolved Solids

120

Client ID:

BatchQC

Batch ID: 6727

RunNo: 9534

LowLimit

80

Prep Date:

3/29/2013

Analysis Date: 4/1/2013

SegNo: 272112

Units: mg/L

Analyte **Total Dissolved Solids**

PQL 20.0

SPK value SPK Ref Val 1000

%REC

330.0

330.0

101

80

HighLimit 120 %RPD 1.96 **RPDLimit**

Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range

Sample pH greater than 2

- J Analyte detected below quantitation limits
- Reporting Detection Limit RL

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Η

Spike Recovery outside accepted recovery limits

Not Detected at the Reporting Limit

ND

S

R RPD outside accepted recovery limits Page 24 of 24

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-410;

Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: HRL COMPLIANCE SOL Work Order Number:	1303A26		RcptNo:	1
Received by/date: 03 210 13				
Logged By: Ashley Gallegos 3/26/2013 3:40:00 PM				
Completed By: Ashley Gallegos 3/26/2013 4:45:37 PM				·
Reviewed By: US 27 13				
Chain of Custody				
1. Custody seals intact on sample bottles?	Yes	No 🗆	Not Present	
2. Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present	
3. How was the sample delivered?	Client			
<u>Log In</u>				
4. Was an attempt made to cool the samples?	Yes 🗹	No 🗀	na 🗆	
5. Were all samples received at a temperature of >0° C to 6.0°C	Yes 🗹	No 🗆	NA 🗆	
6. Sample(s) in proper container(s)?	Yes 🗹	No 🗆		
7 Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗌		
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗹	No 🗆		
9. Was preservative added to bottles?	Yes 🗌	No 🗹	NA 🗆	
10.VOA vials have zero headspace?	Yes 🗹	No 🗆	No VOA Vials	
11. Were any sample containers received broken?	Yes \square	No 🗹 🛚	# -6	
			# of preserved bottles checked /	. 1
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yeş 🗹	No 🗔	for pH:	12) unless noted)
13. Are matrices correctly identified on Chain of Custody?	Yes 🗸	No 🗆	Adjusted?	No
14, is it clear what analyses were requested?	Yes 🗹	No 🗆		
15. Were all holding times able to be met?	Yes 🗸	No 🗆	Checked by:	ma
(If no, notify customer for authorization.)		L		σ
Special Handling (if applicable)				
16. Was client notified of all discrepancies with this order?	Yes 🗌	No 🗆	na 🗹	
Person Notified: Date:]
By Whom: Via:	eMail	Phone Fax	☐ In Person	
Regarding:				
Client Instructions:	a manufacture of the Assessment of the			
17. Additional remarks:				_
18. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Se	Seal Date	Signed By		

C	hain-	of-Cu	stody Record	Turn-Around	Time:]						=	NIZ.	ft e	30	NI	4=		-	1
Client:	HRL Co	mplian	ce Solutions Inc. (Standard						-							30				
				Project Name	Enterprise	WEP III.										tal.c			•••		•
Mailing	Address	2385	FIRED		water ?	ampling		49	01 H								M 87	109			
			Unition Co 81635	Project #:			1		el. 50					-			410				
	#:970	243 3	171	1	13-110.2							Α	naly	/sis	Req	ues	ŧ				
email o	r Fax#:	Knowe	@HRLCOMP.com	Project Mana	iger Kay La	ambert	=	(ylu	8					(04)	S						
	Package:						TMB's (8021)	TPH (Gas only)	M /		İ	SIMS)		04,8	CB,						
☐ Stan		·	☐ Level 4 (Full Validation)	Samples: 4	1 000 4		IB's) H	씸			ls o		O ₂ ,P	82 F					İ	
NEL NEL		☐ Othe	er	Gampier: A	ris Rowe		 +	ם	8	18.1	504.1)	8270)3,N(7 80		₹				N Z
□ EDD	(Type)_			s popular	22		BE	出	(G	9d 4	9	ō	etals	N,I	ides	₹	옷		J		اخ
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type		BTEX + MTBE	BTEX + MTBE +	TPH 8015B (GRO / DRO / MRO)	TPH (Method 418.1)	EDB (Method	PAH's (8310 or	RCRA 8 Metals	Anions (F,CI,NO3,NO2,PO4,SO4)	8081 Pesticides / 8082 PCB'	8260B (VOA)	8270 (Semi-VOA)		Mac		Air Bubbles (Y or N)
3/26/13	1015	SW	ODID CHAPMAN-Rood 2		4°C and See CON1	-001	X	X	X	X	X	X	X	X	X	X	X				
			Trip Blank			-002													X		
			· ·																		
																L					
										\dashv	_	_							\perp	_	
							L									<u> </u>					
							_	_		_		_							\square		\dashv
								<u> </u>		\dashv	_					_			-	_	_
					-		-		\vdash	_	_				_	-		-	\vdash	\dashv	-
							-	_	$\vdash \vdash$	\dashv						├	\vdash				-
		<u> </u>					-			\dashv						├			-	\dashv	-
Date: 3 24 3 Date:	Time: 1540 Time:	Relinquish Relinquish	Atu-	Received by:	11 Garia	Date Time // // // // // // // // // // // // //	Ren	nark Se	LLI s: L	a #	ام	el	~{	2	lie	5+	(l)	ـــــ €ن	 کرد کرد		413
																		•	•	هر د	

WQCC Bottles for ONE sample:

TEST

BOTTLE TYPE AND PRESERVATIVE

8260	3 x 40 mL HCI VOAs
504.1 EDB	2 x 40 mL Na2S2O3 VOAs
8082 PCB	2 x 1 liter unpreserved amber
8310 PAH	1 x 1 liter unpreserved amber
Phenols	1 x 1 liter H2SO4 amber
Anions, TDS, pH	1 x 500 mL unpreserved plastic
	1 x 125 mL H2SO4 plastic
Mercury	1 x 500 mL HNO3 plastic
Dissolved Metals	1 x 125 HNO3 plastic + filter & syringe
Total Cyanide	1 x 500 NaOH plastic amber
Radium 226/228	2 x 1 liter HNO3 plastic

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 23, 2013

Kay Lambert HRL Compliance Solutions 2385 F 1/2 Road Grand Junction, CO 81505

TEL: (970) 243-3271

FAX

RE: Enterprise WEP III Water Sampling

OrderNo.: 1303B08

Dear Kay Lambert:

Hall Environmental Analysis Laboratory received 2 sample(s) on 3/28/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

andel

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 4/23/2013

CLIENT: HRL Compliance Solutions

Client Sample ID: Hilltop Gas Station-Pond

Project: Enterprise WEP III Water Sampling Collection Date: 3/27/2013 10:20:00 AM

1303B08-001 Lab ID:

Matrix: AQUEOUS

Received Date: 3/28/2013 9:53:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8011/504.1: EDB					Analyst: LRW		
1,2-Dibromoethane	ND	0.010	μg/L	1	3/28/2013 8:38:24 PM		
EPA METHOD 8082: PCB'S					Analyst: SCC		
Aroclor 1016	ND	1.0	μg/L	1	4/5/2013 2:35:06 AM		
Aroclor 1221	ND	1.0	μg/L	1	4/5/2013 2:35:06 AM		
Aroclor 1232	ND	1.0	µg/L	1	4/5/2013 2:35:06 AM		
Aroclor 1242	ND	1.0	μg/L	1	4/5/2013 2:35:06 AM		
Aroclor 1248	ND	1.0	μg/L	1	4/5/2013 2:35:06 AM		
Aroclor 1254	ND	1.0	μg/L	1	4/5/2013 2:35:06 AM		
Aroclor 1260	ND	1.0	μg/L	1	4/5/2013 2:35:06 AM		
Surr: Decachlorobiphenyl	103	23.9-124	%REC	1	4/5/2013 2:35:06 AM		
Surr: Tetrachloro-m-xylene	86.4	28.1-139	%REC	1	4/5/2013 2:35:06 AM		
EPA METHOD 8310: PAHS					Analyst: SCC		
Naphthalene	ND	2.0	μg/L	1	4/9/2013 10:56:16 PM		
1-Methylnaphthalene	ND	2.0	μg/L	1	4/9/2013 10:56:16 PM		
2-Methylnaphthalene	ND	2.0	μg/L	1	4/9/2013 10:56:16 PM		
Acenaphthylene	ND	2.5	μg/L	1	4/9/2013 10:56:16 PM		
Acenaphthene	ND	5.0	μg/L	1	4/9/2013 10:56:16 PM		
Fluorene	ND	0.80	μg/L	1	4/9/2013 10:56:16 PM		
Phenanthrene	ND	0.60	μg/L	1	4/9/2013 10:56:16 PM		
Anthracene	ND	0.60	μg/L	1	4/9/2013 10:56:16 PM		
Fluoranthene	ND	0.30	μg/L	1	4/9/2013 10:56:16 PM		
Pyrene	ND	0.30	μg/L	1	4/9/2013 10:56:16 PM		
Benz(a)anthracene	ND	0.10	μg/L	1	4/9/2013 10:56:16 PM		
Chrysene	ND	0.20	μg/L	1	4/9/2013 10:56:16 PM		
Benzo(b)fluoranthene	ND	0.10	μg/L	1	4/9/2013 10:56:16 PM		
Benzo(k)fluoranthene	ND	0.10	μg/L	1	4/9/2013 10:56:16 PM		
Benzo(a)pyrene	ND	0.10	μg/L	1	4/9/2013 10:56:16 PM		
Dibenz(a,h)anthracene	ND	0.12	μg/L	1	4/9/2013 10:56:16 PM		
Benzo(g,h,i)perylene	ND	0.10	μg/L	1	4/9/2013 10:56:16 PM		
Indeno(1,2,3-cd)pyrene	ND	0.10	µg/L	1	4/9/2013 10:56:16 PM		
Surr: Benzo(e)pyrene	79.0	46.4-106	%REC	1	4/9/2013 10:56:16 PM		
EPA METHOD 300.0: ANIONS					Analyst: JRR		
Fluoride	0.95	0.10	mg/L	1	3/28/2013 6:22:25 PM		
Chloride	3.0	0.50	mg/L	1	3/28/2013 6:22:25 PM		
Nitrogen, Nitrate (As N)	ND	0.10	mg/L	1	3/28/2013 6:22:25 PM		
Sulfate	330	10	mg/L	20	3/28/2013 6:34:50 PM		
EPA METHOD 200.7: DISSOLVED N	METALS				Analyst: JLF		
Aluminum	ND	0.020	mg/L	1	4/2/2013 7:05:39 PM		
Barium	0.028	0.0020	mg/L	. 1	4/2/2013 7:05:39 PM		
Boron	0.17	0.040	mg/L	1	4/2/2013 7:05:39 PM		

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- P Sample pH greater than 2
- Reporting Detection Limit

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits 1 of 24

Date Reported: 4/23/2013

CLIENT: HRL Compliance Solutions

Client Sample ID: Hilltop Gas Station-Pond

Project: Enterprise WEP III Water Sampling

Collection Date: 3/27/2013 10:20:00 AM

Lab ID: 1303B08-001

Matrix: AQUEOUS

Received Date: 3/28/2013 9:53:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 200.7: DISSOLVED ME	TALS				Analyst: JLF
Cadmium	ND	0.0020	mg/L	1	4/2/2013 7:05:39 PM
Chromium	ND	0.0060	mg/L	1	4/2/2013 7:05:39 PM
Cobalt	ND	0.0060	mg/L	1	4/2/2013 7:05:39 PM
Copper	ND	0.0060	mg/L	1	4/2/2013 7:05:39 PM
Iron	0.045	0.020	mg/L	1	4/2/2013 7:05:39 PM
Manganese	0.020	0.0020	mg/L	1	4/2/2013 7:05:39 PM
Molybdenum	ND	0.0080	mg/L	1	4/2/2013 7:05:39 PM
Nickel	ND	0.010	mg/L	1	4/2/2013 7:05:39 PM
Silver	ND	0.0050	mg/L	1	4/2/2013 7:05:39 PM
Zinc	ND	0.010	mg/L	1	4/5/2013 1:34:33 PM
EPA 200.8: DISSOLVED METALS					Analyst: DBD
Arsenic	ND	0.0010	mg/L	1	4/12/2013 11:53:33 AM
Lead	ND	0.0010	mg/L	1	4/12/2013 11:53:33 AN
Selenium	ND	0.0010	mg/L	1	4/12/2013 11:53:33 AM
Uranium	ND	0.0010	mg/L	1	4/12/2013 11:53:33 AN
EPA METHOD 245.1: MERCURY					Analyst: IDC
Mercury	ND	0.00020	mg/L	1	4/10/2013 12:24:49 PN
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Benzene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
Toluene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
Ethylbenzene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
Naphthalene	ND	2.0	μg/L	1	3/31/2013 11:00:17 PN
1-Methylnaphthalene	ND	4.0	µg/L	1	3/31/2013 11:00:17 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	3/31/2013 11:00:17 PM
Acetone	ND	10	μg/L	1	3/31/2013 11:00:17 PN
Bromobenzene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PN
Bromodichloromethane	ND	1.0	μg/L	1	3/31/2013 11:00:17 PN
Bromoform	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
Bromomethane	ND	3.0	μg/L	1	3/31/2013 11:00:17 PM
2-Butanone	ND	10	μg/L 	1	3/31/2013 11:00:17 PM
Carbon disulfide	ND	10	μg/L 	1	3/31/2013 11:00:17 PM
Carbon Tetrachloride	ND	. 1.0	μg/L 	1	3/31/2013 11:00:17 PM
Chlorobenzene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
Chloroethane	ND	2.0	µg/L	1	3/31/2013 11:00:17 PN
Chloroform	ND	1.0	μg/L	1	3/31/2013 11:00:17 PI

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits 2 of 24

Date Reported: 4/23/2013

CLIENT: HRL Compliance Solutions

Client Sample ID: Hilltop Gas Station-Pond

Project: Enterprise WEP III Water Sampling

Collection Date: 3/27/2013 10:20:00 AM

Lab ID: 1303B08-001

Matrix: AQUEOUS Received Date: 3/28/2013 9:53:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES				* ***	Analyst: RAA
Chloromethane	ND	3.0	μg/L	1	3/31/2013 11:00:17 PM
2-Chlorotoluene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
4-Chlorotoluene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
cis-1,2-DCE	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	3/31/2013 11:00:17 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	3/31/2013 11:00:17 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
Dibromomethane	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/31/2013 11:00:17 PN
1,3-Dichloropropane	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	3/31/2013 11:00:17 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
2-Hexanone	ND	10	μg/L	1	3/31/2013 11:00:17 PM
Isopropylbenzene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	3/31/2013 11:00:17 PM
Methylene Chloride	ND	3.0	μg/L	1	3/31/2013 11:00:17 PM
n-Butylbenzene	ND	3.0	μg/L	1	3/31/2013 11:00:17 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
sec-Butylbenzene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
Styrene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
tert-Butylbenzene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/31/2013 11:00:17 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
trans-1,2-DCE	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
1,1,2-Trichloroethane	ND	1.0	µg/L	1	3/31/2013 11:00:17 PM
Trichloroethene (TCE)	ND	1.0	µg/L	1	3/31/2013 11:00:17 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/31/2013 11:00:17 PM
Vinyl chloride	ND	1.0	μg/L	1	3/31/2013 11:00:17 PM

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits Page 3 of 24

Analytical Report

Lab Order 1303B08

Date Reported: 4/23/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Chen

Client Sample ID: Hilltop Gas Station-Pond

Project:

Enterprise WEP III Water Sampling

Collection Date: 3/27/2013 10:20:00 AM

Lab ID:

1303B08-001

Matrix: AQUEOUS

Received Date: 3/28/2013 9:53:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES						Analyst: RAA
Xylenes, Total	ND	1.5		μg/L	1	3/31/2013 11:00:17 PM
Surr: 1,2-Dichloroethane-d4	89.5	70-130		%REC	1	3/31/2013 11:00:17 PM
Surr: 4-Bromofluorobenzene	94.2	69.5-130		%REC	1	3/31/2013 11:00:17 PM
Surr: Dibromofluoromethane	96.8	70-130		%REC	1	3/31/2013 11:00:17 PM
Surr: Toluene-d8	93.3	70-130		%REC	1	3/31/2013 11:00:17 PM
TOTAL PHENOLICS BY SW-846 9067						Analyst: SCC
Phenolics, Total Recoverable	ND	2.5		μg/L	1	4/15/2013
SM4500-H+B: PH						Analyst: JML
рН	8.21	1.68	Н	pH units	1	3/28/2013 4:26:19 PM
SM2540C MOD: TOTAL DISSOLVED S	SOLIDS					Analyst: KS
Total Dissolved Solids	720	20.0	*	mg/L	1	4/4/2013 8:56:00 AM

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits Page 4 of 24

Date Reported: 4/23/2013

CLIENT: HRL Compliance Solutions Client Sample ID: TRIP BLANK

Project: Enterprise WEP III Water Sampling Collection Date:

Lab ID: 1303B08-002 Matrix: TRIP BLANK Received Date: 3/28/2013 9:53:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8011/504.1: EDB					Analyst: LRV
1,2-Dibromoethane	ND	0.010	μg/L	1	3/28/2013 8:53:40 PM
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Benzene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
Toluene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
Ethylbenzene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
Naphthalene	ND	2.0	μg/L	1	4/1/2013 2:19:28 AM
1-Methylnaphthalene	ND '	4.0	μg/L	1	4/1/2013 2:19:28 AM
2-Methylnaphthalene	ND	4.0	μg/L	1	4/1/2013 2:19:28 AM
Acetone	ND	10	μg/L	1	4/1/2013 2:19:28 AM
Bromobenzene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
Bromodichloromethane	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
Bromoform	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
Bromomethane	ND	3.0	μg/L	1	4/1/2013 2:19:28 AM
2-Butanone	ND	10	μg/L	1	4/1/2013 2:19:28 AM
Carbon disulfide	ND	10	μg/L	1	4/1/2013 2:19:28 AM
Carbon Tetrachloride	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
Chlorobenzene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
Chloroethane	ND	2.0	μg/L	1	4/1/2013 2:19:28 AM
Chloroform	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
Chloromethane	ND	3.0	μg/L	1	4/1/2013 2:19:28 AM
2-Chlorotoluene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
4-Chlorotoluene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
cis-1,2-DCE	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	4/1/2013 2:19:28 AM
Dibromochloromethane	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
Dibromomethane	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
Dichlorodifluoromethane	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
1,3-Dichloropropane	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
2,2-Dichloropropane	ND	2.0	μg/L	1	4/1/2013 2:19:28 AM

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits Page 5 of 24

Analytical Report

Lab Order 1303B08

Date Reported: 4/23/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HRL Compliance Solutions

Client Sample ID: TRIP BLANK

Enterprise WEP III Water Sampling

Collection Date:

Lab ID:

1303B08-002

Matrix: TRIP BLANK

Received Date: 3/28/2013 9:53:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
1,1-Dichloropropene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
Hexachlorobutadiene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
2-Hexanone	ND	10	μg/L	1	4/1/2013 2:19:28 AM
Isopropylbenzene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
4-Isopropyltoluene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
4-Methyl-2-pentanone	ND	10	μg/L	1	4/1/2013 2:19:28 AM
Methylene Chloride	ND	3.0	μg/L	1	4/1/2013 2:19:28 AM
n-Butylbenzene	ND	3.0	μg/L	1	4/1/2013 2:19:28 AM
n-Propylbenzene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
sec-Butylbenzene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
Styrene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
tert-Butylbenzene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	4/1/2013 2:19:28 AM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
trans-1,2-DCE	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
Trichloroethene (TCE)	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
Trichlorofluoromethane	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	4/1/2013 2:19:28 AM
Vinyl chloride	ND	1.0	μg/L	1	4/1/2013 2:19:28 AM
Xylenes, Total	ND	1.5	μg/L	1	4/1/2013 2:19:28 AM
Surr: 1,2-Dichloroethane-d4	90.6	70-130	%REC	1	4/1/2013 2:19:28 AM
Surr: 4-Bromofluorobenzene	99.2	69.5-130	%REC	1	4/1/2013 2:19:28 AM
Surr: Dibromofluoromethane	98.1	70-130	%REC	1	4/1/2013 2:19:28 AM
Surr: Toluene-d8	93.9	70-130	%REC	1	4/1/2013 2:19:28 AM

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- P Sample pH greater than 2
- Reporting Detection Limit

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits Page 6 of 24

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

130329020

Address:

4901 HAWKINS NE SUITE D

Project Name:

1303B08

Attn:

ALBUQUERQUE, NM 87109 ANDY FREEMAN

Analytical Results Report

Sample Number

130329020-001

Sampling Date 3/27/2013 Date/Time Received 3/29/2013 12:10 PM

Client Sample ID

1303B08-001I / HILLTOP GAS STATION-POND

Sampling Time 10:20 AM

Matrix

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifler
Cvanide	ND	ma/l	0.01	4/8/2013	CRW	EPA 335.4	

Authorized Signature

John Coddington, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND

Not Detected

PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Qual

Received: 03/29/13 10:00 Matrix: Water

ANALYTICAL RESULTS

Project:

1303B08

Pace Project No.:

3090703

Sample: 1303B08-001 Hilltop Gas

Lab ID: 3090703001

Collected: 03/27/13 10:20

Statio PWS:

Site ID:

Sample Type:

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.
Radium-226	EPA 903.1	-0.128 ± 0.354 (0.837)	pCi/L	04/11/13 14:48	13982-63-3
Radium-228	EPA 904.0	0.921 ± 0.519 (0.927)	pCi/L	04/09/13 17:08	15262-20-1

Date: 04/15/2013 12:03 PM

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project:

1303B08

Pace Project No.:

3090703

QC Batch:

RADC/15240

40 Analysis Method:

EPA 903.1

QC Batch Method:

EPA 903.1

Analysis Description:

903.1 Radium-226

Associated Lab Samples:

METHOD BLANK: 562610

3090703001

Matrix: Water

Associated Lab Samples:

3090703001

Parameter

Act ± Unc (MDC)

Units

Analyzed

Qualifiers

Radium-226

 $-0.051 \pm 0.262 \quad (0.607)$

pCl/L

04/11/13 14:10

QUALITY CONTROL DATA

Project:

1303B08

Pace Project No.:

3090703

QC Batch:

RADC/15241

Analysis Method:

EPA 904.0

QC Batch Method:

EPA 904.0

Analysis Description:

904.0 Radium 228

Associated Lab Samples:

3090703001

METHOD BLANK: 562611

Matrix: Water

Associated Lab Samples:

3090703001

Parameter

Act ± Unc (MDC)

Units

Analyzed

Qualifiers

Radium-228

 $0.178 \pm 0.320 \quad (0.695)$

pÇi/L

04/09/13 15:42

Date: 04/15/2013 12:03 PM

REPORT OF LABORATORY ANALYSIS

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303B08

23-Apr-13

Client: HRL Compliance Solutions

Project: Enterprise WEP III Water Sampling

Sample ID ME	В	Samp	Гуре: МЕ	BLK	Tes	tCode: E	PA Method	200.7: Dissol	ved Metal	s	
Client ID: PE	3W	Batc	h ID: R9	603	· F	RunNo: 9	603				
Prep Date: 2	2/22/2013	Analysis [Date: 4/	2/2013	8	SeqNo: 2	73747	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum		ND	0.020								
Barium		ND	0.0020								
Boron		ND	0.040								
Cadmium		ND	0.0020								
Chromium		ND	0.0060								
Cobalt		ND	0.0060								
Copper		ND	0.0060								
Iron		ND	0.020								
Manganese		ND	0.0020								
Molybdenum		ND	0.0080								
Nickel		ND	0.010								
Silver		ND	0.0050								

Sample ID LCS	Samp	Type: LC	s	Tes	tCode: El	PA Method	200.7: Dissol	ved Metal	s	
Client ID: LCSW	Bato	ch ID: R9	603	R	RunNo: 90	503				
Prep Date:	Analysis	Date: 4/2	2/2013	S	SeqNo: 2	73748	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	0.55	0.020	0.5000	0	110	85	115			
Banum	0.49	0.0020	0.5000	0	98.8	85	115			
Boron	0.50	0.040	0.5000	0	101	85	115			
Cadmium	0.49	0.0020	0.5000	0	99.0	85	115			
Chromium	0.50	0.0060	0.5000	0	101	85	115			
Cobalt	0.49	0.0060	0.5000	0	97.1	85	115			
Copper	0.49	0.0060	0.5000	0	99.0	85	115			
Iron	0.49	0.020	0.5000	0	97.7	85	115			
Manganese	0.51	0.0020	0.5000	0	101	85	115			
Molybdenum	0.49	0.0080	0.5000	0	98.9	85	115			
Nickel	0.47	0.010	0.5000	0	94.9	85	115			
Silver	0.096	0.0050	0.1000	0	95.8	85	115			

Sample ID 1303B69-012AM	S Samp	Type: MS	3	Tes	tCode: E	PA Method	200.7: Dissol	ved Meta	s	
Client ID: BatchQC	Bato	ch ID: R9	603	F	Run N o: 9	603				
Prep Date:	Analysis	Date: 4/	2/2013	S	SeqNo: 2	73802	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	0.57	0.020	0.5000	0.02401	110	70	130			
Barium	0.50	0.0020	0.5000	0.01066	97.2	70	130			
Cadmium	0.52	0.0020	0.5000	0	104	70	130			
Chromium	0.47	0.0060	0.5000	0	94.2	70	130			

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Not Detected at the Reporting Limit
- Page 7 of 24
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303B08

23-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 130	03B69-012AMS	Samp [*]	Type: MS	3	TestCode: EPA Method 200.7: Dissolved Metals						
Client ID: Bat	tchQC	Bato	h iD: R9	603	F	RunNo: 9	603				
Prep Date:		Analysis (Date: 4/	2/2013	\$	SeqNo: 2	73802	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Cobait		0.49	0.0060	0.5000	0.01697	94.3	70	130			
Copper		0.52	0.0060	0.5000	0	104	70	130			
Molybdenum		0.47	0.0080	0.5000	0	94.0	70	130			
Nickel		0.47	0.010	0.5000	0.03147	87.2	70	130			
Silver		0.11	0.0050	0.1000	0	106	70	130			
Sample ID 120	03B69-012AMSI) Samo	Type: MS	n.	Toe	tCode: El	DA Mothod	200 7: Dissol	yod Mota		

Sample ID	1303B69-012AMSD	Samp	Type: MS	SD	Tes	tCode: El	PA Method	200.7: Disso	lved Metal	s	
Client ID:	BatchQC	Bato	h ID: R9	603	F	RunNo: 9	603				
Prep Date:		Analysis I	Date: 4/	2/2013	8	SeqNo: 2	73803	Units: mg/l	-		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum		0.57	0.020	0.5000	0.02401	108	70	130	1.54	20	
Barium		0.50	0.0020	0.5000	0.01066	97.2	70	130	0.0242	20	
Cadmium		0.52	0.0020	0.5000	0	104	70	130	0.319	20	
Chromium		0.47	0.0060	0.5000	0	94.3	70	130	0.0934	20	
Cobalt		0.49	0.0060	0.5000	0.01697	94.3	70	130	0.00819	20	
Copper		0.51	0.0060	0.5000	0	103	70	130	0.959	20	
Molybdenum		0.47	0.0080	0.5000	0	94.9	70	130	1.04	20	
Nickel		0.47	0.010	0.5000	0.03147	87.5	70	130	0.261	20	
Silver		0.11	0.0050	0.1000	0	108	70	130	1.39	20	

Sample ID LCS	Samp	Type: LC	s	Tes	tCode: El	PA Method	200.7: Dissol	ved Meta	ls	
Client ID: LCSW	Bato	h ID: R9	603	F	RunNo: 90	603				
Prep Date:	Analysis I	Date: 4/	2/2013	S	SeqNo: 2	73828	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	0.54	0.020	0.5000	0	109	85	115			
Barium	0.48	0.0020	0.5000	0	96.2	85	115			
Boron	0.50	0.040	0.5000	0	99.8	85	115			
Cadmium	0.49	0.0020	0.5000	0	98.3	85	115			
Chromium	0.50	0.0060	0.5000	0	99.7	85	115			
Cobalt	0.48	0.0060	0.5000	0	95.3	85	115			
Copper	0.50	0.0060	0.5000	0	99.4	85	115			
Iron	0.48	0.020	0.5000	0	96.4	85	115			
Manganese	0.49	0.0020	0.5000	0	98.8	85	115			
Molybdenum	0.49	0.0080	0.5000	0	98.8	85	115			
Nickel	0.47	0.010	0.5000	0	94.7	85	115			
Silver	0.098	0.0050	0.1000	0	98.0	85	115			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 8 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303B08

23-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID	1303988-002AMS	Samp	Type: MS	;	Tes	tCode: El	PA Method	200.7: Dissol	ved Meta	ls		
Client ID:	BatchQC	Bato	h ID: R9	603	F	Run N o: 9 (603					
Prep Date:		Analysis I	Date: 4/	2/2013	8	SeqNo: 2	73865	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Aluminum		0.59	0.020	0.5000	0.02253	114	70	130	-			
Barium		0.51	0.0020	0.5000	0.008750	100	70	130				
Cadmium		0.54	0.0020	0.5000	0	107	70	130				
Chromium		0.49	0.0060	0.5000	0	97.2	70	130				
Cobalt		0.50	0.0060	0.5000	0.01029	97.7	70	130				
Copper		0.53	0.0060	0.5000	0	106	70	130				
Iron		0.53	0.020	0.5000	0.05043	95.8	70	130				
Manganese		0.75	0.0020	0.5000	0.2698	95.2	70	130				
Molybdenum		0.52	0.0080	0.5000	0.03517	97.1	70	130				
Nickel		0.46	0.010	0.5000	0	91.3	70	130				
Silver		0.10	0.0050	0.1000	0	103	70	130				
Sample ID	1303988-002AMSI) Samp	Type: MS	SD	Tes	tCode: El	PA Method	200.7: Dissol	ved Meta	ls		
Client ID:	BatchQC	Bato	ch ID: R9	603	F	Run N o: 9 (603					
Prep Date:		Analysis	Date: 4/	2/2013	8	SeqNo: 2	73866	Units: mg/L				

Client ID: BatchQC	Bato	th ID: R9	603	F	Run N o: 9	603				
Prep Date:	Analysis	Date: 4/	2/2013	8	SeqNo: 2	73866	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	0.59	0.020	0.5000	0.02253	114	70	130	0.0288	20	
Barium	0.52	0.0020	0.5000	0.008750	101	70	130	1.14	20	
Cadmium	0.54	0.0020	0.5000	0	109	70	130	1.42	20	
Chromium	0.49	0.0060	0.5000	0	98.6	70	130	1.34	20	
Cobalt	0.51	0.0060	0.5000	0.01029	99.5	70	130	1.82	20	
Copper	0.53	0.0060	0.5000	0	106	70	130	0.713	20	
Iron	0.53	0.020	0.5000	0.05043	96.3	70	130	0.409	20	
Manganese	0.75	0.0020	0.5000	0.2698	96.4	70	130	0.804	20	
Molybdenum	0.53	0.0080	0.5000	0.03517	99.6	70	130	2.34	20	
Nickel	0.47	0.010	0.5000	0	93.2	70	130	2.06	20	
Silver	0.11	0.0050	0.1000	0	107	70	130	3.57	20	

Sample ID MB	SampType: MBLK	TestCode: EPA Method 200.7: Dissolved Metals
Client ID: PBW	Batch ID: R9737	RunNo: 9737
Prep Date: 2/22/2013	Analysis Date: 4/5/2013	SeqNo: 277371 Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Zinc	ND 0.010	

SPK value SPK Ref Val %REC LowLimit

Sample ID LCS SampType: LCS TestCode: EPA Method 200.7: Dissolved Metals

Client ID: LCSW Batch ID: R9737 RunNo: 9737

Result

Prep Date: Analysis Date: 4/5/2013 SeqNo: 277372 Units: mg/L

Qualifiers:

Analyte

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Analyte detected below quantitation limits

Sample pH greater than 2

Reporting Detection Limit

В Analyte detected in the associated Method Blank

HighLimit

%RPD

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Page 9 of 24

RPDLimit

RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303B08

23-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID LCS

SampType: LCS

TestCode: EPA Method 200.7: Dissolved Metals

Client ID: LCSW

Batch ID: R9737

RunNo: 9737

Prep Date:

Analysis Date: 4/5/2013

SeqNo: 277372

Units: mg/L

Analyte

Result **PQL**

SPK value SPK Ref Val

%REC

LowLimit HighLimit %RPD **RPDLimit** Qual

Zinc

0.48

0.5000

96.3

0.010

85

115

0

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH greater than 2
- Reporting Detection Limit RL

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits Spike Recovery outside accepted recovery limits
- Page 10 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303B08

23-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 1303A24-001GMS TestCode: EPA 200.8: Dissolved Metals SampType: MS Batch ID: R9819 RunNo: 9819 Client ID: **BatchQC** Prep Date: Analysis Date: 4/12/2013 SeqNo: 279839 Units: mg/L %REC %RPD **RPDLimit** Analyte Result **PQL** SPK value SPK Ref Val LowLimit **HighLimit** Qual 0.16 0.03007 100 70 130 Uranium 0.0050 0.1250

Sample ID LCS SampType: LCS TestCode: EPA 200.8: Dissolved Metals LCSW Batch ID: R9819 RunNo: 9819 Client ID: Analysis Date: 4/12/2013 SeqNo: 279843 Prep Date: Units: mg/L SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Analyte Result **PQL** 0.024 0.0010 0.02500 0 95.1 85 115 Arsenic 0.025 0.0010 0.02500 0 100 85 115 Lead Selenium 0.023 0.0010 0.02500 0 91.3 85 115 0.025 0 85 Uranium 0.0010 0.02500 99.4 115

Sample ID MB SampType: MBLK TestCode: EPA 200.8: Dissolved Metals PBW Batch ID: R9819 RunNo: 9819 Client ID: Prep Date: Analysis Date: 4/12/2013 SeqNo: 279844 Units: mg/L SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** Qual Result **PQL** HighLimit Analyte Arsenic ND 0.0010 Lead ND 0.0010 0.0010 Selenium ND Uranium ND 0.0010

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

ND Not Detected at the Reporting Limit

R

S

RPD outside accepted recovery limits

Page 11 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303B08

23-Apr-13

Client:

HRL Compliance Solutions

Result

Project:

Enterprise WEP III Water Sampling

MB-6886 Sample ID

SampType: mblk

TestCode: EPA Method 245.1: Mercury

Client ID:

PBW

Batch ID: 6886

RunNo: 9762

Prep Date: 4/9/2013 Analysis Date: 4/10/2013

PQL

SeqNo: 278088

Units: mg/L HighLimit

%RPD **RPDLimit**

Qual

Analyte Mercury

ND 0.00020

Sample ID LCS-6886

SampType: Ics

TestCode: EPA Method 245.1: Mercury

Client ID: LCSW Batch ID: 6886

RunNo: 9762

Units: mg/L

Prep Date: 4/9/2013

Analysis Date: 4/10/2013

SeqNo: 278089

RPDLimit

RPDLimit

Qual

Analyte Mercury

PQL 0.0049 0.00020

SPK value SPK Ref Val 0.005000

%REC 98.7

80

LowLimit

LowLimit

HighLimit %RPD

Sample ID 1304188-001AMS

SampType: ms

TestCode: EPA Method 245.1: Mercury

0

0

SPK value SPK Ref Val %REC LowLimit

Client ID: BatchQC

Batch ID: 6886

RunNo: 9762

HighLimit

Prep Date:

4/9/2013

Analysis Date: 4/10/2013

Result

0.005000

SPK value SPK Ref Val

SPK value SPK Ref Val

SeqNo: 278092 %REC

75

Units: mg/L

125

120

Qual

Analyte Mercury

0.0047

0.00020 SampType: msd

PQL

TestCode: EPA Method 245.1: Mercury

Client ID: **BatchQC** Batch ID: 6886

RunNo: 9762

%REC

94.9

Prep Date: Analyte

Mercury

4/9/2013

Sample ID 1304188-001AMSD

Analysis Date: 4/10/2013

SeqNo: 278093

Units: mg/L

HighLimit

PQL 0.005000 0.0048 0.00020

96.2

LowLimit

125

%RPD 1.31

%RPD

RPDLimit Qual 20

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

Analyte detected below quantitation limits

Sample pH greater than 2 RLReporting Detection Limit В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits Page 12 of 24

R RPD outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

WO#: **1303B08**

23-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB	SampT	ype: ME	BLK	Tes	Code: El	PA Method	300.0: Anions	•		
Client ID: PBW	Batch	ID: R9	504	F	RunNo: 9	504				
Prep Date:	Analysis D	ate: 3/	28/2013	8	SeqNo: 2	71312	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Chloride	ND	0.50								
Nitrogen, Nitrate (As N)	ND	0.10								
Sulfate	ND	0.50								

Sample ID LCS	SampT	ype: LC	S	Tes	tCode: El	PA Method	300.0: Anion	S		
Client ID: LCSW	Batch	ID: R9	504	F	RunNo: 9	504				
Prep Date:	Analysis D	ate: 3/	28/2013	8	SeqNo: 2	71313	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.49	0.10	0.5000	0	97.5	90	110			
Chloride	4.6	0.50	5.000	0	92.9	90	110			
Nitrogen, Nitrate (As N)	2.4	0.10	2.500	0	97.4	90	110			
Sulfate	9.4	0.50	10.00	0	94.0	90	110			

Sample ID 1303B03-001AMS	SampT	ype: MS	3	Tes	tCode: EF	PA Method	300.0: Anion	s		
Client ID: BatchQC	Batch	ID: R9	504	F	Run N o: 9 8	504				
Prep Date:	Analysis D	ate: 3/	28/2013	8	SeqNo: 2	71315	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.53	0.10	0.5000	0.1116	83.9	76.6	110			
						00.4	440			
Nitrogen, Nitrate (As N)	0.48	0.10	2.500	0.08850	15.7	90.4	113			S

Sample ID 1303B03-001AMS	001AMSD SampType: MSD TestCode: EPA Method 300.0: Anions									
Client ID: BatchQC	Batch	ID: R9	504	F	RunNo: 9	504				
Prep Date:	Analysis D	ate: 3/	28/2013	8	SeqNo: 2	71316	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
, maryto	· toouit	. «-	Of It value	Of ICITOR FOR	/01 (2.0	LOWE	· ···g···c	701 11 -		
Fluoride	0.54	0.10	0.5000	0.1116	86.3	76.6	110	2.18	20	
										s

Sample ID	1303B05-001H M S	SampType: MS TestCode: EPA Method 300.0: Anions									
Client ID:	BatchQC	Batch	ID: R9	504	R	RunNo: 9	504				
Prep Date:		Analysis D	ate: 3/	28/2013	S	SeqNo: 2	71337	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride		1.0	0.10	0.5000	0.5783	93.2	76.6	110			
Nitrogen, Nitrate	e (As N)	2.9	0.10	2.500	0.4062	102	90.4	113			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 13 of 24

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303B08

23-Apr-13

Client:

HRL Compliance Solutions

Project: Enter	prise WEP III	Water S	Sampling							
Sample ID 1303B05-001I	H MSD SampT	ype: MS	SD.	Test	Code: El	PA Method	300.0: Anions	3		
Client ID: BatchQC	Batch	ID: R9	504	R	unNo: 9	504				
Prep Date:	Analysis D	ate: 3/	28/2013	S	eqNo: 2	71338	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	1.1	0.10	0.5000	0.5783	95.5	76.6	110	1.10	20	
Nitrogen, Nitrate (As N)	3.0	0.10	2.500	0.4062	103	90.4	113	1.45	20	
Sample ID MB	SampT	ype: M E	BLK	Test	Code: El	PA Method	300.0: Anions	5		
Client ID: PBW	Batch	1D: R9	504	R	tun N o: 9	504				
Prep Date:	Analysis D	ate: 3/	29/2013	S	eqNo: 2	71372	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Chloride	ND	0.50								
Nitrogen, Nitrate (As N) Sulfate	ND ND	0.10 0.50								
Sullate	140	0.50								
Sample ID LCS	SampT	ype: LC	S	Test	tCode: El	PA Method	300.0: Anion:	5		
Client ID: LCSW	Batch	1 ID: R9	504	R	lunNo: 9	504				
Prep Date:	Analysis D	ate: 3/	29/2013	S	SeqNo: 2	71373	Units: mg/L			
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.49	0.10	0.5000	0	98.7	90	110			
Chloride	4.7	0.50	5.000	0	93.4	90	110			
Nitrogen, Nitrate (As N)	2.5	0.10	2.500	0	98.1	90	110			
Sulfate	9.5	0.50	10.00	0	94.6	90	110			
Sample ID 1303B38-001	AMS SampT	ype: MS	3	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID: BatchQC	Batch	1D: R9	504	R	RunNo: 9	504				
Prep Date:	Analysis D	ate: 3/	29/2013	S	SeqNo: 2	71375	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.75	0.10	0.5000	0.2754	94.0	76.6	110			
Chloride	19	0.50	5.000	13.47	109	87.8	111			
				0.400	400		440			
	4.8	0.10	2.500	2.160	106	90.4	113			
	4.8						113 300.0: Anion	s		
Nitrogen, Nitrate (As N)	4.8 AMSD SampT	0.10	SD	Tes		PA Method		s		
Nitrogen, Nitrate (As N) Sample ID 1303B38-001	4.8 AMSD SampT	0.10 ype: M \$	5D 504	Tes	tCode: E	PA Method 504				
Nitrogen, Nitrate (As N) Sample ID 1303B38-001 Client ID: BatchQC	4.8 AMSD SampT Batch	0.10 ype: M \$	5D 504 29/2013	Tes	tCode: E RunNo: 9 SeqNo: 2	PA Method 504	300.0: Anion		RPDLimit	Qual
Nitrogen, Nitrate (As N) Sample ID 1303B38-001 Client ID: BatchQC Prep Date: Analyte	4.8 AMSD SampT Batch Analysis D	0.10 Type: MS n ID: R9 Date: 3/ PQL 0.10	5D 504 29/2013	Tes:	tCode: E RunNo: 9 SeqNo: 2	PA Method 504 71376 LowLimit 76.6	300.0: Anion	%RPD 0.388	20	Qual
Nitrogen, Nitrate (As N) Sample ID 1303B38-001 Client ID: BatchQC Prep Date:	4.8 AMSD SampT Batch Analysis D Result	0.10 Type: MS n ID: R9 Date: 3/	504 29/2013 SPK value	Tes F S SPK Ref Val	tCode: E RunNo: 9 SeqNo: 2 %REC	PA Method 504 71376 LowLimit	300.0: Anion Units: mg/L HighLimit	%RPD		Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2

RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

Page 14 of 24

S Spike Recovery outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303B08

23-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB-6717

SampType: MBLK

TestCode: EPA Method 8011/504.1: EDB

Client ID: **PBW**

Batch ID: 6717

PQL

RunNo: 9486

Prep Date: 3/28/2013 Analysis Date: 3/28/2013

SeqNo: 271195

Units: µg/L

SPK value SPK Ref Val %REC LowLimit

Result

HighLimit

RPDLimit %RPD

Qual

1,2-Dibromoethane

Analyte

ND 0.010

Sample ID LCS-6717

LCSW

SampType: LCS

TestCode: EPA Method 8011/504.1: EDB

Prep Date: 3/28/2013

Batch ID: 6717 Analysis Date: 3/28/2013 RunNo: 9486

70

Units: µg/L

Qual

Analyte

0.099

PQL

SPK value SPK Ref Val %REC

SeqNo: 271196 LowLimit

HighLimit

1,2-Dibromoethane

Client ID:

0.010

0.1000 0 99.0

130

RPDLimit

Sample ID LCSD-6717

Prep Date: 3/28/2013

LCSW

SampType: LCS Batch ID: 6717

TestCode: EPA Method 8011/504.1: EDB RunNo: 9486

SeqNo: 271197

Units: µg/L

%RPD

Analyte

Client ID:

Analysis Date: 3/28/2013 PQL

SPK value SPK Ref Val 0

%REC 109

LowLimit 70 **HighLimit** 130 %RPD

Qual

1,2-Dibromoethane

Result 0.11

0.010 0.1000

9.62

RPDLimit

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range Analyte detected below quantitation limits

Sample pH greater than 2

RL Reporting Detection Limit В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Page 15 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303B08

23-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Project: Enterpr	ise WEP III	Water	Sampling							
Sample ID MB-6772	SampT	ype: ME	BLK	Tes	tCode: E	PA Method	8082: PCB's			
Client ID: PBW	Batch	ID: 67	72	F	RunNo: 9	669				
Prep Date: 4/2/2013	Analysis D	ate: 4/	4/2013	8	SeqNo: 2	75586	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	ND	1.0								
Aroclor 1221	ND	1.0								
Aroclor 1232	ND	1.0								
Aroclor 1242	ND	1.0								
Aroclor 1248	ND	1.0								
Aroclor 1254	ND	1.0								
Aroclor 1260	ND	1.0								
Surr: Decachlorobiphenyl	2.4		2.500		94.0	23.9	124			
Surr: Tetrachloro-m-xylene	1.8		2.500		72.4	28.1	139			
Sample ID LCS-6772	SampT	ype: LC	s	Tes	tCode: E	PA Method	8082: PCB's			
Client ID: LCSW	Batch	ID: 67	72	F	RunNo: 9	669				
Prep Date: 4/2/2013	Analysis D	ate: 4/	4/2013	\$	SeqNo: 2	75587	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	2.9	1.0	5.000	0	58.6	32.3	121			
Aroclor 1260	4.4	1.0	5.000	0	87.5	34	128			
Surr: Decachlorobiphenyl	2.3		2.500		92.8	23.9	124			
Surr: Tetrachloro-m-xylene	1.7		2.500		67.2	28.1	139			
Sample ID LCSD-6772	SampT	ype: LC	SD	Tes	tCode: E	PA Method	8082: PCB's			
Client ID: LCSS02	Batch	1D: 67	72	F	RunNo: 9	669				
Prep Date: 4/2/2013	Analysis D	ate: 4/	4/2013	\$	SeqNo: 2	75588	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	3.2	1.0	5.000	0	64.3	32.3	121	9.31	29.9	
Aroclor 1260	4.8	1.0	5.000	0	96.5	34	128	9.74	25.9	
Surr: Decachlorobiphenyl	2.5		2.500		102	23.9	124	0	0	
Surr: Tetrachloro-m-xylene	1.8		2.500		74.0	28.1	139	0	0	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2

RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

ND Not Detected at the Reporting Limit

S

R RPD outside accepted recovery limits

Page 16 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303B08

23-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 5ml-rb	SampT	ampType: MBLK TestCode: EPA Method 8260B: VOLATILES								
Client ID: PBW	Batch	ID: R9	532	F	RunNo: 9	532				
Prep Date:	Analysis D	ate: 3/	31/2013		SeqNo: 2		Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 17 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303B08

23-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 5ml-rb	SampT	ype: ME	BLK TestCode: EPA Method 8260B: VOLATILES							
Client ID: PBW	Batch	ID: R9	532	RunNo: 9532						
Prep Date:	Analysis D	ate: 3/	31/2013	8	SeqNo: 2	72034	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropyibenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.7	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		103	69.5	130			
Surr: Dibromofluoromethane	9.6		10.00		96.4	70	130			
Surr: Toluene-d8	9.5		10.00		95.1	70	130			
Sample ID 100ng ics	SampT	ype: LC	s	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batcl	h ID: R9	532	F	RunNo: 9	9532				
Prep Date:	Analysis D	Date: 3/	/31/2013	5	SeqNo: 2	272037	Units: µg/L			
Analyte	Result	PQL		SPK Ref Val		LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0			103	70	130			
Toluene	20	1.0	20.00	0	100	80	120			
				_						

0

0

0

S

1.0

1.0

1.0

20.00

20.00

20.00

20

22

20

TootCode: EDA Mathad 9260D, VOLATILES

Qualifiers:

Chlorobenzene

1,1-Dichloroethene

Trichloroethene (TCE)

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

B Analyte detected in the associated Method Blank

70

85.8

70

130

133

130

H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

ND Not Detected at the Reporting Limit

100

109

98.8

R RPD outside accepted recovery limits

Page 18 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303B08

23-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 100ng lcs SampType: LCS TestCode: EPA Method 8260B: VOLATILES Client ID: LCSW Batch ID: R9532 RunNo: 9532 Prep Date: Analysis Date: 3/31/2013 SeqNo: 272037 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 9.1 70 Surr: 1,2-Dichloroethane-d4 10.00 90.6 130 Surr: 4-Bromofluorobenzene 9.8 10.00 97.9 69.5 130 Surr: Dibromoffuoromethane 9.6 10.00 96.4 70 130 Surr: Toluene-d8 9.4 10.00 94.3 70 130

Sample ID 1303b08-001a ms TestCode: EPA Method 8260B: VOLATILES SampType: MS Client ID: Hilltop Gas Station-Batch ID: R9532 RunNo: 9532 Prep Date: Analysis Date: 3/31/2013 SeqNo: 272046 Units: µg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene 21 1.0 20.00 0 107 70 130 Toluene 20 1.0 20.00 0 98.3 68.5 128 Chlorobenzene 19 1.0 20.00 0 96.7 70 130 1,1-Dichloroethene 22 1.0 20.00 0 110 70 130 Trichloroethene (TCE) 20 1.0 20.00 98.0 61.3 102 Surr: 1,2-Dichloroethane-d4 9.2 10.00 92.0 70 130 Surr: 4-Bromofluorobenzene 9.9 10.00 99.3 69.5 130 70 Surr: Dibromofluoromethane 9.9 10.00 98.7 130 Surr: Toluene-d8 9.2 10.00 92.3 70 130

								VEL		
Sample ID 1303b08-001a ms	sd SampT	ype: MS	3D	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: Hilltop Gas Stati	on- Batch	1D: R9	532	F	RunNo: 9	532				
Prep Date:	Analysis D	ate: 3/	31/2013	S	SeqNo: 2	72047	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	102	70	130	4.17	20	
Toluene	19	1.0	20.00	0	95.2	68.5	128	3.18	20	
Chlorobenzene	19	1.0	20.00	0	97.2	70	130	0.454	20	
1,1-Dichloroethene	21	1.0	20.00	0	104	70	130	5.20	20	
Trichloroethene (TCE)	19	1.0	20.00	0	94.1	61.3	102	4.06	20	
Surr: 1,2-Dichloroethane-d4	9.0		10.00		89.7	70	130	0	0	
Surr: 4-Bromofluorobenzene	9.9		10.00		99.0	69.5	130	0	0	
Surr: Dibromofluoromethane	9.7		10.00		97.0	70	130	0	0	
Surr: Toluene-d8	9.5		10.00		94.7	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 19 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: . 1303B08

23-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB-6773	SampType: MBLK TestCode: EPA Met					PA Method	8310: PAHs			
Client ID: PBW	Batch	1D: 67	73	F	RunNo: 9	739				
Prep Date: 4/2/2013	Analysis D	ate: 4/	9/2013	S	SeqNo: 2	77442	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	2.0								
2-Methylnaphthalene	ND	2.0								
Acenaphthylene	ND	2.5								
Acenaphthene	ND	5.0								
Fluorene	ND	0.80								
Phenanthrene	ND	0.60								
Anthracene	ND	0.60								
Fluoranthene	ND	0.30								
Pyrene	ND	0.30								
Benz(a)anthracene	ND	0.10								
Chrysene	ND	0.20								
Benzo(b)fluoranthene	ND	0.10								
Benzo(k)fluoranthene	ND	0.10								
Benzo(a)pyrene	ND	0.10								
Dibenz(a,h)anthracene	ND	0.12								
Benzo(g,h,i)perylene	ND	0.10								
Indeno(1,2,3-cd)pyrene	ND	0.10								
Surr: Benzo(e)pyrene	19		20.00		97.3	46.4	106			

Sample ID LCS-6773	SampType: LCS TestCode: EPA Method 8310: PAHs									
Client ID: LCSW	Batcl	1D: 67	73	F	RunNo: 9	739				
Prep Date: 4/2/2013	Analysis D)ate: 4/	9/2013	S	SeqNo: 2	77443	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Quai
Naphthalene	55	2.0	80.00	0	69.3	46	82.9			
1-Methylnaphthalene	58	2.0	80.20	0	72.8	47.2	85.8			
2-Methylnaphthalene	59	2.0	80.00	0	73.4	48.4	84.6			
Acenaphthylene	63	2.5	80.20	0	78.7	58.7	78.7			
Acenaphthene	62	5.0	80.00	0	77.6	55.3	85.1			
Fluorene	5.6	0.80	8.020	0	70.3	31.9	82.2			
Phenanthrene	2.9	0.60	4.020	0	72.4	54.5	81.9			
Anthracene	2.7	0.60	4.020	0	68.2	51.9	82.7			
Fluoranthene	6.2	0.30	8.020	0	77.4	57.6	83.7			
Pyrene	6.2	0.30	8.020	0	76.8	53.1	70.4			S
Benz(a)anthracene	0.73	0.070	0.8020	0	91.0	48	85.7			S
Chrysene	3.2	0.20	4.020	0	80.6	44.3	78.2			S
Benzo(b)fluoranthene	0.87	0.10	1.002	0	86.8	60	90.4			
Benzo(k)fluoranthene	0.58	0.070	0.5000	0	116	61.4	89			S
Benzo(a)pyrene	0.52	0.070	0.5020	0	104	63.5	88.6			S

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 20 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303B08

23-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID LCS-6773	SampT	ype: LC	s	Tes	tCode: El	PA Method				
Client ID: LCSW	Batch	h ID: 67	73	** · F	RunNo: 9	739				
Prep Date: 4/2/2013	Analysis D	Date: 4/	9/2013	8	SeqNo: 2	77443	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Dibenz(a,h)anthracene	1.1	0.12	1.002	0	108	57	92.6			S
Benzo(g,h,i)perylene	1.1	0.080	1.000	0	109	55.4	95.9			S
Indeno(1,2,3-cd)pyrene	2.0	0.080	2.004	0	97.8	52.7	88.6			S
Surr: Benzo(e)pyrene	17		20.00		87.3	46.4	106			

Sample ID LCSD-6773	SampType: LCSD TestCode: EPA Method 8310: PAHs									
Client ID: LCSS02	Batc	h ID: 67	73	F	RunNo: 9	739				
Prep Date: 4/2/2013	Analysis [Date: 4/	9/2013	8	SeqNo: 2	77444	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	56	2.0	80.00	0	70.5	46	82.9	1.79	20	
1-Methylnaphthalene	60	2.0	80.20	0	74.2	47.2	85.8	1.95	20	
2-Methylnaphthalene	59	2.0	80.00	0	73.2	48.4	84.6	0.290	20	
Acenaphthylene	100	2.5	80.20	0	127	58.7	78.7	47.2	20	SR
Acenaphthene	62	5.0	80.00	0	77.1	55.3	85.1	0.614	20	
Fluorene	5.2	0.80	8.020	0	64.5	31.9	82.2	8.70	20	
Phenanthrene	2.5	0.60	4.020	0	61.9	54.5	81.9	15.6	20	
Anthracene	2.5	0.60	4.020	0	61.9	51.9	82.7	9.56	20	
Fluoranthene	5.4	0.30	8.020	0	66.7	57.6	83.7	14.9	20	
Pyrene	5.1	0.30	8.020	0	63.3	53.1	70.4	19.2	20	
Benz(a)anthracene	0.60	0.070	0.8020	0	74.8	48	85.7	19.5	20	
Chrysene	2.8	0.20	4.020	0	68.7	44.3	78.2	16.0	20	
Benzo(b)fluoranthene	0.73	0.10	1.002	0	72.9	60	90.4	17.5	20	
Benzo(k)fluoranthene	0.46	0.070	0.5000	0	92.0	61.4	89	23.1	20	SR
Benzo(a)pyrene	0.45	0.070	0.5020	0	89.6	63.5	88.6	14.4	20	S
Dibenz(a,h)anthracene	0.94	0.12	1.002	0	93.8	57	92.6	13.9	20	S
Benzo(g,h,i)perylene	0.92	0.080	1.000	0	92.0	55.4	95.9	16.9	20	
Indeno(1,2,3-cd)pyrene	1.7	0.080	2.004	0	83.3	52.7	88.6	16.0	20	
Surr: Benzo(e)pyrene	16		20.00		80.6	46.4	106	0		

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- P Sample pH greater than 2
- RLReporting Detection Limit

- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 21 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303B08

23-Apr-13

Client:

HRL Compliance Solutions

Project:

Analyte

Enterprise WEP III Water Sampling

Sample ID MB-6969

SampType: MBLK

TestCode: Total Phenolics by SW-846 9067

Client ID: **PBW** Batch ID: 6969

RunNo: 9846

Prep Date: 4/15/2013 Analysis Date: 4/15/2013

PQL

Units: µg/L

Result

SeqNo: 280297

HighLimit

RPDLimit

Qual

Phenolics, Total Recoverable

ND 2.5

SampType: LCS

TestCode: Total Phenolics by SW-846 9067

SPK value SPK Ref Val %REC LowLimit

Sample ID LCS-6969 LCSW Client ID:

RunNo: 9846

Prep Date: 4/15/2013 Batch ID: 6969

Units: µg/L

Analysis Date: 4/15/2013 PQL

SeqNo: 280298

Analyte

19

20

20.00

SPK value SPK Ref Val %REC 93.2

HighLimit LowLimit 81.1

%RPD **RPDLimit**

Phenolics, Total Recoverable

TestCode: Total Phenolics by SW-846 9067

120

%RPD

Qual

Sample ID LCSD-6969

Client ID: LCSS02

SampType: LCSD

Batch ID: 6969

2.5

RunNo: 9846

SeqNo: 280319

Units: µg/L

%REC

LowLimit

%RPD

Qual

Analyte

Analysis Date: 4/15/2013 **PQL**

SPK value SPK Ref Val

HighLimit

RPDLimit

Phenolics, Total Recoverable

Prep Date: 4/15/2013

2.5

20.00

0

99.0

81.1

120

5.97

20

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- Reporting Detection Limit

Analyte detected in the associated Method Blank В

Not Detected at the Reporting Limit

- Holding times for preparation or analysis exceeded Н
- R RPD outside accepted recovery limits

ND

Spike Recovery outside accepted recovery limits

Page 22 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#:

1303B08

23-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID 1303b08-001e dup

SampType: dup

TestCode: SM4500-H+B: pH

Client ID:

Hilltop Gas Station-

Batch ID: R9500

PQL

1.68

RunNo: 9500

Prep Date:

Analyte

Analysis Date: 3/28/2013

SeqNo: 271294

Units: pH units

RPDLimit

Result 8.22

SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD

Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Analyte detected below quantitation limits

P Sample pH greater than 2

Reporting Detection Limit

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Page 23 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303B08 23-Apr-13

Client:

HRL Compliance Solutions

Project:

Enterprise WEP III Water Sampling

Sample ID MB-6774 SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 6774

RunNo: 9627

SPK value SPK Ref Val %REC LowLimit

Prep Date: 4/2/2013 Analysis Date: 4/4/2013

SeqNo: 274594

Units: mg/L HighLimit

RPDLimit Qual

Analyte Total Dissolved Solids Result **PQL**

ND 20.0

%RPD

%RPD

Sample ID LCS-6774 Client ID: LCSW

SampType: LCS

RunNo: 9627

TestCode: SM2540C MOD: Total Dissolved Solids

Prep Date: 4/2/2013

Batch ID: 6774

Units: mg/L

Analysis Date: 4/4/2013

SeqNo: 274595

Analyte

Result

Result

5220

5210

SPK value SPK Ref Val PQL

%REC LowLimit

RPDLimit

Qual

Total Dissolved Solids

1020

1000 20.0

0 102

80

HighLimit 120

TestCode: SM2540C MOD: Total Dissolved Solids

3212

Sample ID 1303A97-002AMS

Client ID:

Prep Date:

BatchQC

SampType: MS

Batch ID: 6774

PQL

40.0

RunNo: 9627

120

Units: mg/L

RPDLimit

Analyte

4/2/2013

Analysis Date: 4/4/2013

SPK value SPK Ref Val %REC

SeqNo: 274604

100

LowLimit 80 HighLimit %RPD

Qual

Total Dissolved Solids

Sample ID 1303A97-002AMSD

2000

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: **BatchQC**

SampType: MSD Batch ID: 6774

RunNo: 9627

Analyte

Prep Date: 4/2/2013

Analysis Date: 4/4/2013

SeqNo: 274605

Units: mg/L

Qual

Total Dissolved Solids

PQL 40.0

SPK value SPK Ref Val %REC LowLimit 2000

3212

99.9

80

HighLimit 120 %RPD 0.115 **RPDLimit**

Value exceeds Maximum Contaminant Level.

J Analyte detected below quantitation limits

Reporting Detection Limit

В Analyte detected in the associated Method Blank

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Qualifiers:

E Value above quantitation range

P Sample pH greater than 2

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Page 24 of 24

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105

TEL: 505-345-3975 FAX: 505-345-410; Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: HRL COMPL	LIANCE SOL Work Order Nun	nber: 1303B08		RcptNo: 1	
Received by/date: AG	03/28/	13			
Logged By: Michelle G	arcia 3/28/2013 9:53:00	AM			
Completed By: Michelle Ga	arcia 3/28/2013 10:38:4	6 AM			
Reviewed By:	n nala811	20			
Chain of Custody	0 75-11				
Custody seals intact on sa	ample bottles?	Yes 🗌	No 🗆	Not Present	
2. Is Chain of Custody compl	lete?	Yes 🗹	No 🗌	Not Present	
3. How was the sample delive	ered?	Courier			
Log In					
4. Was an attempt made to	cool the samples?	Yes 🗹	No 🗆	NA \square	
5. Were all samples received	d at a temperature of >0° C to 6.0°C	Yes 🗹	No 🗆	na 🗆	
6. Sample(s) in proper conta	ainer(s)?	Yes 🗹	No 🗆		
7. Sufficient sample volume	for indicated test(s)?	Yes 🗹	No 🗆		
8. Are samples (except VOA	and ONG) property preserved?	Yes 🗹	No 🗌		
9. Was preservative added to	o bottles?	Yes 🗌	No 🗹	NA \square	
10.VOA vials have zero head	Ispace?	Yes 🗹	No 🗌	No VOA Vials	
11. Were any sample contain	ners received broken?	Yes	No 🗹 ┌	# of	
				# of preserved bottles checked	\.
12.Does paperwork match bo (Note discrepancies on ch		Yes 🗹	No 🗔	for pH:	12 unless noted)
13. Are matrices correctly idea	••	Yes 🗹	No 🗆	Adjusted?	JE MO.
14. Is it clear what analyses w		Yes 🗸	No 🗆		\(\frac{1}{2}\).
15. Were all holding times abl		Yes 🗹	No 🗆	Checked by:	A
(If no, notify customer for	authorization.)				
Special Handling (if app	plicable)				
16. Was client notified of all d		Yes 🗌	No 🗌	NA 🗹	
Person Notlified:	T De	nte:			
By Whom:	Vi	•	one 🗌 Fax	n Person	
Regarding:					
Client Instructions:				i di	
17. Additional remarks:					
18. Cooler Information Cooler No Temp °C 1 3.3	Condition Seal Intact Seal N	Seal Date 5	Signed By		
[1 3.3	Joou lea				

Chain-of-Custody Record				Turn-Around Time:						ш	AI	r 1	EM	VT		M	ME	NT	AL		
Client:	HRL (i empliar	nce Solutions Inc.	☐ Standard ☐ Rush					_											1	
	<i></i>			Project Name: Enterprise WEPTIT					ANALYSIS LABORATORY www.hallenvironmental.com												
Mailing Address: 2385 F/2 RD				Water Sampling				4901 Hawkins NE - Albuquerque, NM 87109													
Grand Junetion Co 8/635				Project #: /3 -/10. 2			Tel. 505-345-3975 Fax 505-345-4107														
Phone #: 970 243 3271				13-110.2				10	1. 50	J-J-1	J-J-J				ques		<u> </u>				
email or Fax#: Krowe@HRLComp. Lom				Project Manager: Kay Lamber+				3	6			T	_	\neg							
	Package:	11000		Kay Lambert			TMB's (8021)	TPH (Gas only)	₩.			(S)	0	B's							
☑ Stan	dard		☐ Level 4 (Full Validation)					ပ္ပို	2			SIMS)		2 P(
Accreditation				Sampler: Kris Rowe			TMB	핕	0/0	9.1		8270	Ş	808						ξ	
□ EDD (Type)						SERVICE STATES	— + Ξ	<u>.</u>	GR.	41	22	ъ .	န္ <u>က</u> ဇို	Se		Į į	4:5+			⊼	
Date	Time	Matrix	Sample Request ID		Preservative Type		BTEX + MTBE	BTEX + MTBE +	TPH 8015B (GRO / DRO / MRO)	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or	RCRA 8 Metals	8081 Pesticides / 8082 PCB	8260B (VOA)	8270 (Semi-VOA)	Wacc L			Air Bubbles (Y or N)	
3/27/13	1020	SW	Hilltop Gas station -Pond	الإدافالة	see Container	-001									T-		X	\top		1	
			FRIP BLANK	VOAK3	Hei Nas		П				X	T			X					1	
					1	1		\neg							$\uparrow \uparrow$					\top	
					A me	12613					十				1					1	
					1					1	\top			1	 			\top			
					7		\Box	\neg	7		1	\top	\top	1	_	1		\top		1	
							\Box		1	十	十	\top	_		1	†	\Box	\dashv		T	
							П		$\neg \dagger$	1	\top	十	\top	 		\vdash				十	
							\Box			1	\top	\top	+	+	+		\Box		\dashv	+	
										十	1	\top	\top			+-				十	
							\Box		十	十	\top	\top	\top	十	1	†-	-		+	T	
									\neg	十		\top	\top	\top		\vdash			1	+	
Date:	Time:	Relinquish	ed by:	py: Received by:				narks	S:							1				ш	
3/27/13	1130	thus	them "	Christie Wales 3/27/13 1136																	
Date: Time: Relinquished by:			Received by: Date Time																		
3/27/12	1719	1/ Mrs	the Waster &		- 03 39	13 0953															
t	f necessary,	samples sub-	mitted to Hall Environmental may be subco	ontracted to other a	credited laboratorie	es. This serves as notice of thi	s possit	oility. A	Anv sub	o-contr	acted o	datawi	il be cle	arly no	tated o	n the a	nalytic	al repor	t.		