GW - ____40____

DEPT. OF TRANSPORTATION (DOT) WELL ABANDONMENT

Chavez, Carl J, EMNRD

From:

Chavez, Carl J, EMNRD

Sent:

Wednesday, May 3, 2017 9:31 AM

To:

Robinson, Kelly (Kelly.Robinson@wnr.com)

Cc:

Griswold, Jim, EMNRD; Schmaltz, Randy (Randy.Schmaltz@wnr.com);

'Allen.Hains@wnr.com'; Moore, Audrey J., NMDOT

Subject:

Former Giant Bloomfield Refinery (GW-40) Monitoring Well Abandonment Work Plan

for SHS- 1 through 5 in or near ROW Hwy 64 and Intersection of CR 5500 DOT Road

Expansion Project

Ms. Robinson:

The New Mexico Oil Conservation Division (OCD) is in receipt of the above subject work plan by letter dated May 1, 2017.

OCD approves the plug and abandonment in accordance with New Mexico Office of State Engineer Guidelines with the following conditions:

- 1) SHS-1 through 4 shall be sampled for Gen. Chem. and TPH (GRO & DRO_{Extended}) in advance of plug and abandonment, since the last sample event occurred in 2009 with some residual organics present: TDS, Cl and SO4 were increasing in concentration.
- 2) SHS-3 (4-inch MW) was indicated as damaged, but is not within the ROW of the DOT Project. If TPH, TDS, Cl, and SO4 from No. 1 above exhibit elevated groundwater levels above historical environmental analytical laboratory data results and/or WQCC water quality standards, and if groundwater at SHS-3 is able to be sampled, it shall remain in place for future monitoring purposes.

Please contact me if you have questions.

Thank you.

Mr. Carl J. Chavez, CHMM (#13099)
New Mexico Oil Conservation Division
Energy Minerals and Natural Resources Department
1220 South St Francis Drive
Santa Fe, New Mexico 87505
Ph. (505) 476-3490

E-mail: CarlJ.Chavez@state.nm.us

"Why not prevent pollution, minimize waste to reduce operating costs, reuse or recycle, and move forward with the rest of the Nation?" (To see how, go to: http://www.emnrd.state.nm.us/OCD and see "Publications")

May 1, 2017

Carl Chavez Environmental Bureau New Mexico Energy, Minerals & Natural Resources Dept. 1220 South St. Francis Drive Santa Fe, NM 87505

UPS Tracking #: 12 P81 Y39 O1 4067 1154

RE: Monitoring Well Abandonment Work Plan Former Giant Bloomfield Refinery

OCD Discharge Permit GW-40

Dear Mr. Chavez,

Western Refining Southwest, Inc. ("Western) proposes this Monitoring Well Abandonment Work Plan for monitoring wells located in the New Mexico Department of Transportation (NMDOT) Highway 64 Right-of Way (ROW). This work plan is for the abandonment of five monitoring wells (SHS-1 through SHS-5) located south of the former Giant Bloomfield Refinery. See the attached Figures.

Purpose

NMDOT has requested that Western abandon of monitoring wells SHS-1, SHS-2, SHS-4 and SHS-5 due to highway construction scheduled to start in August 2017. See the attached NMDOT correspondence.

In addition, Western proposes to abandon monitoring well SHS-3 because it is unusable due to damage by tree roots. This well also located in the Highway 64 ROW but does not appear to conflict with NMDOT construction at this time.

Background Information

The monitoring wells were installed in 1989 and 1990 as part of the remediation investigation of the former Giant Bloomfield Refinery. See the Well Information attachment for recent well gauging information and boring logs. Western compiled available monitoring well chemical analyses for each of the wells. See the attached Chemical Analyses Summary. In recent years, the New Mexico Office of the State Engineer (NMOSE) has requested information about the monitoring. It is not clear if these wells are registered with the NMOSE. The NMOSE pertinent regulation and reporting forms are attached.

On February 10, Allen Hains of Western met with you to discuss abandoning the wells before highway construction commences. If replacement wells are necessary after the highway construction is completed, NMDOT has a process to allow access for monitoring well installation.

Scope of Work

Western proposes to abandon the five will in accordance with NMOSE regulations. The scope of work will be as follows:

1. Western will contract a licensed NM well driller;

- 2. The well driller will develop and submit a Well Plugging Plan in accordance to the NMOSE regulations;
- 3. Upon NMOSE approval, the well driller will abandon the wells;
- 4. Submit a Plugging Record to NMOSE; and
- 5. Western will submit a well plugging summary report to NMOCD.

Kolewson

Schedule

The NMDOT has scheduled to commence field construction activities in the area of the SHS wells as early as July 2017. Western would like to initiate the abandonment activities pending NMOCD's approval as soon as possible to ensure such activities do not impact the NMDOT construction efforts.

If you have any questions or would like to discuss this topic in more detail, please feel free to contact me at (505) 632-4166 or <u>Kelly.robinson@wnr.com</u> at your convenience.

Sincerely,

Kelly R. Robinson

Environmental Supervisor

Western Refining Southwest, Inc.

cc: R. Schmaltz (WNR)

A. Hains (WNR)

FIGURES

NM DOT Correspondence

Hains, Allen

From:

Robinson, Kelly

Sent:

Thursday, February 09, 2017 1:00 PM

To:

Hains, Allen

Cc:

Schmaltz, Randy

Subject:

FW:

Attachments:

ROW Map Excerpt.pdf

Here is the map of the land ownership you requested.

Please let me know if you need anything else!

Kelly R. Robinson | Environmental Supervisor Western Refining I 111 County Road 4990 I Bloomfield, NM87413 (o) 505-632-4166 I (c) 505-801-5616 I (e) kelly.robinson@wnr.com

This message may contain PRIVILEGED AND CONFIDENTIAL INFORMATION intended solely for the use of the addressee(s) named above. Any disclosure, distribution, copying or use of the information by others is strictly prohibited. If you have received this message in error, please advise the sender by immediate reply and delete the original message.

From: Moore, Audrey J., NMDOT [mailto:Audrey.Moore@state.nm.us]

Sent: Thursday, January 05, 2017 1:54 PM To: Robinson, Kelly <Kelly.Robinson@wnr.com>

Subject:

This email was sent by an external sender. Please use caution when opening attachments, clicking web links, or replying until you have verified this email sender.

Audrey Moore, Manager NMDOT - Environmental Geology Section PO Box 1149, Room 201 1120 Cerrillos Road Santa Fe, NM 87504-1149

Ofc: 505-827-1715 Cell: 505-490-1850

Audrey.moore@state.nm.us

Hains, Allen

From: Robinson, Kelly

Sent: Thursday, February 09, 2017 12:59 PM

To: Hains, Allen

Subject: FW: Giant Bloomfield Refinery SHS monitoring wells 1,2,4, & 5

Attachments: Monitoring wells CN F100112.pdf

This is the map with the well locations. Please note that the SHS designation on the map are incorrect. Use the GBR map to correctly label the wells for conversation reference.

Kelly R. Robinson I Environmental Supervisor
Western Refining | 111 County Road 4990 | Bloomfield, NM87413
(o) 505-632-4166 | (c) 505-801-5616 | (e) kelly.robinson@wnr.com

This message may contain PRIVILEGED AND CONFIDENTIAL INFORMATION intended solely for the use of the addressee(s) named above. Any disclosure, distribution, copying or use of the information by others is strictly prohibited. If you have received this message in error, please advise the sender by immediate reply and delete the original message.

From: Moore, Audrey J., NMDOT [mailto:Audrey.Moore@state.nm.us]

Sent: Tuesday, January 24, 2017 8:01 AM **To:** Robinson, Kelly < Kelly.Robinson@wnr.com>

Subject: Giant Bloomfield Refinery SHS monitoring wells 1,2,4, & 5

This email was sent by an external sender. Please use caution when opening attachments, clicking web links, or replying until you have verified this email sender.

Good Morning Kelly,

I apologize for the delay in sending this to you. I received the attached figure yesterday.

Our design firm returned the figure in which they mapped the 4 groundwater monitoring wells that are located within the existing NMDOT and/or planned right of way. I believe SHS-3 is also among them but since I didn't ask for those coordinates... Note that our consultant incorrectly identified the wells but their locations reflect the coordinates you relayed earlier this month.

Are you having any luck with NMEMNR/your petition to plug the wells? Is there anything I can do to help?

Audrey Moore, Manager NMDOT - Environmental Geology Section PO Box 1149, Room 201 1120 Cerrillos Road Santa Fe, NM 87504-1149

Ofc: 505-827-1715 Cell: 505-490-1850

Audrey.moore@state.nm.us

Well Information

SHS Well Data											
March 2, 2017											
Well	Well SHS - 1 SHS - 2 SHS - 3 SHS - 4 SHS - 5										
Total Depth (feet)	50.40	44.56	NA	52.16	47.85						
Well Diameter (in)	4	4	4	2	4						

BOREHOLE LOG (SOIL)

Fage <u>1</u> of <u>1</u>

LOCATION DESCRIPTION: South of Giant's Bloomfield refinery on NMSR 64 right of wey, 100 ft west of ELM-37

		R	s		RUN		SAMPLE			
DEPTH	LITH.	E	A H	#	FROM	10	1.D.	TYPE	USCS	VISUAL CLASSIFICATION
0			2	1 2	0	3			SW	0-28' <u>Sand</u> Hod Brn, 10 YR 4/4, v fine to fine grained, well sorted, unconsol., slightly moist at approx. 13'. Hinor pebble gravel at 11'-13'.
5									CL	Silty clayey sand stringer, moderate brown, 10 YR 4/4, at approx. 15'-15.5'.
			3	3	8	13			GP	Minor small pebble gravel 22-28'. 28'-30' Clay, moderate olive brn, 5 ¥ 4/4,
10			ļ						SW	minor fine to coarse sand. 30'-30.5' <u>Sand</u> as above (0'-28'), no gravel.
15			3	4	13	18			CL	6" clay to 31' grading to v fine sand at 33' olive gray, 5 Y 3/2.
			0	5	18	23			sc	33'-36' <u>Silty Sandy Clay</u> , moderate olive brn, 5 Y 4/4, approx. 33% clay, 33% sand, 33% silt.
20										36'-37' as above only stained, olive gray, 5Y 3/2. Fine to coarse sand interval 37' to 37-1/2' then to silty clay olive gray, 5 Y 3/2.
25			3	6	23	28			CL	37'-1/2-39' <u>Silty clay</u> , olive gray 5 Y 3/2.
				7	28	33			SH	39'-40' Silty sand, olive gray, 5 Y 3/2 Unconsol., MW sorted.
30			5						CL	40'-41.5' <u>Clay</u> , mottled, mod yllsh brn, 10 YR 5/4 - olive gray. 5 YR 3/2.
	A A		0	8	33	38			SW	41.5'-42.5' Sand. mod. olive brn 5 Y 4/4, f-m sand, unconsol., MW sorted.
35									sc	42.5'-43.5' <u>Sandy clay</u> , mod brn, 5 YR 4/4.
			2	9	38	43			SW	43'-50' <u>Sand</u> , mod yilsh brn, 10 YR 5/4, fine to med sand. unconsol. MW sorted, saturated
40				10	43	48		!	NA.	50'-51.5' mudstone/claystone, dusky yellow 5 Y 6/4 to light olive brn, 5 Y 5/6 mod well consolidated, carbonecous shale present, weathered, shale
45	ZZZ				43				NA	present. 51.5'-52' <u>Sandstone</u> , dusky yellow, 5 Y 6/4 to light
			3	11	48	52				olive brn, 5 Y 5/6, fine to med grained, well consolidated, well sorted.
50					1					

BOREHOLE LOG (SOIL)

Page 1 of 1

EDUCATION DESCRIPTION: South of Giants Bloomfield Refinery on NMSR 64 right of way, 100 ft east of BLM-37

		R	S		RUN		SAMPLE			
DEFTH	LITH.	EC	Ä	#	FROM	10	1.D.	TYPE	uscs	VISUAL CLASSIFICATION
5			3.5 2	2	3.5					0-1' Soil, Silty sand w/organics, mod. yllsh, brn 10 YR 5/4, 40% silt, 60% f sand, unconsolidated, mod well sorted, sub angular to sub rounded. 1'-26' Gravelly Sand, Dark yellowish orange, 10 YR 6/6, 90% v fine - fine pred. quartz, unconsol., well sorted, sub ang to sub rounded, 10% gravel is fine to coarse pebble gravel, rounded.
10			3	3	13.5	13.5				26'-30' <u>Sandy gravel</u> , Dark yllsh orange, 10 YR 6/6, unconsol., rounded, pebble gravel to cobbles. 30'-33.5' <u>Clayey Silty Sand</u> , mod yllsh brn, 10 YR
15										5/4. Clay to fine sand, unconsol. poorly sorted. 33.5'-36' Sand, mod yllsh brn, 10 YR 5/4, fine
20			3	5	18.5	23.5				to mod send, unconsol. sub ang to sub rounded, mod well. 36'-37' Clayey Silt, dark yllsh brn, 10 YR 4/4, unconsol. MW sorted.
25			0	6	23.5	28.5				37'-39.5' <u>Gravelly Sand</u> , dark yllsh brn, 10 YR 4/2, to olive black, 5 Y 2/1, at 38.5'. 80% Fine sand, 20% small cobbles, ps, unconsol.
30			0	7	28.5	33.5		·		sand is sub ang to sub rounded, cobbles are rounded. 39.5'-40.5' <u>Sandstone</u> , olive black 5 Y 2/1, MW consolidated, stained, appears to be Waciamento.
35	- X IV X I		2.5	8	33.5	38.5				40.5'-40.8' <u>Claystone</u> , olive gray, 5 Y 4/1, mod well consolidated. 40.8'-41.1' <u>Sandstone</u> , dark yllsh orange, 10 YR
40			5	9	38.5	43.5				6/6, med sand, MW sorted, unconsolidated. 41.1'-41.3' <u>Claystone</u> , olive gray, 5 Y 4/1. mod well consolidated.
45			5	10	43.5	48.5				41.8'-42' <u>Sandstone</u> , grayish orange, 10 YR 7/4, med sand, mod consol., subang, calcium cement, moist.
50			5	11 -	48.5	53.5				

BOREHOLE LOG (SOIL) U.S. HIGHWAY 64 5HS-4 Page 1 of 2 SHS-1 . SITE ID: OFFSITE GIANT LOCATION ID: SHS-3 SITE COORDINATES (ft.): SHS-8 . • SHS-3 SHS-Z SHS-6* _SHS-5 • SHS-7 GROUND ELEVATION (ft. MSL): STATE: NEW MEXICO COUNTY: SAN JUAN DRILLING METHOD: HOLLOW STEM AUGER DRILLING CONTR.: WESTERN TECHNOLOGIES INC. DATE STARTED: 11/29/89 DATE COMPLE · BLH- 27 DATE COMPLETED: 11/30/89 BLH-30 FIELD REP .: LINLEY _1/4 1/4 1/4 S COMMENTS: LOCATION DESCRIPTION: SAMPLE DEPTH LITH. Ε USCS VISUAL CLASSIFICATION ĸ FROM TO TYPE C Ħ I.D. 0-6' SAND: Yelsh orange (10 YR 6/6) fn to med fn grained, uncons, mod poorly sorted, sbang to sbrndd, fill. 5 6-8' CLAYEY SAND: Dark yelsh brn (10 YR 4/2) v fn to fn grained, uncons, mod poorly sorted, sbang to sbrndd. 10 8-35' SAND: Dark yelsh orange (10 YR 6/6) fn to med grained, uncons, mod sorted, sbang to sbrndd. At 25' BGL cobbles (intbd w/depth). Clay fraction <10%, Grv fraction =15% to 25%. 15 20 25 30 35 35-38' SAND: (Hily wthd Sat), mod redsh brn (10 R 4/6) to dk yelsh orange (10 YR 6/6), fn to med sand, mod sorting, semiconsol, fri sbang to sbrndd. (v dns) Clay fraction incr w/depth to =20%. 40 38-38.5' COAL: Blk (N1), flaky to leaf like layering, fri, consol. 38.5-39.5' GRAVELLY SANDY CLAY: Gnsh gry (5 GY 6/1) to dk yelsh orange (10 YR 6/6) v fn to med 45 grained, poorly sorted, semiconsol, sbang to sbrndd. Grv fraction #10-15% & up to 1/8" diam. Sand fraction #20-25%. 39.5-44' GRAVELLY SAND: Dk yel orange (10 YR 6/6) med

to crs grained, uncons, poorly sorted, sbang

to sbrndd, wet.

50

BOREHOLE LOG (SOIL)

(Continued)

Page <u>2</u> of <u>2</u>

LOCATION ID: SHS-3

111	DEPTH	LITH.	R E C	S		RUN		SAH	PLE		Ucca	William States and Sta
60 65 70 75 80 85 90 95 100 105 110 110 1	DEFIR	LIIH.	C	Ĥ	#	FROM	TO	1.0.		TYPE		
65 70 75 80 80 85 90 95 110 110 110 110 110 110 110 110 110 11											ML	44-54' CLAY (SHALE): Lt olv gry (5 Y 6/1) v fn grained, consol, intbd med crs sand horizons (dk yelsh orange (10 YR 6/6) mod sorting, sbt to sbrndd, wet upper 4" of sample & becoming dry w/depth.
70 75 80 85 90 95 100	60											
75 80 85 90 95 100 105	65				-							
80 85 90 95 100	70											
85 90 95 100 105	75											
95 100 105 110	80											
95 100 105	85										۔ ا	
100										. •		
110								E				
											-	
115	110											
	115				-							

BOREHOLE LOG (SOIL) U.S. HIGHMAY 64 SHS-4. Page <u>1</u> of <u>2</u> SHS-1 . BLM- 37 SITE ID:_ OFFSITE GIANT LOCATION ID: SHS-4 SITE COORDINATES (ft.): SHS-8 . • SHS-3 5HS-2 .SHS-5 • SHS-7 GROUND ELEVATION (ft. MSL): SHS-6" COUNTY: SAN JUAN STATE: NEW MEXICO DRILLING METHOD: HOLLOW STEM AUGER DRILLING CONTR.: WESTERN TECHNOLOGIES INC. DATE STARTED: 11/27/89 DATE COMPLE FIELD REP.: LINLEY . BLM- 27 DATE COMPLETED: 11/28/89 BLM-30 _1/4 1/4 1/4 COMMENTS: LOCATION DESCRIPTION: SAMPLE RUN USCS VISUAL CLASSIFICATION DEPTH LITH. E A TO TYPE C М # FROM I.D. 0-27' SAND: Grysh orange (10 YR 7/4): v fn to med fn grained, sbang to sbrndd, uncons, mod sorted, moist at =15' BGL. 20-21' BGL Grv horizon, well rndd, =0.5" diam. Overall grain size incr w/depth to med-med crs sand. Grv fraction incr in Lith at ≈25' BGL. 10 15 20 25 GH 27-32' GRAVELLY CLAYEY SAND: Grysh orange (10 YR 7/4) v fn to crs grained, poorly sorted, sbang to sbrndd, semi to uncons, moist. Grv content =10-15%, clay fraction =25-30%. 30 32-37' <u>GRAVELLY SANDY CLAY</u>: As above w/color change to grysh orange (10 YR 7/4) to mod yelsh brn (10 GC YR 5/4). Grv fraction decr w/depth to *5%, clay fraction =50% incr w/depth to =75%, Grv fraction 0% at 37' BGL. 35 37-44' SANDY CLAY: Grysh orange (10 YR 7/4) v fn to med fn grained, poorly sorted, semiconsol, sbang to sbrndd, moist. Sand fraction #20-25% & decr w/depth to 15-20% & bcm fn grained. 40 SM 44-45' CLAYEY SAND: Grysh orange (10 YR 7/4) to mod yelsh brn (10 YR 5/4). V fn to med fn grained, uncons, sbang to sbridd, poorly sorted, moist. 45 45-50' SANDY CLAY: Grysh orange (10 YR 7/4) to mod SC yelsh brn (10 YR 5/4) v fn to med grained, poorly sorted, sbang to sbrndd, semiconsol, moist. Sand fraction =20% incr w/depth to =30-35% at 48' BGL, then decr to =15% & bcm fn 50

grained. Grv horizon at 47-49' BGL.

BOREHOLE LOG (SOIL)

(Continued)

Page 2 of 2

LOCATION ID: SHS-4

DEPTH LITH. E A FROM TO 1.D. TYPE USCS VISUAL CLASSIFICATION			R	s		RUN		SAMPL	 E		T
55 60 65 70 75 80 85 90 95 110	DEPTH	LITH.	E	A	#	,	TO			USCS	VISUAL CLASSIFICATION
65 70 75 80 85 90 95 100										ML	50-60' SHALE: Lt olv (10 Y 5/4) to dk gnsh yel (10 Y 6/6) v fn grained, consol, well sorted, sbrow to rodd.
70 75 80 85 90 95 100 105	60										
75 80 85 90 95 100	65										
80 85 90 95 100	70										
85 90 95 100 105 110 -	75										
90 95 100 105 110	80										
95 100 105 110	85										
100	90	. ,			·	,	÷				
100	95							·			
110	100										-
	105										
	110										
	115				-						•

BOREHOLE LOG (SOIL)

SHS-4. SHS-1. SHS-8. SHS-6. SHS	SH2-3/	• SHS-3	~
1/4 1/4 1/4	1/4 S		

	Page <u>1</u> of <u>1</u>
SITE ID: OFFSITE GIANT	LOCATION ID: SHS-5
SITE COORDINATES (ft.):	
N	E
GROUND ELEVATION (ft. MSL):_	
STATE: NEW MEXICO C	
DRILLING METHOD: HOLLOW STE	
DRILLING CONTR.: WESTERN TE	CHNOLOGIES INC.
DATE STARTED: 1/7/90	DATE COMPLETED: 1/8/90
FIELD REP .: LINLEY	
COUNTRY	

LOCATION DESCRIPTION:

DEPTH	LITH.	R	5		RUN		SAMPLE		uscs	MISHA CLASSIFICATION					
		C	Ĥ	#	FROM	10	1.0.	TYPE	0313	VISUAL CLASSIFICATION					
0		100%	1 2	1 2	0	3' 8'			SH	0-31' SAND: Grysh orange (10 YR 7/4), v fn to med fn sand, poorly sorted, uncons, sbang to sbrndd, abd rootlets. Cobbles at 10' BGL -up to 4"					
5		02	_	٤	,	8.				diam, sbrndd #1' thick at 13-14' BGL -at #18' BGL 6" thick lens of clayey silt -intbd Grv through depth up to 1" diam sbang to sbrndd.					
10		4%	3	3	8	141									
15		40%	4	4	14	18′									
20		0%	5	5	18	23'									
25		75 x	6	6	23	27'									
		100%	7	7	27	331		*	-						
30		100%	8	8	33	38′			sc	31-32' CLAYEY SILT: Mod yelsh brn (10 YR 5/4) v fn to fn med sorting uncons to semiconsol, sbang to sbrndd.					
35		30%	9	9	38	421			SH	32-38' <u>SILIY SAND</u> ; Grysh orange (10 YR 7/4), fn to med fn grained semi to uncons sbang to sbrndd, mod poorly sorted incr grain size w/depth to med sand.					
40	ихих	20%	10	10	42	471			SP	38-42' <u>SAND</u> : Pale yelsh orange (10 YR 8/6) fn to med crs, poorly sorted, uncons sbang to sbrndd, v moist.					
45		20%	11	11	47	52'			SC	42-43' CLAYEY SILT: Pale yelsh brn (10 YR 6/2) v fn to fn, mod sorted, semiconsol, sbang to sbrndd, sat.					
50				*		-			SW	43-58' SAND: Pale yelsh brn (10 YR 6/2) fn to med crs sand, poorly sorted, uncons, sbang to sbrndd, sat.					
		10%	12	12	52	57'									

Chemical Analyses Summary

		1								
Analyte	NMWQCC Standard	Unit	9/6/89	12/12/89	6/19/90	1/1/08	4/1/08	7/1/08	10/1/08	1/1/09
Volatiles					r					
benzene	10	μg/L	< 10.0	< 50.0	< 2.0	ND	ND	ND	ND	< 1.0
toluene	750	μg/L	< 30.0	< 50.0	<2.0	ND	ND	ND	ND	< 1.0
ethylbenzene	750	μg/L	140.0	< 50.0	57.0	ND	0.7	0.7	ND	< 1.0
methyl tert-butyl ether (MTBE)	NE	μg/L	NT	NT	NT	NT	NT	NT	ND	< 1.0
1,2,4-trimethylbenzene	620	μg/L	NT	NT	NT	NT	NT	NT	NT	< 1.0
1,3,5-trimethylbenzene	NE	μg/L	NT	NT	NT	NT	NT	NT	NT	< 1.0
1,2-dichloroethane (EDC)	10	μg/L	< 10.0	7.1	7.1	ND	ND	ND	NT	< 1.0
1,2-dibromoethane (EDB)	NE	μg/L	NT	NT	NT	ND	ND	ND	NT	< 1.0
bromodichloromethane	NE	μg/L	< 10.0	< 0.5	< 1.0	ND	ND	ND	NT	< 1.0
bromoform	NE	μg/L	< 200.0	< 0.5	< 5.0	ND	ND	ND	NT	< 1.0
bromomethane	NE	μg/L	< 100.0	< 5.9	<12.0	ND	ND	ND	NT	< 1.0
carbon tetrachloride	10	μg/L	< 20.0	< 0.6	< 1.2	ND	ND	ND	NT	< 1.0
chiorobenzene	NE	μg/L	< 10.0	< 50.0	4.4	ND	ND	ND	NT	< 1.0
chloroethane	NE	μg/L	< 50.0	< 2.6	< 5.2	ND	ND	ND	NT	< 2.0
chloroform	100	μg/L	< 10.0	5.7	< 1.0	ND	ND	ND	NT	< 1.0
chloromethane	NE	μg/L	< 50.0	< 1.5	< 3.0	ND	ND	ND	NT	< 1.0
cis-1,2-DCE	NE	μg/L	NT	NT	39.0	NT	NT	NT	NT	< 1.0
cis-1,3-dichloropropene	NE NE	μg/L	NT	NT	NT	ND	ND	ND	NT	< 1.0
1,2-dibromo-3-chloropropane	NE NE	μ g /L	NT	NT	NT	NT	NT	NT	NT	< 2.0
dibromochloromethane	NE NE	μ g /L	< 20.0	< 1.0	< 2.0	ND	ND	ND	NT	< 1.0
1,2-dichlorobenzene	NE NE	μg/L	< 20.0	< 100.0	< 4.0	ND	1.3	1.2	NT	< 1.0
:	NE NE		< 40.0	< 100.0	< 4.0	ND	ND	ND	NT	< 1.0
1,3-dichlorobenzene		μg/L /I	< 20.0	< 75.0	< 3.0	ND	ND	ND	NT	< 1.0
1,4-dichlorobenzene	NE as	μg/L	< 10.0	0.72	< 5.0	ND ND	ND ND	ND	NT	< 1.0
1,1-dichloroethane	25	μg/L ··- α	İ							
1,1-dichloroethene	5	μg/L	< 10.0	< 1.0	< 2.0	ND	ND	ND	NT	< 1.0
1,2-dichloropropane	NE	μg/L	< 10.0	< 0.5	< 1.0	ND	ND	ND	NT	< 1.0
methylene chloride	100	μg/L	< 40.0	< 2.0	<4.0	ND	ND	ND	NT	< 3.0
1,1,2,2-tetrachloroethane	10	μg/L	< 20.0	< 0.75	< 1.5	ND	ND	ND	NT	< 2.0
tetrachloroethene (PCE)	20	μg/L	< 10.0	< 0.5	1.2	ND	ND	ND	NT	< 1.0
trans-1,2-DCE	NE	μg/L	NT	21.0	< 2.0	ND	ND	ND	NT	< 1.0
trans-1,3-dichloropropene	NE	μg/L	NT	NT	NT	ND	ND	ND	NT	< 1.0
1,1,1-trichloroethane	60	μg/L	< 20.0	< 1.0	< 2.0	ND	ND	ND	NT	< 1.0
1,1,2-trichloroethane	10	μg/L	< 20.0	< 1.0	< 2.0	ND	ND	ND	NT	< 1.0
trichloroethene (TCE)	100	μg/L	22,2	6.2	2.9	ND	ND	ND	NT	< 1.0
trichlorofluoromethane	NE	μg/L	< 10.0	< 1.0	< 2.0	ND	ND	ND	NT	< 1.0
vinyi chloride	1	μg/L	< 20.0	< 1.0	< 2.0	ND	ND	ND	NT	< 1.0
xylenes, total	620	μg/L	280.0	330.0	24.0	ND	ND	ND	ND	< 1.5
Anions			r -		1		r	I	1	1
chloride	250	mg/L	NT	NT	NT	94.2	97	91	94.2	69
sulfate	600	mg/L	NT	NT	NT	69.5	33	11	69.5	85
Cations				1				7		
calcium	NE	mg/L	NT	NT	NT	82.3	84	75	82.3	NT
magnesium	NE	mg/L	NT	NT	NT	17,9	21	17	17.9	NT
potassium	NE	mg/L	NT	NT	NT	2.29	7.1	1.8	2.29	NT
sodium	NE	mg/L	NT	NT	NT	383	440	410	383	NT
Hardness										
hardness (as CaCO3)	NE	mg/L	NT	NT	NT	251	300	ND	NT	NT
Alkalinity										
alkalinity, total (As CaCO3)	NE	mg/L CaCO3	NT	NT	NT	1,010	1,000	1,000	NT	970
carbonate	NE	mg/L CaCO4	NT	NT	NT	1,010	5.3	2.2	NT	< 4.0
bicarbonate	NE	mg/L CaCO5	NT	NT	NT	1,010	1,000	1,000	NT	970

		-	
7	67	S-	4
	- 1	-	
"		_	

Analyte	NMWQCC Standard	Unit	9/6/89	12/12/89	6/19/90	1/1/08	4/1/08	7/1/08	10/1/08	1/1/09
Specific Conductance										
specific conductance	NE	μmhos/cm	NT	NT	NT	1,950	2,000	1,900	NT	2,100
рН										
рН	6-9	pH units	NT	NT	NT	7.3	7.4	7.09	NT	7.33
Total Dissolved Solids										
total dissolved solids	1,000	mg/L	NT	NT	NT	1,170	1,200	1,200	NT	1,200

Notes:

RED HIGHLIGHT - indicates concentration exceeds the NMWQCC standard

μg/L - micrograms per liter μmhos/cm -micromhos per centimeter mg/L - milligrams per liter ND - non detect

NE - not established

NMWQCC - New Mexico Water Quality Control Commission
NT - not tested
USEPA - United States Environmental Protection Agency

Analyte	NMWQCC Standard	Unit	9/6/89	12/12/89	6/20/90	1/1/08	4/1/08	7/1/08	10/1/08	1/1/09
Volatiles	Standard		20110-2222							
benzene	10	μg/L	< 10.0	10.0	5.4	ND	ND	ND	ND	< 1.0
toluene	750	μg/L	< 30.0	2.2	19.0	ND	ND	ND	ND	< 1.0
ethylbenzene	750	μg/L	120.0	120.0	78.0	ND	0.4	ND	ND	< 1.0
methyl tert-butyl ether (MTBE)	NE	μg/L	NT	NT	NT	NT	NT	NT	ND	< 1.0
1,2,4-trimethylbenzene	620	μg/L	NT	NT	NT	NT	NT	NT	NT	< 1.0
1,3,5-trimethylbenzene	NE	μg/L	NT	NT	NT	NT	NT	NT	NT	< 1.0
1,2-dichloroethane (EDC)	10	μg/L	68.0	< 1.0	< 1.0	ND	ND	ND	NT	< 1.0
1,2-dibromoethane (EDB)	NE	μg/L	NT	NT	NT	ND	ND	ND	NT	< 1.0
bromodichloromethane	NE -	μg/L	< 10.0	< 1.0	< 1.0	ND	ND	ND	NT	< 1.0
bromoform	NE	μg/L	< 200.0	< 1.0	< 5.0	ND	ND	ND	NT	< 1.0
bromomethane	NE	μg/L	< 100.0	< 1.2	< 12.0	ND	ND	ND	NT	< 1.0
carbon tetrachloride	10	μg/L	< 20.0	< 1.0	< 1.2	ND	ND	ND	NT	< 1.0
chlorobenzene	NE	μg/L	< 10.0	< 2.0	230.0	ND	ND	ND	NT	< 1.0
chloroethane	NE	μg/L	< 50.0	< 1.0	< 5.2	ND	ND	ND	NT	< 2.0
chloroform	100	μg/L	< 10.0	< 1.0	< 1.0	ND	ND	ND	NT	< 1.0
chloromethane	NE	μg/L	< 50.0	< 1.0	< 3.0	ND	ND	ND	NT	< 1.0
cis-1,2-DCE	NE	μg/L	NT	NT	< 2.0	NT	NT	NT	NT	< 1.0
cis-1,3-dichloropropene	NE	μg/L	NT	NT	NT	ND	ND	ND	NT	< 1.0
1,2-dibromo-3-chloropropane	NE	μg/L	NT	NT	NT	NT	NT	NT	NT	< 2.0
dibromochloromethane	NE NE	μg/L	< 20.0	< 1.0	< 2.0	ND	ND	ND	NT	< 1.0
1,2-dichlorobenzene	NE	μg/L	< 20.0	< 4.0	< 4.0	ND	1.3	ND	NT	< 1.0
1,3-dichlorobenzene	NE NE	μg/L	< 40.0	< 4.0	< 4.0	ND	ND	ND	NT	< 1.0
1,4-dichlorobenzene	NE NE	μg/L μg/L	< 20.0	< 3.0	< 3.0	ND	ND	ND	NT	< 1.0
1,1-dichloroethane	25	μg/L μg/L	< 10.0	<1.0	< 5.0	ND	ND	ND	NT	< 1.0
1,1-dichloroethene	5	μg/L	< 10.0	< 1.0	< 2.0	ND	ND	ND	NT	< 1.0
1,2-dichloropropane	NE NE	µg/L µg/L	< 10.0	< 1.0	< 1.0	ND	ND	ND	NT	< 1.0
methylene chloride	100	μg/L	< 40.0	< 1.0	< 4.0	ND	ND	ND	NT	< 3.0
	100		< 20.	< 1.0	< 1.5	ND	ND	ND		
1,1,2,2-tetrachloroethane tetrachloroethene (PCE)		μg/L							NT	< 2.0
	20	μg/L	13.0	1.7	2.1	ND	ND	ND	NT	< 1.0
trans-1,2-DCE	NE	μg/L	NT	< 1.0	< 2.0	ND	ND	ND	NT	< 1.0
trans-1,3-dichloropropene	NE	μg/L	NT	NT	NT	ND	ND	ND	NT	< 1.0
1,1,1-trichloroethane	60	μg/L	< 20.0	< 1.0	< 2.0	ND	ND	ND	NT	< 1.0
1,1,2-trichloroethane	10	μg/L	< 20.0	< 1.0	< 2.0	ND	ND	ND	NT	< 1.0
trichloroethene (TCE)	100	μg/L	< 20.0	< 1.0	< 2.0	ND	ND	ND	NT	< 1.0
trichlorofluoromethane	NE	μg/L	< 10.0	< 1.0	< 2.0	ND	ND	ND	NT	< 1.0
vinyl chloride	1	μg/L	< 20.0	< 1.0	< 2.0	ND	ND	ND	NT	< 1.0
xylenes, total	620	μg/L	48.0	37.0	730.0	ND	ND	ND	ND	< 1.5
Anions		_								
chloride	250	mg/L	NT	NT	NT	100	170	160	NT	190
sulfate	600	mg/L	NT	NT	NT	2,200	220	2,300	NT	2,100
Cations	NE		Nu.	APP	APP	120	200	710) In) In
calcium	NE	mg/L	NT	NT	NT	465	520	510	NT	NT
magnesium	NE	mg/L	NT	NT	NT	118	110	96	NT	NT
potassium	NE	mg/L	NT	NT	NT	7.93	9.4	9.2	NT	NT
sodium	NE	mg/L	NT	NT	NT	505	540	480	NT	NT
Hardness (no CoCO2)	3750		3.700	3.700	7100	4.000	4.200	3.m	3,200	, m
hardness (as CaCO3)	NE	mg/L	NT	NT	NT	1,480	1,600	NT	NT	NT
Alkalinity										
alkalinity, total (As CaCO3)	NE	mg/L CaCO3	NT	NT	NT	389	250	210	NT	230
carbonate	NE	mg/L CaCO4	NT	NT	NT	ND	ND	ND	NT	< 4.0

Analyte	NMWQCC Standard	Unit	9/6/89	12/12/89	6/20/90	1/1/08	4/1/08	7/1/08	10/1/08	1/1/09	
bicarbonate	NE	mg/L CaCO5	NT	NT	NT	389	250	210	NT	230	
Specific Conductance											
specific conductance	NE	μmhos/cm	NT	NT	NT	4,760	4,800	4,500	NT	4,000	
рН											
рН	6-9	pH units	NT	NT	NT	6.9	6.4	6.26	NT	6.36	
Total Dissolved Solids											
total dissolved solids	1,000	mg/L	NT	NT	NT	4,090	3,800	1,200	NT	3,700	

Notes:

RED HIGHLIGHT - indicates concentration exceeds the NMWQCC standard

μg/L - micrograms per liter μmhos/cm -micromhos per centimeter mg/L - milligrams per liter

ND - non detect

NE - not established

NMWQCC - New Mexico Water Quality Control Commission

NT - not tested

USEPA - United States Environmental Protection Agency

SHS-3 NMWQCC Standard Unit 6/20/90 1/23/91 4/5/91 7/3/91 10/2/91 1/9/92 4/10/92 7/7/92 10/8/92 1/1/93 4/1/93 7/1/93 10/1/93 1/1/94 1/1/95 7/1/95 12/1/95 1/1/97 8/1/97 1/1/98 7/1/98 1/1/99 7/1/99 1/1/00 1/1/01 1/1/02 1/1/03 < 1.0 < 1.0 < 1.0 ND ND ND < 1.0 < 1.0 < 1.0 < 1.0 NT < 1.0 < 1.0 < 1.0 < 1.0 ND ND ND ND ND ND < 1.0 ND ND ND ND ND ND ND ND ND < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 NT ND ND ND ND ND NT ND ND ND ND ND NE µg/L NT NT ND ND ND ND NT NE µg/L NT NT NT NT < 1.0 < 1.0 <1.0 <1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 ND NT ND ND ND ND ND ND NT ND ND ND ND ND ND NE µg/L ND ND ND ND ND ND < 1.0 < 1.0 < 1,0 < 1.0 < 1.0 < 1.0 <1.0 < 1.0 < 1.0 ND NT ND ND ND ND ND ND < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 NT ND NE µg/L ND ND ND ND < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 NT ND NE ND ND < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 NT < 1.0 < 1.0 < 1.0 < 1.0 ND µg/L ND ND ND ND < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 ND NT ND ND ND ND NE < 1.0 <1.0 <1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <1.0 ND ND NT ND ND ND ND µg/L ND ND ND ND ND ND ND < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 NT ND ND μg/L ND ND ND ND ND < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <1.0 ND NT ND ND NE µg/L < 1.0 ND < 1.0 NT ND NT ND ND ND ND NT NT NT NT NT NT NT NT ND ND ND ND ND ND cis-1,3-dichloropropene NE μg/L ND ND ND ND ND ND ND ND NT NT NT NT NT NT NT < 1.0 < 1.0 < 1.0 < 1.0 <1.0 < 1.0 < 1.0 < 1.0 < 1.0 ND NT ND ND ND µg/L ND ND ND ND ND ND ND ND ND < 1.0 < 1.0 < 1.0 <1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 ND ND NT ND ND ND < 1.0 < 1.0 <1.0 < 1.0 <1.0 < 1.0 < 1.0 < 1.0 < 1.0 ND ND NT ND ND ND ND ND ND NE µg/L ND ND ND ND ND < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 NT ND ND ND ND ND <1.0 < 1.0 ND NT < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 ND ND ND ND ND ND HB/L ND ND ND ND ND ND ND < 1.0 < 1.0 <1.0 <1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 NT ND ND ND ND ND < 1.0 NT NE < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <1.0 ND µg/L ND ND ND < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 NT ND ND ND ND µg/L ND ND ND < 1.0 < 1.0 <1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 ND ND ND NT ND 0.2 ND ND ND ND µg/L < 1.0 ND ND ND ND ND ND < 1.0 < 1.0 <1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 ND NT ND ND ND ND NT NT NT ND NT < 1.0 NT NT NT ND ND ND ND rans-1,2-DCE NE μg/L ND ND ND ND ND ND ND ND NT ND ND ND rans-1,3-dkhloropropen NE μg/L NT ND ND ND ND ND < 1.0 <1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 ND ND NT ND ND ND ND µg/L < 1.0 < 1.0 ND ND ND ND ND ND ND ND ND < 1.0 < 1.0 < 1.0 <1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 ND ND ND ND ND ND < 1.0 ND < 1.0 < 1.0 < 1.0 <1.0 < 1.0 < 1.0 < 1.0 < 1.0 ND ND NT ND < 1.0 < 1.0 < 1.0 <1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 ND NT ND ND ND ND ND ND µg/L ND ND ND ND ND ND ND < 1.0 ND NT < 1.0 < 1.0 < 1.0 <1.0 < 1.0 < 1.0 < 1.0 < 1.0 ND µg/L ND ND ND < 1.0 < 1.0 < 1.0 <1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 NT ND ND ND ND ND NT 250 mg/L NT NT NT NT NT 379 386 NT 365 NT NT NT 320 337 NT 303 NT 317 262 271 NT 2,080 2,060 NT 2,070 2144 1,860 2,160 NT 2,068

Analyte	NMWQCC Standard	Unit	6/20/90	1/23/91	4/5/91	7/3/91	10/2/91	1/9/92	4/10/92	7/7/92	10/8/92	1/1/93	4/1/93	7/1/93	10/L/93	1/1/94	1/1/95	7/1.95	12/1/95	1/1/97	8/1/97	1/1/98	7/1/98	1/1/99	7/1/99	1/1/00	1/1/01	1/1/02	1/1/03
Cutions																													
calcium	NE	mg/L	ИТ	NT	NT	NT	NT	NT	NТ	NT	NT	579	ИТ	616	NT	546	TN	NT	NT	586	NT	663	NT	560	NT	665	580	545	632
magnesium	NE	mg/L	NT	NT	ИТ	NT	NT	NT	NT	NT	NТ	103	NT	83	NТ	133	ТИ	NT	ТИ	76.1	NT	87	NT	78.5	NT	76.6	85.1	83.9	89.9
potasskum	NE	mg/L	ИТ	NT	NT	NT	NT	ИТ	ИТ	NT	ИТ	7	NT	7.4	ИТ	8.4	NT	TM	NT	8.6	NT	7.8	NT	8.8	ИТ	8.1	7.6	7.5	11
sodkm	NE	mg/L	NT	NT	NT	NT	TM	ТИ	NT	NT	NT	425	NT	500	NT	435	NT	NT	NT	465	NT	386	NT	460	NT	345	464	423	448
Hardness																													
hardness (as CaCO3)	NE	mg/L	NT	NT	NT	NT	NT	ТИ	NT	NT	NT	1,870	NT	1,880	ИT	1,910	NT	NT	NT	1,774	NT	1,940	NT	1,720	NT	1,970	1,800	1,710	1,950
Alkalinity																,													
alkalinity, total (As CaCO3)	NE	mg/L CaCO3	ИТ	ИТ	NT	NT	NT	NT	NT	NT	NT	201	ИТ	210	NT	204	NT	NT	NT	208	ИT	207	NT	223	NT	197	231	202	230
carbonate	NE	mg/L CeCO4	NT	ИТ	NT	NT	NT	NT	NT	NT	NT	ND	ИТ	DM	NT	ND	NT	ИT	ИТ	ND	NТ	ND	ИT	ND	ИT	ND	ND	ND	ND
bicarbonate	NE	mg/L CaCO5	NT	NT	NT	NT	NT	NT	NТ	NT	ΝΤ	245	ИТ	257	NT	249	NT	TM	NT	254	NT	252	NT	272	NT	240	281	246	281
Specific Conductance																													
specific conductance	NE	µmbos/cm	NT	NT	NT	NT	NT	NT	NT	NT	ТИ	4,520	NT	4,470	ИТ	4,560	NT	NT	NT	4,310	ИT	6,500	TM	4,480	NT	4,870	4,640	4,570	4,630
pH																													
PH	6-9	pH units	NT	NT	NT	NT	NT	NT	М	NT	NT	7.2	ТИ	6.9	NT	6.9	NT	NT	NT	6.5	NT	6.6	ИT	6.6	NT	6.8	6.7	6.5	6.4
Total Dissolved Solids																													
total dissolved solids	1,000	mg/L	NT	NT	NT	NT	NT	NT	ИТ	NT	NТ	3,690	ТИ	3,780	NT	3,680	NT	NT	NT	3,725	NT	4,060	NT	3,970	NT	4,040	4,390	3,940	3,930

Notes:

RED HIGHLIGHT - indicates concentration exceeds the NMWQCC standard µg/L - micrograms per liter

µm/nos/cm - micromhos per centimeter

mg/L - milligrams per liter

ND - non detect

NE - not established

NMWQCC - New Mexico Water Quality Control Commission

NT - not tested

USEPA - United States Environmental Protection Agency

Analyte	NMWQCC Standard	Unit	6/19/90	7/7/92	10/1/92	1/1/94	7/1/94	1/1/95	7/1/95	12/1/95	1/1/97	1/1/98	1/1/99	1/1/00	1/1/01	1/1/02	1/1/03	1/1/05	1/1/06
Volatiles	, canada								L										
benzene	10	µg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	750	µg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	750	μg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methyl tert-butyl ether (MTBE)	NE	µg/L	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-trimethylbenzene	620	µg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND
1,3,5-trimethylbenzene	NE	µg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND
1,2-dichloroethane (EDC)	10	µg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dibromoethane (EDB)	NE .	μg/L	NT	NT	NT	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane -	NE	μg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	NE	μg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	NE	μg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	10	μg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	NE	μg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	NE	μg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	100	μg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	NE	µg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-DCE	NE	µg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	NE	μg/L	NT	NT	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dibromo-3-chloropropane	NE	µg/L	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	ND	ND	ND	ND
dibromochloromethane	NE	µg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichlorobenzene	NE	μg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichlorobenzene	NE	µg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-dichlorobenzene	NE	µg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	25	μg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	5	μg/L	< 1.0	< 1.0	NT	NT	NT	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	NE	μg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	100	µg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	10	μg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene (PCE)	20	μg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-DCE	NE	µg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	NE	μg/L	NT	NT	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	60	μg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	10	μg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene (TCE)	100	μg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Analyte	NMWQCC Standard	Unit	6/19/90	7/7/92	10/1/92	1/1/94	7/1/94	1/1/95	7/1/95	12/1/95	1/1/97	1/1/98	1/1/99	1/1/00	1/1/01	1/1/02	1/1/03	1/1/05	1/1/06
trichlorofluoromethane	NE	µg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
vinyl chloride	1	μg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
xylenes, total	620	µg/L	< 1.0	< 1.0	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anions																			
chloride	250	mg/L	NT	NT	NT	41	NT	NT	NT	NT	43.2	81	45	91	76	56	64	63	71
sulfate	600	mg/L	NT	NT	NT	1,680	NT	NT	NT	NT	1,728	1,500	1,830	1,530	1,670	1,670	1,700	1,600	1,590
Cations										-									
calcium	NE	mg/L	NT	NT	NT	392	NT	NT	NT	NT	463	438	532	532	475	441	474	490	433
magnesium	NE	mg/L	NT	NT	NT	88	NT	NT	NT	NT	38.3	36	38.1	36,7	37.5	36	37.1	39	36.6
potassium	NE	mg/L	NT	NT	NT	4.6	NT	NT	NT	NT	0,78	1.4	1.8	1.2	1.7	1.7	3.6	5.1	8.9
sodium	NE	mg/L	NT	NT	NT	312	NT	NT	NT	NT	310	331	321	251	322	313	303	320	311
Hardness					4.10						0.03								
hardness (as CaCO3)	NE	mg/L	NT	NT	NT	1,340	NT	NT	NT	NT	1,312	1,240	1,480	1,480	1,340	1,250	1,330	1,400	1,250
Alkalinity																			
alkalinity, total (As CaCO3)	NE	mg/L CaCO3	NT	NT	NT	214	NT	NT	NT	NT	251	203	170	141	211	192	200	210	69.5
carbonate	NE	mg/L CaCO4	NT	NT	NT	0	NT	NT	NT	NT	ND	1	ND						
bicarbonate	NE	mg/L CaCO5	NT	NT	NT	261	NT	NT	NT	NT	306	248	207	171	257	234	244	210	69.5
Specific Conductance																			
specific conductance	NE	μmhos/cm	NT	NT	NT	3,110	NT	NT	NT	NT	3,160	4,590	3,090	3,360	3,230	3,060	3,260	3,200	3,180
рН																			
pH	6-9	pH units	NT	NT	NT	7.5	NT	NT	NT	NT	7	7.2	7.1	7.4	7.2	7.0	7.0	7.3	7.4
Total Dissolved Solids																			
total dissolved solids	1,000	mg/L	NT	NT	NT	2,600	NT	NT	NT	NT	2,734	2,720	2,710	2,770	2,680	2,730	2,720	2,700	2,750

Notes:

RED HIGHLIGHT - indicates concentration exceeds the NMWQCC standard

μg/L - micrograms per liter
μmhos/cm -micromhos per centimeter
mg/L - milligrams per liter
ND - non detect
NE - not established
NMWQCC - New Mexico Water Quality Control Commission

NT - not tested

USEPA - United States Environmental Protection Agency

Analyte	NMWQCC Standard	Unit	11/27/89	6/20/90	1/1/08	4/1/08	7/1/08	10/1/08	1/1/09
Volatiles									
benzene	10	μg/L	< 1.0	< 2.0	ND	ND	ND	ND	. < 1.0
toluene	750	μg/L	< 1.0	< 1.0	ND	ND	ND	ND	< 1.0
ethylbenzene	750	μg/L	< 1.0	< 2.0	ND	ND	ND	ND	< 1.0
methyl tert-butyl ether (MTBE)	NE	µg/L	NT	NT	NT	NT	NT	ND	< 1.0
1,2,4-trimethylbenzene	620	μg/L	NT	NT	NT	NT	NT	NT	< 1.0
1,3,5-trimethylbenzene	NE	μg/L	NT	NT	NT	NT	NT	NT	< 1.0
1,2-dichloroethane (EDC)	10	μg/L	< 1.0	< 1.0	ND	ND	ND	NT	< 1.0
1,2-dibromoethane (EDB)	NE	μg/L	NT	NT	ND	ND	ND	NT	< 1.0
bromodichloromethane	NE	μg/L	< 1.0	< 2.0	ND	ND	ND	NT	< 1.0
bromoform	NE	μg/L	< 1.0	< 5.0	ND	ND	ND	NT	< 1.0
bromomethane	NE	μg/L	< 1.0	< 12.0	ND	ND	ND	NT	< 1.0
carbon tetrachloride	10	μg/L	< 1.0	< 1.2	ND	ND	ND	NT	< 1.0
chlorobenzene	NE	μg/L	< 1.0	< 2.0	ND	ND	ND	NT	< 1.0
chloroethane	NE	μg/L	< 1.0	< 5.2	ND	ND	ND	NT	< 2.0
chloroform	100	μg/L	<1.0	< 1.0	ND	ND	ND	NT	< 1.0
			<1.0	< 3.0	ND	ND	ND	NT	<1.0
chloromethane	NE NE	μg/L							
cis-1,2-DCE	NE	μg/L	NT	14.0	141	NT	NT	NT	<1.0
cis-1,3-dichloropropene	NE	μg/L	NT	NT	ND	ND	ND	NT	< 1.0
1,2-dibromo-3-chloropropane	NE	μg/L	NT	NT	NT	NT	NT	NT	< 2.0
dibromochloromethane	NE	μg/L	< 1.0	< 2.0	ND	ND	ND	NT	< 1.0
1,2-dichlorobenzene	NE	μg/L	0.5	< 4.0	ND	ND	ND	NT	< 1.0
1,3-dichlorobenzene	NE	μg/L	< 1.0	<4.0	ND	ND	ND	NT	< 1.0
1,4-dichlorobenzene	NE	μg/L	< 1.0	<3.0	ND	ND	ND	NT	< 1.0
1,1-dichloroethane	25	μg/L	< 1.0	< 5.0	ND	ND	ND	NT	<1.0
1,1-dichloroethene	5	μg/L	< 1.0	< 2.0	ND	ND	ND	NT	< 1.0
1,2-dichloropropane	NE	μg/L	< 1.0	< 1.0	ND	ND	ND	NT	< 1.0
methylene chloride	100	μg/L	0.72	< 4.0	ND	ND	ND	NT	< 3.0
1,1,2,2-tetrachloroethane	10	μg/L	< 1.0	< 1.5	ND	ND	ND	NT	< 2.0
tetrachloroethene (PCE)	20	μg/L	1.3	2.7	ND	ND	ND	NT	< 1.0
trans-1,2-DCE	NE	μg/L	12.0	< 2.0	, ND	ND	ND	NT	< 1.0
trans-1,3-dichloropropene	NE	µg/L	NT	NT	ND	ND	ND	NT	< 1.0
1,1,1-trichloroethane	60	μg/L	0.88	< 2.0	ND	ND	ND	NT	< 1.0
1,1,2-trichloroethane	10	μg/L	<1.0	< 2.0	ND	ND	ND	NT	< 1.0
trichloroethene (TCE)	100	μg/L	1.8	3.0	ND	ND	ND	NT	< 1.0
	NE NE		< 1.0	< 2.0	ND	ND	ND	NT	< 1.0
trichlorofluoromethane		μg/L			ND	ND	ND	NT	< 1.0
vinyl chloride	1	μg/L	<1.0	< 2.0					
xylenes, total	620	μg/L	< 1.0	< 2.0	ND	ND	ND	ND	< 1.5
Anions									
chloride	250	mg/L	355.35	NT	62.8	61	56	NT	190
sulfate	600	mg/L	1,119.28	NT	1,200	1,400	1,500	NT	2,100
Cations									
calcium	NE	mg/L	408.47	NT	405	380	350	NT	NT
magnesium	NE	mg/L	8.14	NT	33.6	35	29	NT	NT
potassium	NE	mg/L	3.90	NT	4.03	10	1.7	NT	NT
sodium	NE	mg/L	471.60	NT	312	370	320	NT	NT
Hardness									
hardness (as CaCO3)	NE	mg/L	1,052.60	NT	1030	1100	NT	NT	NT
Alkalinity									
alkalinity, total (As CaCO3)	NE	mg/L CaCO3	424.49	NT	251	240	220	NT	210
carbonate	NE	mg/L CaCO4	0	NT	ND	1.1	ND	NT	< 4.0

Analyte	NMWQCC Standard	Unit	11/27/89	6/20/90	1/1/08	4/1/08	7/1/08	10/1/08	1/1/09
Specific Conductance									
specific conductance	NE	μmhos/cm	3,623	NT	3,010	3,200	2,900	NT	2,900
рН									
рН	6-9	pH units	7.51	NT	7.3	7.3	7.23	NT	7.28
Total Dissolved Solids									
total dissolved solids	1,000	mg/L	2,621	NT	2,530	2,400	2,500	NT	3,000

Notes:

RED HIGHLIGHT - indicates concentration exceeds the NMWQCC standard

μg/L - micrograms per liter μmhos/cm -micromhos per centimeter

mg/L - milligrams per liter
ND - non detect
NE - not established

NMWQCC - New Mexico Water Quality Control Commission

NT - not tested

USEPA - United States Environmental Protection Agency

	NAME OF THE PERSON OF THE PERS		1				-								. 1		-		1								•	
Analyte	NMWQCC Standard	Unit	11/27/89	6/20/90	1/23/91	4/5/91	7/3/91	10/2/91	1/9/92	4/10/92	7/1/92	10/8/92	1/1/93	4/1/93	7/1/93	10/1/93	1/1/94	1/1/95	12/1/95	1/1/97	1/1/98	1/1/99	1/1/00	1/1/01	1/1/02	1/1/03	1/1/05	1/1/06
Volatiles	rr																									- 1		
benzene	10	µg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ND	ND	ND	174	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
toluene	750	μ g/L	< 1.0	< 1.0	< 1.0	0.81	< 1.0	< 1.0	< 1.0	< 1.0	IИ	< 1.0	ND	ND	ND	ND	TM	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzene	750	μg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	TM	< 1.0	ND	ND	ND	ND	TM	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methyl tert-butyl ether (MTBE)	NE	μg/L	ИI	NT	NT	NT	TM	NT	TM	NT	TM	TM	NT	TM	774	TM	174	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-trimethylbenzene	620	µg/L	и	NT	NT	NT	TM	NT	NT	ТИ	NT	NT	NT	174	TM	TM	ИI	ТИ	NT	NT	NT	NT	TN	NT	NT	TM	NT	174
1,3,5-trimethylbenzene	NE	μg/L	NT	TM	ТИ	TM	TN	ТИ	NT	NT	NT	NT	NT	174	NI	NT	ИT	TM	TM	IN	IΝ	NT	NT	NT	174	NT	NT	174
1,2-dichloroethane (EDC)	10	μg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	TM	< 1.0	ND	ND	ND	ND	TN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dibromoethane (EDB)	NE	µg/L	IN	NT	NT	NT	ТИ	NT	NT	IИ	NT	NT	NT	ТИ	NT	ТИ	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromodichloromethane	NE	μg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromoform	NE	μg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bromomethane	NE	µg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	TИ	< 1.0	ND	ND	ND	ND	TM	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
carbon tetrachloride	10	µg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ND	ND	ND	TN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chlorobenzene	NE	µg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ND	ND	ND	774	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroethane	NE	μg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ИD	ND	ND	TM	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloroform	100	μg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ND	ND	ND	TM	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chloromethane	NE	µg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-DCE	NE	μg/L	NT	< 1.0	TM	NT	TM	NT	TM	NΓ	NT	NT	ND	0.80	ND	ND	NT	ND	0.2	ND	NT	TN						
cls-1,3-dichloropropene	NE	μg/L	NT	NT	NT	NT	NT	ТИ	NT	NT	NT	NT	0.6	ND	ND	ND	IN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NI
1,2-dibromo-3-chloropropane	NE	μg/L	NT	NT	IN	NT	TM	TM	NT	NT	ТИ	NT	NT	NT	NT	NT	IN	NT	ТИ	NI .	NT	ТИ						
dibromochloromethane	NE	µg/ L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	ТИ	< 1.0	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichlorobenzene	NE	μ g /L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichiorobenzene	NE	μg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ND	ND	ND	NI	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-dichlorobenzene	NE	µg/L,	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ND	ND	ND	ТИ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	25	μg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ND	ND	ND	TN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	5	µg/L	0.93	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	NT	NT	NT	NT	NT	ТИ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	NE	μ g /L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methylene chloride	100	μ g /L	< 1.0	< 1.0	< 1.0	3.1	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-tetrachioroethane	10	µg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tetrachloroethene (PCE)	20	µg/L,	0.45	0.42	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	0.2	0.3	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-DCE	NE	μg/L	< 1.0	< 1.0	NT	TM	TM	NT	NT	NT	NT	NT	ND	ND	ND	ND	TN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	NE	μ g/ L	TM	TM	NT	774	TM	NT	TM	NT	TM	TM	ND	ND	ND	ND	TN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethane	60	µg/L	< 1.0	0.35	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ND	ND	ND	TN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	10	μg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ND	ND	ND	TM	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichloroethene (TCE)	100	µg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ND	ND	ND	TN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trichlorofluoromethane	NE	μg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	ИГ	< 1.0	ND	ND	ND	ND	TM	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
vinyl chloride	1	μg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
xylenes, total	620	µg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NT	< 1.0	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
						L.																					$\overline{}$	

Well Abandonment Information

TITLE 19 NATURAL RESOURCES AND WILDLIFE

CHAPTER 27 UNDERGROUND WATER

PART 4 WELL DRILLER LICENSING; CONSTRUCTION, REPAIR AND PLUGGING OF WELLS

- 19.27.4.30 WELL DRILLING NON-ARTESIAN WELL REQUIREMENTS: A licensed well driller shall ensure that the well drilling activities associated with the drilling of non-artesian wells are made in accordance with 19.27.4.29 NMAC and the following requirements:
- C. Well plugging: A non-artesian well that is abandoned or not properly constructed shall be immediately plugged. A plan for plugging the well shall be filed with and approved by the state engineer prior to plugging. The state engineer may require that the plugging process be witnessed by an authorized representative.
- (1) Methods and materials: To plug a well, the entire well shall be filled from the bottom upwards to land surface using a tremie pipe. The well shall be plugged with neat cement slurry, bentonite based plugging material, or other sealing material approved by the state engineer for use in the plugging of non-artesian wells. Wells that do not encounter a water bearing stratum shall be immediately plugged by filling the well with drill cuttings or clean native fill to within ten (10) feet of land surface and by plugging the remaining ten (10) feet of the well to land surface with a plug of neat cement slurry, bentonite based plugging material, or other sealing material approved by the state engineer.
- (2) Contamination indicated: Wells encountering contaminated water or soil may require coordination between the office of the state engineer and the New Mexico environment department (or other authorized agency or department) prior to the plugging of the well. Specialty plugging materials and plugging methods may be required.
- (3) Plugging record: A licensed well driller shall keep a record of each well plugged as the work progresses. The well driller shall file a complete plugging record with the state engineer and the permit holder no later than twenty (20) days after completion of the plugging. The plugging record shall be on a form prescribed by the state engineer and shall include the name and address of the well owner, the well driller's name and license number, the name of each drill rig supervisor that supervised the well plugging, the state engineer file number for the well, the location of the well (reported in latitude and longitude using a global positioning system (gps) receiver capable of five (5) meters accuracy), the date when plugging began, the date when plugging concluded, the plugging material(s) used, the depth of the well, the size and type of casing, the location of perforations, the location of the sanitary seal, and other information deemed necessary by the state engineer. The plugging record shall include a completed well log. The well log shall include detailed information on the depth and thickness of all strata plugged, including whether each stratum was water bearing.

Trn. No

WELL PLUGGING PLAN OF OPERATIONS

NOTE: A Well Plugging Plan of Operations shall be filed with and accepted by the Office of the State Engineer prior to plugging.

	_				ged:
	e of well owner:				
	ng address:				
-					Zip code:
Phone	e number:		E-mail: _	•	
ш. У	VELL DRILLER INFOR	RMATION:			
Well	Driller contracted to provide	le plugging services: _			
New 1	Mexico Well Driller Licens	se No.:		Expiration	Date:
1)	GPS Well Location:	Latitude: Longitude:	deg, deg,	min, min,	sec sec, NAD 83
2)	Reason(s) for plugging				
3)	section VII of this for	rm to detail what hyd or poor quality water,	drogeologic param	eters were monito	If yes, please use ored. If the well was used to Environment Department may be
4)	-				If yes, provide additional detail,
5) 6)	Static water level:		land surface / feet	above land surface	e (circle one)
,	-				Well Plugging Plan

7)	Inside diameter of innermost casing:inches.
8)	Casing material:
9)	The well was constructed with:
	an open-hole production interval, state the open interval:
	a well screen or perforated pipe, state the screened interval(s):
10)	What annular interval surrounding the artesian casing of this well is cement-grouted?
11)	Was the well built with surface casing?If yes, is the annulus surrounding the surface casing grouted or
	otherwise sealed? If yes, please describe:
12)	Has all pumping equipment and associated piping been removed from the well? If not, describe remaining equipment and intentions to remove prior to plugging in Section VII of this form.
<u>V. D</u>	ESCRIPTION OF PLANNED WELL PLUGGING:
pipe,	If this plan proposes to plug an artesian well in a way other than with cement grout, placed bottom to top with a tremie a detailed diagram of the well showing proposed final plugged configuration shall be attached, as well as any additional ical information, such as geophysical logs, that are necessary to adequately describe the proposal.
1)	Describe the method by which cement grout shall be placed in the well, or describe requested plugging methodology proposed for the well:
2)	Will well head be cut-off below land surface after plugging?
VI. I	PLUGGING AND SEALING MATERIALS:
Note:	The plugging of a well that taps poor quality water may require the use of a specialty cement or specialty sealant
1)	For plugging intervals that employ cement grout, complete and attach Table A.
2)	For plugging intervals that will employ approved non-cement based sealant(s), complete and attach Table B.
3)	Theoretical volume of grout required to plug the well to land surface:
4)	Type of Cement proposed:
5)	Proposed cement grout mix:gallons of water per 94 pound sack of Portland cement.
6)	Will the grout be:batch-mixed and delivered to the site mixed on site

Trn. No

7)	Grout additives requested, and percent by dry	weight relative to cement:	
8)	Additional notes and calculations:		
٠,			
VII.	ADDITIONAL INFORMATION: List addition	onal information below, or on separate sheet(s):	
I, Opera Engin	signature: tions and any attachments, which are a part here eer pertaining to the plugging of wells and will cing Plan of Operations and attachments are true to	of; that I am familiar with the rules and regulation comply with them, and that each and all of the s	ions of the State
		Signature of Applicant	Date
IX. A	CTION OF THE STATE ENGINEER:		
This V	Well Plugging Plan of Operations is:		
	Approved subject to the attached co Not approved for the reasons provid	nditions. led on the attached letter.	
	Witness my hand and official seal this	day of	
		Tom Blaine P.E., New Mexico State En	gineer
		Ву:	

TABLE A - For plugging intervals that employ cement grout. Start with deepest interval.

	Interval 1 – deepest	Interval 2	Interval 3 – most shallow
	Temperatur		Note: if the well is non-artesian and breaches only one aquifer, use only this column.
Top of proposed interval of grout placement (ft bgl)			
Bottom of proposed interval of grout placement (ft bgl)			
Theoretical volume of grout required per interval (gallons)			
Proposed cement grout mix gallons of water per 94-lb. sack of Portland cement			
Mixed on-site or batch- mixed and delivered?			
Grout additive 1 requested			
Additive 1 percent by dry weight relative to cement			
Grout additive 2 requested			
Additive 2 percent by dry weight relative to cement			

TABLE B - For plugging intervals that will employ approved non-cement based sealant(s). Start with deepest interval.

	Interval 1 – deepest	Interval 2	Interval 3 – most shallow
			Note: if the well is non-artesian and breaches only one aquifer, use only this column.
Top of proposed interval of sealant placement (ft bgl)			
Bottom of proposed sealant of grout placement (ft bgl)			
Theoretical volume of sealant required per interval (gallons)			
Proposed abandonment sealant (manufacturer and trade name)			

PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

State 1	Engineer Well Number:									
Well owner:			Phone No.:							
Mailir	ng address:									
City:	ity:		State:		Zip code:					
<u>II. W</u>	ELL PLUGGING INFO	RMATION:								
1)	Name of well drilling c	ompany that plugged w	rell:							
2)	New Mexico Well Dril	ler License No.:		E	Expiration Date:					
3)	Well plugging activities were supervised by the following well driller(s)/rig supervisor(s):									
4)	Date well plugging beg	an:	Date well plugging concluded:							
5)	GPS Well Location:	Latitude:	deg,	min,	sec					
		Longitude:	deg,	min,	sec, WGS 84					
6)	Depth of well confirmed at initiation of plugging as: ft below ground level (bgl), by the following manner:									
7)	Static water level measu	ured at initiation of plug	gging:	ft bgl						
8)	Date well plugging plan	of operations was app	roved by the State	Engineer:						
9)	Were all plugging activ	ities consistent with an approved plugging pla	approved pluggin n and the well as i	g plan? t was plugged (atta	If not, please describe ch additional pages as needed):					
			WW							

10) Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

For each interval plugged, describe within the following columns:

		1 66 /		-	
	Plugging	Volume of	Theoretical Volume	Placement	
<u>Depth</u> (ft bgl)	Material Used (include any additives used)	Material Placed (gallons)	of Borehole/ Casing (gallons)	Method	Comments ("accing professed first") "annual
(11 ogt)	(include any additives used)	(gailons)	(galions)	(tremie pipe, other)	Comments ("casing perforated first", "open annular space also plugged", etc.)
_					
_					
_					
	; ;				
_					
-					
-					
_					
ليبو					
_					
-					
-					
_					
_					
_					
4					
4					
4					
			BY AND OBTAIN		
		cubic feet x 7.4 cubic yards x 201.9	1805 = gallons 37 = gallons		
		·			

III. SIGNATURE:

1,	, say that	ı am	ramıllar	with t	ine ru	ues of	the (Jince	of the :	State
Engineer pertaining to the plugging of wells and that of	each and all	of the	stateme	nts in t	his Pl	lugging	Reco	ord and	attachm	nents
are true to the best of my knowledge and belief.										
<u></u>	σ,		C T T 11	T. !!!		•			ъ.	•
	Sign	nature	of Well	Driller					Date	