Revised March 23, 2017

RECEIVED:	REVIEWER:	TYPE:	DHE	APP NO: DMA	m 17	20235/13
	NEW MEXICO - Geological 1220 South St. Franc	ABOVE THIS TABLE FOR OIL CONSE & Enginee cis Drive, Se	ering Bure anta Fe, 1	ntry / I DIVISIO au NM 8750	N 5	
	ADMINISTRAT	IVE APPLIC	ATION C	HECKLIST		
THIS CHECK	LIST IS MANDATORY FOR ALL AD REGULATIONS WHICH REQUIR	MINISTRATIVE AP	PLICATIONS FO	OR EXCEPTION (LEVEL IN SAN)	s to divisioi ta fe	N RULES AND
Applicant: Cimarex Energy	Co. Of Colorado			0G	RID Nurr	ber: <u>162683</u>
Well Name: White City 31	Federal #2			API:	30-015-3339	4
Pool: White City; Penn (Gas),	Purple Sage, Wolfcamp (Gas)			Poo	l Code:	87280, 98220
1) TYPE OF APPLICAT A. Location – Sp NSL	I ON: Check those whi bacing Unit – Simultane NSP _{(PROJECT}	ch apply fo eous Dedico r AREA)	r [A] ation INSP _{(PRORATI}		D.H.C.]SD	-4804-4
B. Check one o [1] Comming DHG [1] Injection WF	nly for [1] or [1] gling – Storage – Meas C CCTB PLC – Disposal – Pressure II X PMX SWD	urement PC [ncrease – E]PI []OLS [nhanced]EOR]OLM Oil Recov] PPR	ery	
2) NOTIFICATION REG A. Offset ope B. Royalty, ov C. Applicatio D. Notificatio E. Notificatio F. Surface ov G. For all of th H. No notice	QUIRED TO: Check thos rators or lease holders verriding royalty owne n requires published n n and/or concurrent o n and/or concurrent o vner ne above, proof of not required	se which ap rs, revenue otice approval by approval by tification or	owners SLO 7 BLM publicatio	on is attac	ched, and	Notice Complete Application Content Complete
 CERTIFICATION: 1 he administrative app understand that no notifications are sul 	ereby certify that the i roval is accurate and action will be taken of bmitted to the Division	nformation complete t on this appl 1.	submitted o the bes ication ur	d with this t of my kn htil the req	applicat owledge juired info	ion for e. I also ormation and
Note: Sta	tement must be completed by	y an individual v	wilh manaaer	ial and/or su	pervisory co	pacity.

Date Amithy Crawford Print or Type Name 432-620-1909 onfore Jre Sigr

7/21/2017

Phone Number

acrawford@cimarex.com e-mail Address

Cimarex Energy Co. 202 S. Cheyenne Ave. Suite 1000 Tulsa, Oklahoma 74103-4346 PHONE: 918.585.1100 FAX: 918.585.1133

Michael McMillian Oil Conservation Division New Mexico Department of Energy, Minerals and Natural Resources 1220 South Saint Francis Drive Santa Fe, New Mexico 87505

Re: White City 31 Federal 2 API 30-015-33394 Section 31, Township 24 South, Range 26 East, N.M.P.M. Eddy County, New Mexico.

Dear Mr. McMillian:

The White City 31 Federal 2 well is located in the SW/4 of Sec. 31, 24S, 26E, Eddy County NM.

Cimarex is the operator of the SW/4 of Sec. 31, 24S, 26E, Eddy County, NM as to all depths from the surface of the Earth down to 12,036'. Ownership within these depths in the SW/4 are identical.

Sincerely,

Caitlin Pierce Production Landman <u>cpierce@cimarex.com</u> Direct: 432-571-7862

Cimarex Energy Company White City 31 Fed #2

Completion Profiler

AND MADE VILLEY

CompanyCimarex Energy CompanyWell NameWhite City 31 Fed #2FieldWhite CityLocationEddy County, New MexicoCustomer NameMike KarnerDate of SurveyJune 7, 2017Date of AnalysisJune 9, 2017Logging EngineerTyler NixonAnalystDerrick George

All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful misconduct on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

2

MEASURED SOLUTIONS Protechnics

Table of Contents

Survey Objectives	_ 4
Logging Procedures	_ 4
Well Information	_ 5
Tool String	_ 5
Results	_ 6
Analysis Summary	_ 9
Brief Description of Process	10
Model Results With Recorded Data	_ 11
Production Rates At Surface Conditions	_ 12
Flow Model at Downhole Conditions With Comparison of Theoretical Response to Recorded Data	13
Overlay of all Log Data	_ 14
Apparent Fluid Velocity Derived from Spinner	_ 15
Spinner Calibration Plots Relationship between R.P.S. and Fluid Velocity (fpm)	_ 16
Geothermal Gradient	_ 17
Parameters used for Analysis	_ 18
Definitions	19

Survey Objectives

Logging Procedures

- Identify gas producing intervals.
- Identify oil producing intervals.
- Identify the source of water production.
- Quantitative production profile.

Time Comment Date 07:30 06/07 Arrive on location 06/07 10:20 Gauge run start 06/07 11:40 Gauge run stop 12:53 Program Completion Profile String 06/07 06/07 13:10 Start GIH pass Stop GIH pass 06/07 13:53 06/07 14:14 Start logging passes 17:18 06/07 Stop logging passes 06/07 17:19 Start out of well pass 06/07 17:48 Stop out of well pass Start download 06/07 18:04 06/07 18:23 Stop download 06/07 19:30 Rig down

Interval Logged: [From 8,387 to 10,087 ft.] 30 ft/min 60 ft/min 90 ft/min

Well Information

Casing:	5.500"	17.0 lb/ft	surface to 12,150 ft PBTD: 10,369 ft
Tubing:	2.875"	6.5 lb/ft	surface to 8,332 ft

Perforations:

						Perfor	atio	n Data						
						Stage 5	- Wo	olfcamp						
8,458	to	8,459	8,471	to	8,472	8,475	to	8,476	8,482	to	8,483	8,492	to	8,493
8,504	to	8,505	8,512	to	8,513	8,520	to	8,521	8,528	to	8,529	8,539	to	8,540
8,550	to	8,551	8,558	to	8,559	8,565	to	8,566	8,570	to	8,571	8,585	to	8,586
8,597	to	8,598	8,617	to	8,618	8,630	to	8,632	8,636	to	8,638	8,646	to	8,649
						Stage 4	- We	olfcamp						
9,058	to	9,059	9,071	to	9,072	9,084	to	9,085	9,095	to	9,096	9,103	to	9,104
9,113	to	9,114	9,129	to	9,130	9,140	to	9,141	9,150	to	9,151	9,163	to	9,164
9,170	to	9,171	9,180	to	9,181	9,193	to	9,194	9,204	to	9,205	9,220	to	9,221
9,230	to	9,231	9,241	to	9,242	9,250	to	9,252	9,258	to	9,260	9,272	to	9,275
Stage 3 - Wolfcamp														
9,301	to	9,302	9,311	to	9,312	9,318	to	9,319	9,329	to	9,330	9,341	to	9,342
9,351	to	9,352	9,369	to	9,370	9,385	to	9,386	9,395	to	9,396	9,401	to	9,402
9,412	to	9,413	9,423	to	9,424	9,433	to	9,434	9,446	to	9,447	9,458	to	9,459
9,472	to	9,473	9,496	to	9,497	9,506	to	9,508	9,514	to	9,516	9,538	to	9,541
						Stage 2	- We	olfcamp						
9,691	to	9,692	9,699	to	9,700	9,708	to	9,709	9,717	to	9,718	9,732	to	9,733
9,739	to	9,740	9,749	to	9,750	9,766	to	9,767	9,778	to	9,779	9,788	to	9,789
9,799	to	9,800	9,813	to	9,81 4	9,831	to	9,832	9,849	to	9,850	9,862	to	9,863
9,877	to	9,878	9,888	to	9,889	9,899	to	9,901	9,913	to	9,915	9,936	to	9,939
					S	tage 1 -	Cisc	o Canyo	n					
9,967	to	9,968	9,984	to	9,985	10,000	to	10,001	10,014	to	10,015	10,026	to	10,027
10,035	to	10,036	10,043	to	10,044	10,050	to	10,051	10,066	to	10,067	10,076	to	10,077
10,083	to	10,084	10,095	to	10,096	10,107	to	10,108	10,116	to	10,117	10,126	to	10,127
10,136	to	10,137	10,150	to	10,151	10,164	to	10,166	10,170	to	10,172	10,181	to	10,184

Tool String

The 1 11/16" Completion Profiler string comprised the following sensors:

Battery housing; RS-232/CCL; Memory/CPU; Gamma Ray; Pressure/Temperature Combo; Centralizer; Induction Collar Locator; Fluid Density; Fluid Dielectric; Centralizer; Spinner Flowmeter.

6510 W Sam Houston Parkway, Houston, TX 77041 +1-713-328-2320

Results

The following table summarizes the production from each frac stage.

					MEAS	SURED SURFAC	E RATES				
					FI	ow Rates Reported	at STP				
	Tubir	۱g		Gas			Oil			Water	
	Psi			MCFD			BFPD		BFPD		
Avg	640 p	osi		220 Mcf/d			120 bpd			922 bpd	
					-						
					GAS / OIL / \	NATER PRODU	CTION PROFI	LE			
					FI	ow Rates Reported	atSTP				
Zone	Interval	s	Q-Gas	Qp-Gas	Percent	Q-Oil	Qp-Oil	Percent	Q-Water	Qp-Water	Percent
	feet		MCFD	MCFD	ofTotal	BFPD	BFPD	ofTotal	BFPD	BFPD	ofTotal
Surface	to 84	58	2026.0 Mcf/d		100.00 %	120.22 bpd		100.00 %	904.18 bpd		100.00 %
	s	Stage	9 5 - Wolfcamp		41.59 %			41.59 %			68.24 %
8458	to 86	i49	2026.0 Mcf/d	842.7 Mcf/d		120.22 bpd	50.00 bpd		904.18 bpd	617.02 bpd	
	5	Stage	e 4 - Wolfcamp		3.57 %			3.57 %			12.98 %
9058	to 92	275	1183.3 Mcf/d	72.3 Mcf/d		70.22 bpd	4.29 bpd		287.15 bpd	117.40 bpd	
	5	Stage	e 3 - Wolfcamp		11.33 %			11.33 %			7.57 %
9301	to 95	641	1111.0 Mcf/d	229.6 Mcf/d		65.92 bpd	13.62 bpd		169.75 bpd	68.40 bpd	
	5	Stage	e 2 - Wolfcamp		33.63 %			33.63 %			7.04 %
9691	to 99	939	881.4 Mcf/d	681.3 Mcf/d		52.30 bpd	40.43 bpd		101.36 bpd	63.62 bpd	
	Sta	age 1	- Cisco Canyor	1	8.73 %			8.73 %			3.52 %
9967	to 10	084	200.1 Mcf/d	176.8 Mcf/d		11.87 bpd	10.49 bpd		37.74 bpd	31.84 bpd	
Flow	Contribu	ition	from Below Log	Depth	1.15 %			1.15 %			0.65 %
10087	to Be	low	23.3 Mcf/d		1.15 %	1.38 bpd		1.15 %	5.90 bpd		0.65 %

The following table summarizes the production from each producing interval.

	GAS / OIL / WATER PRODUCTION PROFILE										
					FI	ow Rates Reported	atSTP				
Zone	e Inter	vals	Q-Gas	Qp-Gas	Percent	Q-Oil	Qp-Oil	Percent	Q-Water	Qp-Water	Percent
	feet		MCFD	MCFD	of Total	BFPD	BFPD	of Total	BFPD	BFPD	ofTotal
Surface	to	8458	2026.0 Mcf/d		100.00 %	120.22 bpd		100.00 %	904.18 bpd		100.00 %
		Stage	e 5 - Wolfcamp		41.59 %			41.59 %			68.24 %
8458	to	8459	2026.0 Mcf/d	19.5 Mcf/d	0.96 %	120.22 bpd	1.15 bpd	0.96 %	904.18 bpd	28.55 bpd	3.16 %
8471	to	8472	2006.5 Mcf/d	13.0 Mcf/d	0.64 %	119.06 bpd	0.77 bpd	0.64 %	875.63 bpd	6.59 bpd	0.73 %
8475	to	8476	1993.5 Mcf/d	4.3 Mcf/d	0.21 %	118.29 bpd	0.25 bpd	0.21 %	869.04 bpd	4.39 bpd	0.49 %
8482	to	8483	1989.3 Mcf/d	177.4 Mcf/d	8.76 %	118.04 bpd	10.53 bpd	8.76 %	864.65 bpd	166.88 bpd	18.46 %
8492	to	8493	1811.9 Mcf/d	140.8 Mcf/d	6.95 %	107.51 bpd	8.36 bpd	6.95 %	697.77 bpd	24.15 bpd	2.67 %
8504	to	8505	1671.0 Mcf/d	3.4 Mcf/d	0.17 %	99.16 bpd	0.20 bpd	0.17 %	673.62 bpd	10.98 bpd	1.21 %
8512	to	8513	1667.7 Mcf/d	0.8 Mcf/d	0.04 %	98.96 bpd	0.05 bpd	0.04 %	662.64 bpd	10.98 bpd	1.21 %
8520	to	8521	1666.9 Mcf/d	2.0 Mcf/d	0. 1 0 %	98.91 bpd	0.12 bpd	0.10 %	651.66 bpd	10.98 bpd	1.21 %
8528	to	8529	1664.9 Mcf/d	55.2 Mcf/d	2.72 %	98.79 bpd	3.27 bpd	2.72 %	640.68 bpd	57.09 bpd	6.31 %
8539	to	8540	1609.8 Mcf/d	324.5 Mcf/d	16.02 %	95.52 bpd	19.25 bpd	16.02 %	583.59 bpd	136.14 bpd	15.06 %
8550	to	8551	1285.3 Mcf/d	85.8 Mcf/d	4.24 %	76.26 bpd	5.09 bpd	4.24 %	447.45 bpd	79.05 bpd	8.74 %
8558	to	8559	1199.4 Mcf/d	1.8 Mcf/d	0.09 %	71.17 bpd	0.10 bpd	0.09 %	368.40 bpd	15.37 bpd	1.70 %
8565	to	8566	1197.7 Mcf/d	1.8 Mcf/d	0.09 %	71.07 bpd	0.11 bpd	0.09 %	353.03 bpd	2.20 bpd	0.24 %
8570	to	8571	1195.9 Mcf/d	1.8 Mcf/d	0.09 %	70.96 bpd	0.11 bpd	0.09 %	350.83 bpd	8.78 bpd	0.97 %
8585	to	8586	1194.1 Mcf/d	1.8 Mcf/d	0.09 %	70.85 bpd	0.11 bpd	0.09 %	342.05 bpd	4.39 bpd	0.49 %
8597	to	8598	1192.3 Mcf/d	1.8 Mcf/d	0.09 %	70.75 bpd	0.11 bpd	0.09 %	337.65 bpd	4.39 bpd	0.49 %
8617	to	8618	1190.5 Mcf/d	1.8 Mcf/d	0.09 %	70.64 bpd	0.11 bpd	0.09 %	333.26 bpd	13.18 bpd	1.46 %
8630	to	8632	1188.7 Mcf/d	1.8 Mcf/d	0.09 %	70.53 bpd	0.11 bpd	0.09 %	320.09 bpd	4.39 bpd	0.49 %
8636	to	8638	1186.9 Mcf/d	1.8 Mcf/d	0.09 %	70.43 bpd	0.11 bpd	0.09 %	315.70 bpd	13.18 bpd	1.46 %
8646	to	8649	1185.1 Mcf/d	1.8 Mcf/d	0.09 %	70.32 bpd	0.11 bpd	0.09 %	302.52 bpd	15.37 bpd	1.70 %
_		Stage	e 4 - Wolfcamp		3.57 %			3.57 %			12.99 %
9058	to	9059	1183.3 Mcf/d	11.0 Mcf/d	0.54 %	70.22 bpd	0.65 bpd	0.54 %	287.15 bpd	20.78 bpd	2.30 %
9071	to	9072	1172.4 Mcf/d	1.8 Mcf/d	0.09 %	69.57 bpd	0.11 bpd	0.09 %	266.37 bpd	4.13 bpd	0.46 %
9084	to	9085	1170.6 Mcf/d	1.8 Mcf/d	0.09 %	69.46 bpd	0.10 bpd	0.09 %	262.24 bpd	1.77 bpd	0.20 %
9095	to	9096	1168.8 Mcf/d	1.8 Mcf/d	0.09 %	69.35 bpd	0.11 bpd	0.09 %	260.48 bpd	1.77 bpd	0.20 %
9103	to	9104	1167.0 Mcf/d	20.0 Mcf/d	0.99 %	69.25 bpd	1.19 bpd	0.99 %	258.71 bpd	2.36 bpd	0.26 %
9113	to	9114	1147.0 Mcf/d	1.8 Mcf/d	0.09 %	68.06 bpd	0.10 bpd	0.09 %	256.35 bpd	16.29 bpd	1.80 %
9129	to	9130	1145.3 Mcf/d	1.8 Mcf/d	0.09 %	67.96 bpd	0.11 bpd	0.09 %	240.06 bpd	3.54 bpd	0.39 %
9140	to	9141	1143.5 Mcf/d	1.8 Mcf/d	0.09 %	67.85 bpd	0.11 bpd	0.09 %	236.52 bpd	2.95 bpd	0.33 %
9150	to	9151	1141.7 Mcf/d	10.9 Mcf/d	0.54 %	67.75 bpd	0.65 bpd	0.54 %	233.58 bpd	21.96 bpd	2.43 %
9163	to	9164	1130.8 Mcf/d	1.8 Mcf/d	0.09 %	67.10 bpd	0.11 bpd	0.09 %	211.62 Брд	7.08 bpd	0.78 %
9170	to	9171	1129.0 Mcf/d	1.8 Mcf/d	0.09 %	66.99 bpd	0.10 bpd	0.09 %	204.54 bpd	5.31 bpd	0.59 %
9180	to	9181	1127.3 Mcf/d	1.8 Mcf/d	0.09 %	66.89 bpd	0.11 bpd	0.09 %	199.24 bpd	6.49 bpd	0.72 %
9193	to	9194	1125.5 Mcf/d	1.8 Mcf/d	0.09 %	66.78 bpd	0.11 bpd	0.09 %	192.75 bpd	4.72 bpd	0.52 %
9204	to	9205	1123.6 Mcf/d	1.8 Mcf/d	0.09 %	66.67 bpd	0.11 bpd	0.09 %	188.03 bpd	2.36 bpd	0.26 %
9220	to	9221	1121.8 Mcf/d	1.8 Mcf/d	0.09 %	66.57 bpd	0.10 bpd	0.09 %	185.67 bpd	2.95 bpd	0.33 %
9230	to	9231	1120.1 Mcf/d	1.8 Mcf/d	0.09 %	66.46 bpd	0.11 bpd	0.09 %	182.73 bpd	1.77 bpd	0.20 %
9241	to	9242	1118.2 Mcf/d	1.8 Mcf/d	0.09 %	66.35 bpd	0.11 bpd	0.09 %	180.96 bpd	2.36 bpd	0.26 %
9250	to	9252	1116.4 Mcf/d	1.8 Mcf/d	0.09 %	66.25 bpd	0.11 bpd	0.09 %	178.60 bpd	1.77 bpd	0.20 %
9258	to	9260	1114.6 Mcf/d	1.8 Mcf/d	0.09 %	66.14 bpd	0.11 bpd	0.09 %	176.83 bpd	2.36 bpd	0.26 %
9272	to	9275	1112.8 Mcf/d	1.8 Mcf/d	0.09 %	66.03 bpd	0.11 bpd	0.09 %	174.47 bpd	4.72 bpd	0.52 %

Stage 3 - Wolfcamp

Completion Profile Analysis

11.33 %

11.33 %

7.57 %

9301 to 9302 1111.0 Mcf/d 1.8 Mcf/d 0.09 % 65.92 bpd 0.11 bpd 0.09 % 169.75 bpd 3.54 bpd 0.39 % 9311 to 9312 1109.2 Mcf/d 1.8 Mcf/d 0.09 % 65.82 bpd 0.11 bpd 0.09 % 166.22 bpd 3.54 bpd 0.39 % 1107.4 Mcf/d 9318 to 9319 1.8 Mcf/d 0.09 % 65.71 bpd 0.10 bpd 0.09 % 162.68 bpd 3.54 bpd 0.39 % 0.52 % 1105.6 Mcf/d 1.7 Mcf/d 0.09 % 0.10 bpd 0.09 % 9329 to 9330 65.61 bpd 159.14 bpd 4.72 bpd 9341 to 9342 1103.9 Mcf/d 1.8 Mcf/d 0.09 % 65.50 bpd 0.11 bpd 0.09 % 154.42 bpd 3.54 bpd 0.39 % 1102.1 Mcf/d 1.8 Mcf/d 0.09 % 65.40 bpd 150.89 bpd 4.72 bpd 0.52 % 9351 to 9352 0.10 bpd 0.09 % 9369 9370 1100.4 Mcf/d 1.8 Mcf/d 0.09 % 65.29 bpd 0.11 bpd 0.09 % 146.17 bpd 4.13 bpd 0.46 % to 1098.5 Mcf/d 1.8 Mcf/d 2.36 bpd 9386 0.09 % 65.18 bpd 0.11 bpd 0.09 % 142.04 bpd 0.26 % 9385 to 0.09 % 0.09 % 139.68 bpd 0.26 % 1096.7 Mcf/d 1.8 Mcf/d 65.08 bpd 0.11 bpd 2.36 bpd 9395 to 9396 9401 to 9402 1094.9 Mcf/d 1.8 Mcf/d 0.09 % 64.97 bpd 0.10 bpd 0.09 % 137.32 bpd 2.36 bpd 0.26 % 9412 1093.2 Mcf/d 1.8 Mcf/d 0.09 % 64.87 bpd 0.11 bpd 0.09 % 134.97 bpd 7.08 bpd 0.78 % to 9413 9423 9424 1091.3 Mcf/d 1.1 Mcf/d 0.05 % 64.76 bpd 0.07 bpd 0.05 % 127.89 bpd 2.36 bpd 0.26 % to 0.7 Mcf/d 0.04 % 64.69 bpd 0.04 bpd 0.04 % 125.53 bpd 3.54 bpd 0.39 % 9433 to 9434 1090.2 Mcf/d 64.65 bpd 1089.5 Mcf/d 116.3 Mcf/d 5.74 % 6.90 bpd 5.74 % 121.99 bpd 4.13 bpd 0.46 % 9446 to 9447 9458 to 9459 973.2 Mcf/d 6.1 Mcf/d 0.30 % 57,75 bpd 0.36 bpd 0.30 % 117.87 bpd 4.72 bpd 0.52 % 9472 to 9473 967.1 Mcf/d 49.0 Mcf/d 2.42 % 57.39 bpd 2.91 bpd 2.42 % 113.15 bpd 4.72 bpd 0.52 % 9496 to 9497 918.1 Mcf/d 6.3 Mcf/d 0.31 % 54.48 bpd 0.37 bpd 0.31 % 108.43 bpd 1.77 bpd 0.20 % 54.11 bpd 0.37 bpd 106.66 bpd 1.18 bpd 9506 to 9508 911.8 Mcf/d 6.2 Mcf/d 0.31 % 0.31 % 0.13 % 9516 18.7 Mcf/d 0.92 % 53,74 bpd 1.11 bpd 0.92 % 105.48 bpd 2.36 bpd 0.26 % 9514 to 905.7 Mcf/d 9538 to 9541 886.9 Mcf/d 5.5 Mcf/d 0.27 % 52.63 bpd 0.33 bpd 0.27 % 103.13 bpd 1.77 bpd 0.20 % Stage 2 - Wolfcamp 33.63 % 33.63 % 7.04 % 9691 to 9692 881.4 Mcf/d 66.6 Mcf/d 3.29 % 52.30 bpd 3.95 bpd 3.29 % 101.36 bpd 8.25 bpd 0.91 % 48.35 bpd 1.58 bpd 7.08 bpd 9699 9700 814.8 Mcf/d 26.6 Mcf/d 1.32 % 1.32 % 93.10 bpd 0.78 % to 9708 to 9709 788.2 Mcf/d 17.8 Mcf/d 0.88 % 46.77 bpd 1.05 bpd 0.88 % 86.03 bpd 2.95 bpd 0.33 % 45.72 bpd 83.08 bpd 9717 to 9718 770.4 Mcf/d 64.4 Mcf/d 3.18 % 3.82 bpd 3.18 % 7.61 bpd 0.84 % 9733 706.1 Mcf/d 15.9 Mcf/d 0.79 % 41.90 bpd 1.05 bpd 0.88 % 75.47 bpd 2.95 bpd 0.33 % 9732 to 9739 9740 690 1 Mcf/d 6.6 Mcf/d 0.32 % 40.84 bpd 0.26 bpd 0.22 % 72.52 bpd 1.18 bpd 0.13 % to 0.26 bpd 0.22 % 1.77 bpd 0.20 % 9749 to 9750 683.6 Mcf/d 1.9 Mcf/d 0.09 % 40.58 bpd 71.35 bpd 9766 9767 681.7 Mcf/d 90.8 Mcf/d 4.48 % 40.32 bpd 2.22 bpd 1.84 % 69.58 bpd 4.72 bpd 0.52 % to 1.64 bpd 2.36 bpd 0.26 % 9778 to 9779 590.9 Mcf/d 23.4 Mcf/d 1.16 % 38.10 bpd 1.36 % 64.86 bpd 9788 to 9789 567.5 Mcf/d 50.6 Mcf/d 2.50 % 36.46 bpd 1.87 bpd 1.56 % 62.50 bpd 3.54 bpd 0.39 % 0.13 % 9799 to 9800 516.9 Mcf/d 26.2 Mcf/d 1.29 % 34.59 bpd 1.66 bpd 1.38 % 58.96 bpd 1.18 bpd 57.78 bpd 1.77 bpd 0.20 % 490.7 Mcf/d 153.6 Mcf/d 7.58 % 32.93 bpd 2.76 bpd 2.29 % 9813 to 9814 9832 337.1 Mcf/d 20.2 Mcf/d 1.00 % 30.17 bpd 11.37 bpd 9.46 % 56.01 bpd 1.77 bpd 0.20 % 9831 to 0.59 % 316.9 Mcf/d 12.0 Mcf/d 0.59 % 18.81 bpd 0.71 bpd 54.25 bpd 4.13 bpd 0.46 % 9849 to 9850 1.14 bpd 0.95 % 1.18 bpd 9862 9863 304.9 Mcf/d 19.2 Mcf/d 0.95 % 18.09 bpd 50.12 bpd 0.13 % to 285.8 Mcf/d 15.9 Mcf/d 0.78 % 16.96 bpd 0.94 bpd 0.78 % 48.94 bpd 1.77 bpd 0.20 % 9877 to 9878 9889 269.9 Mcf/d 17.7 Mcf/d 0.88 % 16.02 bpd 1.05 bpd 0.88 % 47.17 bpd 2.36 bpd 0.26 % 9888 to 9901 252.2 Mcf/d 14.3 Mcf/d 0.71 % 14.96 bpd 0.85 bpd 0.71 % 44.81 bpd 2.36 bpd 0.26 % 9899 to 9913 to 9915 237.8 Mcf/d 18.6 Mcf/d 0.92 % 14.11 bpd 1.11 bpd 0.92 % 42.45 bpd 1.77 bpd 0.20 %

219.2 Mcf/d

19.1 Mcf/d

0.94 %

9936 to 9939

13.01 bpd

1.13 bpd

0.94 %

40.68 bpd

2.95 bpd

MEASURED SOLUTIONS

0.33 %

		Stage 1	- Cisco Canyor	1	8.73 %			8.72 %			3.52 %
9967	to	9968	200.1 Mcf/d	17.4 Mcf/d	0.86 %	11.87 bpd	1.03 bpd	0.86 %	37.74 bpd	4.72 bpd	0.52 %
9984	to	9985	182.7 Mcf/d	17.5 Mcf/d	0.86 %	10.84 b pd	1.04 bpd	0.86 %	33.02 bpd	2.95 bpd	0.33 %
10000	to	10001	165.2 Mcf/d	17.7 Mcf/d	0.87 %	9.80 bpd	1.05 bpd	0.87 %	30.07 bpd	4.13 bpd	0.46 %
10014	to	10015	147.6 Mcf/d	17.0 Mcf/d	0.84 %	8.76 bpd	1.01 b p d	0.84 %	25.94 bpd	2.36 bpd	0.26 %
10026	to	10027	130.5 Mcf/d	17.4 Mcf/d	0.86 %	7.75 bpd	1.03 bpd	0.86 %	23.59 bpd	1.18 bpd	0.13 %
10035	to	10036	113.2 Mcf/d	20.0 Mcf/d	0.99 %	6.71 bpd	1.19 bpd	0.99 %	22.41 bpd	1.77 bpd	0.20 %
10043	to	10044	93.1 Mcf/d	20.4 Mcf/d	1.01 %	5.53 bpd	1.21 bpd	1.01 %	20.64 bpd	5.31 bpd	0.59 %
10050	to	10051	72.8 Mcf/d	14.1 Mcf/d	0.70 %	4.32 bpd	0.84 bpd	0.70 %	15.33 bpd	2.95 bpd	0.33 %
10066	to	10067	58.6 Mcf/d	22.0 Mcf/d	1.09 %	3.48 bpd	1.30 bpd	1.09 %	12.38 bpd	2.36 bpd	0.26 %
10076	to	10077	36.7 Mcf/d	11.0 Mcf/d	0.54 %	2.18 bpd	0.65 bpd	0.54 %	10.02 bpd	1.77 bpd	0.20 %
10083	to	10084	25.7 Mcf/d	2.4 Mcf/d	0.12 %	1.52 bpd	0.14 bpd	0.12 %	8.25 bpd	2.36 bpd	0.26 %
Flow	Cont	ribution	from Below Log	Depth	1.15 %			1.15 %			0.65 %
10087	to	Below	23.3 Mcf/d		1.15 %	1.38 bpd		1.15 %	5.90 bpd		0.65 %

Analysis Summary

- The perforations below 10,087 feet were not logged due to wellbore restrictions. Total production from these intervals was calculated based on the data below the 9,967 -10,084 feet perforations.
- 2. The analysis was conducted as 3-phase. The oil production of 120 BOPD is too low to accurately quantify. The downhole oil rate, at 100% flow, accounts for approximately 4% of the total mass flow and about 3.5% of the total volumetric rate, assuming free gas entry and solution gas breaking out downhole. The GOR is assumed to be even across all zones.

Flow Model at Downhole Conditions With Comparison of Theoretical Response to Recorded Data

MEASURED SOLUTIONS ProTechnics

Overlay of all Log Data

Apparent Fluid Velocity Derived from Spinner

MEASURED SOLUTIONS ProTechnics

Spinner Calibration Plots Relationship between R.P.S. and Fluid Velocity (fpm)

16

6510 W Sam Houston Parkway, Houston, TX 77041 +1-713-328-2320

MEASURED SOLUTIONS ProTechnics

Geothermal Gradient

https://wwwapps.emnrd.state.nm.us/OCD/OCDPermitting/Compliance/FinancialAssurance.aspx

Brief Description of Process

The analysis is performed using a global stochastic optimization technique.

In this technique an initial flow model is estimated. Then from this model the theoretical log responses are derived. The theoretical responses are compared to all available data and the model is adjusted until the best possible match of the theoretical and actual data is obtained.

A comparison between the model responses and the recorded data is shown in this report. Good correlation between the

MEASURED SOLUTIONS

ProTechnics

theoretical and log data curves indicates that the flow model is in agreement with the log data and the actual well production profile. Discrepancies between the theoretical and raw data curves can be due to tool deficiencies, conflicts between the parameters or conditions that make the underlying empirical models (such as flow regimes) less applicable.

- The flow regimes were determined, directly from the flow rates and holdups, according to the Dukler-Taitel analytic model.
- The profile factors, to calculate the average effective fluid velocity from the apparent velocity, were based on the Reynolds number, calculated from the phase velocities and phase properties.
- Where gas was present the density, heat capacity and Joule-Thompson coefficients were derived from the Lee Kesler Pitzer equation of states.
- Solution gas in oil was derived from the Vasquez and Beggs or Ostein Glas0 correlation.

The analysis was performed in five steps:

- The data preparation to filter the data, compute gradients and error estimates.
- The flow meter analysis to compute the apparent velocity.

- The profile determination to identify the potential producing and/or injecting zones.

- The computation of the flow rates (model) by global optimization.

- The computation of surface production rates and reporting

6510 W Sam Houston Parkway, Houston, TX 77041 +1-713-328-2320

9021

Well Information Parameters used for Analysis								
	SPGG	UNITY	.658					
	APIOI	UNITY	52.6					
	DPipe	in	4.90					
	PipeAngle	DegAng	6.00					
	Geotherm	°F/ft	.0111					
	TgeoRef	۴	161					

Downhole Measured and Computed Parameters

DgeoRef

ft

Depth	Pwf	Twf	ρ _{gas}	Poli	Pwater	RhoFluid	Bgas	Vap
feet	psi	DegF	g/cc	g/cc	g/cc	g/cc	UNITY	FPM
8387.00	2117	154	.112	.736	1.03	.502	.00719	130
8508.50	2143	157	.113	.736	1.03	.517	.00715	104
8629.75	2166	160	.113	.735	1.03	.462	.00713	88.1
8751.25	2189	160	.114	.734	1.03	.474	.00706	68.6
8872.75	2212	160	.115	.734	1.03	.470	.00700	70.4
8994.25	2235	161	.116	.734	1.03	.471	.00693	70.4
9115.50	2259	162	.117	.734	1.03	.500	.00689	77.4
9237.00	2283	165	.117	.733	1.03	.470	.00686	27.8
9358.50	2307	166	.118	.732	1.03	.452	.00682	31.2
9479.75	2332	168	.119	.732	1.03	.620	.00677	59.6
9601.25	2365	168	.120	.732	1.03	.630	.00669	60.1
9722.75	2398	169	.122	.731	1.03	.637	.00661	48.5
9844.25	2434	170	.123	.731	1.03	.830	.00653	64.6
9965.50	2477	171	.125	.731	1.03	.874	.00643	53.7
10087.00	2525	173	.127	.730	1.03	1.00	.00635	19.1

Definitions

Curve Name	Description
Holdup	Holdups
PerfCount	Perforations
QGas	Total Gas Production at surface conditions
QpGas	Incremental Gas Production at surface conditions
QOil	Total Oil Production (if present downhole) at surface conditions
QpOil	Incremental Oil Production (if present downhole) at surface conditions
QWater	Total Water Production at surface conditions
QpWater	Incremental Water Production at surface conditions
GR	Gamma Ray/SpectraScan
Twf	Average Temperature
Vap	Apparent Velocity
Vap-Theo	Theoretical Apparent Velocity
Tgeotherm	Geothermal Gradient
RhoFluid	Average Fluid Density
Pwf	Average Pressure
HydroFrq	Average Fluid Dielectric
Flowrate	Total Flowrate at downhole conditions
Vap	Apparent Velocity
Vap-Theo	Theoretical Apparent Velocity
RhoFluid	Average Fluid Density
RhoFluid-Theo	Theoretical Average Fluid Density
DPwfDz	Differential Pressure
DPwfDz-Theo	Theoretical Differential Pressure
Twf	Average Temperature
Twf-Theo	Theoretical Average Temperature
Tgeotherm	Geothermal Gradient
DTwfDz	Differential Temperature
DTwfDz-Theo	Theoretical Differential Temperature
Regime	Flow Regimes
Temperature	Temperature Passes
Density	Fluid Density Passes
Spinner	Spinner Passes
Pressure	Pressure Passes
Linespeed	Linespeed Passes
Slope	Spinner Slope
Vthr	Spinner Threshold
SpinnerFlt	Spinner
DPipe	Inside diameter of the casing/tubing across logged interval
PipeAngle	Average pipe angle across logged interval
APIOil	Degree API of the oil
SPGG	Specific Gravity of the gas
TgeoRef	Reference Temperature for Geothermal Gradient calculations
DgeoRef	Reference Depth for Geothermal Gradient calculations
Goetherm	Geothermal Gradient across logged interval

Tool Specifications	to	a letter		CIL TM
D.D. 1-11/16 in. (42.86 mm) ength 11.9 ft.(3.63 m) in combination 23.28 ft. (7.1 m) stand alone	Profectnics	Completion	Pro	otiler '''
Pressure Rating 15,000 psi (103421.4 Kpa) Femperature Rating 350°F (177°C)				
Flow Measurement		23.28 C-Cells 84.5 Ib	ft_ is.	
Measurement of fluid velocity is made using the Spinner Flowmeter. This is calibrated by making ogging passes at different line speeds to establish the relationship between instrument velocity in revolutions/second (RPS). With this relationship the measured RPS can be converted to fluid velocity in fi/minute. With a known pipe I. D. this can be used to calculate the flow rate in BPD. Q _{BPD} = ft/min x 1.4 x 1.D. ²	28.375" 9 Ibs.	D-Cells 89.5 It Pressure / Temperature Combo Tool	ys. 78* 18.5 Bos. 23.5 Dos.	Battery Housing C - Cell Batteries D - Cell Batteries
Mass flow rate can be computed using the <i>Temperature</i> data. This is based on an enthalpy nodel, taking into consideration; kinetic energy, rictional and Joule-Thompson heating as well as conduction and convection into the formation.	23" 10 lbs.	Roller Centralizer	19" 10 5 lbs	RS-232 Port / CCL
n gas wells the volumetric fraction of liquids (water) can be very small. Therefore water production may not be quantifiable by velocity measurement alone. Because of water's high mass relative to gas, mass flowrate computed from the <i>Temperature</i> data can be better at quantifying the water production.			39.5*	Memory / CPU
Holdup Measurement	24"	Induction-Collar Locator	10.5 lbs.	
Holdup (Y) - The fraction of each phase in the wellbore (Water, Cil, Gas fraction) This should not be confused with Cut. i.e. 100% water holdup exists in the static rathole but does not flow.	6.3 ID5.			
The <i>Fluid Density</i> instrument uses a small gamme ray source and a gamma ray detector to measure the density of the wellbore fluid moture. The mixture density is used to calculate the holdup fraction.	28"	Fluid Identification Tool	28.375" 9 lbs.	Pressure / Temperature Combo Tool
Ywater = (Pmixture - Pgas)/(Pwater - Pgas)	7 lbs.	Gamma-Gamma Density &	23"	Roller
[Por two-phase gas-reater production] D: density (gm/cc)		Fluid Dielectric	10 lbs.	/ Centralizer
The Fluid Dielectric Instrument works like an electric capacitor. The capacitor plates are exposed to the wellbore fluids and are a fixed size and distance apart. The value of the capacitance will change as the dielectric of the fluids between the plates change. The instrument response is			24* 6.5 lbs.	Induction-Collar Locator
then used to calculate the hydrocarbon and water tractions. This is possible because of the unique dielectric constant of water, oil and gas. Water = 78, Oil = 4 and Gas = 1	23" 10 lbs.	Roller Centralizer	28" 7 lbs.	Fluid Identification Tool Gamma-Gamma Density 8 Fluid Dielectric
The Pressure data can also be used to corroborate the fluid holdup measurements. This is done by measuring the pressure gradient or the derivative of the pressure curve with respect to depth. The resulting curve in psi/ft can be used to determine the water and gas fractions.	16.5"	Sninner Flowmeter	23" 10 lbs.	Roller Centralizer
Note: In three phase flow both fluid density and dielectric measurements are necessary. The dielectric is used to determine the water holdup then the density is used to calculate the remaining gas and oil holdups.	2.5 lbs.	Spinner Flowmeter	16.5* 2.5 bs.	Spinner Flowmeter

20

6510 W Sam Houston Parkway, Houston, TX 77041 +1-713-328-2320

MEASURED SOLUTIONS Prolechnics

Model Results With Recorded Data

11

MEASURED SOLUTIONS ProTechnics

Production Rates At Surface Conditions

MEASURED SOLUTIONS ProTechnics

State of New Mexico Energy, Minerals and Natural Resources Department

Susana Martinez Governor

Ken McQueen Cabinet Secretary

Matthias Sayer Deputy Cabinet Secretary David R. Catanach, Division Director Oil Conservation Division

Administrative Order DHC-4804 Order Date: January 23, 2017 Application Reference Number: pMAM1702341565

Cimarex Energy Co. of Colorado 600 North Marienfeld Street, Suite 600 Midland, Tx. 79701

Attention: Ms. Kimberleigh Rhodes

White City 31 Federal A Well No. 2 API No. 30-015-33394 Unit K, Section 31, Township 24 South, Range 26 East, NMPM Eddy County, New Mexico

PoolWHITE CITY; PENN (GAS)Gas (87280)Names:BLACK RIVER; WOLFCAMP, SW (GAS)Gas (97693)

Reference is made to your recent application for an exception to Division Rule 19.15.12.9A. NMAC of the Division Rules and Regulations to permit the above-described well to commingle production from the subject pools in the wellbore.

It appears that the subject well qualifies for approval for such exception pursuant to the provisions of Division Rule 19.15.12.11A. NMAC, and since reservoir damage or waste will not result from such downhole commingling, and correlative rights will not be violated thereby, you are hereby authorized to commingle the production as described above and any Division Order which authorized the dual completion or otherwise required separation of the zones is hereby placed in abeyance.

In accordance with Division Rule 19.15.12.11A (6) NMAC, the production attributed to any commingled pool within the well shall not exceed the allowable applicable to that pool.

As per the application, the assignment of allowable and allocation of oil and gas production from the subject well for the White City; Penn (Gas) Pool and Black River; Wolfcamp, SW (Gas) Pool shall be based on the remaining gas in place (RGIP) calculations, which in turn is based on offset analogy production and well log analysis for each pool.

Administrative Order DHC-4804 Cimarex Energy Co. of Colorado January 23, 2017 Page 2 of 2

Assignment of allowable and allocation of production from the well shall be as follows:

BLACK RIVER; WOLFCAMP, SW (GAS)	Pct. Oil: 79	Pct. Gas: 79
WHITE CITY; PENN (GAS)	Pct. Oil: 21	Pct. Gas: 21

It is also understood that notice of this application, pursuant to Division Rule 19.15.4.12 A (6), is not required since the interest ownership between the zones to be commingled is common throughout.

REMARKS: The operator shall notify the Division's District II office upon implementation of commingling operations.

This Order is subject to like approval from the Bureau of Land Management.

Pursuant to Division Rule 19.15.12.11B. NMAC, the commingling authority granted herein may be rescinded by the Division Director if conservation is not being best served by such commingling.

David R. Catanach Director

DRC/mam

cc: New Mexico Oil Conservation Division – Artesia Bureau of Land Management - Carlsbad

McMillan, Michael, EMNRD

From:	Amithy Crawford <acrawford@cimarex.com></acrawford@cimarex.com>
Sent:	Friday, July 21, 2017 9:51 AM
То:	McMillan, Michael, EMNRD
Subject:	Amend DHC-4808 White City 31 Federal #2
Attachments:	WhiteCity_31_Fed_2_CP_Report.pdf; DHC Approval White City 31 #2 WC CC.pdf; White City 31 Fed 2 Land Letter.pdf; Admin Checklist White City 31 #2 Amend.pdf

Mr. McMillan,

Based on the fact that ownership is identical and there are no adversely affected parties, please make the allocation percentages 90% Wolfcamp & 10% Cisco Canyon.

Thank you,

Amithy Crawford 600 N. Marienfeld St. Suite 600 Midland, TX 79701 Direct Phone: 432-620-1909

From: Amithy Crawford Sent: Friday, July 21, 2017 9:02 AM To: 'McMillan, Michael, EMNRD' <<u>Michael.McMillan@state.nm.us</u>> Subject: Amend DHC-4808 White City 31 Federal #2

Mr. McMillan,

Please amend DHC-4808 to reflect 90.12% Wolfcamp and 9.88% Cisco Canyon as shown from the attached production log. The initial application was for a 79% wolfcamp and 21% Cisco Canyon breakout. All interest is identical. Will you also amend the pool on the DHC to the Purple Sage, Wolfcamp (Gas)? Attached:

- Original DHC approval for reference
- Letter from Land stating ownership
- Production Log
- Administrative Checklist form

Please let me know if you have any questions.

Thank you,