Revised March 23, 2017

RECEIVED: 3122014 REVIEWER:	TYPE: SuD	APP NO: DMAM18072-3463-	>
- Geologia	cal & Engineering Bui rancis Drive, Santa Fe		
		CHECKLIST	
	EQUIRE PROCESSING AT THE DIVISION		
Applicant: Jay Management Company, LLC Well Name: State OG SWD #002		OGRID Number: 247692 API: 30-025-31381	
Pool: N/A Swo', 5 An And	nes	Pool Code: <u>₩K 9612</u>	-1
 SUBMIT ACCURATE AND COMPLETE INIT TYPE OF APPLICATION: Check those A. Location – Spacing Unit – Simult NSL 	INDICATED BELOW which apply for [A]	Sud-17	,
B. Check one only for [1] or [1] [1] Commingling – Storage – M DHC CTB P [1] Injection – Disposal – Pressu WFX PMX S	LC PC OLS Jre Increase – Enhance	□ PPR	
 2) NOTIFICATION REQUIRED TO: Check A. Offset operators or lease hold B. Royalty, overriding royalty overriding royalty overriding royalty overriding royalty over c. Application requires published D. Notification and/or concurrence E. Notification and/or concurrence F. Surface owner G. For all of the above, proof or H. No notice required 	lders wners, revenue owners ed notice ent approval by SLO ent approval by BLM	Complete	
 CERTIFICATION: I hereby certify that the administrative approval is accurate of the second sec			

administrative approval is **accurate** and **complete** to the best of my knowledge. I also understand that **no action** will be taken on this application until the required information and notifications are submitted to the Division.

Note: Statement must be completed by an individual with managerial and/or supervisory capacity.

Jim Foster

Print or Type Name

Date

3/6/18

(979) 324-2139

Phone Number

jim@teamtimberwolf.com e-mail Address

Signature

.

1920 W. Villa Maria, Ste. 205 Bryan, Texas 77807 979.324.2139 www.teamtimberwolf.com

1

MAR 12 2018 PM03:44

March 6, 2018

Michael McMillan District 4 Santa Fe 1220 South St Francis Drive Santa Fe, NM 87505

RE: C-108 Application for Authorization to Inject – Supplemental Information Jay Management Company, LLC State OG SWD No. 2, Lea County, New Mexico

Dear Mr. McMillan,

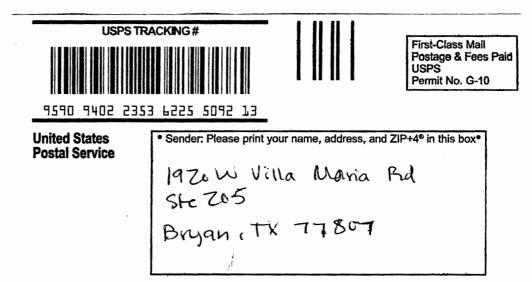
At the request of Jay Management Company, a C-108 form has been revised for your review. This well is currently permitted as a saltwater disposal well completed in the Strawn formation. The formation is no longer accepting fluids, necessitating recompletion. Jay Management plans to plug back and recomplete the well in the San Andres formation.

In this form we have added three sections labeled tables, schematics, and figures. The Tables section pertains to section VI and VII of the C-108 form. Table A-1 has been modified to include pools names. The Schematics section contains well bore schematics for any plugged wells referenced in section VI. This section also contains a current and proposed well bore schematic of the State OG No. 2. The Figures section pertains to section V of the C-108 form.

Please find attached the requested items from your email dated February 13, 2018:

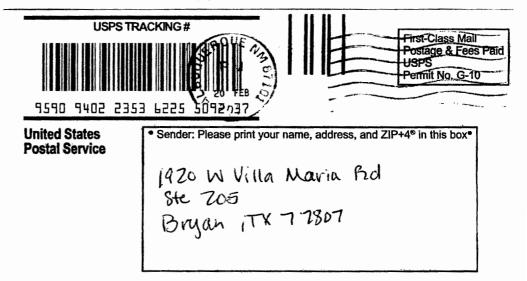
- Affidavit of publication from the Hobbs News-Sun, located in Lea County, New Mexico, published on February 7, 2018
- Administrative Application Checklist
- Tract Map and identified stakeholders (Figure 2 and Table A-2)
- Proof of mailing to surface owner (i.e., State Land Office) and OCD District Office
- Engineering Report Injection Study for the State OG SWD #2
- C-102 Form

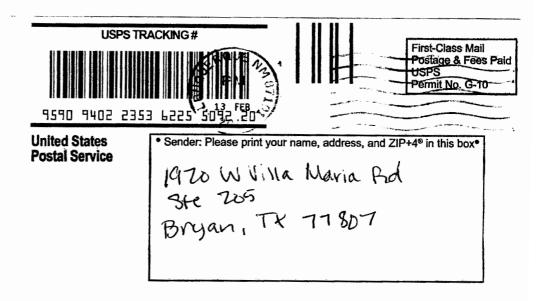
Additionally items, including: water well search (within a 1-mile radius), water sample from the SWD, C-103, and swab of proposed injection intervals are in progress.

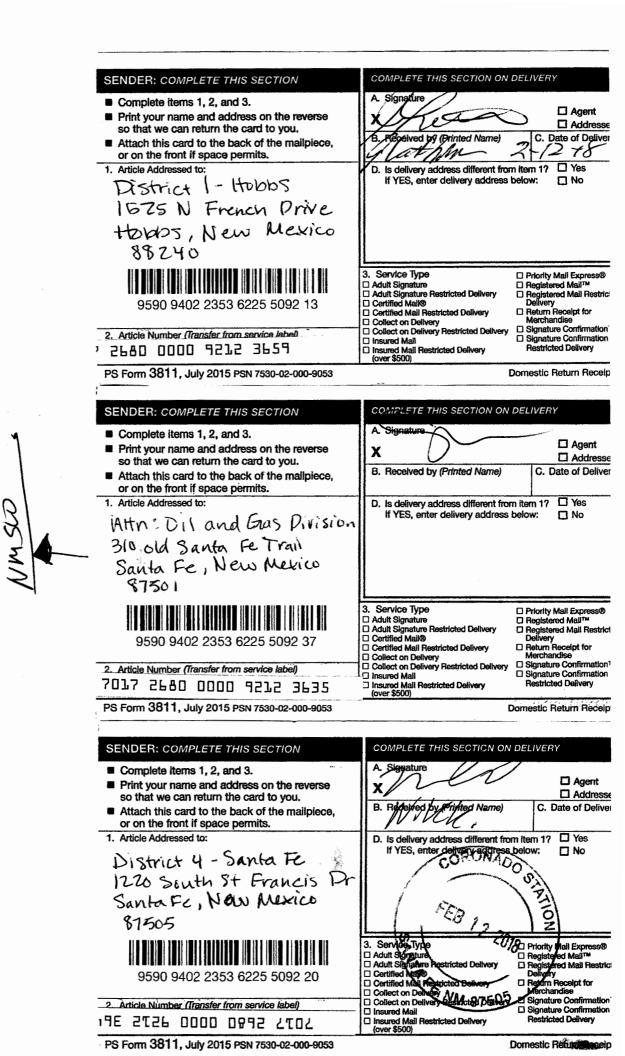

If you have any questions regarding this submission or need other information, please do not hesitate to contact us.

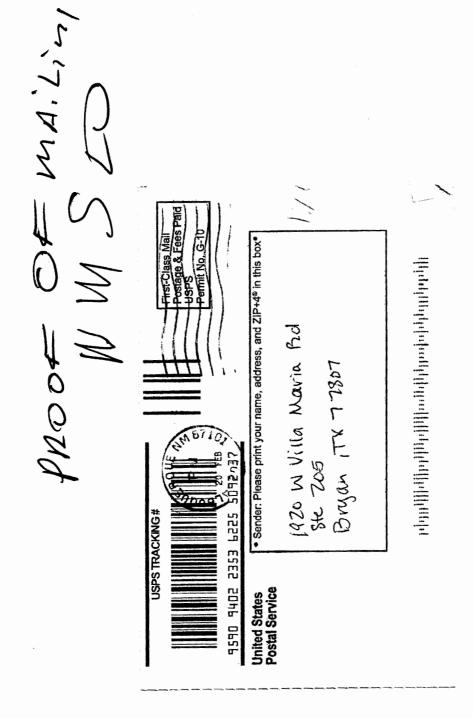
Sincerely, Timberwolf Environmental, LLC

Jun Foster


President


Attachments: Administrative Application Checklist Amended C-108 C-102 Injection Study Affidavit of Publication Proof of Notice




չիլինես)[[[[իսյսել][[[լյիլ]]սյին][սիլիսիլիսիլ][[[[լիլ

70

Syfan Engineering, LLC

309 W. 7th Street Suite 500 Fort Worth, TX 76102 (Cell) 281-889-8774 (E-Mail) frank.syfan@gmail.com

PETROLEUM ENGINEERING CONSULTANTS

DRILLING -- WORKOVERS -- COMPLETIONS -- HYDRAULIC FRACTURING -- RESERVOIR ENGINEERING TEXAS PROFESSIONAL ENGINEER NO. 65255

February 23, 2018

Mr. Amir Sanker Jay Management Company 1001 West Loop South Suite 750 Houston, TX 77027

Re: Injection Study State OG SWD #2 Pool: Cisco-Cisco SWD-Strawn Lea County, NM API No. 30-025-31381

Dear Mr. Sanker,

At the request of Mr. Coby Denham of Denham Energy ("DE") on behalf of Jay Management Company ("JMC"), Syfan Engineering, LLC ("Syfan") has prepared an injection study of the State OG SWD No. 2 in the Cisco-Cisco SWD-Strawn Pool located in Lea County, NM. Syfan has reviewed the applicable data supplied by JMC regarding recompleting the State OG SWD #2 to inject produced waters into the San Andres formation.

CONCLUSIONS

1. Injection into the State OG SWD #2 should not cause a vertical fracture in the San Andres formation if surface injection pressures are limited to 1,700 psi.

2. Injection volumes in the State OG SWD #2 should not communicate vertically with either the Ogallala Aquifer, or surrounding deeper productive horizons.

RECOMMENDATIONS

- 1. Obtain an up to date Aquifer Depth Letter from the NMOCD for the State OG SWD #2.
- 2. The State OG SWD #2 should be approved for SWD through perforations 4,590' 4,829' and injection should be down a tubing string under a sealing packer to prevent excessive surface pressures.
- 3. The Maximum Allowable Surface Injection Pressure ("MASIP") should be 1,710 psi.

INTRODUCTION

According to available public records reviewed from the New Mexico Oil Conservation Division, LBO New Mexico, Inc. (the Original Operator of Record) spudded the State OG #2 on 10/15/1991 and drilled vertically to a total depth of 11,000 ft.

Initially a 17" hole was drilled and 13-3/8", 48.0 lb/ft casing was run to 367' and cemented back to surface with 350 sacks of Class C Cement. Then an 11" hole was drilled and 8-5/8", 32.0 and 24.0 lb/ft casing was run to 3,810' and cemented back to surface with 1,150 sacks of cement. A 7-7/8" hole was then drilled to 11,000' (well TD). After logging the well, 5-1/2", 17.0 and 20.0 lb/ft casing was run and cemented with 2,025 sacks of cement, which was circulated back to surface. The well was perforated from 10,804' – 10,810' in the Morrow formation. A CIBP was set over the Morrow perforations @ 10,615' and sealed with 20 sacks of cement. The well was completed in the Strawn formation through perforations 10,206' – 10,216', 10,224' – 10,232', and 10,282' – 10,294'as a producing oil well with the completion approved by the NMOCD on January 24,1992. According to records filed with the NMOCD, the State OG #2 was not hydraulically fracture stimulated on completion.

The State OG #2 was converted to SWD under Burro Pipeline Corporation (Operator of Record at that time) and began taking water on February 4, 1994. The well was officially called the State OG SWD-548 #2 according to NMOCD records. The original Strawn perforations (3 sets ranging from 10,206' - 10,294') were deemed non-productive due to depletion and three additional sets of perforations were opened. The added perforations were from 9,154' - 9,164', 9,231' - 9,236', and 9,388' - 9,398'.

Jay Management Company, LLC was approved as the new Operator of Record by the NMOCD on October 29, 2008 and took over operation of the State OG SWD #2. Jay Management has applied to the NMOCD to seal off the existing perforations in the Pennsylvanian and recomplete the well as a SWD in the San Andres formation. The proposed perforations in the San Andres are listed in Table 1.

Formation	Upper Interval	Lower Interval
San Andres Formation	4,590'	4,595'
San Andres Formation	4,638.5'	4,652'
San Andres Formation	4,735'	4,750'
San Andres Formation	4,780'	4,786'
San Andres Formation	4,814'	4,820'
San Andres Formation	4,825'	4,829'

I able 1
State OG SWD #2
Proposed San Andres Perforations

STATE OG SWD #2 ENGINEERING ANALYSIS

A review of the geology associated with the San Andres formation for the State OG SWD #2 according to information obtained from the USGS, indicates that the formation is continuous throughout the field and Lea County area. The San Andres is Permian in geologic age

and consists of laminated limestone/dolomite, sandstone, and shale beds. The formation also is interbedded in places by gypsum/evaporites and redbeds. Thus, all wellbores which penetrate the San Andres surrounding the State OG SWD #2 are probably in pressure communication.

As part of the application process, JMC has stated that an average 5,000 BWPD will be injected into the San Andres perforations with a stated maximum injection rate of 6,000 BWPD.

Syfan reviewed the logs associated with the San Andres formation in the State OG SWD #2 and analysis indicates the lithology in the injection intervals to be primarily limestone with porosities ranging from 6% - 20%. Local knowledge of the San Andres also provides that the porous limestone intervals are separated vertically by laminations of limestone/dolomite, sandstone, and shale and thus the likelihood of vertical communication with other zones is considered by Syfan to be extremely remote. The fresh water aquifer in this area is listed as the Ogallala found near 380' from surface. This aquifer would be protected from injection waters intended for the San Andres by the 13-3/8" and 5-5/8" casing strings, both of which were cemented back to surface. Schematics have been provided which identify all wells drilled within two (2) miles of the State OG SWD #2 location.

Offset P&A Well Analysis

As part of the Engineering Analysis performed on the area immediately surrounding the State OG SWD #2, Syfan looked six (6) wells Plugged and Abandoned (P&A) that are located within ½mile of the well's location. These wells are listed in Table 2. According to the information received by Syfan on the wells in Table 2, all were P&A'd according to NMOCD regulations with multiple cement plugs set between the intermediate casing seat and the surface. These plugs should be more than adequate to prevent vertical migration and water contamination of the Ogallala aquifer.

Operator	Well Name	API No.
Jay Management Company LLC	Collier #001	30-025-00994
Chesapeake	State OG 1-9	30-025-30586
LBO New Mexico Inc.	State OG #002	30-025-22329
Pre-Ongard Well Operator	Southland Royalty C #001	30-025-22467
Pre-Ongard Well Operator	Dwight A Tipton #001	30-025-22197
Pre-Ongard Well Operator	Tipperary Oil & Gas #001	30-025-22068

Table 2P&A Wells Located Within 1/2 -Mile of State OG SWD #2

In addition, due to the blanket nature of the San Andres formation in the area surrounding the State OG SWD #2, pressure from injected waters should dissipate over a wide aerial extent, thus reducing the probability of creating a vertical fracture in the San Andres. The extremely laminated nature of the San Andres formation would also virtually eliminate the possibility of vertical communication not only with the Ogallala but also the Pennsylvanian, Strawn, and Morrow formations which have been deemed productive in the area.

Producing Well Analyses

Syfan studied five (5) wells located less than or equal to 1-mile distance and surrounding the State OG SWD #2. This was done to determine the possibility damaging the producing wells within 1-

mile of the Stage OG SWD #2 due to SWD into the San Andres formation. Analysis of the information provided by JMC, shown in Table 3, indicates that all five currently producing wells are completed in the zones within or below the Wolfcamp and Pennsylvanian formations. The uppermost reported perforations and the estimated geologic top of the Pennsylvanian is included in Table 3. As shown in the table, all five of the offset producing wells located within 1 mile are completed significantly deeper than the proposed San Andres injection zone and therefore, should be totally isolated from vertical communication.

Operator	Well Name	API No.	Distance	Top of Prod. Formation.	Upper-Most Perforation
Jay Management	Gulf-Sohio State #001**	30-025-21194	<1/2 Mi.	8,744'	Unk
Jay Management	JFG Collier #001	30-025-22108	<1.0 Mi	9,185'	9,192'
Jay Management	Shell State Com #001	30-025-22226	<1.0 Mi	9,108'	9,882'
Jay Management	GS State #001	30-025-22811	<1.0 Mi	8,492'	8,603'
EOG Y Resources	Quetsal AQA State #001	30-025-33460	< 1.0 Mi	10,840'	10,845

Table 3 Producing Wells Within 1-Mile of State OG SWD #2

** Note: The Gulf-Sohio State #001 was originally completed in the Pennsylvanian below 9,400'. NMOCD records indicated on a Form C-102 that the well was producing from the Wolfcamp B formation. No Wolfcamp B perforations were found, but the top of the Wolfcamp was reported to be 8,744'.

Maximum Surface Injection Pressure

It will be necessary in any injection scenario to limit the maximum surface injection pressure as not to hydraulically fracture the injection formation. JMC reported the Fracture Gradient (FG) for the San Andres formation to be approximately 0.80 - 0.85 psi/ft. Eq. 1 is the formula used to calculate the Hydrostatic Head (HH) of the fluid column. Eq. 2 then uses the HH calculation to determine the MASIP.

Using a depth of 4,590' to the proposed top perforation and assuming a normal field saltwater weight of 8.8 lbs/gal, the calculated HH of the fluid column would be 2,100 psi. Since the FG reported for the San Andres is estimated, Syfan used a 10% Safety Factor from the lower value, which yields a FG equal to 0.72 psi/ft. Plugging these numbers into Eq. 2 yields a calculated BHFP of 3,305 psi.

The friction losses in the pipe are a function of the fluid type, viscosity, and injection rate and would be additive to the maximum allowable surface pressure. The Maximum Daily Injection Volume is estimated to be 6,000 BWPD which equals a 24-hour injection rate slightly less than 4.5 BPM. Using a pump rate of 4.5 BPM, saltwater friction losses in 2-7/8" tubing are estimated to be 110 psi per 1,000 ft of depth. Therefore, the estimated pipe friction pressure would be 505 psi. Solving for Eq. 2 yields a calculated MASIP of 1,710 psi.

Equation 1 Hydrostatic Head Calculation HH = (FW)(D)(0.052)

Equation 2 Maximum Allowable Surface Treating Pressure Calculation

$SIP = BHFP - HH + \Delta P_P$

Where:

- BHFP = Bottomhole Fracture Pressure, psi
 - D = Depth, ft
 - HH = Hydrostatic Head, psi
 - 0.052 = Conversion Factor, dim
 - FW = Fluid Weight, lbs/gal
 - SIP = Surface Injection Pressure, psi
 - ΔP_p = Pipe Friction, psi

NOMENCLATURE

BPM	Barrels per Minute
BWPD	Barrels Water per Day
CIBP	Cast Iron Bridge Plug
FG	Fracture Gradient, psi/ft
Ft	Feet
MASIP	Maximum Allowable Surface Injection Pressure, psi
Psi	pounds per square inch
P&A	Plug and Abandonment
SWD	Salt Water Disposal
TD	Total Depth, ft

GENERAL

All data used in this study were obtained through verbal communication or written documents received from JMC, Denham Energy, and the non-confidential files of Syfan Engineering, LLC. <u>A current field inspection of the properties was not made in connection with the preparation of this report</u>. In addition, the potential environmental liabilities attendant to ownership and/or operation of the leases operated by Jay Management Company LLC has not been addressed in this report.

In evaluating the information at our disposal related to this report, we have excluded from our consideration all matters which require a legal or accounting interpretation or any interpretation other than those of an engineering or geologic nature. In assessing the conclusions expressed in this report pertaining to all aspects of petroleum engineering evaluations, especially pertaining to injection into the San Andres reservoir, there are uncertainties inherent in the interpretation of engineering data, and such conclusions represent only professional judgments.

Data and worksheets used in the preparation of this evaluation will be maintained in our files in Fort Worth, TX and will be available for inspection by anyone having proper authorization by IJMC.

This report was prepared solely for the use of the party to whom it is addressed and any disclosure by said party of this report and/or the contents thereof shall be solely the responsibility of said party and shall in no way constitute any representation of any kind whatsoever of the undersigned with respect to matters being addressed.

ENGINEERING DISCLAIMER

Interpretations, research, analysis, recommendations, advise or interpretational data ("Interpretations and Recommendations") furnished by Syfan Engineering, LLC ("Contractor") hereunder are opinions based upon inferences, from measurements, empirical relationships and assumptions, and industry practice, which inferences, assumptions and practices are not infallible, and with respect to which professional geologists, engineers, drilling consultants, and analysts may differ. Accordingly, Contractor does not warrant the accuracy, correctness, or completeness of any such Interpretations and Recommendations, or that Jay Management Company's ("Company") reliance and/or any third party's reliance on such Interpretations and Recommendations will accomplish any particular results. Company assumes full responsibility for the use of such Interpretations and Recommendations and for all decisions based thereon (including without limitation decisions based on any oil and gas evaluation, injection study, production forecasts, reservoir simulation studies, and reserve estimates, furnished by Contractor to Company hereunder), and hereby releases and indemnifies Contractor from any claims, damages, and losses arising out of the use of such Interpretations and Recommendations.

Without limiting the generality of the foregoing, Company acknowledges that the engineering analyses, injection analyses, production analyses, production forecasts, and/or reserve estimates furnished by Contractor are based strictly on technical judgments. The accuracy of any engineering analyses, injection analyses, production analyses, production forecasts, and/or reserve estimates are a function of the quality of data available and of engineering and geological interpretations. All engineering analyses, injection analyses, production analyses, production forecasts and reserve estimates furnished by Contractor are believed reasonable based on the data available to Contractor at the time of their generation. Company acknowledges that Contractor cannot and does not guarantee the accuracy of any such interpretations, forecasts, and/or estimates, and hereby releases and indemnifies Contractor from any claims, damages, and losses arising out of the use of any such analyses, interpretations, forecasts, and/or estimates. Company accepts and assumes the risks from the use of all such analyses, interpretations, forecasts, and/or estimates with the understanding that additional data received by Contractor and/or future reservoir performance subsequent to the date of any such interpretations, forecasts, and/or estimates may justify their revision, either up or down.

Syfan Engineering, LLC sincerely appreciates the opportunity to serve you and Jay Management Company. We look forward to the opportunity to work with you again in future. If you have any questions regarding the information contained in this report, please contact me at the address or phone numbers listed on this letterhead.

Best Regards,

Frank E. Syfan, K., PE Registered Professional Engineer – TX 65255

SUBJECT to App District Office -40 s - 3 cop Fee La

Operator

125630

.

DISTRICT I P.O. Box 1980, Hobbs, NM \$2240

DISTRICT H P.O. Drawer DD, Artesia, NM \$8210

DISTRICT III 1000 Rio Brazos Rd., Aziec, NM 87410

State of New Mexico rgy, Minerals and Natural Resources Depar

1

2

Weil No.

OIL CONSERVATION DIVISION

P.O. Box 2088

Santa Fe, New Mexico 87504-2088

WELL LOCATION AND ACREAGE DEDICATION PLAT All Distances must be from the outer boundaries of the section

OG State

-

Use Later Section 9 Toronality 11 South Hange 33 East NMCM Comp Leta Annum Forcing Location of Weit East 1980 ford from the South East 1980 South East 300 for the form the South East 300 for the South 200 for the Sou	LBO of	New Mexi	co Inc.		l Og	State			2	2
Annal Focking Longing Formation Image and 1980 food from the South Image Image South Image South Image South Image South Image South Image Imag				South		East	NACPM	County	Lea	
Group feet from the The and Pool Poo	Actual Footage Locati	on of Well:		<u>, , , , , , , , , , , , , , , , , , , </u>	.I	-				
3291.8 MISSISSIPIAN NORTH DACET FIEND OPENN 4D Acrea 1. Outline to acreage dedicated to the well outline each and identify the ownerhip farrow (loch as to working interest and mynhy). 1.1 If more the non-lase of different ownership is dedicated to the well, have the interest of all owners bere consolidated by communitation, and the interest is to be in the ownership farrow (loch as to working interest and mynhy). 1.1 If more the non-lase of different ownership farrow (loch as to working interest and mynhy). 1.1 1.1 If more the non-lase of different ownership farrow (loch as to be interest for the interest of all ownership farrow (loch as to working interest and mynhy). 1.1 If more the non-lase of different ownership farrow (loch as to be interest in	660	feet from the	West	line and	1980		feet from	te Sout	line	
Continue the scenage dedicated to the adapted will by cohord peech or backum marks on the plat below. If more than one lease is dedicated to fix well, outline each and identify the ormership formed (both as to working internet and royalty). If more than one lease is dedicated to fix well, but the internet of all owners bere consolidated by communitation, unitinitian, formed pooling, or otherwise) The advert is "both if normers have been consolidated (by communitation, unitinition, formed pooling, or otherwise) or unit is non-standard devices and the detection of the detect	Ground level Elev.	Prod	•		Pool Z	Vildca	F			ige:
2. If more than one is an is dedicated to the well, have the interest of all owners been consolidated by communitation, increase of different ownership is dedicated to the well, have the interest of all owners been consolidated by communitation, multiplication, force-pooling, etc. Yes Di No If marver is "yes" type of consolidation different ownership been consolidated. (Use swears aid of this form if accessary. No allowable will be safeded to the well will all interests have been consolidated (by communitation, unitation, forced-pooling, or otherwise) or unit is non-extended und, diministing and interest, has been approved by the Division. OPERATOR CERTIFICATION I have been up to the well will all interest, have been approved by the Division. OPERATOR CERTIFICATION I have been up to accessing and interest, have been approved by the Division. OPERATOR CERTIFICATION I have been up to accessing and interest, have been approved by the Division. OPERATOR CERTIFICATION I have been up to accessing and interest, have been approved by the Division. OPERATOR CERTIFICATION I have by certify that the information of the division of the division in the use of complete to the been of provided and the diverse in the part of the division of the divisio						and the second sec		HN-	40	Acres
3. If more then can just of different overship is dedicated to the well, have the interest of all owners bees consolidated by communitation, increasing the second sec	1. Outline t	be acreage dedic	cated to the subject v	rell by colored per	cil or hachure	marks on the plat be	acw.			
unitization, force-pooling, dz.?						-				
Yes DNo If anywer is "yel" type of consolidation H' games is "bo' list to coment and that descriptions which have schully been consolidated. (Use revenue list of this form if accesses) No. No allowable will be stargined to the well will all interest, has been approved by the Division. OPERATOR CERTIFICATION Image: starting the starting and interest, has been approved by the Division. OPERATOR CERTIFICATION Image: starting the starting and interest, has been approved by the Division. OPERATOR CERTIFICATION Image: starting the starting and interest, has been approved by the Division. OPERATOR CERTIFICATION Image: starting the starting and interest, has been approved by the Division. OPERATOR CERTIFICATION Image: starting the starting and interest, has been approved by the Division. OPERATOR CERTIFICATION Image: starting the starting and interest, has been approved by the Division. OPERATOR CERTIFICATION Image: starting the starting and interest, has been approved by the Division. OPERATOR CERTIFICATION Image: starting the starting and the starting approved by the Division. OPERATOR CERTIFICATION Image: starting the starting approved by the Division. Private approved by the Division. Image: starting the starting t				is dedicated to the	: well, have the	interest of all owne	zz becz consoli	dated by comm	minitization,	
H rentro is too list to over and tred descriptions which have schully been consolidated. (Use sverse side of this form in accessary) we allowable will be sarigated to the well will all interest, has been approved by the Division. OPERATOR CERTIFICATION I haveby carify that the information is true and complete to the bar of any table to the list of the same and the second barry. September 9, 1991 SURVEYOR CERTIFICATION I haveby carify that the well location shows an the pie was plated from field near of my bandrage and the sec of any bandrage and barry made to the bar of any bandrage. Constitution of the sec of any bandrage and the sec of any bandrage and barry and the sec of any bandrage and barry. Constitution of the sec of any bandrage and barry and the sec of any bandrage and barry. Constitution of the sec of any bandrage and barry and the sec of any bandrage and barry. Constitution of the sec of any bandrage and barry. Constitution of the sec of any bandrage and barry and the sec of any bandrage and barry. Constitution of the sec of any bandrage and barry. Constitution of the sec of any bandrage and barry. Constitution of the sec of any bandrage and barry. Constitution of the sec of any bandrage and barry. Constitution of the sec of any bandrage and barry. Constitution of the sec of any bandrage and barry. Constitution of the sec of any bandrage and barry. Constitution of the sec of any bandrage and barry. Constitution of the sec of any bandrage and barry. Constitution of the second		• •		mewer is "yes" ty	e of consolidat	ios				
No allowable will be seigned to the well unit all intervets have been consolidated (by communitation, forced-pooling, or otherwise) or unit a non-student unit, eliminating such intervet, has been approved by the Division.							everse side of			
or until a soc-standard unit, eliminating such internet, bas been approved by the Division. OPERATOR CERTIFICATION I horeby certify that the information or discrete the base of any internet built. Signature Pristed Name Raymond Diaz Position President Company LBO New Mexico Data September 9, 1991 SURVEYOR CERTIFICATION I horeby certify that the well location shown on this pies we plated from field name of the some is run and or discrete to the store of the some is run and or discrete to the store of the some is run and builty. Company Compa	this form if	Beccessary.				/ A		(
OPERATOR CERTIFICATION / Averby certify that the information contained herits is true and complete to the here of writewide and bill. Signature Printed Name Raymond Diaz Printed Name Raymond Diaz Printed Name Raymond Diaz President Company LBO New Mexico Dea September 9, 1991 SURVEYOR CERTIFICATION / Arety certify that the well location show of a this pies on plates for field aster of a this pies on plates for field aster of a this pies on the the sent is the ord and any blast the well location show of a this pies on the the sent is the ord and any blast the set of my basidage and billy Suprem & Sel of Preferences Surveyed August 14, 1991 Signator & Sel of Preferences Surveyer August 14, 1991 Surveyer August 14, 1991 Surveyer August 14, 1991 Surveyer August 14, 1991 Surveyer August 14, 1991 Surveyeer August 14, 1991 Surveyeer August							08, 181122000,	lorced-poound	, or otherwise)	
A bareby certify that the information contained burins in true and complete to the bar of or training and buring and buring Printed Name Raymond Diaz Printed Name Raymond Diaz President Company LBO New Mexico Data September 9, 1991 Surveyor CERTIFICATION I Aretby certify that the well location shows in this pies are placet from field acter of actual surveyor actual surveyor August 14, 1991 Spearn & Seid of President State of Surveyor August 14, 1991 Spearn & Seid of President State of Surveyor August 14, 1991 State of any barowields and builty I feedball actual surveyor Result of the surveyor S										
Company Control of any Standard and Edition Segments Privated Name Raymond Diaz President Company LBO New Mexico Des September 9, 1991 SURVEYOR CERTIFICATION I hereby certify that the well location show a this pies was platted from faid notes of and nerrys made by me or wells my negative, and that he men is true and correct to the base of my burdely and burdent of my burdely and Des Survyed August 14, 1991 Signature & Sali Of Professional Survyer (ESSIG) Signature & Sali Of (ESSIG) Signature & Sali Of (ESSIG) (ESSIG)		1				1				
ben of wy Wighted and blid Segment Pristed Name Raymond Diaz Posicion President Company LBO New Mexico Data September 9, 1991 SURVEYOR CERTIFICATION I hority certify that the well location shown on this piece we pictule from field accer of actual surveys made by me or sude my maperison, ond that the same is true and correct to the base of my backledge and blidg. Data Surveyd August 14, 1991 Signature A Said of Professional Surveys Signature A Said of Professionel Surveys Signature A Said of		i				i		•	••	
Supanare Name Raymond Diaz Protice President Company LBO New Mexico Data September 9, 1991 SURVEYOR CERTIFICATION I kersby cartify that the well location shown an this plat was platud from field notes of etcal anneys made by me or under my paperition, and that the same is true and correct to the bast of my backedge and heit. Company		i				1				mpiere lo im
Pristed Name Raymond Diaz President Company LBO New Mexico Data September 9, 1991 SURVEYOR CERTIFICATION I hereby certify that the well location shown on this plate and point fail notes of actual sorrys made by me or water my maperison, and that the some is true and correct to the bast of any haundely and bailog. Data Surveyred August 14, 1991 Surveyred August 14, 1991 Surveyreyre August 14, 1991 Surveyreyreyreyreyreyreyreyreyreyreyreyreyre				1		i		2		
Raymond Diaz President Company LBO New Mexico Data September 9, 1991 SURVEYOR CERTIFICATION I Arrity carrify that the well location shown on this plat we plated from field notes of actual newsys made by me or under my magerision, and that the sent is one of the sent of my knowledge and build. Data Surveyed August 14,1991 Signature & Scal of Professional Surveyer Control is transported New Surveyer Control is transported Signature & Scal of Professional Surveyer Signature & Scal o						ł	S	manure		5
Raymond Diaz President Company LBO New Mexico Data September 9, 1991 SURVEYOR CERTIFICATION I Arrity carrify that the well location shown on this plat we plated from field notes of actual newsys made by me or under my magerision, and that the sent is one of the sent of my knowledge and build. Data Surveyed August 14,1991 Signature & Scal of Professional Surveyer Control is transported New Surveyer Control is transported Signature & Scal of Professional Surveyer Signature & Scal o						1 1				
Position President Company LBO New Mexico Data September 9, 1991 SURVEYOR CERTIFICATION I hereby carify that the well location show on this pies we plated from field notes of echal surveys much by me or under my magerises, and that the same is one and correct to the best of my knowledge and baily Data Surveys 0 0 0 0 0 0 0 0 0 0 0 0 0		1				1	Pr	inted Name		
President Company LBO New Mexico Data September 9, 1991 SURVEYOR CERTIFICATION I hereby carity that the well location shown on this pier was platted from full norms on sched source and that the same is true and correct to the best of my basedate and build. 660 0							F	laymond	Diaz	
Company LBO New Mexico Data September 9, 1991 SURVEYOR CERTIFICATION 1 Arrity certify that the well location shown on this pies was plotted from field notes of actual surveys made by me or under my supervised, and the base of my buowledge and belig. Data Surveyed August 14, 1991 Signature & Soil of Professional Surveys Company Signature & Soil of Professional Surveys Company Signature & Soil of Professional Surveys Signature & Soil of Professional Surveys Signature & Soil of Signature		1					Po	etice		
BO New Mexico Dea September 9, 1991 SURVEYOR CERTIFICATION I hereby cartify that the well location shown on this plas was platted from field notes of actual surveys made by me or under my mapernism, and the same is true and correct to the best of my bunnledge and baily. 660' Dea Surveyed August 14,1991 Signature & Scal of Professional Surveys 0 Dea Surveys 0 Official state of the same is true and correct to the best of my bunnledge and baily. 0 Dea Surveys 0 Official state of the same is true and correct to the best of my bunnledge and baily. 0 Dea Surveys 0 Official state of the same is true and correct to the best of my bunnledge and baily. 0 Official state of the same is true and correct to the same is true and correct to the same is true and correct to the same of the same is true and correct to the same of th		!					F	reside	nt	
660'-0 660'-0 660'-0 660'-0 660'-0 660'-0 660'-0 660'-0 660'-0 660'-0 660'-0 660'-0 660'-0 660'-0 70		!						mpany		
September 9, 1991 SURVEYOR CERTIFICATION I hereby carify that the well location shown on this plea was placed from field notes of correct to the best of my knowledge and helig. Data Surveyed August 14,1991 Signature & Said O Tradesical Surveyed August 14,1991 Signature & Said O Signature & Said O Sign						!	L	BO New	<u>Mexico</u>	
SURVEYOR CERTIFICATION I hereby certify that the well location shown on this plat was plated from field notes of actual surveys made by me or under my mappendiction, and that the same is true and correct to the best of my knowledge and halig. Date Surveyed August 14, 1991 Signature & Scal of Professional Surveyer (1) (1) (1) (1) (1) (1) (1) (1)		ļ				1	()			
660'-0 660'-0 1 hereby certify that the well location shown on this piet was plotted from field notes of ende by mapervison, and that the same is true and correct to the best of my baowledge and helief. Date Surveyed August 14,1991 Signature & Seal of Professional Surveyor 0 0 0 0 0 0 0 0 0 0 0 0 0				1				eptemb	er 9, 19	91
I hereby certify that the well location shown on this plat was plotted from field notes of achael surveys made by me or under my supervison, on the bast of my buowledge and build. Due Surveyed August 14, 1991 Signame & Seid of Professional Surveyor ON ON ON ON ON ON ON ON ON ON ON ON ON		1						SURVEY	OR CERTIFIC	CATION
660'-0 660'-0	Killelil	771								
660'-0 660'-0 1 660'-0 1 1 1 1 1 1 1 1 1 1 1 1 1	E.	4		1						
660'-0 apprison, and that the same is true and correct to the best of my knowledge and helig. Date Surveyed August 14, 1991 Signature & Scal of Professional Surveyor Control Surveyor		2		1			1 6	•	• •	• •
Correct to the best of my buowledge and balig. Date Surveyed August 14,1991 Signature & Seal of Professional Surveyor OFESSIC Contractional Surveyor Contractional Surveyor Contraction	660'-0	A				1	1 1	•	•	-
Duis Surveyed August 14,1991 Signature & Seal of Professional Surveyor OTESSIC Surveyor Contressional Surveyor Contressional Surveyor Contression Contression Contression Contression C		1				1	6	rrect to the	best of my b	rowledge and
August 14,1991 Signature & Scal of Professional Surveyor OC OC OC OC OC OC OC OC OC OC	Y I	ત્ર		1				lief.		
August 14,1991 Signature & Scal of Professional Surveyor OC OC OC OC OC OC OC OC OC OC		1						the Surveyed		
Signature & Seal of Professional Surveyor CTESSIC SUF SUF Contresting of the State Romal to 2 Excount 32239	Jul CAL	44-		+					14,1991	
ROMALD & ERDON		i					3	gnature & Sea	lof	
ROMALD & ERDON	90	i.					P	ofessional Sur	veyor	
RONALD & ENSON 7 3239	6	i						and the second se	FESSIC	5
RONALD & ENSON 7 3239		i						193	SSEL	11
RONALD & ENSON 7 3239									1.1 / 4X	<i>(21)</i>
RONALD & ENSON 7 3239								XIM/	1.1113	
							V	all de Ny	JOHN W. HES	CONT: I
330 668 910 1300 1650 1900 2310 2640 2000 1500 1000 500 0	LI							SEL RO	MALD & ENSO	3239
	330 442 44	1326 145	0 1960 2310	549 200	0 1500	1000 500		15/1	In sector	

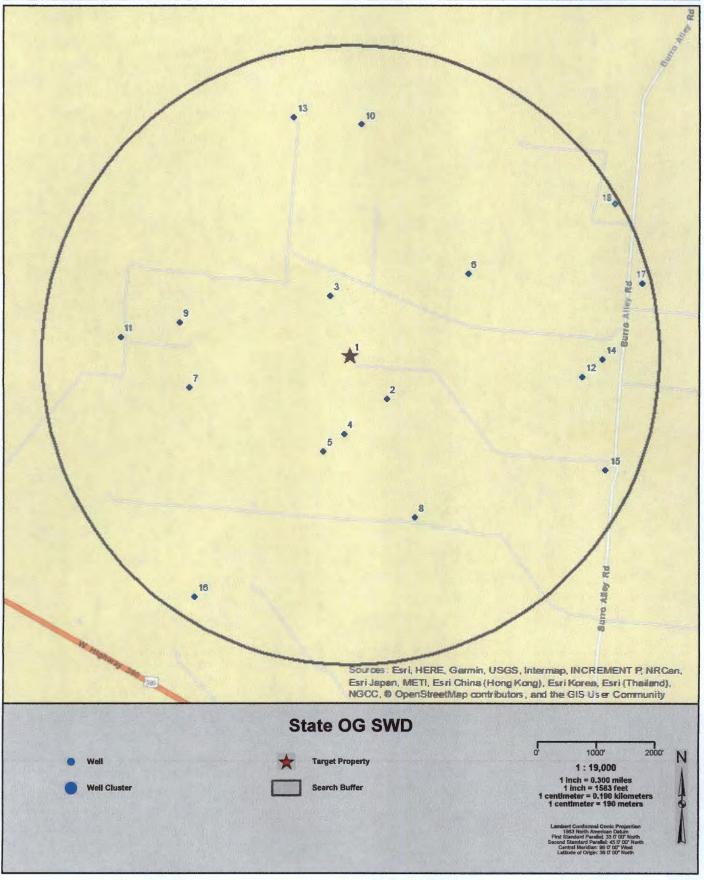
Prepared for:

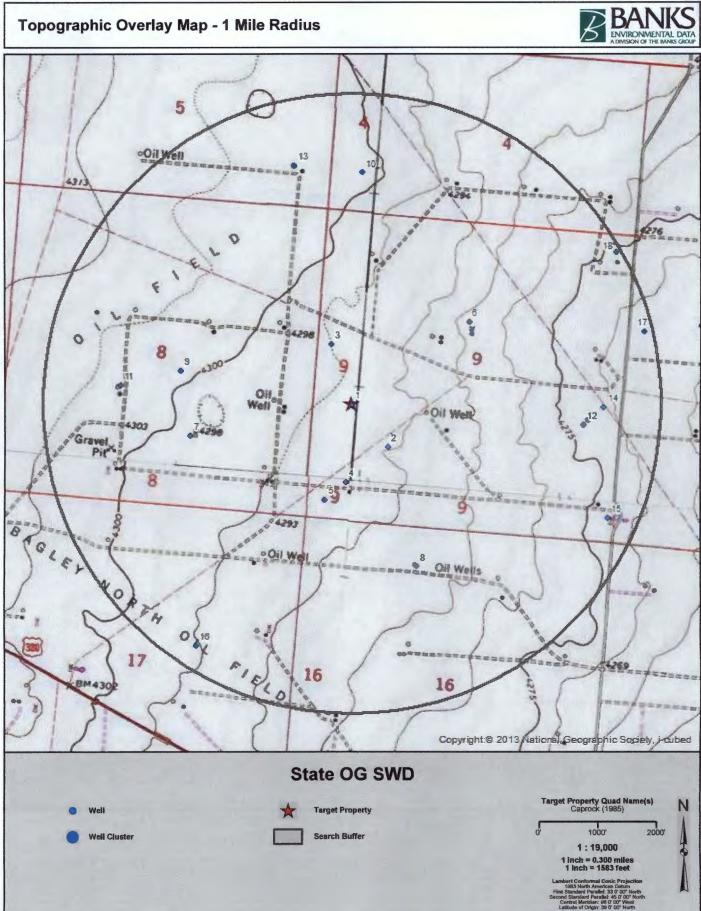
TIMBERWOLF ENVIRONMENTAL 1920 West Villa maria Road, STE 305-2 Bryan, TX 77507

Water WellState OG SWDReportNMPO #: 180006ES-127479Wednesday, March 07, 2018

Table of Contents	BANKS ENVIRONMENTAL DATA ADIVISION OF THE BANKS CROUP
Geographic Summary	3
Maps	
Summary Map - 1 Mile Radius	4
Topographic Overlay Map - 1 Mile Radius	5
Current Imagery Overlay Map - 1 Mile Radius	6
Water Well Details	7
Database Definitions and Sources	9
Disclaimer	10

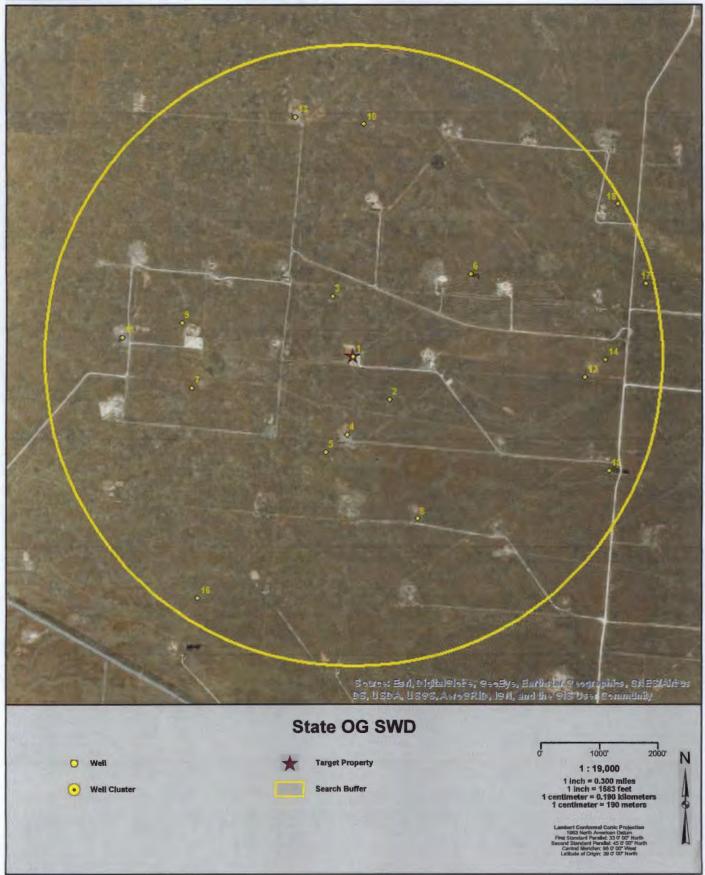
Geographic Summary


Location


NM

Coordinates	
Longitude & Latitude in Degrees	Minutes Seconds -103° 37' 33", 33° 22' 43"
Longitude & Latitude in Decimal I	-103.625849°, 33.378607°
X and Y in UTM	627821.32, 3694104.05 (Zone 13)
Elevation	
Target Property lies 4295.27 feet ab	pove sea level.
Zip Codes Searched	
Search Distance	Zip Codes (historical zip codes included)
Target Property	88213, 88114, 88116, 88201, 88230, 88232, 88260, 88267
1 mile	88213, 88114, 88116, 88201, 88230, 88232, 88260, 88267
Topos Searched	
Search Distance	Topo Name
Target Property	Caprock (1985)
1 mile	Caprock (1985), Soldier Hill (1985), Lane Salt Lake (1985), Dallas Store (1985)

Summary Map - 1 Mile Radius



Banks Environmental Data, Inc. - 1601 Rio Grande, Ste. 331 - Austin, TX 78701 - 800.531.5255 P - 512.478.1433 F www.banksenvdata.com Page 5

Current Imagery Overlay Map - 1 Mile Radius

Water Well Details

Map ID	Source ID	Dataset	Owner of Well	Type of Well	Depth Drilled	Completion Date	Longitude	Latitude	Elevation	Driller's Logs
1	L-10225	NM WW	NORTON DRILLING	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	115	10/14/1991	-103.62582	33.37857	4295 ft ()	N/A
				72-12-1 PROSPECTI						
2	L-06139	NM WW	FORSTER DRILLING COMPANY	NG OR DEVELOPM ENT OF NATURAL RESOURCE	80	5/5/1967	-103.623624	33.376733	4292 ft (-4)	N/A
3	L-14417- POD1	NM WW	PEARCE TRUST	Other	0	N/A	-103.627259	33.381305	4297 ft (+2)	N/A
				72-12-1 PROSPECTI						
4	L-06235		CACTUS DRILLING CORP	NG OR DEVELOPM ENT OF NATURAL	90	11/6/1967	-103.625813	33.374 94 5	4294 ft (-2)	N/A
5	L-06242	NM WW	SHARP DRILLING COMPANY	RESOURCE 72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	100	11/13/1967	-103.626913	33.374046	4294 ft (-2)	N/A
6	USGS- 332252103 370401	WW USGS	USGS	Not Reported	0	N/A	-103.619676	33.382885	4286 ft (-10)	N/A
7	USGS- 332217103 375701	WW USGS	USGS	Not Reported	130	N/A	-103.634677	33.376496	4299 ft (+4)	N/A
8	L-06098	NM WW	TRI-SERVICE DRILLING COMPANY	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	100	1/25/1967	-103.621474	33.371307	4289 ft (-7)	N/A
9	L-10567	NM WW	YATES PETROLEUM	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	130	6/3/1996	-103.635535	33.379471	4303 ft (+7)	N/A
10	L-14416- POD1	NM WW	PEARCE TRUST	Other	0	N/A	-103.626328	33.389386	4302 ft (+7)	N/A
11	L-06249	NM WW	M G F DRILLING COMPANY	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	105	12/24/1967	-103.638785	33.37856	4305 ft (+10)	N/A
				72-12-1 PROSPECTI						
12	L-05393	NM WW	LYMAN GRAHAM	NG OR DEVELOPM ENT OF NATURAL RESOURCE	105	5/20/1964	-103.612835	33.378543	4275 ft (-20)	N/A
13	L-12920- POD1	NM WW	MCVAY DRILLING COMPANY	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	75	5/18/1967	-103.6301 64	33.389459	4304 ft (+9)	N/A
14	L-06860	NM WW	L A RANCH	72-12-1 LIVESTOCK WATERING	85	10/2/1971	-103.611757	33.379424	4273 ft (-23)	N/A
15	USGS- 332220103 363401	WW USGS	USGS	Not Reported	100	N/A	-103.611065	33.374274	4275 ft (-20)	N/A

Water Well Details

\mathcal{D}	BANKS
\triangleright	ENVIRONMENTAL DATA A DIVISION OF THE BANKS GROUP

Map ID	Source ID	Dataset	Owner of Well	Type of Well	Depth Drilled	Completion Date	Longitude	Latitude	Elevation	Driller's Logs
				72-12-1 PROSPECTI NG OR						
16	L-11791	NM WW	PATTERSON DRILLING	DEVELOPM ENT OF	0	N/A	-103.63339	33.366758	4297 ft (+2)	N/A
				NATURAL						
17	L-14415- POD1	NM WW	PEARCE TRUST	Other	0	N/A	-103.609887	33.383097	4270 ft (-25)	N/A
18	L-05493	NM WW	TRI SERVICE DRILLING	72-12-1 PROSPECTI NG OR	160	40/45/4054	409 04477	22 22000 4	4076 A (40)	N//A
10	L-00 493		CO.	DEVELOPM ENT OF NATURAL RESOURCE	100	10/15/1964	-103.61177	33.386684	4276 ft (-19)	N/A

Well Summary

Water Well Dataset	# of Wells
NM WW	15
WW USGS	3
Total Count	18

Dataset Descriptions and Sources

Dataset	Source	Dataset Description	Update Schedule	Data Requested	Data Obtained	Data Updated	Source Updated
NM WW - New Mexico Water Wells	New Mexico Office of the State Engineer	This WATERS dataset contains all groundwater records and water rights applications compiled by New Mexico Office of the State Engineer (OSE). OSE is in the process of digitizing all records, all wells have not yet been plotted.	Quarterly	03/01/2018	03/01/2018	03/01/2018	02/15/2018
NM WW HIST - New Mexico Historical Water Wells	New Mexico Office of the State Engineer	This dataset contains all groundwater records found at the New Mexico Office of the State Engineer Water Rights Division district office. Groundwater rights are administered and filed at the district level: Albuquerque (District I), Roswell (District II),		N/A	N/A	N/A	N/A
WW USGS - USGS Water Wells	U.S. Geological Survey	This dataset contains groundwater well records from the U.S. Geological Survey.	Semi- annually	11/16/2017	11/16/2017	11/19/2017	11/16/2017

Disclaimer

BANKS ENVIRONMENTAL DATA A DIVISION OF THE BANKS CROUP

The Banks Environmental Data Water Well Report was prepared from existing state water well databases and/or additional file data/records research conducted at the state agency and the U.S. Geological Survey. Banks Environmental Data has performed a thorough and diligent search of all groundwater well information provided and recorded. All mapped locations are based on information obtained from the source. Although Banks performs quality assurance and quality control on all research projects, we recognize that any inaccuracies of the records and mapped well locations could possibly be traced to the appropriate regulatory authority or the actual driller. It may be possible that some water well schedules and logs have never been submitted to the regulatory authority by the water driller and, thus, may explain the possible unaccountability of privately drilled wells. It is uncertain if the above listing provides 100% of the existing wells within the area of review. Therefore, Banks Environmental Data cannot fully guarantee the accuracy of the data or well location(s) of those maps and records maintained by the regulatory authorities.

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

APPLICATION FOR AUTHORIZATION TO INJECT

Ι.	PURPOSE:	Secondary Recovery		_Pressure	Maintenance	X	Disposal	Storage
	Application qu	ualifies for administrative approval?	X	Yes	N	0		

II. OPERATOR: Jay Management Company, LLC

ADDRESS: 1001 West Loop, Suite 750, Houston, Texas 77027

CONTACT PARTY: Jim Foster PHONE: (979) 324-2139

III. WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.

- IV. Is this an expansion of an existing project? X Yes No If yes, give the Division order number authorizing the project: SWD-548
- V. Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
- VI. Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.
- VII. Attach data on the proposed operation, including:
 - 1. Proposed average and maximum daily rate and volume of fluids to be injected;
 - 2. Whether the system is open or closed;
 - 3. Proposed average and maximum injection pressure;
 - 4. Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and,
 - 5. If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
- *VIII. Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.
- IX. Describe the proposed stimulation program, if any.

*X. Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).

- *XI. Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
- XII. Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.
- XIII. Applicants must complete the "Proof of Notice" section on the reverse side of this form.
- XIV. Certification: 1 hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.

NAME:	Jim Foster	ITTLE: Consultant
SIGNATURE		Fort.

DATE: February 7, 2018

E-MAIL ADDRESS: im@teamtimberwolf.com

* If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal: <u>July 19, 1993</u>

DISTRIBUTION: Original and one copy to Santa Fe with one copy to the appropriate District Office

Side 2

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.

(4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.

XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (I) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,

(4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

INJECTION WELL DATA SHEET

OPERATOR: Jay Mana	agement Company, LLC				
WELL NAME & NUM	IBER: State OG SWD #2				
WELL LOCATION:	660'FWL 1980' FSL	L	9	115	3 <u>3</u> E
_	FOOTAGE LOCATION	UNIT LETTER	SECTION	TOWNSHIP	RANGE
	LBORE SCHEMATIC e proposed wellbore is attached in the Scher	natics section) Surface Casing	<u>WELL CO</u>	NSTRUCTION DATA	L
		Hole Size: <u>17 1/4"</u>		Casing Size: <u>13 3/8</u>	<u>,,,</u>
		Cemented with: 350 sx.		or	ft ³
		Top of Cement: Surface		Method Determined	d: Circulated
			Intermedia	ate Casing	
		Hole Size: <u>11''</u>		Casing Size: 8 5/8'	, _
		Cemented with: <u>1150</u> sx.		or	ft ³
		Top of Cement: Surface		Method Determine	d: Circulated
			Productio	n Casing	
		Hole Size: <u>7 7/8''</u>		Casing Size: <u>5 1/2'</u>	,
		Cemented with: 2025 sx.		or	ft ³
		Top of Cement: Surface		Method Determined	d: Circulated
		Total Depth: <u>10944 ft</u>			
		,	<u>Injection</u>	Interval	
			<u>4590</u> fee	et to <u>4829</u>	
			(Perfo	rated)	

Side 1

INJECTION WELL DATA SHEET

Tubing Size: 2 7/8''_____Lining Material: Plastic Lined

Type of Packer: Model R packer

Packer Setting Depth: 4490'

Other Type of Tubing/Casing Seal (if applicable):

Additional Data

1. Is this a new well drilled for injection? _____Yes ____No

If no, for what purpose was the well originally drilled? Oil Production

- 2. Name of the Injection Formation: <u>San Andres</u>
- 3. Name of Field or Pool (if applicable): North Bagley Oil Field
- 4. Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used.

 Previous:

 PF 10804-BIO set CIBP A 10615' with two SX cement on top

 Well has been perforated in the following zones:

 9154-64', 9231-36', 9388-98', 9522-26, 9926-32'

 9522-26 was squeezed 5-27-92 with 100 sx class H cement @ 4250#

 9926-32 was squeezed 5-27-92 with 150 sx class H cement @ 4500#

 Proposed:

 Plugback to 4930'

 Perforation zones: 4825 – 4829, 4814 – 4820, 4735-4750, 4780 – 4786, 4638.5 – 4655, 4590 - 4595

 Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area: <u>Permian Wolfcamp Carbonate: 8700', Penn: Cisco 8741', Canyon 8741', Strawn 9904', Atoka</u> <u>10845</u>

- V. Please see Figure 1 and Table A-2 for all wells and leases located within a two-mile radius and the area of review.
- VI. Please see table A-1 for a tabulation of data on all wells of public record in the area.
- VII. Proposed Operation

1.	Proposed average and maximum daily rate and volume of fluids to be injected;	5,000 Daily average 6,000 Maximum
2.	Whether the system is open or closed;	Closed
3.	Proposed average and maximum injection pressure;	Avg: 1500 PSI Max: 1700 PSI
4.	Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and,	Re-inject produced water
5.	If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).	Chemical analysis of the San Andres Formation is attached as Table B-1.

VIII. Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.

The proposed injection zone is in the San Andres formation. Lithologically it is a limestone of shelf origin.

DEPTH	Lithology	Porosity	Thickness
4825 - 4829	Limestone	6 - 10 %	4
4814 - 4820	Limestone	6 - 8%	6
4735-4750	Limestone	12-20%	15
4780 - 4786	Limestone	8 - 10%	6
4638.5 - 4652	Limestone	6 - 9%	13.5
4590 - 4595	Limestone	10%	5
Total			49.5'

The fresh water aquifer at this site is the Ogallala found from near surface depth of 380'.

IX. Describe the proposed stimulation program, if any.

None at this time.

X. Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).

Logs have been filed with OCD.

XI. Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.

There are sixteen water wells located within a one-mile radius of the disposal well. A chemical analysis will be sent when results are available.

XII. Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.

See attached engineering report.

Tables

Table A-1. Oil and Gas Wells within a 2 Mile Radius of State OG SWD #002 Appplication for Authorization to Inject Jay Management, Lea County, New Mexico

Map ID	0	1	ADINI	C-und Data		Depth	NAD83 C	oordinates	Baal Name	1
Number	Operator	Well Name	API Number	Spud Date	Status	(ft)	Latitude	Longitude	Pool Name	
1	SWD LLC	State AK SWD #001	30-025-21800	07/02/66	Active SWD	9,255	33.374935	-103.6041754	North Bagley Permo Penn	Sad
2	Charles B Gillespie JR	State B #001	30-025-21248	03/10/65	Plugged	3,770	33.388502	-103.6008112	N/A	in j
3	Chesapeake	OG State #001	30-025-30566	03/06/89	Plugged	6,804	33.378805	-103.6214451	N/A	Pencon
4	Chesapeake	Candy Com #001	30-025-22350	11/27/67	Plugged	10,440	33.389509	-103.6389439	N/A	Penan -st
5	Chesapeake	Largo 36 State #001	30-025-35615	08/17/01	Plugged	11,333	33.401162	-103.6235185	N/A] - '
6	COG Operating LLC	Bagley 16 State #001	30-025-36903	06/25/05	Plugged	11,050	33.371346	-103.6253917	N/A	
7	Dwight A Tipton	Shea Climenko #001	30-025-22281	10/12/67	Plugged	10,370	33.374887	-103.6388251	N/A	
8	Elk Oil Co	RR State #001	30-025-29004	02/26/96	Plugged	10,450	33.378270	-103.6477273	N/A	
9	Endeavor Energy Resources LP	Graham State #001	30-025-21842	08/30/66	Active	10,260	33.389109	-103.6002479	North Bagley Lower Penn	
10	EOG Y Resources Inc	Champlin AQD State #001	30-025-23043	03/05/69	Plugged	11,300	33.382364	-103.6384686	N/A]
11	EOG Y Resources Inc	Quetsal AQA State #001	30-025-33460	06/01/96	Active	11,050	33.378856	-103.6349272	North Bagley Permo Penn]
12	EOG Y Resources Inc	Raitt Bid State #001	30-025-37982	07/31/06	Active	11,212	33.398265	-103.6366385	Cuerno Largo Upper Penn	
13	Fasken Oil and Ranch LTD	Felmont Collier #001	30-025-21245	06/15/65	Plugged	10,325	33.382149	-103.6124432	N/A]
14	Jay Management	SIME OG SWD 1002	30-025-31381	10/15/91	Active SWD	9,000	33.378607	-103.8256485	North Bagley Permo Penn	
15	Jay Management	Enfield #001	30-025-21932	11/29/66	Active	10,280	33.364110	-103.6128181	North Bagley Permo Penn]
16	Jay Management	Bell A #001	30-025-21783	05/24/66	Active	10,801	33.356548	-103.6215968	North Bagley Permo Penn	
17	Jay Management	State NBN #001	30-025-00998	02/16/59	ТА	11,607	33.360568	-103.6212462	N/A]
18	Jay Management	Andover Federal #001	30-025-21904	10/29/66	Active	10,250	33.360815	-103.6300819	North Bagley Permo Penn	
19	Jay Management	Christensen State #001	30-025-22017	01/31/67	Active	10,360	33.364140	-103.6258334	North Bagley Permo Penn]
20	Jay Management	Dolly #001	30-025-22370	12/21/67	Active	10,300	33.364041	-103.6345384	North Bagley Permo Penn]
21	Jay Management	Shell State Com #001	30-025-22226	08/24/67	Active	10,300	33.367713	-103.6301711	North Bagley Permo Penn]
22	Jay Management	Chaney Federal #001	30-025-22554	05/14/68	Active	10,300	33,364126	-103.642509	North Bagley Permo Penn]
23	Jay Management	Bess #002	30-025-28545	01/29/84	Active	10,825	33.356750	-103.6301808	North Bagley Permo Penn	1
24	Jay Management	Sohio State #001	30-025-22043	03/01/67	ТА	10,450	33.389509	-103.6128586	N/A	1
25	Jay Management	Sohio A State #001	30-025-22206	07/31/67	Active	10,450	33.389434	-103.6171962	North Bagley Permo Penn	1
26	Jay Management	Lulu #001	30-025-22256	09/21/67	Plugged	10,436	33.389335	-103.6214448	N/A	au
27	Jay Management	JFG Collier #001	30-025-22108	05/07/67	Active	10,410	33.385837	-103.6253665	North Bagley Permo Penn	
28	Jay Management	Sohio B State #001	30-025-22122	05/20/67	Active	10,510	33.389534	-103.6301201	North Bagley Permo Penn	care cem jove jove jove jove jove jove jove jove
29	Jay Management	Gulf Sohio State #001	30-025-21194	05/11/65	Active	10,355	33.382265	-103.6303578	North Bagley Permo Penn	4.3
30	Jay Management	Collier #001	30-025-00994	08/13/62	Plugged	11,400	33.382215	-103.6215042	N/A	0
31	Jay Management	GS State #001	30-025-22811	10/23/68	Active	10,400	33.381967	-103.6343389	North Bagley Permo Penn]
32	Judah Oil LLC	Dallas #001	30-025-21731	03/18/66	Plugged	10,040	33.360537	-103.6084804	N/A]
33	LBO New Mexico Inc	State OG #001	30-025-22329	11/14/67	Plugged	10,270	33.378592	-103.6215237	N/A]
34	Lease Holders Acquisitions, Inc	JP Collier #001	30-025-00996	04/06/57	Active	11,750	33,382070	-103.604229	North Bagley Permo Penn]
35	Lease Holders Acquisitions, Inc	JP Collier #004Y	30-025-22133	05/31/67	Active	10,200	33.382165	-103.5998747	North Bagley Permo Penn]
36	Lease Holders Acquisitios, Inc	Bagley #002	30-025-38192	06/02/07	ТА	10,500	33.382389	-103.6177607	N/A]
37	Manzano Oil Corp	Fundamental State #001	30-025-21609	11/10/65	Plugged	10, 44 0	33.400845	-103.6238037	N/A	
38	Oxy USA INC	TP State A #001	30-025-21868	09/28/66	Plugged	10,300	33.378567	-103.5998021	N/A	
39	Pre-Ongard Well Operator	Southland Royalty C #001	30-025-22467	03/18/68	Plugged	10,355	33.374994	-103.6258683	N/A]
40	Pre-Ongard Well Operator	Gulf Oil Corp #001	30-025-22077	05/11/67	Plugged	10,300	33.374910	-103.6171442	N/A	
41	Pre-Ongard Well Operator	Tipperary Oil & Gas #001	30-025-20677	05/01/65	Plugged	10,217	33.378931	-103.6125237	N/A	1

VI.

Table A-1. Oil and Gas Wells within a 2 Mile Radius of State OG SWD #002 Appplication for Authorization to Inject Jay Management, Lea County, New Mexico

NAD83 Coordinates Map ID Depth Well Name Operator **API Number** Spud Date Status Pool Name Number (ft) Latitude Longitude 07/20/67 42 Pre-Ongard Well Operator Allen K Trobaugh #001 30-025-22184 Plugged 10.258 33.371362 -103.6085012 N/A 04/22/67 43 Pre-Ongard Well Operator Gulf Oil Corp #001 30-025-22086 Plugged 10.200 33.371382 -103.5998259 N/A 44 Pre-Ongard Well Operator Felmont Oil Corp #001 30-025-00995 08/08/57 10.121 33.378607 -103.6041754 N/A Plugged 45 Pre-Ongard Well Operator Felmont Oil Corp #001 30-025-20158 04/21/63 Plugged 10,224 33.367680 -103.6042349 N/A 46 Pre-Ongard Well Operator Allen K Trobaugh #002 30-025-21788 07/12/66 Plugged 10,135 33.363961 -103.6087181 N/A 47 Stoltz & Co #002 30-025-21389 09/26/65 10.079 33,357269 -103.6124972 Pre-Ongard Well Operator Plugged N/A 48 30-025-22577 06/23/68 10,360 33.367675 -103.6430628 N/A Pre-Ongard Well Operator Dwight A Tipton #001 Plugged 49 Pre-Ongard Well Operator Texas Pacific Oil Well #004 30-025-22114 05/20/67 Plugged 1,006 33.382117 -103.6001409 N/A N/A 50 Texas Pacific Oil C #002 30-025-20968 02/14/66 10,205 33.385793 -103.6003121 Pre-Ongard Well Operator Plugged 02/06/65 51 Pre-Ongard Well Operator Charles B Gillespie #001 30-025-20969 10,200 33,389406 -103.6042308 N/A Plugged 52 30-025-22385 03/13/68 10,290 -103.6085518 Pre-Ongard Well Operator Dwight A Tipton #002 Plugged 33.389036 N/A 53 Pre-Ongard Well Operator Stoltz & Co Inc Well #001 30-025-22179 07/18/67 Plugged 10,450 33.397868 -103.614867 N/A 54 Pre-Ongard Well Operator Dwight A Tipton #001 30-025-22377 12/28/67 Plugged 10,400 33,378618 -103.6389202 N/A 55 10.360 -103.630031 30-025-22197 09/05/67 33.374807 N/A Pre-Ongard Well Operator Dwight A Tipton #001 Plugged 56 04/04/67 10,400 N/A Pre-Ongard Well Operator Tipperary Oil & Gas #001 30-025-22068 Plugged 33.378658 -103,630126 57 Pride Energy Company Bagley #001 30-025-20610 10/16/64 Plugged 10,360 33.386061 -103.6125407 N/A 05/29/66 58 JP Collier #003 30-025-21787 10.200 33.385346 -103.6041625 N/A Pride Energy Company Plugged 59 Prime Operating State DG #001 30-025-21948 12/16/66 Plugged 10,268 33.367621 -103.6215974 N/A 60 Prime Operating State DC #001 30-025-21757 04/09/66 Active 10,826 33.360487 -103.6128181 North Bagley Permo Penn 61 Prime Operating State DK #002 30-025-22392 01/14/68 Active 10,270 33.371242 -103.6388488 North Bagley Lower Penn 62 Prime Operating State DK #001 30-025-22314 11/07/67 Plugged 10,338 33.371151 -103.6302974 N/A 63 Shell State #002 06/05/68 10,370 33.367577 -103.6468776 Read & Stevens Inc. 30-025-22596 Active North Bagley Lower Penn 64 Shell State #001 30-025-22409 01/24/68 Active 10.363 Read & Stevens Inc. 33.371266 -103.6469489 North Bagley Permo Penn 65 Read & Stevens Inc Sun State #001 30-025-22718 09/15/68 Plugged 10,400 33.374697 -103.6471925 N/A 66 Sabre Op INC Bagley State #003 30-025-22016 01/28/67 10.275 33.371362 -103.6215023 N/A Plugged 67 Sabre Op INC Bagley State #002 30-025-21928 12/04/66 Plugged 10,200 33.371025 -103.6168675 N/A 68 Sabre OP Inc Bagley State #001 30-025-21889 10/18/66 10,200 33,367740 -103.612827 N/A Plugged 69 Tipperary Oil & Gas Corp Bell #003 30-025-21815 07/17/66 Plugged 10,200 33.357372 -103.6128347 N/A 70 Tipperary Oil & Gas Corp Helen #001 30-025-22440 02/22/68 Plugged 10.346 33.360467 -103.6388167 N/A 71 Bess #001 11/20/67 10,250 33,356935 -103.6344277 Tipperary Oil & Gas Corp 30-025-22335 Plugged N/A 72 WestStar Exploration Company TP A State #002 30-025-22013 01/27/67 4.500 33.375392 -103.5998497 Plugged N/A

Map ID number correspond to mapped wells in Figure 1

Map ID Number	Operator	Lease Name	Surface Owner	Mineral Owner
1	Jay Management Company, LLC	State OG/Len St	State	State
2	Jay Management Company, LLC	Collier etal	Pearce Trust	Private
3	Jay Management Company, LLC	Collier	Pearce Trust	Private
4	Lease Holders Acquisitions, Inc	Felmont Collier	Pearce Trust	Private
5	Pre-Ongard Well Operator (Defunct)	Hissom/Tipperary	State	State
6	Pre-Ongard Well Operator (Defunct)	Leo St/Gulf Oil Corp	State	State
7	Sabre Op, Inc/COG Operating	Bagley State	State	State
8	Pre-Ongard Well Operator (Defunct)	Humble St/Southland Royalty C	State	State
9	Prime Operating	Christensen St/State DK	State	State
10	Pre-Ongard Well Operator (Defunct)	Dwight A Tipton	State	State
11	Pre-Ongard Well Operator (Defunct)	Champlin	State	State
12	Jay Management Company, LLC	Gulf Sohio St	State	State

Table A-2. Jay Management SWD Injection Well Permit Application Operator within a 1/2 Mile Radius of State OG SWD #002

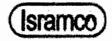
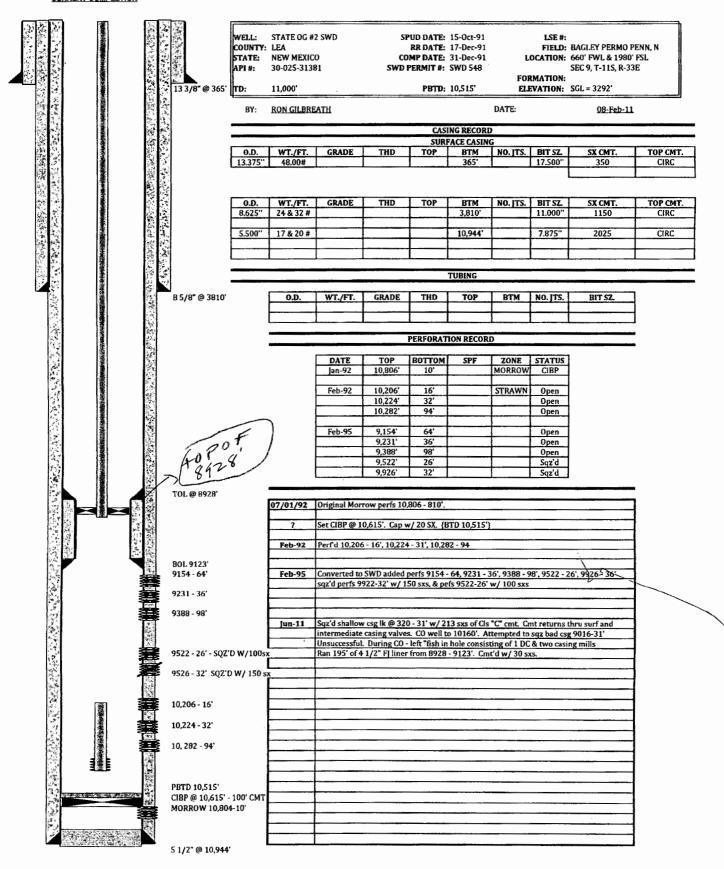
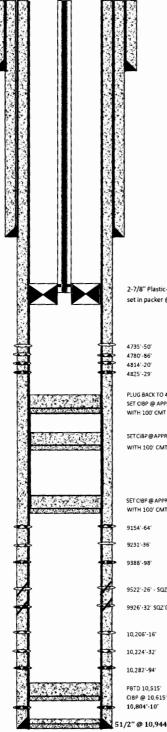

Date	Depth to top of	Calcium	Magnesium	Sodium and	Bicarbonate	Sulfate	Chloride	Nitrate	Total Dissolved	Hardness as	Sodium adsorption	Specific Conductance
Collected	producing zone	(ppm)	(ppm)	Potassium (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	Solids (ppm)	CaCO ₃ (ppm)	ratio (SAR)	(mmhos at 25°C)
	44,181	160	171	4,784	2,190	279	6,781	< 0.4	13,300	1,100	61	> 12,000
10/3/1962	5,030	1,531	530	11,587	600	2,996	20,054	< 0.4	37,000	6,000	65	> 12,000
10/2/1962	5,042	1,563	766	19,470	672	3,792	31,920	< 0.4	57,800	7,050	101	> 12,000
10/8/1962	5,042	1,470	677	13,869	282	3,992	23,537	< 0.4	43,700	6,450	72	> 12,000
10/30/1962	5,032	2,630	25,400	44,400	535	1,650	145,600	< 0.4	220,000		58	> 12,000
10/26/1962	4,800	1,800	620	18,100	220	3,030	30,750	< 0.4	54,400	70	94	> 12,000
10/11/1962	4,900	5,972	4,475	46,830	138	1,937	94,800	< 0.4	154,000	33,300	110	> 12,000
10/5/1962	4,874	2,104	693	17,955	1,058	3,606	30,869	< 0.4	55,700	8,100	87	> 12,000
10/12/1962	5,180	1,140	329	5,014	1,535	3,264	7,952	< 0.4	18,500	4,200	34	> 12,000
10/30/1962	4,305	3,206	1,240	28,692	522	373	50,814	< 0.4	84,600		109	> 12,000

Table B-1. Chemical Analysis for the San Andres Formation

pH 8.5 7.8 7.4 7.3 6.6 7 6.5 8.2 7.3 9


From, Groundwater Resources of Gaines County, Texas, by P.L. Rettman and E.R. Leggat, United State Geological Survey, February 1966, Report 15, 182-185, The Texas Department of Water Resources, 1982.

Schematics



ISRAMCO - JAY MANAGEMENT

CURRENT COMPLETION

(J) Jay Management Company, LLC

LEASE: STATE OG SWD - 548 WELL #: 2 API#: 30-025-31381 LSE #: E-26

TD: 11,000' PBTD: 10,515' ELEVATION: 3291.80

POOL: SWD: CISCO SWD: STRAWN LOCATION: Unit L 660' FWL & 1980' FSL COUNTY: LEA

CASING RECORD									
0.D.	WT./FT.	GRADE	HOLE SIZE	TOP	BTM	NO. JTS.	BIT SZ.	SX CMT.	TOP CEMENT
13-3/8"	48#		17-1/4"	SURF	367'			350	SURFACE
8-5/8"	32#&24#		11"	SURF	3810			1150	SURFACE

0.D.	WT./FT.	GRADE	HOLE SIZE	TOP	BTM	NO. JTS.	BIT SZ.	SX CMT.	TOP CEMEMT
5-1/2"	20#&17#	N-80	7-7/8"	SURF	10,944'	-		2025	SURFACE
									1

TUBING

0.D.	WT./FT.	GRADE	THD	TOP	BTM	NO. ITS.	
2-7/8"	4635'	Plastic-lined		SURF	4490	145	

PERFORATION RECORD

SPF

ZONE STATUS

STRAWN Open

CIBP

Open

SQZ D

SQZ'D

MORROW

BOTTOM

10,810'

10,294

9398'

9526

9932'

2-7/8" Plastic-lined tubing set in packer @4635'

PLUG BACK TO 4929

SET CIBP @ APPROX 5029' WITH 100' CMT

SET CIBP @ APPROX 6000 WITH 100' CMT

SET CIBP @ APPROX 9000 WITH 100' CMT

9522'-26' - SQZ'D W /100 SX

10,804'-10'

DATE

lanuary-92

February-92

February-95

February-9.

February-95

04/19/18

TOP

10,804

10,206

9154

9522

9926

9926'-32' SOZ'D W / 150 SX

PBTD 10.515

51/2" @ 10,944'

4735 4750' SAN ANDRES OPEN 04/19/18 4780 4786' SAN ANDRES | OPEN 6 04/19/18 4814 4820 SAN ANDRES OPEN 04/19/18 4825 4829' 6 SAN ANDRES OPEN Mar-18 Plug back to 4930' pursuant to OCD guidelines Perf - 4825' - 4829' 6 SPF Perf - 4814' - 4820' 6 SPF Perf - 4780' - 4786' 6 SPF Perf - 4735' - 4750' 6 SPF Acidize Perf with 15% (Pending Permit Approval) 2-7/8" plastic-lined tubing set in packer @ approx 4635"

McMillan, Michael, EMNRD

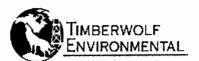
From:Whitaker, Mark A, EMNRDSent:Tuesday, April 24, 2018 3:55 PMTo:McMillan, Michael, EMNRD; Jim FosterCc:asanker@isramco-jay.com; Brown, Maxey G, EMNRDSubject:RE: State OG SWD #002 - WBD

Jim,

After reviewing the schematic your submitted for the subject well it appears that you proposed plugs will be sufficient to consider the wellbore below 4929' permanently abandoned. Please let me know if I can be of any other assistance to you. Respectfully, Mark Whitaker, PES NMOCD, District I

From: McMillan, Michael, EMNRD Sent: Tuesday, April 24, 2018 1:04 PM To: Jim Foster <jim@teamtimberwolf.com>; Whitaker, Mark A, EMNRD <MarkA.Whitaker@state.nm.us> Cc: asanker@isramco-jay.com; Brown, Maxey G, EMNRD <MaxeyG.Brown@state.nm.us> Subject: RE: State OG SWD #002 - WBD

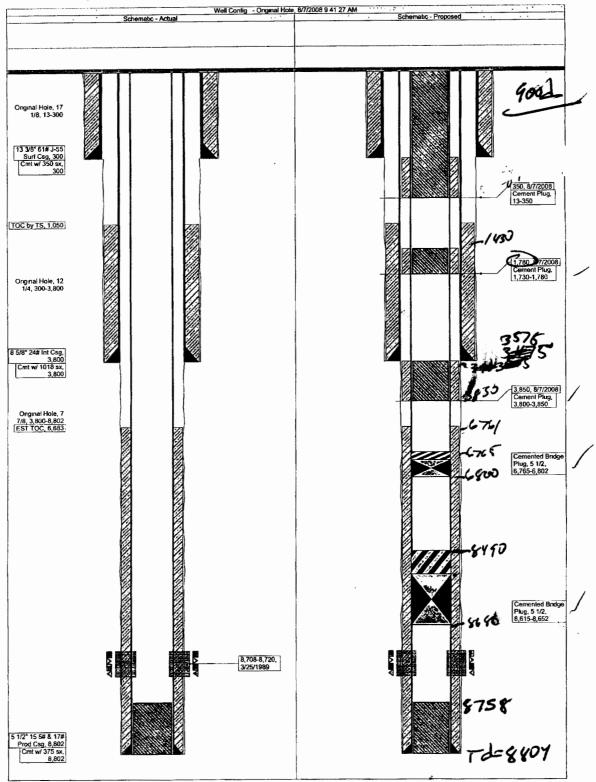
Thanks Mike


From: Jim Foster <<u>jim@teamtimberwolf.com</u>> Sent: Tuesday, April 24, 2018 1:01 PM To: Whitaker, Mark A, EMNRD <<u>MarkA.Whitaker@state.nm.us</u>> Cc: <u>asanker@isramco-jay.com</u>; McMillan, Michael, EMNRD <<u>Michael.McMillan@state.nm.us</u>>; Brown, Maxey G, EMNRD <<u>MaxeyG.Brown@state.nm.us</u>> Subject: State OG SWD #002 - WBD

Mark,

Clay, District Manager for Jay Management, and Maxey Brown discussed the plugback procedure for this well this morning. The attached wellbore diagram corresponds to their agreed procedure.

Thanks,


Jim Foster

1920 W. Villa Maria, Suite 205 Bryan, Texas 77807 979.324.2139 www.teamtimberwolf.com

6	
Chesapeake	

Field: N BAGLEY (PERMO-PENN) County: LEA State: NEW MEXICO Elevation: GL 3,288.80 KB 3,302.00 KB Height: 13.20 Location: SEC 9, 11S-33E, 2065 FSL & 2010 FWL Spud Date: 3/6/1989 initial Compl. Date: API #: 3002530566 CHK Property #: 890198 1st Prod Date: 4/1/1989 PBTD: Original Hole - 8758.0 TD: 8,802.0

Report Printed: 8/7/2008

Operator: Jay Management Company LLC

Twolf Reference #: 30

Well: Collier #001

API: 30-025-00994

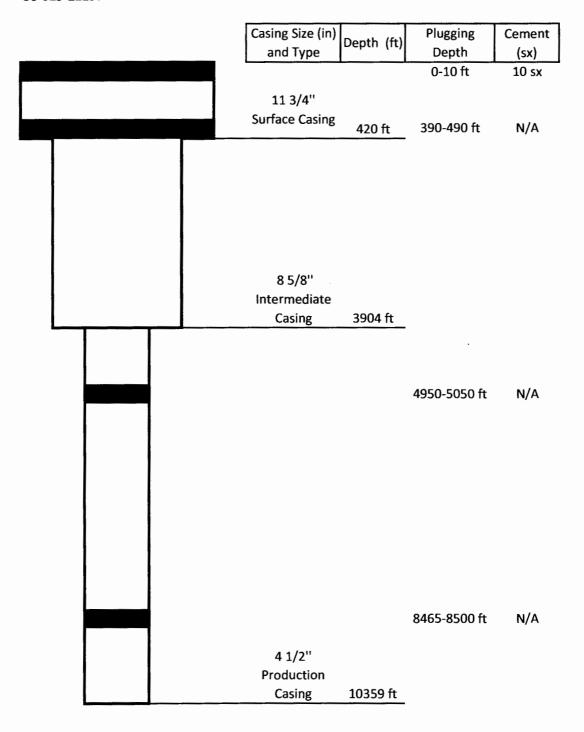
Casing Size (in)	Depth (ft)	Plugging	Cement
and Type		Depth	(sx)
		0-60 ft	50 sx
13 3/8"			
Surface Casing			
	335 ft	230-385 ft	70 sx
		1525-1600 ft	60 sx
9 5/8''			
Intermediate			
Casing	3821 ft	3690-3871 ft	25 sx
		5030-5350 ft	25 sx
		5000 C000 (t	25
		5390-6000 ft	25 sx
		7010 7200 8	25
		7010-7300 ft	25 sx
		8350-8772 ft	45 sx
4 1/2''		0JJ0-0//2 IL	40 38
4 1/2 Production			
Casing	10367 ft		
Casilig	10507 10		

Twolf Reference #: 33

Operator: LBO New Mexico Inc Well: State OG #002

API: 30-025-22329

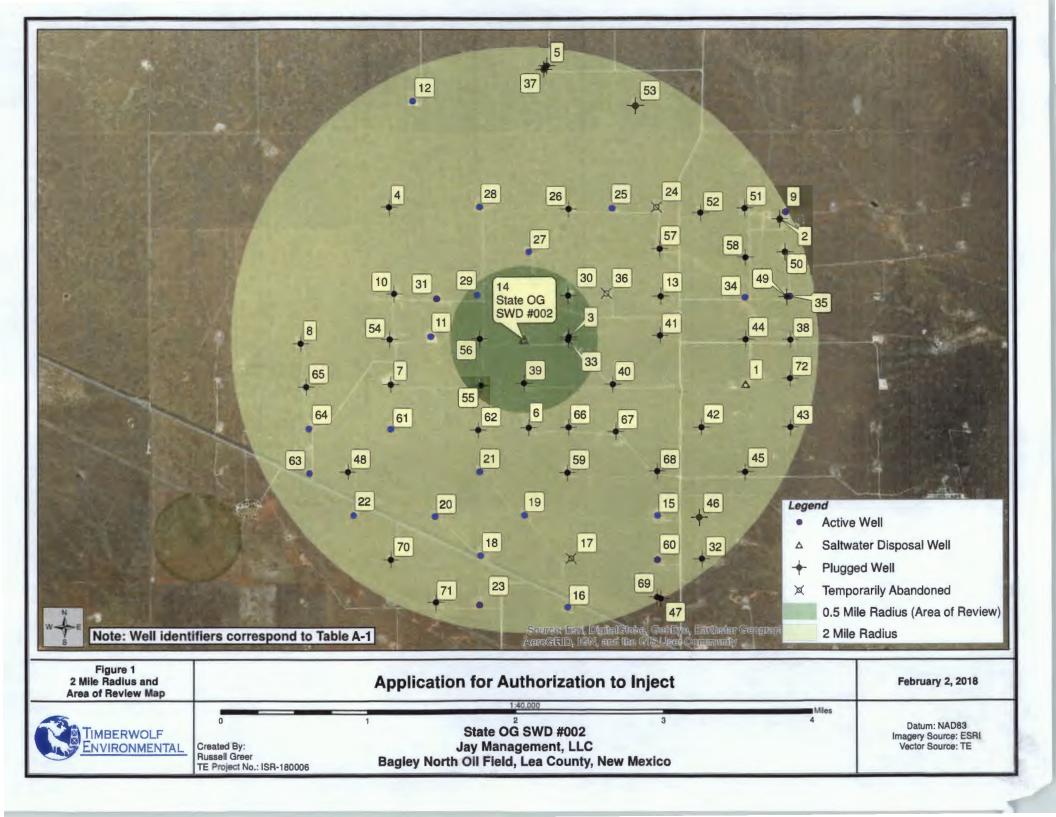
		Casing Size (in)	Dopth (ft)	Plugging	Cement
		and Type	Depth (ft)	Depth	(sx)
				0-30 ft	30 sx
		13 3/8"			
		Surface Casing			
		Surface casing	367 ft	302-417 ft	75 sx
				675-783 ft	50 sx
				2316-2450 ft	50 sx
		8 5/8"			
		Intermediate			
		 Casing	3800 ft		
				7184-7500 ft	35 sx
				, 104 / 500 ft	00 JA
		5 1/2"			
		Production			
		Casing	10270 ft		
		 0		-	

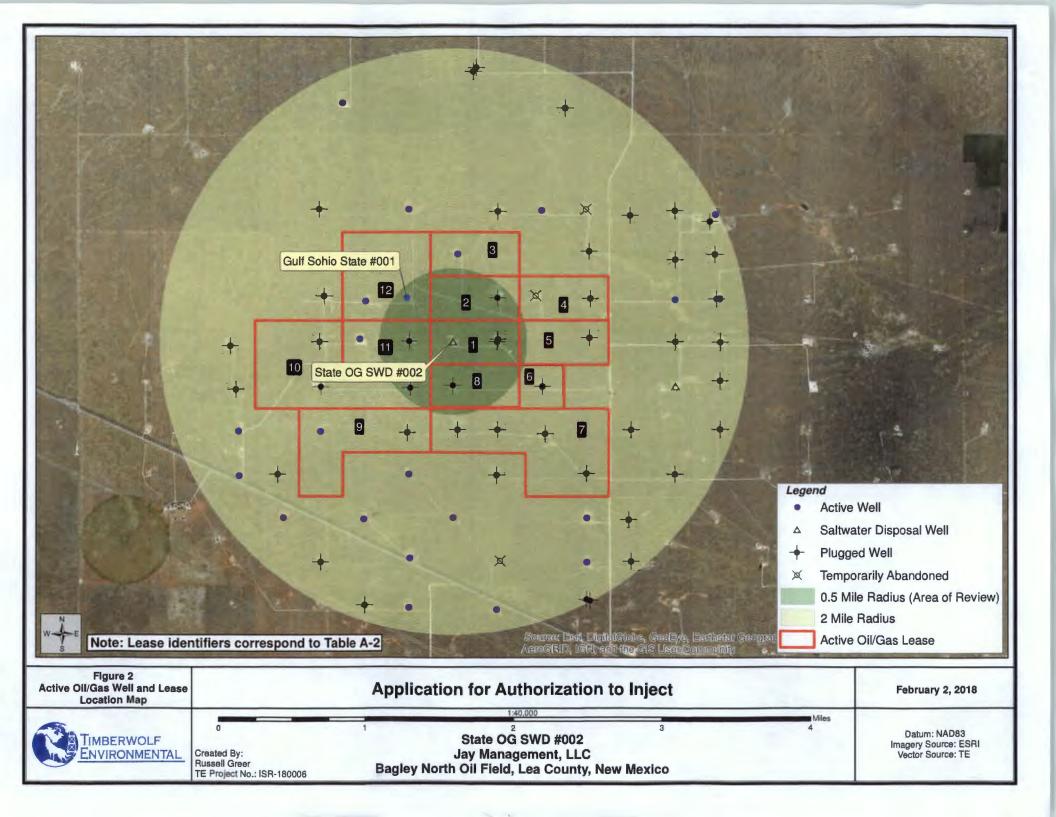

Cement Plug

Operator:Pre-Ongard Well OperatorWell:Southland Royalty C #001API:30-025-22467

Casing Size (in) and Type	Depth (ft)	Plugging Depth	Cement (sx)
		0-10 ft	10 sx
12 3/4" Surface Casing	370 ft		
		728-828 ft	40 sx
		1754-1854 ft	40 sx
8 5/8'' Intermediate		3735-3835 ft	40 sx
Casing	3722 ft	3750-3850 ft	
5 1/2" Production Casing	10353 ft	9880 ft	30 sx

Operator:Pre-Ongard Well OperatorWell:Dwight A Tipton #001API:30-025-22197




Operator:Pre-Ongard Well OperatorWell:Tipperary Oil & Gas #001API:30-025-22068

	gging Cement
	epth (sx) 10 ft 10 sx
	1010 1058
13 3/8" Surface Casing	
375 ft 275-	-375 ft N/A
900-	1000 ft N/A
8 5 /8 ''	
Intermediate	
8	35 ft 50 sx
40	00 ft 50 sx
72	200 ft 100 sx
4 1/2"	
Production	
Casing 10400 ft	

Figures

1920 W. Villa Maria, Ste. 205 Bryan, Texas, 77807 MAR 29 20 309 324,2159 www.teamtimberwolf.com

March 27, 2018

Michael McMillan District 4 Santa Fe 1220 South St Francis Drive Santa Fe, NM 87505

 RE: C-108 Application for Authorization to Inject – Supplemental Information State OG SWD No. 002
 Jay Management Company, LLC
 Bagley North Oil Field, Lea County, New Mexico

Dear Mr. McMillan,

At the request of Jay Management Company, additional items required C-108 permit have been attached for your review. This well is currently permitted as a saltwater disposal well completed in the Strawn formation. The formation is no longer accepting fluids, necessitating recompletion. Upon approval, Jay Management plans to plug back and recomplete the well in the San Andres formation.

Please find attached the requested items from your email dated February 13, 2018:

- Proof of mailing to offset operator (Lease Holders Acquisitions)
- Water well resources and water quality report for water wells within a one-mile radius of the State OG SWD No. 002
- C-103 form

Additional items, including a swab of proposed injection intervals are in progress and will be soon submitted for your review.

If you have any questions regarding these items or need other information, please do not hesitate to contact us.

Sincerely, Timberwolf Environmental, LLC

lim Foster

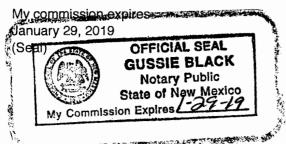
President

Attachments: Proof of mailing to offset operator Water Well Resources and Water Quality Report C-103

Affidavit of Publication

STATE OF NEW MEXICO COUNTY OF LEA

I, Daniel Russell, Publisher of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, solemnly swear that the clipping attached hereto was published in the regular and entire issue of said newspaper, and not a supplement thereof for a period of 1 issue(s).


> Beginning with the issue dated February 07, 2018 and ending with the issue dated February 07, 2018.

Rupell

Publisher

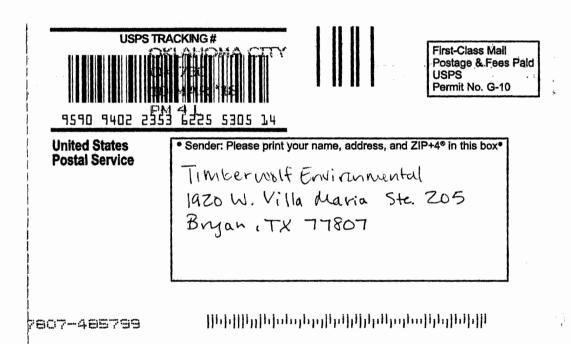
Sworn and subscribed to before me this 7th day of February 2018.

Business Manager

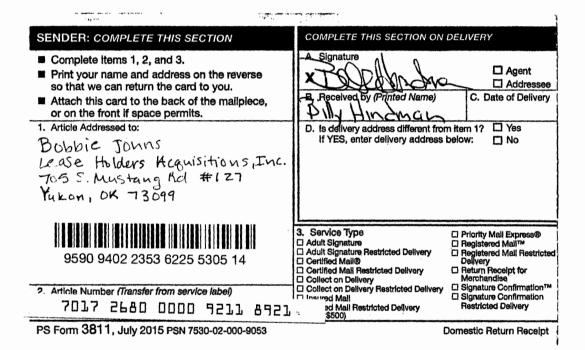
This newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said LEGAL NOTICE February 7, 2018

Public Notice for State OG SWD #2 (API: 30-025-31381) Jay Management Company, LLC 1001 West Loop S, Suite 750 Houston, Texas 77027 (713) 621-6785 Contact Party: Jim Foster (979) 324-2139

The intended purpose of this injection well is for disposal of produced water associated with oil and gas production activities. This well is an active disposal well. This application is made to authorize disposal into another zone. The exact well location: NWSW S9 T11S R33E


The formation name is the San Andres, at a depth of 4,735'-4,829', and a maximum injection rate of 6,000 barrel per day, and maximum pressure of 1,800 PSI.

Interested parties must file objections or request a hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fé, New Mexico 87505, within 15 days, by Thursday the 22nd of February. #32491


67114900

00206736

MORGAN VIZI TIMBERWOLF ENVIRONMENTAL 1920 W. VILLA MARIA, STE 205 BRYAN, TX 77807

cleration realing to offset しょう the proof

FAQs > (http://faq.usps.com/?articleId=220900)

Track Another Package +

Tracking Number: 70172680000092118921

Remove X

On Time

Expected Delivery on

SATURDAY

10 MARCH 2018 (i) by 8:00pm (i)

⊘ Delivered

March 10, 2018 at 11:29 am Delivered, Left with Individual YUKON, OK 73099

Get Updates 🗸

See Less 🔨

Can't find what you're looking for?

Go to our FAQs section to find answers to your tracking questions.

FAQs (http://faq.usps.com/?articleId=220900)

The easiest tracking number is the one you don't have to know.

With Informed Delivery[®], you never have to type in another tracking number. Sign up to:

- See images* of incoming mail.
- Automatically track the packages you're expecting.
- Set up email and text alerts so you don't need to enter tracking numbers.
- Enter USPS Delivery Instructions[™] for your mail carrier.

Sign Up

(https://reg.usps.com/entreg/RegistrationAction_input?

McMillan, Michael, EMNRD

From:Jim Foster <jim@teamtimberwolf.com>Sent:Thursday, March 15, 2018 2:31 PMTo:McMillan, Michael, EMNRD; asanker@isramco-jay.comCc:morgan@teamtimberwolf.comSubject:State OG SWD #2

Michael,

Jay Management has a rig scheduled for well work on the State OG next week. I wanted to verify that the following procedure will satisfy your requirements:

- 1) Set a CIBP at 4930
- 2) Perf the proposed injection intervals
- 3) Perform swab test
- 4) Have District Office review

Also, in your email dated 2/13/18, you stated:

• You will be required to resubmit water samples from the previously approved SWD and show that you have attempted to determine if any new water wells are within 1-mile of the proposed SWD Well.

Please verify that the water samples you reference in the above statement are groundwater samples from existing wells and not formation water from the SWD well. If we need formation water samples from the SWD, do we need samples from the current perforated zone, or the proposed injection intervals, or both?

Thank you, Jim Foster

From: McMillan, Michael, EMNRD [mailto:Michael.McMillan@state.nm.us] Sent: Tuesday, March 13, 2018 10:45 AM To: asanker@isramco-jay.com; Jim Foster Subject: RE: Well Bore Schematics

Jim:

The OCD only allows a pressure gradient of .2*top perf, so the max pressure the OCD will allow is 947 psi.

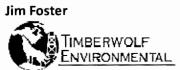
Mike

From: McMillan, Michael, EMNRD Sent: Wednesday, February 21, 2018 9:44 AM To: <u>asanker@isramco-jay.com</u>; 'Jim Foster' <<u>jim@teamtimberwolf.com</u>> Cc: Whitaker, Mark A, EMNRD <<u>MarkA.Whitaker@state.nm.us</u>>; Brown, Maxey G, EMNRD <<u>MaxeyG.Brown@state.nm.us</u>>; Goetze, Phillip, EMNRD <<u>Phillip.Goetze@state.nm.us</u>>; Jones, William V, EMNRD <<u>WilliamV.Jones@state.nm.us</u>>; Lowe, Leonard, EMNRD <<u>Leonard.Lowe@state.nm.us</u>> Subject: FW: Well Bore Schematics

Be advised at a minimum for **approval of your SWD**, you must run a swab test in the San Andres injection zone, must have written agreement with the Hobbs District Office from the geologist and Supervisor, and any other individual the

District Office deems qualified that the San Andres in not productive. If any of these individuals disagree with your findings, your application will not be approved administratively

Mike


From: Jim Foster [mailto:jim@teamtimberwolf.com] Sent: Wednesday, February 21, 2018 9:36 AM To: McMillan, Michael, EMNRD <<u>Michael.McMillan@state.nm.us</u>> Cc: <u>asanker@isramco-jay.com</u> Subject: Well Bore Schematics

Michael,

Attached are the current and proposed well bore schematics for the State OG SWD No. 2. A proposed well bore schematic was included in our permit application in the Schematic section.

We are working on the other requests you have and will submit all supplemental documents.

Thank you,

1920 W. Villa Maria, Suite 305 Bryan, Texas 77807 979-324-2139 teamtimberwolf.com

MAR 29 2018 AMI	
-----------------	--

Submit 1 Copy To Appropriate District	State of New Mexico	Form C-103 Revised July 18, 2013
District 1 - (575) 393-6161 HOBBS 1 1625 N. French Dr., Hobbs, NM 88240		WELL API NO.
	CONSERVATION DIVISION	30-025-31381
UISTRCEILI - (3031334-0178	GONSERVATION DIVISION 1220 South St. Francis Dr.	5. Indicate Type of Lease
1000 Rio Brazos Rd., Aztec, NM 87410	/ED ^{anta Fe, NM 87505}	6. State Oil & Gas Lease No.
District IV – (505) 476-3460 1220 S. St. Francis Dr., Santa Fe, NM RECEN 87505	/ED	E-26
SUNDRY NOTICES AND		7. Lease Name or Unit Agreement Name
 (DO NOT USE THIS FORM FOR PROPOSALS TO DRI DIFFERENT RESERVOIR. USE "APPLICATION FOR PROPOSALS.) 	PERMIT" (FORM C-101) FOR SUCH	State OG SWD - 548
1. Type of Well: Oil Well Gas Well	Other SWD	8. Well Number 2
2. Name of Operator		9. OGRID Number 247692
Jay Management Company, LLC 3. Address of Operator		10. Pool name or Wildcat
	on TX 77027	SWD: SAN ANDRES
1001 West Loop South Ste 750 Houst 4. Well Location	011, 1 × 77027	
	feet from the West line and	1980 feet from the South line
	Township 11S Range 33E	NMPM County LEA
11. Eleva	tion (Show whether DR. RKB, RT. GR. etc.	
	3291.8	the Statistical States of the States
12. Check Appropriat	te Box to Indicate Nature of Notice,	Report or Other Data
	N TO: SUB	
	E COMPL CASING/CEMEN	
	_	-
CLOSED-LOOP SYSTEM		
OTHER:	OTHER:	
	ions. (Clearly state all pertinent details, an ULE 19.15.7.14 NMAC. For Multiple Co	d give pertinent dates, including estimated date mpletions: Attach wellbore diagram of
The well is currently filled from 9016' to	the total depth of well and inoperable ir	tis present condition. Jay Management has
made application to inject into the San An	dres Formation. The NMOCD requires	the following procedure to gain administrative
approval.		
1. Set CIBP at 4930		
2. Perf the following intervals: 4825 - 482	9′, 4814 – 4820′, 4780 – 4786′, 4735-4′	750', 4638.5 4655', 4590 4595'
3. Perform swab test on perfed intervals, a		
4. Inject produced water once a modified i	· · · · ·	
Spud Date: Rig Release Date:		
hereby		
Spud Date:	Rig Release Date:	
l barrhan an aife shar she information about is smi	A contract of the base of the	
I hereby certify that the information above is tru	ana complete to the best of my knowledg	e and benet.
SIGNATURE	TITLE_District Manager	DATE03/13/2017
Type or print name Clay Griffin	E-mail address: cgriffin@jaymg	pt.com PHONE: 574-707-5691
For State Use Only Accepted	for Record Only	rnone:
APPROVED BY:	TITLE	DATE
Conditions of Approval (if any):	ABrown =	B/13/2018
1.0		5/15/2010

1920 W. Villa Maria, Ste. 205 Bryan, Texas 77807 979.324.2139 www.teamtimberwolf.com

MAR 29 2018 ANI:0:10

March 26, 2018

Michael McMillan New Mexico Oil Conservation Division Engineering Bureau 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

Re: Water Well Resources and Water Quality Report State OG SWD No. 002 Permit Jay Management Company Bagley North Oil Field, Lea County, New Mexico Timberwolf Environmental Project No.: ISR-180006

Dear Mr. McMillan:

At the request of Jay Management Company (Jay Management), Timberwolf Environmental, LLC (Timberwolf) conducted a receptor survey and groundwater sampling event for the State OG SWD Permit (Site). The Site is located in the Bagley North Oil Field, approximately 19.7 miles northwest of Tatum, Lea County, New Mexico (Figure 1).

The New Mexico OCD requested two (2) water wells within a one-mile radius of the Site to be sampled and analyzed as part of a saltwater disposal (SWD) permit application. The receptor survey conducted by Timberwolf included a one-mile radius public records water well search and a one-mile radius ground reconnaissance. The well search and ground reconnaissance are documented below. The Site location is shown on the attached topographic map and aerial image (Figures 2 and 3).

Water Well Search

Timberwolf contracted with Banks Environmental Data ("Banks") to conduct a water well search within a one-mile radius from the Site. A copy of the Banks report is attached. Eighteen (18) wells were identified in the public records search; results are summarized in Table 1 (below) and shown in Figure 4.

Well Name	Well ID	GPS Coordinate*	Well Type	Status	Depth (ft)
Unnamed	1	33.37857° N / 103.62582° W	7º N / 103.62582º W Development of Natural Resource		115
Unnamed	2	33.37673º N / 103.62362º W	Development of Natural Resource	Plugged	80
Unnamed	3	33.38131º N / 103.62726º W	Other	Plugged	
Unnamed	4	33.37495° N / 103.62581° W	Development of Natural Resource	Plugged	90
Unnamed	5	33.37405° N / 103.62691° W	Development of Natural Resource	Plugged	100
Unnamed	6	33.38289° N / 103.61968° W		Active	
Unnamed	7	33.37650° N / 103.63468° W	Agriculture	Active	130
Unnamed	8	33.37131º N / 103.62147º W	Development of Natural Resource	Plugged	100
Unnamed	9	33.37947° N / 103.63554° W	47° N / 103.63554° W Development of Natural Resource		130
Unnamed	10	33.38939° N / 103.62633° W	Other	Plugged	
Unnamed	11	33.37856° N / 103.63879° W	Development of Natural Resource	Plugged	105
Unnamed	12	33.37854° N / 103.61284° W	Development of Natural Resource	Plugged	105
Unnamed	13	33.38946° N / 103.63016° W	Development of Natural Resource	Active	75
Unnamed	14	33.37942° N / 103.61176° W	Livestock	Plugged	85
Unnamed	15	33.37427º N / 103.61107º W		Active	100
Unnamed	16	33.36676° N / 103.63339° W	Development of Natural Resource	Plugged	
Unnamed	17	33.38310° N / 103.60989° W	Other	Plugged	
Unnamed	18	33.38668° N / 103.61177° W	Development of Natural Resource	Plugged	160

Table 1. Findings of Public Records Search – One-Mile Radius

*Coordinates in North America Datum (NAD) 83

ft - feet

-- - not applicable

Ground Reconnaissance

On 03/12/18, Timberwolf performed ground reconnaissance to identify potential water wells to sample within a one-mile radius of the Site as specified by the New Mexico Oil Conservation Division (NMOCD). Timberwolf identified six (6) water wells within a one-mile radius of the Site; two (2) water wells were welded shut (i.e. sealed), four (4) water wells were active and used for agriculture.

Findings of the ground reconnaissance are summarized in Table 2, documented in the attached Photographic Log (photographs 1 - 6), and shown in Figure 4.

Well Name	Well ID	GPS Coordinate*	Well Type	Status	Depth (ft)
Unnamed	1	33.37857° N / 103.62582° W	Rig Supply	Sealed	115
Unnamed	6	33.38289° N / 103.61968° W	Agriculture	Active	
Unnamed	7	33.37650° N / 103.63468° W	Agriculture	Active	130
Unnamed	9	33.37947° N / 103.63554° W	Rig Supply	Sealed	130
Unnamed	13	33.38946° N / 103.63016° W	Agriculture	Active	75
Unnamed	15	33.37427° N / 103.61107° W	Agriculture	Active	100

Table 2. Findings of Ground Reconnaissance – One-Mile Radius

*Coordinates in North America Datum (NAD) 83

-- -- not applicable

ft - feet

No other active or plugged water wells within a one-mile radius of the Site were located during the ground reconnaissance. These wells are presumed to be plugged and abandoned or geographically misrepresented in the public records.

Collection and Analysis of Water Well No. 7

Timberwolf collected a groundwater sample from one (1) water well within a one-mile radius of the Site. No other water wells were sampled due to: the inability to sample wells without dismantling surface equipment.

Timberwolf sampled the water well identified in Tables 1 and 2 and Figure 4 as Water Well No. 7. The well is equipped with a windmill and pump. The sample was collected directly out of the discharge pipe while the windmill was actively producing water.

The sample was collected directly into laboratory provided containers and submitted for laboratory analysis, including: total petroleum hydrocarbon (TPH); benzene, toluene, ethylbenzene, and xylenes (BTEX); total dissolved solids (TDS); electrical conductivity (EC); pH; Resource Conservation Recovery Act (RCRA) 8 metals (arsenic, barium, cadmium, chromium, lead, selenium, silver, and mercury); cations, (calcium, magnesium, sodium, potassium, anions, chloride, sulfate, carbonate, and bicarbonate). Analytical methods are documented on the attached laboratory report. Analytical results are summarized in the attached table.

Conclusions

Public records were reviewed to identify water wells in the vicinity of the Site. The review revealed:

• Eighteen (18) water wells within a one-mile radius of the Site

The one-mile ground reconnaissance identified the following:

- Two (2) sealed water wells
- Four (4) active agriculture water wells, three of which were completed into cattle troughs and inaccessible
- Twelve (12) plugged and abandoned water wells

ISR-180006 March 26, 2018 Page 4

Analytical results of groundwater collected from the Water Well No. 7 revealed:

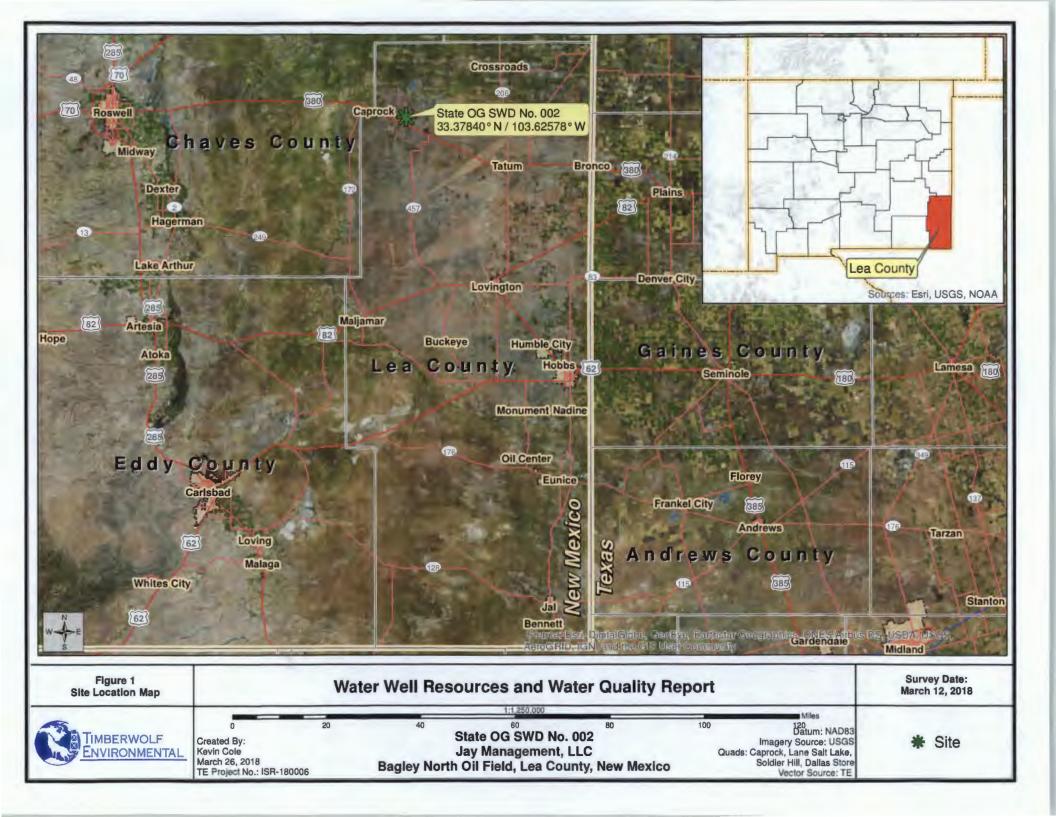
- Concentrations of petroleum hydrocarbons (i.e., TPH, BTEX) were below NMOCD criteria
- Concentrations of RCRA 8 metals were below EPA primary drinking water standards
- Concentrations of TDS exceeded EPA secondary drinking water standards, however:
 - Concentrations of chloride were below EPA criteria
 - o Concentrations of sulfate were below EPA criteria
- Groundwater from Water Well No. 7 is considered fresh and suitable for human consumption Analytical results are shown in the attached Table A-1 and in the attached laboratory report.

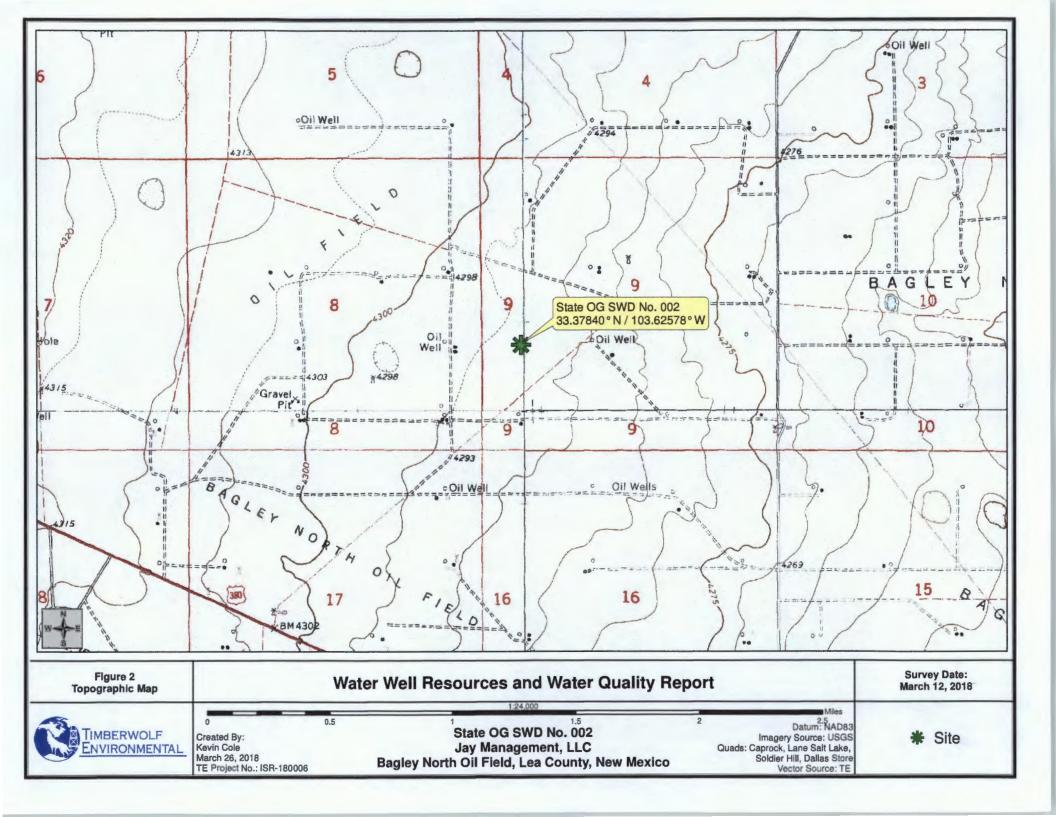
If you have any questions regarding this letter please do not hesitate to contact us.

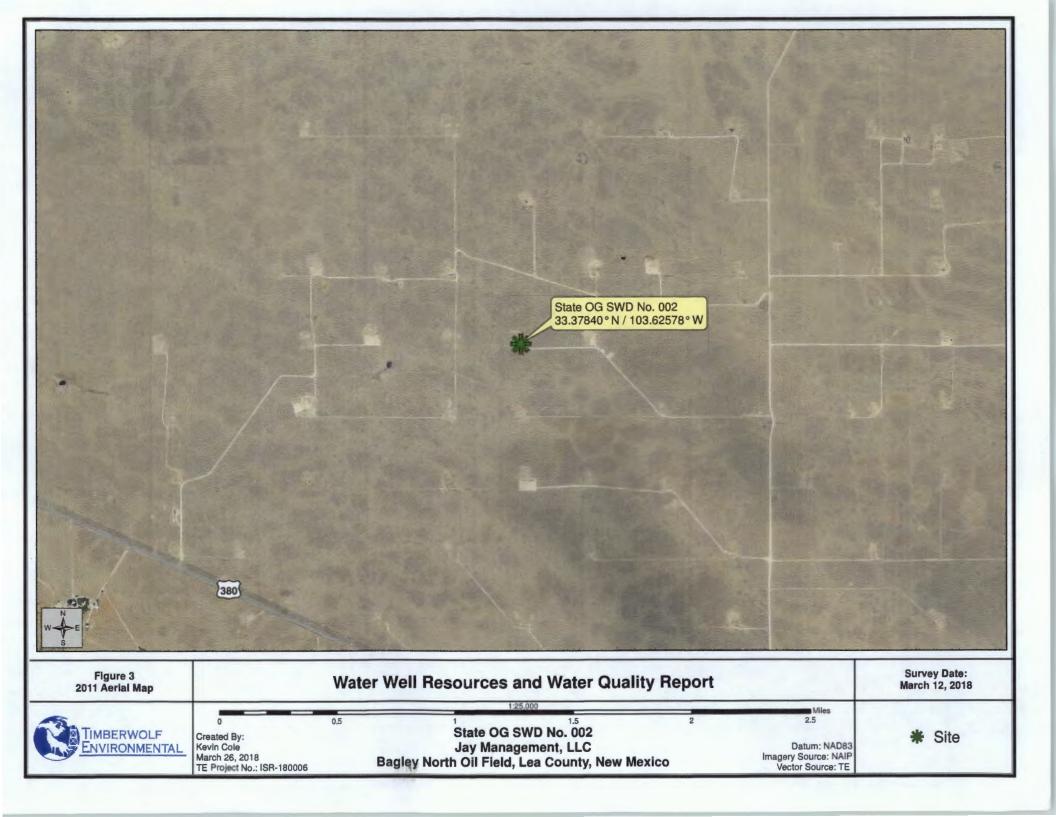
Sincerely, Timberwolf Environmental, LLC

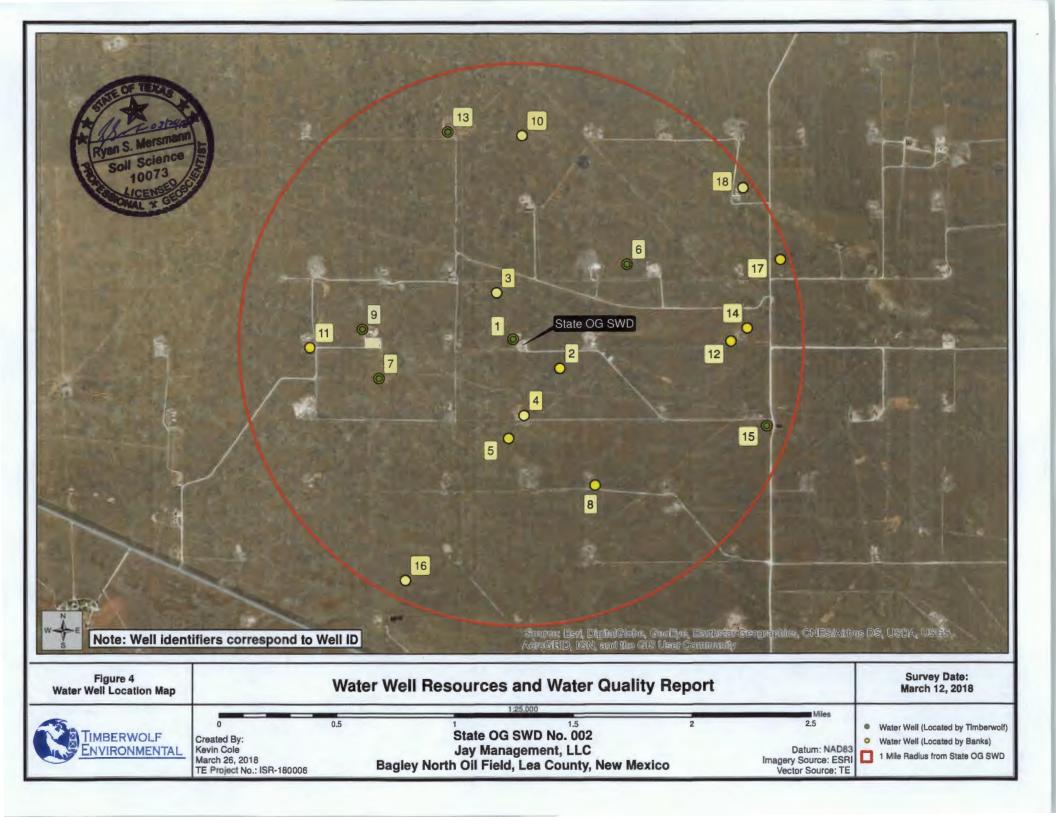
Kevin Cole Project Scientist

Ryan S. Mersmann, P.G., CPSS Vice President of Operations


Tim Foster President


Attachments: Figures Banks Water Well Report Photographic Documentation Laboratory Report


Cc: Amir Sanker, Jay Management Company



Figures

Table A-1. Groundwater Analytical Results State OG SWD No. 002 Permit Jay Management Company Bagley North Oil Field, Lea County, New Mexico

								Ani	ons			Cat	ions			al Water Qu	ality	Dissolved Metals							
Sample ID	Sample	ТРН	Vola	tile Organic C	ompounds (m	g/L)		(m	g/L)			(m	g/L)		1	Parameters	1				(11	9/L)			
Sample in	Date	(mg/L)					CI	SO	co,	BiCarb	Na	Ca	Mg		pН	Sp. Cond.	TDS	A.	Ba	Cd	Cr	Pb	Se	A 7	Hg
			8	T	E	X	4	304	~~~	Givanu				n n	S.U.	mmhos/cm	mg/L		194	~				~*	
7 (State OG)	03/13/18	< 0.71	< 0.00018	< 0.00020	< 0.00020	< 0.00037	120	130	< 20	130	41 ⁸	110	14	2.1	7.7 ^{HF}	860	690	0.0055 ^J	0.06	< 0.00028	< 0.0016	< 0.0022	0.0071 ^J	< 0.0013	< 0.000082
Regulatory	Limits		0.01 ³	0.75 ³	0.75 ³	0.62 ³	250 ²	250 ²	-	-		-	-		6.5 - 8.5 ²		500 ²	0.01 ¹	2.0 ¹	0.005 ¹	0.1 ¹	0.015 ¹	0.05 ¹	0.10 2	0.002 ¹
	¹ EPA Primary	Drinking Wa	ater Standards				s.u Stand	dard units					CO2 - carbo	on dioxide		As - arsenic									
	² EPA Second	ary Drinking	Water Standar	ds			Sp. Cond.	 Specific cor 	nductance				CI - Chlorid	e		Ba - barium									
	³ NMOCD stan	dards from	Title 20 NMAC	§ 8.2			mmhos/cm	- mitlimhos p	per centimet	er			SO ₄ - Sulfa	te		Cd - cadmiur	n								

³ NMOCD standards from Title 20 NMAC § 6.2 mmhos/cm - mitlimhos per centimeter SO₄ - Sulfate CO3 - Carbonate Cr - chromium ³ - analyte detected below quantation limit ohm-m - ohms per meter BiCarb - Bicarbonate Pb - lead ^H - sample prepped or analyzed beyond specified holding time TDS - total dissolved solids TSS - total suspended solids Na - Sodium Se - selenium ^b - analyte detected in blank mg/L - milligrams per liter NTU - Nephelometric turbidity unit Ca - Calcium Ag - silver ---- no applicable limit - concentration exceeds recommended action level Mg - Magnesium Hg - mercury

Banks Water Well Report

Prepared for:

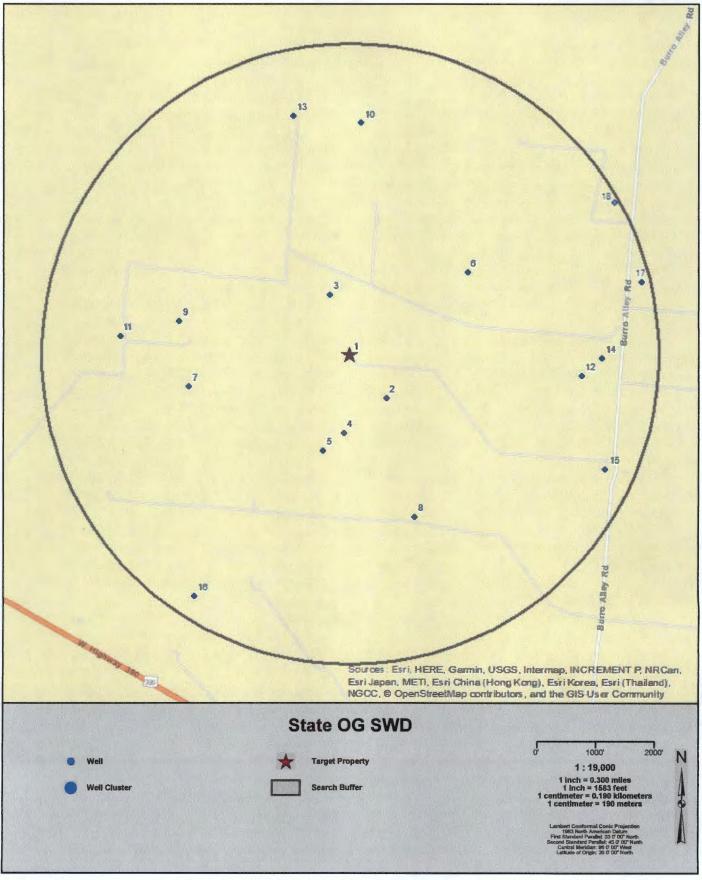
TIMBERWOLF ENVIRONMENTAL 1920 West Villa maria Road, STE 305-2 Bryan, TX 77507

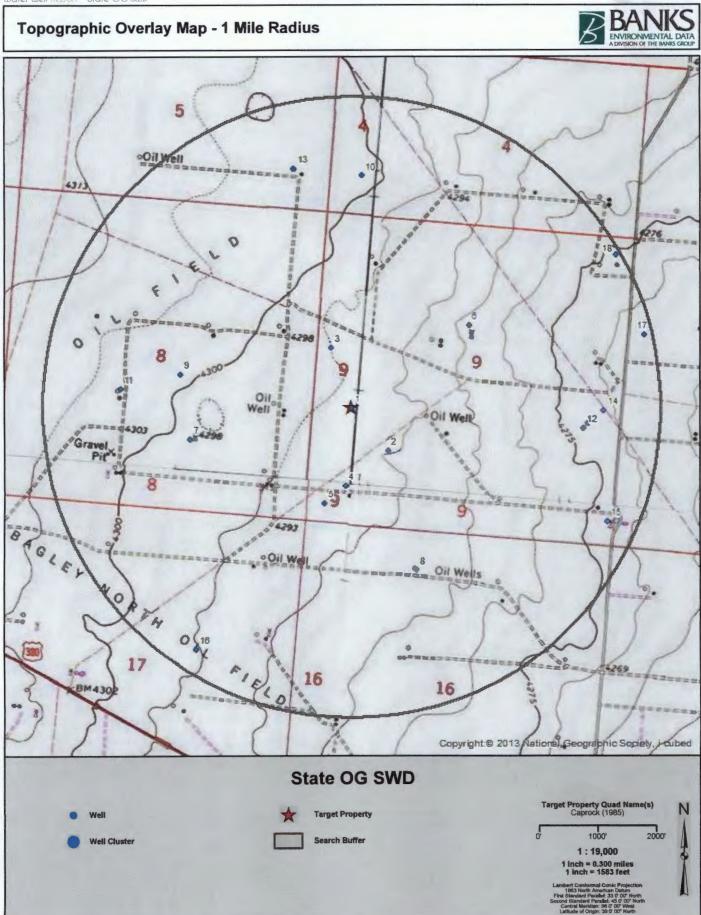
Water WellState OG SWDReportNMPO #: 180006ES-127479Wednesday, March 07, 2018

WW_ES-127479_1eta9829.pdf Banks Environmental Data, Inc. - 1601 Ria Grande, Ste. 331 - Austin, TX 78701 - 800.531.5255 P - 512.478.1433 F www.banksenvdata.com

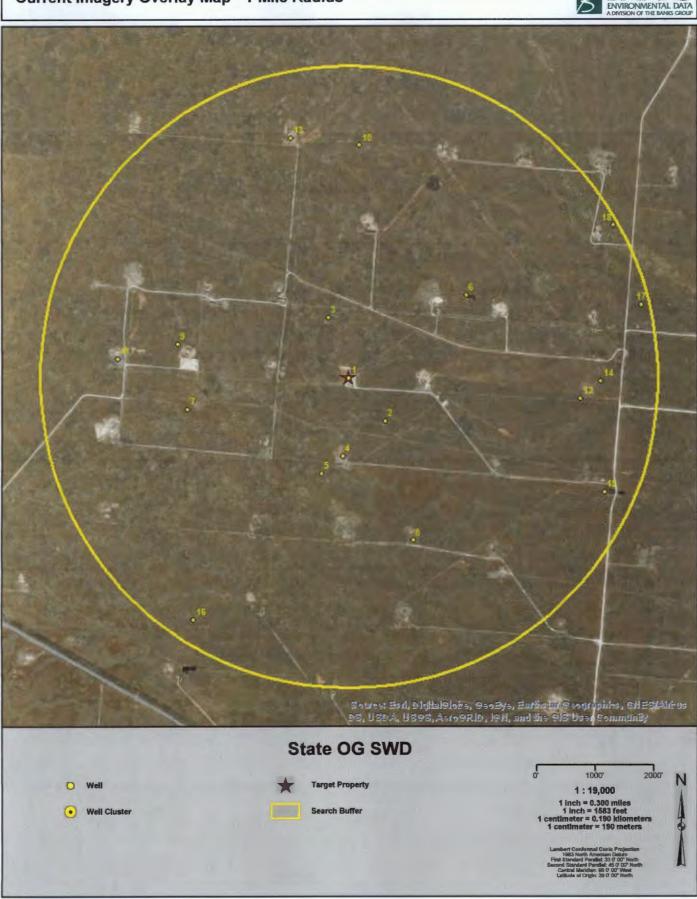
Table of Contents	BANKS ENVIRONMENTAL DATA A DIVISION OF THE BANKS GROUP
Geographic Summary	3
Maps	
Summary Map - 1 Mile Radius	4
Topographic Overlay Map - 1 Mile Radius	5
Current Imagery Overlay Map - 1 Mile Radius	6
Water Well Details	7
Database Definitions and Sources	9
Disclaimer	10

Geographic Summary




Location NM

Coordinates	
Longitude & Latitude in Degrees	
Longitude & Latitude in Decima	al Degrees -103.625849°, 33.378607°
X and Y in UTM	627821.32, 3694104.05 (Zone 13)
Elevation	
Target Property lies 4295.27 feet a	above sea level.
Zip Codes Searched	
Search Distance	Zip Codes (historical zip codes included)
Target Property	88213, 88114, 88116, 88201, 88230, 88232, 88260, 88267
1 mile	88213, 88114, 88116, 88201, 88230, 88232, 88260, 88267
Topos Searched	
Search Distance	Topo Name
Target Property	Caprock (1985)
1 mile	Caprock (1985), Soldier Hill (1985), Lane Salt Lake (1985), Dailas Store (1985)


Summary Map - 1 Mile Radius

Current Imagery Overlay Map - 1 Mile Radius

Water Well Details

Map ID	Source ID	Dataset	Owner of Well	Type of Well	Depth Drilled	Completion Date	Longitude	Latitude	Elevation	Driller's Logs
1	L-10225	NM WW	NORTON DRILLING	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	115	10/14/1991	-103.62582	33.37857	4295 ft ()	N/A
2	L-06139	NM WW	FORSTER DRILLING COMPANY	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	80	5/5/1967	-103.623624	33.376733	4292 ft (-4)	N/A
3	L-14417- POD1	NM WW	PEARCE TRUST	Other	0	N/A	-103.627259	33.381305	4297 ft (+2)	N/A
4	L-06235	NM WW	CACTUS DRILLING CORP	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	90	11/6/1967	-103.625813	33.374945	4294 ft (-2)	N/A
5	L-06242	NM WW	SHARP DRILLING COMPANY	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	100	11/13/1967	-103.626913	33.374046	4294 ft (-2)	N/A
6	USGS- 332252103 370401	WW USGS	USGS	Not Reported	0	N/A	-103.619676	33.382885	4286 ft (-10)	N/A
7	USGS- 332217103 375701	WW USGS	USGS	Not Reported	130	N/A	-103.634677	33.376 49 6	4299 ft (+4)	N/A
8	L-06098	NM WW	TRI-SERVICE DRILLING COMPANY	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	100	1/25/1967	-103.621474	33.371307	4289 ft (-7)	N/A
9	L-10567	NM WW	YATES PETROLEUM	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	130	6/3/1996	-103.635535	33.379471	4303 ft (+7)	N/A
10	L-14416- POD1	NM WW	PEARCE TRUST	Other	0	N/A	-103.626328	33.389386	4302 ft (+7)	N/A
11	L-06249	NM WW	M G F DRILLING COMPANY	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	105	12/24/1967	-103.638785	33.37856	4305 ft (+10)	N/A
12	L-05393	NM WW	LYMAN GRAHAM	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	105	5/20/1964	-103.612835	33. 378543	4275 ft (-20)	N/A
13	L-12920- POD1	NM WW	MCVAY DRILLING COMPANY	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	75	5/18/1967	-103.630164	33.3 8 9459	4304 ft (+9)	N/A
14	L-06860	NM WW	L A RANCH	72-12-1 LIVESTOCK WATERING	85	10/2/1971	-103.611757	33.379424	4273 ft (-23)	N/A
15	USGS- 332220103 363401	WWUSGS	USGS	Not Reported	100	N/A	-103.611065	33.374274	4275 ft (-20)	N/A

Water Well Details

\mathcal{D}	BANKS
\triangleright	ENVIRONMENTAL DATA A DIVISION OF THE BANKS GROUP

Map ID	Source ID	Dataset	Owner of Well	Type of Well	Depth Drilled	Completion Date	Longitude	Latitude	Elevation	Driller's Logs
16	L-11791	NM WW	PATTERSON DRILLING	72-12-1 PROSPECTI NG OR DEVELOPM ENT OF NATURAL	0	N⁄A	-103.63339	33.366758	4297 ft (+2)	N/A
17	L-14415- POD1	NM WW	PEARCE TRUST	Conter 72-12-1	0	N/A	-103.609887	33.383097	4270 ft (-25)	N/A
18	L-05493	NM WW	TRI SERVICE DRILLING CO.	PROSPECTI NG OR DEVELOPM ENT OF NATURAL RESOURCE	160	10/15/1964	-103.61177	33,386684	4276 ft (-19)	N/A

Well Summary

Water Well Dataset	# of Wells
NM WW	15
WW USGS	3
Total Count	18

Dataset Descriptions and Sources

Dataset	Source	Dataset Description	Update Schedule	Data Requested	Data Obtained	Data Updated	Source Updated
NM WW - New Mexico Water Wells	New Mexico Office of the State Engineer	This WATERS dataset contains all groundwater records and water rights applications compiled by New Mexico Office of the State Engineer (OSE). OSE is in the process of digitizing all records, all wells have not yet been plotted.	Quarterly	03/01/2018	03/01/2018	03/01/2018	02/15/2018
NM WW HIST - New Mexico Historical Water Wells	New Mexico Office of the State Engineer	This dataset contains all groundwater records found at the New Mexico Office of the State Engineer Water Rights Division district office. Groundwater rights are administered and filed at the district level: Albuquerque (District I), Roswell (District II),		N/A	N/A	N/A	N/A
WW USGS - USGS Water Wells	U.S. Geological Survey	This dataset contains groundwater well records from the U.S. Geological Survey.	Semi- annually	11/16/2017	11/16/2017	11/19/2017	11/16/2017

Disclaimer

The Banks Environmental Data Water Well Report was prepared from existing state water well databases and/or additional file data/records research conducted at the state agency and the U.S. Geological Survey. Banks Environmental Data has performed a thorough and diligent search of all groundwater well information provided and recorded. All mapped locations are based on information obtained from the source. Although Banks performs quality assurance and quality control on all research projects, we recognize that any inaccuracies of the records and mapped well locations could possibly be traced to the appropriate regulatory authority or the actual driller. It may be possible that some water well schedules and logs have never been submitted to the regulatory authority by the water driller and, thus, may explain the possible unaccountability of privately drilled wells. It is uncertain if the above listing provides 100% of the existing wells within the area of review. Therefore, Banks Environmental Data cannot fully guarantee the accuracy of the data or well location(s) of those maps and records maintained by the regulatory authorities. Photographic Documentation

.

1920 W Villa Maria, Ste. 205 Bryan, TX 77807 (979) 324-2139 www.teamtimberwolf.com

PHOTOGRAPHIC LOG

Project No.:	STATE OG SWD NO. 2	Client:	Jay Management Company, LLC
Project Name:	C-108	Site Location:	Lea County, New Mexico
Task Description: Photo No.:	Water Well Sampling Event	Date:	03/12/2018
1 Direction: Northwest Comments: View of water well 1 located at the State OG SWD No. 2. Note: The well was not sampled; the well was welded shut (sealed).			
Photo No.: 2 Direction: West Comments: View of water well 6. Note: Water was not sampled due to no access.			

1920 W Villa Maria, Ste. 205 Bryan, TX 77807 (979) 324-2139 www.teamtimberwolf.com

PHOTOGRAPHIC LOG

Project No.:	STATE OG SWD NO. 2	Client:	Jay Management Company, LLC
Project Name:	C-108	Site Location:	Lea County, New Mexico
Task Description: Photo No.:	Water Well Sampling Event	Date:	03/12/2018
3 Direction: East Comments: View of water well 7. Note: Well was sampled directly from discharge pipe.			
Photo No.: 4 Direction:	all all	194 J.	a week and
East Comments: View of water well 9. Note: The well was not sampled; the well was welded shut (sealed).			

1920 W Villa Maria, Ste. 205 Bryan, TX 77807 (979) 324-2139 www.teamtimberwolf.com

PHOTOGRAPHIC LOG

Project No.:	STATE OG SWD NO. 2	Client:	Jay Management Company, LLC
Project Name:	C-108	Site Location:	Lea County, New Mexico
Task Description:	Water Well Sampling Event	Date:	03/12/2018
Photo No.: 5			and the second s
Direction:			
East			
Comments: View of water well 13.			
Note: Water was not sampled due to no access.			
Photo No.: 6			
	1.00		
Direction: Southeast	- 03		
Comments:			THE L
View of water well			A CARLES AND
15.			
Note: Water was			
not sampled due to no access.	or sall h		A Star
			and the second sec
			3.4
	A LANGE ME		
		and the second	
	A DECEMBER OF	ASSIS I DECE	
	1 martine		
			1 10 1 1000
	A SCOM		
	CALL COLOR	MAR A	

Laboratory Report

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Houston 6310 Rothway Street Houston, TX 77040 Tel: (713)690-4444

TestAmerica Job ID: 600-162845-1 Client Project/Site: 180006 - State OG SWD

For:

..... LINKS

Review your project results through

Total Access

Have a Question?

www.testamericainc.com

Visit us at:

Ask

he

Expert

Timberwolf Environmental LLC 1920 W. Vill Maria Suite 305-2 Box 205 Bryan, Texas 77807

Attn: Accounts Payable

Dean a Jonen

Authorized for release by: 3/20/2018 6:57:26 PM

Dean Joiner, Project Manager II (713)690-4444 dean.joiner@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Method Summary	4
Sample Summary	5
Client Sample Results	6
Definitions/Glossary	8
Surrogate Summary	9
QC Sample Results	10
Default Detection Limits	16
QC Association Summary	17
Lab Chronicle	20
Certification Summary	21
Chain of Custody	22
Receipt Checklists	24

Job ID: 600-162845-1

Laboratory: TestAmerica Houston

Narrative

Job Narrative 600-162845-1

Comments

No additional comments.

Receipt

The samples were received on 3/14/2018 9:23 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.9° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

Method(s) 6010B: The serial dilution performed for the following sample associated with batch 234414 was outside control limits for Potassium at 20% recovery: (600-162845-A-1-E SD)

Method(s) 6010B: The method blank for Prep Batch 234286 contained Sodium above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Industrial Hygiene

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Method Summary

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL HOU
TX 1005	Texas - Total Petroleum Hydrocarbon (GC)	TCEQ	TAL HOU
300.0	Anions, Ion Chromatography	MCAWW	TAL HOU
6010B	Inductively Coupled Plasma - Atomic Emission Spectrometry	SW846	TAL HOU
7470A	Mercury in Liquid Waste (Manual Cold Vapor Technique)	SW846	TAL HOU
2320B-1997	Alkalinity, Total - SM Online, 2011	SM-Online	TAL HOU
9040B	На	SW846	TAL HOU
9050A	Conductivity, Specific Conductance	SW846	TAL HOU
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL HOU

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SM = "Standard Methods For The Examination Of Water And Wastewater",

SM-Online = Standard Methods Online

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TCEQ = Texas Commission of Environmental Quality

Laboratory References:

TAL HOU = TestAmerica Houston, 6310 Rothway Street, Houston, TX 77040, TEL (713)690-4444

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
600-162845-1	State OG 7 WW	Water	03/13/18 08:40	03/14/18 09:23	
600-162845-2	State NBN 7 WW	Water	03/13/18 09:00	03/14/18 09:23	
					5

Client Sample ID: State OG 7 WW

Date Collected: 03/13/18 08:40 Date Received: 03/14/18 09:23

Total Dissolved Solids

Lab Sample ID: 600-162845-1 Matrix: Water

6

Method: 8260B - Volatile Organic Analyte	•	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00018		0.0010	0.00018	mg/L			03/15/18 15:34	
Ethylbenzene	0.00021		0.0010	0.00021	mg/L			03/15/18 15:34	1
Toluene	0.00020		0.0010	0.00020	mg/L			03/15/18 15:34	1
Xylenes, Total	0.00037		0.0020	0.00037	-			03/15/18 15:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	119		50 - 134					03/15/18 15:34	
Dibromofluoromethane	115		62 - 130					03/15/18 15:34	;
Toluene-d8 (Surr)	118		70 <u>-</u> 1 <i>3</i> 0					03/15/18 15:34	·
4-Bromofluorobenzene	119		67 - 139					03/15/18 15:34	1
Method: TX 1005 - Texas - Total	Petroleum Hyd	rocarbon (GC)						
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12	0.71	U	1.7	0.71	mg/L		03/16/18 11:02	03/17/18 00:04	-
>C12-C28	0.82	U	1.7	0.82	mg/L		03/16/18 11:02	03/17/18 00:04	1
>C28-C35	0.82	U	1.7	0.82	mg/L		03/16/18 11:02	03/17/18 00:04	1
C6-C35	0.71	U	1.7	0.71	mg/L		03/16/18 11:02	03/17/18 00:04	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	90		70 - 130				03/16/18 11:02	03/17/18 00:04	1
Method: 300.0 - Anions, Ion Chro	omatography								
Analyte		Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	120		10	1.3	mg/L			03/16/18 14:12	25
Sulfate	130		13	2.4	mg/L			03/16/18 14:12	25
Method: 6010B - Inductively Cou	pled Plasma -	Atomic Em	ission Spectro	ometry - D	issolved				
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0055	J	0.010	0.0029	mg/L		03/19/18 13:06	03/20/18 12:30	1
Barium	0.060		0.020	0.00053	mg/L		03/19/18 13:06	03/20/18 12:30	1
Cadmium	0.00028	U	0.0050	0.00028	mg/L		03/19/18 13:06	03/20/18 12:30	1
Calcium	110		1.0	0.024	mg/L		03/19/18 13:06	03/20/18 12:30	1
Chromium	0.0016	U	0.010	0.0016	mg/L		03/19/18 13:06	03/20/18 12:30	1
Lead	0.0022	U	0.010	0.0022	mg/L		03/19/18 13:06	03/20/18 12:30	1
Magnesium	14		1.0	0.056	mg/L		03/19/18 13:06	03/20/18 12:30	1
Potassium	2.1		1.0	0.037	mg/L		03/19/18 13:06	03/20/18 12:30	1
Selenium	0.0071	J	0.040	0.0029	mg/L		03/19/18 13:06	03/20/18 12:30	1
Silver	0.0013	U	0.010	0.0013	mg/L		03/19/18 13:06	03/20/18 12:30	1
Sodium	41	в	1.0	0.021	mg/L		03/19/18 13:06	03/20/18 14:29	1
Method: 7470A - Mercury in Liqu									
Analyte		Qualifier	MQL (Adj)		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000082	U	0,00020	0.000082	mg/L		03/19/18 11:46	03/19/18 14:20	
General Chemistry									
Analyte		Qualifier	MQL (Adj)		Unit	D	Prepared	Analyzed	Dil Fac
Bicarbonate Alkalinity as CaCO3	130		20		mg/L			03/19/18 14:26	1
Carbonate Alkalinity as CaCO3	20	U	20		mg/L			03/19/18 14:26	1
pH	7.7	HF	0.01	0.01				03/19/18 12:49	1
	000		2.0	20	umhos/cm			02/10/10 15.45	1
pecific Conductance	860		2.0	2.0	unnoscum			03/19/18 15:45	

03/15/18 15:09

10

690

10 mg/L

1

Client Sample ID: State NBN 7 WW

Date Collected: 03/13/18 09:00 Date Received: 03/14/18 09:23

Samzene 0.00016 U 0.0010 0.00017 0.00110 0.00016 mgL 0.00151 0.0011 0.00017 mgL 0.00151 0.00151 0.00151 0.00151 0.00151 0.00151 0.00151 0.00151 0.00150 0.00170 0.0017011100 0.017118 0.0317118 0.0317118 0.00	Method: 8260B - Volatile Organio	•	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Oblume 0.00020 U 0.0010 0.00020 mg/L 0.001111111111111111111111111111111111	Benzene	0.00018	U	0.0010	0.00018	mg/L			03/15/18 15:58	1
ytenes, Total 0.00037 U 0.00037 mg/L 0.931151115.58 umrogate SrRecovery Qualifier Limits Prepared Analyzed QUIS /1515 55.58 SubmonBucometanee 107 62.139 QUIS /1518 15.58 QUIS /1518 15.58 SubmonBucometanee 122 67.7.139 QUIS /1518 15.58 QUIS /1518 15.58 SubmonBucometanee 122 67.7.139 QUIS /1518 15.58 QUIS /1518 15.58 SubmonBucometanee 122 67.7.139 QUIS /1518 15.58 QUIS /1518 15.58 SubmonBucometanee 122 67.7 18 QUIS /1518 15.58 QUIS /1518 15.58 SubmonBucometanee 122 67.4 U 18 QUIS /1518 11.52 QUIS /1518 11.52 SubmonBucometanee 0.05 18 QUIS /1518 11.52 QUIS /1518 11.52 QUIS /1518 11.52 C12.028 0.96 1.8 0.96 mpl. QUIS /1518 11.52 QUIS /1518 11.52 SubmonBucometanee SubmonBucometanee MGL (Adj) SDL Unit Prepared Analyzed DIF /	thylbenzene			0.0010	0.00021	mg/L			03/15/18 15:58	1
Singate Singate Limits Prepared Analyzed DIFs 2:Dichloroethane-Of (Surr) 119 50:134 03:1519:15:59 03:1519:1519:15:59 03:1519:1519:1519 03:1519:1519:1519	oluene	0.00020	U	0.0010	0.00020	mg/L			03/15/18 15:58	1
22.Dickboroethane-ofd (Surr) 119 50 - 134 0.3715/16 15.69 binomolluoromethane 107 62 - 130 0.3715/16 15.69 binomolluorobenzene 122 67 - 139 0.3715/16 15.69 Brannolluorobenzene 122 67 - 139 0.3715/16 15.69 Bethod: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC) Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed DIF Fa 62:12 0.74 1.8 0.95 mgl. 0.3716/16 01.37 C	ylenes, Total	0.00037	U	0.0020	0.00037	mg/L			03/15/18 15:58	1
bit 107 62 . 130 03715716 15.89 obuene-de (Surr) 119 72 . 130 03715716 15.89 Asamanduarbameme 122 67 . 139 03715716 15.89 Asamanduarbameme 122 67 . 139 03715716 15.89 Asamanduarbameme 122 67 . 139 03715716 15.89 Asamanduarbameme 120 0.74 0 03715716 15.89 Astronomus 0.3315717 15.03 03715716 15.89 03715716 15.89 Astronomus 0.3315717 15.03 03715716 15.89 03715716 15.89 Astronomus 0.3315717 15.03 03715716 00.37 03715716 00.37 C12-028 0.86 U 1.8 0.86 mg/L 0316716 11.02 03171718 00.37 C22-025 0.86 U 1.8 0.86 mg/L 03175718 00.37 Astronomus Sincervery Qualifier Limits Prepared Analyzed C22-025 0.771800.037 03716718 00.37 03716718 00.37 0471618 00.00 Astrooons 0.0011 0.31	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
bitementionemethane 107 62.130 0371571615.89 oblane-d6 (Sum) 119 70.130 0371571615.89 Aemofluxobuergene 122 67.139 0371571615.89 Aethod: XX 1005 - Texas - Total Petroleum Hydrocarbon (GC) Diffe Diffe Analyzed Diffe Aethod: XX 1005 - Texas - Total Petroleum Hydrocarbon (GC) Unit D Prepared Analyzed Diffe GC22 0.86 U 1.8 0.86 mgL 031678110.20 031778100.37 C226.235 0.86 U 1.8 0.86 mgL 031678110.20 031778100.37 turogate 56Recovery Qualifier Limits Prepared Analyzed Diffe turogate 56Recovery Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Diffe turogate 56Recovery Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Diffe turogate 56 70.130<	2-Dichloroethane-d4 (Surr)	119		50 - 134					03/15/18 15:58	1
Baromitication 122 67.139 03/15/18 15.98 Aethod: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC) Mol (Adj) SDL Unit D Prepared Analyzed DII Fe 56:12 0.74 U 1.8 0.46 mgL 03/16/18 11:02 03/17/18 00.37 03/16/18 11:02 03/17/18 00.37 03/16/18 01:02 03/17/18 00.37 03/16/18 01:02 03/17/18 00.37 03/16/18 01:02 03/17/18 00.37 03/16/18 01:02 03/17/18 00.37 03/16/18 01:02 03/17/18 00.37 03/16/18 01:02 03/17/18 00.37 03/16/18 01:02 03/17/18 00.37 03/16/18 01:02 03/17/18 00.37 03/16/18 01:02 03/17/18 00.37 03/16/18 01:02 03/17/18 00.37 03/16/18 01:02 03/17/18 00.37 03/16/18 01:02 03/17/18 00.37 03/16/18 01:02 03/17/18 00.37 03/16/18 01:02 03/17/18 00.37 03/16/18 01:02 03/17/18 00.37 03/16/18 01:02 03/17/18 00.37 03/16/18 01:02 03/17/18 00.37 03/16/18 01:02 03/16/18 01:02 03/16/18 01:02 03/16/18 01:02 03/16/18 01:02 03/16/18 01:02 03/16/18 01:02 03/16/18 01:02 03/16/18 01:02 03/16/18 01:02		107		62 - 130					03/15/18 15:58	1
Alerhod: TX 1005 - Texas - Total Petroleum Hyerocarbon (GC) Mol. (Adj) SDL Unit D Prepared Analyzed DII Fa 36-012 0.74 1.8 0.74 mgl. 0.9147181102 0.91717800.37 26-012 0.86 0 1.8 0.86 mgl. 0.914611102 0.91717800.37 C28-C35 0.86 0 1.8 0.86 mgl. 0.914611102 0.91717800.37 2-6-C35 0.85 0 1.8 0.74 mgl. 0.916181102 0.91717800.37 3-6-C35 0.74 U 1.8 0.74 mgl. 0.91678178100.37 0.917678.00.37 Surrogate KRecovery Qualifier MOL (Adj) SDL Unit D Prepared Analyzed DII Fa Surlate 200 13 2.4 mgl. 0.91678181.448 2 Surlate 200 3 0.010 0.0025 mgl. 0.91678181.448 2 Surlate 200 3 0.010 0.0025 mgl.	oluene-d8 (Surr)	119		70 - 130					03/15/18 15:58	1
Natyle Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fa SG-C12 0.74 U 1.8 0.74 mg/L 0.316/18 11:02 0.317/18 00.37 C37/1718 00.37 C22-C25 0.86 U 1.8 0.86 mg/L 0.3716/18 11:02 0.317/18 00.37 C37/1718 00.37 SpC35 0.74 U 1.8 0.86 mg/L 0.3716/18 11:02 0.317/18 00.37 C37/1718 00.37 SpC35 0.74 U 1.8 0.74 mg/L 0.316/18 11:02 0.317/18 00.37 C37/1718 00.37 Surrogate S/Recovery Qualifier Limits Prepared Analyzed Dil Fa Surrogate S/Recovery Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fa Surfate 200 13 2.4 mg/L 0.316/18 14.48 2 Surfate 203/16/18 14.48 2 Surfate 203/20/18 12.36 Surfate Surfate	-Bromofluorobenzene	122		67 _ 139					03/15/18 15:58	
Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dill Fa SG-12 0.74 U 1.8 0.74 mg/L 0.316/18 11:02 0.317/18 00.37 C C22-C22 0.86 U 1.8 0.86 mg/L 0.376/18 11:02 0.317/18 00.37 C C C C 0.316/18 11:02 0.317/18 00.37 C C C C C C C C 0.316/18 11:02 0.317/18 00.37 C	lethod: TX 1005 - Texas - Total	Petroleum Hyd	rocarbon (GC)						
C12-C29 0.86 U 1.8 0.85 mg/L 03/16/18 11:02 03/17/18 00:37 C28-C35 0.74 U 1.8 0.86 mg/L 03/16/18 11:02 03/17/18 00:37 SeC35 0.74 U 1.8 0.74 mg/L 03/16/18 11:02 03/17/18 00:37 SeC35 0.74 U 1.8 0.74 mg/L 03/16/18 11:02 03/17/18 00:37 SeC35 0.74 U 1.8 0.74 mg/L 03/16/18 11:02 03/17/18 00:37 SeC35 0.74 U 1.8 0.74 mg/L 03/16/18 11:02 03/17/18 00:37 Sector mg/L 96 70 30 24 mg/L 03/16/18 14:48 2 Attacte 200 13 2.4 mg/L 03/16/18 14:48 2 Attacte 6010B - Inductively Coupled Plasma - Atomic Emission Spectrometry - Dissolved malya 03/16/18 11:02 03/16/18 12:36 03/20/18 12:36 admium 0.00051 0.00050 0.00028					SDL	Unit	D	Prepared	Analyzed	Dil Fac
C2B C3S 0.86 U 1.8 0.86 mg/L 03/16/18 11:02 03/16/18 00.37 JGC3S 0.74 U 1.8 0.74 mg/L 03/16/18 11:02 03/16/18 10.02 </td <td>6-C12</td> <td>0.74</td> <td>U</td> <td>1.8</td> <td>0.74</td> <td>mg/L</td> <td></td> <td>03/16/18 11:02</td> <td>03/17/18 00:37</td> <td></td>	6-C12	0.74	U	1.8	0.74	mg/L		03/16/18 11:02	03/17/18 00:37	
Big Casts 0.74 U 1.8 0.74 mgL 0.916/18 1.46 2 0.916/18 1.46 2 916/18 1.916/18 1.46 2 916/18 916/18 916/18 916/18 916/18 916/18 916/18 916/18 916/18	C12-C28	0.86	U	1.8	0.86	mg/L		03/16/18 11:02	03/17/18 00:37	1
Surrogete % Recovery Qualifier Limits Prepared Analyzed Dil Fa Surrogete 70 - 130 03/16/18 11.02 03/16/18 11.02 03/16/18 01.07 Dil Fa Method: 30.0 - Anions, Ion Chromatography Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fa Sulfate 200 13 2.4 mg/L 03/16/18 14.48 2 Nahyte Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fa Sulfate 200 13 2.4 mg/L 03/16/18 14.48 2 Method: 60105 Inductively Coupled Plasma - Atomic Emission Spectrometry - Dissolved Analyzed Dil Fa Inspecie 0.0052 J 0.010 0.0029 mg/L 03/19/18 13.06 03/20/18 12.36 Sartum 0.0316 U 0.010 0.024 mg/L 03/19/18 13.06 03/20/18 12.36 Saredmium 0.0015 U	·C28-C35	0.86	U	1.8	0.86	mg/L		03/16/18 11:02	03/17/18 00:37	1
Terrphenyl 96 70.130 03/16/18 11.02 03/16/18 11.02 03/17/19 00.37 Method: 300.0 - Anions, Ion Chromatography malyle Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fa Shifate 200 13 2.4 mg/L 03/16/18 14.48 2 Attaba 200 13 2.4 mg/L 03/16/18 14.48 2 Attaba 200 13 2.4 mg/L 03/16/18 14.48 2 Method: 6010B - Inductively Coupled Plasma - Atomic Emission Spectrometry - Dissolved Unit D Prepared Analyzed Dil Fa Inseric 0.0052 0.010 0.0029 mg/L 03/19/18 13.06 03/20/18 12.36 Sadium 0.0051 0.0010 0.0024 mg/L 03/19/18 13.06 03/20/18 12.36 Sadium 0.0016 0.010 0.0024 mg/L 03/19/18 13.06 03/20/18 12.36 Result 0.0016 0.010 0.0027 mg/L 03/19/18 13.06 03/20/18	C6-C35	0.74	U	1.8	0.74	mg/L		03/16/18 11:02	03/17/18 00:37	
Adethod: 200.0 - Anions, Ion Chromatography Inalyte Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fa Chloride 51 10 1.3 mg/L 03/16/18 14:48 2 Sulfate 200 13 2.4 mg/L 03/16/18 14:48 2 Aethod: 6010B - Inductively Coupled Plasma - Atomic Emission Spectrometry - Dissolved D Prepared Analyzed Dil Fa Inalyta Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fa Inalyta Result Qualifier MOL (Adj) SDL Unit D Prepared Analyzed Dil Fa Inalyta Result Qualifier MOL (Adj) SDL Unit D Prepared Analyzed Dil Fa Inalyta Result Qualifier MOL (Adj) SDL Unit D Prepared Analyzed Dil Fa Inalyta 0.0010 0.0022 <	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Natyta Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fa Shloride 51 10 1.3 mg/L 03/16/18 14.48 2 Sultate 200 13 2.4 mg/L 03/16/18 14.48 2 Alethod: 6010B - Inductively Coupled Plasma - Atomic Emission Spectrometry - Dissolved D Prepared Analyzed Dil Fa Natyte Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fa Sarlum 0.0013 0.0020 0.00053 mg/L 03/19/18 03/20/18 12.36 Sarlum 0.0016 U 0.0050 0.00024 mg/L 03/19/18 03/20/18 12.36 Sarlum 0.0016 U 0.010 0.0002 mg/L 03/19/18 13.06 03/20/18 12.36 Sarlum 0.0012 U 0.010 0.0022 mg/L 03/19/18 13.06	-Terphenyl	96		70_130				03/16/18 11:02	03/17/18 00:37	
nalyto Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fa risenic 0.0052 J 0.010 0.0029 mg/L 03/19/18 13:06 03/20/18 12:36	hloride	51		10		•				
Andrew Andrew Output Output<	Chloride Sulfate	51 200		10 13	2.4	mg/L				
admium 0.00028 U 0.0050 0.00028 mg/L 03/19/18 03/20/18 12:36 alcium 94 1.0 0.024 mg/L 03/19/18 03/20/18 12:36 hromium 0.0016 U 0.010 0.0016 mg/L 03/19/18 03/20/18 12:36 ead 0.0022 U 0.010 0.0022 mg/L 03/19/18 03/20/18 12:36 lagnesium 13 1.0 0.056 mg/L 03/19/18 03/20/18 12:36 otassium 2.6 1.0 0.0037 mg/L 03/19/18 03/20/18 12:36 otassium 2.6 1.0 0.037 mg/L 03/19/18 03/20/18 12:36 otassium 2.6 1.0 0.0013 mg/L 03/19/18 03/20/18 12:36 otassium 2.6 0.010 0.0013 mg/L 03/19/18 03/20/18 12:36 odium B 1.0 0.021 mg	hloride ulfate lethod: 6010B - Inductively Cou	51 200 upled Plasma -	Atomic Em	10 13 ission Spectro	2.4 ometry - D	mg/L issolved	D	Prepared	03/16/18 14:48	2
salcium 94 1.0 0.024 mg/L 03/19/18 13:06 03/20/18 12:36 thromium 0.0016 U 0.010 0.0016 mg/L 03/19/18 13:06 03/20/18 12:36 ead 0.0022 U 0.010 0.0022 mg/L 03/19/18 13:06 03/20/18 12:36 tagnesium 13 1.0 0.056 mg/L 03/19/18 13:06 03/20/18 12:36 totassium 2.6 1.0 0.037 mg/L 03/19/18 13:06 03/20/18 12:36 totassium 2.6 1.0 0.037 mg/L 03/19/18 13:06 03/20/18 12:36 totassium 0.0048 J 0.040 0.0029 mg/L 03/19/18 13:06 03/20/18 12:36 totassium 0.0013 U 0.010 0.0013 mg/L 03/19/18 13:06 03/20/18 12:36 toodium 64 B 1.0 0.021 mg/L 03/19/18 13:06 03/20/18 12:36 toodium 64 B 1.0 0.021 mg/L 03/19/18 13:06 03/20/18 12:36 toodium 64 B 1.0 <th< td=""><td>chloride sulfate Nethod: 6010B - Inductively Cou malyte</td><td>51 200 upled Plasma - Result</td><td>Atomic Em Qualifier</td><td>10 13 ission Spectro MQL (Adj)</td><td>2.4 ometry - D SDL</td><td>mg/L issolved Unit</td><td> D</td><td></td><td>03/16/18 14:48 Analyzed</td><td>2: Dil Fa</td></th<>	chloride sulfate Nethod: 6010B - Inductively Cou malyte	51 200 upled Plasma - Result	Atomic Em Qualifier	10 13 ission Spectro MQL (Adj)	2.4 ometry - D SDL	mg/L issolved Unit	D		03/16/18 14:48 Analyzed	2: Dil Fa
Internation 0.0016 U 0.010 0.0016 mg/L 0.3/19/18 13:06 0.3/20/18 12:36 ead 0.0022 U 0.010 0.0022 mg/L 0.3/19/18 13:06 0.3/20/18 12:36 tagnesium 13 1.0 0.056 mg/L 0.3/19/18 13:06 0.3/20/18 12:36 totassium 2.6 1.0 0.037 mg/L 0.3/19/18 13:06 0.3/20/18 12:36 ielenium 0.0048 J 0.040 0.0029 mg/L 0.3/19/18 13:06 0.3/20/18 12:36 idver 0.0013 U 0.010 0.0013 mg/L 0.3/19/18 13:06 0.3/20/18 12:36 idotium 64 B 1.0 0.021 mg/L 0.3/19/18 13:06 0.3/20/18 12:36 idotium 64 B 1.0 0.021 mg/L 0.3/19/18 13:06 0.3/20/18 14:42 Method: 7470A - Mercury in Liquid Was	chloride iulfate Method: 6010B - Inductively Cou inalyte irsenic	51 200 upled Plasma - Result 0.0052	Atomic Em Qualifier	10 13 ission Spectro MQL (Adj) 0.010	2.4 Dimetry - D SDL 0.0029	mg/L issolved Unit mg/L	D	03/19/18 13:06	03/16/18 14:48 Analyzed 03/20/18 12:36	2: Dil Fa
ead 0.0022 U 0.010 0.0022 mg/L 03/19/18 13:06 03/20/18 12:36 lagnesium 13 1.0 0.056 mg/L 03/19/18 13:06 03/20/18 12:36 lotassium 2.6 1.0 0.037 mg/L 03/19/18 13:06 03/20/18 12:36 lelenium 0.0048 J 0.040 0.0029 mg/L 03/19/18 13:06 03/20/18 12:36 idver 0.0013 U 0.010 0.0013 mg/L 03/19/18 13:06 03/20/18 12:36 idver 0.0013 U 0.010 0.0013 mg/L 03/19/18 13:06 03/20/18 12:36 idodum 64 B 1.0 0.021 mg/L 03/19/18 13:06 03/20/18 12:36 idodum 64 B 1.0 0.021 mg/L 03/19/18 13:06 03/20/18 12:36 idodum Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fa idcarbonate Alkalinity as CaCO3 160 20 </td <td>Chloride Sulfate Method: 6010B - Inductively Cou Inalyte Irsenic Sarium</td> <td>51 200 upled Plasma - Result 0.0052 0.031</td> <td>Atomic Em Qualifier J</td> <td>10 13 ission Spectro MQL (Adj) 0.010 0.020</td> <td>2.4 Demetry - D SDL 0.0029 0.00053</td> <td>mg/L issolved Unit mg/L mg/L</td> <td> D</td> <td>03/19/18 13:06 03/19/18 13:06</td> <td>03/16/18 14:48 Analyzed 03/20/18 12:36 03/20/18 12:36</td> <td>2 Dil Fa</td>	Chloride Sulfate Method: 6010B - Inductively Cou Inalyte Irsenic Sarium	51 200 upled Plasma - Result 0.0052 0.031	Atomic Em Qualifier J	10 13 ission Spectro MQL (Adj) 0.010 0.020	2.4 Demetry - D SDL 0.0029 0.00053	mg/L issolved Unit mg/L mg/L	D	03/19/18 13:06 03/19/18 13:06	03/16/18 14:48 Analyzed 03/20/18 12:36 03/20/18 12:36	2 Dil Fa
Index Index <th< td=""><td>Chloride Sulfate Nethod: 6010B - Inductively Cou Inalyte Irsenic Sarium Sadmium</td><td>51 200 upled Plasma - Result 0.0052 0.031 0.00028</td><td>Atomic Em Qualifier J</td><td>10 13 ission Spectro MQL (Adj) 0.010 0.020 0.0050</td><td>2.4 Demetry - D SDL 0.0029 0.00053 0.00028</td><td>mg/L issolved Unit mg/L mg/L mg/L</td><td> D</td><td>03/19/18 13:06 03/19/18 13:06 03/19/18 13:06</td><td>03/16/18 14:48 Analyzed 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36</td><td>2: Dil Fa</td></th<>	Chloride Sulfate Nethod: 6010B - Inductively Cou Inalyte Irsenic Sarium Sadmium	51 200 upled Plasma - Result 0.0052 0.031 0.00028	Atomic Em Qualifier J	10 13 ission Spectro MQL (Adj) 0.010 0.020 0.0050	2.4 Demetry - D SDL 0.0029 0.00053 0.00028	mg/L issolved Unit mg/L mg/L mg/L	D	03/19/18 13:06 03/19/18 13:06 03/19/18 13:06	03/16/18 14:48 Analyzed 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36	2: Dil Fa
Name No N	Chloride Sulfate Nethod: 6010B - Inductively Cou Inalyte Insenic Sarium Sadmium Salcium	51 200 upled Plasma - Result 0.0052 0.031 0.00028 94	Atomic Em Qualifier J	10 13 ission Spectro MQL (Adj) 0.010 0.020 0.0050 1.0	2.4 pometry - D SDL 0.0029 0.00053 0.00028 0.024	mg/L issolved Unit mg/L mg/L mg/L mg/L	D	03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06	03/16/18 14:48 Analyzed 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36	29 Dil Fa
Outbound Discontinuit Discontinuit O <th< td=""><td>Chloride Sulfate Nethod: 6010B - Inductively Cou Inalyte Insenic Barium Barium Barium Balcium Chromium</td><td>51 200 upled Plasma - Result 0.0052 0.031 0.00028 94 0.0016</td><td>Atomic Em Qualifier J U</td><td>10 13 ission Spectro MQL (Adj) 0.010 0.0050 1.0 0.010</td><td>2.4 Dimetry - D SDL 0.0029 0.00053 0.00028 0.024 0.0016</td><td>mg/L issolved Unit mg/L mg/L mg/L mg/L mg/L</td><td> D</td><td>03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06</td><td>03/16/18 14:48 Analyzed 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36</td><td>2: Dil Fa</td></th<>	Chloride Sulfate Nethod: 6010B - Inductively Cou Inalyte Insenic Barium Barium Barium Balcium Chromium	51 200 upled Plasma - Result 0.0052 0.031 0.00028 94 0.0016	Atomic Em Qualifier J U	10 13 ission Spectro MQL (Adj) 0.010 0.0050 1.0 0.010	2.4 Dimetry - D SDL 0.0029 0.00053 0.00028 0.024 0.0016	mg/L issolved Unit mg/L mg/L mg/L mg/L mg/L	D	03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06	03/16/18 14:48 Analyzed 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36	2: Dil Fa
Internation Oxford o	Chloride Sulfate Method: 6010B - Inductively Cou Inalyte Insenic Barium Badmium Balcium Shromium ead	51 200 upled Plasma - Result 0.0052 0.031 0.00028 94 0.0016 0.0022	Atomic Em Qualifier J U	10 13 ission Spectro MQL (Adj) 0.010 0.020 0.0050 1.0 0.010 0.010	2.4 5 metry - D SDL 0.0029 0.00053 0.00028 0.024 0.0016 0.0022	mg/L issolved Unit mg/L mg/L mg/L mg/L mg/L mg/L	D	03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06	Analyzed 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36	2: Dil Fa
Andium 64 B 1.0 0.021 mg/L 03/19/18 13:06 03/20/18 14:42 Method: 7470A - Mercury in Liquid Waste (Manual Cold Vapor Technique) - Dissolved (malyte Dissolved Prepared Analyzed Dil Fa Method: 7470A - Mercury in Liquid Waste (Manual Cold Vapor Technique) - Dissolved (malyte NQL (Adj) SDL Unit D Prepared Analyzed Dil Fa Method: 0.000082 U 0.00020 0.000082 mg/L 03/19/18 12:45 03/19/18 14:26 General Chemistry malyte Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fa General Chemistry malyte Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fa General Chemistry malyte Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fa General Chemistry malyte Qualifier MQL (Adj) SDL Unit	Chloride Sulfate Aethod: 6010B - Inductively Cou Inalyte Irsenic Sarium Sadmium Salcium Chromium ead Magnesium	51 200 upled Plasma - Result 0.0052 0.031 0.0028 94 0.0016 0.0022 13	Atomic Em Qualifier J U	10 13 ission Spectro MQL (Adj) 0.010 0.020 0.0050 1.0 0.010 0.010 1.0	2.4 5 metry - D SDL 0.0029 0.00053 0.00028 0.024 0.0016 0.0022 0.056	mg/L issolved Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D	03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06	Analyzed 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36	2: Dil Fa
Method: 7470A - Mercury in Liquid Waste (Manual Cold Vapor Technique) - Dissolved Inalyte Dissolved Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fa Mercury 0.000082 0.00020 0.00082 mg/L 03/19/18 12:45 03/19/18 12:45 03/19/18 12:45 03/19/18 14:26 General Chemistry Imalyte Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fa General Chemistry Imalyte Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fa Scarbonate Alkalinity as CaCO3 160 20 20 mg/L 03/19/18 14:33 03/19/18 14:33 Carbonate Alkalinity as CaCO3 20 U 20 20 mg/L 03/19/18 12:56 H 7.9 HF 0.01 0.01 SU 03/19/18 12:56 Specific Conductance 850 2.0 2.0 umbos/cm 03/19/18 15:45	Chloride Sulfate Aethod: 6010B - Inductively Cou Inalyte Irsenic Barium Cadmium Calcium Chromium ead Magnesium Potassium	51 200 upled Plasma - Result 0.0052 0.031 0.0028 94 0.0016 0.0022 13 2.6	Atomic Em Qualifier J U U U	10 13 ission Spectro MQL (Adj) 0.010 0.020 0.0050 1.0 0.010 0.010 1.0 1.0 1.0	2.4 Dimetry - D SDL 0.0029 0.00053 0.00028 0.024 0.0016 0.0022 0.056 0.037	mg/L issolved Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D	03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06	Analyzed 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36	25 Dil Fat
AnalyteResultQualifierMQL (Adj)SDLUnitDPreparedAnalyzedDil FaMercury0.000082U0.000200.000082mg/L03/19/18 12:4503/19/18 14:26General Chemistry unalyteResultQualifierMQL (Adj)SDLUnitDPreparedAnalyzedDil FaSicarbonate Alkalinity as CaCO31602020mg/L03/19/18 14:3303/19/18 14:3303/19/18 14:3303/19/18 14:33Sarbonate Alkalinity as CaCO320U2020mg/L03/19/18 14:3303/19/18 14:33Sicarbonate Alkalinity as CaCO37.9HF0.010.01SU03/19/18 12:56Specific Conductance8502.02.02.0umhos/cm03/19/18 15:45	Chloride Sulfate Aethod: 6010B - Inductively Cou Inalyte Insenic Barium Calcium Chromium ead Magnesium Potassium Selenium	51 200 upled Plasma - Result 0.0052 0.031 0.00028 94 0.0016 0.0022 13 2.6 0.0048	Atomic Em Qualifier J U U U J	10 13 ission Spectro MQL (Adj) 0.010 0.0050 1.0 0.010 0.010 1.0 1.0 1.0 0.040	2.4 5000000000000000000000000000000000000	mg/L issolved Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D	03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06	Analyzed 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36	25 Dil Fac
Mercury 0.000082 U 0.00020 0.000082 mg/L 03/19/18 12:45 03/19/18 14:26 General Chemistry Analyte Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fa Bicarbonate Alkalinity as CaCO3 160 20 20 mg/L 03/19/18 14:33 03/19/18 14:33 03/19/18 14:33 03/19/18 14:33 03/19/18 14:33 03/19/18 14:33 03/19/18 14:33 03/19/18 14:33 03/19/18 14:33 03/19/18 14:33 03/19/18 12:56 03/19/18 12:56 03/19/18 12:56 03/19/18 12:56 03/19/18 12:56 03/19/18 12:56 03/19/18 15:45 03/19/18 15	Chloride Sulfate Method: 6010B - Inductively Cou Analyte Arsenic Barium Cadmium Cadmium Calcium Chromium Lead Magnesium Selenium Selenium	51 200 upled Plasma - Result 0.0052 0.031 0.00028 94 0.0016 0.0022 13 2.6 0.0048 0.0013	Atomic Em Qualifier J U U U U U	10 13 ission Spectro MQL (Adj) 0.010 0.020 0.0050 1.0 0.010 1.0 1.0 1.0 1.0 0.040 0.010	2.4 5000000000000000000000000000000000000	mg/L issolved Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D	03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06	Analyzed 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36	25 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
General Chemistry AnalyteResultQualifierMQL (Adj)SDLUnitDPreparedAnalyzedDil FaBicarbonate Alkalinity as CaCO31602020mg/L03/19/18 14:33Carbonate Alkalinity as CaCO320U2020mg/L03/19/18 14:33OH7.9HF0.010.01SU03/19/18 12:56Specific Conductance8502.02.0umhos/crm03/19/18 15:45	Chloride Sulfate Method: 6010B - Inductively Cou Analyte Arsenic Barium Cadmium Cadmium Calcium Chromium Lead Magnesium Solassium Selenium Silver Sodium Method: 7470A - Mercury in Liqu	51 200 upled Plasma - Result 0.0052 0.031 0.00028 94 0.0016 0.0022 13 2.6 0.0048 0.0013 64 uid Waste (Man	Atomic Em Qualifier J U U U U J U B ual Cold Va	10 13 ission Spectro MQL (Adj) 0.010 0.020 0.0050 1.0 0.010 1.0 1.0 0.040 0.010 1.0 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 0.040 0.010 0.040 0.010 0.040 0.010 0.040 0.010 0.040 0.010 0.040 0.040 0.040 0.050 1.0 0.050 1.0 0.050 1.0 0.050 1.0 0.010 0.010 0.010 0.0050 1.0 0.010 0.010 0.010 0.0050 1.0 0.010 0.010 0.010 0.010 0.010 0.0050 1.0 0.0010 0.010 0.010 0.010 0.010 0.010 0.0040 0.0010 0.0010 0.0010 0.0040 0.0010 0.010 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	2.4 5000000000000000000000000000000000000	mg/L issolved Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06 03/19/18 13:06	Analyzed 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36	25 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fa Sicarbonate Alkalinity as CaCO3 160 20 20 mg/L 03/19/18 14:33 03/19/18 14:33 Carbonate Alkalinity as CaCO3 20 U 20 20 mg/L 03/19/18 14:33 OH 7.9 HF 0.01 0.01 SU 03/19/18 12:56 Specific Conductance 850 2.0 2.0 umhos/cm 03/19/18 15:45	Chloride Sulfate Method: 6010B - Inductively Cou Inalyte Irsenic Barium Cadmium Cadmium Calcium Chromium Read Magnesium Selenium Selenium Silver Sodium Method: 7470A - Mercury in Liqu	51 200 upled Plasma - Result 0.0052 0.031 0.00028 94 0.0016 0.0022 13 2.6 0.0048 0.0013 64 uid Waste (Man Result	Atomic Em Qualifier J U U U U J U B ual Cold Va Qualifier	10 13 ission Spectro MQL (Adj) 0.010 0.020 0.0050 1.0 0.010 1.0 0.010 1.0 0.040 0.010 1.0 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.050 1.0 0.040 0.040 0.040 0.040 0.050 0.050 1.0 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.050 1.0 0.040	2.4 5000000000000000000000000000000000000	mg/L issolved Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L ved Unit		03/19/18 13:06 03/19/18 13:06	Analyzed 03/20/18 12:36 03/20/18 12:36	25 25 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sicarbonate Alkalinity as CaCO3 160 20 20 mg/L 03/19/18 14:33 Carbonate Alkalinity as CaCO3 20 U 20 20 mg/L 03/19/18 14:33 H 7.9 HF 0.01 0.01 SU 03/19/18 12:56 Specific Conductance 850 2.0 2.0 umhos/cm 03/19/18 15:45	Chloride Sulfate Aethod: 6010B - Inductively Cou Inalyte Insenic Barium Cadmium Cadmium Calcium Chromium ead Magnesium Potassium Selenium Silver Sodium Method: 7470A - Mercury in Liqu	51 200 upled Plasma - Result 0.0052 0.031 0.00028 94 0.0016 0.0022 13 2.6 0.0048 0.0013 64 uid Waste (Man Result	Atomic Em Qualifier J U U U U J U B ual Cold Va Qualifier	10 13 ission Spectro MQL (Adj) 0.010 0.020 0.0050 1.0 0.010 1.0 0.010 1.0 0.040 0.010 1.0 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.050 1.0 0.040 0.040 0.040 0.040 0.050 0.050 1.0 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.050 1.0 0.040	2.4 5000000000000000000000000000000000000	mg/L issolved Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L ved Unit		03/19/18 13:06 03/19/18 13:06	Analyzed 03/20/18 12:36 03/20/18 12:36	25 Dil Fac
Carbonate Alkalinity as CaCO3 20 U 20 20 mg/L 03/19/18 14:33 H 7.9 HF 0.01 0.01 SU 03/19/18 12:56 specific Conductance 850 2.0 2.0 umhos/cm 03/19/18 15:45	Chloride Sulfate Method: 6010B - Inductively Cou Inalyte Irsenic Sarium Sadmium Salcium Sciencium Sciencium Selenium Selenium Selenium Method: 7470A - Mercury in Liqu Inalyte Seneral Chemistry	51 200 upled Plasma - Result 0.0052 0.031 0.00028 94 0.0016 0.0022 13 2.6 0.0048 0.0013 64 uid Waste (Man Result 0.000082	Atomic Em Qualifier J U U U U B ual Cold Va Qualifier U	10 13 ission Spectro MQL (Adj) 0.010 0.020 0.0050 1.0 0.010 1.0 0.010 1.0 0.040 0.010 1.0 1.0 0.040 0.010 1.0 0.040 0.010 0.040 0.010 1.0 0.040 0.010 0.020 0.0050 1.0 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0050 1.0 0.0010 0.000200000 0.0000000000	2.4 5000000000000000000000000000000000000	mg/L issolved Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L ved Unit mg/L		03/19/18 13:06 03/19/18 13:06	Analyzed 03/20/18 12:36 03/20/18 12:36	2: Dil Fa
H 7.9 HF 0.01 0.01 SU 03/19/18 12:56 specific Conductance 850 2.0 2.0 umhos/cm 03/19/18 15:45	Chloride Sulfate Method: 6010B - Inductively Cou Unalyte Irsenic Sarium Sadmium Salcium Sadmium Salcium Selenium Selenium Selenium Sodium Method: 7470A - Mercury in Liqu Inalyte Seneral Chemistry Inalyte	51 200 Upled Plasma - Result 0.0052 0.031 0.00028 94 0.0016 0.0022 13 2.6 0.0048 0.0013 64 Uid Waste (Man Result 0.000082	Atomic Em Qualifier J U U U U B ual Cold Va Qualifier U	10 13 ission Spectro MQL (Adj) 0.010 0.020 0.0050 1.0 0.010 1.0 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 0.040 0.020 0.040 0.020 0.040 0.0010 1.0 0.040 0.0010 0.040 0.0010 1.0 0.040 0.0010 0.040 0.0010 0.040 0.0010 0.040 0.0010 0.040 0.0010 0.0010 0.040 0.0010 0.040 0.0010 0.0010 0.040 0.0010 0.040 0.0010 0.0010 0.040 0.0010 0.040 0.0010 0.0010 0.040 0.0010 0.040 0.0010 0.0010 0.040 0.0010 0.0010 0.040 0.00020 MQL (Adj)	2.4 5000000000000000000000000000000000000	mg/L issolved Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L ved Unit Unit		03/19/18 13:06 03/19/18 13:06	Analyzed 03/20/18 12:36 03/20/18 14:42 Analyzed 03/19/18 14:26	2: Dil Fau Dil Fau Dil Fau
Specific Conductance 850 2.0 2.0 umhos/cm 03/19/18 15:45	Chloride Sulfate Method: 6010B - Inductively Cou Inalyte Insenic Sarium Sadmium Sadmium Sadmium Sadmium Salcium Salcium Sadmium Sadmium Salcium Salcium Salcium Selenium Solium Method: 7470A - Mercury in Liqu Inalyte Seneral Chemistry Inalyte Sicarbonate Alkalinity as CaCO3	51 200 upled Plasma - Result 0.0052 0.031 0.00028 94 0.0016 0.0022 13 2.6 0.0048 0.0013 64 uid Waste (Man Result 0.000082 Result	Atomic Em Qualifier J U U U U B ual Cold Va Qualifier U Qualifier	10 13 ission Spectro MQL (Adj) 0.010 0.020 0.0050 1.0 0.010 1.0 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 0.040 0.0010 1.0 0.040 0.0010 1.0 0.040 0.0010 1.0 0.040 0.0010 1.0 0.040 0.0010 1.0 0.040 0.0010 1.0 0.040 0.0010 1.0 0.040 0.0010 1.0 0.040 0.0010 1.0 0.0020 0.0040 0.0010 1.0 0.0040 0.0010 1.0 0.0010 1.0 0.0040 0.0010 1.0 0.0010 1.0 0.040 0.010 1.0 0.010 1.0 0.040 0.010 1.0 1.0 0.010 1.0 0.040 0.010 1.0 0.040 0.010 1.0 1.0 0.040 0.010 1.0 0.040 0.00020 MQL (Adj) 20	2.4 5000000000000000000000000000000000000	mg/L issolved Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L ved Unit mg/L Unit mg/L		03/19/18 13:06 03/19/18 13:06	03/16/18 14:48 Analyzed 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 14:42 Analyzed 03/19/18 03/19/18 14:26	25 Dil Fac
	Intervention of the second sec	51 200 Upled Plasma - Result 0.0052 0.031 0.00028 94 0.0016 0.0022 13 2.6 0.0048 0.0013 64 Uid Waste (Man Result 0.000082 Result 160 20	Atomic Em Qualifier J U U U U J U B ual Cold Va Qualifier U	10 13 ission Spectro MQL (Adj) 0.010 0.020 0.0050 1.0 0.010 1.0 0.010 1.0 0.040 0.010 1.0 0.020 0.020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0040 0.010 1.0 0.010 1.0 0.010 1.0 0.010 1.0 0.040 0.010 1.0 0.010 1.0 0.040 0.010 1.0 0.00020 MQL (Adj) 20 20 20 20 20	2.4 5000000000000000000000000000000000000	mg/L issolved Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L Unit mg/L Unit mg/L mg/L		03/19/18 13:06 03/19/18 13:06	03/16/18 14:48 Analyzed 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 14:42 Analyzed 03/19/18 03/19/18 14:33 03/19/18 14:33	2: Dil Fac
	Chloride Sulfate Method: 6010B - Inductively Cou Analyte Arsenic Barium Cadmium Cadmium Calcium Chromium Ead Magnesium Potassium Belenium Silver Sodium Method: 7470A - Mercury in Liqu Analyte Mercury Seneral Chemistry Inalyte Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 H	51 200 upled Plasma - Result 0.0052 0.031 0.00028 94 0.0016 0.0022 13 2.6 0.0048 0.0013 64 uid Waste (Man Result 0.000082 Result 160 20 7.9	Atomic Em Qualifier J U U U U J U B ual Cold Va Qualifier U	10 13 ission Spectro MQL (Adj) 0.010 0.020 0.0050 1.0 0.010 0.010 1.0 0.010 1.0 0.040 0.010 1.0 0.010 0.010 0.010 1.0 0.040 0.010 1.0 0.010 0.010 0.010 0.010 1.0 0.010 0.010 1.0 0.040 0.010 1.0 0.010 1.0 0.010 1.0 0.010 1.0 0.010 1.0 0.010 1.0 0.010 1.0 0.040 0.010 1.0 0.00020 MQL (Adj) 20 20 0.011 0.0010 0.00020 MQL (Adj) 0.011 0.0010 0.00020 0.00020 0.00020 0.0010 0.00020 0.00020 0.00020 0.0010 0.00020 0.00020 0.0010 0.00020 0.0010 0.00020 0.0010 0.00020 0.0010 0.00020 0.0010 0.00020 0.0010 0.0010 0.00020 0.0010 0.0010 0.00020 0.0010 0.0010 0.0010 0.00020 0.00100 0.0010 0.0010	2.4 Sometry - D SDL 0.0029 0.00053 0.0028 0.024 0.0016 0.0022 0.056 0.037 0.0029 0.0013 0.021 e) - Dissol SDL 0.000082 SDL 20 20 0.01	mg/L issolved Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L ved Unit mg/L Mg/L SU		03/19/18 13:06 03/19/18 13:06	03/16/18 14:48 Analyzed 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 12:36 03/20/18 14:33 03/19/18 14:33 03/19/18 14:33 03/19/18 14:33	2: Dil Fac

Lab Sample ID: 600-162845-2 Matrix: Water

6

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		7
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Metals		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
В	Compound was found in the blank and sample.	
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL. The data are considered valid because the absolute difference is less than the RL.	
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.	
a		

General Chemistry

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
HF	Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
D	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water

				Percent Su	rrogate Recove
		DCA	DBFM	TOL	BFB
Lab Sample ID	Client Sample ID	(50-134)	(62-130)	(70-130)	(67-139)
600-162845-1	State OG 7 WW	119	115	118	119
600-162845-2	State NBN 7 WW	119	107	119	122
LCS 600-234104/3	Lab Control Sample	123	110	112	120
LCSD 600-234104/4	Lab Control Sample Dup	127	111	112	120
MB 600-234104/6	Method Blank	115	109	117	116
Surrogate Legend					
DCA = 1,2-Dichloroethane-	-d4 (Surr)				
DBFM = Dibromofluoromet	hane				
TOL = Toluene-d8 (Surr)					
BFB = 4-Bromofluorobenze	ene				

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)

Matrix: Water

Prep Type: Total/NA

TestAmerica Job ID: 600-162845-1

Prep Type: Total/NA

Perce	nt Surrogate	Recoverv	(Acceptance	Limits)
	ine ourrogado		(1.000bmm1100	

		OTPH			
Lab Sample ID	Client Sample ID	(70-130)			
600-162845-1	State OG 7 WW	90		 	
600-162845-2	State NBN 7 WW	96			
LCS 600-234200/2-A	Lab Control Sample	98			
LCSD 600-234200/3-A	Lab Control Sample Dup	95			
MB 600-234200/1-A	Method Blank	93			
Surrogate Legend					
OTPH = o-Terphenyl			 ,		

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 600-234104/6 Matrix: Water Analysis Batch: 234104

	MB	MB							
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00018	U	0.0010	0.00018	mg/L			03/15/18 13:04	1
Ethylbenzene	0.00021	U	0.0010	0.00021	mg/L			03/15/18 13:04	1
Toluene	0.00020	U	0.0010	0.00020	mg/L			03/15/18 13:04	1
Xylenes, Total	0.00037	U	0.0020	0.00037	mg/L			03/15/18 13:04	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		50 - 134			-		03/15/18 13:04	1
Dibromofluoromethane	109		62 - 130					03/15/18 13:04	1
Toluene-d8 (Surr)	117		70 - 130					03/15/18 13:04	1
4-Bromofluorobenzene	116		67 - 139					03/15/18 13:04	1

Lab Sample ID: LCS 600-234104/3

Matrix: Water

Analysis Batch: 234104

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.0100	0.0120		mg/L		120	70 - 130	
Ethylbenzene	0.0100	0.0124		mg/L		124	70 _ 130	
Toluene	0.0100	0.0123		mg/L		123	70 - 130	
Xylenes, Total	0.0200	0.0249		mg/L		125	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	123		50 - 134
Dibromofluoromethane	110		62 - 130
Toluene-d8 (Surr)	112		70 _ 130
4-Bromofluorobenzene	120		67 - 139

Lab Sample ID: LCSD 600-234104/4 Matrix: Water

Analysis Batch: 234104

Analysis Dalch. 234104											
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.0100	0.0118		mg/L		118	70 - 130	2	20
Ethylbenzene			0.0100	0.0122		mg/L		122	70 - 130	2	20
Toluene			0.0100	0.0120		mg/L		120	70 - 130	3	20
Xylenes, Total			0.0200	0.0244		mg/L		122	70 _ 130	2	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								

Junigate	, , , , , , , , , , , , , , , , , , ,	quantition	2
1,2-Dichloroethane-d4 (Surr)	127		50 - 134
Dibromofluoromethane	111		62 - 130
Toluene-d8 (Surr)	112		70 - 130
4-Bromofluorobenzene	120		67 _ 139

Client Sample ID: Method Blank

Prep Type: Total/NA

9

Client Sample ID: Lab Control Sample Prep Type: Total/NA

....

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

9

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)

Lab Sample ID: MB 600-2342	00/1-A									Client Sa	ample ID: I		
Matrix: Water											Prep T		
Analysis Batch: 234211											Prep E	Satch:	23420
		MB			eDi	Unit		D	р.	manad	Acaba	o d	Dil Fa
Analyte	0.83	Qualifier U	MQL (Adj) 2.0							repared 6/18 11:02	Analyz 03/16/18 2		
C6-C12		-	2.0			mg/L					03/16/18 2		
>C12-C28	0.96					mg/L				6/18 11:02			
>C28-C35	0.96		2.0		0.96	mg/L				6/18 11:02	03/16/18 2		
C6-C35	0.83	U	2.0		0.83	mg/L			03/16	6/18 11:02	03/16/18 2	22.27	
	MB	MB											
Surrogate	%Recovery	Qualifier	Limits						Pr	repared	Analyz	ed	Dil Fa
o-Terphenyl	93		70 - 130					-	03/10	6/18 11:02	03/16/18	22:27	
Lab Sample ID: LCS 600-2342	200/2-A							Cli	ient	Sample	ID: Lab Co	ontrol S	Sample
Matrix: Water											Prep T	ype: To	otal/N/
Analysis Batch: 234211											Prep E	Batch:	234200
-			Spike	LCS	LCS						%Rec.		
Analyte			Added	Result	Qua	ifier	Unit		D	%Rec	Limits		
C6-C12			33.3	27.3			mg/L			82	75 - 125		
>C12-C28			33.3	35.7			mg/L			107	75 _ 125		
C6-C35			66.7	63.0			mg/L			95	75 - 125		
	LCS LCS												
Surrogate	%Recovery Qua	lifier	Limits										
o-Terphenyl	98		70 - 130										
Lab Sample ID: LCSD 600-23	4200/3-A						Clie	nt S	Sam	ple ID: L	ab Contro		
Matrix: Water											Prep T	ype: To	otal/N/
Analysis Batch: 234211											•	Batch:	
			Spike	LCSD							%Rec.		RP
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limi
C6-C12			33.3	26.6			mg/L			80	75 - 125	2	20
>C12-C28			33.3	36.3			mg/L			109	75 - 125	2	
C6-C35			66.7	62.9			mg/L			94	75 - 125	0	20
	LCSD LCS	D											
Surrogate	%Recovery Qua	lifier	Limits										
o-Terphenyl	95		70 - 130										
lethod: 300.0 - Anions, lo	on Chromatogr	aphy											
Lab Sample ID: MB 600-2341	98/4									Client Sa	ample ID: I		
Matrix: Water											Prep T	ype: To	otal/N/
A													

Analysis Batch: 234198

	MB	MB							
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	0.053	U	0.40	0.053	mg/L			03/16/18 12:24	1
Sulfate	0.096	U	0.50	0.096	mg/L			03/16/18 12:24	1

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

9

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 600-234198/5 Matrix: Water Analysis Batch: 234198					Client	Sample	ID: Lab Control Sample Prep Type: Total/NA
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloride	20.0	19.1		mg/L		96	90 - 110
Sulfate	20.0	19.7		mg/L		98	90 - 110

Method: 6010B - Inductively Coupled Plasma - Atomic Emission Spectrometry

Lab Sample ID: MB 600-234286/1-C								Clien	t Sample ID: Meth	
Matrix: Water									Prep Type: D	
Analysis Batch: 234414									Prep Batch	: 23432
		MB								
Analyte		Qualifier	MQL (Adj)		DL Un	-	D	Prepare		Dil Fa
Arsenic	0.0029	U	0.010		029 mg			03/19/18 13		
Barium	0.00053	U	0.020	0.00	053 mg	/L		03/19/18 13	3:06 03/20/18 12:26	
Cadmium	0.00028	U	0.0050	0.00	028 mg	I/L		03/19/18 13	3:06 03/20/18 12:26	
Calcium	0.024	U	1.0	0.0	024 mg	ı/L		03/19/18 13	3:06 03/20/18 12:26	
Chromium	0.0016	U	0.010	0.0	016 mg	ı/L		03/19/18 13	3:06 03/20/18 12:26	
Lead	0.0022	U	0.010	0.0	022 mg	ı/L		03/19/18 13	3:06 03/20/18 12:26	
Magnesium	0.056	U	1.0	0.0	056 mg	ı/L		03/19/18 13	3:06 03/20/18 12:26	
Potassium	0.037	U	1.0	0.0	037 mg	ı/L		03/19/18 13	3:06 03/20/18 12:26	
Selenium	0.0029	U	0.040	0.0	029 mg	/L		03/19/18 13	3:06 03/20/18 12:26	
Silver	0.0013	U	0.010	0.0	013 mg	ı/L		03/19/18 13	3:06 03/20/18 12:26	
Lab Sample ID: MB 600-234286/1-C								Clien	t Sample ID: Meth	od Blan
Matrix: Water									Prep Type: D	issolve
Analysis Batch: 234414									Prep Batch	
	мв	MB							•	
Analyte	Result	Qualifier	MQL (Adj)	s	DL Un	it	D	Prepare	d Analyzed	Dil Fa
Sodium	0.0928	J	1.0	0.0	021 mg	ı/L		03/19/18 13	3:06 03/20/18 14:25	
Lab Sample ID: LCS 600-234286/2-B							с	lient Sam	ple ID: Lab Contro	l Sampl
Matrix: Water									Prep Type: D	issolve
Analysis Batch: 234414									Prep Batch	
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifie	r Unit		D %Re	c Limits	
Arsenic			1.00	1.01		mg/L		10	1 80 - 120	
Barium			1.00	1.00		mg/L		10	0 80 - 120	
Cadmium			0.500	0.504		mg/L		10	1 80 - 120	
Calcium			10.0	9.83		mg/L		9	8 80 - 120	
			1.00	0.992		mg/L		9	9 80 - 120	
Chromium				0.991		mg/L		9	9 80 - 120	
			1.00	0.991						
Lead			1.00 10.0	9.91		mg/L		9	9 80 - 120	
Lead Magnesium						-		99 10		
Chromium Lead Magnesium Potassium Selenium			10.0	9.91		mg/L		-	0 80 - 120	

Method: 6010B - Inductively Coupled Plasma - Atomic Emission Spectrometry (Continued)

Lab Sample ID: LCS 600-234286/2- Matrix: Water	2						2.001	ampie	ID: Lab Coı Prep Typ		•
									Prep Ba		
Analysis Batch: 234414			Spike	LCS	LCS				%Rec.		J7J2
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Sodium			10.0	9.99		mg/L		100	80 - 120		
Lab Sample ID: 600-162845-1 MS							<i>.</i>	liont Sa	mple ID: Sta	te OG	7 WV
Matrix: Water									Prep Typ		
Analysis Batch: 234414									Prep Ba	atch: 2	3432
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Arsenic	0.0055	J	1.00	1.04		mg/L		103	75 - 125		
Barium	0.060		1.00	1.06		mg/L		100	75 _ 125		
Cadmium	0.00028	U	0.500	0.515		mg/L		103	75 _ 125		
Calcium	110		10.0	117	4	mg/L		111	75 - 125		
Chromium	0.0016	U	1.00	0.980		mg/L		98	75 - 125		
_ead	0.0022	U	1.00	0.992		mg/L		99	75 - 125		
Magnesium	14		10.0	23.8		mg/L		99	75 _ 125		
Potassium	2.1		10.0	12.2		mg/L		101	75 - 125		
Selenium	0.0071	L	1.00	1.05		mg/L		104	75 - 125		
Silver	0.0013		0.500	0.516		mg/L		103	75 - 125		
							_				
ab Sample ID: 600-162845-1 MS							C	lient Sa	mple ID: Sta		
Matrix: Water									Prep Typ		
Analysis Batch: 234414									Prep B	atch: 2	3432
	•	Sample	Spike						%Rec.		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Sodium	41	В	10.0	51.4	4	mg/L		100	75 - 125		
ab Sample ID: 600-162845-1 DU							c	lient Sa	mple ID: Sta	te OG	7 W
Matrix: Water									Prep Typ		
Analysis Batch: 234414									Prep B	atch: 2	3432
	Sample	Sample		DU	DU				-		RP
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Lin
rsenic	0.0055	J		0.00420	J F5	mg/L				27	
Barium	0.060			0.0601		mg/L				1	
admium	0.00028	U		0.00028	U	mg/L				NC	
alcium	110			106		mg/L				0	
Chromium	0.0016	U		0.0016	U	mg/L				NC	:
ead	0.0022			0.0022	U	mg/L				NC	:
Magnesium	14			14.0		mg/L				0.6	:
Potassium	2.1			2.14		mg/L				0.5	:
Selenium	0.0071	J		0.00310	J F5	mg/L				78	:
Silver	0.0013			0.0013		mg/L				NC	:
							ſ	lient Sa	mple ID: Sta	te OG	7 W
ah Sampla ID: 600-1629/5-1 DU								nent Ja	Prep Typ		
•											
Matrix: Water											
Matrix: Water	Comple	Samela			DU				Prep B	atch: 2	
Lab Sample ID: 600-162845-1 DU Matrix: Water Analysis Batch: 234414 ^{Analyte}		Sample Qualifier			DU Qualifier	Unit	D		Prep B	RPD	3432 RPI Lim

9

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

9

Method: 7470A - Mercury in Liquid Waste (Manual Cold Vapor Technique)

Lab Sample ID: MB 600-234317/7-/	4										Client Sa	ample ID: Metho	
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 234325												Prep Batch	: 234317
		MB							_	_			
Analyte			Qualifier	MQL (Adj)			Unit		D		repared	Analyzed	Dil Fac
Mercury	0.00	0082	U	0.00020	0.00	0082	mg/L			03/1	9/18 11:46	03/19/18 13:02	1
Lab Sample ID: LCS 600-234317/8	A								CI	lient	Sample	ID: Lab Control	
Matrix: Water												Prep ⊺ype: `	
Analysis Batch: 234325				Spike	LCS	LCS						Prep Batch %Rec.	: 234317
Analyte				Added	Result	Qua	ifier	Unit		D	%Rec	Limits	
Mercury				0.00300	0.00297			mg/L		_	99	70 _ 130	
Lab Sample ID: MB 600-234286/1-1	3										Client Sa	ample ID: Metho	od Blank
Matrix: Water												Prep Type: D	issolved
Analysis Batch: 234325												Prep Batch	: 234317
		MB	MB										
Analyte	R	esult	Qualifier	MQL (Adj)		SDL	Unit		D	P	repared	Analyzed	Dil Fac
Mercury	0.00	0082	U	0.00020	0.00	0082	mg/L			03/1	9/18 11:46	03/19/18 14:18	1
Lab Sample ID: 600-162845-1 MS										С	lient San	nple ID: State C	G 7 WW
Matrix: Water												Prep Type: D	issolved
Analysis Batch: 234325												Prep Batch	: 234317
	Sample	Sam	ple	Spike	MS	MS						%Rec.	
Analyte	Result	Qual	ifier	Added	Result	Qua	ifier	Unit		D	%Rec	Limits	
Mercury	0.000082	U		0.00300	0.00303			mg/L			101	75 - 125	
Lab Sample ID: 600-162845-1 DU										С	lient Sar	nple ID: State C	
Matrix: Water												Prep Type: D	issolved
Analysis Batch: 234325												Prep Batch	
	Sample		•			DU							RPD
Analyte	Result		ifier		Result		lifier	Unit		D		RP	
Mercury	0.000082	U			0.000082	U		mg/L				N	C 20
Method: 2320B-1997 - Alkalini	ity, Tota	al - S	SM Onli	ne, 2011									
Lab Sample ID: MB 600-234340/2											Client Sa	ample ID: Metho	od Blank
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 234340													
		MB											
Analyte	Re		Qualifier	MQL (Adj)			Unit		D	P	repared	Analyzed	Dil Fac
Bicarbonate Alkalinity as CaCO3				20			mg/L					03/19/18 13:41	1
Carbonate Alkalinity as CaCO3		20	U	20		20	mg/L					03/19/18 13:41	1
Method: 9040B - pH													
Lab Sample ID: LCS 600-234341/1									CI	lient	Sample	ID: Lab Contro	Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 234341													
				Spike		LCS						%Rec.	
Analyte				Added	Result		ifier	Unit		D	%Rec	Limits	
На				7.00	7.0			SU			101	99 _ 101	

Method: 9040B - pH (Continued)

Lab Sample ID: 600-162845-1 I Matrix: Water Analysis Batch: 234341	U					Client S	ample ID: State OG Prep Type: Tot	
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
рН	7.7	HF	7.8		SU		1	1

Method: 9050A - Conductivity, Specific Conductance

Lab Sample ID: MB 600-234342/1 Matrix: Water											Client	Sample ID: Meth Prep Type:	
Analysis Batch: 234342		MВ	MB										
Analyte	R	esult	Qualifier	MQL	(Adj)		SDL	Unit		D	Prepared	Analyzed	Dil Fac
Specific Conductance		2.0	U		2.0		2.0	umho	s/cm			03/19/18 15:45	1
Lab Sample ID: LCS 600-234342/2										Clien	t Sampl	e ID: Lab Contro	l Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 234342													
-				Spike		LCS	LCS					%Rec.	
Analyte				Added		Result	Quai	ifier	Unit	D	%Rec	Limits	
Specific Conductance				10.0		9.96			umhos/c	m	100	90 - 110	
Lab Sample ID: 600-162845-1 DU											Client S	ample ID: State () G 7 WW
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 234342													
-	Sample	Sam	ple			DU	DU						RPD
Analyte	Result	Qual	lifier			Result	Qual	lifier	Unit	D		RF	D Limit
Specific Conductance	860					863			umhos/c	m		C	.1 20

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 600-234145/1 Matrix: Water											Client	Sample ID: Met Prep Type		
Analysis Batch: 234145		MB	MB											
Analyte	R		Qualifier	MQL	(Adj)		SDL	Unit		D	Prepared	Analyzed		Dil Fac
Total Dissolved Solids		10	U		10		10	mg/L				03/15/18 15:09	9	1
Lab Sample ID: LCS 600-234145/2										Clien	t Sample	e ID: Lab Contr	ol Sa	ample
Matrix: Water												Prep Type	: Tot	tal/NA
Analysis Batch: 234145														
				Spike		LCS	LCS					%Rec.		
Analyte				Added		Result	Qual	ifier	Unit	D	%Rec	Limits		
Total Dissolved Solids				1800		1650			mg/L		92	90 - 110		
Lab Sample ID: 600-162845-1 DU											Client Sa	ample ID: State	OG	7 WW
Matrix: Water												Prep Type	: Tot	tal/NA
Analysis Batch: 234145														
	Sample	Sam	ple			DU	DU							RPD
Analyte	Result	Qual	lifier			Result	Qual	ifier	Unit	D		F	RPD	Limit
Total Dissolved Solids	690					661	-		mg/L				4	10

9

Unadjusted Detection Limits

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte	MQL	MDL	Units	Method
Benzene	0.0010	0.00018	mg/L	8260B
Ethylbenzene	0.0010	0.00021	mg/L	8260B
Toluene	0.0010	0.00020	mg/L	8260B
Xylenes, Total	0.0020	0.00037	mg/L	8260B

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)

Prep: TX_1005_W_Prep

>C12-C28 2.0 0.96 mg/L TX 1005 >C28-C35 2.0 0.96 mg/L TX 1005 C6-C12 2.0 0.83 mg/L TX 1005 C6-C35 2.0 0.83 mg/L TX 1005	Analyte	MQL	MDL	Units	Method	
C6-C12 2.0 0.83 mg/L TX 1005			0.96	mg/L	TX 1005	
	>C28-C35	2.0	0.96	mg/L	TX 1005	
C6-C35 2.0 0.83 mg/L TX 1005 2.0	C6-C12	2.0	0.83	mg/L	TX 1005	
	C6-C35	2.0	0.83	mg/L	TX 1005	10

Method: 300.0 - Anions, Ion Chromatography

Analyte	MQL	MDL	Units	Method
Chloride	0.40	0.053	mg/L	300.0
Sulfate	0.50	0.096	mg/L	300.0

Method: 6010B - Inductively Coupled Plasma - Atomic Emission Spectrometry - Dissolved

Prep: 3010A

Analyte	MQL	MDL	Units	Method	
Arsenic	0.010	0.0029	mg/L	6010B	
Barium	0.020	0.00053	mg/L	6010B	
Cadmium	0.0050	0.00028	mg/L	6010B	
Calcium	1.0	0.024	mg/L	6010B	
Chromium	0.010	0.0016	mg/L	6010B	
Lead	0.010	0.0022	mg/L	6010B	
Magnesium	1.0	0.056	mg/L	6010B	
Potassium	1.0	0.037	mg/L	6010B	
Selenium	0.040	0.0029	mg/L	6010B	
Silver	0.010	0.0013	mg/L	6010B	
Sodium	1.0	0.021	mg/L	6010B	

Method: 7470A - Mercury in Liquid Waste (Manual Cold Vapor Technique) - Dissolved

Prep: 7470A

Analyte		MQL	MDL	Units	Method
Mercury		0.00020	0.000082	mg/L	7470A

General Chemistry

Analyte	MQL	MDL	Units	Method
Bicarbonate Alkalinity as CaCO3	20	20	mg/L	2320B-1997
Carbonate Alkalinity as CaCO3	20	20	mg/L	2320B-1997
pH	0.01	0.01	SU	9040B
Specific Conductance	2.0	2.0	umhos/cm	9050A
Total Dissolved Solids	10	10	mg/L	SM 2540C

TestAmerica Houston

TestAmerica Job ID: 600-162845-1

QC Association Summary

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

GC/MS VOA

Analysis Batch: 234104

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	State OG 7 WW	Total/NA	Water	8260B	-
600-162845-2	State NBN 7 WW	Total/NA	Water	8260B	
MB 600-234104/6	Method Blank	Total/NA	Water	8260B	
LCS 600-234104/3	Lab Control Sample	Total/NA	Water	8260B	
LCSD 600-234104/4	Lab Control Sample Dup	Total/NA	Water	8260B	

GC Semi VOA

Prep Batch: 234200

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	State OG 7 WW	Total/NA	Water	TX_1005_W_Pr	
600-162845-2	State NBN 7 WW	Total/NA	Water	ep TX_1005_W_Pr	-10.200 A
MB 600-234200/1-A	Method Blank	Total/NA	Water	 ep TX 1005 W Pr	
LCS 600-234200/2-A	Lab Control Sample	Total/NA	Water	ep TX_1005_W_Pr	
				ep	
LCSD 600-234200/3-A	Lab Control Sample Dup	Total/NA	Water	TX_1005_W_Pr ep	

Analysis Batch: 234211

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	State OG 7 WW	Total/NA	Water	TX 1005	234200
600-162845-2	State NBN 7 WW	Total/NA	Water	TX 1005	234200
MB 600-234200/1-A	Method Blank	Total/NA	Water	TX 1005	234200
LCS 600-234200/2-A	Lab Control Sample	Total/NA	Water	TX 1005	234200
LCSD 600-234200/3-A	Lab Control Sample Dup	Total/NA	Water	TX 1005	234200

HPLC/IC

Analysis Batch: 234198

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	State OG 7 WW	Total/NA	Water	300.0	
600-162845-2	State NBN 7 WW	Total/NA	Water	300.0	
MB 600-234198/4	Method Blank	Total/NA	Water	300.0	
LCS 600-234198/5	Lab Control Sample	Total/NA	Water	300.0	

Metals

Filtration Batch: 234286

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	State OG 7 WW	Dissolved	Water	FILTRATION	
600-162845-2	State NBN 7 WW	Dissolved	Water	FILTRATION	
MB 600-234286/1-B	Method Blank	Dissolved	Water	FILTRATION	
MB 600-234286/1-C	Method Blank	Dissolved	Water	FILTRATION	
LCS 600-234286/2-B	Lab Control Sample	Dissolved	Water	FILTRATION	
600-162845-1 MS	State OG 7 WW	Dissolved	Water	FILTRATION	
600-162845-1 DU	State OG 7 WW	Dissolved	Water	FILTRATION	

QC Association Summary

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

Metals (Continued)

Prep Batch: 234317

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	State OG 7 WW	Dissolved	Water	7470A	234286
600-162845-2	State NBN 7 WW	Dissolved	Water	7470A	234286
MB 600-234286/1-B	Method Blank	Dissolved	Water	7470A	234286
MB 600-234317/7-A	Method Blank	Total/NA	Water	7470A	
LCS 600-234317/8-A	Lab Control Sample	Total/NA	Water	7470A	
600-162845-1 MS	State OG 7 WW	Dissolved	Water	7470A	234286
600-162845-1 DU	State OG 7 WW	Dissolved	Water	7470A	234286
Prep Batch: 234323					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	State OG 7 WW	Dissolved	Water	3010A	234286
600-162845-2	State NBN 7 WW	Dissolved	Water	3010A	234286
MB 600-234286/1-C	Method Blank	Dissolved	Water	3010A	234286
LCS 600-234286/2-B	Lab Control Sample	Dissolved	Water	3010A	234286
600-162845-1 MS	State OG 7 WW	Dissolved	Water	3010A	234286
600-162845-1 DU	State OG 7 WW	Dissolved	Water	3010A	234286
Analysis Batch: 23432	5				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	State OG 7 WW	Dissolved	Water	7470A	234317
600-162845-2	State NBN 7 WW	Dissolved	Water	7470A	234317
MB 600-234286/1-B	Method Blank	Dissolved	Water	7470A	234317
MB 600-234317/7-A	Method Blank	Total/NA	Water	7470A	234317
LCS 600-234317/8-A	Lab Control Sample	Total/NA	Water	7470A	234317
600-162845-1 MS	State OG 7 WW	Dissolved	Water	7470A	234317
600-162845-1 DU	State OG 7 WW	Dissolved	Water	7470A	234317
Analysis Batch: 234414	4				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	State OG 7 WW	Dissolved	Water	6010B	234323
600-162845-1	State OG 7 WW	Dissolved	Water	6010B	234323
600-162845-2	State NBN 7 WW	Dissolved	Water	6010B	234323
600-162845-2	State NBN 7 WW	Dissolved	Water	6010B	234323
MB 600-234286/1-C	Method Blank	Dissolved	Water	6010B	234323
MB 600-234286/1-C	Method Blank	Dissolved	Water	6010B	234323
LCS 600-234286/2-B	Lab Control Sample	Dissolved	Water	6010B	234323
LCS 600-234286/2-B	Lab Control Sample	Dissolved	Water	6010B	234323
600-162845-1 MS	State OG 7 WW	Dissolved	Water	6010B	234323
600-162845-1 MS	State OG 7 WW	Dissolved	Water	6010B	234323
600-162845-1 DU	State OG 7 WW	Dissolved	Water	6010B	234323
600-162845-1 DU	State OG 7 WW	Dissolved	Water	6010B	234323
General Chemistry					

Analysis Batch: 234145

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-162845-1	State OG 7 WW	Total/NA	Water	SM 2540C	
600-162845-2	State NBN 7 WW	Total/NA	Water	SM 2540C	
MB 600-234145/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 600-234145/2	Lab Control Sample	Total/NA	Water	SM 2540C	

QC Association Summary

General Chemistry (Continued)

Analysis Batch: 234145 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
600-162845-1 DU	State OG 7 WW	Total/NA	Water	SM 2540C		
Analysis Batch: 23434	40					
Lab Sample iD	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
600-162845-1	State OG 7 WW	Total/NA	Water	2320B-1997		
600-162845-2	State NBN 7 WW	Total/NA	Water	2320B-1997		
MB 600-234340/2	Method Blank	Total/NA	Water	2320B-1997		
LCS 600-234340/3	Lab Control Sample	Total/NA	Water	2320B-1997		
Analysis Batch: 23434	41					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
600-162845-1	State OG 7 WW	Total/NA	Water	9040B		
600-162845-2	State NBN 7 WW	Total/NA	Water	9040B		ality in the second
LCS 600-234341/1	Lab Control Sample	Total/NA	Water	9040B		
600-162845-1 DU	State OG 7 WW	Total/NA	Water	9040B		1.2.545年10
Analysis Batch: 23434	42					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
600-162845-1	State OG 7 WW	Total/NA	Water	9050A		
600-162845-2	State NBN 7 WW	Total/NA	Water	9050A		
MB 600-234342/1	Method Blank	Total/NA	Water	9050A		
LCS 600-234342/2	Lab Control Sample	Total/NA	Water	9050A		
600-162845-1 DU	State OG 7 WW	Total/NA	Water	9050A		

Client Sample ID: State OG 7 WW

Date Collected: 03/13/18 08:40 Date Received: 03/14/18 09:23

	Batch	Batch		Dil	Initial	Finat	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	20 mL	20 mL	234104	03/15/18 15:34	WS1	TAL HOU
Total/NA	Prep	TX_1005_W_Prep			35.3 mL	3.00 mL	234200	03/16/18 11:02	RJV	TAL HOU
Total/NA	Analysis	TX 1005		1			234211	03/17/18 00:04	PXS	TAL HOU
Total/NA	Analysis	300.0		25			234198	03/16/18 14:12	DAW	TAL HOU
Dissolved	Filtration	FILTRATION			1.0 mL	1.0 mL	234286	03/19/18 09:22	DCL	TAL HOU
Dissolved	Prep	3010A			50 mL	50 mL	234323	03/19/18 13:06	DCL	TAL HOU
Dissolved	Analysis	6010B		1			234414	03/20/18 12:30	DCL	TAL HOU
Dissolved	Filtration	FILTRATION			1.0 mL	1.0 mL	234286	03/19/18 09:22	DCL	TAL HOU
Dissolved	Prep	3010A			50 mL	50 mL	234323	03/19/18 13:06	DCL	TAL HOU
Dissolved	Analysis	6010B		1			234414	03/20/18 14:29	DCL	TAL HOU
Dissolved	Filtration	FILTRATION			1.0 mL	1.0 mL	234286	03/19/18 09:22	DCL	TAL HOU
Dissolved	Prep	7470A			40 mL	40 mL	234317	03/19/18 11:46	TWR	TAL HOU
Dissolved	Analysis	7470A		1			234325	03/19/18 14:20	TWR	TAL HOU
Total/NA	Analysis	2320B-1997		1	50 mL	50 mL	234340	03/19/18 14:26	KRD	TAL HOU
Total/NA	Analysis	9040B		1			234341	03/19/18 12:49	KRD	TAL HOU
Total/NA	Analysis	9050A		1			234342	03/19/18 15:45	KRD	TAL HOU
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	234145	03/15/18 15:09	EC1	TAL HOU

Client Sample ID: State NBN 7 WW

Date Collected: 03/13/18 09:00 Date Received: 03/14/18 09:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	20 mL	20 mL	234104	03/15/18 15:58	WS1	TAL HOU
Total/NA	Prep	TX_1005_W_Prep			33.5 mL	3.00 mL	234200	03/16/18 11:02	RJV	TAL HOU
Total/NA	Analysis	TX 1005		1			234211	03/17/18 00:37	PXS	TAL HOU
Total/NA	Analysis	300.0		25			234198	03/16/18 14:48	DAW	TAL HOU
Dissolved	Filtration	FILTRATION			1.0 mL	1.0 mL	234286	03/19/18 09:22	DCL	TAL HOU
Dissolved	Prep	3010A			50 mL	50 mL	234323	03/19/18 13:06	DCL	TAL HOU
Dissolved	Analysis	6010B		1			234414	03/20/18 12:36	DCL	TAL HOU
Dissolved	Filtration	FILTRATION			1.0 mL	1.0 mL	234286	03/19/18 09:22	DCL	TAL HOU
Dissolved	Prep	3010A			50 mL	50 mL	234323	03/19/18 13:06	DCL	TAL HOU
Dissolved	Analysis	6010B		1			234414	03/20/18 14:42	DCL	TAL HOU
Dissolved	Filtration	FILTRATION			1.0 mL	1.0 mL	234286	03/19/18 09:22	DCL	TAL HOU
Dissolved	Prep	7470A			40 mL	40 mL	234317	03/19/18 12:45	TWR	TAL HOU
Dissolved	Analysis	7470A		1			234325	03/19/18 14:26	TWR	TAL HOU
Total/NA	Analysis	2320B-1997		1	50 mL	50 mL	234340	03/19/18 14:33	KRD	TAL HOU
Total/NA	Analysis	9040B		1			2 3434 1	03/19/18 12:56	KRD	TAL HOU
Total/NA	Analysis	9050A		1			234342	03/19/18 15:45	KRD	TAL HOU
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	234145	03/15/18 15:09	EC1	TAL HOU

Laboratory References:

TAL HOU = TestAmerica Houston, 6310 Rothway Street, Houston, TX 77040, TEL (713)690-4444

Lab Sample ID: 600-162845-1 Matrix: Water

Lab Sample ID: 600-162845-2

Matrix: Water

12

Accreditation/Certification Summary

Client: Timberwolf Environmental LLC Project/Site: 180006 - State OG SWD

Laboratory: TestAmerica Houston

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Program		EPA Region	Identification Number	Expiration Date
exas	NELAP		6	T104704223-17-22	10-31-18
The following analytes	are included in this report, bu	t accreditation/certificat	ion is not offered by th	e governing authority:	
The following analytes Analysis Method	are included in this report, bu Prep Method	t accreditation/certificat Matrix	ion is not offered by th Analyt		
• •	-		Analyt		

TestAmerica Houston

13

Chain of		Temperature c	on Receipt	Te	TestAmerica				
Custody Record		Drinking Water? Yes 🗇 No 🗋			THE LEADER IN ENVIRONMENTAL TESTING				
TAU-4124 (1007) Client TUNU PEYLOOH ENVIRONNA Address		Project Manager	Join			Date	Chain of Custody N 288		
Harring State Zip Color City State Zip Color Bryan TX T Project Name and Location (State) TX T ISCOCLS State Zip Color Contract/Purchase Order/Ounte No Sample I.D No. and Description (Containers tor each sample may be combined on one line)	2075) 2807 2007	Site Contact Carrier Way bill Ni Ma ime	La	E Contact Containers & Preservatives		I ab Number alysis (Attach list if space is needed) U T F U U U X X X X X		of	
statenen 7 mm	5113/18 (2"						5 Chain of Custody		
Possible Hazard Identification Non-Hazard Flammable Skin Imlant	Poison R [] U		e Disposal otum To Client			(A lee may be as Months longer than 1 me	ssessed Il samples are	Telained	
Turn Around Time Required 24 Hours 7 Days 14 Days 1 Relinquished By 2 Relinquished By	5 21 Days	Date 73 14 Y Date	Time 09773 Tune	OC Requirements (Specify 1 Received By 2 Heceived By 2 Heceived By	ý) 		Date 3/14/13 Date	Turne 123 Turne	
3 Reinquished By Comments DISTRIBUTION: WHITE - Returned to Client with Report. CA	ANARY - Stays with 1	Date he Sample _ PINk	Tune Tiene Field Copy	3 Received By			Date	Tune	
				8	at page of the test		er 🦗 🔺 🏭 The statistic	e in the strategy	

3/20/2018

TestAmerica Housto	n			T	est A	<i>meric</i>	C
Sa	mple Rec	eipt Ch	Loc: 600 162845	عد ۲۲	E LEADER IN	ENVIRONMENTAL TEST	NG
						'18 MAR 14	9:23
JOB NUMBER:	54	5	ceived:	Ti	nhar,	walt	
UNPACKED BY:	PD		CARRIER/DRIVER	 (1	ein t	wolf	
		<u>~~</u>			1	ορι, που Ν΄ Τολοδιά Απολιάταιας «Τριτιματικής που ματηγοριατικής από το πολιτικής ματοποιούς που που ποριστικό Το πολιτικό πολιτικός που ποριστικός που ποριστικός που ποριστικός που ποριστικός που ποριστικός που ποριστικός	
Custody Seal Present:	☐ YES	<u>Т</u> по	Number of Coolers Re				
Cooler ID	Temp CBlank	Trip Blandk	Observed Temp (で)	Therm ID	Them CF	Corrected Temp (℃)	
R/W	Ψ/N	YIN	0.6.	676	+0.7	0.9	_
	Y / N Y / N	Y / N					
	Y / N	Y / N	JRV 3/	141,0			_
	Y / N	Y / N		1/18			_
	Y / N Y / N	Y / N Y / N	+/				-
	Y / N	Y / N					_
CF = correction factor	Y / N	Y / N					
Samples received on ice LABORATORY PRESE Base samples are>pH 1	RVATION OF S		EQUIRED: X		□ YES	NO	
pH paper Lot #C				1	~		
VOA headspace accepta	able (5-6mm): /	YES 🗆					
	baceton de etende		of sample acceptability up			YES NO	7
Uid samples meet the la	boratory's standa	ard conditions	of sample acceptability up	pon receipt?	·		}
COMMENTS:			elen andere anderen for den elemente anderen en elemente del entre de antidade elemente de la solitar de antid]
							7
			120 3/	14/1	Ø		1
		/			2		1
							-
							-
		\subseteq					-

Rev 3: 07/01/2014

F 14

Login Sample Receipt Checklist

Client: Timberwolf Environmental LLC

Job Number: 600-162845-1

List Source: TestAmerica Houston

Login Number: 162845 List Number: 1 Creator: Crafton, Tommie S

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.9°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	Check done at department level as required.

McMillan, Michael, EMNRD

From:Jim Foster <jim@teamtimberwolf.com>Sent:Wednesday, April 4, 2018 9:26 AMTo:McMillan, Michael, EMNRDCc:morgan@teamtimberwolf.comSubject:State OG SWD #2 - Formation Water

Michael,

I just spoke with the operator (Jay Management). Water to be disposed in this well will come from the following formations: San Andres, Penn, and Wolfcamp.

Let me know if you need anything further.

Jim Foster TIMBERWOLF ENVIRONMENTAL

1920 W. Villa Maria, Suite 305 Bryan, Texas 77807 979-324-2139 teamtimberwolf.com

McMillan, Michael, EMNRD

From: Sent: To: Subject: Attachments: Morgan Vizi <morgan@teamtimberwolf.com> Wednesday, April 4, 2018 1:44 PM McMillan, Michael, EMNRD; 'Jim Foster' RE: State OG SWD #2 - Formation Water Scan0023.pdf; USPS.comR - USPS TrackingR Results.pdf

Mr. McMillan,

The date of receipt (March 10th) was stamped on the barcode of the return receipt making it difficult to read. I have attached the delivery confirmation from the USPS tracking website to show proof of delivery.

Also, the SWD is for non-commercial use only. The well will be used to dispose of produced water from Jay Management leases.

Thanks, Morgan Vizi

1920 W. Villa Maria, Suite 205 Bryan, Texas 77807 (281)-806-0726 www.teamtimberwolf.com

From: McMillan, Michael, EMNRD <Michael.McMillan@state.nm.us> Sent: Wednesday, April 04, 2018 1:47 PM To: Jim Foster <jim@teamtimberwolf.com> Cc: morgan@teamtimberwolf.com Subject: RE: State OG SWD #2 - Formation Water

Need date that Bobby Johns received the application. I will require a signed statement from you verifying it. I know you mailed to him, but I did not see a date.

Is the SWD for lease or commercial?

Mike

From: McMillan, Michael, EMNRD Sent: Wednesday, April 4, 2018 11:19 AM To: 'Jim Foster' <<u>jim@teamtimberwolf.com</u>> Cc: morgan@teamtimberwolf.com Subject: RE: State OG SWD #2 - Formation Water

I need produced water samples for these formations in the vicinity of the well.

Call me and I can help you locate samples

Mike

Michael McMillan 1220 South St. Francis Santa Fe, New Mexico 505-476-3448 Michael.mcmillan@state.nm.us

From: Jim Foster <<u>jim@teamtimberwolf.com</u>> Sent: Wednesday, April 4, 2018 9:26 AM To: McMillan, Michael, EMNRD <<u>Michael.McMillan@state.nm.us</u>> Cc: <u>morgan@teamtimberwolf.com</u> Subject: State OG SWD #2 - Formation Water

Michael,

I just spoke with the operator (Jay Management). Water to be disposed in this well will come from the following formations: San Andres, Penn, and Wolfcamp.

Let me know if you need anything further.

Jim Foster TIMBERWOLF ENVIRONMENTAL

1920 W. Villa Maria, Suite 305 Bryan, Texas 77807 979-324-2139 teamtimberwolf.com

McMillan, Michael, EMNRD

From:Jim Foster <jim@teamtimberwolf.com>Sent:Wednesday, April 4, 2018 9:26 AMTo:McMillan, Michael, EMNRDCc:morgan@teamtimberwolf.comSubject:State OG SWD #2 - Formation Water

Michael,

I just spoke with the operator (Jay Management). Water to be disposed in this well will come from the following formations: San Andres, Penn, and Wolfcamp.

Let me know if you need anything further.

Jim Foster TIMBERWOLF ENVIRONMENTAL

1920 W. Villa Maria, Suite 305 Bryan, Texas 77807 979-324-2139 teamtimberwolf.com

Produced Water Samples for the State OG SWD No. 2 Lea County, New Mexico

Well Name	АРІ	Section	Township	Range	Unit	Formation	Sample Source	TDS mg/L	Chloride mg/L
STATE BT P #001	3002501014	34	11S	33E	E	PERMO-PENNSYLVANIAN	PRODUCTION TEST	73630	42400
GRAHAM B STATE #001	3002522406	30	11S	33E	A	WOLFCAMP	N/A	8606	3437
LANE B #001	3002500974	1	10S	33E	F	PENNSYLVANIAN	UNKNOWN	81674	48850
LANE B #003	3002500975	1	10S	33E	С	SAN ANDRES	SEPARATOR	84547	51580
STATE BT N #001	3002501012	34	11S	33E	Р	DEVONIAN	UNKNOWN	51781	30040

Submit 1 Copy To Appropriate District Office	State of New Mexico	Form C-103
<u>District I</u> – (575) 393-6161	Energy, Minerals and Natural Resources	Revised July 18, 2013
1625 N. French Dr., Hobbs, NM 88240 District II - (575) 748-1283		WELL API NO. 30-025-31381
811 S. First St., Artesia, NM 88210	OIL CONSERVATION DIVISION	5. Indicate Type of Lease
<u>District III</u> – (505) 334-6178 1000 Rio Brazos Rd., Aztec, NM 87410	1220 South St. Francis Dr.	STATE FEE
District IV - (505) 476-3460	Santa Fe, NM 87505	6. State Oil & Gas Lease No.
1220 S. St. Francis Dr., Santa Fe, NM 87505		E-26
	CES AND REPORTS ON WELLS	7. Lease Name or Unit Agreement Name
	SALS TO DRILL OR TO DEEPEN OR PLUG BACK TO A CATION FOR PERMIT" (FORM C-101) FOR SUCH	
PROPOSALS.)		State OG SWD - 548 8. Well Number 2
	Gas Well 🖌 Other SWD	-
2. Name of Operator		9. OGRID Number 247692
Jay Management Company, 3. Address of Operator		10. Pool name or Wildcat
-	750 Houston TV 77007	SWD: SAN ANDRES
1001 West Loop South Ste 4. Well Location	750 Houston, 1X 77027	
Unit Letter L :	660 feet from the West line and	1980 feet from the South line
Section 9	Township 11S Range 33E	NMPM County LEA
	11. Elevation (Show whether DR, RKB, RT, GR, e	
	3291.8	
12. Check A	Appropriate Box to Indicate Nature of Notic	e, Report or Other Data
	PLUG AND ABANDON REMEDIAL WO	
		DRILLING OPNS. P AND A
PULL OR ALTER CASING		
CLOSED-LOOP SYSTEM		
OTHER:		rate San Andres and Swab Test.
	leted operations. (Clearly state all pertinent details,	
	rk). SEE RULE 19.15.7.14 NMAC. For Multiple (Completions: Attach wellbore diagram of
proposed completion or reco	OMPLETION. H NU BOP. MI and spotted open top tank. API WLU arrived on location at 12:30PM	М
PU and RIH with RBP, on/off tool and 11 jts 2-3/8" tu	bing. Shut down at 4:15PM due to high winds (28mph sustained) . Stabbed TIW v	ralve, secured well, SDFN.
04/18/2018 0 psi on tubing. 0 psi on casing. Continu	ed PU and RIH with 2-3/8" tubing for a total of 156jts. Made several unsuccessfu	l attempts to set
the RBP. The decision was made shut down for the da	y. Secured well, SDFN.	
	56 jts tubing. The RBP was lost in hole. Informed NMOC of tools lost in hole and	
	er run showed no indication of obstructions. RU WLU and Riff with RBP and set at at 497psi finished at 515psi. PU 3-3/8" casing guns RIH and perforate 4825-4829	t 4930'. POOH with WL setting tool showed positive indication of setting. Loaded hole)', 4814-4820',4780-4786', 4735-4750', POOH with guns. All shots fired.
04/20/2018 0 psi on casing. Arrived on location at 6.	AM, but the wind was too strong to work in the derrick. Ordered light plants to lo	cation, and resumed work at 8PM after the wind speed had slowed. PU retrieving tool,
	PKR at 4627' with 10 points tension on packer. Secured well and SDFN.	יומי אינער אינעראינער אינעראין אינער אינעראינער אינע אינעראינעראינעראין געער,
04/21/2018 0 psi on tubing. Rigged up to swab. Beg	an swabbing at 11:00AM. Run 1: FL 600' recovered 3.5bbls water. Run 2: FL 160	o' recovered 3.5bbis water. Run 3: FL 2600' recovered 3.5bbis water.
Run 4: FL 3600' swabbed from SN @ 4627' recovered	3.5bbls water. Run 5: FL 4500' recovered 0.25bbls water. Shut down for 2 hrs to	see if fluid level would build. Run 6: FL 4600' recovered 0 bbls. Secured well SDFN.
04/22/2018 0 psi slight vacum on tubing. Began swa ND BOP. Reset Packer to 4633' with 8 points compres	bhing at 9:00AM after being shut in for 18hrs. Run 7: FL just above SN, 0 bhis rec minn NII WH, RDMO WOR	overed. Run 8: RIH to SN and swabe deep for 20min, 0 bbls recovered.
Spud Date:	Rig Release Date:	
L		
I hereby certify that the information a	bove is true and complete to the best of my knowled	dge and belief.
///./		·
SIGNATURE Laura	M TITLE District Manager	DATE 04/23/2017
Type or print name Clay Griffin	E-mail address:cgriffin@jayn	ngt.com PHONE: 574-707-5691
For State Use Only		
APPROVED BY:	TITI D	
Conditions of Approval (if any):	TITLE	DATE
in any /		

Submit 1 Copy To Appropriate District Office	State of New Me	exico		-	rm C-103
Distant 1 (676) 201 6161	Energy Minerals and Nati	ural Resources		Revised 1	luly 18, 2013
District II - (575) 593-6161 1625 N. French Dr., Hobbs, NM HOBB District II - (575) 748-1283			WELL API NO. 30-025-31381		
811 S. First St. Artesia, NM 88210	OIL CONSERVATION	I DIVISION	5. Indicate Type	ofLease	
District III - (505) 334-6178 APK 2	3 2018220 South St. Fran	ncis Dr.		FEE	
District IV (505) 476-3460	Santa Fe, NM 8		6. State Oil & Ga		
1220 S. St. Francis Dr., Santa Fe, NIRECE 87505	IVED		E-26		
	AND REPORTS ON WELLS		7. Lease Name or	Unit Agreem	ent Name
(DO NOT USE THIS FORM FOR PROPOSALS			0		
DIFFERENT RESERVOIR. USE "APPLICATI PROPOSALS.)	_ `		State OG SV		
1. Type of Well: Oil Well 🔲 Gas	Well 🖌 Other SWD		8. Well Number	2	
2. Name of Operator			9. OGRID Numb	er	
Jay Management Company, LLC	2		247692		
3. Address of Operator			10. Pool name or		
1001 West Loop South Ste 750	Houston, TX 77027		SWD: SAN A	ANDRES	
4. Well Location					
Unit Letter <u>L</u> : <u>6</u>	60 feet from the West			n the <u>South</u>	line
Section 9		ange 33E	NMPM	County L	EA
	. Elevation (Show whether DR	, RKB, RT, GR, etc.)			
	3291.8		\$50.15)	and a shake well that for	15 milan in armine at 17
12. Check App	ropriate Box to Indicate N	ature of Notice, I	Report or Other	Data	
NOTICE OF INTE	NTION TO:	SUBS	SEQUENT REP	PORT OF:	
		REMEDIAL WORK		ALTERING C	ASING 🗌
	HANGE PLANS	COMMENCE DRIL	LING OPNS.	P AND A	
PULL OR ALTER CASING		CASING/CEMENT	JOB 🗍		
CLOSED-LOOP SYSTEM				_	
OTHER:			San Andres and Swat		
13. Describe proposed or completed					
of starting any proposed work).		J. For Multiple Con	pletions: Attach w	elibore diagra	mot
proposed completion or recomp 04/17/2018 Rigged up WOR. 0 psi on casing. ND WH NU B		ived on location at 12:30PM.			
PU and RIH with RBP, on/off tool and 11 its 2-3/8" tubing. S			secured well, SDFN.		
04/18/2018 O psi on tubing. O psi on casing. Continued PU the RBP. The decision was made shut down for the day. Secu		Made several unsuccessful atte	mpts to set		
04/19/2018 0 psi on tubing. 0 psi on casing TOOH 156 jts	tubing The BBP was lost in hole Informed NM(OC of tools lost in hole and NMO	C gave permission to continue	with the job.	
PU CSG scraper and RiH to ~5000'. The bit and scraper run i and tested to 500psi for 30min. Pressure test started at 497	nowed no indication of obstructions. RUWLU	nd RIH with RBP and set at 493	0'. POOH with WL setting tool	showed positive indica	
04/20/2018 0 psi on casing. Arrived on location at 6AM, bu	••••		and an and shad as ODI at		a - ' Difference and
04/20/2018 is psi on casing. Arrived on ideation at BAM, but PKR and SN and RIH with 146jis of 2-3/8 tubing. Set PKR at	5		s, and resumed work at or of al	ter the wind speed had	i slowed. PO retrieving tool,
04/21/2018-0 psi on tubing. Rigged up to swab. Began swa Run 4: FL 3600' swabbed from SN @ 4627' recovered 3.5bbi					
04/22/2018 C psi slight vacum on tuhing Began swabhing ND BOP. Reset Packer to 4633' with 8 points compression. I		i, just above SN, 0 bbls recovere	d. Run 8: RIH to SN and swabe	e deep for 20min, 0 bbl	s recovered.
Soud Date:	Die Delener D	ita:			
Spud Date:	Rig Release Da				
I hereby certify that the information above	e is true and domnlete to the h	est of my knowledge	and belief		
alt	_PT N				
1 Autor	Null-				
SIGNATURE CONTROL	TITLE Distric	t Manager	DA'	TE04/23/	2017
Type or print name Clay Griffin	- TU E-mail address	cgriffin@jaymgt	.com PHO		07-5691
For State Use Only			rh(///E/	
Y VNA I.	MAN as -a	4 n/T	r		- 1
APPROVED BY:	XX LOUT	/	- DAT	т <u>е 4/2</u>	3/2010
Conditions of Approval (if any):])	/			7
()	1				-
V					

McMillan, Michael, EMNRD

From: Sent: To: Subject: Sanchez, Daniel J., EMNRD Wednesday, May 2, 2018 4:33 PM McMillan, Michael, EMNRD Jay Management

Michael,

Jay Management is now in compliance with Rule 5.9 in both financial assurance and inactive wells. They are covered by ACOI-320-B.

Daniel

6			1	<u>, , , , , , , , , , , , , , , , , , , </u>		d with application; V16.2]	
		<u> </u>				Add. Request/Reply:	
Prownerwartow unner 2 ORD	ER TYPE: WI	FX / PMX / SWD	Number: (Order Date:	Legacy Permits	/Orders:	
Well No. 35 V	Vell Name(s):	State	2065	SAD			
API : 30-0 25	-3130	Spud D	ate: /B/15/ 15	Kew or Old (E		ass II Primacy 03/07/1982)	
						County Leg	
General Location:	2200	iles Nu	17Atan Poo	Eud'sc	Andres	Pool No.:	_
BLM 100K Map: 7	Alum	Operator:	MY MANAGCO	ent OGRID:	2 Y76 9 Contact	Hgent	ل ا
			tive Fincl Assu		Order ALOT 3	20-12 .9 OK? Y Date: 5-02	2011
							un
				ph	-> SuDJSA	Am on stra	_ ;
			R: Before Conv. Aft				
Planned Rehab Work	to Well: Se	et plag	@ 8500 ,	FB 4	930.		
Well Constructi	on Details	Sizes (in) Borehole / Pipe	Setting Depths (ft)		Cement Sx or Cf	Cement Top and Determination Method	1
Plannedor Ex	tistingSurface	441 7	" (Geo 367	Stage Tool	-350	Cinc/ (CALC)	
Planned_or Existing	Interm/Prod	718"/52		2	2250	CINCICLALO	5
Plannedor Existing	Interm/Prod	N'1/8 5/4	Par Seive	9	1152000	CipelCALC	1
Planned_or Existin	g Prod/Liner		10				12
	Existing Liner		-46251A	0)			<u>_</u>
Plannedor Existin			AL HONG	Inj Length	Completion	Operation Details:	Sol
Injection Lithostration		Depths (ft)	Injection or Confin	ing Tops	Drilled TD 107		53
Adjacent Unit: Litho			Units Top S/A	374	NEW TD 4630		13
Confining Unit: Lithe			IN SIA	5122	NEW Open Hole		
	i Interval TOP:		(71			in. Inter Coated?	
Proposed Inj Inte						epth 4750 ft	
Confining Unit: Lithe	and the second secon	·				4494(100-ft limit)	
Adjacent Unit: Litho		THE CLEWING			·	ace Press psi	
and the second		and Geologic	Information	<u></u>	•	(0.2 psi per ft)	
				ed? Salt /S ala	and the second	NW: Cliff House fm	1
				11		IT By Qualified Person ()	
NMOSE Basin:	eg cal	PITAN REEF: thru	adj NA 🖌	No. GW Wells in	n 1-Mile Radiu s?	EW Analysis?	
Disposal Fluid: For	mation Source	(s) permu	Analysi	s?On	Lease Operator O	nly () or Commercial ()	
Disposal Interval:	nject Rate (Avg	/Max BWPD):	C/61C Protectal	ble Waters?	Source:	System: closed or Open	
HC Potential: Pro	ducing Interval	Formerly P	roducing?Metho	od: Logs/DST/P&	A/Other	2-Mi Radius Pool Map 🔿	
AOR Wells: 1/2-N	A Radius Map	and Well List?	No. Penetrating W	ells:	AOR Horizontals:	AOR SWDS: MA	
Penetrating Wells:	No. Active We	IIs Num Repa	irs?on which well	(s)?		Diagrams?	
		r .	s?on which well(s)			Diagrams?X	
			al Owner_NMS			N. Date 2->	1-248
RULE 26.7(A): Iden	tified Tracts?	Affected F	Persons: Bobbi	1 Jones	145	N. Date 310-	12016
Order Condition			e suabte			FOUN	-4
Additonal COAs:		0	-		76	-	
		Aten 1	An Dode	PH			