Application Part II

Affidavit of Publication

STATE OF NEW MEXICO COUNTY OF LEA

I, Daniel Russell, Publisher of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, solemnly swear that the clipping attached hereto was published in the regular and entire issue of said newspaper, and not a supplement thereof for a period of 1 issue(s).

> Beginning with the issue dated July 16, 2019 and ending with the issue dated July 16, 2019.


loos

Publisher

Sworn and subscribed to before me this 16th day of July 2019.

Spale

Business Manager

This newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said 67115647

00230851

GARY FISHER PERMIAN OILFIELD PARTNERS, LLC PO BOX 1220 STEPHENVILLE, TX 76401

LEGALS

LEGAL NOTICE JULY 16, 2019

Permian Oiffield Partners, LLC, PO Box 3329, Hobbs, NM 88241, phone (817)606-NM 88241, phone (817)606for Authorization for for Authorization for for Authorization for Division seeking approval to trill a commercial salt water disposed water produced to the maximum expected injection rate is 50,000 BWPD at a maximum surface injection pressure of 3,723 psi.

Interested parties must file objections or requests for hearing with the New Mexico Oil Conservation Division. 1220 South St. Francis Drive, Santa Fe, New Mexico, 87505 within 15 days.

Avenger Federal SWD #1 Water Wells in 1mi Radius

35 (P		258 34E SESW (N) 36	SWSE (0)	SESE (P)	L 4 25S 35E	SESW (N)	31 SWSE (0)	SESE (P)	SWSW 32 SESV (M) 32 (N)
NENE	NWNW	NENW	NWNE	NENE	L1	NENW	NWNE	NENE	NWNW NENV
(A)	(D)	(C)	(B)	(A)		(C)	(B)	(A)	(D) (C)
SENE	SWNW	SENW	SWINE	SENE	L2	SENW	SWNE	SENE	SWNW SENV
(H)	(E)	(F)	(G)	(H)		(F)	(G)	(H)	(E) (F)
02 NESE (1)	NWSW (L)	NESW (K)	NWSE (J)	NESE (1)	L 3	NESW (K)	NWSE (J)	NESE (1)	
SESE	sww	SESW	SWSE	SESE	L4	SESW	SWSE	SESE	SWSW SESV
(P)	(n)	(N)	(0)	(P)		(N)	(0)	(P)	(M) (N)
NENE	NWNW	NENW	NWNE	NENE	L1	NENW	NWNE	NENE	NWNW NENW
(A)	(D)	(C)	(B)	(A)		(C)	(B)	(A)	(D) (C)
SENE (H) 3301 ft	SWNW (E)	26S 34E SENW (F)	SWNE (G)	SENE (H)	26S 35E L 2	SENW (F)	SWNE (G)	SENE (H)	SWNW SENV (E) (F)
11 NESE (1)	NW(SW (L)	NESW (K)	NWSE (J)	NESE (1)	L3	NESW (K)	07 NWSE (J)	NESE (1)	
SESE	swsw	SESW	SWSE	SESE	L4	SESW	SWSE	SESE	SWSW SESV
(P)	(M)	(N)	(0)	(P)		(N)	(0)	(P)	(M) (N)
NENE (A)	NWNW (D)	NENW (C)	NWNE	NENE (A)	L1	NENW (C)	NWNE (B)	NENE (A)	NWNW NENW (D) (C)
14 SENE (H)	SWNW (E)	SENW (F)	SWNE (G)	SENE (H)	L2	SENW (F)	18 SWNE (G)	SENE (H)	SWNW 17 SENW (E) (F)
NESE	NWSW	NESW	NWSE	NESE	L3	NESW	NWSE	NESE	NWSW NESW
(1)	(L)	(K)	(J)	(1)		(K)	(J)	(1)	(L) (K)

7/18/2019, 10:45:46 AM

OCD Districts

* OCD District Offices

PLSS First Division

PLSS Second Division

PLSS Townships

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community

1:18,056

0.7 mi

1.1 km

0.35

_

0.55

0.17

0.28

0

H

0

	Wat	ter	Co	lu	n		n/	' A'	vei	rage	Dep	th to '	Wate	r
(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD replaced, O=orpha C=the fil closed)	ned, e is	(qı						E 3=SW argest)	/	3 UTM in mete	rs)	(In feet)	
		POD Sub-		0	n	0							,	Water
POD Number	Code		Countv	-	-	•	Sec	Tws	Rng	X	Y	DepthWellD) epthWater C	
<u>C 03795 POD1</u>		С	LE	4			24		35E	658419	3544221 🧧	496	250	24
J 00005 POD1		J	LE	2	2	2	13	26S	35E	659200	3547174* 🧧	601	230	37
										I	Average Depth	to Water:	240 fe	eet
											Minim	um Depth:	230 fe	et
											Maxim	um Depth:	250 fe	et
Record Count: 2														
PLSS Search:														
Township: 26S	Range:	35E												
*UTM location was derived f	DI 66													

7/18/19 10:56 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

Item XII. Affirmative Statement

Re: C-108 Application for SWD Well Permian Oilfield Partners, LLC Avenger Federal SWD #1 1320' FNL & 271' FWL Sec 7, T26S, R35E Lea County, NM

Permian Oilfield Partners, LLC. has examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.

Hay Ertihan

Gary Fisher Manager Permian Oilfield Partners, LLC.

Date: 7/12/2019

Plugging Risk Assessment

Permian Oilfield Partners, LLC. Avenger Federal SWD #1 SL: 1320' FNL & 271' FWL Sec 7, T26S, R35E Lea County, New Mexico

WELLBORE SCHEMATIC

Permian Oilfield Partners, LLC. Avenger Federal SWD #1 1320' FNL, 271' FWL Sec. 7, T26S, R35E, Lea Co. NM Lat 32.0614999° N, Lon 103.4142527° W GL 3260', RKB 3290'

Surface - (Conventional)

26"
20" - 94# H-40 & 106.5# J-55 STC Casing
Surface
1122'
745 sks - Class C + Additives
Surface - (Circulate)

Intermediate #1 - (Conventional)

Hole Size:	17.5"
Casing:	13.375" - 61# J-55 & 68# J-55 STC Casing
Depth Top:	Surface
Depth Btm:	5464'
Cement:	1791 sks - Lite Class C (50:50:10) + Additives
Cement Top:	Surface - (Circulate)

Intermediate #2 - (Conventional)

Hole Size:	12.25"
Casing:	9.625" - 40# L-80 & 40# HCL-80 BTC Casing
Depth Top:	Surface
Depth Btm:	12818'
Cement:	2183 sks - Lite Class C (60:40:0) + Additives
Cement Top:	Surface - (Circulate)
ECP/DV Tool:	5564'

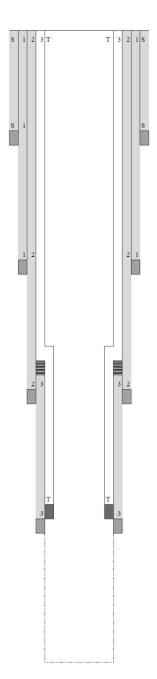
Intermediate #3 - (Liner)

Hole Size:	8.5"
Casing:	7.625" - 39# HCL-80 FJ Casing
Depth Top:	12618'
Depth Btm:	18615'
Cement:	274 sks - Lite Class C (60:40:0) + Additives
Cement Top:	12618' - (Volumetric)

Intermediate #4 - (Open Hole)

Hole Size:	6.5"
Depth:	20444'
Inj. Interval:	18615' - 20444' (Open-Hole Completion)

 Tubing Depth:
 18570'


 Tubing:
 7" - 26# HCP-110 FJ Casing & 5.5" 17# HCL-80 FJ Casing (Fiberglass Lined)

 X/O Depth:
 12618'

 X/O:
 7" 26# HCP-110 FJ Casing - X - 5.5" 17# HCL-80 FJ Casing (Fiberglass Lined)

 Packer Depth:
 18580'

 Packer:
 5.5" - Perma-Pak or Equivalent (Inconel)

Plugging Risk Assessment

Page 2

<u>7" UFJ Tubing Inside of 9 5/8" 40# Casing</u>

Bowen Series 150 Releasing and Circulation Overshots

Maximum Catch Size (Spiral)		6%	6%	7	7%
Maximum Catch Size (Basket)		5%	6%	69%	65%
Overshot O.D.		8%	7%	8%	8%
Туре		F.S.	S.H.	S.H.	S.H.
Complete Assembly	Part No.	C-3032	C-5222	9217	C-5354
(Dressed Spiral Parts)	Weight	280	243	251	260
Replacement Parts					
Top Sub	Part No.	A-3033	A-5223	9218	A-5355
Bowl	Part No.	B-3034	B-5224	9219	B-5356
Packer	Part No.	A-1814	B-5225	9224	B-5357
Spiral Grapple	Part No.	N-84	B-5227	9222	B-5359
Spiral Grapple Control	Part No.	M-89	A-5228	9223	B-5380
Standard Guide	Part No.	A-1818	A-5229	9226	A-5381
Basket Parts					
Basket Grapple	Part No.	N-84	B-5227	9222	B-5359
Basket Grapple Control	Part No.	M-89	A-5228	9223	B-5380
Mill Control Packer	Part No.	A-1814-R	B-5225-R	9224-R	B-5357-R

A 8.125" O.D. Bowen Series 150 Overshot will be used to perform this overshot operation. Details on the overshot are listed above. Casing to tubing clearance dimensions are listed below.

	7" 26# FJ Casing Inside 9.625" 40# BTC Casing												
Clearance (in)	Pipe Size (in)	Weight lb/ft	Grade	Conn.	Туре		Coupling O.D. (in)	I.D. (in)	Drift (in)	Lined Wt. lb/ft		Flare I.D. (in)	Lined Drift (in)
0.840	9 5/8	40.0	L-80	BTC	Casing	9.625	10.625	8.835	8.679	-	-		-
0.840	7	26.0	HCP-110	FJ	Casing	7.000	7.000	6.276	6.151	28.500	6.080	5.940	5.815

*Red Indicates Tubing

Fishing Procedure

Overshot Fishing Procedure

In the Event of a Connection Break

- If fishing neck is clean

- 1. Trip in hole with overshot and engage fish.
- 2. Pick up 2 points over neutral weight.
- 3. Turn pipe 10-15 turns to the right to release the seal assembly from the packer.
- 4. Once released from packer, trip out of hole with fish.

A skirted mill may be substituted for a standard mill to ensure pipe stabilization and the casing is not damaged while milling

- If dressing fishing neck is required

- 1. Trip in hole with mill and dress fishing neck to allow for overshot to engage tubing.
- 2. Trip out of hole with mill.
- 3. Trip in hole with overshot and engage fish.
- 4. Pick up 2 points over neutral weight.
- 5. Turn pipe 10-15 turns to the right to release the seal assembly from the packer.
- 6. Once released from packer, trip out of hole with fish.

A skirted mill may be substituted for a standard mill to ensure pipe stabilization and the casing is not damaged while milling

In the Event of a Body Break

- If fishing neck is clean

- 1. Trip in hole with overshot and engage fish.
- 2. Pick up 2 points over neutral weight.
- 3. Turn pipe 10-15 turns to the right to release the seal assembly from the packer.
- 4. Once released from packer, trip out of hole with fish.

- If dressing fishing neck is required

- 1. Trip in hole with mill and dress fishing neck to allow for overshot to engage tubing.
- 2. Trip out of hole with mill.
- 3. Trip in hole with overshot and engage fish.
- 4. Pick up 2 points over neutral weight.

Plugging Risk Assessment

- 5. Turn pipe 10-15 turns to the right to release the seal assembly from the packer.
- 6. Once released from packer, trip out of hole with fish.

A skirted mill may be substituted for a standard mill to ensure pipe stabilization and the casing is not damaged while milling

Spear Fishing Procedure

If an overshot cannot be used to retrieve the fish, a spear may be used.

- Due to the use of insert lined tubing, the composite liner must be removed from the tubing before engaging the fish with a spear.
- 1. Trip in hole with spear sized to engage the I.D. of the insert liner.
- 2. Engage the insert liner inside the tubing with spear.
- 3. Pull the insert liner out of the tubing.
- 4. Trip out of hole with insert liner.
- 5. Trip in hole with spear sized to engage the I.D. of the tubing.
- 6. Engage the tubing with spear.
- 7. Pick up 2 points over neutral weight.
- 8. Turn pipe 10-15 turns to the right to release the seal assembly from the packer.
- 9. Once released from packer, trip out of hole with fish.

Inside Diameter Cutting Tool Fishing Procedure

If an overshot is required but a mill cannot be used to dress off a fishing neck, an inside diameter cutting tool may be used.

- Due to the use of insert lined tubing, the composite liner must be removed from the tubing before engaging the fish with a spear.
- 1. Trip in hole with spear sized to engage the I.D. of the insert liner.
- 2. Engage the insert liner inside the tubing with spear.
- 3. Pull the insert liner out of the tubing.
- 4. Trip out of hole with insert liner.
- 5. Trip in hole with inside diameter cutting tool and cut the tubing below the damaged fishing neck.
- 6. Trip out hole with cutting tool.
- 7. Trip in hole with spear sized to engage the I.D. of the tubing.
- 8. Engage the previously cut tubing segment with spear.
- 9. Trip out hole with cut tubing segment and spear.
- 10. Trip in hole with overshot and engage fish.
- 11. Pick up 2 points over neutral weight.

13.

- 12. Turn pipe 10-15 turns to the right to release the seal assembly from the packer.
 - Once released from packer, trip out of hole with fish.

Plugging Risk Assessment

5 1/2" UFJ Tubing Inside of 7 5/8" 39# Casing

Series 150 Overshots

Tools are listed in order of maximum catch size.

The following table shows only a partial listing of available NOV Dowhole Bowen® overshots.

NOTE: Nitralloy Grapples are available upon request.

Bowen Series 150 Releasing and Circulation Overshots Maximum Catch Size 4%" to 5%" Inclusive

Maximum Catch Size (Spiral)		4%	4%	4%	4%	5	5	5½
Maximum Catch Size (Basket)		31%	4%	4%	4%	4%	4%	4%
Overshot O.D.		59%	5%	5%	5%	5%	8%	6%
Туре		ES.	S.H.	S.H.	S.F.S.	S.H.	F.S.	S.H.
Complete Assembly	Part No.	5896	5698	C-5168	8975	C-5171	C-4825	8625
(Dressed Spiral Parts)	Weight	130	130	133	138	140	192	185
Replacement Parts								
Top Sub	Part No.	5897	5699	A-5169	8976	A-5172	B-4826	8626
Bowl	Part No.	5898	5700	B-5170	8977	B-5173	B-4827	8817
Packer	Part No.	169	1140	B-2199	6114	L-5950	L-4505	8618
Spiral Grapple	Part No.	165	1135	B-2201	6112	B-4369	M-1071	8619
Spiral Grapple Control	Part No.	186	1137	B-2202	6113	B-4370	M-1072	8620
Standard Guide	Part No.	187	1143	B-2203	8121	B-4371	L-1074	8621
Basket Parts								
Basket Grapple	Part No.	165	1135	B-2201	8112	B-4369	M-1071	8619
Basket Grapple Control	Part No.	186	1137	B-2202	6113	B-4370	M-1072	8620
Mill Control Packer	Part No.	169-R	1140-R	B-2199-R	6114-R	L-5950-R	M-4505	L-8618-R

A (6.625" turned down to **6.500**" O.D.) Bowen Series 150 Overshot will be used to perform this overshot operation. Details on the overshot are listed above. Casing to tubing clearance dimensions are listed below.

	5.5" 17# FJ Casing Inside 7.625" 39# FJ Casing													
Ī	Clearance (in)	ice (in) Pipe Size (in)	Weight	Grade	Conn.	Туре	Body	Coupling	I.D.	Drift	Lined Wt.	Lined	Flare	Lined Drift
	Clearance (III)		lb/ft		Contra.	Type	O.D. (in)	O.D. (in)	(in)	(in)	lb/ft	I.D. (in)	I.D. (in)	(in)
	0.500	7 5/8	39.0	HCL-80	FJ	Casing	7.625	7.625	6.625	6.500	-	-		-
_	0.500	5 1/2	17.0	HCL-80	FJ	Casing	5.500	5.500	4.892	4.767	18.500	4.520	4.400	4.275

*Red Indicates Tubing

Fishing Procedure

Overshot Fishing Procedure

In the Event of a Connection Break

- If fishing neck is clean

- 1. Trip in hole with overshot and engage fish.
- 2. Pick up 2 points over neutral weight.
- 3. Turn pipe 10-15 turns to the right to release the seal assembly from the packer.
- 4. Once released from packer, trip out of hole with fish.

A skirted mill may be substituted for a standard mill to ensure pipe stabilization and the casing is not damaged while milling

- If dressing fishing neck is required

- 1. Trip in hole with mill and dress fishing neck to allow for overshot to engage tubing.
- 2. Trip out of hole with mill.
- 3. Trip in hole with overshot and engage fish.
- 4. Pick up 2 points over neutral weight.
- 5. Turn pipe 10-15 turns to the right to release the seal assembly from the packer.
- 6. Once released from packer, trip out of hole with fish.

A skirted mill may be substituted for a standard mill to ensure pipe stabilization and the casing is not damaged while milling

In the Event of a Body Break

- If fishing neck is clean

- 1. Trip in hole with overshot and engage fish.
- 2. Pick up 2 points over neutral weight.
- 3. Turn pipe 10-15 turns to the right to release the seal assembly from the packer.
- 4. Once released from packer, trip out of hole with fish.

- If dressing fishing neck is required

- 1. Trip in hole with mill and dress fishing neck to allow for overshot to engage tubing.
- 2. Trip out of hole with mill.
- 3. Trip in hole with overshot and engage fish.
- 4. Pick up 2 points over neutral weight.

Plugging Risk Assessment

- 5. Turn pipe 10-15 turns to the right to release the seal assembly from the packer.
- 6. Once released from packer, trip out of hole with fish.

A skirted mill may be substituted for a standard mill to ensure pipe stabilization and the casing is not damaged while milling

Spear Fishing Procedure

If an overshot cannot be used to retrieve the fish, a spear may be used.

- Due to the use of insert lined tubing, the composite liner must be removed from the tubing before engaging the fish with a spear.
- 1. Trip in hole with spear sized to engage the I.D. of the insert liner.
- 2. Engage the insert liner inside the tubing with spear.
- 3. Pull the insert liner out of the tubing.
- 4. Trip out of hole with insert liner.
- 5. Trip in hole with spear sized to engage the I.D. of the tubing.
- 6. Engage the tubing with spear.
- 7. Pick up 2 points over neutral weight.
- 8. Turn pipe 10-15 turns to the right to release the seal assembly from the packer.
- 9. Once released from packer, trip out of hole with fish.

Inside Diameter Cutting Tool Fishing Procedure

If an overshot is required but a mill cannot be used to dress off a fishing neck, an inside diameter cutting tool may be used.

- Due to the use of insert lined tubing, the composite liner must be removed from the tubing before engaging the fish with a spear.
- 1. Trip in hole with spear sized to engage the I.D. of the insert liner.
- 2. Engage the insert liner inside the tubing with spear.
- 3. Pull the insert liner out of the tubing.
- 4. Trip out of hole with insert liner.
- 5. Trip in hole with inside diameter cutting tool and cut the tubing below the damaged fishing neck.
- 6. Trip out hole with cutting tool.
- 7. Trip in hole with spear sized to engage the I.D. of the tubing.
- 8. Engage the previously cut tubing segment with spear.
- 9. Trip out hole with cut tubing segment and spear.
- 10. Trip in hole with overshot and engage fish.
- 11. Pick up 2 points over neutral weight.

13.

- 12. Turn pipe 10-15 turns to the right to release the seal assembly from the packer.
 - Once released from packer, trip out of hole with fish.

Plugging Risk Assessment

Abandonment Procedure

If the tubing cannot be recovered and the well is to be abandoned.

- The operator will ensure that all geologic formations are properly isolated.
- 1. Confirm the I.D. of the injection tubing is free from obstructions.
- 2. Run in hole with wireline set profile plug.
- Set plug inside of packer assembly.
 (Plug will allow cement to fill the I.D. of the injection tubing and the tubing to casing annulus)
- 4. Run in hole with wireline conveyed perforating guns and perforate the tubing immediately above the packer.
- 5. Trip in hole with an overshot, spear, cement retainer or isolation tool that will provide a work string-to- injection tubing seal.
- 6. Engage the fish with sealing tool.
- 7. Confirm circulation down the tubing and up the tubing-to-casing annulus.
- 8. Cement the work string, injection tubing, injection tubing-to-casing annulus and work string-tocasing annulus to surface.
- 9. Confirm the entirety of the wellbore is cemented to surface and all zones are isolated.
- 10. ND wellhead and install permanent capping flange.

Attachment to C-108 Permian Oilfield Partners, LLC Avenger Federal SWD #1 1320' FNL & 271' FWL Sec 7, T26S, R35E Lea County, NM

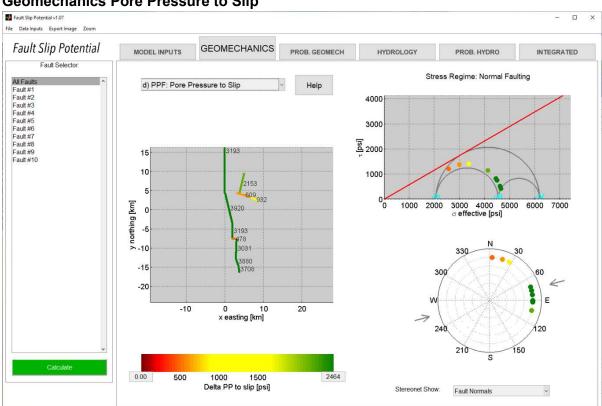
July 13, 2019

STATEMENT REGARDING SEISMICITY

Examination of the USGS and TexNet seismic activity databases has shown minimal historic seismic activity in the area (< 30 miles) of our proposed above referenced SWD well as follows:

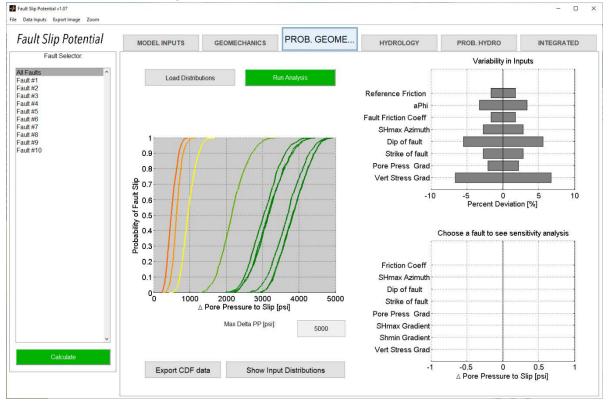
- 1. M2.6, 2017-05-03, 23.03 miles away @ 86.35 deg heading
- 2. M4.6, 1992-01-02, 26.35 miles away @ 43.83 deg heading
- 3. M3.3, 2001-06-02, 24.65 miles away @ 40.24 deg heading
- 4. M2.9, 1984-12-09, 16.36 miles away @ 329.64 deg heading

Permian Oilfield Partners does not own any 2D or 3D seismic data in the area of this proposed SWD well. Our fault interpretations are based on well to well correlations and publicly available data and software as follows:

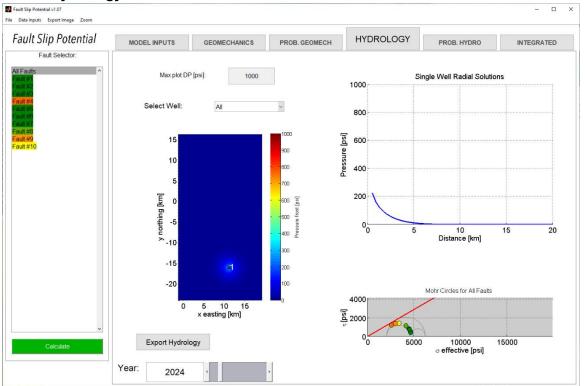

- 1. USGS Quaternary Fault & Fold database shows no quaternary faults in the nearby area.
- 2. Based on offset well log data, we have not interpreted any faults in the immediate area.
- 3. Basement PreCambrian faults are documented in the Snee & Zoback paper, "State of stress in the Permian Basin, Texas and New Mexico: Implications for induced seismicity", published in the February 2018 issue of the SEG journal, The Leading Edge, along with a method for determining the probability of fault slip in the area.
- 4. Fault data was also correlated to the publicly available USGS GIS geologic units & structural features database, to Ewing's 1990 Tectonic map of Texas (via Ruppel's 2005 Preparation of Maps Depicting Geothermal Gradient and PreCambrian Structure in the Permian Basin), and to fault maps as published in the New Mexico Geological Society Special Publication 13A, "Energy and Mineral Resources of New Mexico: Petroleum Geology," by R. F. Broadhead, 2017.
- 5. Even though we do not propose to inject into the PreCambrian, Permian Oilfield Partners ran modeling to check for fault slip assuming the improbable occurrence of a total downhole well failure that would allow 100% of injected fluids to enter the PreCambrian.

Software as discussed in #3 from the Stanford Center for Induced and Triggered Seismicity, "FSP 1.0: A program for probabilistic estimation of fault slip potential resulting from fluid injection", was used to calculate the probability of the PreCambrian fault being stressed so as to create an induced seismic event, with the following assumptions:

- a. Full proposed capacity of 50,000 BBL/day for 30 years
- b. 12.5 mD average permeability, 3% average porosity, .75 psi/ft stress gradient, .47 psi/ft hydrostatic gradient
- c. A-phi=0.60 & Max Horizontal Stress direction 75 deg N, as per Snee, Zoback paper noted above.
- 6. The distance from the proposed injection well to the nearest basement fault is approximately 8 km. The probability of an induced seismic event in the PreCambrian is calculated to be 0% after 5, 10, 20, & 30 years as per the FSP results screenshots below.
- 7. The analysis below assumes an improbable well failure through the Montoya & Simpson barrier zones, through the Ellenburger & Cambrian permeable zones, into the PreCambrian. When the injected fluids stay in the Devonian-Silurian zone as per design, there will be very low probability of fault slip, since there are no known nearby faults within the Devonian-Silurian.

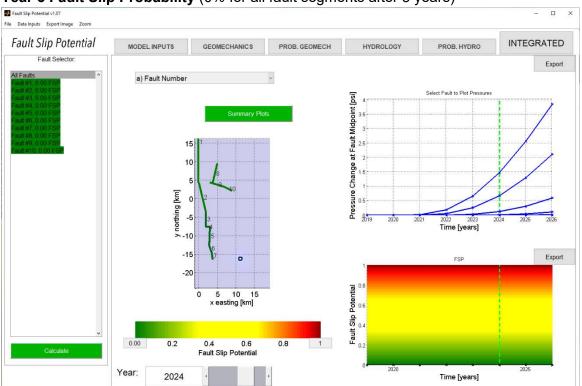

Input assumptions:

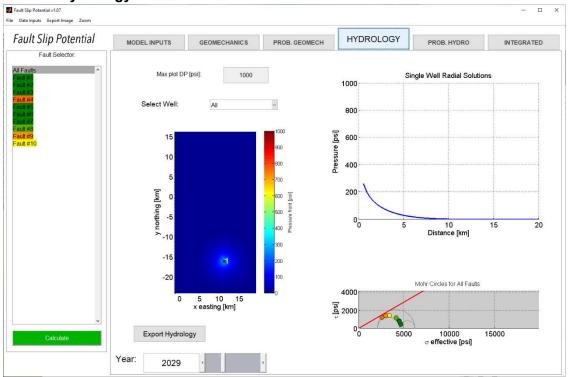
Rate (BBL/day)	50000
Interval height (ft)	1500
Average Porosity (%)	3
Vert stress gradient (psi/ft)	0.75
Hor stress direction (deg N)	75
Fault dip (deg)	75
Ref depth (ft)	22100
Initial res press gradient (psi/ft)	0.47
A phi	0.6
Friction coefficient	0.58
Weighted average perm	12.5
Fluid density (kg/m3)	1100
Dynamic viscosity	0.0003
Fluid compressibility (/Pa)	4 e-10
Rock compressibility (/Pa)	1.08 e-09

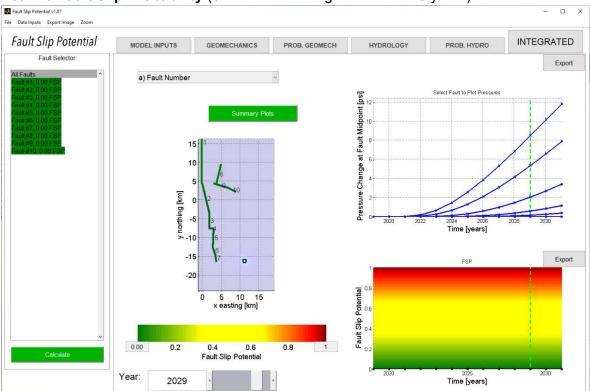


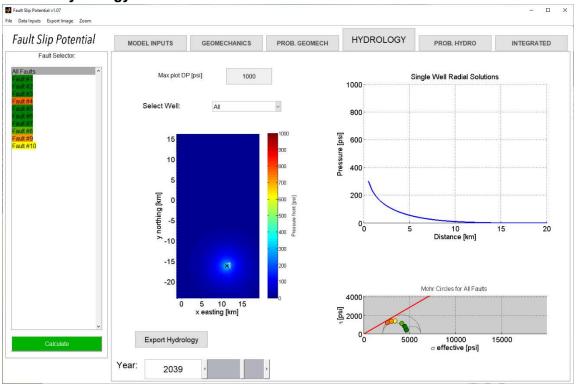
Geomechanics Pore Pressure to Slip

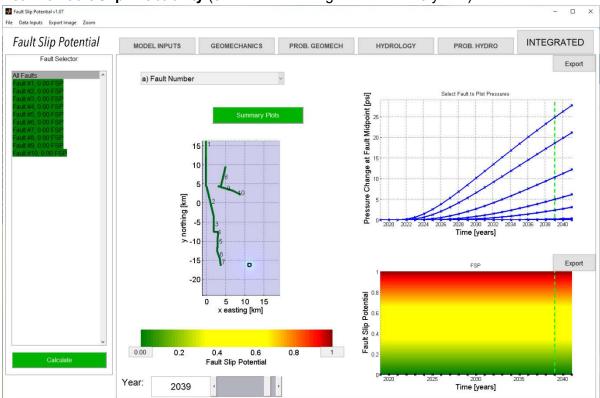
GeoMechanics Variability

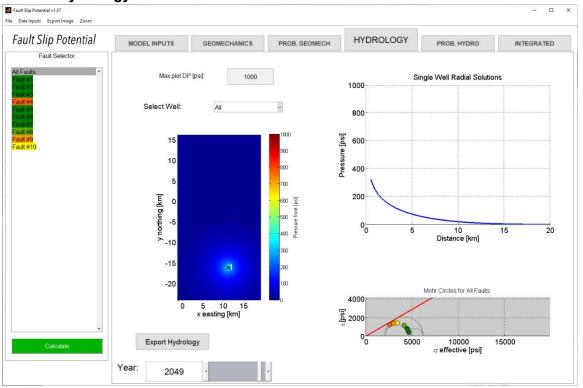


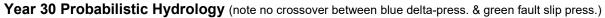

Year 5 Probabilistic Hydrology (note no crossover between blue delta-press. & green fault slip press.)

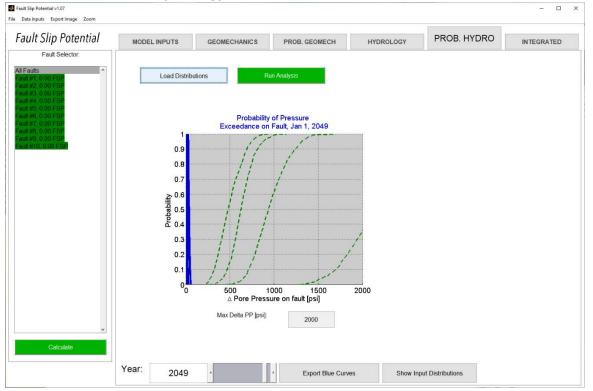

Year 5 Fault Slip Probability (0% for all fault segments after 5 years)

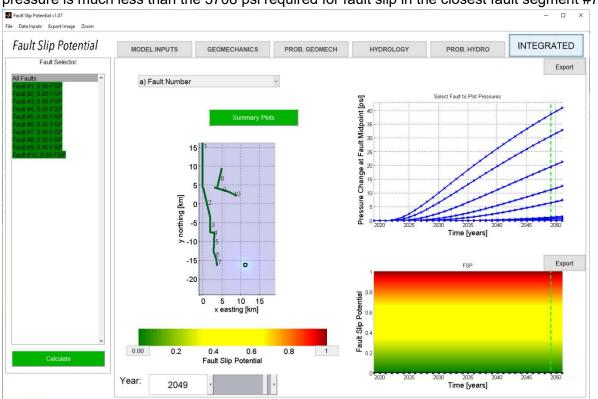

Year 10 Probabilistic Hydrology (note no crossover between blue delta-press. & green fault slip press.)


Year 10 Fault Slip Probability (0% for all fault segments after 10 years)


Year 20 Probabilistic Hydrology (note no crossover between blue delta-press. & green fault slip press.)






Year 20 Fault Slip Probability (0% for all fault segments after 20 years)

Year 30 Fault Slip Probability (0% for all fault segments after 30 years. 39 psi fault delta pressure is much less than the 3708 psi required for fault slip in the closest fault segment #7)

As per NM OCD requirements (injection well to injection well spacing minimum of 1.5 miles), this proposed above referenced SWD well is located 3.25 miles away from the nearest active or permitted Devonian disposal well.

gfisher@popmidstream.com (817) 606-7630