Initial

Application Part I

Received 8/14/18

This application is placed in file for record. It MAY or MAY NOT have been reviewed to be determined Administratively Complete

RECEIVED:	REVIEWER:	TYPE:	APP NO:

ABOVE THIS TABLE FOR OCD DIVISION USE ONLY

NEW MEXICO OIL CONSERVATION DIVISION

- Geological & Engineering Bureau –

1220 South St. Francis Drive, Santa Fe, NM 87505

ADMINISTRATIVE APPLICATION CHECKLIST

THIS CHECKLIST IS MANDATORY FOR ALL ADMINISTRATIVE APPLICATIONS FOR EXCEPTIONS TO DIVISION RULES AND REGULATIONS WHICH REQUIRE PROCESSING AT THE DIVISION LEVEL IN SANTA FE

Applicant: Probity SWD, LLC	OGRID Number: 296278
Well Name: Henry McDonald SWD No.1	API: 30-015-xxxxx
Pool: Proposed: SWD; Devonian-Silurian	Pool Code: 97869

SUBMIT ACCURATE AND COMPLETE INFORMATION REQUIRED TO PROCESS THE TYPE OF APPLICATION INDICATED BELOW

1)	TYPE OF APPLICATION: Check those which apply for [A]	
	A. Location – Spacing Unit – Simultaneous Dedication	
	Image: NSL Image: NSP (project area) Image: NSP (protect area) Image: SD (protect area)	
	B. Check one only for [1] or [1] [1] Commingling – Storage – Measurement	
	[III] Injection – Disposal – Pressure Increase – Enhanced Oil Recovery	
		FOR OCD ONLY
2)	NOTIFICATION REQUIRED TO: Check those which apply.	
	A. Offset operators or lease holders	
	B. 🗍 Royalty, overriding royalty owners, revenue owners	
	C. Application requires published notice	
	D. Notification and/or concurrent approval by SLO	Complete
	E. 🔲 Notification and/or concurrent approval by BLM	Complete
	F. 🖬 Surface owner	
	G. For all of the above, proof of notification or publication is attached	l, and/or,

- H. No notice required
- 3) **CERTIFICATION:** I hereby certify that the information submitted with this application for administrative approval is **accurate** and **complete** to the best of my knowledge. I also understand that **no action** will be taken on this application until the required information and notifications are submitted to the Division.

Note: Statement must be completed by an individual with managerial and/or supervisory capacity.

Ben Stone

Print or Type Name

8/13/2018

Date

903-488-9850

Phone Number

Signature

ben@sosconsulting.us e-mail Address

August 13, 2018

New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Attn: Ms. Heather Riley, Director

Re: Application of Probity SWD, LLC to permit for salt water disposal the Henry McDonald SWD Well No.1, to be located in Section 24, Township 25 South, Range 28 East, NMPM, Eddy County, New Mexico.

Dear Ms. Riley,

Please find the enclosed form C-108 Application for Authority to Inject, supporting the above-referenced request for salt water disposal. The well will be operated as a commercial endeavor offering operators in the area additional options for produced water disposal.

Probity SWD seeks to optimize efficiency, both economically and operationally, of its operations in southeast New Mexico. Approval of this application is consistent with that goal as well as the NMOCD's mission of preventing waste and protection of correlative rights.

I would point out that this application for a proposed Devonian SWD interval includes the currently mandated increased One-Mile Area of Review including pertinent and available seismic information for the area and region. Published legal notice ran June 17, 2018 in the Artesia Daily Press and all offset operators and other interested parties have been notified individually. The legal notice affidavit is included herein. This application also includes a wellbore schematic, area of review maps, affected party plat and other required information for a complete Form C-108. The well is located on private land and minerals. There are state and federal lands & minerals and private minerals within the one-mile radius notice area and the State Land Office and offset operators have been notified of this application.

I respectfully request that the approval of this salt water disposal well proceed swiftly and if you or your staff requires additional information or has any questions, please do not hesitate to call or email me.

Best regards,

Ben Stone, Partner SOS Consulting, LLC Agent for Probity SWD, LLC

Cc: Application attachment and file

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

APPLICATION FOR AUTHORIZATION TO INJECT

- I. PURPOSE: Salt Water Disposal and the application QUALIFIES for administrative approval.
- II. OPERATOR: Probity SWD, LLC ADDRESS: P.O. Box 7307, Midland, TX 79708

CONTACT PARTY: Agent: SOS Consulting, LLC – Ben Stone (903) 488-9850

- III. WELL DATA: All well data and applicable wellbore diagrams are ATTACHED.
- IV. This is not an expansion of an existing project.
- V. A map is attached that identifies all wells and leases within two miles of any proposed injection well with a ONE-Mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
- *VI. A tabulation is attached of data on all wells of public record within the area of review which penetrate the proposed injection zone. *There are NO (0) Wells in the subject AOR which Penetrate the proposed Devonian interval.* The data includes a description of each well's type, construction, date drilled, location, depth, and a schematic of any plugged well illustrating all plugging detail. *NO P&A Wells penetrate.*
- VII. The following data is ATTACHED on the proposed operation, including:
 - 1. Proposed average and maximum daily rate and volume of fluids to be injected;
 - 2. Whether the system is open or closed;
 - 3. Proposed average and maximum injection pressure;
 - 4. Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and,
 - 5. If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
- *VIII. Appropriate geologic data on the injection zone is ATTACHED including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.
- IX. Stimulation program a conventional acid job may be performed to clean and open the formation.
- *X. Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted). *Well Logs will be filed with OCD.*
- *XI. There are 2 water wells/ PODs within one mile of the proposed salt water disposal well. Representative analyses are ATTACHED.
- XII. An affirmative statement is ATTACHED that available geologic and engineering data has been examined and no evidence was found of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.
- XIII. "Proof of Notice" section on the next page of this form has been completed and ATTACHED. There are 15 offset lessees and/or mineral owners within ½ mile and state, federal & private minerals all have been noticed. Well location is Private.
- XIV. Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.

NAME:	Ben Stone	TITLE: SOS Consulting, LLC agent for Probity SWI), LLC	
SIGNATURE	- Sen	Time .	DATE: _	8/13/2018
	- (

E-MAIL ADDRESS: ben@sosconsulting.us

* If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal:

FORM C-108 - APPLICATION FOR AUTHORIZATION TO INJECT (cont.)

- III. WELL DATA The following information and data is included (See ATTACHED Wellbore Schematic):
- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No., Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.

(4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.

XIV. PROOF OF NOTICE pursuant to the following criteria is ATTACHED.

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,
- (4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

C-108 - Items III, IV, V

Item III - Subject Well Data

Wellbore Diagram - PROPOSED

Item IV – Tabulation of AOR Wells

NO wells penetrate the proposed injection interval.

Item V – Area of Review Maps

1. Two Mile AOR Map with One-Mile Fresh Water Well Radius

2. One-Half Mile AOR Map

All Above Exhibits follow this page.

WELL SCHEMATIC - PROPOSED Henry McDonald SWD Well No.1

API 30-015-xxxxx 300' FSL & 2640' FWL, SEC. 24-T25S-R28E EDDY COUNTY, NEW MEXICO Proposed: SWD; Devonian-Silurian-Fusselman Spud Date: 11/01/2018 SWD Config Dt: 12/15/2018

McDonald SWD No.1 - Area of Review / 2 Miles

(Attachment to NMOCD Form C-108 - Item V)

Henry McDonald SWD Well No.1 - One Mile Area of Review / Overview Map =

(Attachment to NMOCD Form C-108, Application for Authority to Inject.)

C-108 ITEM X

LOGS and AVAILABLE TEST DATA

Some Cross-Sections of Wells in the Area are included in the Geological Information Section of this application.

A Standard Suite of Logs will be run after drilling the well and submitted to the Division.

C-108 ITEM VII – PRODUCED WATER ANAYLSES

Item VII.4 – Water Analysis of Source Zone Water

Glorieta/ Yeso Bone Spring Wolfcamp

Item VII.5 – Water Analysis of Disposal Zone Water

Devonian

Water Analyses follow this page.

SOURCE ZONE

GLO/YESO

1230							Lab D						
API No	300152	4754					Sample	e ID	1146				
Well Name	PLATT	PA			009		Sample No						
Locatio	n ULSTR	26	18	S 26	Е	Lat / Long 32.71216	-104	4.35742					
		330	S	990	W		County	Eddy					
Operate	or (when s	ample	ed)	Yates I	Petroleum	Corp.							
		Fie	ld	ATOKA	4		Unit M						
Sa	ample Date)		8/4/198	84	Analysis Date	nalysis Date						
		Sa	mple \$	Source W	/e l lhead	Depti	Depth (if known)						
		Wa	ater Ty	'p Pi	roduced W	ater							
ph					7.5	alkalinity_as_caco	o3_mgL						
ph_t	emp_F					hardness_as_cac	o3_mgL						
spec	specificgravity					hardness_mgL		1800					
spec	ificgravity	temp_	F			resistivity_ohm_ci	resistivity_ohm_cm						
tds_	mgL				120382	resistivity_ohm_ci	resistivity_ohm_cm_temp_						
tds_	mgL_180C					conductivity	conductivity						
chloi	ride_mgL				113000	conductivity_temp	conductivity_temp_F						
sodi	um_mgL				71415	carbonate_mgL	carbonate_mgL						
calci	um_mgL				2560	bicarbonate_mgL		476					
iron_	_mgL				0	sulfate_mgL		2001					
bariu	ım_mgL					hydroxide_mgL	hydroxide_mgL						
mag	nesium_m	gL			0	h2s_mgL		0					
pota	potassium_mgL					co2_mgL							
stror	strontium_mgL					o2_mgL							
man	ganese_m	gL				anionremarks							
Remarks													

SOURCE ZONE

GLO/YESO

1630							Lab D		
API No	300152	4619					Sample	e ID	1207
Well Name	PLATT	PA			300	}	Sample	e No	
Locatio	on ULSTR	26	18	S 26	E	Lat / Long 32.71245	-104	4.35329	
		430	S	2260	W	-	County	Eddy	
Operat	or (when s	ample	d)	Yates	Petroleum	Corporation			
		Fie	ld	ATOK	A		Unit N		
S	ample Date)		1/19/19	85	Analysis Date			
		Sa	mple \$	Source w	ell head	Depth	(if known)		
		Wa	ter Ty	p P	roduced V	/ater			
ph					6	alkalinity_as_caco	3_mgL		
ph_t	temp_F					hardness_as_cacc	o3_mgL		
spec	cificgravity					hardness_mgL		11500	
spec	cificgravity_	temp_	F			resistivity_ohm_cm	ı		
tds_	mgL				136324	resistivity_ohm_cm	n_temp		
tds_	mgL_180C					conductivity			
chlo	ride_mgL				121000	conductivity_temp_	_F		
sodi	um_mgL				61571	carbonate_mgL			
calc	ium_mgL				4160	bicarbonate_mgL		104	
iron_	_mgL				0	sulfate_mgL		3720	
bari	um_mgL					hydroxide_mgL			
mag	nesium_m	gL			7340	h2s_mgL			
pota	issium_mgl	-				co2_mgL			
stro	strontium_mgL					o2_mgL			
mar	iganese_m	gL				anionremarks			
Remarks	manganese_mgL iarks								

SOURCE ZONE

BONE SPRING

	3									Lab D				
ΑΡΙ Νο	300152	0225								Sample	e ID	5847		
Well Name	BIG ED		ЛТ			012				Sample				
Location	ULSTR	21	20	S	31	Е		Lat / Long	32.56399	9 -103	3.87994			
	1	660	Ν	66	0	W				County	Eddy			
Operator	· (when s	ample	ed)	MAL			MPANY							
		Fie	ld	BIG	EDD	PΥ				Unit D				
Sar	mple Date			8/27/	1999	1	Analy	sis Date						
		Sa	mple	Source	9				Dept	h (if known)				
		Wa	ater Ty	yp										
ph						5.2		alkalin	ity_as_cac	o3_mgL				
ph_te	ph_temp_F							hardne	ess_as_cad	co3_mgL				
specif	specificgravity					1.125		hardne	ess_mgL					
specif	icgravity_	temp_	F					resistivity_ohm_cm						
tds_m	ıgL			181697				resistivity_ohm_cm_temp_						
tds_m	gL_180C							conductivity						
chlorid	de_mgL					123750								
sodiur	m_mgL				-	73895.6		carbor						
calciu	m_mgL					5625		bicarbo	onate_mgL		13.725			
iron_r	ngL					337.5		sulfate	787.5					
bariur	n_mgL							hydrox	ide_mgL					
magn	esium_m	gL						h2s_m	gL		0			
potas	sium_mgl	-						co2_m	gL					
strontium_mgL								o2_mg	ιL					
mang	anese_m	gL						anionre	emarks					
Remarks														

WOLFCAMP

								Lab ID					
API No	300152	0138						Sample	ID	5688			
Well Name	MAHUN	I STAT	ΓE		001			Sample	No				
Location	ULSTR	16	22	S 22	Е	Lat / Long	32.39340	-104	.70979				
		1800	Ν	1980	W			County	Eddy				
Operato	r (when sa	ampleo	i)										
		Fie	ld	ROCKY	Y ARROYO			Unit F					
Sa	mple Date			5/17/196	8	Analysis Date							
		Sa	mple \$	Sourc DS	ST								
		Wa	iter Ty	/p									
ph					8.6	alkalinit	alkalinity_as_caco3_mgL						
ph_te	mp_F	_F ravity				hardnes	s_as_caco3_	_mgL					
speci	ficgravity	gravity				hardnes	s_mgL						
speci	ficgravity_	cgravity cgravity_temp_F				resistivi	resistivity_ohm_cm						
tds_n	ngL				35495	resistivi	ty_ohm_cm_	temp_					
tds_n	ngL_180C					conduct	conductivity						
chlori	de_mgL				19000	conduct	ivity_temp_F						
sodiu	m_mgL					carbona	ate_mgL						
calciu	ım_mgL					bicarbo	nate_mgL		8	330			
iron_i	mgL					sulfate_	mgL		25	500			
bariu	m_mgL					hydroxi	de_mgL						
magr	esium_mg	L				h2s_mg	IL						
potas	potassium_mgL					co2_mę	μ						
stron	tium_mgL					o2_mgl	-						
mang	anese_mg	ιL				anionre	marks						
Remarks													

DISPOSAL ZONE

DEVONIAN

ONIAN								Lab ID					
API No.	300151	0280						Sample	ID	6170			
Well Name	JURNE	gan f	POINT		001			Sample	No				
Location	ULSTR	05	24	S 25	Е	Lat / Long	32.24037	-104	.42375				
		0001510280 URNEGAN PC JLSTR 05 660 hen sampled) Field e Date Sam Wate Sam Wate 180C mgL 180C mgL ngL ngL ngL ngL mgL mgL mgL mgL		660	W			County	Eddy				
Operato	r (when sa	ampleo	d)										
		Fie	ld	WILDC	AT			Unit M					
Sa	mple Date			12/14/196	64	Analysis Date							
		Sa	mple S	ource DS	ST		Depth (i	if known)					
		Wa	ater Typ	pe									
ph					7	alkalini	ty_as_caco3_	mgL					
ph_te	mp_F					hardne							
speci	ficgravity	cgravity				hardne	ss_mgL						
speci	cificgravity cificgravity_temp_F					resistiv	vity_ohm_cm						
tds_n	ngL				229706	resistiv	resistivity_ohm_cm_temp_						
tds_n	ngL_180C					conduc	ctivity						
chlori	de_mgL				136964	conduc	ctivity_temp_F						
sodiu	m_mgL					carbor	ate_mgL						
calciu	ım_mgL					bicarbo	onate_mgL		198	8			
iron_	mgL					sulfate	_mgL		251	1			
bariu	m_mgL					hydrox	ide_mgL						
magr	esium_mg	JL				h2s_m	gL						
potas	sium_mgL	-				co2_m	co2_mgL						
stron	ium_mgL					o2_mg	ιL						
mang	anese_mg	JL				anionre	emarks						
Domorko													

Remarks

Geological Data

Geological Evaluation of a Devonian Salt Water Disposal site for Probity SWD, LLC

Introduction

The location of the proposed injection site is Section 13-25S-28E in Eddy County New Mexico. Approximately 28 nearby Silurian/Devonian deep SWD wells were used for this evaluation. These wells are all within a *radius of 20 miles* from the proposed section that the well be drilled.

Geological Setting

During most of the Paleozoic Era, sandstone, limestone, and carbonaceous shales were deposited in sedimentary basins throughout much of Texas and Southern New Mexico. These basins received sediments until the latter part of the Pennsylvanian era, when the Llano Uplift and the Ouachita Fold Belt caused regional tilting of the land surface to the west and east off the flanks of the uplifted zones.

The Sliurian/Devonian section overlays the Montoya Group, which comprises a moderately thick (100 to 600 ft) Upper Ordovician carbonate ramp succession present in both outcrop and the subsurface of West Texas and southeastern New Mexico.

The Montoya Group was largely deposited on the Middle-Upper Ordovician Simpson Group but locally overlies on the Lower Ordovician Ellenburger or equivalent. The Sylvan Shale, where present, and the Fusselman Formation generally overlie the Montoya.

Available information shows that the upper Fusselman in the Midland Basin was deposited in a spectrum of shallow-water, high-energy open marine environments. The top of the upper Fusselman in a number of wells is characterized by diagenetic textures indicative of karstification and soil formation, both of which suggest a prolonged period of subaerial erosion prior to deposition of the overlying Wristen Formation.

The Fusselman Formation comprises a complex series of carbonate facies, including light-colored ooid grainstones, green glauconitic and pink pelmatozoan grainstones and packstones, and sparse skeletal wackestones with minor shaly intercalations. Geesaman and Scott (1989) and Garfield and Longman (1989) divided the Fusselman into two informal units in the subsurface of the central Midland Basin, a lower Fusselman and an upper Fusselman, each of which represents a separate depositional sequence.

The age of the subsurface Fusselman is poorly known due to a lack of fossil material from only limited core studies. The upper Fusselman is dominated by widespread thick, crinoidal grainstones, and lesser amounts of dolomitic wackestone to skeletal packstone. These three lithofacies are interbedded such that they reflect minor differences in paleotopographic setting and degree of relative subsidence during deposition.

C-108 - Item VIII Geological Data (cont.)

In the area being proposed for this disposal well, the Devonian Woodford Shale overlays massive deposits of undifferentiated carbonates of Silurian/Devonian age, predominately Fusselman dolostones that are the primary deep disposal zone in this area of Southern New Mexico. Immediately beneath the Woodford the Thirtyone and Fasken formations develop porosity within skeletal packstones.

Typical type section for the area of interest.

C-108 - Item VIII Geological Data (cont.)

Detailed Analysis of the location

The subsurface structure of the Pre-Woodford carbonates displays a sequence of carbonates becoming shallower to the North-west. The depth of the top carbonate section beneath section 13 25S-28E is approximately 11,750 feet subsea or approximately 14,750' true vertical depth from surface. The average injection interval of all the wells is 1185'. Most of the wells reached total depth before penetrating the base of the carbonates, making an isopach map difficult to create.

There are no deep Silurian or Devonian wells in the area that produce hydrocarbons.

Twenty-eight deep salt water disposal wells were used to create this map and numerous other wells were evaluated that penetrate the deeper sections. The vast majority of the wells in the immediate area are shallower than the Devonian.

API#	Well Name	location	Total depth	operator	Top inj	Base inj	Max PSI	Fm	GL
30-015-39713	19 FEDERAL SWD #001	A-19-24S-30E	16770	BOPCO, L.P.	15611	16770	3122	Dev	3184
30-015-41351	NASH DRAW 8 FEDERAL #001	L-08-24S-30E	16950	BOPCO, L.P.	15750	17225	3150	Dev	3200
30-015-40935	PLU DELAWARE B 23 FEDERAL SWD	C-23-24S-30E	17783	BOPCO, L.P.	16300	17785	3260	Dev	3435
30-015-41846	GOLDENCHILD 6 STATE SWD #001	P-06-25S-29E			14745	16240	2949	Dev	2931
30-015-43895	MOUTRAY SWD	A-28-24S-29E	16036	MESQUITE SWD	15100	15900	3020	Dev	2929
30-015-31075	TOP GUN FEDERAL SWD	A-18-23S-27E	13800	MEWBOURNE OIL CO	12900	14000	2580	Dev	3230
30-015-33187	RINGER FEDERAL #006	P-03-25S-26E	13550	MURCHISON OIL & GAS INC	12850	13700	2570	Dev	3340
30-015-44303	RUSTLER BREAKS SWD 3	J-24-23S-27E	14499	BLACK RIVER WATER	13650	14494	2730	Dev	3115
30-015-21643	CIGARILLO SWD 1	G-36-23S-27E	14195	EOG	13650	14130	1730	Dev	3137
30-015-22638	LAYLA 27 SWD #001	H-27-23S-28E	15000	MEWBOURNE OIL CO	14000	15000	2800	Dev	3035
30-015-39400	NASH UNIT SWD #053	H-13-23S-29E	16445	XTO ENERGY, INC	14906	16445	2981	Dev	2999
30-015-44054	CEDAR CANYON SWD #001	P-08-24S-29E	15764	MESQUITE SWD	14800	16000	2960	Dev	2929
30-015-44262	CALDERON FARMS SWD	O-09-24S-28E	14900		13650	14650	2730	Dev	3024
30-015-42797	CEDAR CANYON 15 SWD	K-15-24S-29E	16014	OXY USA INC	14887	15937	2977	Dev	2928
30-015-44061	SCOTT B SWD -1	N-23-24S-28E	15212	MESQUITE SWD	15000	16200	3000	Dev	2954
30-015-41806	WILLOW 17 STATE SWD-1	P-17-25S-28E	15292	COG OPERATING	14000	15300	2800	Dev	3016
30-015-40435	PLU PIERCE CANYON 3 FEDERAL SWD	O-03-25S-30E	17799	BOPCO, L.P.	16471	18275	3294	Dev	3321
30-015-39470	SHOCKER SWD #001	A-32-25S-29E	15700		15200	15700	3040	Dev	2990
30-015-42356	COTTONWOOD 2 STATE SWD #001	O-02-26S-26E	14500	COG OPERATING LLC	13100	14600	2620	Dev	3229
30-015-43892	GRAVITAS 2 STATE SWD #002	M-02-26S-27E	14960	CHEVRON U S A INC	13900	15100	2780	Dev	3211
30-015-41402	APPLE 5 STATE SWD #001	B-05-26S-28E	15400	COG OPERATING LLC	14100	15400	2820	Dev	3017
30-015-23615	FLOWER DRAW 2 STATE SWD #001	G-02-26S-28E	15900	MEWBOURNE OIL CO	14700	16100	2940	Dev	2961
30-015-21398	SRO SWD #102	G-16-26S-28E	15400	COG OPERATING LLC	14525	15400	2905	Dev	3023
30-015-29728	COTTON DRAW UNIT #084	I-02-25S-31E	16585	DEVON ENERGY	16295	16585	3259	Dev	3455
30-015-31381	COTTON DRAW UNIT #089	O-03-25S-31E	17400	DEVON ENERGY	17100	17400	3420	Dev	3419
30-015-04749	J F HARRISON FEDERAL #001	D-12-25S-30E	17205	BOPCO, L.P.	16626	17205	3325	Dev	3362
30-015-41074	JAMES RANCH UNIT 21 FEDERAL SWD #0	G-21-22S-30E	16525	BOPCO, L.P.	12252	16525	2450	Dev	3165
30-015-44131	SAND DUNES SWD #002	K-08-24S-31E	17920	MESQUITE SWD, INC	16620	18010	3324	Dev	3515
30-015-43630	FULLER 14 FEDERAL SWD	J-14-26S-29E	16540	MEWBOURNE OIL CO	15540	16540	3108	Dev	2935

Geological Data (cont.)

East-West X-section

А

COTTONWOOD 2 STATE SWD 1 0-015-42356 TD:14,900'

Top Devonian: 13229' Inj. Interval: 13,100-14'600' Injection Limit: 2620 psi 2017 average daily Inj.: 6000 bbls COG OPERATING LLC Eley: 3298.8' Spud: 7-12-2014

30-015-394	70
TD: 15,681	
Top Devonian: 15180'	
Inj. Interval: 15,200-15"	700'
Injection Limit: 3040 psi	
2017 average daily Inj .:	3236 bbls
Yates Petroleum/EOG	
Elev: 3016.5'	
Spud: 12-2-2011	

SHOCKER SWD #001

FULLER 14 FEDERAL SWD 30-015-43630 TD: 16540'

30-015-29728

COTTON DRAW UNIT #084 I-02-25S-31E

TD: 16585

Top Devonian: 15,604'

Injection zone 16295'-16585'

Art Share

3259 psi limit ~5,200 bbls/day

William .

A'

Top Devonian: 15,604' Inj. Interval: 15,540' 16,540' Injection Limit: 3108 psi 2017 average daily Inj.: 13,058 bbls MEWBOURNE OIL CO Elev: 2935' Spud: 05/14/2016

North-South x-section

Geological Data (cont.)

Prepared by: Howard McLaughlin – Geologist, April 2018

Appendix/Database

API#	Well Name	location	Total depth	operator	Top inj	Base inj	Max PSI Fm	GL	Rustler	Delaware	bone Springs	Wolf	Strawn	Atoka	Morrow	Dev	Fusslemar	Montoya
30-015-39713	19 FEDERAL SWD #001	A-19-24S-30E	16770	BOPCO, L.P.	1561	16770	3122 Dev	3184	4 254	3500	7286							
30-015-41351	NASH DRAW 8 FEDERAL #001	L-08-24S-30E	16950	BOPCO, L.P.	1575	17225	3150 Dev	3200	0 852	3279	7297	10610)			15680	16520	16865
30-015-40935	PLU DELAWARE B 23 FEDERAL SWD	C-23-24S-30E	17783	BOPCO, L.P.	1630	17785	3260 Dev	3435	5 465	4108	7902		13310			16383		
30-015-41846	GOLDENCHILD 6 STATE SWD #001	P-06-25S-29E			1474	5 16240	2949 Dev	2931	L		6480	9737	r			14745		
30-015-43895	MOUTRAY SWD	A-28-24S-29E	16036	MESQUITE SWD	1510	15900	3020 Dev	2929	Э	2970	6684	10041	12175	12348	12966	14901	15360	15970
30-015-31075	TOP GUN FEDERAL SWD	A-18-23S-27E	13800	MEWBOURNE OIL CO	1290	14000	2580 Dev	3230)	2100	5327	8855	10698	10999	11482	12899		
30-015-33187	RINGER FEDERAL #006	P-03-25S-26E	13550	MURCHISON OIL & GAS INC	1285	13700	2570 Dev	3340)	1958	5377	8600	10137	10383	10937			
30-015-44303	RUSTLER BREAKS SWD 3	J-24-23S-27E	14499	BLACK RIVER WATER	13650	14494	2730 Dev	3115	5	2390	5782		11068	11299		13445		
30-015-21643	CIGARILLO SWD 1	G-36-23S-27E	14195	EOG	1365	14130	1730 Dev	3137	7	2350	5915	9270	10950	11235	11955	13650		
30-015-22638	LAYLA 27 SWD #001	H-27-23S-28E	15000	MEWBOURNE OIL CO	1400	15000	2800 Dev	3035	5	2612	6272	9523	11383	11630	12040	13959		
30-015-39400	NASH UNIT SWD #053	H-13-23S-29E	16445	XTO ENERGY, INC	1490	5 16445	2981 Dev	2999	9									
30-015-44054	CEDAR CANYON SWD #001	P-08-24S-29E	15764	MESQUITE SWD	1480	16000	2960 Dev	2929	9		6570	9880	11860	1	12712	14665		15720
30-015-44262	CALDERON FARMS SWD	O-09-24S-28E	14900		1365	14650	2730 Dev	3024	1	2543	6236	9372	11105	11278	12021	13850		
30-015-42797	CEDAR CANYON 15 SWD	K-15-24S-29E	16014	OXY USA INC	1488	7 15937	2977 Dev	2928	3 407	2949	6689	9938	11945	12174	12815	14846		
30-015-44061	SCOTT B SWD -1	N-23-24S-28E	15212	MESQUITE SWD	1500	16200	3000 Dev	2954	1		6342	9750	11706	11922		14152		15132
30-015-41806	WILLOW 17 STATE SWD-1	P-17-25S-28E	15292	COG OPERATING	1400	15300	2800 Dev	3016	5 112	1	6090	9259	11688	11930	12542	14273		
30-015-40435	PLU PIERCE CANYON 3 FEDERAL SWD	O-03-25S-30E	17799	BOPCO, L.P.	1647	18275	3294 Dev	3321	L 962		7737	11039	13308	13479		16421		
30-015-39470	SHOCKER SWD #001	A-32-25S-29E	15700		1520	15700	3040 Dev	2990)									
30-015-42356	COTTONWOOD 2 STATE SWD #001	O-02-26S-26E	14500	COG OPERATING LLC	1310	14600	2620 Dev	3229	9 140	1941	5458	8611	10977	11185	11900	13229		
30-015-43892	GRAVITAS 2 STATE SWD #002	M-02-26S-27E	14960	CHEVRON U S A INC	1390	15100	2780 Dev	3211	L	844	2763	5806	8211	8433	8690		11143	
30-015-41402	APPLE 5 STATE SWD #001	B-05-26S-28E	15400	COG OPERATING LLC	1410	15400	2820 Dev	3017	7 608		6079	9120	11705	12020	12601	14339		
30-015-23615	FLOWER DRAW 2 STATE SWD #001	G-02-26S-28E	15900	MEWBOURNE OIL CO	1470	16100	2940 Dev	2961	L									
30-015-21398	SRO SWD #102	G-16-26S-28E	15400	COG OPERATING LLC	1452	5 15400	2905 Dev	3023	3	2511	6267	9217	11854	12158		14494		
30-015-29728	COTTON DRAW UNIT #084	I-02-25S-31E	16585	DEVON ENERGY	1629	5 16585	3259 Dev	3455	5 664	4315	8231	11576	13625	13747		16342		
30-015-31381	COTTON DRAW UNIT #089	O-03-25S-31E	17400	DEVON ENERGY	1710	17400	3420 Dev	3419	9	4400	8310	12850	13819	13957		17045		
30-015-04749	J F HARRISON FEDERAL #001	D-12-25S-30E	17205	BOPCO, L.P.	1662	5 17205	3325 Dev	3362	1162	4088	7904	11239	13622	13680	14322	16623		
30-015-41074	JAMES RANCH UNIT 21 FEDERAL SWD #	0 G-21-22S-30E	16525	BOPCO, L.P.	1225	2 16525	2450 Dev	3165	5 194	3571		10697	,	12587	13241	15258		
30-015-44131	SAND DUNES SWD #002	K-08-24S-31E	17920	MESQUITE SWD, INC	1662	18010	3324 Dev	3515	5			11650	13550	13640	14440	16530		17722
30-015-43630	FULLER 14 FEDERAL SWD	J-14-26S-29E	16540	MEWBOURNE OIL CO	15540	16540	3108 Dev	2935	5 552	3052	6780	10004	L .	13421	13565	15604		

Geological Data

EARTHQUAKE / SEISMIC INFORMATION SUPPLEMENT

Map Source: <u>State of stress in the Permian Basin, Texas and New Mexico: Implications for induced</u> <u>seismicity (Figure 1)</u>; Jens-Erik Lund Snee/ Mark Zoback, February 2018

PROJECT VICINITY

Figure 1. State of stress in the Permian Basin, Texas and New Mexico. Black lines are the measured orientations of the maximum horizontal stress (SHmax), with line length scaled by data quality. The colored background is an interpolation of measured relative principal stress magnitudes (faulting regime) expressed using the A parameter (see text for details) of Simpson (1997). Blue lines are fault traces known to have experienced normalsense offset within the past 1.6 Ma, from the USGS Quaternary Faults and Folds Database (Crone and Wheeler, 2000). The boundary between the Shawnee and Mazatzal basement domains is from Lund et al. (2015), and the Precambrian Grenville Front is from Thomas (2006). The Permian Basin boundary is from the U.S. Energy Information Administration, and the subbasin boundaries are from the Texas Bureau of Economic Geology Permian Basin Geological Synthesis Project. Earthquakes are from the USGS National Earthquake Information Center, the TexNet Seismic Monitoring Program, and Gan and Frohlich (2013). Focal mechanisms are from Saint Louis University (Herrmann et al., 2011).

Geological Data

EARTHQUAKE / SEISMIC INFORMATION SUPPLEMENT (cont.)

In the following map, a layer with USGS historical earthquake data is overlaid and, a layer showing lines to represent Precambrian faults as documented by Ruppel, et al. (2005). Finally, a layer showing all currently permitted SWDs completed or proposed to be completed in the Devonian (Silurian) formation.

The USGS earthquakes shown are well know to the area. The cluster to the NW represents the seismic events in and around the Dagger Draw area (43.4 miles) in 2002. The 2012 quake located approximately 13 miles due east of Loving is also shown (14.3 miles). This was perhaps the most significant of the area in recent years but was determined to not be related to oil and gas activity.

The Precambrian faults and existing Devonian SWDs are discussed in more detail on the next page.

REGIONAL VIEW - DEVONIAN SWD LOCATIONS, PRECAMBRIAN FAULTS, SHmax, USGS MAGNITUDE

Geological Data

EARTHQUAKE / SEISMIC INFORMATION SUPPLEMENT (cont.)

The primary Precambrian fault in the area as documented by Ruppel, et al. (2005) is represented on this map by the tan colored line; the fault is running southeast to northwest. The proposed Henry McDonald SWD is located 3.1 miles from the fault. Other Devonian SWDs in the area are also shown by small purple dots. (5-digit API well no., well name and distance for each is shown.) completed or proposed to be completed in the Devonian (Silurian) formation.

The previously referenced study by Snee and Zoback evaluated the strike-slip probability using probabilistic FSP (Fault Slip Potential) analysis of known faults in the Permian Basin. The study predicts that the Precambrian fault shown here has less than a 10% probability of being critically stressed to the point of creating an induced seismicity event. The main reason for the low probability is due to the relationship of the strike of the fault to the regional S_{Hmax} orientation in this area.

VICINITY - PERMITTED DEVONIAN SWDS, PRECAMBRIAN FAULT, SHmax

Geological Data

EARTHQUAKE / SEISMIC INFORMATION SUPPLEMENT (cont.)

2014 map data: The USGS notes in its report that <u>fracking</u> may be to blame for a sizeable uptick in earthquakes in places like <u>Oklahoma</u>. "Some states have experienced increased seismicity in the past few years that may be associated with human activities such as the disposal of wastewater in deep wells," the report says. USGS hopes to use that data in future maps but it isn't included in this one. "Injection-induced earthquakes are challenging to incorporate into hazard models because they may not behave like natural earthquakes and their rates change based on man-made activities," the report says.

C-108 - Item VIII Geological Data

EARTHQUAKE / SEISMIC INFORMATION SUPPLEMENT (cont.)

USGS 2014 MAP DATA OVERLAY IN GOOGLE EARTH

An updated USGS map for 2018 is on the next page. (Made available after the start of this investigation.) While methodology remained essentially the same according to USGS, the interpreted results and color-coding did have changes. However, the subject area in southeast New Mexico on both maps remains very low and on the 2018 map, the area is assigned a value of <1% of "potentially minor-damage ground shaking".

C-108 - Item VIII Geological Data

EARTHQUAKE / SEISMIC INFORMATION SUPPLEMENT (cont.)

USGS 2018 ONE-YEAR MODEL

* equivalent to Modified Mercalli Intensity VI, which is defined as: "Felt by all, many frightened. Some heavy furniture moved; a few instances of fallen plaster. Damage slight."

Map showing chance of damage from an earthquake in the Central and Eastern United States during 2018. Percent chances are represented as follows: pale yellow, less than 1 percent; dark yellow, 1 to 2 percent; orange, 2 to 5 percent; red, 5 to 10 percent; dark red, 10 to 12 percent. See Hazard from the western United States from the <u>2014 National Seismic Hazard Maps</u> (Petersen et al., 2014) for comparison.

The USGS has produced the 2018 one-year probabilistic seismic hazard forecast for the central and eastern United States from induced and natural earthquakes. For consistency, the updated 2018 forecast is developed using the same probabilistic seismicity-based methodology as applied in the two previous forecasts.

Based on publicly available data for the subject area, it is reasonable to believe the risk of induced seismic activity due to disposal injection into this well is extremely low.

C-108 Item XI

Water Wells Within One Mile

Henry McDonald SWD No.1 - Water Well Locator Map

There are 2 water wells/ PODs within a one-mile radius of the proposed SWD.

Representative Water Analyses are included.

Data from NM Office of the State Engineer displayed in OSE-GIS System.

DownHole SAT & Water Analysis Report

SYSTEM IDENTIFICATION

Mewbourne

Fresh Water Tank Fresh Water Well POD 01411

0

Sample ID#: ID:

Sample Date: Report Date: 01-30-2018 at 1626 01-31-2018

WATER CHEMISTRY

CATIONS		ANIONS		
Calcium(as Ca)	656.36	Chloride(as Cl)	400.44	
Magnesium(as Mg)	70.02	Sulfate(as SO ₄)	1261	
Barium(as Ba)	0.00	Dissolved CO2(as CO2)	0.00	
Strontium(as Sr)	8.42	Bicarbonate(as HCO ₃)	170.80	
Sodium(as Na)	38.52	H ₂ S (as H ₂ S)	0.00	
Potassium(as K)	12.72			
Iron(as Fe)	0.0440	PARAMETERS		
		Temperature(^O F)	61.00	
		Sample pH	8.50	
		Conductivity	2270	
		T.D.S.	2618	
		Resistivity	440.57	
		Sp.Gr.(g/mL)	1.01	
Manganese(as Mn)	0.00			

SCALE AND CORROSION POTENTIAL

Temp.	Press.	Cal	icite	Anl	nydrite	Gypsum		Barite		Celestite		Siderite		Mackawenite		CO2	pCO ₂ (atm)
(⁰ F)	(psig)	Cal	003	C	aSO4	CaSO	CaSO4*2H20		BaSO ₄		SrSO4		FeCO ₃		FeS		
70.00	0.00	31.02	5.39	0.464	-628.11	0.794	-185.50	0.00	-0.0125	0.703	-7.34	0.313	-0.0133	0.00	-0.0878	0.00374	< 0.001
83.64	0.00	39.15	6.12	0.476	-590.91	0.761	-217.37	0.00	-0.0170	0.712	-7.04	0.454	-0.00754	0.00	-0.0880	0.00505	< 0.001
97.27	0.00	47.45	6.70	0.508	-519.62	0.741	-236.12	0.00	-0.0221	0.737	-6.19	0.621	-0.00390	0.00	-0.0882	0.00636	< 0.001
110.91	0.00	55.48	7.12	0.562	-422.71	0.780	-189.68	0.00	-0.0277	0.773	-5.10	0.818	-0.00145	0.00	-0.0885	0.00663	< 0.001
124.55	0.00	63.49	7.45	0.642	-308.59	0.863	-107.68	0.00	-0.0343	0.809	-4.11	1.05	< 0.001	0.00	-0.0887	0.00556	< 0.001
138.18	0.00	71.30	7.70	0.754	-184.84	0.948	-37.24	0.00	-0.0421	0.844	-3.23	1.31	0,00158	0.00	-0.0891	0.00376	< 0.001
151.82	0.00	78.62	7.86	0.910	-57.91	1.04	23.55	0.00	-0.0514	0.877	-2.45	1.58	0.00247	0.00	-0.0895	0.00300	< 0.001
165.45	0.00	85.20	7.93	1.12	66.97	1.13	76.20	0.00	-0.0622	0.909	-1.75	1.83	0.00301	0.00	-0.0899	0.00238	< 0.001
179.09	0.00	90.90	7.91	1.42	186.14	1.22	122.21	0.00	-0.0747	0.939	-1.13	2.02	0.00319	0.00	-0.0904	0.00163	< 0.001
192.73	0.00	95.60	7.83	1.83	296.88	1.31	162.62	0.00	-0.0892	0.968	-0.577	2.08	0.00296	0.00	-0.0910	< 0.001	< 0.001
206.36	0.00	99.22	7.68	2.41	397.55	1.40	198.30	0.00	-0.106	0.995	-0.0927	1.93	0.00230	0.00	-0.0918	< 0.001	< 0.001
220.00	2.51	101.50	7.56	3.19	487.69	1.49	227.33	0.00	-0.127	1.01	0.142	1.70	0.00157	0.00	-0.0931	0.00161	< 0.001
		XSAT	mg/L	XSAT	mg/L	XSAT	mg/L	XSAT	mg/L	XSAT	mg/L	XSAT	mg/L	XSAT	mg/L		

Saturation Levels (xSAT) are the ratio of ion activity to solubility, e.g. $Ca_{CO_3/K_{SD}}$. pCO₂ (atm) is the partial pressure of CO₂ in the gas phase. mg/L scale is the quantity of precipitation (or dissolution) required to instantaneously bring the water to equilibrium.

Analytica	l Report
-----------	----------

Lab Order 1609364

Date Reported: 9/20/2016

Page 1 of 4

CLIENT: Permits West Project: Solaris US 285 SWD Lab ID: 1609364-001	Matrix:	AQUEOUS	Client Samp Collection Received	le ID: US 285 SWD #1 Date: 9/1/2016 1:35:00 PM Date: 9/7/2016 1:55:00 PM	
Analyses	Result	PQL Qual	Units	DF Date Analyzed Bate	ch
EPA METHOD 1664A N-Hexane Extractable Material EPA METHOD 300.0: ANIONS	ND	,10	mg/L	Analyst: tnc 1 9/12/2016 10:45:00 AM 274 Analyst: LG T	40 r
Chloride	350	10 *	mg/L	20 9/9/2016 4:38:51 AM A37	081
SM2540C MOD: TOTAL DISSOLVED	SOLIDS	20.0 *	ma/l	Analyst: SRI	N
	2020	20.0	nig/L	(3/9/2016 5.12.00 FM 2/4	0
		1			
		,			
			~		•
		,			
				,	
	۰.				
				- ·	
:					,
				,	
				EXHIBIT I	.]}
Refer to the QC Summary repor	t and sample logi	n checklist for fl	agged QC da	ata and preservation information.	J

Hall Environmental Analysis Laboratory, Inc.

Qualifiers: Value exceeds Maximum Contaminant Level. В Analyte detected in the associated Method Blank Ď Sample Diluted Due to Matrix Ε Value above quantitation range н· Holding times for preparation or analysis exceeded (**J** Analyte detected below quantitation limits ND Not Detected at the Reporting Limit Р Sample pH Not In Range R RPD outside accepted recovery limits RL Reporting Detection Limit S % Recovery outside of range due to dilution or matrix Sample container temperature is out of limit as specified W

C-108 ITEM XI - WATER WELLS IN AOR

Depth to Ground Water

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	d, (quai (quai	rter	sa sa	re re :	1=N smal	W 2=N lest to	IE 3=SW	/ 4=SE) (NAD8	3 UTM in meters)		(In feet	t)
POD Number	POD Sub- Code basin (County	Q 64	Q 16	Q 4	Sec	Tws	Rng	x	Y	Depth Well	Depth Water	Water Column
C 01278	С	ED		4	3	28	255	28E	585470	3551338* 🌍	205	90	115
C 01411	С	ED	4	4	2	04	25S	28E	586289	3558522* 🥥	69	35	34
C 01453	С	ED		1	2	26	25S	28E	589096	3552612* 🥥	70	40	30
C 01522	с	ED			1	22	25S	28E	586843	3554004* 🌍	150		
C 01573 POD1	С	ED	3	1	4	20	25S	28E	584144	3553361 🌍	176	96	80
C 02668	С	ED	2	1	2	09	25S	28E	585890	3557525* 🔵	150		
C 03263 POD1	CUB	ED	1	1	1	07	255	28E	581628	3557501* 🔵	133		
C 03836 POD1	с	ED	2	2	4	29	25S	28E	584682	3551934 🌍	300	30	270
C 03861 POD1	С	ED	4	2	3	18	25S	28E	582266	3554864 🥥	91	63	28
										Average Depth to	Water:	59 f	leet
										Minimum	Depth:	30 f	ieet
										Maximum	Depth:	96 f	eet
Deport Count: 0			-	1.7	-								

Record Count: 9

PLSS Search:

Township: 25S Range: 28E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

WATER COLUMN/ AVERAGE DEPTH TO WATER

C-108 - Item XI

Groundwater Basins - Water Column / Depth to Groundwater

The subject well is located within the Carlsbad Basin.

Fresh water in the area is generally available from valley and basin fill of the Carlsbad-Pecos segment of the lower Pecos Valley complex of Quaternary alluvial sand and gravel deposits. State Engineer's records show water wells in 25S-28E with an average depth to water at 59 feet.

There are two water wells (domestic, abandoned, monitor) located within one mile of the proposed SWD. Two representative analyses are included with this application. They are from offsetting applications but are closely matched and represent the shallow fresh water available in the area.

C-108 ITEM XII

Geologic Affirmation

We have examined available geologic and engineering data and have found no evidence of open faults or other hydrologic connection between the disposal interval and any underground sources of drinking water.

Ben Stone, Partner SOS Consulting, LLC

Project: Probity SWD, LLC Henry McDonald SWD No.1 Reviewed 6/02/2018

C-108 ITEM XIII – PROOF OF NOTIFICATION

IDENTIFICATION AND NOTIFICATION OF INTERESTED PARTIES

Exhibits for Section

Affected Parties Map

List of Interested Parties

Notification Letter to Interested Parties

Proof of Certified Mailing

Published Legal Notice

C-108 ITEM XIII – PROOF OF NOTIFICATION AFFECTED PARTIES LIST

SOS Consulting is providing electronic delivery of C-108 applications. ALL APPLICABLE AFFECTED PARTIES ARE PROVIDED A LINK IN THE NOTICE LETTER TO A SECURE SOS/ CITRIX SHAREFILE[®] SITE TO VIEW AND DOWNLOAD A FULL COPY OF THE SUBJECT C-108 APPLICATION IN PDF FORMAT.

SURFACE & MINERAL OWNER

1 HENRY MCDONALD P.O. Box 597 Loving, NM 88256-0597 Certified: 7017 2400 0000 5297 5652

OFFSET MINERALS LESSEES and OPERATORS (All Notified via USPS Certified Mail)

Private Leases (T.1 and T.2 on Affected Parties Map) Lessses

- 2 MRC PERMIAN COMPANY 5400 LBJ Freeway, Suite 1500 Dallas, Texas 75240 Certified: 7017 2400 0000 5297 5669
- 3 FEATHERSTONE DEVELOPMENT CORPORATION PO Box 429 Roswell, New Mexico 88202 Certified: 7017 2400 0000 5297 5676
- 4 BIG TREE ENERGY GROUP, LLC PO Box 429 Roswell, New Mexico 88202 Certified: 7017 2400 0000 5297 5683
- 5 PROSPECTOR, LLC PO Box 429 Roswell, New Mexico 88202 Certified: 7017 2400 0000 5297 5690
- 6 CAMARIE OIL AND GAS, LLC 2502 Camarie Midland, Texas 79705 Certified: 7017 2400 0000 5297 5706
- 7 ROSS DUNCAN PROPERTIES, LLC PO Box 647 Artesia, New Mexico 88220 Certified: 7017 2400 0000 5297 5713
- 8 XPLOR RESOURCES, LLC 1104 N. Shore Carlsbad, New Mexico 88220 Certified: 7017 2400 0000 5297 5720

C-108 ITEM XIII – PROOF OF NOTIFICATION AFFECTED PARTIES LIST (cont.)

Private Leases (T.1 and T.2 on Affected Parties Map) Lessses (cont.)

- 9 CARLSBAD NATIONAL BANK TRUST DEPARTMENT, Testamentary Trustee under the Last Will and Testament of Bradley T. Light PO Box 1359, Carlsbad, New Mexico 88221 Certified: 7017 2400 0000 5297 5737
- 10 STANLEY W. LIGHT, Trustee of the Stanley W. Light Revocable Trust 3818 Turtle Creek Drive Dallas, Texas 75219 Certified: 7017 2400 0000 5297 5744

BLM Lease NMNM-088128 (T.3 on Affected Parties Map) Lessee

11 ENDEAVOR ENERGY RESOURCES, LP 110 N. Marienfeld Street, Ste.200 Midland, TX 79701 Certified: 7017 2400 0000 5297 5751

BLM Lease NMNM-055929; NMNM-115416 (T.4 and T.7 on Affected Parties Map) Lessee & Operator

12 XTO HOLDINGS, LLC 810 Houston Street Fort Worth, TX 76012-6203 Certified: 7017 2400 0000 5297 5768

BLM Lease NMNM-117121; NMNM-013413 (T.6 and T.11 on Affected Parties Map) Lessee & Operator

13 CHEVRON USA, INC. Attn: Linda McMurray, Permitting Team 6301 Deauville Blvd. Midland, TX 79706 Certified: 7017 2400 0000 5297 5775

OFFSET MINERALS OWNERS (Notified via USPS Certified Mail)

- 14 U.S. DEPARTMENT OF INTERIOR Bureau of Land Management Oil & Gas Division 620 E. Greene St. Carlsbad, NM 88220 Certified: 7017 2400 0000 5297 5782
- 15 STATE OF NEW MEXICO Oil, Gas and Minerals Division 310 Old Santa Fe Trail Santa Fe, NM 87504 Certified: 7017 2400 0000 5297 5799

C-108 ITEM XIII – PROOF OF NOTIFICATION AFFECTED PARTIES LIST (cont.)

REGULATORY

NEW MEXICO OIL CONSERVATION DIVISION (FedEx'ed original and copy) 1220 S. St. Francis Dr. Santa Fe, NM 87505

NEW MEXICO OIL CONSERVATION DIVISION (FedEx'ed copy) 811 S. First St. Artesia, NM 88210

August 10, 2018

NOTIFICATION TO INTERESTED PARTIES via U.S. Certified Mail – Return Receipt Requested

To Whom It May Concern:

Probity SWD, LLC, Midland, Texas, has made application to the New Mexico Oil Conservation Division to drill and complete for salt water disposal the Henry McDonald SWD Well No.1. The proposed commercial operation will be for produced water disposal from area operators. As indicated in the notice below, the well is located in Section 24, Township 25 South, Range 28 East in Eddy County, New Mexico.

The published notice states that the interval will be from 14,750 feet to 15,935 feet into the Devonian (Silurian) and Fusselman formations.

Following is the notice published in the Artesia Daily Press, Artesia, New Mexico on or about June 17, 2018.

LEGAL NOTICE

Probity SWD, LLC, P.O. Box 7307, Midland, TX 79708, is filing Form C-108 (Application for Authority to Inject) with the New Mexico Oil Conservation Division seeking administrative approval for a salt water disposal well. The proposed well, the Henry McDonald SWD No.1, will be located 300' FSL and 2340' FWL, Section 24, Township 25 South, Range 28 East, Eddy County, New Mexico. Produced water from area production will be commercially disposed into the Devonian (Silurian) and Fusselman formations at a depth of 14,750' to 15,935' at a maximum surface pressure of 2950 psi and a rate limited only by such pressure. The proposed SWD well is located approximately 8.1 miles south/ southeast of Malaga, NM.

Interested parties wishing to object to the proposed application must file with the New Mexico Oil Conservation Division, 1220 St. Francis Dr., Santa Fe, NM 87505, (505)476-3460 within 15 days of the date of this notice. Additional information may be obtained from the applicant's agent, SOS Consulting, LLC, (903)488-9850 or, email info@sosconsulting.us.

You have been identified as a party who may be interested as an offset lessee or operator.

You are entitled to a full copy of the application. A full copy in PDF format is posted on the SOS Consulting *ShareFile* site and is available for immediate download.

Use the URL link: https://sosconsulting.sharefile.com/d-sbf8c363e2ff42a3a

(Please Note: The ShareFile service is powered by Citrix Systems and is completely secure.*)

The link to this file will be active for 30 days from the date of this letter. Your company can access and download the file a maximum of five (5) times. (One copy may be downloaded and shared as needed amongst your company.)

Alternatively, you may call SOS Consulting, LLC at 903-488-9850, or email info@sosconsulting.us, and the same PDF file copy will be expedited to you via email.

Please use a subject like, "McDonald SWD Aug2018 PDF Copy Request".

Thank you for your attention in this matter.

Best regards,

Ben Stone, SOS Consulting, LLC Agent for Probity SWD, LLC

Cc: Application File

SOS Consulting is committed to providing superior quality work using technology to assist clients and interested parties in obtaining the documentation required. SOS will continue to utilize methods for reducing papers copies and are less energy and resource intensive.

We hope you'll partner with us and appreciate these efforts.

* You will be asked for your name and email. This will not be used for anything except to track the file downloads. You will not be solicited by SOS or anyone else. Data is stored on Citrix Systems servers only.

C-108 - Item XIV

Proof of Notice (Certified Mail Receipts)

C-108 - Item XIV

Proof of Notice (Certified Mail Receipts - cont.)

C-108 - Item XIV

Proof of Notice (Certified Mail Receipts - cont.)

Affidavit of Publication
No. 24723
State of New Mexico
County of Eddy:
Danny Scott Jama Cal
being duly sworn sayes that she is the
of the Artesia Daily Press, a daily newspaper of General
circulation, published in English at Artesia, said county
and state, and that the hereto attached
Legal Ad
was published in a regular and entire issue of the said
Artesia Daily Press, a daily newspaper duly qualified
for that purpose within the meaning of Chapter 167 of
the 1937 Session Laws of the state of New Mevico for
1 Consecutive weeks/day on the same
day as follows:
First Publication June 17, 2018
Second Publication
Third Publication
Fourth Publication
Fifth Publication
Sixth Publication
Seventh Publication
Subscribed and sworn before me this
18th day of June 2018
OFFICIAL SEAL Latisha Romine NOTARY PUBLIC-STATE OF NEW MEXICO My commission expires: 5/12/2019
Antista Romino
Latisha Romine
Notary Public, Eddy County, New Mexico

Copy of Publication:

Legal Notice

Probity SWD, LLC, P.O. Box 7307, Midland, TX 79708, is filing Form C-108 (Application for Authority to Inject) with the New Mexico Oil Conservation Division seeking administrative approval for a salt water disposal well. The proposed well, the Henry McDonald SWD No.1, will be located 300' FSL and 2340' FWL, Section 24, Township 25 South, Range 28 East, Eddy County, New Mexico. Produced water from area production will be commercially disposed into the Devonian (Silurian) and Fusselman formations at a depth of 14,750' to 15,935' at a maximum surface pressure of 2950 psi and a rate limited only by such pressure. The proposed SWD well is located approximately 8.1 miles south/ southeast of Malaga, NM.

Interested parties wishing to object to the proposed application must file with the New Mexico Oil Conservation Division, 1220 St. Francis Dr., Santa Fe, NM 87505, (505)476-3460 within 15 days of the date of this notice. Additional information may be obtained from the applicant's agent, SOS Consulting, LLC, (903)488-9850 or, email info@sosconsult-

Tone per year (TPV)

Published in the Artesia Daily Press, Artesia, N.M., June 17, 2018 Legal No. 24723.