AP- 29

STAGE 2 REPORT

8-25-11

TALON XLPE

> AMARILLO 921 North Bivins Amarillo, Texas 79107 Phone 806.467.0607 Fax 806.467.0622

MOBILE DUAL PHASE EXTRACTION REPORT KIMBROUGH SWEET 8 INCH PIPELINE RELEASE LEA COUNTY, NEW MEXICO SRS # 2000-10757 TALON/LPE PROJECT # 700376.050.02

AUSTIN 3003 Tom Gary Cove Building C-100 Round Rock, Texas 78664 Phone 512.989.3428 Fax 512.989.3487

PREPARED FOR:

MIDLAND 2901 State Highway 349 Midland, Texas 79706 Phone 432.522.2133 Fax 432.522.2180

PLAINS MARKETING, L.P. 333 CLAY STREET SUITE 1600 HOUSTON, TEXAS 77002

SAN ANTONIO 17170 Jordan Road Suite 102 Selma, Texas 78154 Phone 210.579.0235 Fax 210.568.2191

TULSA 9906 East 43rd Street Suite G Tulsa, Oklahoma 74146 Phone 918.742.0871 Fax 918.742.0876

HOBBS or Street

318 East Taylor Street Hobbs, New Mexico 88241 Phone 505.393.4261 Fax 505.393.4658

TYLER
719 West Front Street
Suite 255
Tyler, Texas 75702
Phone 903.531.9971
Fax 903.531.9979

PREPARED BY:

TALON/LPE 921 N. BIVINS

AMARILLO, TEXAS 79107

HOUSTON 3233 West 11th Street Suite 400 Houston, Texas 77008 Phone 713.861.0081 Fax 713.868.3208

DISTRIBUTION:

COPY 1 - PLAINS MARKETING, L.P. - MIDLAND

COPY 2 - PLAINS MARKETING, L.P. - HOUSTON

COPY 3 - NMOCD - SANTA FE .

COPY 4 - TALON/LPE

ENVIRONMENTAL CONSULTING
ENGINEERING
DRILLING
CONSTRUCTION
EMERGENCY RESPONSE

August 25, 2011

Toll Free: 866.742.0742 www.talonlpe.com

September 8, 2011

RECEIVED OCD

2011 SEP 12 P 11: 48

Mr. Edward Hansen New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE:

Plains Pipeline, L.P.

Reports for MDPE Events at Two (2) Remediation Sites in Lea County, NM

Dear Mr. Hansen:

Plains Pipeline, L.P. is pleased to submit the attached reports which provide details regarding the Mobile Dual Phase Extraction (MDPE) events that were conducted at the following sites during July 2011:

Red Byrd #1

NMOCD Reference #1R-0085 NMOCD Reference #AP-0029

Kimbrough Sweet 8-inch Sweet

Should you have any questions or comments, please contact me at (575) 441-1099.

Sincerely,

Jason Henry

Remediation Coordinator

Plains Pipeline, L.P.

Enclosure

TABLE OF CONTENTS

<u>Section</u> Pa	<u>ige</u>
I. MDPE SUMMARY REPORT AND WASTE DISPOSITION A. MDPE Results B. Air Quality C. Waste Management and Disposition	1
II. SYSTEM OPERATION DATA AND MASS RECOVERY CALCULATIONS	2
Table 1	3
Attachments:	
Attachment 1 - MDPE field logs Attachment 2 - Laboratory Analytical Results Attachment 3 - Oxidizer Charts Attachment 4 - Waste Ticket	

I. MDPE SUMMARY REPORT AND WASTE DISPOSITION

A. MDPE Results

The following report summarizes data collected during the 12-hour High Vacuum Multi-Phase Extraction (MDPE) event conducted from July 20, 2011 to July 21, 2011 at the Kimbrough Sweet 8" Pipeline release site, located in Lea County, New Mexico. The objective of the MDPE treatment was to remove both vapor and liquid phase separated hydrocarbons (PSH) from onsite groundwater wells. Talon/LPE utilized an MDPE unit which consisted of an SVE extraction pump capable of generating vacuum up to 25" hg. Off gas vapors extracted from the extraction wells were destroyed using a propane-fired 1000-SCFM thermal oxidizer capable of processing 172.96 lbs/hr of gasoline.

A total of 12 hours (0.5 days) of PSH recovery was performed. MW-2, 5, 6, & 7 for 12 hours.

Prior to and immediately following the event, the groundwater wells were gauged for groundwater elevation and PSH. Depth to groundwater ranges were measured in feet below the top of casing. Refer to Attachment 1 for a summary of data collected during the MDPE event.

The volume of PSH removed during the MDPE event is shown to reflect the portions of PSH in the liquid phase and as off-gas vapor. Air removal rates were calculated from velocity measurements recorded at the influent manifold prior to entry into the MDPE unit. PSH recovery and air flow data has been detailed and is contained in Table 1. Three influent air samples were collected over the course of the event. These samples were submitted for laboratory testing in order to compare the predicted vapor concentrations (based on field-screening or calculated based on fuel consumption) to the actual vapor concentrations. All three influent samples were tested for Total-Gas Analysis (Hydrocarbon Composition) by ASTM method D 1945. Laboratory analytical results can be found in Attachment 2.

Based on a combination of field vapor screening and collected laboratory samples, a combined estimated total of 42.56 equivalent gallons of PSH (Total) were removed during the event. The combined volume of PSH was comprised of approximately 23 gallons of PSH (liquid phase) and approximately 19.56 gallons as off-gas vapor.

The cumulative air flow measurements for the MDPE event were calculated using a combination of field data measurements and Preso® B+ manufacturer provided formulas. Air flow rates extracted from the recovery wells averaged 227.67 SCFM during the event.

A portion of the extracted air flow rates measured is attributable to compressed air, which was "injected" into the extraction wells. This "injected" air is introduced into the extraction wells for the purpose of enhancing liquid recovery rates.

B. Air Quality

Three influent air samples were collected during the event. These samples were submitted for laboratory testing in order to compare the predicted vapor concentrations (based on field-screening or calculated based on fuel consumption) to the actual vapor concentrations. The maximum concentration in air influent was recorded as 4,249.14 ppmv for Hydrocarbon Composition. Laboratory analytical results can be found in Attachment 2.

C. Waste Management and Disposition

A cumulative total of 362 gallons of fluid were generated during this event. The fluids were temporarily transferred to an on-site storage tank prior to being transferred to a frac tank located at the Plains 8-Inch Moore to Jal #1 remediation site (NMOCD Reference #AP-91) for disposal at a later date. A copy of the waste ticket can be found in Attachment 4.

II. SYSTEM OPERATION DATA AND MASS RECOVERY CALCULATIONS

Formulae:

Concentration (C_mg/l) = $\frac{\text{C_ppmv x Mol. wt. in mg(estimated)}}{\text{C_ppmv x Mol. wt. in mg(estimated)}} \times \frac{1000 \times 0.000001}{\text{c}}$

0.0821 x Temp (K)

Recovery Rate (lbs/hr) = $(C_mg/l) \times 2.2 \times (Flowrate) \times 60 \times 28.32$

1,000,000

Recovery (lbs) = (lbs/hr) x (hrs)

Correction Factor (CF) = FID Reading(ppmv)

FID Reading at Time of Laboratory Analysis

8.34 lbs x 0.835 average specific gravity of light crude = 6.96 lbs light crude gallon water (estimated) gallon

Table 1
System Operation Data and Mass Recovery Calculations

								, ,							
Time	Period (hours)	Influent Temp. (°f)	Vacuum (In. hg)	Vacuum (In. h20)	Differential pressure (In. h20)	Flow (SCFM)	FID Readings (ppmv)	Lab Result (ppmv)	Assigned Lab Result (ppmv)	Correction Factor (CF)	Adjusted Lab Result (ppmv)	Adjusted Lab Result (mg/L)	Recovery (lbs/hr)	Recovery in Period (lbs)	Total Recovery (lbs)
10:30	0	96	14	190.53	83.4	227.47	28347		4249.14	1.09	4638	16.48	14.01	0.00	0.00
11:00	0.5	100	14	190.53	90.2	235.71	25972	4249.14	4249.14	1.00	4249	14.99	13.21	6.60	6.60
12:00	1	100	14	190.53	93.1	239.47	20830		4249.14	0.80	3408	12.02	10.76	10.76	17.36
13:00	1	102	16	217.74	91.8	222.00	18748		4249.14	0.72	3067	10.78	8.95	8.95	26.31
14:00	1	102	16	217.74	95.3	226.19	21325		4249.14	0.82	3489	12.26	10.37	10.37	36.68
15:00	1	102	14	190.53	91.5	236.98	18745		3778.84	0.95	3587	12.61	11.17	11.17	47.85
16:00	1	102	14	190.53	82.3	224.75	15831		3778.84	0.80	3029	10.65	8.95	8.95	56.79
17:00	1	98	14	190.53	74.5	214.60	19748	3778.84	3778.84	1.00	3779	13.38	10.73	10.73	67.53
18:00	1	96	14	190.53	79.3	221.80	17322		3778.84	0.88	3315	11.78	9.76	9.76	77.29
19:00	1	92	14	190.53	83.4	228.29	14173	141	3778.84	0.72	2712	9.71	8.28	8.28	85.57
20:00	1	90	14	190.53	86.5	232.91	11396		3861.15	1.17	4513	16.21	14.11	14.11	99.69
21:00	1	90	14	190.53	80.4	224.55	10143		3861.15	1.04	4017	14.43	12.11	12.11	111.80
22:00	1	86	14	190.53	79.7	224.39	9749	3861.15	3861.15	1.00	3861	13.97	11.72	11.72	123.52
23:00	1	86	14	190.53	82.5	228.30	10315		3861.15	1.06	4085	14.78	12.61	12.61	136.13
Averages:	7	95.86	14.29	194.41	85 28	227.67	17331.71						Total	136.13	

FID maximum Concentration = 50 000 PPM

	ion from ppmv t					
Measured Conc.	Molecular Wt.	Pressure	Gas Constant	Temp.	Temp	Conc.
(C_ppmv)	(Grams)	(atm)	(atm.liter/K.m ole)	(F)	(K)	(C_mg/l)
4638	90	1	0.0821	96	308.5555556	16.4766328

Inputs are the green values.

Calculated values are yellow.

Constants are purple values.

Outpus are the blue values.

Liquid-phase Hydrocarbon Recovery (assumes gasoline product)

 $\prod * r^2 * h = volume$

Gallons removed determined at ti	me of pick up
PSH Volume in Gallons=	23
PSH Mass in Pounds=	160.08

Total Hydrocarbon Recovery

PSH Mass Recovered in Vapor Phase =

PSH Mass Recovered in Liquid Phase =

136.13 lbs
19.56 gallon
160.08 lbs
23.00 galons

19.56 gallons

TOTAL =

PSH Mass Recovered in Vapor Phase =

296.21 lbs 42.56 gallons

	70 10141	ny arouar bo	n to mg/m³ to ppmv - I	inidone i			
Compound	Molecular Weight (g/mol)	% total	% total (Decimal)	=	Mg/M³	=	ppmv
Methane (CH4)	16.04	0.1856	0.001856	-	1856		526.78
Ethane (C2H6)	30.07	0	0		0		0.00
Propane (C3H8)	44.10	0.0163	0.000163		163		46.26
Iso-Butane (C4H10)	58.12	0.0289	0.000289		289		82.03
N-Butane (C4H10)	58.12	0.15	0.0015		1500		425.74
Iso-Pentane (C4H12)	72.15	0.1401	0.001401		1401		397.64
N-Pentane (C5H12)	72.15	0.2078	0.002078		2078		589.79
Hexane+ (C6H14)	86.18	0.7684	0.007684		7684		2180.9
						Total	4249.1

	% Total	Hydrocarbo	n to mg/m³ to ppmv - li	nfluent 2			
Compound	Molecular Weight (g/mol)	% total	% total (Decimal)	=	Mg/M³	=	ppmv
Methane (CH4)	16.04	0.131	0.00131		1310		371.81
Ethane (C2H6)	30.07	0	0		0		0.00
Propane (C3H8)	44.10	0.112	0.00112		1120		317.88
Iso-Butane (C4H10)	58.12	0.0242	0.000242		242		68.69
N-Butane (C4H10)	58.12	0.1194	0.001194		1194		338.89
Iso-Pentane (C4H12)	72.15	0.1224	0.001224		1224		347.40
N-Pentane (C5H12)	72.15	0.1657	0.001657		1657		470.30
Hexane+ (C6H14)	86.18	0.6567	0.006567		6567		1863.8
						Total	3778.84

			0 11				
Compound	Molecular Weight (g/mol)	% total	% total (Decimal)	=	Mg/M³	=	ppmv
Methane (CH4)	16.04	0.151	0.00151		1510		428.58
Ethane (C2H6)	30.07	0	0		0		0.00
Propane (C3H8)	44.10	0.0184	0.000184		184		52.22
Iso-Butane (C4H10)	58 12	0.0218	0.000218		218		61.87
N-Butane (C4H10)	58.12	0.1315	0.001315		1315		373.23
so-Pentane (C4H12)	72.15	0.1305	0.001305		1305		370.39
N-Pentane (C5H12)	72.15	0.1736	0.001736		1736		492.72
Hexane+ (C6H14)	86 18	0.7336	0.007336		7336		2082.14
						Total	3861.15

ATTACHMENT 1
MDPE Field Logs

				N	IDPE FIEL	D NOTES						
Site Name:		Kimbrough	Sweet 8"				Event #	# :	1 .			
Location:		Lea Count		·····					7/20/2011 9:48			
Date:		7/20-21/20										
Job#:		700376.05	0.02		SRS:	2000-107	57 Start V	ac:	7/20/2011 10:30			
Phase:		MDPE			Unit:	1107	Stop V		7/20/2011 23:00			
Onsite Perso	nnel:	L. Jaquez	& M. Hern	andez		· !	Leave		7/21/2011 1:30			
		<u> </u>			_							
		. NEW C.			GAUGING	3 DATA						
WELL#					AFTER			MMEN	ITS			
	PSH	GW	PSH-T	PSH	GW	PSH-T	TD					
MW5	57.51	57.95	0.44		57.69	-	66.7					
MW6	55.32	57.53	2.21	-	59.08	-	65.69					
MW7	56.72	56.91	0.19	-	57.19	-	66.16					
MW2	56.92	57.11	0.19	-	58.23	-	61.87					
MW3	-	56.04	-	-	56.05	-	63.45					
MW12	-	59.05	-	-	59.06	-	72.74					
MW14		60.59	-	-	60.56	-	104.79					
MW15	-	69.33	-		69.33	-	96.69 * Anomalous DT	W data	<u> </u>			
MW13	-	57.94			57.93	-	71.75					
MW4	-	55.54	-	-	55.44	-	59.95					
MW10	-	57.01	-	-	57.02	-	59.63					
MW1	-	57.03	-	-	57.03		62.29					
MW11	55.51	59.08	3.57	-	57.44	-	59.08					
MW9	56.69	56.92	0.23		57.28	-	65.14					
MW1		DRY			DRY		56.94					
MW8	-	56.63	-	-	56.67	-	57.82					
								•				
							,					
,												
WASTE:	H2O:	. 339		PSH:	23		TOTAL (GAL): 36	52				
Sample		Anal		Date:		me:	Comments:					
INFLUENT	1	ASTM I		7/20/2011		:00						
INFLUENT	2	ASTMI		7/20/2011		:00						
INFLUENT	3	ASTM I	J 19 4 5	7/20/2011	22	::00						
EFFLUENT												

Sample	Name	Analysis	Date:	Time:	Comments:
INFLUENT	1	ASTM D 1945	7/20/2011	11:00	
INFLUENT	2	ASTM D 1945	7/20/2011	17:00	
INFLUENT	3	ASTM D 1945	7/20/2011	22:00	
EFFLUENT					

Notes:					
MW11 and MW	9 were hand bailed υ	intil no measurable PSF	l was observed.		
			•		

			$\setminus /$	<u>ن</u> ت	2	X	X	X	\setminus	\bigvee	\bigvee	\bigvee	\bigvee	\bigvee	\bigvee	\bigvee	X	X	χ
			$\backslash\!\!\!\setminus$	Mad	 !	$\left\langle \right\rangle$							$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\langle \rangle$				
				U I) 	X							$\langle \rangle$	\bigvee	V	\bigvee		V	
			MW7	Mad		$\left\langle \right\rangle$		$\left\langle \right\rangle$						$\left\langle \right\rangle$	$\left\langle \right\rangle$		$\left\langle \right\rangle$		
		rs:		E E		\bigvee	$\langle \rangle$					\bigvee	\bigvee	$\langle \rangle$		\bigvee		\bigvee	
	Well Data	COMMENTS	MW6	Mdd		$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \cdot \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \cdot \right\rangle$	$\sqrt{}$
				<u>ب</u> ت		\bigvee	$\langle \rangle$	$\langle \rangle$	$\left\langle \cdot \right\rangle$	$\left\langle \cdot \right\rangle$	\bigvee	$\left\langle \cdot \right\rangle$	$\left\langle \cdot \right\rangle$	$\left\langle \cdot \right\rangle$	$\left\langle \cdot \right\rangle$	\bigvee	\bigvee	\bigvee	
			MW5	- W		$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\langle \rangle$	$\langle \rangle$	$\langle \rangle$	$\left\langle \right\rangle$	$\langle \rangle$	$\left\langle \right\rangle$	$\langle \rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	
				HG HG		<u> </u>	\bigvee	\bigvee	$\left\langle \right\rangle$		\bigvee	\bigvee	\bigvee		\bigvee	\bigvee	\bigvee	$\left\langle \right\rangle$	
			MW2	PPM		$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	$\left\langle \right\rangle$	\mathcal{N}
		IST			-	Λ	Δ	Δ	Δ	Δ		Δ	Δ	Δ	Δ	Δ	Δ	Δ	<u>/</u>
		EXHAUST	TEMP F			1419	1415	1417	1409	1411	1414	1415	1412	1416	1414	1418	1413	1414	1442
		Propane	Tank	(%-size)	250 Gal.	75	74	74	23	22	02	89	29	99	63	62	09	89	9
		FID	Composite	(PPM)		28347	25972	20830	18748	21325	18745	15831	19748	17322	14173	11396	10143	9749	10015
Ψ		Vac	(In.Hg)			14	14	14	16	16	14	14	14	14	14	14	14	14	;
MDPE FIELD DATA	Well Flow	Diff.	Pressure	(INH20)	2" Preso	83.4	90.2	93.1	91.8	95.3	91.5	82.3	74.5	79.3	83.4	86.5	80.4	79.7	82.5
MDPE		flent temp.	(°f)			96	100	100	102	102	102	102	98	96	92	06	06	86	S
		Pressure Inflent temp.	In. h2O)			0.24	0.24	0.25	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.24	0.24
	Total Flow	Diff.	Pressure (In. h2O)	(INH20)	6" Pitot	16	18	18	18	18	18	18	18	18	18	18	18	18	18
	ř.	Inflent temp.	(°)			118	120	122	126	128	130	130	124	122	120	116	114	108	102
7/20/2011		SAMPLE Int	TAKEN				*						*					,	
Start Date: 7,		TIME S/				10:30	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23.00

ATTACHMENT 2

Laboratory Analytical Results

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1

Lubbock, Texas 79424 El Paso. Texas 79922 Midland, Texas 79703 800 • 378 • 1296 888 • 588 • 3443 806 • 794 • 1296 915 • 585 • 3443 432 • 689 • 6301

FAX 806 • 794 • 1298 FAX 915 • 585 • 4944 FAX 432 • 689 • 6313

6015 Harris Parkway, Suite 110 Ft. Worth, Texas 76132 817 • 201 • 5260

E-Mail: lab@traceanalysis.com

Certifications

NCTRCA DBENELAP DoD LELAP Kansas Oklahoma ISO 17025

Analytical and Quality Control Report

Simon Walshe Talon LPE-Amarillo 921 North Bivins Amarillo, TX, 79107

Report Date: August 24, 2011

Work Order:

11072217

Project Location:

Monument, New Mexico

Project Name: Project Number: Kimbrough Sweet 8" 700376.050.02

SRS #:

2000-10757

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	rime	Date
Sample	Description	Matrix	Taken	Taken	Received _
272533	Influent #1	air	2011-07-20	11:00	2011-07-22

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 5 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

> Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Report Contents

Case Narrative	3
Analytical Report	4
Sample 272533 (Influent #1)	4
Appendix	Ę
Laboratory Certifications	Ę
Standard Flags	
Attachments	Ę

Case Narrative

Samples for project Kimbrough Sweet 8" were received by TraceAnalysis, Inc. on 2011-07-22 and assigned to work order 11072217. Samples for work order 11072217 were received intact at a temperature of 22.3 C.

Samples were analyzed for the following tests using their respective methods.

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 11072217 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: August 24, 2011

700376.050.02

Work Order: 11072217 Kimbrough Sweet 8" Page Number: 4 of 5 Monument, New Mexico

Analytical Report

Appendix

Laboratory Certifications

	Certifying	Certification	Laboratory
С	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
_	WBE	237019	TraceAnalysis

Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.
- U The analyte is not detected above the SDL

Attachments

The scanned attachments will follow this page.

Please note, each attachment may consist of more than one page.

LAB Order ID#

TraceAnalysis, Inc. email: lab@traceanalysis.com 1107aa.17

6701 Aberdeen Avenue, Suite 9 Lubbock, Texas 79424 Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1298

5002 Basin Street, Suite A1 Midland, Texas 79703 Tel (432) 689-6301 Fax (432) 689-6313

ш D0 East Sunset Rd., Suite E El Paso, Texas 79922
Tel (915) 585-3443
Fax (915) 585-4944
1 (888) 588-3443

8808 Camp Bowie Blvd. West, Suite 180 Ft. Worth. Texas 76116 Tel (817) 201-5260 Fax (817) 560-4336

₽

рюн Turn Around Time if different from standard or Specify Method No.) WISH Dry Weight Basis Required Check If Special Reporting Limits Are Needed TRRP Report Required **ANALYSIS REQUEST** Moisture Content BOD, TSS, pH Pesticides 8081A / 608 **BCB.**2 8085 \ 608 GC/MS Semi. Vol. 8270C / 625 REMARKS CC/W2 A9F 8560B \ 654 **BCI** TCLP Pesticides TCLP Semi Volatiles Circle TCLP Volatiles LABUSE TCLP Metals Ag As Ba Cd Cr Pb Se Hg \ ONLY Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7 Intact Y / N PAH 8270C / 625 TPH 8015 GRO / DRO / TVHC TPH 418.1 / TX1005 / TX1005 Ext(C35) 8021B / 602 / 8260B / 624 7.78 8021B / 602 / 8260B / 624 MTBE Temp Temp 90:11 00:11 00:66 11 027 SAMPLING TIME WAISHE @ TALON LPE - COM Time: Time: Phone #: 806 - 467.0607 2 **DATE** Fax#: 806 - 467 - 0622 8'45 Date: Date: Date: PRESERVATIVE NONE LIMBIZOUGH METHOD ICE Sampler Signature: HOEN Company: Company Company ^tOS^tH Project Name: HNO³ HCI E-mail: STUDGE Received by: Received by Received by MATRIX ЯΙΑ 7910 TIOS **MATER** 477 17 7 Jounne / Amount Street, City, Zip) Time: Time: Time: # CONTAINERS 11.12-1 Date: Date: 145NV N FIELD CODE Company: Company (If different from above) Relinquished by: Relinquished by Company Name 7253 535 (LAB USE) Invoice to: LAB# Project # Contact

Submittal of samples constitutes agreement to Terms and Conditions listed on reverse side of C. O. C.

806-665-0750 806-665-0753 877-788-0750

Midwest Precision Testing LLC

135 N Price Rd Pampa, TX 79065

www.mwptlab.com

The following analytical results were produced using the strictest quality control and most current methods:

COC #: N/A

Lab #: 6009-6011

Quality Control #: 1580

Approved by:

Neil Ray

Date: 8/01/11

806-665-0750 806-665-0753

877-788-0750

Midwest Precision Testing LLC

135 N Price Rd Pampa, TX 79065

www.mwptlab.com

Sample Matrix: Gas Sample Type: Spot Preservative: N/A

Sample Container: Tedlar Bag

Method(s): ASTM D 1945

Gas Analysis by Gas Chromatography Client: Trace Analysis, Inc. Project Location: N/A

Sample Id.: Influent #1

Trace: 272533

Sample Temp.: N/A Atmospheric Temp.: N/A

Pressure: N/A Field Data: N/A

Sample Date: 7/20/11 Time: 11:00 am

Sampled By: N/A Analysis Date: 7/29/11 Analysis By: Neil Ray

Lab #: 6009

Quality Control Report: 1580

Analytical Results

Gas Composition				-
	Mol %	<u>GPM</u>	Vol %	Wt. %
Nitrogen (N2):	98.4730	10.7759	96.9529	97.3045
Carbon Dioxide (CO2):	1.0150	0.1712	1.5501	1.5723
Hydrocarbon Composition	<u>Mol %</u>	GPM	Vol. %	Wt. %
Methane (CH4):	0.1223	0.0208	0.1856	0.0690
Ethane (C2H6):	0.0000	0.0000	0.0000	0.0000
Propane (C3H8):	0.0066	0.0018	0.0163	0.0103
Iso-Butane (C4H10):	0.0099	0.0032	0.0289	0.0202
N-Butane (C4H10):	0.0531	. 0.0167	0.1500	0.1086
Iso-Pentane (C5H12):	0.0428	0.0156	0.1401	0.1085
N-Pentane (C5H12):	0.0640	0.0231	0.2078	0.1626
Hexane+ (C6H14):	0.2134	0.0921	. 0.7684	0.6441
Totals	100.0000	11.1202	100.0000	100.0000

BTU -dry (BTU/ft ³):	18.6	Z-Comp. Factor-dry:	0.99966
BTU -water vapor sat.(BTU/ft ³):	19.3	Z-Comp. Factor-water vapor sat.:	0.99526
Specific Gravity -dry:	0.9794	14.65 psi Pressure Base	
Specific Gravity-water vapor sat.:	0.9775		

806-665-0750 806-665-0753

877-788-0750

Midwest Precision Testing LLC

135 N Price Rd Pampa, TX 79065

www.mwptlab.com

Sample Matrix: Gas Sample Type: Spot Preservative: N/A

Sample Container: Tedlar Bag

Method(s): ASTM D 1945

Gas Analysis by Gas Chromatography Client: Trace Analysis, Inc. Project Location: N/A

Sample Id.: Influent #2

Trace: 272534

Sample Temp.: N/A Atmospheric Temp.: N/A

Pressure: N/A Field Data: N/A

Sample Date: 7/20/11 Time: 5:00 pm

Sampled By: N/A Analysis Date: 7/29/11 Analysis By: Neil Ray

Lab #: 6010

Quality Control Report: 1580

Analytical Results

Gas Composition				
	Mol %	GPM	Vol %	Wt. %
Nitrogen (N2):	98.6812	10.7986	97:3802	97.6587
Carbon Dioxide (CO2):	0.9075	0.1530	1.3890	1.4078
·				
Hydrocarbon Composition	<u>Mol %</u>	<u>GPM</u>	<u>Vol. %</u>	<u>Wt. %</u>
Methane (CH4):	0.0862	0.0146	0.1310	0.0487
Ethane (C2H6):	0.0000	0.0000	0.0000	0.0000
Propane (C3H8):	0.0045	0.0012	0.0112	0.0070
Iso-Butane (C4H10):	0.0083	0.0027	0.0242	0.0169
N-Butane (C4H10):	0.0422	0.0132	0.1194	0.0864
Iso-Pentane (C5H12):	0.0373	0.0136	0.1224	0.0947
N-Pentane (C5H12):	0.0509	.0.0184	0.1657	0.1296
Hexane+ (C6H14):	0.1820	0.0785	0.6567	0.5501
Totals	100.0000	11.0939	100.0000	100,0000

BTU -dry (BTU/ft ³):	15.5	Z-Comp. Factor-dry:	0.99966
BTU -water vapor sat.(BTU/ft ³):	16.1	Z-Comp. Factor-water vapor sat.:	0.99532
Specific Gravity -dry:	0.9779	14.65 psi Pressure Base	
Specific Gravity-water vapor sat.:	0.9759		

806-665-0750 806-665-0753

877-788-0750

Midwest Precision Testing LLC

135 N Price Rd Pampa, TX 79065

www.mwptlab.com

Sample Matrix: Gas Sample Type: Spot Preservative: N/A

Sample Container: Tedlar Bag

Method(s): ASTM D 1945

Gas Analysis by Gas Chromatography Client: Trace Analysis, Inc. Project Location: N/A

Sample Id.: Influent #3

Trace: 272535

Sample Temp.: N/A Atmospheric Temp.: N/A

Pressure: N/A Field Data: N/A

Sample Date: 7/20/11 Time: 10:00 pm

Sampled By: N/A Analysis Date: 7/29/11 Analysis By: Neil Ray

Lab #: 6011

Quality Control Report: 1580

Analytical Results

Gas Composition				
	Mol %	<u>GPM</u>	Vol %	Wt. %
Nitrogen (N2):	98.4486	10.7732	96.9688	97.2766
Carbon Dioxide (CO2):	1.0935	0.1844	1.6706	1.6937
Hydrocarbon Composition	Mol %	<u>GPM</u>	Vol. %	Wt. %
Methane (CH4):	0.0995	0.0169	0.1510	0.0562
Ethane (C2H6):	0.0000	0.0000	0.0000	0.0000
Propane (C3H8):	0.0074	0.0020	0.0184	0.0116
Iso-Butane (C4H10):	0.0074	0.0024	0.0218	0.0152
N-Butane (C4H10):	0.0466	0.0146	0.1315	0.0952
Iso-Pentane (C5H12):	0.0399	0.0145	0.1305	0.1010
N-Pentane (C5H12):	0.0535	0.0193	0.1736	0.1358
Hexane+ (C6H14):	0.2036	0.0879	0.7336	0.6147
<u>Totals</u>	100,0000	11.1152	100.0000	100.0000

BTU -dry (BTU/ft ³):	17.1	Z-Comp. Factor-dry:	0.99966
BTU -water vapor sat.(BTU/ft ³):	17.7	Z-Comp. Factor-water vapor sat.:	0.99527
Specific Gravity -dry:	0.9795	14.65 psi Pressure Base	
Specific Gravity-water vapor sat.:	0.9775	·	10. 100.00

806-665-0750

Midwest Precision Testing LLC

806-665-0753 877.788.0750

135 N Price Rd Pampa, TX 79065

www.mwptlab.com

Sample Type: Standard Preservative: N/A

Sample Container: Industrial

Sample Id.: DCG

Reference Std. 47366AW

Cylinder

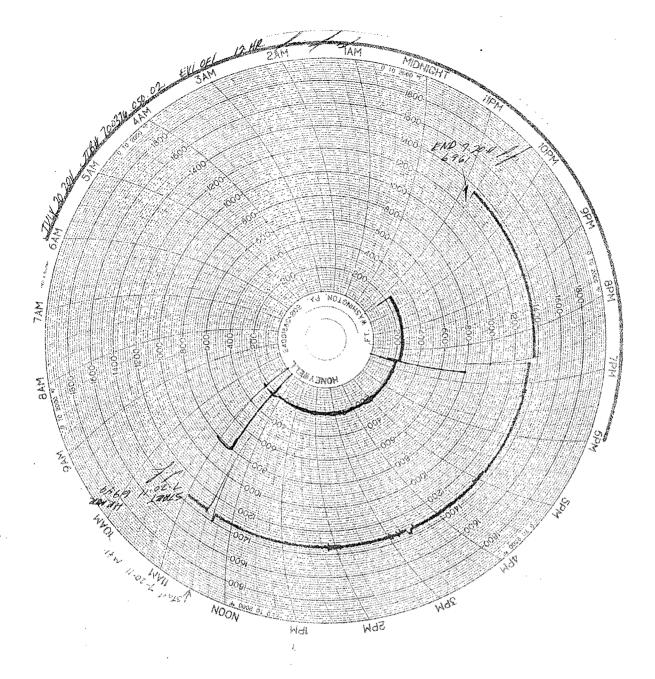
Sample Temp.: 120° F Analysis Date: 7/29/11

Method(s): ASTM D 1945

Gas Analysis by Gas Chromatography

Analysis By: Neil Ray

Quality Control Report#: 1580


Analytical Results

RESULTS .	ACTUAL	ANALYSIS			
Gas Composition			MDL	RL	% Deviation
	<u>Mol %</u>	Mol %	Mol %	ppm mol	(90-100%)
Nitrogen (N2):	4.926	4.7451	0.0010	10	96.3
Carbon Dioxide (CO2):	1.489	1.4885	0.0010	10	100.0
				714	
			MDL	RL	% Deviation
Hydrocarbon Composition	Mol %	Mol %	<u>Mol %</u>	ppm mol	(90-100%)
Methane (CH4):	69.955	70.5102	0.0001	1	99.2.
Ethane (C2H6):	9.138	9.0967	0.0001	1	99.5
Propane (C3H8):	5.947	5.8182	0.0001	1	97.8
Iso-Butane (C4H10):	3.018	2.9541	0.0001	. 1	97.9
N-Butanc (C4H10):	3.021	2.9588	0.0001	1	97.9
Iso-Pentane (C5H12):	1.001	0.9971	.0.0001	l	99.6
N-Pentane (C5H12):	1.007	0.9773	0.0001	1	97.0
Hexane+ (C6H14):	0.498	0.4541	0.0001	1	91.2
Totals	100.000	100.000			

ACTUAL		ANALYSIS	
BTU -dry (BTU/ft3):	1322.3	BTU -dry (BTU/ft ³):	1316.1
BTU -water vapor sat. (BTU/ft3):	1316.6	BTU -water vapor sat. (BTU/ft ³):	1310.4
Specific Gravity -dry:	0.8337	Specific Gravity -dry:	0.8278
Specific Gravity -water vapor sat.:	0.8406	Specific Gravity -water vapor sat	0.8347
Z-Comp. Factor -dry:	0.99565	Z-Comp. Factor -dry:	0.99571
Z-Comp. Factor -water vapor sat.:	0.98309	Z-Comp. Factor -water vapor sat.:	0.98320

ATTACHMENT 3

Oxidizer Charts

ATTACHMENT 4

Waste Ticket

S. C. C 35434 ICC MC #259649 TRANSPORTS FAC TANKS VAC TRUCKS WINCH TRUCKS	ING C	ھ ۔0		<u> </u>	nver City(806) 59 Hobbs (575) 39 Levelland(806) 89 Seminole(432) 75	7-6264 7-1705
Dans	CONTRACT NUMBER			l (ORDER 1670 NUMBER	169
L	A. F. E. NUMBER			C	8-3-	17
0	REO. OR PURCHASE ORDER NUMBER				BRAD I	14
DELIVERED FROM LOGATION TO	noone	Jal	#)		
Kimbrough sweet 8!	f		WELI RIG 1			
TRUCK OR UNIT NO. 73 CAPACITY / 30 AMOUNT HAULED 40	START		AMEND TIME		PW PW	4
DESCRIPTION	Оня	. OBBL.	RAT	Έ	AMOUNT	
Drane to location	4	Hrs.	82	ပပ	378	co
mt Containers on location		Bbls				
Look 40 BBLS Fluids and O.	2	Bbis				
to moore Ja1 #1		KCL				
		Disp				
		Disp				
		Helper				
		Tank Min				
		Day Rental				
SRS Z 000 - 10757	Cha	art Recorder			,	
					328	00
TOP GAUGE BOTTOM GAUGE SET DATE RELEASE DATE FOR OFFICE USE ONLY				TAX		
					22 .	ပပ
·			NET	TOTAL	350.	00
·				Į.	Thank Yo	ou
	ai	Wed	RATOR	G C	duña.	
	Ja	son of	enry uthorf		# 2 <i>000 - 107.</i> 8 15 2011 14:	57