

July 6, 2011

VIA EMAIL: glennvon.gonton@state.nm.us

Mr. Glenn von Gonton, Acting Chief **New Mexico Oil Conservation Division** 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Sulfuric Acid Spill Investigation and Remediation Report, Targa Midstream Services, L.P., Monument Gas Plant Re:

(GW-025), Lea County, New Mexico, June 28, 2011

Dear Mr. von Gonton:

On behalf of Targa Midstream Services, L.P. (Targa), Larson & Associates, Inc. (LAI) submits this report to the New Mexico Oil Conservation Division, which documents the investigation and remediation of a sulfuric acid spill at the Monument Gas Plant located in Lea County, New Mexico. Please contact Cal Wrangham with Targa at (432) 688-0542 or myself at (432) 687-0901, if you have questions.

Sincerely,

Larson & Associates, Inc.

Mark J. Larson

Sr. Project Manager/President

mark@laenvironmental.com

cc:

Geoffrey Leking - OCD District 1

Cal Wrangham - Targa

Todd Young - Targa

Encl.

SULFURIC ACID SPILL INVESTIGATION AND REMEDIATION REPORT

Monument Gas Plant (GW-025) Lea County, New Mexico

LAI Project No. 11-0114

June 28, 2011

Prepared for:

Targa Midstream Services, L.P. Monument Gas Plant 8201 South Hwy 322 Monument, New Mexico 88265

Prepared by:

Larson & Associates, Inc. 507 North Marienfeld, Suite 200 Midland, Texas 79701

Mark J. Larson
Certified Professional Geologist No. 10490

Table of Contents

1.0	EXECUTIVE SUMMARY
2.0	INTRODUCTON
	Setting
	SPILL CLEANUP
	SPILL INVESTIGATION
	LABORATORY RESULTS
	RECOMMENDATION

List of Figures

Figure 1 Location and Topographic Map

Figure 2 Aerial Drawing

Figure 3 Site Drawing

List of Appendices

Appendix A Form C-131

Appendix B Laboratory Reports

Appendix C Photographs

1.0 EXECUTIVE SUMMARY

This document is submitted to the New Mexico Oil Conservation Division (OCD) on behalf of Targa Midstream Services, L.P. (Targa) by Larson & Associates, Inc. (LAI), its consultant, to report the investigation and remediation of a sulfuric acid spill that occurred at the Monument Gas Plant (Facility) on April 6, 2011. The spill occurred after strong winds blew over the chemical pump allowing acid to siphon from the bulk storage tank through the return line. Targa personnel responded to the spill by shutting off the air supply to the chemical pump, neutralizing the spill with soda ash and scraping soil from the affected area. The contaminated soil was moved to an open area located west of the Facility for blending and neutralization. The spill volume was estimated to be less than 125 gallons. Targa notified the OCD, New Mexico Environment Department (NMED) and EPA National Response Center. The geodetic position is north 32° 36′ 37.79″ and west 103° 18′ 37.98″.

On May 24, 2011, LAI personnel used a Terraprobe® direct push sampling rig to collect soil samples from the affected area. Soil samples were collected at 11 locations (SP-1 through SP-11) from 0 to about 2 feet below ground surface (bgs). Caliche prevented vertical advancement of the direct push core barrel. The soil samples were collected in clean 4-ounce glass sample jars that were labeled, chilled in an ice filled chest and delivered under chain of custody control to Xenco Laboratories (Xenco) located in Odessa, Texas. The laboratory analyzed the samples for total petroleum hydrocarbons (TPH) by method SW-8015, including gasoline, diesel and oil range hydrocarbons, pH and chloride.

On May 24, 2011 and June 10, 2011, LAI personnel collected 5-spot composite samples from the blended soil pile. The samples were collected using a stainless steel trowel that was decontaminated prior to and after sample collection. The samples were collected in 4-ounce glass sample jars that were preserved after filling and delivered under chain of custody control to Xenco which analyzed the samples for TPH, pH and chloride.

The in-situ pH concentrations ranged from 7.27 standard units (S.U.) at SP-2 to 9.43 S.U. at SP-1. The insitu TPH concentrations ranged from 17.8 milligrams per kilogram (mg/Kg) at SP-11 to 723 mg/Kg at SP-2. The in-situ chloride concentrations ranged from 27.7 mg/Kg at SP-9 to 854 mg/Kg in SP-2. The final pH and TPH concentrations in the blended soil (June 10, 2011) were 7.38 S.U. and 817.1 mg/Kg, respectively.

Targa will dispose the blended soil at Lea Land Landfill or Sundance Disposal, Inc. A letter will be submitted to the OCD, including the waste manifest, following disposal of the contaminated soil.

2.0 INTRODUCTON

This report has been prepared on behalf of Targa Midstream Services, L.P. (Targa) by Larson & Associates, Inc. (LAI), its consultant, for submittal to the New Mexico Oil Conservation Division (OCD) in Santa Fe, New Mexico. The report presents the investigation and remediation of a sulfuric acid spill that occurred at the Monument Gas Plant (Facility) on April 6, 2011. The spill occurred at the bulk acid storage tank located near the cooling tower. Strong winds blew the chemical pump off its stand which allowed acid to siphon from the tank through the return line. Targa personnel shut off air to the chemical pump and neutralized the spill with soda ash. Contaminated soil was scraped and moved to an open area west of the Facility for blending and neutralizing. The spill volume was estimated to be less than 125 gallons. Targa personnel notified the OCD, New Mexico Environment Department (NMED) and EPA National Response Center. Form C-131 was submitted to the OCD on April 7, 2011. The Facility operates under OCD discharge permit GW-025 and is located in Unit N (SE/4, SW/4), Section 36, Township 19 South, Range 36 East in Lea County, New Mexico. The geodetic position is north 32° 36′ 37.79″ and west 103° 18′ 37.98″. Figure 1 presents a location and topographic map. Figure 2 presents an aerial photograph. Figure 3 presents a Site drawing. Appendix A presents the C-131.

2.1 Setting

The Facility is located about 5 miles southwest of Monument, in Lea County, New Mexico. The surface elevation is approximately 3,580 feet above mean sea level (MSL) and slopes gently to the southeast. The surface at the Facility is covered with caliche except for roadways and walkways, which are surfaced with asphalt or concrete. No surface water feature (stream, lake, river, pond, etc.) is located within 1-mile of the Facility.

The surface geology is comprised of Holocene to mid-Pleistocene age deposits of unconsolidated blow sand which overly the Ogallala formation (Tertiary). The Ogallala formation consists of poorly sorted unconsolidated quartz sand interbedded with carbonate-indurated sand (caliche) commonly referred to as "Caprock". The Ogallala formation is underlain by the Chinle formation (Triassic) or "redbed".

Groundwater occurs in the Ogallala formation between approximately 25 and 30 feet below ground surface (bgs). No fresh water wells are present at or within 1-mile of the Facility.

3.0 SPILL CLEANUP

Facility personnel discovered the spill shortly after a shift change at about 7:45pm on April 4, 2011. Facility personnel shut off the air supply to the chemical pump and began neutralizing the spill with soda ash. Soil was scraped from the affected area and moved to an open area located west of the Facility for blending and neutralizing. The chemical pump was reattached to the support structure and reinforced to prevent reoccurrence.

4.0 SPILL INVESTIGATION

On May 24, 2011, LAI personnel used a Terraprobe® direct push sampling rig to collect soil samples to approximately 2 feet bgs. Caliche prevented further vertical advancement of the direct push core barrel. The Terraprobe® core barrel was equipped with polyethylene liners to minimize sample contamination. LAI personnel also collected a 5-spot composite sample from the blended soil pile located west of the Facility. The composite sample was collected using a stainless steel trowel that was decontaminated prior to and after sample collection by thoroughly washing with a solution of distilled

water and laboratory grade detergent (Alkanox®) and rinsed with distilled water. The samples were placed in clean 4 ounce glass sample jars that were labeled, chilled in an ice filled chest and delivered under chain of custody control to Xenco Laboratories located in Odessa, Texas. The laboratory analyzed the samples for total petroleum hydrocarbons (TPH) by method SW-8015, including gasoline, diesel and oil range organics, chloride and pH. On June 10, 2011, LAI personnel collected another composite sample of the blended soil. Table 1 presents a summary of the laboratory analysis. Appendix B presents the laboratory report. Appendix C presents photographs.

5.0 LABORATORY RESULTS

Referring to Table 1, the pH concentrations in the in-situ soil samples ranged from 7.27 standard units (S.U.) at SP-2 to 9.43 S.U. at SP-1. The TPH concentrations in the in-situ soil samples ranged from 17.8 milligrams per kilogram (mg/Kg) at SP-11 to 723 mg/Kg at SP-2. The chloride concentrations in the in-situ soil samples ranged from 27.7 mg/Kg at SP-9 to 854 mg/Kg at SP-2. The laboratory results of in-situ soil samples confirm that the spill was successfully remediated.

The laboratory analysis of the blended soil composite samples collected on May 24, 2011, reported pH, TPH and chloride at 1.75 S.U., 3,410 mg/Kg and less than 870 mg/Kg, respectively. On June 10, 2011, following additional treatment and blending, the pH and TPH were 7.38 S.U. and TPH, respectively.

6.0 RECOMMENDATION

The blended soil, estimated to be about 10 to 20 cubic yards, will be disposed at Lea Land Landfill or Sundance Disposal, Inc. Targa will submit a letter to the OCD along with the waste manifest following disposal of the contaminated soil.

Tables

Table 1
Summary of Sulfuric Acid Spill Soil Laboratory Analysis
Targa Midstream Services, L.P.
Monument Gas Plant (BG-025)

Chloride		104	854	67.9	59.8	118	35.7	33.5	77.0	27.7	47.6	101.0		<870	-
Hd		9.43	7.27	8.28	8.18	8:38	8.36	7.88	8.34	7.86	8:38	7.63		1.75 See	7.38
S STEPH		168.2	723	418	166.9	162	71.3	105	266.9	63.2	83.1	17.8		3,410	817.1
ORH (1)		22.5	283	<82.2	22.2	<17.0	<17.5	<17.2	45.9	<16.5	<16.3	<17.3		1,050	40.3
DRO	ples	88.1	440	418	108	87.6	71.3	105	221	63.2	83.1	17.8	Se	2,170	746
GRO.	stigation Soil Samples	57.6	6:08>	<82.2	36.7	74.4	<17.5	<17.2	<16.1	<16.5	<16.3	<17.3	ended Soil Samples	194	30.8
Status	Inves	In-Situ	Ble	Excavated	Excavated										
Date		5/24/2011	5/24/2011	5/24/2011	5/24/2011	5/24/2011	5/24/2011	5/24/2011	5/24/2011	5/24/2011	5/24/2011	5/24/2011		5/24/2011	6/10/2011
Depth		0-2,	0-5,	0-2,	0-2,	0-2,	0-1,	0-2,	0-1 1/2'	0-2,	0-2,	0-2,		Composite	Composite
Sample ID		SP-1	SP-2	SP-3	SP-4	SP-5	9-dS	Sp-7	8-dS	6-dS	SP-10	SP-11		Soil Pile	(SP-1)

A CAOLA

Total Petroleum Hydrocarbons analyzed via method SW8015 Mod.

All values reported in Milligrams per Kilogram - (mg/Kg, parts per million), except pH.

Bold indicates the analyte was detected.

Bold and blue indicates acidic pH: 《《《》》

Figures

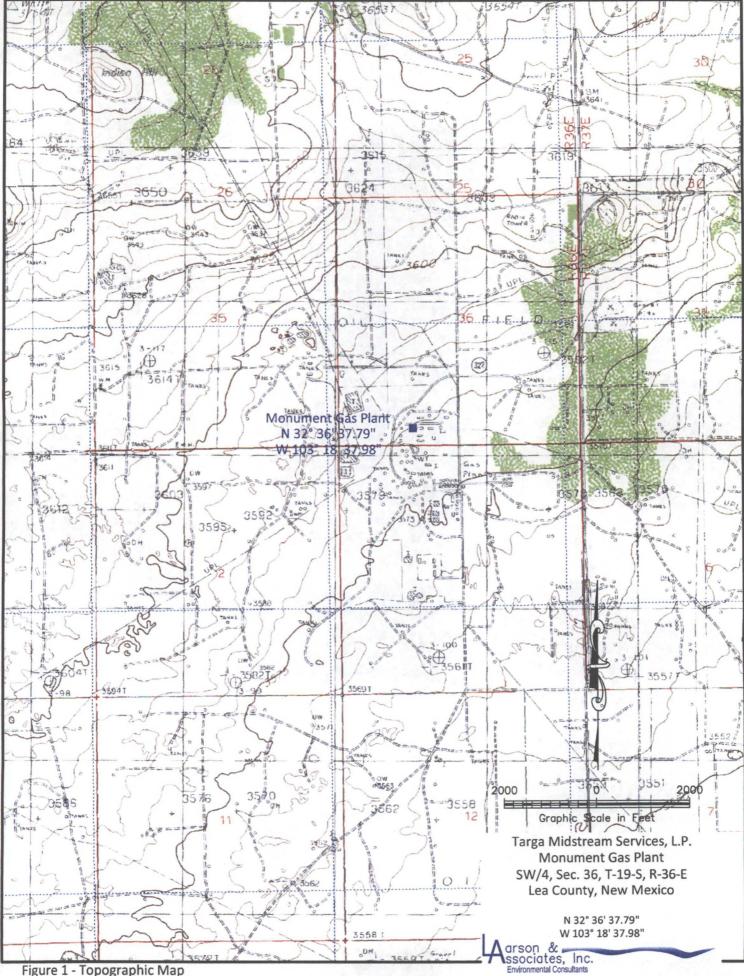
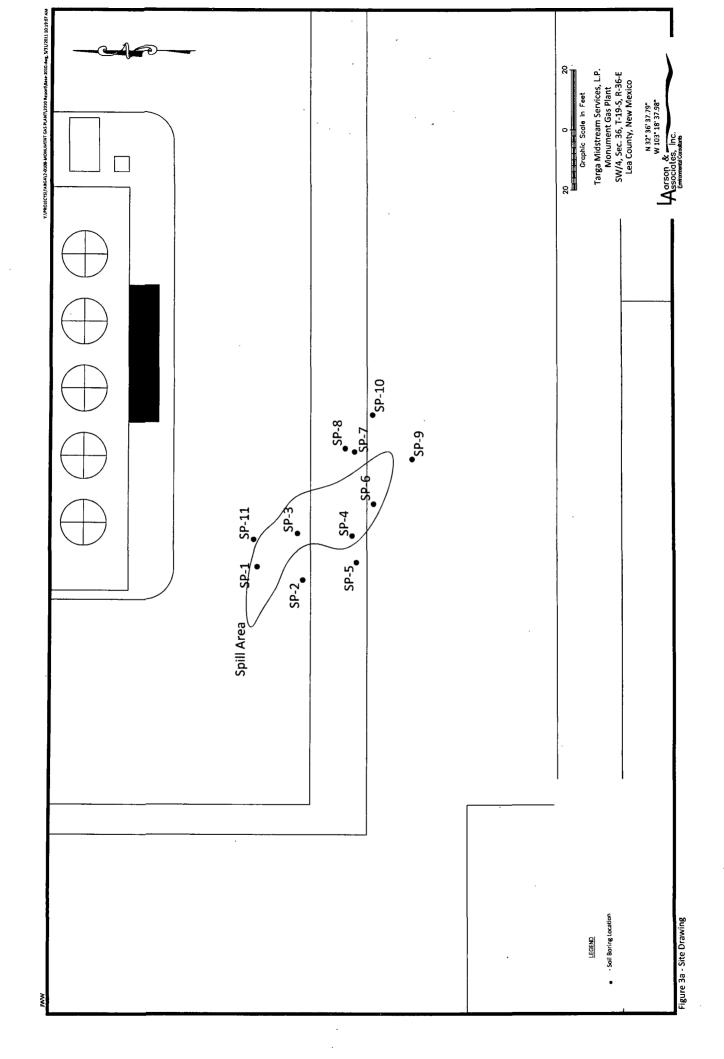



Figure 1 - Topographic Map

Figure 2 - Aerial Photograph

Appendix A

Form C-141

District 1
1625 N. French Dr., Hobbs, NM 88240
District II
811 South First, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
2040 South Pacheco, Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 2040 South Pacheco Santa Fe, NM 87505 Form C-141 Revised March 17, 1999

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

		<u> </u>			OPER	ATUR		lni	tial Rep	ort X Final I	Report
Name of Co						Contact□	Todd Young				
Address 82	01 South o	on Hwy 322,	Monume	ent, NM 88265		Telephon	e No.□ 575-393	3-2823 ex	ct 234		
Facility Nan	ne Monur	nent Plant				Facility T	ype□ Natural G	as Proces	ssing		
			l Pro						1 -	· ·	
Surface Ow	ner Versa	do operated	by Targa	Minera	l Owner				Lease	No.□	
				LOCAT	TON (OF RELI	TACE				
Unit Letter	Section	Township	Range	Feet from the		South Line	Feet from the	East/We	ot I ina	County□	
Oint Letter	Section	TOWNSHIP	Kalige	reet nom me	Notura	South Line	reet from the	East we	St Line	County	1
			· · · · · · · · · · · · · · · · · · ·	·				l			
				NATU	RE O	F RELEA	ASE				
Type of Relea						Volume of	Release <125 gal	llons		Recovered□unkn	
Source of Rel	lease Sulfur	ric Acid tank r	eturn line				Iour of Occurrenc	-		d Hour of Discove	ry
							r 5 pm (unknown))	4/6/11	- 7:45pm mst	
Was Immedia	ite Notice (j	If YES, To					
			Yes 🗌	No Not Re	equired		ED 24 hour number				
By Whom?							Iour□ 4/6/11 @ 8			3:29 pm NMED	
Was a Watero	ourse Read					If YES, Vo	olume Impacting t	he Watero	ourse.		1
		لسا	Yes 🗌	No		•					ļ
If a Watercou	rse was Im	pacted, Descri	be Fully.	· · · · · · · · · · · · · · · · · · ·	·						
	•	•	•								
No impact. S	pill contain	ied on plant pi	operty.								
Describe Cau	on of Duoble	am and Dames	lial A stice	Tolon #							
					numn th	at ic tied in 1	through the top go	wer of the	tank wer	e blown over durin	o biob
Sulfuric acid pump and return tubing line used to bleed/siphon the pump that is tied in through the top cover of the tank were blown over during high winds. As a result the open end tubing line was discharging sulfuric acid onto the ground. Upon discovery, operations shut off the air to the acid											
winds. As a result the open end tubing line was discharging sulfuric acid onto the ground. Upon discovery, operations shut off the air to the acid pump which shut down the pump and eliminated the source of the spill.											
					•						ľ
	·						· · · · · · · · · · · · · · · · · · ·				
Describe Area											.
										ical absorbent sock	s and
the sulturic ac	io neutrain	zea with soda	asn. The	contaminated soil	was rem	ioved from ti	he area for dispos	aı atan ap	proved 18	ingili.	
I hereby certif	y that the i	nformation gi	ven above	is true and comp	lete to the	e best of my	knowledge and u	nderstand	that purs	uant to NMOCD ru	iles
and regulation	is all operat	tors are requir	ed to repo	rt and/or file certs	ain releas	e notificatio	ns and perform co	rrective a	ctions for	releases which ma	ıy
										es not relieve the o	
										ound water, surface	
				tion, NMOCD ac laws and/or regu		of a C-141	report does not rel	lieve the o	perator o	f responsibility for	
compitatice w	ini arry our	r leueral, stat	e, or rocar	laws and/or regu	iations.		OIL CONIG	DDMAT	TONT	MAIGION	
		4.1	, 1				OIL CONS	EKVA!	T NOT	N 1910IN	1
Signature:	M	MC L	Alan	<u> </u>							
	V-6-6	1/	/	7		Annroved	by□District Supe	rvisor.			1
Printed Name	Todd Y	oung //				repproved		2 71501 .			
mu.		_								.	
Title: Monur	nent Area l	Manager			-	Approval I	Jate: `		Expiration	on Date:	
Date: 4/	7/11		Phone	575-393-2823 2	34	Conditions	of Approval:			Attached []
1 Au 1 4 1	1'4' 1 01	. TONT	I HOHE.	313-373-4043 Z	J T	Conditions	or Approvar.				

^{*} Attach Additional Sheets If Necessary

Appendix B

Laboratory Reports

Analytical Report 417673

for
Larson & Associates

Project Manager: Alexis Johnson

Midland Odessa Standard List of prices

11-0114

01-JUN-11

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046):

Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370)

Xenco-Boca Raton (EPA Lab Code: FL01273):

Florida(E86240), South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

Xenco Phoenix (EPA Lab Code: AZ00901):

Arizona(AZ0757), Texas(104704435-10-2), Nevada(NAC-445A), DoD(65816)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

01-JUN-11

Project Manager: Alexis Johnson

Larson & Associates P.O. Box 50685 Midland, TX 79710

Reference: XENCO Report No: 417673

Midland Odessa Standard List of prices

Project Address:

Alexis Johnson:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 417673. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 417673 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 417673

Larson & Associates, Midland, TX

Midland Odessa Standard List of prices

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SP-2 (0-2')	S	May-24-11 11:00	0 - 2 ft	417673-001
SP-1 (0-2')	S	May-24-11 12:55	0 - 2	417673-002
SP-3 (0-2')	S	May-24-11 13:15	0 - 2 ft	417673-003
SP-4 (0-2')	S	May-24-11 13:25	0 - 2	417673-004
SP-5 (0-2')	S	May-24-11 13:40	0 - 2 ft	417673-005
SP-6 (0-1')	S	May-24-11 13:50	0 - 1 ft	417673-006
SP-7 (0-2')	S	May-24-11 14:05	0 - 2 ft	417673-007
SP-8 (0-1 1/2')	S	May-24-11 14:15	0 - 1 1/2 ft	417673-008
SP-9 (0-2')	S	May-24-11 14:25	0 - 2 ft	417673-009
SP-10 (0-2')	S	May-24-11 14:37	0 - 2 ft	417673-010
SP-11 (0-2')	S	May-24-11 14:50	0 - 2 ft	417673-011

CASE NARRATIVE

Client Name: Larson & Associates

Project Name: Midland Odessa Standard List of prices

Project ID:

11-0114 Work Order Number: 417673

Report Date: 01-JUN-11

Date Received: 05/25/2011

Sample receipt non conformances and Comments:

None

Sample receipt Non Conformances and Comments per Sample:

None

Final 1.001

Certificate of Analysis Summary 417673 Larson & Associates, Midland, TX

Project Id: 11-0114 Contact: Alexis Johnson

Project Name: Midland Odessa Standard List of prices Date Received in Lab: Wed May-25-11 09:25 am

Report Date: 01-JUN-11

Project Location:					Report Parc. 01-3014-11	71-3014-11	
				The state of the s	Project Manager: 1	Brent Barron, II	
The second state of a degree of the second state of the second sta	Lab Id:	417673-001	417673-002	417673-003	417673-004	417673-005	417673-006
	Field Id:	SP-2 (0-2')	SP-1 (0-2')	SP-3 (0-2')	SP-4 (0-2')	SP-5 (0-2')	SP-6 (0-1')
Analysis Nequesieu	Depth:	0-2 ft	0-2	0-2 ft	0-2	0-2 ft	0-1 ft
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	May-24-11 11:00	May-24-11 12:55	May-24-11 13:15	May-24-11 13:25	May-24-11 13:40	May-24-11 13:50
Anions by E300	Extracted:						
	Analyzed:	May-25-11 19:24	May-25-11 19:24	May-25-11 19:24	May-25-11 19:24	May-25-11 19:24	May-25-11 19:24
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Chloride		854 45.3	104 23.2	67.9 9.20	59.8 9.22	118 9.51	35.7 9.79
Percent Moisture	Extracted:						
	Analyzed:	May-25-11 17:00	May-25-11 17:00	May-25-11 17:00	May-25-11 17:00	May-25-11 17:00	May-25-11 17:00
	Units/RL:	% RL	% RL	% RL	% RL	% RL	% RL
Percent Moisture		7.34 1.00	9.50 1.00	8.65 1.00	8.88 1.00	11.7 1.00	14.2 1.00
Soil pH by EPA 9045C	Extracted:	:					
	Analyzed:	May-25-11 11:15	May-25-11 11:15	May-25-11 11:15	May-25-11 11:15	May-25-11 11:15	May-25-11 11:15
	Units/RL:	SU RL	SU RL	SU RL	SU RL	SU RL	SU RL
рН		7.27	9.43	8.28	8.18	8.38	8.36
TPH By SW8015 Mod	Extracted:	May-27-11 11:30	May-27-11 11:30	May-27-11 11:30	May-27-11 11:30	May-27-11 11:30	May-27-11 11:30
	Analyzed:	May-27-11 20:22	May-27-11 21:20	May-27-11 21:48	May-27-11 22:16	May-27-11 22:44	May-27-11 23:14
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	ກາg/kg RL
C6-C12 Gasoline Range Hydrocarbons		ND 80.9	57.6 16.7	ND 82.2	36.7 16.4	74.4 17.0	ND 17.5
C12-C28 Diesel Range Hydrocarbons		440 80.9	88.1 16.7	418 82.2	108 16.4	87.6 17.0	71.3 17.5
C28-C35 Oil Range Hydrocarbons		283 80.9	22.5 16.7	ND 82.2	22.2 16.4	ND 17.0	ND 17.5
Total TPH		723 80.9	168 16.7	4.18 82.2	167 16.4	162 17.0	71.3 17.5

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed thoughout this analytical report represent the best pulgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data heady presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Brefit Barron, II

Page 5 of 17

Final 1.001

Contact: Alexis Johnson Project Id: 11-0114

Project Location:

Certificate of Analysis Summary 417673

Larson & Associates, Midland, TX

Project Name: Midland Odessa Standard List of prices

Date Received in Lab: Wed May-25-11 09:25 am

Report Date: 01-JUN-11

Project Manager: Brent Barron. II

The second secondary is because the most of the second sec			****		Project Manager: Brent Barron, 11	srent Barron, 11
	Lah Id:	417673-007	417673-008	417673-009	417673-010	417673-01.1
Analysis Ponnoctod	Field Id:	SP-7 (0-2')	SP-8 (0-1 1/2')	SP-9 (0-2')	SP-10 (0-2')	SP-11 (0-2')
naisanhay sistinut	Depth:	0-2 ft	0-1 1/2 ft	0-2 ft	0-2 ft	0-2 ft
	Matrix:	SOIL	SOIL	SOIL	SOIL	NOS
	Sampled:	May-24-11 14:05	May-24-11 14:15	May-24-11 14:25	May-24-11 14:37	May-24-11 14:50
Anions by E300	Extracted:					
	Analyzed:	Analyzed:	May-25-11 19:24	May-25-11 19:24	May-25-11 19:24	May-25-11 19:24
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	ıng/kg RL
Chloride		33.5 24.0	77.0 9.02	27.7 18.5	47.6 9.15	79.6 101
Percent Moisture	Extracted:					
	Analyzed:	May-25-11 17:00	May-25-11 17:00	May-25-11 17:00	May-25-11 17:00	May-25-11 17:00
	Units/RL:	% RL	% RT	% RL	% RI	% RL
Percent Moisture		12.6 1.00	00.1 06.9	8.95 1.00	8.15 1.00	13.1 1.00
Soil pH by EPA 9045C	Extructed:					
	Analyzed:	May-25-11 11:15	May-25-11 11:15	May-25-11 11:15	May-25-11 11:15	May-25-11 11:15
	Units/RL:	SU RL	SU RL	SU RL	SU RL	SU RL
Hd		7.88	8.34	7.86	8.38	7.63
TPH By SW8015 Mod	Extracted:	May-27-11 11:30	May-27-11 11:30	May-27-11 11:30	May-27-11 11:30	May-27-11 11:30
	Analyzed:	May-27-11 23:43	May-28-11 00:12	May-28-11 00:40	May-28-11 01:10	May-28-11 01:39
	Units/RL:	mg/kg RL	mg/kg RL	ıng/kg RL	mg/kg RL	
C6-C12 Gasoline Range Hydrocarbons		ND. 17.2	ND 16.1	ND 16.5	ND 16.3	
C12-C28 Diesel Range Hydrocarbons		105 17.2	221 16.1	63.2 16.5	83.1 16.3	17.8 17.3
C28-C35 Oil Range Hydrocarbons		ND 17.2	45.9 16.1	ND 16.5	ND 16.3	
Total TPH		105 17.2	267 16.1	63.2 16.5	83.1 16.3	17.8 17.3

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the chata hereby presented. Our liability is limited to the amount invoited for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Brefit Barron, II

Final 1.001

Page 6 of 17

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- D The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit
- MDL Method Detection Limit
- **PQL** Practical Quantitation Limit
- LOD Limit of Detection
- LOQ Limit of Quantitation
- **DL** Method Detection Limit
- * Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	rax
4143 Greenbriar Dr. Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

Project Name: Midland Odessa Standard List of prices

Work Orders: 417673,

Project ID: 11-0114

Lab Batch #: 857963

Sample: 603887-1-BKS / BKS

Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 05/27/11 14:31	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	82.9	100	83	70-135	
o-Terphenyl	39.3	50.1	78	70-135	

Lab Batch #: 857963

Sample: 603887-1-BSD / BSD

Batch: 1 M

Matrix: Solid

Units: mg/kg Date Analyzed: 05/27/11 15:0	00 SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	87.9	101	87	70-135	
o-Terphenyl	41.5	50.3	83	70-135	

Lab Batch #: 857963

Sample: 603887-1-BLK / BLK

Batch: 1

Matrix: Solid

Units: mg/kg	Date Analyzed: 05/27/11 15:31	SU	RROGATE R	ECOVERY	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		75.0	99.6	75	70-135	
o-Terphenyl		39.9	49.8	80	70-135	

Lab Batch #: 857963

Sample: 417673-001 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 05/27/11 20:22	SU	RROGATE RE	ECOVERY S	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount (B)	Recovery %R [D]	Control Limits %R	Flags
•					
1-Chlorooctane	77.7	100	78	70-135	
o-Terphenyl	39.7	50.0	79	70-135	

Lab Batch #: 857963

Sample: 417673-002 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	Date Analyzed: 05/27/11 21:20	SU	RROGATE RI	ECOVERY:	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		77.2	101	76	70-135	
o-Terphenyl		40.1	50.3	80	70-135	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Midland Odessa Standard List of prices

Work Orders: 417673,

Lab Batch #: 857963

Sample: 417673-003 / SMP

Project ID: 11-0114

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 05/27/11 21:48	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	(-)		[D]		
1-Chlorooctane	76.7	100	77	70-135	
o-Terphenyl	38.9	50.1	78	70-135	

Lab Batch #: 857963

Sample: 417673-004 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 05/27/11 22:16	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	77.8	99.9	78	70-135	
o-Terphenyl	41.1	50.0	82	70-135	

Lab Batch #: 857963

Sample: 417673-005 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 05/27/11 22:44	SU	RROGATE R	ECOVERY:	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
· · · · · · · · · · · · · · · · · · ·			ļ		
1-Chlorooctane	77.2	100	77	70-135	
o-Terphenyl	40.2	50.1	80	70-135	

Lab Batch #: 857963

Sample: 417673-006 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 05/27/11 23:14	SU	RROGATE RI	ECOVERY S	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	75.7	100	76	70-135	
o-Terphenyl	39.5	50.1	79	70-135	

Lab Batch #: 857963

Sample: 417673-007 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	Date Analyzed: 05/27/11 23:43	SU	RROGATE RI	ECOVERY :	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		95.9	101	95	70-135	
o-Terphenyl		50.1	50.3	100	70-135	-

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Midland Odessa Standard List of prices

Work Orders: 417673,

Lab Batch #: 857963

Sample: 417673-008 / SMP

Project ID: 11-0114

Matrix: Soil Batch:

Units: mg/kg	Date Analyzed: 05/28/11 00:12	SU	RROGATE R	ECOVERY :	STUDY	
ТРН	By SW8015 Mod	Amount Found [A]	True - Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		76.5	100	77	70-135	
o-Terphenyl		38.6	50.1	77	70-135	

Lab Batch #: 857963

Sample: 417673-009 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 05/28/11 00:40	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	71.0	100	71	70-135	-
o-Terphenyl	35.5	50.1	71 ·	70-135	

Lab Batch #: 857963

Sample: 417673-010 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 05/28/11 01:10	SU	RROGATE R	ECOVERY S	STUDY	
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	78.3	100	78	70-135	
o-Terphenyl	39.9	50.0	80	70-135	

Lab Batch #: 857963

Sample: 417673-011 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	Date Analyzed: 05/28/11 01:39	SU	RROGATE R	ECOVERY S	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		78.9	100	79	70-135	
o-Terphenyl		43.0	50.0	86	70-135	

Lab Batch #: 857963

Sample: 417987-001 S / MS

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 05/28/11 02:07	SU	RROGATE RI	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	77.5	99.5	78	70-135	
o-Terphenyl	36.9	49.8	74	70-135	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Midland Odessa Standard List of prices

Work Orders: 417673,

Lab Batch #: 857963

Sample: 417987-001 SD / MSD

Project ID: 11-0114

Batch: 1 Matrix: Soil

SURROGATE RECOVERY STUDY Units: mg/kg Date Analyzed: 05/28/11 02:35 True Control Amount TPH By SW8015 Mod Found Amount Recovery Limits Flags %R %R {B} [A] [D] **Analytes** 1-Chlorooctane 77.6 99.8 78 70-135 o-Terphenyl 35.9 72 70-135 49.9

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: Midland Odessa Standard List of prices

Work Order #: 417673

Analyst: LATCOR

Lab Batch ID: 857555

Project ID: 11-0114 **Date Analyzed:** 05/25/2011

Date Prepared: 05/25/2011 Batch #: 1 Sample: 857555-1-BKS

Matrix: Solid

Units: mg/kg		BLAN	BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	SPIKE / E	LANK S	PIKE DUPI	ICATE 1	RECOVE	RY STUD	Y	
Anions by E300	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	BIK. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	₹	[8]	result [C]	4 <u>[a]</u>	E	Bupincare Result [F]	(G)	9/	/6K	A MOV	
Chloride	<0.420	10.0	8.58	98	0.01	65.8	98	0	75-125	20	

Analyst: BEV

Date Prepared: 05/27/2011

Matrix: Solid

Date Analyzed: 05/27/2011

Lab Batch ID: 857963	Sample: 603887-1-BKS	KS	Batcl	Batch #: 1					Matrix: Solid	olid		
Units: mg/kg			BLAN	BLANK/BLANK SPIKE/BLANK SPIKE DUPLICATE RECOVERY STUDY	SPIKE/E	LANKS	PIKE DUPI	ICATE	RECOVE	RY STUD	Y	
TPH By SW8015 Mod	15 Mod	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	BIK. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes		₹.	[8]	resun [C]	¥ <u>=</u>	E	Result [F]	¥ <u>5</u>	9,	N 0/	70NFD	
C6-C12 Gasoline Range Hydrocarbons	arbons	<15.0	1000	292	7.1	1010	691	92	1	70-135	35	
C12-C28 Diesel Range Hydrocarbons	rbons	<15.0	1000	762	92	1010	775	77	2	70-135	35	

Relative Percent Difference RPD = 200*(C-F)/(C+F)Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Final 1.001

Form 3 - MS Recoveries

Project Name: Midland Odessa Standard List of prices

Work Order #: 417673

Lab Batch #: 857555

Date Analyzed: 05/25/2011 **QC- Sample ID:** 417671-001 S Date Prepared: 05/25/2011

Project ID: 11-0114

Analyst: LATCOR

Batch #: 1

Matrix: Soil

MATRIX / MATRIX SPIKE RECOVERY STUDY							
Parent Sample Result	Spike Added	Result	%R	Control Limits %R	Flag		
[A]	[B]		, ,				
<870	20700	19100	92	75-125			
	Parent Sample Result [A]	Parent Sample Spike Result Added [A] [B]	Parent Sample Result [A] Spiked Sample Result [C] [B]	Parent Sample Result [A] Spiked Sample Result [C] [D]	Parent Sample Result [A] Spike Spike Result [C] [D] Control Limits %R [C] [D] %R		

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: Midland Odessa Standard List of prices

Work Order #: 417673

Lab Batch ID: 857963

Date Analyzed: 05/28/2011

Repor

Batch #:

Project 1D: 11-0114

Matrix: Soil BEV Analyst: QC-Sample ID: 417987-001 S Date Prepared: 05/27/2011

porting Units: mg/kg		M	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	MAT)	AIX SPII	KE DUPLICAT	re reco	OVERY S	STUDY		
TPH By SW8015 Mod	Parent Sample	Spike	Spiked Sample Spiked Result Sample	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	<u></u>	%R [D]	Added [E]	Added Result F	% <u>2</u>	%	%R	%RPD	
C6-C12 Gasoline Range Hydrocarbons	<14.9	566	750	75	866	778	78	4	70-135	35	
C12-C28 Diesel Range Hydrocarbons	<14.9	995	177	77	866	759	76	2	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*[(C-F)/(C+F)]

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank. NR = Not Requested, I = Interference. NA = Not Applicablen = See Narrative, EQL = Estimated Quantitation Limit

Page 14 of 17

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Sample Duplicate Recovery

Project Name: Midland Odessa Standard List of prices

Work Order #: 417673

Lab Batch #: 857555

Date Analyzed: 05/25/2011 19:24 Date Prepared: 05/25/2011

Project ID: 11-0114

Analyst: LATCOR

QC- Sample ID: 417671-001 D

Batch #:

Matrix: Soil

Reporting Units: mg/kg	SAMPLE / SAMPLE DUPLICATE RECOVERY					
Anions by E300	Parent Sample Result	Sample Duplicate Result	RPD	Control Limits %RPD	Flag	

Lab Batch #: 857544

Date Analyzed: 05/25/2011 17:00

Date Prepared: 05/25/2011

Analyst: LATCOR

OC- Sample ID: 417656-001 D

Batch #: 1

Matrix: Soil

Reporting Units: %

SAMPLE/SAMPLE DUPLICATE RECOVERY

	011111111111111111111111111111111111111								
Percent Moisture	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag				
Analyte		(B)							
Percent Moisture	1.45	1.45	0	20					

Lab Batch #: 857547

Date Analyzed: 05/25/2011 17:00

Date Prepared: 05/25/2011

Analyst: LATCOR

QC- Sample ID: 417673-008 D

Batch #: 1

Matrix: Soil

Reporting Units: % SAMPLE / SAMPLE DUPLICATE RECOVERY

Percent Moisture Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture	6.90	6.58	5	20	

Lab Batch #: 857558

Date Analyzed: 05/25/2011 11:15

Date Prepared: 05/25/2011

Analyst: LATCOR

QC- Sample ID: 417671-001 D

Batch #: 1

Matrix: Soil

Reporting Units: SU	SAMPLE / SAMPLE DUPLICATE RECOVERY						
Soil pH by EPA 9045C	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag		
Analyte		[B]					
рН	1.75	1.74	1	20			

CHAIN-OF-CUSTODY CUSTODY SEALS - TO BROKEN TO INTACT AND USED FIELD NOTES 님 LAB WORK ORDER #: 4116.13 PAGE_ THERM #: COLLECTOR: LABORATORY USE ONLY: RECEIVING TEMP: 6 KHAND DELIVERED CARRIER BILL# PROJECT LOCATION OR NAME: 110-11 TURN AROUND TIME LAI PROJECT #:_ NORMAL 💢 OTHER 🗆 1 DAY 2 DAY 🖸 DATE: PO #: 507 N. Marienfeld, Ste. 200 Midland, TX 79701 **PRESERVATION** REGEIVED BY: (Signature) NNPRESERVED RECEIVED BY: (Signature) RECEIVED BY: (Signature) 432-687-0901 ICE □ HOPN □ OS'H ниО³ HCI # of Containers Matrìx V 5-25-11 0925 DATE/TIME 1325 1.340 1425 9541 504] 1437 1415 1315 1350 SL=SLUDGE 1255 8 Time OT=OTHER P=PAINT 5-24 Date Data Reported to: ALEXIS arson & ssociates, Inc. Environmental Consultants W=WATER A=AIR S=SOIL Lab# RECINQUISHED BY: (Signature) RELINQUISHEMBY:(Signature) RELINQUISHED BY: (Signature) 001 SP-8 (0-14) SP-7 (0-3" Yes No TIME ZONE: Time zone/State: SP-9 (0.21) SP-1 (0-21) SP-10 (0-2" (14.0) 17.05 18-0) H-US MST/N.M SP-5 (0.9) SP-6 (0-1: 5P-2(0-3 Sp-3 (03) TRRP report? Field Sample I.D. TOTAL <u>8</u> , J 8 8 865 005 8

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa Document Title: Sample Receipt Checklist.

Document No.: SYS-SRC

Revision/Date: No. 01, 5/27/2010

Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

client Larson & Associates					
Date/Time: 5-25-11 9:25					
Lab ID#: 417673					
Initials:					
Sample Receipt	t Checkli	st			
		Т	G D.		
1. Samples on ice?		Blue	Water	No	
2. Shipping container in good condition?		(Yes)	No	None	
3. Custody seals intact on shipping container (cooler) and bottles?	?	Yes	No	(N/A)	
4. Chain of Custody present?		(Yee)	No		
5. Sample instructions complete on chain of custody?		(Yes)	No		
6. Any missing / extra samples?		Yes	(No)		
7. Chain of custody signed when relinquished / received?		Yes `	No		
8. Chain of custody agrees with sample label(s)?		Yes	No		
9. Container labels legible and intact?		Yes	No		
10. Sample matrix / properties agree with chain of custody?		(Yes)	No		
11. Samples in proper container / bottle?		Yes	No	 	
12. Samples properly preserved?		(Yes)	No	N/A	
13. Sample container intact?		(Yee)	No		
14. Sufficient sample amount for indicated test(s)?	·	(Yes)	No		
15. All samples received within sufficient hold time?		(Yes)	No	 	·
16. Subcontract of sample(s)?		Yes	(No)	N/A	
17. VOC sample have zero head space?		Yes	No	(N/A)	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.		Cooler 4 No).	Cooler 5 No.	
ibs (5 °C lbs °C lbs	°C	lbs	్లి	ibs	. •
Nonconformance I	Docume	ntation			
Contact:Contacted by:			Date/Time:		
	···				
Regarding:					
Corrective Action Taken:					
			·····		
					
		····			
Check all that apply: Cooling process has begun shortly after	!!-				
Check all that apply: Cooling process has begun shortly after condition acceptable by NELAC 5.	sampling 5.8.3.1.a.1.	event and o	out of temper	amie	
☐ Initial and Backup Temperature confirm	out of tem	perature co	nditions		

Analytical Report 419569

for Larson & Associates

Project Manager: Alexis Johnson

Monument Acid Spill

11-0114-01

15-JUN-11

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALII), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)
Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370)
Xenco-Boca Raton (EPA Lab Code: FL01273):
Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917)
North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

Xenco Phoenix (EPA Lab Code: AZ00901):
Arizona(AZ0757), Texas(104704435-10-2), Nevada(NAC-445A), DoD(65816)
Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)
Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

15-JUN-11

Project Manager: Alexis Johnson

Larson & Associates P.O. Box 50685 Midland, TX 79710

Reference: XENCO Report No: 419569

Monument Acid Spill Project Address:

Alexis Johnson:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 419569. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 419569 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 419569

Larson & Associates, Midland, TX

Monument Acid Spill

Sample IdMatrixDate CollectedSample DepthLab Sample IdSP-1SJun-10-11 12:45419569-001

CASE NARRATIVE

Client Name: Larson & Associates Project Name: Monument Acid Spill

Project ID:

11-0114-01

Work Order Number: 419569

Report Date: 15-JUN-11 Date Received: 06/10/2011

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non nonformances and comments:

Batch: LBA-860077 TPH By SW8015 Mod

SW8015MOD_NM

Batch 860077, o-Terphenyl recovered above QC limits . Matrix interferences is suspected; data

not confirmed by re-analysis

Samples affected are: 419574-001 D.

Project Id: 11-0114-01 Contact: Alexis Johnson

Project Location:

Certificate of Analysis Summary 419569

Larson & Associates, Midland, TX

Project Name: Monument Acid Spill

Date Received in Lab: Fri Jun-10-11 04:25 pm

Report Date: 15-JUN-11

Project Location:		Project Manage	Project Manager: Brent Barron, II
	Lab Id:	419569-001	
Analusis Danmatud	Field Id:	Sp-1	
Anutysis nequesieu	Depth:		
	Matrix:	SOIL	
	Sampled:	Jun-10-11 12:45	
Percent Moisture	Extracted:		
	Analyzed:	Jun-11-11 11:00	
	Units/RL:	% RL	
Percent Moisture		2.93 1.00	
Soil pH by EPA 9045C	Extracted:		
	Analyzed:	Jun-13-11 09:00	
	Units/RL:	SU RL	
Hd		7.38	
TPH By SW8015 Mod	Extracted:	Jun-13-11 11:45	
	Analyzed:	Jun-13-11 15:25	
	Units/RL:	mg/kg RL	
C6-C12 Gasoline Range Hydrocarbons			77.76.00
C12-C28 Diesel Range Hydrocarbons		746 15.5	
C28-C35 Oil Range Hydrocarbons		40.3 15.5	
Total TPH		817 15.5	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no worranty to the end use of the data bareby presented. Our jiability is limited to the amount invoired for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brefit Barron, II Odessa Laboratory Manager

Page 5 of 11

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit
- MDL Method Detection Limit
- **PQL** Practical Quantitation Limit
- LOD Limit of Detection
- LOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr., Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116
3725 E. Atlanta Ave. Phoenix, AZ 85040	(602) 437-0330	` '

Form 2 - Surrogate Recoveries

Project Name: Monument Acid Spill

Work Orders: 419569,

Lab Batch #: 860077

Sample: 605101-1-BKS/BKS

Project ID: 11-0114-01

Matrix: Solid Batch:

Units: mg/kg Date Analyzed: 06/13/11 13:5	59 SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes		,	[D]		
1-Chlorooctane	121	100	121	70-135	
o-Terphenyl	61.8	50.0	124	70-135	

Lab Batch #: 860077

Sample: 605101-1-BSD / BSD

Batch: 1

Matrix: Solid

Units: mg/kg Date Analyzed: 06/13/11 14:28	St	RROGATE R	ECOVERY:	STUDY	
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits	Flags
Analytes	[1-3]	1-1	[D]		
1-Chlorooctane	112	100	112	70-135	
o-Terphenyl	61.0	50.0	122	70-135	

Lab Batch #: 860077

Sample: 605101-1-BLK / BLK

Batch: 1

Matrix: Solid

Units: mg/kg Date Analyzed: 06/13/11 14:56	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	98.7	100	99	70-135	
o-Terphenyl	54.7	50.0	109	70-135	

Lab Batch #: 860077

Sample: 419569-001 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	Date Analyzed: 06/13/11 15:25	SU	RROGATE R	ECOVERY	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		115	100	115	70-135	
o-Terphenyl		60.7	50.1	121	70-135	

Lab Batch #: 860077

Sample: 419574-001 D/MD

Batch: 1

Matrix: Solid

Units: mg/kg Date Analy	yzed: 06/14/11 01:23	SU	RROGATE R	ECOVERY :	STUDY	
TPH By SW8015 Malytes	Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		99.2	100	99	70-135	
o-Terphenyl		171	50.0	342	70-135	*

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: Monument Acid Spill

Work Order #: 419569

Analyst: BEV

Lab Batch ID: 860077

Sample: 605101-1-BKS

Date Prepared: 06/13/2011 Batch #: 1

Project ID: 11-0114-01 **Date Analyzed:** 06/13/2011 Matrix: Solid

Units: mg/kg		BLAN	BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	PIKE/E	LANKS	PIKE DUPL	ICATE	RECOVE	SRY STUD	Y	
TPH By SW8015 Mod	Blank	Spike	Blank	Blank	Spike	Blank	Blk. Spk	4	Control	Control	ī
	Sample Kesult [A]	Added	Spike Result	Spike %R	Added	Spike Duplicate	Dup.	KPD %	Limits %R	Limits %RPD	Flag
Analytes		8	ᄗ	<u>[a]</u>	<u>a</u>	Result [F]	<u>5</u>				
C6-C12 Gasoline Range Hydrocarbons	<15.0	1000	876	88	1000	875	88	0	70-135	35	
C12-C28 Diesel Range Hydrocarbons	. <15.0	1000	810	81	1000	608	81	0	70-135	35	

Relative Percent Difference RPD = 200*(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Sample Duplicate Recovery

Project Name: Monument Acid Spill

Work Order #: 419569

Lab Batch #: 859677

Date Analyzed: 06/11/2011 11:00

Date Prepared: 06/11/2011

Project ID: 11-0114-01

Analyst: BEV

QC-Sample ID: 419568-001 D

Batch #: 1

Matrix: Soil

Reporting Units: %	SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
· · · · · · · · · · · · · · · · · · ·			ļ		1
Percent Moisture	6.16	6.29	2	20	

Lab Batch #: 859705

Date Analyzed: 06/13/2011 09:00

Date Prepared: 06/13/2011

Analyst: LATCOR

QC- Sample ID: 419517-008 D

Batch #: 1

Matrix: Soil

Reporting Units: SU	SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Soil pH by EPA 9045C	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
pH	8.90	8.89	0	20	

Lab Batch #: 860077

Date Analyzed: 06/14/2011 01:23

Date Prepared: 06/13/2011

Analyst: BEV

QC-Sample ID: 419574-001 D

Batch #: 1

Matrix: Solid

Reporting Units: mg/kg	SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
TPH By SW8015 Mod Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	<150	152	NC	35	
C12-C28 Diesel Range Hydrocarbons	44900	50700	12	35	· · · · · · -
C28-C35 Oil Range Hydrocarbons	<150	<150	0	35	

CHAIN-OF-CUSTODY CUSTODY SEALS . LI BROKEN A INTACT LI NOT USED / OF / FIELD NOTES THERM #: COLLECTOR PROJECT LOCATION OR NAME: Many 1226-157 LAB WORK ORDER #: RECEIVING TEMP: 2.6 LABORATORY USE ONLY: Z HAND DELIVERED CARRIER BILL # LAI PROJECT #: 11-014-CI TURN AROUND TIME NORMAL X OTHER 🗓 2 DAY 1 DAY DATE: PO #: 15.01 200 RECEIVED BY: (Signature) 507 N. Marienfeld, Ste. Midland, TX 79701 RECEIVED BY: (Signature) **PRESERVATION** RECEIVED BY: (Signature) **UNPRESERVED** 432-687-0901 ICE □ HOSN □ OSCH HNO³ HCI # of Containers DATE/TIME DATE/TIME DATE/TIME 17:45 SL=SLUDGE OT=OTHER Time 11.90 1102 Date SSOCIATES, Inc. Environmental Consultants W=WATER S=SOIL Lab# RELINQUISHED BY: (Signature) A=AIR RELINGUISHED BY: (Signature) RELINQUISHED BY: (Signature) 5

TOTAL

Data Reported to:

§ □

☐ Yes ☐

TRRP report?

TIME ZONE: Time zone/State:

Sample I.D. Field

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadeiphia Phoenix, San Antonio, Tampa Document Title: Sample Receipt Checklist

Document No.: SYS-SRC

Revision/Date: No. 01, 5/27/2010

Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

client: Larson & assoc	<u>-</u>				
Date/Time: U-10-11 U	25				
Lab 10#: 419509					
Initials:					
5	Sample Receipt Che	ecklist			
1. Samples on ice?		Blue	(Water)	No	
2. Shipping container in good condition?		(Yes)	No	None	
3. Custody seals intact on shipping container (c	cooler) and bottles 3	(Yes)	No	N/A	
4. Chain of Custody present?		(Yes)	No		
5. Sample instructions complete on chain of cus	stody?	Yesi	No		
6. Any missing / extra samples?		Yes	(No)		
7. Chain of custody signed when relinquished /	received?	Yes	No		
8. Chain of custody agrees with sample label(s)	?	(Yes	No		
9. Container labels legible and intact?		(Yes.>	No		
10. Sample matrix / properties agree with chain	of custody?	(Yes)	No		
11. Samples in proper container / bottle?		(Yes)	No		
12. Samples properly preserved?		Yes)	No	N/A	
13. Sample container intact?		, Yes)	No		
14. Sufficient sample amount for indicated test	(s)?	(Yes)	No		
15. All samples received within sufficient hold to	time?	(Yes)	No		
16. Subcontract of sample(s)?		Yes	No	(NA)	
17. VOC sample have zero head space?		(Yes)	No	N/A	
18. Cooler 1 No. Cooler 2 No.	Cooler 3 No.	Cooler 4 No		Cooler 5 No.	
ibs Zolo°c ibs °	C lbs	°C lbs	٥(c lbs	<u>°(</u>
Non	conformance Docu	umentation			
Contacted Contacted	by:		Date/Time:		
					
Regarding:		······································			
Corrective Action Taken:			·		
Check all that apply: Clocking and the	h	-C			
Check all that apply: Cooling process has condition acception.	begun shortly after sam table by NELAC 5.5.8.3.	pling event and o	ut or tempe	raure	
☐ Initial and Backup Ter	mperature confirm out o	of temperature co	nditions		

☐ Client understands and would like to proceed with analysis

Analytical Report 417671

for Larson & Associates

Project Manager: Alexis Johnson

Midland Odessa Standard List of prices

11-0114

26-MAY-11

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)
Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370)
Xenco-Boca Raton (EPA Lab Code: FL01273):
Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917)
North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

Xenco Phoenix (EPA Lab Code: AZ00901):
Arizona(AZ0757), Texas(104704435-10-2), Nevada(NAC-445A), DoD(65816)
Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)
Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

26-MAY-11

Project Manager: Alexis Johnson Larson & Associates P.O. Box 50685 Midland, TX 79710

Reference: XENCO Report No: 417671

Midland Odessa Standard List of prices

Project Address:

Alexis Johnson:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 417671. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 417671 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 417671

Larson & Associates, Midland, TX

Midland Odessa Standard List of prices

Sample Id
Soil Pile

Matrix

Date Collected

Sample Depth

Lab Sample Id

S

May-24-11 00:00

417671-001

CASE NARRATIVE

Client Name: Larson & Associates

Project Name: Midland Odessa Standard List of prices

Project ID:

11-0114

Work Order Number: 417671

Report Date: 26-MAY-11

Date Received: 05/25/2011

Sample receipt non conformances and Comments:

Chloride RL of 870 mg/kg due to dilution because of high Sulfate content from Sulfuric Acid.

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-857557 TPH By SW8015 Mod

Contact: Alexis Johnson Project Id: 11-0114

Project Location:

Certificate of Analysis Summary 417671 Larson & Associates, Midland, TX

Project Name: Midland Odessa Standard List of prices

Date Received in Lab: Wed May-25-11 09:25 am

Report Date: 26-MAY-11

Project Manager: Brent Barron, II

Anions by E300 Anions by E300 Extracted: Analyzed: MissRL: Soil pH by EPA 9045C Soil pH By SW8015 Mod TPH By SW8015 Mod Extracted: Analyzed: MissRL: Units/RL: Analyzed: MissRL: Units/RL: Units/R		Lab Id:	417671-001	William I The Carlot of the Ca
Anions by E300 Extracted: SOIL	A section of December 1	Field Id:	Soil Pile	
Maintiest SOIL	Analysis Kequesiea	Depth:		
Anions by E300 Extracted: May-24-11 00 Analyzed: May-25-11 19 Percent Moisture Extracted: ND Percent Moisture Extracted: %0 Disturc 3.48 Soil pH by EPA 9045C Extracted: 3.48 Soil pH by EPA 9045C Extracted: Nay-25-11 11: TPH By SW8015 Mod Extracted: May-25-11 18: Lif5 Lif5 TPH By SW8015 Mod Extracted: May-25-11 18: Isoline Range Hydrocarbons Units/RL: mg/kg Isoline Range Hydrocarbons 2170 Dil Range Hydrocarbons 1050 Dil Range Hydrocarbons 1050		Matrix:	NOS	
Anions by E300 Analyzed: May-25-11 19: Unitx/RL: mg/kg ND Percent Moisture		Sampled:	May-24-11 00:00	
Analyzed: May-25-11 19 Units/RL: mg/kg ND	Anions by E300	Extracted:		
Units/RL: mg/kg ND		Analyzed:	May-25-11 19:24	
Percent Moisture		Units/RL:		
Percent Moisture Extracted: May-25-11 17: Disture 3.48 Soil pH by EPA 9045C Extracted: 3.48 Soil pH by EPA 9045C Extracted: May-25-11 11: TPH By SW8015 Mod Extracted: May-25-11 18: TPH By SW8015 Mod Extracted: May-25-11 18: Isoline Range Hydrocarbons 194 Dil Range Hydrocarbons 2170 Dil Range Hydrocarbons 1050 Dil Range Hydrocarbons 1050	Chloride			
Analyzed: May-25-1117: Chairs/RL: 9.6 Soil pH by EPA 9045C Extracted: May-25-1111: Units/RL: SU Chairs/RL: May-25-1118: Notine Range Hydrocarbons 194 Chairs/RL: mg/kg C	Percent Moisture	Extracted:		
Units/RL: 9% 3.48 Soil pH by EPA 9045C		Analyzed:	May-25-11 17:00	
Soil pH by EPA 9045C		Units/RL:		
Soil pH by EPA 9045C Extracted: May-25-11 11: Analyzed: SU Chits/RL: SU 1.75 1.75 TPH By SW8015 Mod Extracted: May-25-11 14: Analyzed: May-25-11 18: Isoline Range Hydrocarbons 194 Dil Range Hydrocarbons 2170 Dil Range Hydrocarbons 1050 Bil Range Hydrocarbons 1050	Percent Moisture			
Analyzed: May-25-1111: SU	Soil pH by EPA 9045C	Extracted:		
Units/RL: SU		Analyzed:	May-25-11 11:15	
1.75		Units/RL:		
TPH By SW8015 Mod Extracted: May-25-11 14: Analyzed: May-25-11 18: Units/RL: mg/kg Isoline Range Hydrocarbons 194 194 Disel Range Hydrocarbons 2170 1050 Dil Range Hydrocarbons 1050 1050	Hd		1.75	
Analyzed: May-25-11 18: Units/RL: mg/kg 194 Diesel Range Hydrocarbons 2170 Dil Range Hydrocarbons 1050 Sil Range Hydroca	TPH By SW8015 Mod	Extracted:	May-25-11 14:13	
Ingikg Conits/RL: mg/kg 194 Siesel Range Hydrocarbons 2170 Sil Range Hydrocarbons 1050 3410		Analyzed:	May-25-11 18:54	
194 Jiesel Range Hydrocarbons 2170 Jil Range Hydrocarbons 1050 3410		Units/RL:		
Diesel Range Hydrocarbons 2170 Dil Range Hydrocarbons 1050 3410 3410	C6-C12 Gasoline Range Hydrocarbons			
050 1050 1050 3410	C12-C28 Diesel Range Hydrocarbons	-		
3410	C28-C35 Oil Range Hydrocarbons			
	Total TPH		3410 77.5	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tanpa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Brefit Barron, II

Final 1.000

Page 5 of 14

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- D The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- BRL Below Reporting Limit.
- **RL** Reporting Limit
- MDL Method Detection Limit
- **PQL** Practical Quantitation Limit
- LOD Limit of Detection
- LOQ Limit of Quantitation
- **DL** Method Detection Limit
- * Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

Form 2 - Surrogate Recoveries

Project Name: Midland Odessa Standard List of prices

Work Orders: 417671,

Lab Batch #: 857557

Sample: 603652-1-BKS / BKS

Project ID: 11-0114

Matrix: Solid Batch:

Units: mg/kg Date Analyzed: 05/25/11 11:18	RROGATE R	ECOVERY	STUDY		
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	80.8	99.7	81	70-135	
o-Terphenyl _.	46.8	49.9	94	70-135	

Lab Batch #: 857557

Sample: 603652-1-BSD / BSD

Batch:

Matrix: Solid

Units: mg/kg Date Analyzed: 05/25/11 11:44	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	, ,	'	[D]		
1-Chlorooctane	80.7	100	81	70-135	
o-Terphenyl	46.1	50.2	92	70-135	

Lab Batch #: 857557

Sample: 603652-1-BLK / BLK

Batch: 1

Matrix: Solid

Units: mg/kg Date Analyzed: 05/25/11 12:10	SU	SURROGATE RECOVERY STUDY							
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	81.4	100	81	70-135					
o-Terphenyl	50.0	50.2	100	70-135					

Lab Batch #: 857557

Sample: 417671-001 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	Date Analyzed: 05/25/11 18:54	SURROGATE RECOVERY STUDY							
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane		82.5	99.8	83	70-135				
o-Terphenyl		54.4	49.9	109	70-135				

Lab Batch #: 857557

Sample: 417656-001 S / MS

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 05/25/11 19:47	SURROGATE RECOVERY STUDY							
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	91.3	99.6	92	70-135				
o-Terphenyl	54.4	49.8	109	70-135				

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Midland Odessa Standard List of prices

Batch:

Work Orders: 417671,

Project ID: 11-0114

Lab Batch #: 857557

Sample: 417656-001 SD / MSD

l Matrix: Soil

Units: mg/kg Date Analyzed: 05/25/11 20:14	SURROGATE RECOVERY STUDY							
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	81.1	100	81	70-135				
o-Terphenyl	46.9	50.1	94	70-135				

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: Midland Odessa Standard List of prices

Work Order #: 417671

Analyst: LATCOR

Lab Batch ID: 857555

Date Prepared: 05/25/2011

Batch #: 1

Sample: 857555-1-BKS

Date Analyzed: 05/25/2011 Project ID: 11-0114 Matrix: Solid Flag

20

75-125

0

98

8.59

10.0 딜

98

8.58 $\overline{\Omega}$

10.0 [B]

<0.420

Analytes Chloride

Control Limits %RPD BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Control Limits %R RPD % Blk. Spk Blank Spike Duplicate Result [F] Spike Added Blank Spike %R [D] Blank Spike Result Spike Added Blank Sample Result [A] Anions by E300 Units: mg/kg

Date Analyzed: 05/25/2011 Matrix: Solid Date Prepared: 05/25/2011 Batch #: 1 Sample: 603652-1-BKS Lab Batch ID: 857557 Analyst: BEV

Units: mg/kg		BLAN	BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	PIKE/E	LANKS	PIKE DUPL	ICATE 1	RECOVE	RY STUD	Į,	
TPH By SW8015 Mod	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Bik. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	<u> </u>	[B]	Result [C]	%K [D]	[E]	Duplicate Result [F]	Z [5]	°	%,	%KPD	
C6-C12 Gasoline Range Hydrocarbons	<15.0	266	759	92	1000	755	92	-	70-135	35	
C12-C28 Diesel Range Hydrocarbons	<15.0	266	804	81	1000	802	80	0	70-135	35	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)]Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Final 1.000

Form 3 - MS Recoveries

Project Name: Midland Odessa Standard List of prices

Work Order #: 417671

Lab Batch #: 857555

Date Analyzed: 05/25/2011

Date Prepared: 05/25/2011

Project ID: 11-0114

Analyst: LATCOR

QC- Sample ID: 417671-001 S

Batch #: 1

Matrix: Soil

Reporting Units: mg/kg	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride	<870	20700	19100	92	75-125	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)
All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: Midland Odessa Standard List of prices

Work Order #: 417671

Lab Batch ID: 857557

Date Analyzed: 05/25/2011

Batch #:

QC-Sample ID: 417656-001 S

Date Prepared: 05/25/2011

BEV Analyst:

Project ID: 11-0114 Matrix: Soil

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	Parent Spiked Sample Spiked Clim Result Result Sample Spiked Spiked	C6-C12 Gasoline Range Hydrocarbons <15.2 1010 839 83 1020 840 82 0 70-1
VERY S	RPD %	0
STUDY	Control Limits %R	70-135
	Control Limits %RPD	35
	Flag	

35

70-135

9/

918

1020

85

968

0101

39.6

C12-C28 Diesel Range Hydrocarbons

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQ1. = Estimated Quantitation Limit

Matrix Spike Percent Recovery $\{D\} = 100^{*}(C-A)/B$ Relative Percent Difference $RPD = 200^{*}[(C-F)/(C+F)]$

Page 11 of 14

Final 1.000

Sample Duplicate Recovery

Project Name: Midland Odessa Standard List of prices

Work Order #: 417671

Lab Batch #: 857555

Date Prepared: 05/25/2011

Project ID: 11-0114

Date Analyzed: 05/25/2011 19:24 **QC- Sample ID:** 417671-001 D

Batch #: 1

Analyst: LATCOR
Matrix: Soil

Reporting Units: mg/kg

ting Units: mg/kg	SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Anions by E300	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
	<870	<870	0	20	

Lab Batch #: 857544

Date Analyzed: 05/25/2011 17:00

Percent Moisture

Analyte

Date Prepared: 05/25/2011

Analyst: LATCOR

QC- Sample ID: 417656-001 D

Batch #: 1

Matrix: Soil

Reporting Units: %

Percent Moisture

Chloride

SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
 				1

Lab Batch #: 857558

Date Analyzed: 05/25/2011 11:15

Date Prepared: 05/25/2011

Analyst: LATCOR

QC- Sample ID: 417671-001 D

Batch #: 1

Matrix: Soil

Reporting Units: SU	SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Soil pH by EPA 9045C	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		(B)	ļ		
рН	1.75	1.74	1	20	

CHAIN-OF-CUSTODY COLLECTOR: JENMUMMIN ا م FIELD NOTES LAB WORK ORDER #: 417671 PROJECT LOCATION OR NAME: 4110-11 5-24-1 LAI PROJECT #: DATE PO #: 507 N. Marienfeld, Ste. 200 Midland, TX 79701 **PRESERVATION** NNPRESERVED 432-687-0901 □ HOBN □ JOS3H ^EONH HCI # of Containers Matrix 3 SL=SLUDGE OT=OTHER Time A Johnson 5-24 Date ssociates, Inc. Environmental Consultants W=WATER A=AIR Lab#

Final 1.000

CUSTODY SEALS - [] BROKEN [] INTACT KNOT USED

HAND DELIVERED CARRIER BILL#

THERM #:

RECEIVING TEMP: LABORATORY USE ONLY:

TURN AROUND TIME

REÇEIVED BY: (Signature) *Xuna | Yunnherk* RECEIVED BY: (Signature)

10925

DATE/TIME

S-25-11/01

RELINQUISHED BY (Signature) RELINQUISHED BY:(Signature)

NORMAL 🗗

1 DAY 🖸 2 DAY 🗓

OTHER 🗓

RECEIVED BY: (Signature)

DATE/TIME

RELINQUISHED BY:(Signature)

Data Reported to:

TIME ZONE: Time zone/State:

NM/MST

Field Sample I.D.

Soil Ale

☐ Yes ☐ No TRRP report?

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa Document Title: Sample Receipt Checklist.

Document No.: SYS-SRC

Revision/Date: No. 01, 5/27/2010

Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

		. 10109.11				•	, ,		
Client:	Larso	n \$ Assoc	iates						
Date/Time:	5	5-25-11 9:	25						
Lab ID#:		417671							
Initials:		LM							
			S	ample Receipt	t Checki	ist			
1. Samples on	ice?					Blue	Water	No	
2. Shipping co	ontainer in	good condition	?	, 		Yes	No	None	
3. Custody se	als intact o	on shipping con	tainer (co	ooler) and bottles:	?	Yes	No	(N/A)	
4. Chain of Cu	ıstody pre	sent?				Yes.	No		
5. Sample ins	tructions c	omplete on cha	in of cus	tody?		Yes	No		
6. Any missin	g / extra sa	amples?				Yes	(NS)		
7. Chain of cu	stody sign	ed when reling	ished / i	received?		(Yes)	No		
8. Chain of cu	stody agre	es with sample	label(s)	?		(Yes)	No		
9. Container l	abels legib	le and intact?				Yes	No		
10. Sample m	atrix / prop	erties agree wit	h chain d	of custody?		Yes	No		
11. Samples i	n proper c	ontainer / bottle	?			Yes	No		
12. Samples	properly pr	eserved?				Yes	No	N/A	
13. Sample co	ontainer in	tact?				Yes	No		
14. Sufficient	sample an	nount for indica	ted test(s	s)?		(Yes)	No		
15. All sample	es received	l within sufficie	nt hold ti	me?		Yes	No		
16. Subcontra	ct of samp	ole(s)?				Yes	(No)	N/A	
17. VOC samp	ole have ze	ro head space?				Yes	No	NA	
18. Cooler 1 N	ło.	Cooler 2 No.		Cooler 3 No.		Cooler 4 N	0.	Cooler 5 No.	
ibs	6 %	lbs	°c	lbs	°င	lbs	°c	ibs	°C
			None	conformance (Docume	ntation			
Contact:		· Con		y:			Date/Time:		
			itacted D	·y·			Date/Time.		
Regarding:									
Corrective Ac	tion Taker	1:							
			-						
Chack -II #-	tonnb	70					4 5:		
Oneck all dia	rappiy; (egun shortly after				rature	

☐ Initial and Backup Temperature confirm out of temperature conditions

☐ Client understands and would like to proceed with analysis

Analytical Report 419569

for Larson & Associates

Project Manager: Alexis Johnson

Monument Acid Spill

11-0114-01

15-JUN-11

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046):

Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370)

Xenco-Boca Raton (EPA Lab Code: FL01273):

Florida(E86240), South Carolina(96031001), Louisiana(04154), Georgia(917)

North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

Xenco Phoenix (EPA Lab Code: AZ00901):

Arizona(AZ0757), Texas(104704435-10-2), Nevada(NAC-445A), DoD(65816)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

15-JUN-11

Project Manager: Alexis Johnson Larson & Associates P.O. Box 50685 Midland, TX 79710

Reference: XENCO Report No: 419569

Monument Acid Spill Project Address:

Alexis Johnson:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 419569. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 419569 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 419569

Larson & Associates, Midland, TX

Monument Acid Spill

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SP-1	S	Jun-10-11 12:45		419569-001

CASE NARRATIVE

Client Name: Larson & Associates Project Name: Monument Acid Spill

Project ID:

11-0114-01

Work Order Number: 419569

Report Date: 15-JUN-11

Date Received: 06/10/2011

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non nonformances and comments:

Batch: LBA-860077 TPH By SW8015 Mod

SW8015MOD_NM

Batch 860077, o-Terphenyl recovered above QC limits . Matrix interferences is suspected; data

not confirmed by re-analysis

Samples affected are: 419574-001 D.

Contact: Alexis Johnson Project Id: 11-0114-01

Project Location:

Certificate of Analysis Summary 419569 Larson & Associates, Midland, TX

Project Name: Monument Acid Spill

Date Received in Lab: Fri Jun-10-11 04:25 pm

Report Date: 15-JUN-11

Project Manager: Brent Barron, II

	Lab Id:	419569-001						
Analysis Ronnested	Field Id:	SP-1						
view, sis wey westen	Depth:							
	Matrix:	SOIL					•	
	Sumpled:	Jun-10-11 12:45	45					
Percent Moisture	Extracted:							
	Analyzed:	Jun-11-11 11:00	00	 		· · · · · · · · · · · · · · · · · · ·		
	Units/RL:	%	RL	 ***************************************				
Percent Moisture		2.93	1.00					
Soil pH by EPA 9045C	Extracted:							
	Analyzed:	Jun-13-11 09:00	00			***		
	Units/RL:	SU RL	RL					
Hd		7.38						
TPH By SW8015 Mod	Extracted:	Jun-13-11 11:45	45		:			
	Analyzed:	Jun-13-11 15:25	25			***		
	Units/RL:	mg/kg	RL	 	i			
C6-C12 Gasoline Range Hydrocarbons		30.8	15.5					
C12-C28 Diesel Range Hydrocarbons		746	15.5					
C28-C35 Oil Range Hydrocarbons		40.3	15.5					
Total TPH		817	15.5					

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Brent Barron, II

Final 1.000

Page 5 of 11

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- D The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit
- MDL Method Detection Limit
- **PQL** Practical Quantitation Limit
- LOD Limit of Detection
- LOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

•	Phone	Fax
4143 Greenbriar Dr, Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	•

Form 2 - Surrogate Recoveries

Project Name: Monument Acid Spill

Work Orders: 419569,

Project ID: 11-0114-01

Lab Batch #: 860077

Sample: 605101-1-BKS / BKS

Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 06/13/11 13:59	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	121	100	121	70-135	
o-Terphenyl	61.8	50.0	124	70-135	

Lab Batch #: 860077

Sample: 605101-1-BSD / BSD

Batch: 1

Matrix: Solid

Units: mg/kg Date Analyzed: 06/13/11 14:28	SU	RROGATE R	RECOVERY	STUDY	
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	112	100	112	70-135	
o-Terphenyl	61.0	50.0	122	70-135	<u></u>

Lab Batch #: 860077

Sample: 605101-1-BLK / BLK

Batch:

Matrix: Solid

Units: mg/kg Date Analyzed: 06/13/11 14:56	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	98.7	100	99	70-135	
o-Terphenyl	54.7	50.0	109	70-135	

Lab Batch #: 860077

Sample: 419569-001 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 06/13/11 15:25	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	115	100	115	70-135	
o-Terphenyl	60.7	50.1	121	70-135	· · · · ·

Lab Batch #: 860077

Sample: 419574-001 D / MD

Batch: 1

Matrix: Solid

Units: mg/kg Date An	alyzed: 06/14/11 01:23	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Analytes	5 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		99.2	100	99	70-135	
o-Terphenyl	-	171	50.0	342	70-135	*

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Monument Acid Spill

Work Order #: 419569

Analyst: BEV

Date Prepared: 06/13/2011

Project ID: 11-0114-01 **Date Analyzed:** 06/13/2011

Sample: 605101-1-BKS Lab Batch ID: 860077

Batch #: 1

Matrix: Solid

Units: mg/kg		BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	PIKE / E	LANK S	PIKE DUPL	ICATE	RECOVE	RY STUD	Y	
TPH By SW8015 Mod	Blank	Spike	Blank	Blank	Spike	Blank	Blk. Spk		Control	Control	
	Sample Result	Added	Spike	Spike	Added	Spike	Dup.	RPD	Limits	Limits	Flag
	V		Result	%R		Duplicate	%R	%	%R	%RPD	
Analytes		<u>8</u>	[<u>C</u>]	<u>a</u>	Œ	Result [F]	<u>5</u>				
C6-C12 Gasoline Range Hydrocarbons	<15.0	1000	876	88	1000	875	88	0	70-135	35	
C12-C28 Diesel Range Hydrocarbons	<15.0	1000	810	81	1000	809	18	0	70-135	35	

Relative Percent Difference RPD = 200*(C-F)/(C+F)Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Sample Duplicate Recovery

Project Name: Monument Acid Spill

Work Order #: 419569

Lab Batch #: 859677

Percent Moisture

Analyte

Date Analyzed: 06/11/2011 11:00

QC-Sample ID: 419568-001 D

Date Prepared: 06/11/2011

Project ID: 11-0114-01

Analyst: BEV

Batch #: 1

Matrix: Soil

Reporting Units: %

Percent Moisture

Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
--------------------------------	--------------------------------------	-----	---------------------------	------

Lab Batch #: 859705

Date Analyzed: 06/13/2011 09:00

Date Prepared: 06/13/2011

Analyst: LATCOR

QC- Sample ID: 419517-008 D

Batch #:

Matrix: Soil

Reporting Units: SU

SAMPLE / SAMPLE DUPLICATE RECOVERY

Reporting Units. 50	SAMI LE / SAMI LE DUI LICATE RECOVERT					
Soil pH by EPA 9045C	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag	
Analyte	. [4]	[B]				
рН	8.90	8.89	0	20		

Lab Batch #: 860077

Date Analyzed: 06/14/2011 01:23

Date Prepared: 06/13/2011

Analyst: BEV

QC-Sample ID: 419574-001 D

Batch #: 1

Matrix: Solid

Reporting Units: mg/kg	SAMPLE / SAMPLE DUPLICATE RECOVERY					
TPH By SW8015 Mod Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag	
C6-C12 Gasoline Range Hydrocarbons	<150	152	NC	35		
C12-C28 Diesel Range Hydrocarbons	44900	50700	12	35		
C28-C35 Oil Range Hydrocarbons	<150	<150	0	35	<u> </u>	

CHAIN-OF-CUSTODY CUSTODY SEALS - 🗓 BROKEN 💋 INTACT 🗂 NOT USED FIELD NOTES THERM #: COLLECTOR PROJECT LOCATION OR NAME: Maril 120 LAB WORK ORDER #: LABORATORY USE ONLY:
RECEIVING TEMP: 2.0 Z HAND DELIVERED CARRIER BILL# LAI PROJECT # 11-011-61 TURN AROUND TIME NORMAL X OTHER [] 2 DAY 🗇 1 DAY DATE: PO #: 200 with thing 507 N. Marienfeld, Ste. Midland, TX 79701 RECEIVED BY: (Signature) RECEIVED BY: (Signature) NNPRESERVED RECEIVED BY: (Signature) **PRESERVATION** 432-687-0901 □ HOSN □ LOSSH HNO3 HCI # of Containers Matrix DATE/TIME DATE/TIME DATE/TIME Time SL=SLUDGE OT=OTHER P=PAINT 1102 Date arson & Sociates, Inc. Environmental Consultants W=WATER S=SOIL A=AIR RELINAUISHED BY: (Signature) ED BY:(Signature) RELINQUISHED BY: (Signature) Lab# 5 Data Reported to: ☐ Yes ☐ No TIME ZONE: Time zone/State: TRRP report? Sample I.D. RÉLINQUISH Field 50. MST. TOTAL

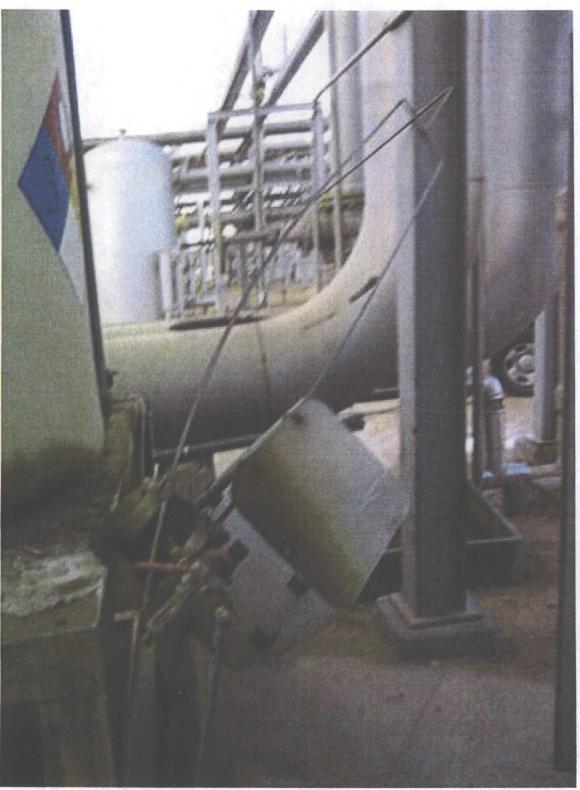
XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa Document Title: Sample Receipt Checklist

Document No.: SYS-SRC

Revision/Date: No. 01, 5/27/2010

Effective Date: 6/1/2010 Page 1 of 1


Prelogin / Nonconformance Report - Sample Log-In

client: Larson & Ussoc				
Date/Time: WID-11 10-25				
Lab ID#: 419569				
Initials:				
Sample Receipt Check	ist			
1. Samples on ice?	Blue	(Water)	No	
2. Shipping container in good condition?	(Yes)	No	None	·
3. Custody seals intact on shipping container (cooler) and bottles 3	(Yes)	No	N/A	
4. Chain of Custody present?	(Yes)	No		
5. Sample instructions complete on chain of custody?	Yesı	No		
6. Any missing / extra samples?	Yes	(Nő)		
7. Chain of custody signed when relinquished / received?	Yes	No		
8. Chain of custody agrees with sample label(s)?	(Yes	No		
9. Container labels legible and intact?	(Yes >	No		
10. Sample matrix / properties agree with chain of custody?	(Yes)	No		
11. Samples in proper container / bottle?	(Yes	No		
12. Samples properly preserved?	Yes)	No	N/A	
13. Sample container intact?	(Yes)	No		
14. Sufficient sample amount for indicated test(s)?	Yes	No		
15. All samples received within sufficient hold time?	(Yes)	No		
16. Subcontract of sample(s)?	Yes	No	(NA)	
17. VOC sample have zero head space?	(Yes)	No	N/A	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.	Cooler 4 No	o.	Cooler 5 No.	
Ibs Z_C°C Ibs °C Ibs °C	lbs	°c	lbs	°(
Nonconformance Docume	ntation			
Contact: Contacted by:		Date/Time:		
Regarding:		_		
	····			
Corrective Action Taken:				
Check all that apply: Cooling process has begun shortly after sampling condition acceptable by NELAC 5.5.8.3.1.a.1 Initial and Backup Temperature confirm out of tem			ature	

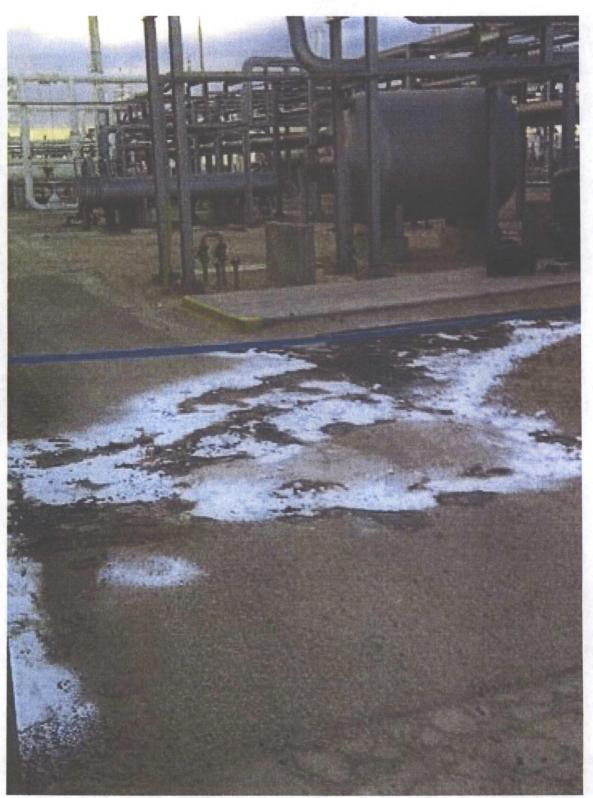
☐ Client understands and would like to proceed with analysis

Appendix C

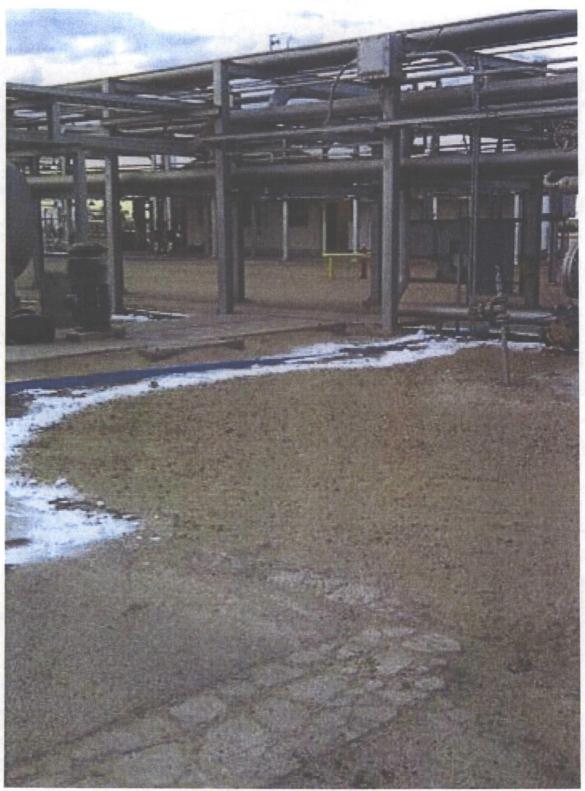
Photographs

Blown Over Chemical Pump (Targa, April 6, 2011)

Sulfuric Acid Spill near Source (Targa, April 6, 2011)



Sulfuric Acid Spill East of Tank (Targa, April 6, 2011)


Appendix C - Photographs
TARGA MIDSTREAM SERVICES, L.P.
Monument Gas Plant Sulfuric Acids Spill
Lea County, New Mexico

Sulfuric Acid Spill East of Tank (Targa, April 6, 2011)

Sulfuric Acid Spill after Neutralizing with Soda Ash (Targa, April 7, 2011)


Sulfuric Acid Spill after Neutralizing with Soda Ash (Targa, April 7, 2011)

Sulfuric Acid Spill after Cleanup, April 19, 2011

Sulfuric Acid Spill after Cleanup, April 19, 2011

Sulfuric Acid Spill after Cleanup, April 19, 2011

Contaminated Soil Pile, April 19, 2011