3R - 426

QUARTERLY GWMR

OCT 2009

3R426

QUARTERLY GROUNDWATER MONITORING REPORT SEPTEMBER 2009

CONOCOPHILLIPS COMPANY

SAN JUAN 27-5 #34A PRODUCTION FACILITY RIO ARRIBA COUNTY, NEW MEXICO

API # 30-039-23739

Prepared for:

ConocoPhillips

Risk Management and Remediation 420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

TETRA TECH, INC.

6121 Indian School Rd. NE, Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 114-690113

October 2009

TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
	I.I Site Background	I
2.0	MONITORING SUMMARY, SAMPLING METHODOLOGY AND RESULTS	.2
	2.1 Monitoring Summary	2
	2.2 Groundwater Sampling Analytical Results	3
3.0	CONCLUSIONS AND RECOMMENDATIONS	.3
4.0	REFERENCES	.3

FIGURES

I. Site	Location	Map
---------	----------	-----

- 2. Site Detail Map
- 3. General Geologic Cross Section
- 4. Groundwater Elevation Contour Map September 2009

TABLES

- I. Site History Timeline
- 2. Groundwater Elevation Data Summary
- 3. September 2009 Groundwater Laboratory Analytical Results
- 4. Groundwater Laboratory Analytical Results Summary

APPENDICES

Appendix A. Groundwater Sampling Field Forms

Appendix B. Laboratory Analytical Report

Quarterly Groundwater Monitoring Report San Juan 27-5 #34A, Rio Arriba County, New Mexico

QUARTERLY GROUNDWATER MONITORING REPORT SAN JUAN 27-5 #34A, RÍO ARRIBA COUNTY, NEW MEXICO SEPTEMBER 2009

1.0 INTRODUCTION

This report discusses the results of the quarterly groundwater sampling event conducted by Tetra Tech, Inc. (Tetra Tech) in September 2009 at the ConocoPhillips Company (ConocoPhillips) San Juan 27-5 #34A site located outside of Blanco, New Mexico (Site). The Site is located in Section 30, Township 27N, Range 5W, of Rio Arriba County, New Mexico (**Figure 1**). A Site detail map is included as **Figure** 2.

I.I Site Background

The surface owner of the Site is the Bureau of Land Management (BLM), who leases the land to ConocoPhillips. The historical timeline for the Site is detailed below, and is also presented in **Table I**.

During a January 30, 2009 removal of an aboveground storage tank (AST) at the Site, hydrocarbon impacts beneath the AST were visually confirmed. ConocoPhillips contracted Envirotech Inc. of Farmington, NM (Envirotech) for spill assessment services following the discovery. Envirotech collected a total of 6 soil samples during the assessment: a 5-point composite soil sample from just beneath the AST; 4 grab soil samples from test holes advanced around the AST in order to delineate the extent of hydrocarbon impact (depth of these samples ranged from 10 to 15 feet below ground surface (bgs)); and another 5-point composite soil sample collected from "a small area...excavated to approximately 17 [feet] bgs..." (Envirotech, 2009). All soil samples collected were analyzed in the field for total petroleum hydrocarbons (TPH) using Environmental Protection Agency (EPA) method 418.1, in addition analysis of organic vapors using a photoionization detector (PID). The two composite soil samples were also sent for laboratory analysis of benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8021, and the composite soil sample collected at a depth of 17 feet bgs was submitted for TPH analysis using EPA Method 8015. The New Mexico Oil Conservation Division (OCD) recommended remediation action levels for the Site were determined to be 100 parts per million (ppm) organic vapor, 100 ppm TPH, 10 ppm benzene, and 50 ppm for BTEX. All soil sample results were below these action levels except for those collected from one of the test holes and from both composite samples collected at the surface beneath the AST and from the bottom of the excavation at 17 feet bgs.

On March 3, 2009, Envirotech returned to the Site to continue sampling activities. Envirotech stated that prior to their arrival, the "spill area was excavated to extents of 49' \times 49' \times 20' deep where groundwater was encountered..." (Envirotech, 2009). Envirotech collected a composite sample from the bottom of the excavation and from each of the 4 walls. Soil samples were collected and analyzed for TPH and organic vapors in the field, and all results were below OCD action levels for organic vapors. The concentration of TPH found in the soil sample collected from the south wall was 2,170 ppm; all other TPH results were below OCD action levels. The excavation was continued along the south wall an additional 4 feet and another soil sample was collected for TPH analysis. TPH results were found to be below OCD action levels and the excavation was discontinued at that point. Final excavation

1

Tetra Tech, Inc.

Quarterly Groundwater Monitoring Report San Juan 27-5 #34A, Rio Arriba County, New Mexico

dimensions were reported at 53 feet by 49 feet by 20 feet deep; excavation maps provided by Envirotech were not to scale (personal communication on July 13, 2009 between Tetra Tech and Wade Hack, ConocoPhillips field manager, revealed that the area of the excavation was within the current location of the waste water tank and the aboveground storage tank at the Site [Figure 2]). Groundwater was reached at 20 feet bgs and had begun to seep into the excavation. A groundwater sample was collected and was sent to an analytical laboratory for volatile organic compound (VOC) analysis using EPA Method 8260 (Envirotech, 2009). Laboratory results for benzene were found at a concentration of 95.6 micrograms per liter (ug/L); the New Mexico W ater Quality Control Commission (NMWQCC) groundwater quality standard for benzene is 10 ug/L.

On March 20, 2009, a report submitted to ConocoPhillips stated that a total of 1,900 cubic yards of soil were removed from the Site and were transported to an OCD-permitted facility on Crouch Mesa in Farmington, NM. Envirotech recommended the installation of groundwater monitor wells at the Site to determine "groundwater gradient and the extent of groundwater contamination" (Envirotech, 2009).

On April 2, 2009, Tetra Tech conducted a Site visit to determine placement of proposed groundwater monitor wells. Tetra Tech subsequently installed 4 groundwater monitor wells at the Site between July 15, 2009, and July 16, 2009. Tetra Tech conducted a baseline groundwater monitoring event at the Site on July 28, 2009. A generalized geologic cross section for the Site is presented in **Figure 3**.

2.0 MONITORING SUMMARY, SAMPLING METHODOLOGY AND RESULTS

2. I Monitoring Summary

Groundwater Elevation Measurements

On September 29, 2009, groundwater elevation measurements were recorded in monitor wells MW-1, MW-2, MW-3 and MW-4. **Table 2** presents the monitor well specifications and groundwater level data. A groundwater elevation contour map is presented on **Figure 4**, which illustrates that groundwater at the Site flows to the north, northwest.

Groundwater sampling

Groundwater quality samples were collected from monitor wells MW-1, MW-2, MW-3 and MW-4 during the September 29, 2009 groundwater sampling event. Approximately 5 gallons of water, or three well volumes, were purged from each monitor well before sampling was performed. A dedicated 1.5-inch polyvinyl chloride disposable bailer was used in each well to purge and collect groundwater samples. The purged water was disposed of in the on-site waste water tank (**Figure 2**). The samples were placed in laboratory prepared bottles, packed on ice, and shipped with chain of custody documentation to Southern Petroleum Laboratory located in Houston, Texas. The samples were analyzed for presence of BTEX by Environmental Protection Agency (EPA) Method 8260B; total metals by EPA Methods SW7470A, SW6020A and SW6010B; and total dissolved solids (TDS) by EPA Method SM2540C. Analytical results for the September 29, 2009 sampling event are summarized in **Table 3**. An historical summary of groundwater analytical results is provided in **Table 4**.

2.2 Groundwater Sampling Analytical Results

The New Mexico Water Quality Control Commission (NMWQCC) mandates that groundwater quality in New Mexico be protected, and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC). Groundwater quality standards have been set for the protection of human health, domestic water supply, and irrigation use. Exceedences of NMWQCC groundwater quality standards in Site monitor wells are discussed below.

• Manganese

The groundwater quality standard for manganese is 0.2 milligrams per liter (mg/L). Groundwater collected from monitor wells MW-1, MW-2, MW-3 and MW-4 were found to contain manganese at concentrations of 0.694 mg/L, 1.38 mg/L, 1.7 mg/L and 0.269 mg/L, respectively.

No other analyzed constituents were found above NMWQCC groundwater quality standards in Site monitor wells.

The corresponding laboratory analysis report for the September 2009 groundwater sampling event, including quality control summaries, are included in **Appendix B**.

3.0 CONCLUSIONS AND RECOMMENDATIONS

Tetra Tech recommends continued quarterly groundwater sampling at the Site in order to provide sufficient data for Site closure. Site closure will be requested when groundwater quality results begin to indicate that all constituents of concern are consistently below NMWQCC groundwater quality standards. Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.

4.0 **REFERENCES**

Envirotech Incorporated (2009). Burlington Resources Spill Closure Report Located at San Juan 27-5 #34A, Section 30, Township 27N, Range 5W, Rio Arriba County, New Mexico. Prepared for ConocoPhillips Company. Report Dated March 20, 2009. 3 pp (not including Figures, Tables, and Appendices).

. . . .

, , ,

.

.

.

· · ·

FIGURES

. .

.

. .

· · ·

. .

.

.

TABLES

.

DATE	ACTIVITY
January 30, 2009	During removal of an aboveground storage tank (AST) at the Site, hydrocarbon impacts beneath the AST were visually confirmed. ConocoPhillips Company contacted Envirotech Inc. of Farmington, NM (Envirotech) for spill assessment services following the discovery. Envirotech collected a total of 6 soil samples during the assessment: a 5- point composite soil sample from just beneath the AST; 4 grab soil samples from test holes dug around the AST in order to delineate the extent of hydrocarbon impact (depth of these samples ranged from 10 to 15 feet below ground surface (bgs)); and another 5-point composite soil sample collected from "a small areaexcavated to approximately 17 [feet] bgs" (Envirotech, 2009). All soil samples collected were analyzed in the field for total petroleum hydrocarbons (TPH) using Environmental Protection Agency (EPA) method 418.1 and for organic vapors using a photoionization detector (PID). The two composite soil samples were also sent for laboratory analysis of benzene and benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8021, and the composite soil sample collected at a depth of 17 feet bgs was submitted for TPH analysis using EPA Method 8015. The New Mexico Oil Conservation Division (OCD) recommended remediation action levels for the Site were determined to be 100 parts per million (ppm) organic vapor, 100 ppm TPH, 10 ppm benzene, and 50 ppm for BTEX. All soil sample results were below these action levels except for those collected from one of the test holes (test hole 1) and from both composite samples collected at the surface beneath the AST and from the bottom of the excavation at 17 feet bgs (Appendix A).
March 3, 2009	Envirotech Inc. of Farmington, NM (Envirotech) returned to the Site to continue sampling activities. Envirotech stated that prior to their arrival, the "spill area was excavated to extents of 49' x 49' x 20' deep where groundwater was encountered" (Envirotech, 2009). Envirotech collected a composite sample from the bottom of the excavation and from each of , the 4 walls. Soil samples were analyzed for TPH and organic vapors in the field, and all results were below OCD action levels for organic vapors. The concentration of TPH found in the soil sample collected from the south wall was 2,170 ppm; all other TPH results were below OCD action levels (Appendix A)
March 3, 2009 March 20, 2009	The excavation was continued along the south wall an additional 4 feet and another soil sample was collected for TPH analysis. TPH results were found to be below OCD action levels and the excavation was discontinued at this point. Final excavation dimensions were reported at 53 feet by 49 feet by 20 feet deep. Groundwater was reached at this depth and had begun to seep into the excavation. A groundwater sample was collected and was sent to an analytical laboratory for volatile organic compound (VOC) analysis using EPA Method 8260. Laboratory results for benzene were found at a concentration of 95.6 micrograms per liter (ug/L), above the 10 ug/L New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standard for this constituent (Envirotech, 2009). A report submitted to ConocoPhillips stated that a total of 1,900 cubic
	yards of soil were removed from the Site and were transported to an OCD- permitted facility on Crouch Mesa in Farmington, NM. Envirotech recommended the installation of groundwater monitoring wells at the Site to determine "groundwater gradient and the extent of groundwater contamination" (Envirotech 2009).

~,

DATE	ACTIVITY
April 2, 2009	Tetra Tech conducted a Site visit to determine placement of proposed groundwater monitoring wells.
July 15, 2009 & July 16, 2009	Four groundwater monitor wells are installed by Tetra Tech (MW-1, MW-2, MW-3, MW-4).
July 28, 2009	A baseline groundwater monitoring event was conducted at the Site by Tetra Tech.
September 29, 2009	Quarterly groundwater monitoring event conducted at the Site by Tetra Tech.

Table 2. G	roundwater E	evation Data \$	<u>Summary - C</u>	<u>onocoPhillips San Ju</u>	ıan 27-5 #34A	
Well ID	Total Depth (ft bgs)	Screen Interval (ft)	*Elevation (ft) (TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Groundwater Elevation
MM/_1	33 77	18 73 _ 33 73	07 11	7/28/2009	23.21	74.23
	23.00	01.00 - 01.01	++.10	9/29/2009	23.88	73.56
C-IMM	34 35	15.00 - 30.00	06 78	7/28/2009	22.72	74.06
7- 44141	••••	00.00 - 00.01	01.00	9/29/2009	23.40	73.38
NNN_3	33 1E	17 66 - 37 66	07 2A	7/28/2009	22.84	74.40
		00.30 - 00.11	12.10	9/29/2009	23.54	73.70
NNN_A	37 FE	17 60 - 32 60	07 23	7/28/2009	22.62	74.61
	06.00	00.20 - 00.11	07.10	9/29/2009	23.31	73.92

ų ļ ((1 . ī . ((

.

.

ft = Feet TOC = Top of casing bgs = below ground surface * Elevation relative to wellhead, set at 100 feet.

Tetra Tech, Inc.

Table 3. September 2009 Groundwat	er Laboratory	Analyucal	Results - C	ONOCOPIN	mps san a	Juan 21-5	#34A		
Constituent				Sample ID					
			MW-1	MW-2	MW-3	MW-4	Duplicate	NMWQCC Groundwater	
Metals, Dissolved	Method	Units	<u>9/29/09</u>	<u>9/29/09</u>	<u>9/29/09</u>	<u>9/29/09</u>	<u>9/29/09</u>	Standard	
Mercury	SW7470A	mg/L	<0.0002	< 0.0002	< 0.0002	< 0.0002	NA	0.002	
Aluminum	SW6010B	mg/L	0.175	<0.1	<0.1	0.222	NA	5	
Arsenic	SW6020A	mg/L	<0.005	<0.005	< 0.005	<0.005	NA	0.1	
Barium	SW6020A	mg/L	0.113	. 0.13	0.123	0.0661	NA	1.0	
Boron	SW6010B	mg/L	<0.1	<0.1	<0.1	< 0.1	NA	0.75	
Cadmium	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	NA	0.01	
Chromium	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	NA	0.05	
Cobalt	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	NA	0.05	
Copper	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	NA	1.0	
Iron	SW6010B	mg/L	0.113	0.0444	0.0228	0.185	NA	1.0	
Lead	SW6020A	mg/L	< 0.005	<0.005	<0.005	< 0.005	NA	0.05	
Manganese	SW6010B	mg/L	0.694	1.38	1.7	0.269	NA	0.2	
Molybdenum	SW6020A	mg/L	< 0.005	0.0067	<0.005	0.0141	NA	1.0	
Nickel	SW6020A	mg/L	< 0.005	< 0.005	<0.005	<0.005	NA	0.2	
Selenium	SW6020A	mg/L	<0.01	<0.01	<0.01	<0.01	NA	0.05	
Silver	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	NA	0.05	
Zinc	SW6020A	mg/L	<0.01	<0.01	<0.01	<0.01	NA	10	
								NMWQCC Groundwater	
VOCs (detections and BTEX only)	Method	<u>Units</u>	<u>MW-1</u>	<u>MW-2</u>	<u>MW-3</u>	<u>MW-4</u>	Duplicate	Standard	
Benzene	8260B	μg/L	<1	<1	<1	<1	<1	10	
Toluene	8260B	μg/L	<1	<1	<1	<1	<1	750	
Ethylbenzene	8260B	μg/L	<1	<1	<1	<1	<1	750	
Total Xylenes	8260B	μg/L	<1	<1	<1	<1	<1	620	
								NMWQCC Groundwater	
Other	Method	Units	<u>MW-1</u>	<u>MW-2</u>	<u>MW-3</u>	<u>MW-4</u>	Duplicate	Standard	
Total Dissolved Solids	SM2540C	mg/L	737	626	532	571	NA	1000	

..... _

Notes: MW = monitoring well NMWQCC = New Mexico Water Quality Control Commission VOCs = volatile organic compounds mg/L = milligrams per liter µg/L = micrograms per liter NA = not analyzed

Tetra Tech, Inc.

Table 4. ConocoPhillips San Juan 27-5 #34A - Groundwater Laboratory Analytical Results Summary

Meil ID	Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (µg/L)	Manganese (mg/L)
MW.1	7/28/2009	< 5	< 5	< 5	< 5	NA
	9/29/2009	< 1	< 1	< 1	< 1	0.694
0-WM	7/28/2009	< 5	< 5	< 5	< 5	NA
-	9/29/2009	< 1	< 1	< 1	< 1	1.38
MW-3	7/28/2009	< 5	< 5	< 5	< 5	NA
	9/29/2009	< 1	< 1	< 1	< 1	1.7
MW-4	7/28/2009	< 5	< 5	< 5	< 5	NA
	9/29/2009	< 1	< 1	< 1	< 1	0.269
NMWQCC	Standards	10 (µg/L)	750 (µg/L)	750 (µg/L)	620 (µg/L)	0.2 (mg/L)

Explanation

ND = Not Detected

NMWQCC = New Mexico Water Quality Control Commission

mg/L = milligrams per liter (parts per million)

 $\mu g/L = micrograms per liter (parts per billion)$

NA = Not Analyzed

< 0.7 = Below laboratory detection limit of 0.7 ug/L

Bold = concentrations that exceed the NMWQCC limits

Tetra Tech, Inc.

Page 1 of 1

APPENDIX A

Groundwater Sampling Field Forms

Tł	

TETRA TECH, INC.

WATER SAMPLING FIELD FORM

Project Name San Juan 27	-5 34A		Page	1 of4
Project No.			dia	
Site Location San Juan Co	ounty, New Mexico		Julicon	8.15
Site/Well No. <u>MW-1</u>	Coded/ Replicate No.	10:15	Date \underline{q} -2	9-09
Weather <u>Junn</u>	Time SamplingBegan	9:58	Time Sampling Completed	0:08
001111	EVAC	UATION DATA		
Description of Measuring Po	int (MP) Top of Casing			
Height of MP Above/Below I	and Surface	MP Elevation		
Total Sounded Depth of We	II Below MP 33.22	Water-Level El	evation	
Held Depth to Wa		Diameter of Ca	sing 2"	
Wet Water C	olumn in Well 9, 34	Gallons Pumpe Prior to Sampli	parBailed 5 (allons
Ga	llons per Foot 🛛 🖌 0.	16		<u> </u>
G	ialions in Well - 1, 4944 y 3	Sampling Pump (feet below land	o Intake Setting d surface)	N/A
Purging Equipment Pur	ge pump / Bailer) - 4, 4	8		·/·
Time Temperatu	re (°C) pH Conduct	ivity (µS/cm ³) TDS (g/L)	DO (mg/L) OR	P(mV) turb
9.59 3.49	-7.17 -75	<u>0.492</u> 6 0.470	4,39 13	1082 201 9259
10:03 13.1	3 7.38 7	34 0.477	2,24 1	203 697.9
Sampling Equipment	Purge Pump/Bailer			
Constituents Sample	d Contain	er Description	Pres	ervative
BTEX	3 40mL VOA's		HCI	
Full list metals d	550 M 10 82 oz. plastic		HNO3	
PD5	16 07 F	lastic	None	
		· · · · ·		
Remarks	2 4	······		
Sampling Personnel	M, CB			
	Wel	I Casing Volumes		
Gal./ft. 1	1/4" = 0.077 2" =	0.16 3" =	0.37 4"	= 0.65
1	¹ / ₂ " = 0.10 2 ¹ / ₂ " =	0.24 3" ½ =	0.50 6"	= 1.46
R:\Share\Maxim Forms\Fi	eld Forms\SJ 27-5 34A Water Sampling F	leid Forms.xis		

TŁ	

TETRA TECH, INC.

WATER SAMPLING FIELD FORM

Project Name San Juan 27-5 34A	Page <u>2</u> of <u>4</u>
Project No.	
Site Location San Juan County, New Mexico	
Site/Well No. <u>MW-2</u> Coded/ Replicate No.	Date <u>9-29-09</u>
Weather <u>Juna</u> Began <u>9,30</u>	Completed 100
EVACUATION DATA	
Description of Measuring Point (MP) Top of Casing	
Height of MP Above/Below Land Surface MP El	levation
Total Sounded Depth of Well Below MP 34.35 Water	r-Level Elevation
Hold Depth to Weter Below Mp 234	
Heid Depth to water Below MP Diame	ns Pumped/Bailed 2 polloo 5
Wet Water Column in Well () () Prior t	to Sampling $\underline{O(0,0)}$
Gallons per Foot 0.16	ling Pump Intake Setting VI
Gallons in Well 1, 752 × 5=5, 256 (feet b	below land surface)N/H
Purging Equipment Purge pump Bailer	l
SAMPLING DATA/FIELD PARAME	TERS trach
TimeTemperature (°C)pHConductivity (μ S/cm ³)TE $\sqrt{251}$ $\sqrt{3}$, 22 7 , 25 9 , $7/2$ (2)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
1058 13,31 1,24 Blolo O.	563 3.92 96.4 116.6
Sampling Equipment Purge Pump Bailer	
Constituents Sampled Container Description	Preservative
BTEX 3 40mL VOA's	HCI
Full ISt Metals dissolved 16 32 oz. plastic	HNO
TDS 1602 plastic	None
Remarks Bailed and @ 2.25 gallor 5, Notwo	la to wall 10 get parameters
Sampling Personnel CM, CB	to dear and sample with an
Well Casing Volumes	121 CIEUR UND WELL MAIN DRAWL
Gal./ft. 1 ¼" = 0.077 2" = 0.16	3" = 0.37 4" = 0.65
1 ½" = 0.10 2 ½" = 0.24	3" ½ = 0.50 6" = 1.46

R:\Share\Maxim Forms\Field Forms\SJ 27-5 34A Water Sampling Field Forms.xis

TETRA	TECH, INC.	W	ATER SAMI	PLING FIELI	D FORM		
Project Name	San Juan 27-5 34/	A			Pag	e3	of <u>4</u>
Project No.							
Site Location	San Juan County,	New Mexico					
Site/Well No.	<u>MW-3</u>	Coded/ Replicate No.			Date	1-29-0	7
Weather	Sunny	Time Sampling Began	1010		Time Sampli Completed	ng <u>10: 3</u>	30
	(EV	ACUATION DA	TA			
Description of	Measuring Point (M	P) Top of Casing					
Height of MP	Above/Below Land S	Surface		MP Elevation			
Total Sounde	d Depth of Well Belo	w MP -33.15 \$3	.18	Water-Level Ele	vation		
Held	Depth to Water Be	HOW MP 23.54	1	Diameter of Cas	sing 2"		
Wet	- Water Column	in Well $G(1)$	·	Gallons Pumped Prior to Samplin	d Bailed 5	Callor	5
	- Gallons r	per Foot	0.16	· · · · · · · · · · · ·		J	
	Gallons			Sampling Pump	Intake Setting	NA	
	Gallons		46272	(1991 Delow land	Sunace)		
Purging Equip	iment Purge pu		1.4 - 1 - 2				<u> </u>
Time	Temperature (°C	SAMPLING I	DATA/FIELD PA uctivity (µS/cm ³	ARAMETERS	DO (mg/L)	ORP (mV)	Tuchidit
10:23	13,02	7.20	728	<u> </u>	448	84.0	196.3
10.2	2.44	7,15	726	0.472	2,53	67.4	315,5
		· · ·					
Sampling Equ	ipment	Purge Pump/Bailen)				
Constit	tuents Sampled	Con	tainer Descriptic	<u>on</u>		Preservative	
BTEX		3 40mL VOA's			HCI		
Full list m	etab dissolved	a oz. plastic			HNO3		•••
TTVS		(boz p)	astic		None		
					· · ·		
Remarks							
Sampling Per	sonnel <u>(M, C</u>	8	<u></u>				
	<u> </u>		Nell Casing Vo	lumes			7
	Gal./ft. 1 ¼* =	= 0.077 2"	= 0.16	3" =	0.37	4" = 0.65	
						~	

R:\Share\Maxim Forms\Field Forms\SJ 27-5 34A Water Sampling Field Forms.xis

· · · ·

.

ŀ	TŁ	-
<u> </u>		

TETRA TECH, INC.

WATER SAMPLING FIELD FORM

Project Name	San Juan 27-5 34A				Page	4 c	of
Project No.							
Site Location	San Juan County, New M	Mexico					
Site/Well No.	MW-4	Coded/ Replicate No.			Date	7-29-0	19
Weather	Gum	Time Sampling Began	9:30		Time Samplin Completed	<u> </u>	45
		EVAC	UATION DAT	ГА			
Description of I	Measuring Point (MP) To	o of Casing					
		p or ousing					
Height of MP A	Dove/Below Land Sunac	θ	_	MP Elevation		<u></u>	
Total Sounded	Depth of Well Below MP	32.65		Water-Level El	evation		
Held	Depth to Water Below M	1P <u>23,3/</u>	_	Diameter of Ca	sing <u>2"</u>		
Wet	Water Column in Water	ell <u>9, 34</u>	_	Prior to Sampli	ng _2	.25 ge	allans
	Gallons per Fo	ot 0.1	6			, 0	
	Gallons in W	= 1.4944 v 3	- {~	Sampling Pump (feet below land	b Intake Setting d surface)	N/A	
Purging Equipr	nent Purge pump	Bailer 4.48	<u> </u>				
		SAMPLING DAT	A/FIELD PA	RAMETERS			
Time	Temperature (°C)	pH Conduct	ivity (µS/cm ³) TDS (g/L)	DO (mg/L)	ORP (mV)	Tudoidite
	12,2 2	1.07 -10	\$		2.11	· <u> </u>	1555
				. 			
Sampling Equip	pment <u>Pu</u>	rge Pump/Bailer)					
<u>Constitu</u>	ents Sampled	<u>Contain</u>	er Descriptio	<u>n</u>	Ē	Preservative	
BTEX	; _	3 40mL VOA's			HCI		
Full list M	etals dissolved	6 32 oz. plastic			HANO3 1		
TD6		1602 plas	tic		None		
	Water days	NIGE bai	Lad Aur	Q al 7	s relate		
Remarks	May MM		PCL DUY	0, 01.7	<u>s ganons</u>		
Sampling Pers	onnel <u>L'[1 (.K</u>						
	· ·	Wəl	l Casing Vol	umes			-] ·
	Gal./ft. 1 ¼* = 0.0	77 2" =	0.16	3" =	0.37	4" = 0.65	
	1 ½ = 0.10	2 ½" =	0.24	3" 1/2 =	0.50	6" = 1.46	

R:\Share\Maxim Forms\Field Forms\SJ 27-5 34A Water Sampling Field Forms.xls

APPENDIX B

Groundwater Laboratory Analysis Report

Conoco Phillips

Certificate of Analysis Number: <u>09100118</u>						
Report To:	Project Name:	San Juan 27-5 #34A				
Tetra Tech, Inc.	<u>Site:</u>	Rio Arriba County, NM				
Kelly Blanchard	Site Address:					
6121 Indian School Road, N.E.						
Suite 200 Albuquerque	PO Number:					
NM .	State:	New Mexico				
87110-	State Cert. No.:		ĺ			
ph: (505) 237-8440 fax:	Date Reported:	10/14/2009				

This Report Contains A Total Of 18 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments

10/15/2009

Test results meet all requirements of NELAC, unless specified in the narrative.

Case Narrative for: Conoco Phillips

Certificate of Analysis Number: <u>09100118</u>							
Report To:	Project Name:	San Juan 27-5 #34A					
Tetra Tech, Inc.	<u>Site:</u>	Rio Arriba County, NM					
Kelly Blanchard	Site Address:						
6121 Indian School Road, N.E.							
Suite 200 Albuquerque	PO Number:						
NM	State:	New Mexico					
87110-	State Cert. No .:						
ph: (505) 237-8440 fax:	Date Reported:	10/14/2009					

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSES AND EXCEPTIONS:

There were no exceptions noted.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

Fala Cardenas

09100118 Page 1 10/15/2009

Erica Cardenas Project Manager

Conoco Phillips

	Certificate of Analysis Number: <u>09100118</u>							
<u>Report To:</u>	Tetra Tech, Inc. Kelly Blanchard			<u>Project Name:</u> <u>Site:</u>	San Juan 27-5 #34A Rio Arriba County, NM			
	6121 Indian School Road Suite 200 Albuquerque	d, N.E.		Site Address:				
	NM 87110- ph: (505) 237-8440	fay: (505) 881-3283		<u>PO Number:</u> <u>State:</u>	New Mexico			
<u>Fax To:</u>	pm (000) 201-0440	12x. (555) 501-5255		<u>State Cert. No.:</u> Date Reported:	10/14/2009			

Client Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COC ID	HOLD
MW-1	09100118-01	Water	9/29/2009 10:08:00 AM	10/2/2009 9:15:00 AM	331733	
MW-2	09100118-02	Water	9/29/2009 11:00:00 AM	10/2/2009 9:15:00 AM	331733	
MW-3	09100118-03	Water	9/29/2009 10:30:00 AM	10/2/2009 9:15:00 AM	331733	
MW-4	09100118-04	Water	9/29/2009 10:45:00 AM	10/2/2009 9:15:00 AM	331733	
DUPLICATE	09100118-05	Water	9/29/2009 10:15:00 AM	10/2/2009 9:15:00 AM	331733	
Trip Blank	09100118-06	Waste	10/1/2009 4:25:00 PM	10/2/2009 9:15:00 AM	331733	

a Cardenas

10/15/2009

Date

Erica Cardenas Project Manager

> Kesavalu M. Bagawandoss Ph.D., J.D. Laboratory Director

> > Ted Yen Quality Assurance Officer

> > > 09100118 Page 2 10/15/2009 2:53:22 PM

8880 INTERCHANGE DRIVE

HOUSTON, TX 77054

(713) 660-0901

	Client	Sample	ID: MW-1
--	--------	--------	-----------------

Collected: 09/29/2009 10:08 SPL Sample ID:

ple ID: 09100118-01

			Site: Ri	o Arriba Co	ounty, N	IM		
Analyses/Method	Result	QUAL	Rep.Limit	Di	Dil. Factor Date Analyzed Analy			Seq. #
MERCURY, DISSOLV	ED			MCL	SI	N7470A U	nits: mg/L	
Mercury	ND		0.0002		1	10/14/09 11:25	F_S	5245337
		<u>la</u>				· · ·		
Prep Method	Prep Date	Prep Initials	Prep Factor	`				
SW/4/0A	10/14/2009 8:15	F_S	1.00					
METALS BY METHOD	D 6010B, DISSOLVED)		MCL	SV	V6010B U	nits: mg/L	
Aluminum	0.175		0.1		1	10/10/09 17:25	EG	5240025
Arsenic	ND		0.005		1	10/10/09 17:25	EG	5240025
Barium	0.113		0.005		1	10/10/09 17:25	EG	5240025
Boron	ND		0.1		1	10/10/09 17:25	EG	5240025
Cadmium	ND		0.005		1	10/10/09 17:25	EG	5240025
Chromium	ND		0.005		1	10/10/09 17:25	EG	5240025
Cobalt	. ND		0.005		1	10/10/09 17:25	EG	5240025
Copper	ND		0.005		1	10/10/09 17:25	EG	5240025
Iron	0.113		0.02		1	10/10/09 17:25	EG	5240025
Lead	ND		0.005		1	10/10/09 17:25	EG	5240025
Manganese	0.694		0.005		1	10/10/09 17:25	EG	5240025
Molybdenum	ND		0.005		1	10/10/09 17:25	EG	5240025
Nickel	ND		0.005		1	10/10/09 17:25	EG	5240025
Selenium	ND		0.01		1	10/10/09 17:25	EG	5240025
Silver	ND		0.005		1	10/10/09 17:25	EG	5240025
Zinc	ND		0.01		1	10/10/09 17:25	EG	5240025
			1 3					
Prep Method	Prep Date	Prep Initials	Prep Factor					,
SW3005A	10/02/2009 15:00	<u>R_V</u>	1.00					
TOTAL DISSOLVED S	SOLIDS			MCL	SN	12540 C U	nits: ma/L	
Total Dissolved Solids (Residue,Filterable)	737		10		1	10/02/09 17:00	CFS	5229586
VOLATILE ORGANIC	S BY METHOD 8260	3		MCL	S	V8260B U	nits: ua/L	
Benzene	ND		1		1	10/06/09 3:26	LT	5233703
Ethylbenzene	ND		1		1	10/06/09 3:26	i LT	5233703
Toluene	ND		1		1	10/06/09 3:26	LT	5233703
m,p-Xylene	ND		1		1	10/06/09 3:26	i LT	5233703
o-Xylene	ND		1		1	10/06/09 3:26	i LT	5233703
Xylenes,Total	ND		1		1	10/06/09 3:26	i LT	5233703
Surr: 1,2-Dichloroetha	ne-d4 99.2		% 78-116		1	10/06/09 3:26	i LT	5233703
Surr: 4-Bromofluorobe	nzene 97.7		% 74-125		1	10/06/09 3:26	LT	5233703
Surr: Toluene-d8	89.2		% 82-118		1	10/06/09 3:26	LT	5233703

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- $\ensuremath{\mathsf{B/\!V}}\xspace$ Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

> 09100118 Page 3 10/15/2009 2:53:35 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:MW	1-2		Colle	cted: (09/29/2009	11:00	SPL Sam	nple I	D: 0910	0118-02
			Site:	Ric	Arriba Cou	unty, N	IM			
Analyses/Method	Resul	QUAL	Rep	.Limit	Dil.	Factor	Date Anal	yzed	Analyst	Seq. #
MERCURY, DISSOLV	'ED				MCL	SV	N7470A	Un	its: mg/L	
Mercury	. ND		· ().0002		1	10/14/09	11:34	F_S	5245341
	I	1								
Prep Method	Prep Date	Prep Initials	Prep F	actor						
SW7470A	10/14/2009 8:15	F_S	1.00							
METALS BY METHO	D 6010B. DISSOLVE)			MCL	SV	N6010B	Un	its: ma/L	
Aluminum	ND			0.1		1	10/10/09	17:29	EG	5240026
Arsenic	ND			0.005		1	10/10/09	17:29	EG	5240026
Barium	0.13	······································		0.005		1	10/10/09	17:29	EG	5240026
Boron	ND			0.1		1	10/10/09	17:29	EG	5240026
Cadmium	ND			0.005		1	10/10/09	17:29	EG	5240026
Chromium	ND			0.005		1	10/10/09	17:29	EG	5240026
Cobalt	. ND			0.005		1	10/10/09	17:29	EG	5240026
Copper	ND			0.005	** e	1	10/10/09	17:29	EG	5240026
Iron	0.0444			0.02		1	10/10/09	17:29	EG	5240026
Lead	ND			0.005	•	1	10/10/09	17:29	EG	5240026
Manganese	1.38			0.005		1	10/10/09	17:29	EG	5240026
Molybdenum	0.0067			0.005		1	10/10/09	17:29	EG	5240026
Nickel	ND			0.005		1	10/10/09	17:29	EG	5240026
Selenium	ND			0.01		1	10/10/09	17:29	EG	5240026
Silver	ND			0.005		1	10/10/09	17:29	EG	5240026
Zinc	ND			0.01		1	10/10/09	17:29	EG	5240026
Pren Method	Pren Date	Pren Initials	Pren F	actor			·			
SW3005A	10/02/2009 15:00	R V	1.00							
	10/02/2000 10:00				· · · · ·					
TOTAL DISSOLVED	SOLIDS				MCL	SN	12540 C	Un	its: mg/L	
Total Dissolved Solids (Residue,Filterable)	626			10		1	10/02/09	17:00	CFS	5229589
VOLATILE ORGANIC	S BY METHOD 8260	В			MCL	SV	V8260B	Ur	its: ug/L	
Benzene	ND			1		1	10/06/09	3:53	LT	5233704
Ethylbenzene	ND			1		1	10/06/09	3:53	LT	5233704
Toluene	ND			1		1	10/06/09	3:53	LT	5233704
m,p-Xylene	ND			1		1	10/06/09	3:53	LT	5233704
o-Xylene	ND			1		1	10/06/09	3:53	LT	5233704
Xylenes,Total	ND			1		1	10/06/09	3:53	LT	5233704
Surr: 1,2-Dichloroetha	ane-d4 98.3		% 7	8-116		1	10/06/09	3:53	LT	5233704
Surr: 4-Bromofluorobe	enzene 96.8		% 7	4-125		1	10/06/09	3:53	LT	5233704
Surr: Toluene-d8	89.6		% 8	2-118		1	10/06/09	3:53	LT	5233704

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- B/V Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

.

09100118 Page 4 10/15/2009 2:53:36 PM

8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

Client	t Sample ID:MW	/-3		Collected	: 09/29/2	009 10:30) SPL Samp	le ID: 091	00118-03
				Site: 1	tio Arriba	County.	NM		
Analys	ses/Method	Resul	t QUAL	Rep.Lim	t	Dil. Facto	or Date Analyz	ed Analyst	Seq. #
MERO	CURY. DISSOLV	ED			МС	L	SW7470A	Units: ma/L	
Merc	ury	ND		0.000	2	1	10/14/09 11	:36 F_S	5245342
	- -	······································							
	Prep Method	Prep Date	Prep Initials	Prep Factor				-	
	SW7470A	10/14/2009 8:15	F_S	1.00					
META	LS BY METHO	D 6010B. DISSOLVE)		МС	L	SW6010B	Units: ma/L	•
Alum	ninum	ND	-	0.	1	1	10/10/09 17	:34 EG	5240027
Arse	nic	ND		0.00	5	1	10/10/09 17	:34 EG	5240027
Bariu	,m	0.123		0.00	5	1	10/10/09 17	:34 EG	5240027
Boro	n	ND		0.	1	1	10/10/09 17	:34 EG	5240027
Cadr	nium	ND		0.00	5	1	10/10/09 17	:34 EG	5240027
Chro	mium	ND		0.00	5	1	10/10/09 17	:34 EG	5240027
Coba	alt	ND		0.00	5	1	10/10/09 17	:34 EG	5240027
Cop	ber	ND		0.00	5	1	10/10/09 17	:34 EG	5240027
fron		0.0228		0.0	2	1	10/10/09 17	:34 EG	5240027
Lead	l	ND		0.00	5	1	10/10/09 17	:34 EG	5240027
Man	ganese	1.7	•	0.00	5	1	10/10/09 17	:34 EG	5240027
Moly	bdenum	ND		0.00	5	1	10/10/09 17	:34 EG	5240027
Nick	el	ND		0.00	5	1	10/10/09 17	:34 EG	5240027
Sele	nium	ND		0.0	1	1	10/10/09 17	:34, EG	5240027
Silve	r	ND		0.00	5	1	10/10/09 17	:34 EG	5240027
Zinc		ND		0.0	1	1	10/10/09 17	:34 EG	5240027
			, 1	1					
	Prep Method	Prep Date	Prep Initials	Prep Factor	_				
	SW3005A	10/02/2009 15:00	R_V	1.00					
ΤΟΤΑ	L DISSOLVED S	SOLIDS			MC	L S	6M2540 C	Units: mg/L	
Total (Res	Dissolved Solids idue,Filterable)	532		1	0	1	10/02/09 17	:00 CFS	5229590
		S BY METHOD 8260	B		MC	L	SW8260B	Units: ua/l	
Benz	ene	ND	<u> </u>		1	<u> </u>	10/06/09 4	:21 LT	5233705
Ethy	lbenzene	ND			1	1	10/06/09 4	:21 LT	5233705
Tolu	ene	ND			1	1	10/06/09 4	:21 LT	5233705
m,p-	Xylene	ND	• •		1	1	10/06/09 4	:21 LT	5233705
o-Xy	lene	ND			1	1	10/06/09 4	:21 LT	5233705
Xyler	nes,Total	ND			1	1	10/06/09 4	:21 LT	5233705
Su	urr: 1,2-Dichloroetha	ine-d4 100		% 78-11	6	1	10/06/09 4	:21 LT	5233705
Su	urr: 4-Bromofluorobe	enzene 97.4		% 74-12	5 ·	1	10/06/09 4	:21 LT	5233705
Su	urr: Toluene-d8	89.6		% 82-11	8	1	10/06/09 4	:21 LT	5233705

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)
D - Surrogate Recovery Unreportable due to Dilution
MI - Matrix Interference

09100118 Page 5 10/15/2009 2:53:37 PM

8880 INTERCHANGE DRIVE

HOUSTON, TX 77054

(713) 660-0901

Client	Sample	ID:MW-4

Collected: 09/29/2009 10:45 SPL Sample ID:

e ID: 09100118-04

				Site: Rio	Arriba Co	unty, N	IM		
Analyses/Method		Result	QUAL	Rep.Limit	Dil.	Factor	Date Anal	yzed Analyst	Seq. #
MERCURY, DISSOL	VED				MCL	SI	N7470A	Units: mg/L	
Mercury		ND	•	0.0002		1	10/14/09	11:38 F_S	5245343
Prep Method	Prep Date	[Prep Initials	Prep Factor	•				

SW7470A	10/14/2009 8:15	F_S	1.00

METALS BY METHOD	6010B, DISSOLVED		MCL	SV	V6010B	Un	its: mg/L	
Aluminum	0.222	0.1		1	10/10/09 1	7:38	EG	5240028
Arsenic	ND	0.005		1	10/10/09 1	7:38	EG	5240028
Barium	0.0661	0.005		1	10/10/09 1	7:38	EG	5240028
Boron	ND	0.1		1	10/10/09 1	7:38	EG	5240028
Cadmium	ND	0.005	· · · · ·	1 ·	10/10/09 1	7:38	EG	5240028
Chromium	ND	0.005		1	10/10/09 1	7:38	EG	5240028
Cobalt	ND	0.005		1.	10/10/09 1	7:38	EG	5240028
Copper	ND	0.005		1	10/10/09 1	7:38	EG	5240028
Iron	0.185	0.02		1	10/10/09 1	7:38	EG	5240028
Lead	ND	0.005		1	10/10/09 1	7:38	EG	5240028
Manganese	0.269	0.005		1	10/10/09 1	7:38	EG	5240028
Molybdenum	0.0141	0.005		1	10/10/09 1	7:38	EG	5240028
Nickel	ND	0.005		1	10/10/09 1	7:38	EG	5240028
Selenium	ND	0.01		1	10/10/09 1	7:38	EG	5240028
Silver	ND	0.005		1	10/10/09 1	7:38	EG	5240028
Zinc	ND	0.01		1	10/10/09 1	7:38	EG	5240028

Prep Method	Prep Date	Prep Initials	Prep Factor		
SW3005A	10/02/2009 15:00	R_V	1.00		

TOTAL DISSOLVED SOLIDS		MCL	S	M2540 C	Units: mg/L	
Total Dissolved Solids (Residue,Filterable)	571	10	1	10/02/09	9 17:00 CFS	5229591

VOLATILE ORGANICS BY ME	ETHOD 8260B			MCL	SW8260B	Units: ug/L	
Benzene	ND		1	1	10/06/09	4:48 LT	5233706
Ethylbenzene	ND		1	1	10/06/09	4:48 LT	5233706
Toluene	ND		1	1	10/06/09	4:48 LT	5233706
m,p-Xylene	ND		1	1	10/06/09	4:48 LT	5233706
o-Xylene	ND		1	1	10/06/09	4:48 LT	5233706
Xylenes,Total	ND		1	1	10/06/09	4:48 LT	5233706
Surr: 1,2-Dichloroethane-d4	98.7	%	78-116	1	10/06/09	4:48 LT	5233706
Surr: 4-Bromofluorobenzene	95.8	%	74-125	1	10/06/09	4:48 LT	5233706
Surr: Toluene-d8	88.5	%	82-118	1	10/06/09	4:48 LT	5233706

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- $\ensuremath{\mathsf{B/\!V}}\xspace$ Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09100118 Page 6 10/15/2009 2:53:38 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID: DUPLICATE

Collected: 09/29/2009 10:15 SPL Sample ID:

ple ID: 09100118-05

			Sit	e: Rio	Arriba County,	NM			
Analyses/Method	Result	QUAL	Re	ep.Limit	Dil. Facto	or Date Analy	/zed	Analyst	Seq. #
VOLATILE ORGANICS BY MET	HOD 8260B				MCL S	SW8260B	Un	its: ug/L	
Benzene	ND			1	. 1	10/06/09	2:04	LT	5233745
Ethylbenzene	ND			1	1	10/06/09	2:04	LT	5233745
Toluene	ND			1	1	10/06/09	2:04	LT	5233745
m,p-Xylene	ND			1	1	10/06/09	2:04	LT	5233745
o-Xylene	ND			1	1	10/06/09	2:04	LT	5233745
Xylenes,Total	ND			1	1	10/06/09	2:04	LT	5233745
Surr: 1,2-Dichloroethane-d4	99.0		%	78-116	1	10/06/09	2:04	LT	5233745
Surr: 4-Bromofluorobenzene	97.5		%	74-125	1	10/06/09	2:04	LT	5233745
Surr: Toluene-d8	89.8		%	82-118	1	10/06/09	2:04	LT	5233745

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

2

09100118 Page 7 10/15/2009 2:53:38 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID: Trip Blank

Collected: 10/01/2009 16:25 Si

SPL Sample ID: 09100118-06

			Sit	e: Rio	Arriba (County,	NM					
Analyses/Method	Result	QUAL	Re	ep.Limit		Dil. Facto	r Date Analy	/zed	Analyst	Seq. #		
VOLATILE ORGANICS BY METHOD 8260B MCL SW8260B Units: ug/L												
Benzene	· ND			1		1	10/06/09	1:37	LT	5233699		
Ethylbenzene	ND			1		1 ·	10/06/09	1:37	LT	5233699		
Toluene	ND			1		. 1	10/06/09	1:37	LT	5233699		
m,p-Xylene	ND			1		1	10/06/09	1:37	LT	5233699		
o-Xylene	ND			1		1	10/06/09	1:37	LT	5233699		
Xylenes, Total	ND			1		1	10/06/09	1:37	LT	5233699		
Surr: 1,2-Dichloroethane-d4	98.5		%	78-116		1	10/06/09	1:37	LT	5233699		
Surr: 4-Bromofluorobenzene	96.8		%	74-125		1	10/06/09	1:37	LT	5233699		
Surr: Toluene-d8	89.8		%	82-118		1	10/06/09	1:37	LT	5233699		

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank * - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

> 09100118 Page 8 10/15/2009 2:53:38 PM

Quality Control Documentation

09100118 Page 9 10/15/2009 2:53:39 PM

Conoco Phillips

Method:		Metals by M SW6010B	Method 60	10B, Dissolv	/ed					Work Lab I	Order: Batch ID:	09100118 94319	
			Meth	od Blank				Samp	les in Analy				
RunID: ICF	2_0910	010A-5240009		Units:	mg/L			Lab S	ample ID		Client Sa	mple ID	
Analysis Date) :	10/10/2009	16:14	Analyst:	EG			09100)118-01B		MW-1		
Preparation D)ate:	10/02/2009	15:00	Prep By:	RVN	lethod S	W3005A	09100)118-02B		MW-2		
•								09100)118-03B		MW-3		
								09100)118-04B		MW-4		
	ļ	Ar	nalyte		Result	Rep Lim	nit .						
•	Arseni	num c			ND ND	000	.1)5						
	Barium	<u> </u>			ND	0.00)5						
	Boron	·			ND	0	.1						
	Cadmi	um			ND ND	0.00	<u>)5</u>						
	Cobalt				ND	0.00)5						
	Coppe	r			ND	0.00)5						
	Iron				ND	0.0)2						
	Manga	inese			ND	0.00)5						
	Molybo	lenum			ND	0.00)5						
	Nickel				ND	0.00	<u>)5</u>						
	Selenii Silver	um				0.00)5						
	Zinc				ND	0.0	01						
			RunID: Analysis	a Date:	ICP2_091	010A-524 09 16:18	0010 Ur An	nits: m nalyst: E	ig/L G				
			RunID: Analysis Prepara	a Date: tion Date:	ICP2_091 10/10/20 10/02/20	010A-524 09 16:18 09 15:00	0010 Ur An Pr	nits: m nalyst: E ep By: R	ng/L G L_V Method	SW3005A			
			RunID: Analysis Prepara	a Date: tion Date: Analyt	ICP2_091 10/10/20 10/02/20 e	010A-524 09 16:18 09 15:00	0010 Ur An Pr Spike Added	nits: m nalyst: E ep By: R Result	ng/L G L_V Method Percent Recovery	SW3005A Lower Limit	Upper Limit		
		ſ	RunID: Analysis Prepara Aluminum	a Date: tion Date: Analyt	ICP2_091 10/10/20 10/02/20 e	010A-524 09 16:18 09 15:00	0010 Ur An Pr Spike Added 1.000	nits: m nalyst: E ep By: R Result 1.026	ng/L G L_V Method Percent Recovery 102.6	SW 3005A Lower Limit 80	Upper Limit		
			RunID: Analysis Prepara Aluminum Arsenic	i Date: tion Date: Analyt	ICP2_091 10/10/20 10/02/20 e	010A-524 09 16:18 09 15:00	0010 Ur An Pr Spike Added 1.000 1.000	nits: m nalyst: E ep By: R Result 1.026 1.029	ng/L G -V Method Percent Recovery 102.6 102.9	SW3005A Lower Limit 80 80	Upper Limit 120 120		
			RunID: Analysis Prepara Aluminum Arsenic Barium	i Date: tion Date: Analyt	ICP2_091 10/10/20 10/02/20 e	010A-5240 09 16:18 09 15:00	0010 Ur An Pr Spike Added 1.000 1.000 1.000	nits: m nalyst: E ep By: R Result 1.026 1.029 1.025	Percent Recovery 102.6 102.9 102.5	SW 3005A Lower Limit 80 80 80	Upper Limit 120 120 120		
			RunID: Analysis Prepara Aluminum Arsenic Barium Boron	i Date: tion Date: Analyt	ICP2_091 10/10/20 10/02/20 e	010A-5240 09 16:18 09 15:00	0010 Ur An Pr Spike Added 1.000 1.000 1.000 1.000	nits: m nalyst: E ep By: R Result 1.026 1.029 1.025 0.9443	Percent Recovery 102.6 102.9 102.5 94.43	SW3005A Lower Limit 80 80 80 80	Upper Limit 120 120 120 120		
			RunID: Analysis Prepara Aluminum Arsenic Barium Boron Cadmium	s Date: tion Date: Analyt	ICP2_091 10/10/20 10/02/20 e	010A-5240	0010 Ur An Pr Spike Added 1.000 1.000 1.000 1.000 1.000	nits: m nalyst: E ep By: R Result 1.026 1.029 1.025 0.9443 1.019	ng/L G -V Method Percent Recovery 102.6 102.9 102.5 94.43 101.9	SW3005A Lower Limit 80 80 80 80 80 80	Upper Limit 120 120 120 120 120		
			RunID: Analysis Prepara Aluminum Arsenic Barium Boron Cadmium Chromium	: Date: tion Date: Analyt	ICP2_091 10/10/20 10/02/20 e	010A-5240	0010 Ur An Pr Spike Added 1.000 1.000 1.000 1.000 1.000 1.000	nits: m nalyst: E ep By: R Result 1.026 1.029 1.025 0.9443 1.019 1.024	ng/L G -V Method Percent Recovery 102.6 102.9 102.5 94.43 101.9 102.4	SW 3005A Lower Limit 80 80 80 80 80 80 80 80	Upper Limit 120 120 120 120 120 120	·	
			RunID: Analysis Prepara Aluminum Arsenic Barium Boron Cadmium Chromium Cobalt	s Date: tion Date: Analyt	ICP2_091 10/10/20 10/02/20 e	010A-5240	0010 Ur An Pr Spike Added 1.000 1.000 1.000 1.000 1.000 1.000 1.000	nits: m nalyst: E ep By: R Result 1.026 1.029 1.025 0.9443 1.019 1.024 1.029	ng/L G Percent Recovery 102.6 102.9 102.5 94.43 101.9 102.4 102.9	SW 3005A Lower Limit 80 80 80 80 80 80 80 80 80	Upper Limit 120 120 120 120 120 120 120 120		
			RunID: Analysis Prepara Aluminum Arsenic Barium Boron Cadmium Chromium Cobalt Copper	i Date: tion Date: Analyt	ICP2_091 10/10/20 10/02/20 e	010A-5240	0010 Ur An Pr Spike Added 1.000 1.000 1.000 1.000 1.000 1.000 1.000	nits: m nalyst: E ep By: R Result 1.026 1.029 1.025 0.9443 1.019 1.024 1.029 1.047	ng/L G -V Method Percent Recovery 102.6 102.9 102.5 94.43 101.9 102.4 102.9 102.4 102.9 104.7	SW 3005A Lower Limit 80 80 80 80 80 80 80 80 80 80 80	Upper Limit 120 120 120 120 120 120 120 120 120		
			RunID: Analysis Prepara Aluminum Arsenic Barium Boron Cadmium Chromium Cobalt Copper Iron	i Date: tion Date: Analyt	ICP2_091 10/10/20 10/02/20 e	010A-524	0010 Ur An Pr Spike Added 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	nits: m nalyst: E ep By: R Result 1.026 1.029 1.025 0.9443 1.019 1.024 1.029 1.047 1.055	ng/L G Percent Recovery 102.6 102.9 102.5 94.43 101.9 102.4 102.9 102.7 105.5	SW 3005A Lower Limit 80 80 80 80 80 80 80 80 80 80 80 80	Upper Limit 120 120 120 120 120 120 120 120 120 120		
			RunID: Analysis Prepara Aluminum Arsenic Barium Boron Cadmium Chromium Cobalt Copper Iron Lead	a Date: tion Date: Analyt	ICP2_091 10/10/20 10/02/20 e	010A-524	0010 Ur An Pr Spike Added 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	nits: m nalyst: E ep By: R Result 1.026 1.029 1.025 0.9443 1.019 1.024 1.029 1.024 1.029 1.047 1.055 1.032	Percent Recovery 102.6 102.9 102.5 94.43 101.9 102.4 102.9 102.4 102.9 102.5 103.2	SW 3005A Lower Limit 80 80 80 80 80 80 80 80 80 80 80 80 80	Upper Limit 120 120 120 120 120 120 120 120 120 120		
			RunID: Analysis Prepara Aluminum Arsenic Barium Boron Cadmium Chromium Cobalt Copper Iron Lead Manganes	e Date: tion Date: Analyt	ICP2_091 10/10/20 10/02/20 e	010A-524	0010 Ur Ar Pr Spike Added 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	nits: m nalyst: E ep By: R Result 1.026 1.029 1.025 0.9443 1.019 1.024 1.029 1.047 1.055 1.032 1.040	ng/L G -V Method Percent Recovery 102.6 102.9 102.5 94.43 101.9 102.4 102.9 104.7 105.5 103.2 104.0	SW 3005A Lower Limit 80 80 80 80 80 80 80 80 80 80 80 80 80	Upper Limit 120 120 120 120 120 120 120 120 120 120	• •	
			RunID: Analysis Prepara Aluminum Arsenic Barium Boron Cadmium Chromium Cobalt Copper Iron Lead Manganes Molybdenu	e Date: tion Date: Analyt	ICP2_091 10/10/20 10/02/20 e	010A-524	0010 Ur An Pr Spike Added 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	nits: m nalyst: E ep By: R Result 1.026 1.029 1.025 0.9443 1.019 1.024 1.029 1.047 1.055 1.032 1.040 1.030	ng/L G -V Method Percent Recovery 102.6 102.9 102.5 94.43 101.9 102.4 102.9 104.7 105.5 103.2 104.0 103.0	SW3005A Lower Limit 80 80 80 80 80 80 80 80 80 80 80 80 80	Upper Limit 120 120 120 120 120 120 120 120 120 120		
			RunID: Analysis Prepara Aluminum Arsenic Barium Boron Cadmium Chromium Cobalt Copper Iron Lead Manganess Molybdenu Nickel	e Date: tion Date: Analyt	ICP2_091 10/10/20 10/02/20 e	010A-524	0010 Ur An Pr Spike Added 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	nits: m nalyst: E ep By: R Result 1.026 1.029 1.025 0.9443 1.019 1.024 1.029 1.047 1.055 1.032 1.040 1.030 1.017	ng/L G Percent Recovery 102.6 102.9 102.5 94.43 101.9 102.4 102.9 104.7 105.5 103.2 104.0 103.0 101.7	SW 3005A Lower Limit 80 80 80 80 80 80 80 80 80 80 80 80 80	Upper Limit 120 120 120 120 120 120 120 120 120 120		
Qualifiere		ND/LL- Not	RunID: Analysis Prepara Aluminum Arsenic Barium Boron Cadmium Chromium Cobalt Copper Iron Lead Manganess Molybdenu Nickel	a Date: tion Date: Analyt	ICP2_091 10/10/20 10/02/20 e	010A-5240	0010 Ur An Pr Spike Added 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	nits: m nalyst: E ep By: R Result 1.026 1.029 1.025 0.9443 1.019 1.024 1.029 1.047 1.055 1.032 1.040 1.030 1.017	ng/L G Percent Recovery 102.6 102.9 102.5 94.43 101.9 102.4 102.9 104.7 105.5 103.2 104.0 103.0 101.7 erference	SW 3005A Lower Limit 80 80 80 80 80 80 80 80 80 80 80 80 80	Upper Limit 120 120 120 120 120 120 120 120 120 120		
Qualifiers:		ND/U - Not B/V - Analy	RunID: Analysis Prepara Aluminum Arsenic Barium Boron Cadmium Chromium Cobalt Copper Iron Lead Manganess Molybdenu Nickel Detected a te detected	a Date: tion Date: Analyt	ICP2_091 10/10/20 10/02/20 e	010A-5240 09 16:18 09 15:00	0010 Ur An Pr Spike Added 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	nits: m nalyst: E ep By: R Result 1.026 1.029 1.025 0.9443 1.019 1.024 1.029 1.047 1.055 1.032 1.040 1.030 1.017 - Matrix Int Recovery	ng/L G -V Method Percent Recovery 102.6 102.9 102.5 94.43 101.9 102.4 102.9 104.7 105.5 103.2 104.0 103.0 101.7 erference Unreportable	SW 3005A Lower Limit 80 80 80 80 80 80 80 80 80 80 80 80 80	Upper Limit 120 120 120 120 120 120 120 120 120 120		
Qualifiers:		ND/U - Not B/V - Analyt	RunID: Analysis Prepara Aluminum Arsenic Barium Boron Cadmium Chromium Cobalt Copper Iron Lead Manganese Molybdenu Nickel Detected a te detected	a Date: tion Date: Analyt	ICP2_091 10/10/20 10/02/20 e 	010A-524 09 16:18 09 15:00	0010 Ur An Pr Spike Added 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	nits: m nalyst: E ep By: R Result 1.026 1.029 1.025 0.9443 1.019 1.024 1.029 1.047 1.055 1.032 1.040 1.030 1.017 - Matrix Int Recovery C	ng/L G Percent Recovery 102.6 102.9 102.5 94.43 101.9 102.4 102.9 104.7 105.5 103.2 104.0 103.0 104.0 103.0 101.7 erference Unreportable	SW 3005A Lower Limit 80 80 80 80 80 80 80 80 80 80	Upper Limit 120 120 120 120 120 120 120 120 120 120		
Qualifiers:		ND/U - Not B/V - Analyt J - Estimate E - Estimate	RunID: Analysis Prepara Aluminum Arsenic Barium Boron Cadmium Chromium Cobalt Copper Iron Lead Manganese Molybdenu Nickel Detected a te detected ad value be	a Date: tion Date: Analyt	ICP2_091 10/10/20 10/02/20 e 	010A-524 09 16:18 09 15:00	0010 Ur An Pr Spike Added 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	nits: m nalyst: E ep By: R Result 1.026 1.029 1.025 0.9443 1.019 1.024 1.029 1.047 1.055 1.032 1.040 1.030 1.017 - Matrix Int Recovery C	ng/L G Percent Recovery 102.6 102.9 102.5 94.43 101.9 102.4 102.9 104.7 105.5 103.2 104.0 103.0 101.7 erference Unreportable Dutside Advisa	SW 3005A Lower Limit 80 80 80 80 80 80 80 80 80 80	Upper Limit 120 120 120 120 120 120 120 120 120 120		

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09100118 Page 10 10/15/2009 2:53:40 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

San Juan 27-5 #344

Analysis:	Metals b	y Method	6010B, Dissolv	ved					WorkOrde	er: 09 [.]	100118		
Method:	SW6010	в						Lab Batch	ID: 943	94319			
				L	aboratory Co	ontrol San	ple (LC	<u>S)</u>					
		Runi	D:	ICP2_09	1010A-5240010) Units:	ma	/L					
		Analy	sis Date:	10/10/20	009 16:18	Analy	st: EG						
		Prepa	aration Date:	10/02/20	009 15:00	Prep	BV: R	V Method S	N3005A				
							-,- ·· <u>-</u>						
			Analyt	e	S	pike R	esult	Percent	ower Upp	er			
					A	dded		Recovery	Limit Lin	nit			
		Seleniur	n			1.000	1.038	103.8	80	120			
		Silver				1.000	1.049	104.9	80	120			
		Zinc				1.000	1.038	103.8	80	120			
			Matrix	Spike (I	MS) / Matrix (Spike Dup	licate (N	ISD)					<u>.</u>
		San	nple Spiked:	09100	020-01								
		Rur	nID:	ICP2_0	91010A-52400	12 Unit	s: m	ıg/L					
		Ana	ilysis Date:	10/10/	2009 16:27	Ana	yst: E	G					
		Pre	paration Date:	10/02/	2009 15:00	Prep	By: R	_V Method	SW3005A				
					<u> </u>								
	Analyte		Sample	MS	_MS	_MS %	MSD	MSD	MSD %	RPD	RPD	Low	High
			Result	Spike	Result	Recovery	Adder	Result	Recovery		Limit	Limit	
			ND	1	1 094	109	4	1 10	102	4 704	20	75	105
			0.006200	- 1	1.004	100	4	1 1.0	103.	+ 4.721 5 0.3660	20	75	125
Barium			0.04880	1	1.134	108	5	1 1.1	8 105.	2.319	20	75	125
Boron			0.1245	1	1.110	98.5	5	1 1.10	6 98.1	5 0.3610	20	75	125
Cadmium		· · · · ·	ND	1	1.036	103	6	1 1.0	3 102.3	3 1.263	20	75	125
Chromium			ND	1	1.017	101	5	1 1.00	9 100.	0.7897	20	· 75	125
Cobalt			ND	1	1.024	102	4	1 1.0	4 101.4	0.9814	20	75	125
Copper			ND	1	1.032	103	2	1 1.0	6 102.	6 0.5831	20	75	125
ron			ND	1	1.079	107	1	1 1.03	102.	3.970	20	75	125
Lead			ND	1	1.012	100	8	1 0.99	99.5	1.243	20	75	125
Manganese			ND	1	1.037	103	2	1 1.02	8 102.	0.8717	20	75	125
Molybdenum			0.007000	1	1.079	107	2	1 1.0	4 105.	1.400	20	75	125
			ND	1	1.013	101.	3	1 1.00	100.1	2 .1.092	20	75	125
Selenium			ND	1	1.076	107	6	1 1.0	6 107.		20	75	125
Silver			ND	1	1.045	104	5	1 1.0	103.	0.5758	20	75	125
Zinc			· ND	1	1.074	107	3	1 1.0	i6 106.5	5 0.7477	20	75	125

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09100118 Page 11 10/15/2009 2:53:40 PM

Conoco Phillips San Juan 27-5 #34A

Analysis: Method:	Mercury, Dissolved SW7470A							Work Lab I	(Order: Batch ID:	091 946	00118 27		
	Me	hod Blank				Sampl	es in Analy	tical Batch	ו: יי				
RuniD: HGLD_09	1014A-5245335	Units:	mg/L			Lab Sa	mole ID		Client S	ample II)		
Analvsis Date:	10/14/2009 11:20	Analvst:	FS			091001	18-01B		MW-1		-		
Preparation Date:	10/14/2009 8:15	Prep By:	F S	Method SW	7470A	091001	18-02B		MW-2				
						091001	18-03B		MW-3				
	Analyte		Popult	Ron Limit		091001	18-04B		MW-4				
Merci			N										
				0.0002									
									-				
			L	aboratory C	ontrol Sar	nple (LC	<u>S)</u>					•	
	Runi):	HGLD_0	91014A-52453	336 Units	: mg	/L						
	Analy	sis Date:	10/14/2	009 11:22	Analy	st: F_	S						
	Prepa	ration Date:	10/14/2	009 8:15	Prep	By: F_	S Method	SW7470A					
		Analy	te		Spike F	Result	Percent	Lower	Upper]			
					Added		Recovery	Limit	Limit				
	Mercury			0.	002000 0.	002007	100.4	80	120				
									,				
		<u>Matrix</u>	<u>(Spike (</u>	MS) / Matrix	Spike Du	olicate (I	<u>ASD)</u>						
	Sam	nle Spiked:	09100	118-01									
	Run	ID:	HGLD	091014A-524	5338 Uni	ts: n	na/L						
	Ana	ysis Date:	10/14	/2009 11:27	Ana	lyst: F	S						
	Pre	aration Date:	10/14	/2009 8:15	Pre	- рВу: F		d SW7470	A				
Ar	nalyte	Sample	MS	MS	MS %	MSD	MSC	MS	0%	RPD	RPD	Low	High
	-	Result	Spike	Result	Recover	y Spike	Resu	lt Reco	overy		Limit	Limit	Lim
			Added	1	1	Adde	d I						i i
						/	<u> </u>						

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09100118 Page 12 10/15/2009 2:53:40 PM

Conoco Phillips San Juan 27-5 #34A

Analysis: V Method: S	olatile Organics by W8260B	Method 8260)B		WorkOrder: Lab Batch ID:			
	Met	hod Blank		Samples in Analytical Batch:				
RunID: N_091005F-	5233698	Units:	ug/L	Lab Sample ID	Client Sar	nple ID		
Analysis Date: 1	0/06/2009 1:09	Analyst:	LT	09100118-01A	MW-1			
				09100118-02A	MW-2	·		
				09100118-03A	MW-3			

Result	Rep Limit
ND	1.0
ND ND	1.0
ND	1.0
99.5	78-116
96.6	74-125
89.4	82-118
	Result ND ND ND ND 99.5 96.6 89.4

Lab Sample ID	Client Sample ID
09100118-01A	MW-1
09100118-02A	MW-2
09100118-03A	MW-3
09100118-04A	MW-4
09100118-05A	DUPLICATE
09100118-06A	Trip Blank
·	

	Laboratory Cont	trol Sam	ple (LCS)
• •			

RunID:	N_091005F-5233744	Units:	ug/L
Analysis Date:	10/06/2009 0:15	Analyst:	LT

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	20.0	21.5	107	74	123
Ethylbenzene	20.0	20.6	103	72	127
Toluene	20.0	20.0	100	74	126
m,p-Xylene	40.0	42.9	107	71	129
o-Xylene	20.0	21.7	108	74	130
Xylenes,Total	60.0	64.6	108	71	130
Surr: 1,2-Dichloroethane-d4	50.0	50.1	100	78	116
Surr: 4-Bromofluorobenzene	50.0	47.9	95.7	74	125
Surr: Toluene-d8	50.0	43.6	87.3	82	118

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: RunID: Analysis Date:

09100118-05 N_091005F-5233746 10/06/2009 2:31

Units: ug/L Analyst: LT

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

MI - Matrix Interference

J - Estimated value between MDL and PQL

- D Recovery Unreportable due to Dilution * - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

:

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09100118 Page 13 10/15/2009 2:53:41 PM

Conoco Phillips San Juan 27-5 #34A

Analysis: Method:	Volatile Organic SW8260B	s by Method 826	0B					WorkOrder Lab Batch I	: 091 D: R28	00118 35623		
	Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzene		ND	20	20.2	101	20	19.2	96.2	4.90	22	. 70	124
Ethylbenzene		ND	20	18.5	92.3	20	17.9	89.5	3.10	20	76	122
Toluene		ND	20	18.5	92.6	20	17.9	89.3	3.58	24	80	117
m,p-Xylene		ND	40	38.6	96.6	40	37.2	93.0	3.74	20	69	127
o-Xylene		ND	20	20.0	100	20	19.3	96.5	3.76	20	84	114
Xylenes,Total		ND	60	58.6	97.8	60	56.5	94.2	3.75	20	69	127
Surr: 1,2-Dic	hloroethane-d4	ND	50	50.1	100	50	50.1	100	0.102	30	78	116
Surr: 4-Brom	ofluorobenzene	ND	50	48.2	96.3	50	48.9	97.9	1.59	30	74	125
Surr: Toluene	ə-d8	ND	50	43.7	87.3	50	44.0	87.9	0.675	30	82	118

Qualifiers: ND/U - N

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09100118 Page 14 10/15/2009 2:53:41 PM

Conoco Phillips San Juan 27-5 #34A

Analysis:				San	Juan 27-5 #3	4A					
Method:	Total Dissolved So SM2540 C	lids					V	VorkOrder: ab Batch ID	:	091001 [,] R28537	18 4
	Me	thod Blank				Samples in	Analytical B	atch:			
RunID: WE	T_091003F-5229574	Units:	mg/	L		Lab Sample	<u>e ID</u>	<u>Client</u>	Sample	e ID	
Analysis Date	: 10/02/2009 17:00	Analy	st: CFS	5		09100118-0 09100118-0	3C 4C	MW-3 MW-4			
[Analyte Total Dissolved Solids (Residu	ie,Filterable)	Resu	III Rep Limii ND 10	t.))						
	Labora	tory Contro	ol Sample	e/Laboratory	Control Sar	nple Duplica	te (LCS/LCS	D)			
	RunID: Analysis Da	wi te: 10	ET_09100 /02/2009	3F-5229576 17:00	Units: r Analyst: (ng/L CFS					
	Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
	d Solids (Residue, Filterabl	200.0	202.0	101.0	200.0	201.0	100.5	0.5	10	95	107
I JII DISSOIVE				<u>Sa</u>		<u>ite</u>					
i olai Dissoive	Qı Rı Ar	riginal Samp unID: nalysis Date	ole: 09 W : 10	<u>Sa</u> 0100121-03 ET_091003F-5 0/02/2009 17:0	229594 Ur 00 Ar	its: mg/l alyst: CFS	-				
	OI Ru Ar	riginal Samp unID: nalysis Date	ole: 09 W : 10 Analyt	<u>Sa</u> 0100121-03 ET_091003F-5 //02/2009 17:0	229594 Ur 00 Ar Sample Result	its: mg/t alyst: CFS DUP Result	RPD	RPD Limit			

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

oo numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09100118 Page 15 10/15/2009 2:53:41 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Conoco Phillips

San Juan 27-5 #34A

Analysis: Method:	Total Dissolved So SM2540 C	lids					.V Ĺ	VorkOrder: .ab Batch II):	091001 R28537	18 4A
	Me	thod Blank				Samples in	Analytical B	atch:			
RunID: WET_09 Analysis Date:	01003F-5229574 10/02/2009 17:00	Units: Analys	mg/l st: CFS	- ;		Lab Sample 09100118-0 09100118-0	<u>a ID</u> 1C 2C	<u>Client</u> MW-1 MW-2	Sampl	<u>e ID</u>	
Tota	Analyte I Dissolved Solids (Residu	e,Filterable)	Resu	It Rep Limit	t D						
	Laborat	tory Contro	Sample	/Laboratory	Control Sa	nple Duplica	te (LCS/LCS	<u>D)</u>			
	RunID: Analysis Da	WE te: 10.	et_091003 /02/2009	9F-5229576 17:00	Units: Analyst:	ng/L CFS					
A	nalyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
Fotal Dissolved Sc	olids (Residue, Filterabl	200.0	202.0	101.0	200.0	201.0	100.5	0.5	10	95	107
	~		Analyte		Sampl		RPD	RPD			
					Resul	t Result		Limit			
	<u>Ic</u>	tal Dissolve	d Solids (Residue, Filte	rabi 7		0.271				
Qualifiers:	ND/U - Not Detected B/V - Analyte detect	d at the Rep ed in the as	orting Lim	it /lethod Blank	MI - M D - Re	atrix Interferer	nce ortable due to	Dilution			
	J - Estimated value I E - Estimated Value	between MD exceeds ca	L and PC)L urve	* - Rec	overy Outside	e Advisable Q	C Limits			

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09100118 Page 16 10/15/2009 2:53:41 PM Sample Receipt Checklist And Chain of Custody

> 09100118 Page 17 10/15/2009 2:53:41 PM

Sample Receipt Checklist

Workorder: Date and Time Received: Temperature:	09100118 10/2/2009 9:15:00 AM 2.0°C		Received By: Carrier name: Chilled by:	T_B Fedex-Priority Water Ice
1. Shipping container/co	ooler in good condition?	Yes 🗹	No 🗌	Not Present
2. Custody seals intact	on shippping container/cooler?	Yes 🗹	No 🗌	Not Present
3. Custody seals intact	on sample bottles?	Yes	No	Not Present
4. Chain of custody pre-	sent?	Yes 🗹	No 🗌	
5. Chain of custody sign	ned when relinquished and received?	Yes 🗹	No 🗌	
6. Chain of custody agree	ees with sample labels?	Yes 🗹	No 🗌	
7. Samples in proper co	ntainer/bottle?	Yes 🗹	No 🗌	
8. Sample containers in	tact?	Yes 🗹	No 🗍	
9. Sufficient sample vol	ume for indicated test?	Yes 🗹	No 🗌	
10. All samples received	within holding time?	Yes 🗹	No 🗌	-
11. Container/Temp Blan	k temperature in compliance?	Yes 🗹	No	
12. Water - VOA vials hav	ve zero headspace?	Yes 🗹		Vials Not Present
13. Water - Preservation	checked upon receipt (except VOA*)?	Yes	No 🗔	Not Applicable
*VOA Preservation CI	necked After Sample Analysis			
SPL Representati Client Name Contact	ve:	Contact Date &	Time:	
Non Conformance Issues:				
Client Instructions:				

Ids	ں این		S.	'L Workor	ler No.	3	31733
Analysis Request & C	4, 1110. Itain of Custody Record		<u> </u>	1016	8 110	nage	of
The Arts Income	(a) Mallin	lmatrix b	ottle1 size 1 nres				
Client Name: / C/O / C// / C//O		lin 19			Kequ	lested AI	nalysis
City HIDULANOVERP	state NM Zip K	70/005> Ano=2	ther ther 132		cŋ		
Phone/Fax: USDUC 23.7.84L	10 505,237,9%	50 =0i]	ר =010 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$) SL2	opo		
Client Contact: 2/11 Blant MchCl	Email: Kelly, DKUM NCH	(etenata hang)	ONH X ZO ZO ZO ZO ZO ZO ZO ZO ZO ZO ZO ZO ZO Z	ntain	W		
Truct wantow.		E=2 Z=2	×= =19(≠=√ ∀=∀	<u>ر</u> ه	und Land		
Site Location: Rin Hm Mr. N	M	ndge	109 19 19 19 19 19 19	10 10 V	5		
Iavoice To: (INYCO Phillios)	Ph:	[S=' ?M=	H35 H32 11 Ji 11 J				
SAMPLE ID	DATE TIME	comp grah NSI	בן בן בן בן בן	nN			
IMW-1	9.29.09 1008		<u>V 140 1</u>	$ 3\rangle$			
I-WM'	9.29.09 1008	M X	201 91 d	2	XX		
2-Mul	9.29.09 1100	M X	1 OH V	3 ×			
rnu-2	9.29.09 1100		5 10 M	. 2	XX		
MW-3	9.29.09 1030		VHOI	$\frac{\gamma}{\gamma}$			
Emm	9.29.09 1030		P 16 Kork	2	XX		
h-mu	5401 60.62.6	I X I W	V 40 1	3X			
MW-4	9-29-09 1045		P 16 15		X-X-		
Duplicate	9.29-09 1015	X W	V 40 1	3 X			
Trie Blank	10-1-09 1625	M	γ [40] [2			
Client/Consultant Remarks: MULTULS = 74 6010 B- Aluminum, Tron, Brich 2020 A- Aczine, Barrum, Cadminn, Chroni	170A - Merzury Lever	atory remarks:				Intact? Ice? Temp:	
Requested TAT Special Re	porting Requirements Results: F		Special Detection	n Limits (ipecify):		M review linear
1 Business Day Contract Mandarry	red Level 3 UC Level 4 OC T	IX TRRP 🔲 LA RECAP)
2 Business Days Dandard h. Runnu	I TO A CONTRACTION OF A	0 -1-00	time by	2. Receive	d by:		
3 Business Days	ished by:	date	time	4. Receive	d by:		
Rush TAT requires prior notice	ished by:	date 0-2-05	time	6. Raceive	DM Laboratory	a BA	BUTS
Houston, TX 77054 (713) 660-090	Vickler Scott	mbassador Caffery Pa LA 70583 (337) 237-47 ル(の、 らいめと (370)	rkway 75 Ziry /440 rd	T T Ally	15 日 15 日 いたらいいり	9 Hughes 1 VII 49686	Drive (231) 947,5777 3021/1412
in alimin and and and			こうてい	ミンシ	L ULUMUNU	• • • • • • • •	