3R - 084

JUN 2010 GWMR

06/10/2011

6121 Indian School Rd. NE Suite 200 Albuquerque, NM 87110 (505) 237-8440

June 10, 2011

Mr. Glenn von Gonten State of New Mexico Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

> RE: Farmington B-Com Number I E Natural Gas Well Site, Farmington, New Mexico. June 2010 Quarterly Groundwater Monitoring Report

Dear Mr. von Gonten:

Enclosed please find a copy of the above-referenced document as compiled by Tetra Tech, lnc., for this Farmington area site.

Please do not hesitate to contact me at (505) 237-8440 if you have any questions or require additional information.

Sincerely,

Kelly & Blanchard

Kelly E. Blanchard Project Manager/Geologist

Enclosures (I)

Cc: Brandon Powell, NMOCD, Aztec, NM Terry Lauck, ConocoPhillips RM&R

QUARTERLY GROUNDWATER MONITORING REPORT JUNE 2010 SAMPLING EVENT

FARMINGTON B COM NO. IE NATURAL GAS WELL SITE FARMINGTON, SAN JUAN COUNTY, NEW MEXICO

⁶ OCD # 3R0084 API # 30-045-24774

ConocoPhillips

Prepared for:

420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

TETRA TECH, INC.

6121 Indian School Rd. NE Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 8690096.100

*

August 2010

Quarterly Groundwater Monitoring Report B Com No.1E, Farmington, New Mexico OCD # 3R0084

TABLE OF CONTENTS

1.0	INT	RODUCTION	I
	1.1	Site History	I
2.0	MET	HODOLOGY AND RESULTS	2
	2.1	Groundwater Monitoring Methodology	2
	2.2	Groundwater Sampling Analytical Results	2
3.0	CON	NCLUSIONS	3
4.0	REF	ERENCES	3

FIGURES

Ι.	Site	Location	Map

- 2. Site Layout Map
- 3. Site Cross-Section
- 4. Groundwater Elevation Contour Map
- 5. BTEX Concentration Map
- 6. B-COM #IE Hydrograph

TABLES

- I. Site History Timeline
- 2. Groundwater Elevation Summary (May 2005 June 2010)
- 3. Groundwater Laboratory Analytical Results Summary (February 1998 June 2010)

APPENDICES

- Appendix A. Groundwater Sampling Field Forms
- Appendix B. Laboratory Analytical Report
- Appendix C. Historical Analytical Data

QUARTERLY GROUNDWATER MONITORING REPORT JUNE 2010 SAMPLING EVENT FARMINGTON B COM NO.1E NATURAL GAS WELL SITE FARMINGTON, SAN JUAN COUNTY, NEW MEXICO

I.0 INTRODUCTION

This report presents the results of quarterly groundwater monitoring completed by Tetra Tech, Inc. (Tetra Tech) on June 11, 2010, at the ConocoPhillips Company Farmington B Com No. 1E remediation site in Farmington, New Mexico (Site). This sampling event represents the second quarter of groundwater monitoring at the Site for 2010.

The Site is located on private property in southeast Farmington, New Mexico, near the corner of East Murray Drive and South Carlton Avenue. The Site consists of a gas production well and associated equipment and installations. The location and general features of the Site are presented as **Figures 1** and **2**, respectively. A generalized cross section of the site is included as **Figure 3**.

I.I Site History

The history of the Site is outlined on **Table I** and discussed in more detail in the following paragraphs.

Conoco Inc., predecessor to ConocoPhillips Company, owned the property and operated the gas well between July 1991 and January 1997. Merrion Oil & Gas Company is the current property owner and well operator. A Phase II Environmental Site Assessment associated with the property transfer was conducted by On Site Technologies, Limited (On Site) in March 1997. Soil hydrocarbon impacts were confirmed north of a production storage tank and west of a separator/dehydrator pit (**Figure 2**). Impacts were described by On Site as limited to a former unlined pit area with hydrocarbon migration primarily occurring vertically through the soil profile due to the porous and permeable subsurface soils; lateral migration was considered minimal (On Site, 1997). Soil excavation of the two impacted areas occurred in September 1997. A total of 906 cubic yards of impacted soil were removed from two excavation areas. Of the 906 cubic yards, 328 were transported offsite and 578 were screened and placed back into the excavated areas along with clean fill. During backfill activities, approximately 10 gallons of liquid fertilizer was sprayed into both excavations to enhance insitu degradation of residual hydrocarbons (On Site, 1997).

Groundwater Monitor Wells MW-1, MW-2, MW-3, MW-4, MW-5, and MW-6 were installed at the Site in February and August 1998 under the supervision of On Site. During 1998 and 1999, results from groundwater samples collected from MW-2 through MW-6 did not have benzene, toluene, ethylbenzene or total xylenes (BTEX) concentrations in excess of New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards. On Site then requested that groundwater quality monitoring in Monitor Wells MW-2 through MW-6 be discontinued. The request was approved by the New Mexico Energy, Minerals, and Natural Resources Department (NMEMNRD) in a letter to Ms. Shirley Ebert of Conoco Inc. (NMEMNRD, 2000). Although Monitor Wells MW-2 through MW-6 Quarterly Groundwater Monitoring Report B Com No.1E, Farmington, New Mexico OCD # 3R0084

showed no hydrocarbon impacts during 1998 and 1999, light non-aqueous phase liquid (LNAPL) has been present in MW-1 since its installation and recovery has been ongoing. Souder Miller and Associates (Souder Miller) placed active and passive skimmers in MW-1 in May 2004. The passive skimmer collected a small amount of LNAPL; the active skimmer did not collect any LNAPL. Souder Miller determined that an active skimmer was not a viable method of LNAPL in MW-1 and proposed passive skimming or periodic hand bailing for recovery.

Tetra Tech began groundwater quality monitoring at the site in May 2005. Most recently, groundwater quality monitoring took place on June 11, 2010.

2.0 METHODOLOGY AND RESULTS

2.1 Groundwater Monitoring Methodology

Groundwater Elevation Measurements

On June 11, 2010, groundwater elevation measurements were obtained from Monitor Wells MW-1, MW-2, MW-3, MW-4, MW-5, and MW-6 using a dual interface probe. Groundwater elevations are detailed in **Table 2**. A groundwater elevation contour map is presented as **Figure 4**. Based on June 2010 monitoring event data, groundwater flow is to the west and is consistent with historical records at the Site. The Animas River is approximately ³/₄ miles from the Site and flows west.

Groundwater sampling

Groundwater samples were obtained from Monitor Wells MW-1 and MW-6 on June 11, 2010. This represents the ninth round of consecutive quarterly groundwater monitoring at the Site. Approximately three well volumes were purged from each monitor well with a dedicated polyethylene 1.5-inch disposable bailer. Groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain of custody documentation to Southern Petroleum Laboratories in Houston, Texas. The samples were analyzed for the presence of BTEX in accordance with Environmental Protection Agency (EPA) Method 8260B and dissolved iron according to EPA Method 6010B. Groundwater sampling field forms are included as **Appendix A**.

2.2 Groundwater Sampling Analytical Results

A sheen was observed in MW-1 during the June 2010 sampling event. Laboratory analysis of groundwater samples from MW-1 did not reveal toluene above laboratory detection limits. Benzene was detected at 1.1 micrograms per liter (μ g/L); the NMWQCC standard for benzene is 10 μ g/L. Ethylbenzene was detected at a concentration of 98 μ g/L; the NMWQCC groundwater quality standard for ethylbenzene is 750 μ g/L. Total xylenes were detected at 1.8 μ g/L; the NMWQCC groundwater quality standard for total xylenes is 620 μ g/L. Dissolved iron was detected at a concentration of 0.0217 milligrams per liter (mg/L) in MW-1, the NMWQCC groundwater quality standard for iron is 1.0 mg/L. Laboratory analysis of groundwater samples from MW-6 revealed that neither BTEX nor dissolve iron exceeded laboratory detection limits. **Table 3** presents the laboratory analytical results. The laboratory analytical reports are included as **Appendix B**, and a BTEX concentration map is included as **Figure 5**. The SMA historical analytical data is attached as **Appendix C**.

3.0 CONCLUSIONS

Quarterly Groundwater Monitoring Report B Com No.1E, Farmington, New Mexico OCD # 3R0084

Although a hydrocarbon sheen was observed in Monitor Well MW-1 during the monitoring event; BTEX constituents were either below laboratory detection limits or below NMWQCC groundwater quality standards. The last sampling event that LNAPL was observed in MW-1 was March 2010. However, an LNAPL sheen was intermittently detectable during quarterly groundwater pumping events from 2005 into 2008 and is shown in a hydrograph of groundwater elevations in MW-1 and MW-6 (**Figure 6**). Generally, if MW-1 does not have an oil absorbent sock, a sheen or measureable LNAPL is observed at various times of the year and at various depths.

Groundwater analytical results for Monitor Wells MW-I and MW-6 continue to show BTEX concentrations below NMWQCC groundwater quality standards. Tetra Tech recommends continued quarterly groundwater sampling at the Site in order to provide sufficient data for Site closure. Site closure will be requested when groundwater sample analytical results are consistently below NMWQCC groundwater quality standards. Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.

August 2010

4.0 **REFERENCES**

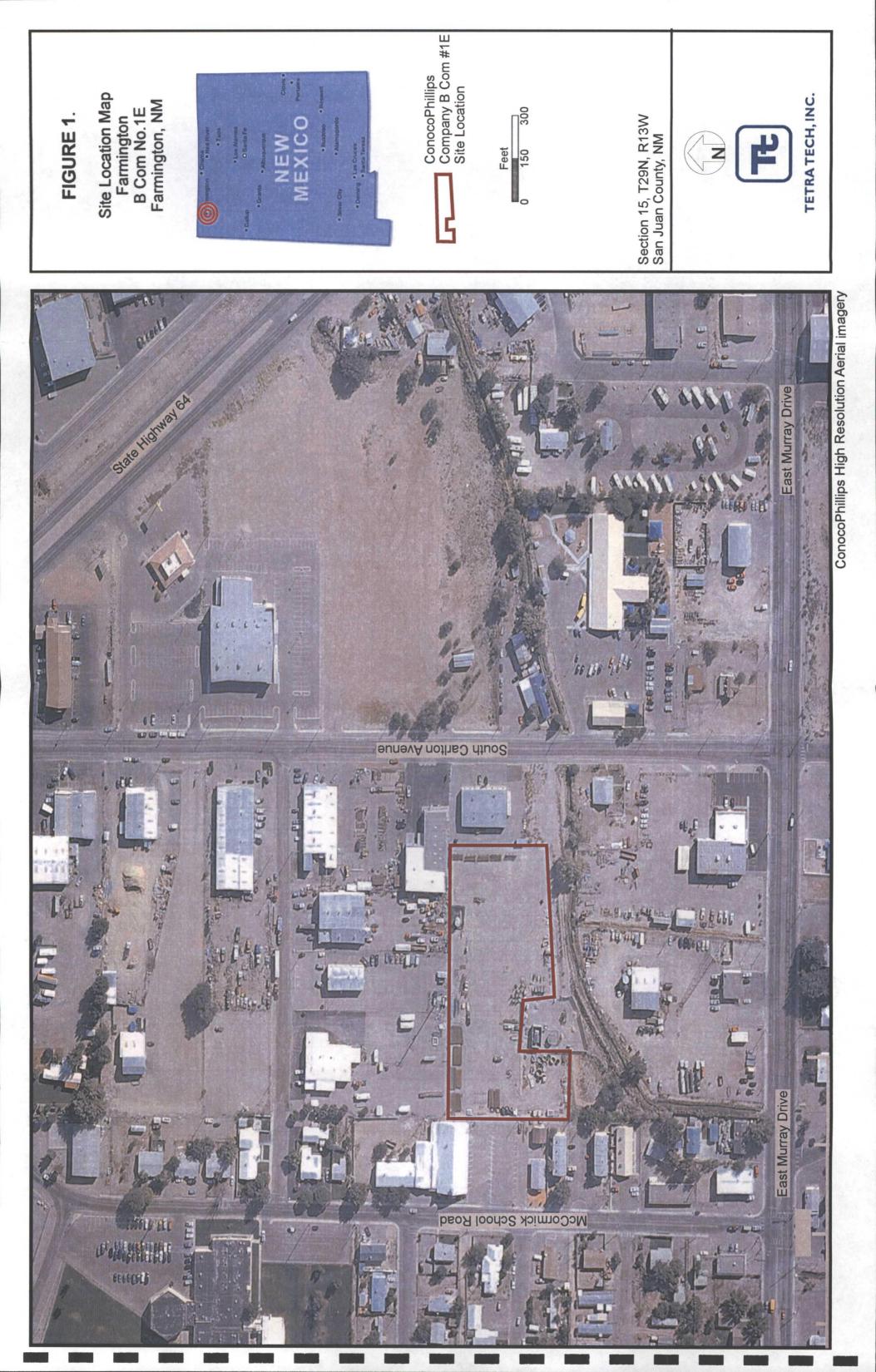
New Mexico Energy, Minerals, and Natural Resources Department. (2000). Re: Farmington B Com #IE Well Site. Letter to Ms. Shirley Ebert, Conoco, Inc. December 13, 2000.

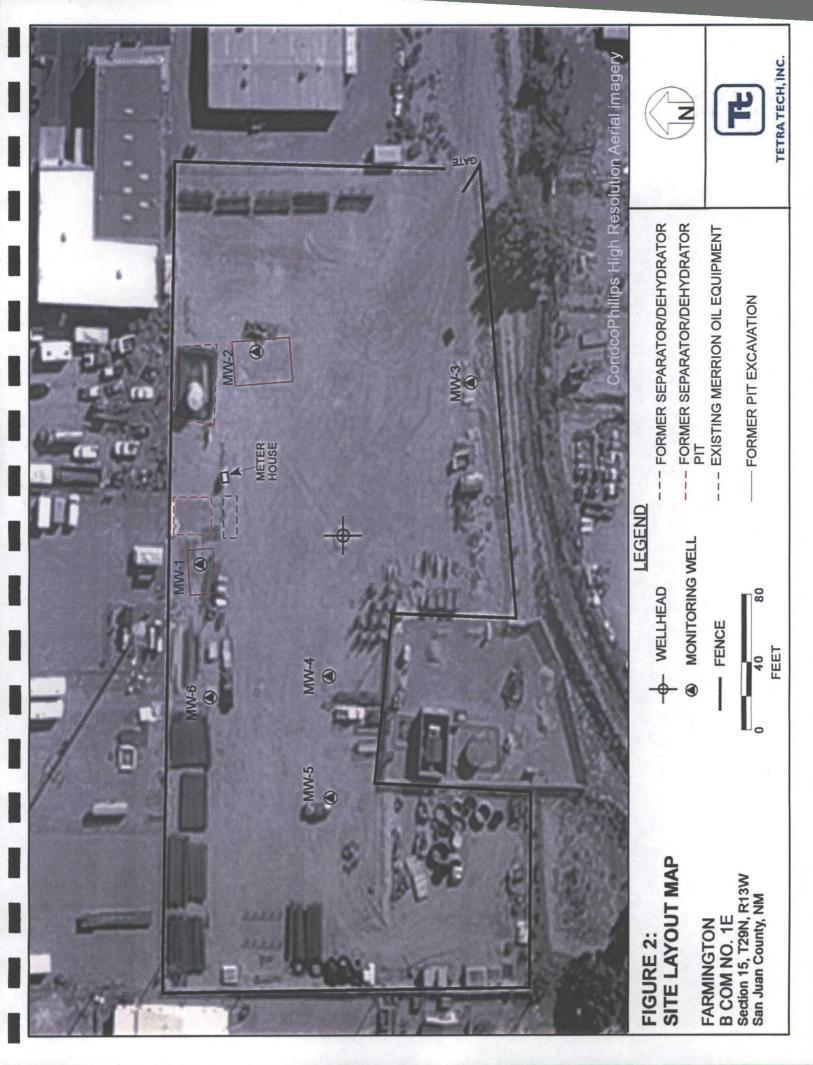
On-Site Technologies, Ltd. (1997). Annual Summary, Pit Closures and Groundwater Impact Updates, State of New Mexico, 1996. Prepared for Conoco Inc., Midland Division. Report dated April 22, 1997. 21 pp.

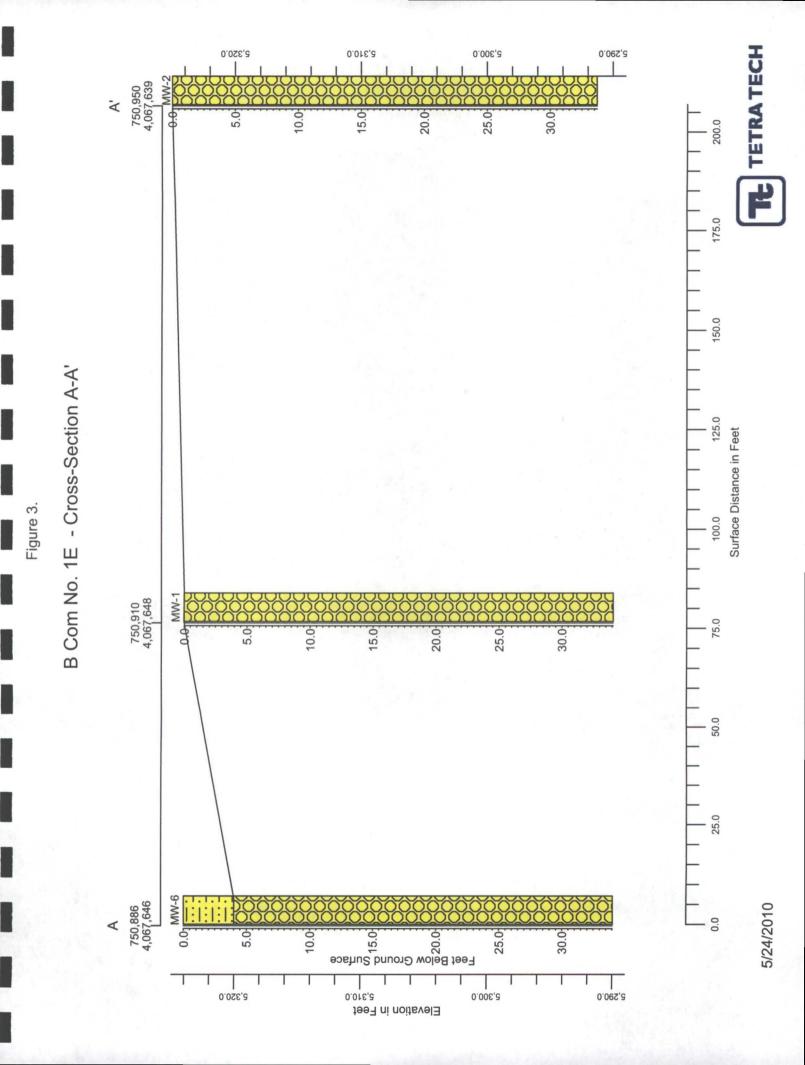
On-Site Technologies, Ltd. (1997). Re: Remediation Summary Farmington B Com #1E. . Letter Attn: Mr. Neal Goates, Senior Environmental Specialist, Conoco, Inc. November 26, 1997.

FIGURES

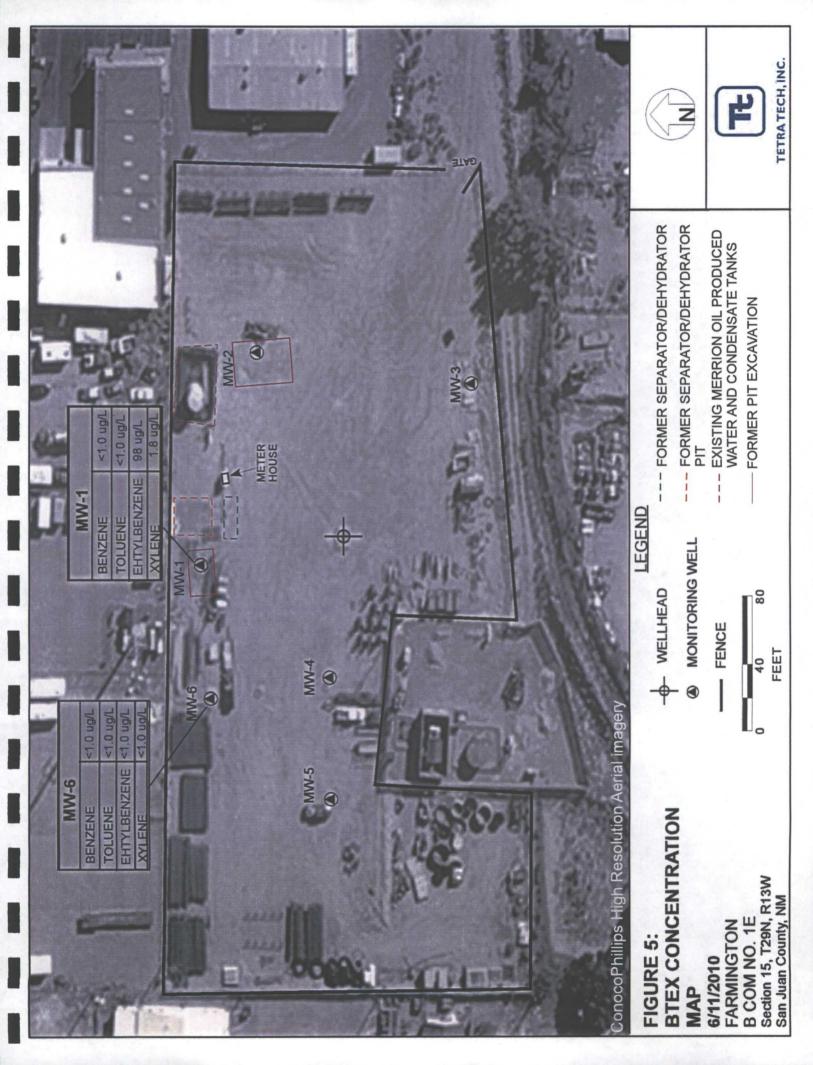
I. Site Location Map

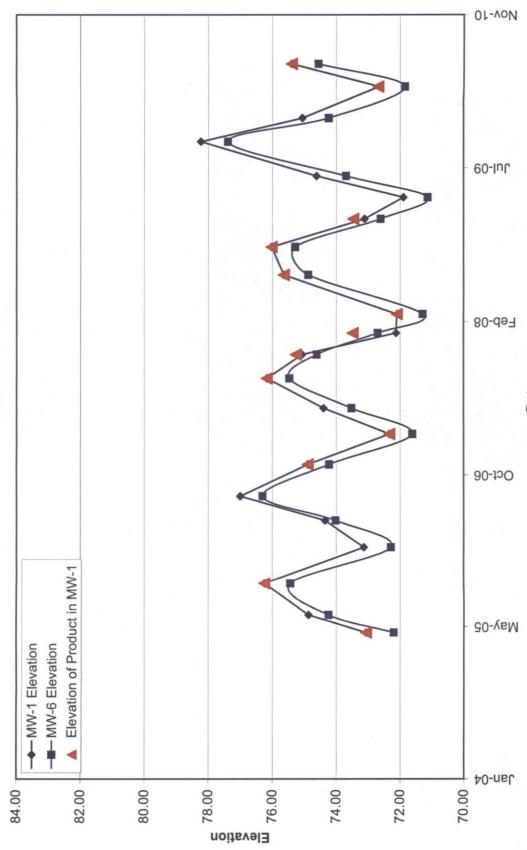

2. Site Layout Map


3. Site Cross-Section


4. Groundwater Elevation Contour Map

5. BTEX Concentration Map


6. B-COM #IE Hydrograph



Date

TABLES

I. Site History Timeline

Groundwater Elevation Summary (May 2005 – June 2010)
Laboratory Analytical Data Summary (February 1998 – June 2010)

Date/Time Period	Event/Action	Description		
February 18, 1982	Well Completed	Pioneer Production Corp. completed the Farmington B-COM No. 1E gas production well		
July 1, 1991	Conoco Inc. well purchase	Conoco Inc. purchases wellsite from Mesa Operating Limited Partnership of Amarillo, Texas		
January 1, 1997	Change of ownership	Conoco Inc. sold the property and mineral lease to Merrion Oil & Gas Co.		
March, 1997	Site Assessment	Phase II Environmental Site Assessment is conducted by On Site Technologies. Three test holes advanced with Auger refusal encountered at 7 feet below ground surface (bgs) due to gravel and cobbles. No samples collected. On Site Technologies later excavates four additional test holes ranging in depth from 14 to 19 feet bgs. Soil samples are collected from each excavation. TPH and BTEX contamination is found in the vicinity of a former unlined pit.		
September, 1997	Soil Excavation	On Site Technologies oversees soil excavation of two pits. 906 cubic yards of impacted soil were removed; of which 328 were disposed of offsite and 578 cubic yards were placed back in the pits along with clean fill. Approximately 10 gallons of liquid fertilizer was sprayed into each pit during backfill.		
February and August 1998	Monitor Well Installation	Six monitor wells (MW-1 through MW-6) installed at the site under the supervision of On Site.		
October 29, 2004	Groundwater Removal from Monitor Well MW-1	First removal of groundwater - 160 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM		
November 1, 2004	Groundwater Removal from Monitor Well MW-1	40 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM		
December 3, 2004	Groundwater Removal from Monitor Well MW-1	150 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM		
May 9th and 10th, 2005	Monitor Well Sampling	Tetra Tech begins quarterly monitoring at the site. Groundwater samples collected from monitor wells MW-1 and MW-6. A sheen is noted in MW-1; an oil absorbant sock is placed in the well.		
July 6, 2005	Groundwater Removal from Monitor Well MW-1	138 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM		
October 19, 2005	Groundwater Removal from Monitor Well MW-1 and Monitor Well Sampling	Groundwater samples collected from monitor wells MW-1 and MW- 6. 186 gallons removed from MW-1; a sheen is observed in purge water and oil absorbant sock is replaced.		
February 16, 2006		144 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM		
May 15, 2006	Groundwater Removal from	152 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM		
August 2, 2006	Monitor Well MW-1	457 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM		
November 14, 2006		423 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM		
November 14, 2006	Monitor Well Sampling	Third sampling of monitor wells MW-1 and MW-6 conducted by Tetra Tech		
February 20, 2007	······································	220 gallons removed vacuum truck operated by Riley Industrial Services of Farmington, NM		
May 15, 2007	Groundwater Removal from	364 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM		
August 21, 2007	Monitor Well MW-1	684 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM		
November 7, 2007		651 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM		
November 7, 2007	Monitor Well Sampling	Fourth sampling of monitor wells MW-1 and MW-6 conducted by Tetra Tech		
January 16, 2008	Groundwater Removal from Monitor Well MW-1	149 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM		
March 18, 2008	Groundwater Removal from Monitor Well MW-1	93 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM		
July 24, 2008	Monitor Well Sampling	Initiation of quarterly sampling for monitor wells MW-1and MW-6		
October 22, 2008	Monitor Well Sampling	Continuation of quarterly sampling for monitor wells MW-1 and MW-		

Table 1. Site History Timeline - Farmington B Com No. 1E

Tetra Tech, Inc.

Date/Time Period	Event/Action	Description
January 21, 2009	Monitor Well Sampling	Continuation of quarterly sampling for monitor wells MW-1 and MW- 6. Free product found in MW-1; oil absorbent sock placed in the well.
April 1, 2009	Monitor Well Sampling	Continuation of quarterly sampling for monitor wells MW-1 and MW- 6. No free product detected in MW-1.
June 10, 2009	Monitor Well Sampling	Continuation of quarterly sampling for monitor wells MW-1 and MW- 6. No free product detected in MW-1.
October 1, 2009	Monitor Well Sampling	Continuation of quarterly sampling for monitor wells MW-1 and MW- 6. No free product detected in MW-1. First quarter of compliance with all COCs bellow NMWQCC standards.
December 17, 2009	Monitor Well Sampling	Continuation of quarterly sampling for monitor wells MW-1 and MW- 6. No free product detected in MW-1. Second quarter of compliance with all COCs bellow NMWQCC standards.
March 29, 2010	Monitor Well Sampling	Continuation of quarterly sampling for monitor wells MW-1 and MW- 6. A thin hydrocarbon sheen is detected in MW-1.
June 11, 2010	Monitor Well Sampling	Continuation of quarterly sampling for monitor wells MW-1 and MW- 6. A thin hydrocarbon sheen is detected in MW-1.

Table 1. Site History Timeline - Farmington B Com No. 1E

Tetra Tech, Inc.

2 of 2

Table 2. Farmington B Com #1E Groundwater Elevation Summary

Well ID	Total Depth (ft. bgs)	Screen Interval (ft)	*Elevation (ft.) (TOC)	Date Measured	Depth to Water (ft. below TOC)	Depth to Product (ft. below TOC)**	Relative Groundwater Elevation (ft TOC)
				5/9/2005	28.30	Sheen	73.07
				7/6/2005	26.50	NA	74.87
				10/19/2005	25.12	Sheen	76.25
				2/16/2006	28.23	NA	73.14
				5/15/2006	27.02	NA	74.35
		· .		8/2/2006	24.37	NA	77.00
				11/14/2006	26.48	Sheen	74.89
				2/20/2007	29.03	Sheen	72.34
		:		5/15/2007	26.97	NA	74.40
	į			8/21/2007	25.20	Sheen	76.17
MW-1	34.09	19.09 - 34.09	101.37	11/7/2007	26.30	26.1	75.07
10140-1	04.00	19.03 - 34.03	101.07	1/16/2008	29.24	27.88	72.13 .
				3/18/2008	29.27	29.27	72.10
				7/24/2008	25.73	Sheen	75.64
				10/22/2008	25.35	Sheen	76.02
				1/21/2009	28.25	27.90	73.12
				4/1/2009	29.47	NA	71.90
				6/10/2009	26.75	NA	· 74.62
				10/1/2009	23.14	NA	· 78.23
				12/17/2009	26.31	NA	75.06
	· ·		· ·	3/29/2010	28.71	28.68	72.66
				6/11/2010	25.98	Sheen	75.39
				5/9/2005	27.28	NA	74.29
				7/6/2005	[.] 25.52	NA	76.05
	· · ·		• •	10/19/2005	24.30	NA	77.27
				2/16/2006	27.38	NA	74.19
				5/15/2006	25.62	NA	75.95
				8/2/2006	23.51	NA	78.06
				11/14/2006	26.08	NA	75.49
				2/20/2007	28.13	NA	73.44
				5/15/2007	25.86	NA	75.71
				8/21/2007	24.45	NA	77.12
MANA O	22.72	19 70 22 70	101 57	11/7/2007	25.31	NA	76.26
MW-2	33.72	18.72 - 33.72	101.57	1/16/2008	27.27	NA	74.30
				3/18/2008	28.68	NA	72.89
				7/24/2008	24.77	NA	76.80
				10/22/2008	24.55	NA	77.02
		•		1/21/2009	27.23	NA	74.34
				4/1/2009	28.76	NA	72.81
				6/10/2009	25.76	NA	75.81
				10/1/2009	22.22	NA	79.35
				12/17/2009	25.62	NA	75.95
				3/29/2010	27.96	NA	73.61
•				6/11/2010	24.99	NA	76.58

- 1 of 3

Table 2. Farmington B Com #1E Groundwater Elevation Summary

Well ID	Total Depth (ft. bgs)	Screen Interval (ft)	*Elevation (ft.) (TOC)	Date Measured	Depth to Water (ft. below TOC)	Depth to Product (ft. below TOC)**	Relative Groundwater Elevation (ft TOC
				5/9/2005	27.81	NA	74.29
				7/6/2005	26.03	NA	76.07
				10/19/2005	25.06	NA	77.04
				2/16/2006	28.57	NA	73.53
				5/15/2006	26.15	NA	75.95
				8/2/2006	23.83	NA	78.27
				11/14/2006	26.75	NA	75.35
				2/20/2007	29.31	NA	72.79
				5/15/2007	26.23	NA	75.87
				8/21/2007	25.00	NA	77.10
MW-3	22.44	17.44 - 32.44	102.1	11/7/2007	26.12	NA	75.98
10100-3	32.44	17.44 - 32.44	102.1	1/16/2008	28.46	NA	73.64
				3/18/2008	29.97	'NA	72.13
				7/24/2008	25.27	NA	76.83
				10/22/2008	25.35	NA	76.75
				1/21/2009	28.56	NA	73.54
				4/1/2009	30.20	NA	71.90
				6/10/2009	26.55	NA	75.55
				10/1/2009	23.00	NA	79.10
				12/17/2009	26.86	NA	75.24
-	•			3/29/2010	29.41	NA	72.69
				6/11/2010	25.62	NA	76.48
				5/9/2005	28.73	NA	72.67
		. •		7/6/2005	26.66	NA	74.74
• •	• ·		•	10/19/2005	25.62	NA	75.78
				2/16/2006	28.91	NA	72.49
				5/15/2006	26.86	NA	74.54
				8/2/2006	24.59	NA	76.81
				11/14/2006	27.02	NA	74.38
				2/20/2007	29.61	NA	71.79
•				5/15/2007	27.25	NA	74.15
				8/21/2007	25.56	NA	75.84
				11/7/2007	26.50	NA	74.90
MW-4	32.72	17.72 - 32.72	101.4	1/16/2008	28.55	NA	72.85
			·	3/18/2008	29.99	NA	71.41
				7/24/2008	26.02	NA	75.38
				10/22/2008	25.84	NA	75.56
				1/21/2009	28.69	NA	72.71
				4/1/2009	30.22	NA	71.18
				6/10/2009	27.31	NA	74.09
				10/1/2009	23.80	NA	77.60
				12/17/2009	27.07	NA	74.33
				3/29/2010	29.51	NA	71.89
				6/11/2010	26.43	NA	74.97

.

2 of 3

Table 2. Farmington B Com #1E Groundwater Elevation Summary

Well ID ·	Total Depth (ft. bgs)	Screen Interval (ft)	*Elevation (ft.) (TOC)	Date Measured	Depth to Water (ft. below TOC)	Depth to Product (ft. below TOC)**	Relative Groundwater Elevation (ft TOC
				5/9/2005	28.50	NA	72.02
				7/6/2005	26.32	NA	74.20
				10/19/2005	25.30	NA	75.22
				2/16/2006	28.62	NA	71.90
				5/15/2006	26.55	NA	73.97
•				8/2/2006	24.23	NA	76.29
				11/14/2006	27.67	NA	72.85
				2/20/2007	29.34	NA	71.18
				5/15/2007	27.04	NA	73.48
		-		8/21/2007	25.21	NA	75.31
N04/ E	24.00	40.00 04.00	. 400 50	11/7/2007	26.13	NA	74.39
MW-5	34.09	19.09 - 34.09	100.52	1/16/2008	28.18	NA	72.34
				3/18/2008	29.65	NA	70.87
				7/24/2008	25.73	NA	
				10/22/2008	25.49	NA	75.03
				1/21/2009	28.38	NA	72.14
				4/1/2009	29.92	NA	70.60
			•	6/10/2009	27.09	NA	73.43
				10/1/2009	23.50	NA	77.02
				12/17/2009	26.77	· NA	73.75
				3/29/2010	29.21	NA	71.31
		•		6/11/2010	26.16	NA	74.36
		· · ·		5/9/2005	29.94	NA	72.20
				. 7/6/2005	27.89	NA	74.25
• • •	· · · ·	• •		10/19/2005	26.70	NA ·	75.44
				2/16/2006	29.85	NA	72.29
				5/15/2006	29.85	NA	74.03
				8/2/2006	25.83	NA	76.31
				11/14/2006			74.23
				2/20/2007	27.91	NA	
				5/15/2007	30.52	NA	71.62
					28.61 ·	NA	73.53
		А.		8/21/2007	26.67	NA	75.47
MW-6	34.02	19.02 - 34.02	102.14	11/7/2007	27.52	NA	74.62
				1/16/2008	29.43	NA	72.71
		· ·		3/18/2008	30.85	NA	71.29
				7/24/2008	27.26	NA	74.88
				10/22/2008	26.85	NA	75.29
			· •	1/21/2009	29.52	NA	72.62
	•			4/1/2009	31.00	NA	71.14
				6/10/2009	28.44	NA	73.70
				10/1/2009	24.75	NA	77.39
				12/17/2009	27.90	NA	74.24
				3/29/2010	30.29	NA	71.85
				6/11/2010	27.58	NA	74.56

ft. = Feet

TOC = Top of casing

bgs = below ground surface

* Relative Elevation

** Where non-aqueous phase liquid (NAPL) is present, depth to water equals the Top of Casing elevation minus the depth to water, plus the NAPL thickness multiplied by 0.79.

NA - not applicable or not measured.

3 of 3

Well ID	Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	Nitrate as N (mg/L)	Sulfate (mg/L)	lron (mg/L)
	2/19/1998	210	· 34	370	2,044	NS	NS	NS
	6/12/1998			3" free proc	luct in bailer - r	not sampled		
	9/15/1998	•		free p	roduct - not sa	mpled		
	12/29/1998	350	BDL	420	2,800	NS	NS	NS
	1/22/2004		•	free p	roduct - not sa	mpled		4
	5/9/2005	· 17	<0.7	74	250	<0.40	77.8	14.9*
•	10/19/2005	34	<1.0	170	1400	0.15	39.9	15*
· .	11/14/2006	18	<0.7	190	1600	<0.015	145	8.8*
	11/7/2007	7	<0.7	120	250	<0.015	38.4	6.4*
MW-1	7/24/2008	<5.0	<5.0	· 90	35	<0.5	4.76	17.2*
10100-1	Duplicate	<5.0	<5.0	110	59	NS	NS	NS
	10/22/2008	<5.0	<5.0	88	165	<0.5	17	21.1*
	Duplicate	<5.0	<5.0	95	186	NS	NS	NS
	1/21/2009			free p	roduct - not sa	mpled		
	4/1/2009	<5.0	<5.0	11	<5.0	NS	NS	5.26*
	6/10/2009	<5.0	<5.0	96	<5.0	NS	NS	9.8*
	10/1/2009	1.3	<1.0	58	142	NS	NS	0.233
	12/17/2009	1.4	<1.0	100	2.8	NS	NS	0.521
	3/29/2010	<1.0	<1.0	51	<1.0	NS	NS	0.0803
	6/11/2010	1.1	<1.0	98	1.8	NS	NS	0.0217
	9/15/1998	BDL	BDL [*]	BDL	BDL	NS	NS	NS
	12/29/1998	BDL	BDL	BDL	BDL	NS	NS	NS
	3/3/1999	BDL	BDL	BDL	BDL	NS	NS	NS
	6/15/1999	BDL	BDL ·	BDL	BDL	NS	NS	NS .
	9/15/1999	BDL	. 0.7	1.1	BDL	NS	NS	NS
	12/14/1999	BDL	1.8	0.7	1.9	NS	NS	NS
	1/22/2004	BDL	BDL ·	BDL	BDL	NS	NS	NS
	5/9/2005	<0.5	<0.7	<0.8	<0.8	<0.4	97 -	15.9*
	10/19/2005	<0.5	<0.7	<0.8	<0.8	5.4 ·	52.6	1.4*
· MW-6 .	11/14/2006	<0.5	<0.7	· <0.8	·1	<0.015	159	5.8*
· 10104-0	11/7/2007	<0.5	<0.7	<0.8	<0.8	<0.015	112	3*
	7/24/2008	<5.0	<5.0	<5.0	<5.0	<0.5	44.4	28.5*
	10/22/2008	<5.0	<5.0	<5.0	<5.0	<0.5	43.7	1.77*
	1/21/2009	<5.0	<5.0	<5.0	<5.0	<0.5	31.1	9.59*
	4/1/2009	<5.0	<5.0	<5.0	<5.0	NS	NS	16.2*
	6/10/2009	<5.0	<5.0	<5.0	<5.0	ŃS	NS	3.86*
	10/1/2009	<1.0	<1.0	<1.0	<1.0	NS	NS	<0.02
	12/17/2009	<1.0	<1.0	<1.0	<1.0	NS	NS	0.0511
	3/29/2010	<1.0	<1.0	<1.0	<1.0	NS	NS	<0.0200
	6/11/2010	<1.0	<1.0	<1.0	<1.0	NS	NS	<0.0200
NMWQCC (Standards	10 (µg/L)	750 (µg/L)	750 (µg/L)	620 (µg/L)	10 (mg/L)	600 (mg/L)	1 (mg/L)

Table 3. Farmington B Com No.1E Groundwater Laboratory Analytical Results Summary

NMWQCC = New Mexico Water Quality Control Commission mg/L = milligrams per liter (parts per million)

 $\mu g/L$ = micrograms per liter (parts per billion)

NE=Not Established

NS = not sampled

BDL = Below laboratory detection limits

<0.7 = Below laboratory detection limit of 0.7 μ g/L

* = Results reported for total ferrous iron, not

comparable to NMWQCC standard for dissolved iron

APPENDIX A GROUNDWATER SAMPLING FIELD FORMS

ישנ	TECH, INC.		WATER	SAMPLING F		M		
Project Name	B Com 1E	,			Page		1 of	2
ect No.					(_	
Site Location	Farmington, NM			······		.1	1.	
Site/Well No.	<u>MW-1</u>	Coded/ Replicate		10	Date	6	11/10	
Weather S	linny, war	Time Sa Began	ampling	\$ 15	Time Sampling Completed	<u> </u>	305	
l	brezy		EVACUA	TION DATA				
Description of	Measuring Point (MP)	Top of Casing						
Height of MP A	Above/Below Land Sur	face		MP Elevation	-			•
Total Sounded	Depth of Well Below	MP <u>34.09</u>	9	Water-Level Ele				· · · · · · · · · · · · · · · · · · ·
Held	_ Depth to Water Belo	w MP <u>25</u>	<u>:98</u>	Diameter of Cas Gallons Pumpe	4/B alad]			
Wet	Water Column in	n Well	•	Prior to Samplin		-4		
	Gallons pe	r Foot	0.16	Sampling Pump	Intaka Satting			
•	Gallons ir	n Well	1.2716	(feet below land		<u> </u>		
Purging Equipr	ment <u>Purge pum</u>	Bailer	<u> </u>	.8928	· · · · · · · · · · · · · · · · · · ·	·		
			SAMPLING DATA/F	IELD PARAMETER	S	· · ·	•	
Time	Temperature (°C)	рН	Conductivity (uS/c	m ³) TDS (g/L)	DO (mg/L)	DO %	ORP (mV)	Volume (gal.)
• • • • • • • • • • • • • • • • • • •						· ·		· ·
		·				and the second designed to the second designed to the second designed and the		
Sampling Equi	pment	Purge Pump/B	Bailer					
	pment uents Sampled	Purge Pump/B	Bailer Container Descrip	<u>etion</u>		Prese	ervative	
		Purge Pump/B	Container Descrip	<u>stion</u>	HCI	Prese	ervative	
Constitu			Container Descrip	<u>stion</u>	HCI	Prese	ervative	
<u>Constitu</u> BTEX		<u>3 40mL </u>	Container Descrip	<u>etion</u>	· · ·	Prese	ervative	
<u>Constitu</u> BTEX Fe Remarks	<u>Hois</u>	<u>3 40mL </u>	Container Descrip	Matines y	· · ·	Prese	ervative No Pa	rameleg
<u>Constitu</u> BTEX Fe	<u>Hois</u>	<u>3 40mL </u>	<u>Container Descrip</u> VOA's plastic <u>YAU</u> with	Mantinuos y Ven duo	· · ·	Prese	ervative No Pa	rameleg
<u>Constitu</u> BTEX Fe Remarks	uents Sampled <u>HDIS</u> onnel <u>OMX</u>	<u>3 40mL v</u> <u>1 16 oz r</u> <u>1 ight g</u>	Container Descrip VOA's plastic YALY With YALY WITH Well Casi	Matingos y Ven due ng Volumes	none	een/	No Pa	<u>rameleg</u>
<u>Constitu</u> BTEX Fe Remarks	uents Sampled <u>HDIS</u> onnel <u>OM</u> &	<u>3 40mL v</u> <u>1 16 oz r</u> <u>1 ight g</u> CB	<u>Container Descrip</u> VOA's plastic <u>YAU</u> with	Matingos y Ven due ng Volumes	<u>none</u> <u>1911/01 Ge</u> 10 Geogr 0.37	<u>Prese</u> <u>el n</u> 4" = 0.66 6" = 1.44	NO PA	rameleg

Project Name	B Com 1F				Рале	. 2	of	2
ect No.			· ·		i dge	·		
	Farmington, NM							
Site/Well No.		Coded/ Replicat	e No.		Date (le-11-10	D	
Weather	ALLING breeze	- Time Sa	mpling 3724		Time Samplin Completed	⁹ C	740	
	Jung		EVACUA	TION DATA				
Description of	Measuring Point (MP)	Top of Casing						
Height of MP	Above/Below Land Su	rface		MP Elevation				
Total Sounded	d Depth of Well Below	MP 34.02		Water-Level E	evation	•		
Held	_ Depth to Water Belo	WMP 27	.58	Diameter of Ca		. <u> </u>		
Wet	Water Column ir	1	144	Gallons Pumpe Prior to Sampli		3125		
	- Gallons pe	r Foot	0.16	2	• • •			
• .	Gallons ir	n Well 🔢	634 v3-(3,0	9 Sampling Pum (feet below lan	p Intake Setting d surface)			
^o urging Equip	ment Purge pum							
•		\bigcirc	SAMPLING DATA/F	IELD PARAMETER	रऽ	• . •		•
Time	Temperature (°C)	рН	Conductivity (µS/c	m ³) TDS (g/L)	DO (mg/L)		ORP (mV)	Volume (
<u>()732</u> ()735	14,99	6,87	0,907		2,63	25.0	1644	2,7
6736	15,00	(0.81	0,993		1,63	100	1(3,3)	3.0
<u> </u>							<u>, «и</u>	
Sampling Equ	ipment	Purge Pump/E	ailer	· .				· · ·
Constit	uents Sampled		Container Descrip	<u>otion</u>		<u>Prese</u>	<u>rvative</u>	
BTEX	·	<u>3 40mL</u>	VOA's		HCI			
=e	· · · · · · · · · · · · · · · · · · ·	<u>1 16 oz</u>	plastic		none			
			······					,
Remarks	linht -	trin-h.	rown, n	n adar.	no chank	1	,	
ACHIGINS		K/R			U OIKKI			
	sonnei <u> </u>		·					
Sampling Pers								
Sampling Pers			Well Casi	ng Volumes				

.

APPENDIX B

LABORATORY ANALYTICAL REPORT

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

June		

Workorder: H10060335

Kelly Blanchard Tetra Tech 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110

Project: COP - B Com #1E Project Number: COP - B Com #1E Site: COP - B Com #1E, Farmington, NM PO Number: ENFOS NELAC Cert. No.: T104704205-09-1

This Report Contains A Total Of 15 Pages

Excluding Any Attachments

Report ID: H10060335_6089 Printed: 06/29/2010 15:16

Certificate of Ana	

Kelly BlanchardProject: COP - B Com #1ETetra TechProject Number: COP - B Com #1E6121 Indian School Road NEProject Number: COP - B Com #1ESuite 200Site: COP - B Com #1E, Farmington, NMAlbuquerque, NM 87110PO Number: ENFOSNELAC Cert. No : T104704205-09-1	June 29, 2010	Workorder: H10060335
6121 Indian School Road NE Project Number: COP - B Com #1E Suite 200 Site: COP - B Com #1E, Farmington, NM Albuquerque, NM 87110 PO Number: ENFOS		Project: COP - B Com #1E
Albuquerque, NM 87110 Site: COP - B Com #1E, Farmington, NM PO Number: ENFOS	6121 Indian School Road NE	Project Number: COP - B Com #1E
PO Number: ENFOS	•	Site: COP - B Com #1E, Farmington, NM
NELAC Cert No. 1104704205-09-1		PO Number: ENFOS
		NELAC Cert. No.: T104704205-09-1

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSES AND EXCEPTIONS:

Per the Conoco Phillips TSM Revision 0, a copy of the internal chain of custody is to be included in final data package. However, due to LIMS limitations, this cannot be provided at this time.

There were no exceptions noted.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

Phone: (713) 660-0901 Fax: (713) 660-8975

	Certificate of Analysis
June 29, 2010	Workorder: H10060335
Kelly Blanchard	Project: COP - B Com #1E
Tetra Tech 6121 Indian School Road NE	Project Number: COP - B Com #1E
Suite 200 Albuquerque, NM 87110	Site: COP - B Com #1E, Farmington, NM
	PO Number: ENFOS
	NELAC Cert. No.: T104704205-09-1

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

Erica Cardenas, Senior Project Manager

Enclosures

Phone: (713) 660-0901 Fax: (713) 660-8975

SAMPLE SUMMARY

Workorder: H10060335 : COP - B Com #1E

Project Number: COP - B Com #1E

_ab ID	Sample ID	Matrix	COC ID	Date/Time Collected	Date/Time Received
H10060335001	MW-1	Water		6/11/2010 08:05	6/15/2010 09:00
110060335002	MW-6	Water		6/11/2010 07:40	6/15/2010 09:00
10060335003	DUPLICATE	Water		6/11/2010 08:10	6/15/2010 09:00
110060335004	TRIP BLANK	Water	,	6/14/2010 11:00	6/15/2010 09:00

ANALYTICAL RESULTS

Workorder: H10060335 : COP - B Com #1E

Project Number: COP - B Com #1E

Lab ID: Sample ID:	H10060335001	Date/Time Received: Date/Time Collected:		Matrix:	Water	•
	VED METALS	· ·	·	•	· ·	

Iron .	0.0217	0.0200	0.00640	1		1829	1467
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep A	Analysis
	Results				1 Storester	Batch Info	2000 a 11/2
			1999 - 1999 -				
	Batch: 1467 SW-846 6010	B on 06/26/2010	16:35 by EB	G S			
	Analytical Batches:		1120.00				
	Batch: 1829 SW-846 3010	A on 06/15/2010	16:00 by R_\	/			
Analysis Desc. SVV-846 6010B	Preparation Batches:	1. A		5			

. .

Analysis Desc: SW-846 8260B	SW-846 5030Analytical E	Batches:			
	Batch: 2071 SW-846 82	60B on 06/21/2010 2	2:38 by LK	- Netty market	
Parameters *	Results ug/l Qual	Réport Limit	MDL	DF RegLmt	Batch Information Prep Analysis
Benzene	1.1	1.0	0.10	1	2071
Ethylbenzene	98	1.0	0.15	1	2071
Toluene	ND	1.0	0.29	1	2071
m,p-Xylene	1.8	1.0	0.18	1	. 2071
o-Xylene	ND	1.0	0.13	1	2071
Xylenes, Total	· 1.8	1.0	0.13	1 ·	2071
4-Bromofluorobenzene (S)	105 %	74-125		1	2071
1,2-Dichloroethane-d4 (S)	90.9 %	70-130		· 1	· 2071
Toluene-d8 (S)	94.8 %	82-118		1	2071

ANALYTICAL RESULTS

Workorder: H10060335 : COP - B Com #1E

Project Number: COP - B Com #1E

Lab ID:	H10060335002	Date/Time Received: 6/15/2010 09:00 Matrix: Water
Sample ID:	MW-6	Date/Time Collected: 6/11/2010 07:40

Iron	ND	0.0200	0.00640	1		1829	1467
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep A	nalysis
	Results				16 P	Batch Infor	100.00
	Batch: 1467 SW-846 60108	3 on 06/26/2010	17:08 by EBG				
	Analytical Batches:				12. 12.		
	Batch: 1829 SW-846 3010/	A on 06/15/2010	16:00 by R_V				÷.
Allalysis Desc. SW-040 00/106	Freparation barches.						

Analysis Desc: SW-846 8260B	SW-846 5030Analytical	Batches:			
	Batch: 2071 SW-846 8	260B on 06/21/2010 1	4:32 by LK	L	
Parameters	Results ug/l Qua	Report Limit	MDL	DF", R	Batch Information egLmt Prep Analysis
Benzene	ND	1.0	0.10	1	2071
Ethylbenzene	ND .	1.0	0.15	1	2071
Toluene	ND	1.0	0.29	1	2071
m,p-Xylene	ND	1.0	0.18	1	2071
o-Xylene	ND	1.0	0.13	1	2071
Xylenes, Total	ND	1.0	0.13	1	2071
4-Bromofluorobenzene (S)	103 %	74-125		:1	2071
1,2-Dichloroethane-d4 (S)	91.3 %	70-130		1	. 2071
Toluene-d8 (S)	95.9 %	82-118		1	2071

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060335 : COP - B.Com #1E

Project Number: COP - B Com #1E

Lab ID:	H10060335003		Date/Time Received:	6/15/2010 09:00	Matrix:	Water	
Sample ID:	DUPLICATE		Date/Time Collected:	6/11/2010 08:10			-
		•					

Analysis Desc: SW-846 8260B	SW-846 5030Analytical B Batch: 2071 SW-846 826		3:06 by LKL				
Parameters	Results ug/j Quai	Report Limit	MDL	DF	RegLmt	Batch Infor Prep A	
Benzene	ND	1.0	0.10	<u>,</u> 1			2071
Ethylbenzene		1.0	0.15	1		•	2071
Toluene	ND	1.0	0.29	- 1		,	2071
m,p-Xylene	1.1	1.0	. 0.18	1			2071
o-Xylene	. ND	1.0	0.13	1			2071
Xylenes, Total	1.1	1.0	0.13	· 1			2071
4-Bromofluorobenzene (S)	99.8 %	74-125	•	1			2071
1,2-Dichloroethane-d4 (S)	89.7 %	70-130	•	⁻ 1			2071
Toluene-d8 (S)	95.9 %	82-118		1 ·			2071

ANALYTICAL RESULTS

Workorder: H10060335 : COP - B Com #1E

Project Number: COP - B Com #1E

Sample ID: TRIP BLANK	Date/Time Colle	ected: 6/14/2010 11:00		

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Batches:									
	Batch: 2071 SW-846 826	60B on 06/21/2010 1	9:57 by LKL		2					
	Results				Batch Information					
Parameters	ug/l Qual	Report Limit	MDL	DF RegLmt	Prep Analysis					
Benzene	ND	1.0	0.10	1	2071					
Ethylbenzene	ND	1.0	0.15	1	2071					
Toluene	ND	1.0	0.29	1	. 2071					
m,p-Xylene	ND	1.0	0.18	1	2071					
o-Xylene	ND	1.0	. 0.13	1	2071					
Xylenes, Total	ND	1.0	0.13	1 ·	2071					
4-Bromofluorobenzene (S)	105 %	74-125		1	2071					
1,2-Dichloroethane-d4 (S)	94.6 %	70-130		· 1 ·	2071					
Toluene-d8 (S)	96 %	82-118		1	2071					

QUALITY CONTROL DATA

Workorder: H10060335 : CC)P - B Com #1E						. F	Project Numbe	r: COP ·	B Com #1E
QC Batch: DIGM QC Batch Method: SW-8	/1829 46 3010A			alysis Metl eparation:		/-846 6010B 15/2010 16:00 b	y R_V	• •		
Associated Lab Samples:	H10060328001 H10060336001			H100603 H100603		H10060328004 H10060336004		60335001	H1006	0335002
METHOD BLANK: 51057						. ,	•		• .	
Analysis Date/Time Analyst:	06/26/2010) 15:12 EBG				•				,
Parameter	Units			llank esult Qual	ifiers	Reporting Limit				•
Iron	mg/l	·		ND		0.0200				•
LABORATORY CONTROL S	SAMPLE: 5105	8.								<u> </u>
Analysis Date/Time Analyst:	. 06/26/201	10 15:18 EBG					·			
Parameter	Units		-	oike onc.	LCS Result	LCS % Rec	.'	% Rec Limits	· ·	
Iron	mg/l	•		1.0	1.045	104		80-120		-
· ·				۰.						
MATRIX SPIKE & MATRIX S	PIKE DUPLICA	TE: 51059	•	51060	· · ·	Original: H	100603280	001	•	
MS Analysis Date/Time Ana	lyst: 06	5/26/2010 15:29	EBG							
MSD Analysis Date/Time Ar	alyst: 06	6/26/2010 15:3	5 EBG							
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
Iron	mg/l	0.0345	1.0	. 1.063	1.043	103	101	75-125	1.9	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

QUALITY CONTROL DATA

Workorder: H10060335 : COP - B Com #1E

Project Number: COP - B Com #1E

	/2070 346 5030		Analysis Meth Preparation:		-846 8260B 1/2010 00:00 by	LKL		
Associated Lab Samples:	H10060335001 H10060336004	H10060335002 H10060336005	H1006033		H10060335004	H10060336001	H10060	0336003
METHOD BLANK: 52265		· · · · · ·		•				
Analysis Date/Time Analys	t: 06/21/2010 ⁻	3:36 LKL						
Parameter	Units		Blank Result Qualif	iers	Reporting Limit			
Benzene	ug/l		ND		1.0			
			ND ·	•	1.0			
Ethylbenzene	ug/l				1.0	• •		
Toluene	ug/l		ND					
m,p-Xylene	ug/l		ND		1.0			
o-Xylene	ug/l		ND		1.0			
Xylenes, Total	ug/l		ND		1.0		· •	
4-Bromofluorobenzene (S)	%		• 103		74-125			
1,2-Dichloroethane-d4 (S)	%		92.7		70-130			
Toluene-d8 (S)	%		96.1	· .	82-118	•		
· ·	· . ·				•	, ·		
LABORATORY CONTROL	SAMPLE: 52266							
Analysis Date/Time Analys	t: 06/21/2010	12:43 LKL	•	•	, ,	· .		
			Spike	LCS	LCS	% Rec		
Parameter	Units		Conc.	Result	% Rec	Limits		
Benzene	ug/l		20	21.7	109	74-123		
Ethylbenzene	ug/l		20	20.4	102	72-127		
Toluene	ug/l		20	21.5	107	74-126		
m,p-Xylene	ug/l		40	40.7	102	71-129		
o-Xylene	ug/l		20	20.4	102	74-130		
Xylenes, Total	ug/l		60	61.07	102	71-130		
4-Bromofluorobenzene (S)	%				105	74-125		
	0/				96.1	70-130		
	%							
1,2-Dichloroethane-d4 (S) Toluene-d8 (S)	%				96.5	82-118		
1,2-Dichloroethane-d4 (S) Toluene-d8 (S)	%	E: 52267	52268					
1,2-Dichloroethane-d4 (S) Toluene-d8 (S) MATRIX SPIKE & MATRIX	% SPIKE DUPLICATI	E: 52267 21/2010 14:58 LK			96.5			
1,2-Dichloroethane-d4 (S)	% SPIKE DUPLICATI alyst: 06/		L	,	96.5			
1,2-Dichloroethane-d4 (S) Toluene-d8 (S) MATRIX SPIKE & MATRIX MS Analysis Date/Time An MSD Analysis Date/Time A	% SPIKE DUPLICATI alyst: 06/: nalyst: 06/:	21/2010 14:58 LK 21/2010 15:24 LK Original Spil	L L ke MS	MSD	96.5 Original: H10 MS	0060335002 MSD % F	Rec	Max
1,2-Dichloroethane-d4 (S) Toluene-d8 (S) MATRIX SPIKE & MATRIX MS Analysis Date/Time An MSD Analysis Date/Time A	% SPIKE DUPLICATI alyst: 06/	21/2010 14:58 LK 21/2010 15:24 LK	L L ke MS	MSD Result	96.5 Original: H1(0060335002 MSD % F	Rec imit RPD	Max RPD
1,2-Dichloroethane-d4 (S) Toluene-d8 (S) MATRIX SPIKE & MATRIX MS Analysis Date/Time An	% SPIKE DUPLICATI alyst: 06/: nalyst: 06/:	21/2010 14:58 LK 21/2010 15:24 LK Original Spil Result Cor	L L ke MS		96.5 Original: H10 MS	0060335002 MSD % F	imit RPD	
1,2-Dichloroethane-d4 (S) Toluene-d8 (S) MATRIX SPIKE & MATRIX MS Analysis Date/Time An MSD Analysis Date/Time A Parameter	% SPIKE DUPLICATI alyst: 06/: unalyst: 06/: Units	21/2010 14:58 LK 21/2010 15:24 LK Original Spil Result Cor ND 2	L L ke MS ic. Result	Result	96.5 Original: H10 MS % Rec	0060335002 MSD % F % Rec Li	imit RPD 124 0.9	RPD

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

QUALITY CONTROL DATA

Workorder: H10060335 : COP - B Com #1E

Project Number: COP - B Com #1E

MATRIX SPIKE & MATRIX SPI		52268		Original	H10060335002				_		
MS Analysis Date/Time Analys	t:	06/21/2010 14:58								. •	
MSD Analysis Date/Time Analyst:		06/21/2010 15:24 · LKL									
		Original	Spike	MS	MSD	MS	MSD	% Rec		Max	•
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD	
m,p-Xylene	ug/l	ND	40	37.3	37.3	93.3	93.2	35-175	0.1	20	- .
o-Xylene	ug/i	ND	20	19.1	19.0	95.4	94.8	35-175	0.6	20	
Xylenes, Total	ug/l	ND	60	56.41	56.26	94.0	93.8	35-175	0.3	20	
4-Bromofluorobenzene (S)	%	103				102	101	74-125		30	
1,2-Dichloroethane-d4 (S)	%	91.3				92.2	94.5	70-130		30	
Toluene-d8 (S)	%	95.9				97.0	91.3	82-118		30	

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Phone: (713) 660-0901 Fax: (713) 660-8975

Legend

(S) - Indicates analyte is a surrogate

Qualifier	Qualifier Description
MI	Matrix Interference
1	Estimated value, between MDL and PQL (Florida)
JN	The analysis indicates the presence of an analyte
С	MTBE results were not confirmed by GCMS
NC	Not Calculated - Sample concentration > 4 times the spike
. *	Recovery/RPD value outside QC limits
E	Results exceed calibration range
Н	Exceeds holding time
J	Estimated value
Q	Received past holding time
В	Analyte detected in the Method Blank
Ν	Recovery outside of control limits
D	Recovery out of range due to dilution
NC	Not Calculable (Sample Duplicate)
Р	Pesticide dual column results, greater then 25%
TNTC	Too numerous to count

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: H10060335 : COP - B Com #1E

Project Number: COP - B Com #1E

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
H10060335001	MW-1	SW-846 3010A	DIGM/1829	SW-846 6010B	ICP/1467
H10060335002	MW-6	SW-846 3010A	DIGM/1829	SW-846 6010B	ICP/1467
	• •	. ·		•	
110060335001	MW-1	SW-846 5030	MSV/2070	SW-846 8260B	MSV/2071
110060335002	MW-6	SW-846 5030	MSV/2070	SW-846 8260B	MSV/2071
110060335003	DUPLICATE	SW-846 5030	MSV/2070	SW-846 8260B	MSV/2071
H10060335004	TRIP BLANK	SW-846 5030	MSV/2070	SW-846 8260B	MSV/2071

Phone: (713) 660-0901 Fax: (713) 660-8975

Sample Receipt Checklist

WorkOrder:	H10060335	Received By	LOG
Date and Time	06/15/2010 09:00	Carrier Name:	FEDEXS
Temperature:	3.0°C	Chilled By:	Water Ice
1. Shipping con	tainer/cooler in good condition?	· · · ·	YES
2. Custody seal	s intact on shipping container/cooler?		YES
3. Custody seal	s intact on sample bottles?		Not Present
4. Chain of cust	ody present?		YES
5. Chain of cust	ody signed when relinquished and received?	· .	YES
6. Chain of cust	ody agrees with sample labels?		YES
7. Samples in p	roper container/bottle?		YES
8. Samples con	tainers intact?		YES
9. Sufficient san	nple volume for indicated test?		YES
10. All samples r	eceived within holding time?	·	YES
11. Container/Ter	mp Blank temperature in compliance?		YES
12. Water - VOA	vials have zero headspace?		YES
13. Water - Prese	ervation checked upon receipt(except VOA*)?		Not Applicable
*VOA Presen	vation Checked After Sample Analysis		

SPL Representative:

Client Name Contacted: Client Instructions: Contact Date & Time:

SPL Inc. 8880 Interchange Drive Houston, TX 77054

Phone: (713) 660-0901 Fax: (713) 660-8975 litteren over et enteret en en enteret for

	3.0			Z					1	Ĵ					Augener (Nam Augener (Augener (Augener (Augener (Augener (Star) Augener (Star) Auge
Rush TAT requires prior notice	U J Lesinger D J Aver	(1) Business Days	Requested TAT	Some units		ور می می می از این در این	1	San Allan	Đ.		100:-	NW-	NW-	NW.J.	Anna (1) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0
iires prie		X	ted TV	Fallor D					BAN	a te	l÷(0)	Ĝ:	51		AND A
pr-notice		Preparies	A	H A	an a	المراجع المراجع معالم المراجع ال	,			******					The second
	3.Rd		Spic	A Star		1					1894 y				
S. Reinquished by:	3. Relinquished by	Notes in the second sec	Special Reporting Requirements Results	ALA PREAM			c8.0	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		6	i.	- C	V		
by:	N. CA	N N	ng Requ	A Do					<u>UA</u>	Un M			61		
	ACV.		irements	in the second						5	O)		<u>ک</u>	<u>(</u> @(tellar
		AN 6 DAY	Resultan							\mathbb{S}	074	074	NI V	C P6	
		1		aborato					\mathscr{O}	0,	Ċ,	N.	R K	542	
				Laboratory remarks				an a				ی دور میشود. این میشود کر	<u>G</u>	К К	A DIV
1 Produ	date	date //								X	2 X	۵ X	\times	\mathbb{Z}	W=water, S=soil=0=oil A=an = SL=sludge E=creore X=other, =
1/0								1	U-W	\mathbb{S}		Т Т	と	NV F	P=plastic A=amber glass 5
MV.		zł N	Special Detection	andre Setter					Að	AO	4	¢) K	A.	16.	G=glass V=vial X=other I=1 liter 4=4oz 40=vial 78
		<u>ال</u> لا بر	idectión) (Ø.		Ø	1=HC1 2=HNO3 3 3=H2SO4-X=other 7
	Received by:s	Received	:(V)ijad(),(kiimi)			19 10 10 10 10 10 10 10 10 10 10 10 10 10			2	6	¢۵	$\overset{()}{\times}$	<u>a</u>	XIII	Number of Containers
	iyy:s	Received by:	inclus:						X	,	X		$\stackrel{=}{\times}$		the lot of the second s
		an were					Sec.								Reques
Ŵ	1			lintict's		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				4		1		- -	ested /
M	1811	i je zavradka				81			171						
NAMARAN AND AND AND AND AND AND AND AND AND A		and the second	Wireview Williaus												1. The addition of the second se
	1	<u> </u>		22				1			a a Bara				

Report ID: H10060335_6089

APPENDIX C HISTORICAL ANALYTICAL DATA

Table 2 BTEX Ground Water Analytical Summary Farmington B Com 1E Unit O, Sec. 15 T29N, R13W

Sample ID#	Monitor	Remarks		BT	EX per EPA 80	
	Well					and the second second
			Benzene	Toluene	Ethylbenzene	Total-Xylene
9802020-01A	MW#1	On Site Lab.	210.0	34.0	370.0	2044.0
3" of free	in the bailer					
product						
Not Sampled	free product	in well				
9812053-04A			350.0	BDL	420	2800.0
Water	Samples	Taken	in	1999		
Not Sampled	free product	in well				
	城市 3 秋海北					
B02020-02A	MW#2	On Site Lab.	2.4	5.3	16.0	470.0
806055-02A	-		0.8	2.7	32.0	171.0
9809035-01A			1.3	2.5	39.0	33.3
6812053-05A			BDL	0.6	2.1	35.0
903012-05A			BDL	BDL	64	119.0
9906055-05A		••	BDL	BDL	BDL	BDL
9909054-05A			BDL	BDL	4.1	68.1
912018-05A			BDL	BDL	1.8	36.4
0401011-004A		lina ba Lab	BDL	BDL	BDL	BDL
802020-03A	. MW#3	On Site Lab.	0.9	1.2	1.6	5.3
806055-01A			BDL	BDL	0.5	2.0
9809035-02A			BDL	BDL	BDL	BDL
812053-06A			BDL	BDL	BDL	BDL
903012-04A			BDL	BDL	BDL	BDL
9906055-04A			BDL	0.9	3.1	56.0
9909054-04A			BDL	0.6	BDL	BDL
912018-04A			BDL	BDL	BDL	BDL
0401011-002A		lina ba Lab	BDL	BDL	BDL	BDL
Action	Levels		10.0	750.0	750.0	620.0

Table 2 F BTEX Ground Water Analytical Summary Farmington B Com 1E Unit O, Sec. 15 T29N, R13W

Sample ID#	Monitor	Remarks		BT	EX per EPA 802	
	Well				(ppb)	
9809035-03A	MW#4	On Site Lab.	BDL	BDL	BDL	BDL
6812053-03A		· · ·	BDL	BDL	0.6	BDL
903012-03A			BDL	BDL	BDL	BDL
9906055-03A			BDL	BDL	BDL	BDL
9909054-03A			BDL	BDL	BDL	BDL
912018-03A			BDL	0.7	BDL	BDL
0003041-01A			BDL	BDL	BDL	BDL
0006009-02A		,	BDL,	BDL	BDL	BDL
D09020*01A			BDL	BDL	BDL .	BDL
01011-003A		lina ba Lab	BDL	BDL	BDL	BDL
809035-04A	MW#5	On Site Lab.	BDL	BDL	BDL	BDL
812053-02A			BDL	BDL	BDL	BDL
9903012-02A			BDL	BDL	BDL	BDL
9906055-02A			BDL	BDL	BDL	BDL
909054-02A			BDL	BDL	BDL	BDL
9912018-02A			BDL	0.8	BDL	BDL
0003041-02A			BDL	BDL	BDL	BDL
006009-01A			BDL	BDL	BDL	BDL
912018-05A			BDL	BDL	1.8	36,4
0401011-005A		lina ba Lab,	BDL	BDL.	BDL	BDL
		W. Z. HARRING SIN	BAR AN AN AN			
809035-05A	MW#6	On Site Lab.	BDL	BDL	BDL	BDL
9812053-01A			BDL	BDL	BDL	BDL
9903012-01A			BDL	BDL	BDL	BDL
906055-01A			BDL	BDL	BDL	BDL
9909054-01A			BDL	0.7	1.1	BDL
9912018-01A			BDL	1.8	0.7	1.9
401011-006A		lina ba Lab	BDL	BDL	BDL	BDL
Action	Levels		10.0	-750.0	750.0	620.0

1

Table 2 BTEX Ground Water Analytical Summary Farmington B Com 1E Unit O, Sec. 15 T29N, R13W

Sample ID#	Monitor Well	Remarks	Anions Iron BOD COD							
	MW#1	lina ba Lab	Not Sampled							
0401011-004	MW#2		65.1	BDL						
401011-002	MW#3		73.3	BDL						
401011-003	MW#4		67.7	BDL						
0401011-005	MW#5		86.8	BDL						
0401011-006	MW#6		28.2	0.194						