3R - 173

JUNE 2010 GWMR

02/02/2011

February 2, 2011

Mr. Glenn von Gonten
State of New Mexico Oil Conservation Division
1220 South St. Francis Dr.
Santa Fe, New Mexico 87505

RE:

- (I) ConocoPhillips Company Flora Vista No. I Site, Flora Vista, New Mexico. June and September 2010 Quarterly Groundwater Monitoring Reports
- (2) ConocoPhillips Company Howell K No. I Site, Aztec, New Mexico. September 2010 Quarterly Groundwater Monitoring Report

Dear Mr. von Gonten:

Enclosed please find a copy of the above-referenced documents as compiled by Tetra Tech, Inc., for these Farmington area sites.

Please do not hesitate to contact me at (505) 237-8440 if you have any questions or require additional information.

Sincerely,

Kelly E. Blanchard

Project Manager/Geologist

Kelly E. Blanchard

Enclosures (3)

Cc: Brandon Powell, NMOCD
Terry Lauck, ConocoPhillips (electronic only)

JUNE 2010 GROUNDWATER MONITORING REPORT

CONOCOPHILLIPS COMPANY FLORA VISTA NO. I FLORA VISTA, SAN JUAN COUNTY, NEW MEXICO

OCD # 3R173 API No. 30-045-20073

Prepared for:

420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

6121 Indian School Rd. NE, Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 1158690087

January 2011

TABLE OF CONTENTS

1.0	INTRODUCTION	I
2.0	MONITORING SUMMARY AND SAMPLING	
-	METHODOLOGY / RESULTS	1
	2.1 Monitoring Summary	1
	2.2 Groundwater Sampling Methodology	2
	2.3 Groundwater Sampling Analytical Results	
3.0	CONCLUSIONS	2
FIG	GURES	
1.	Site Location Map	•
2.	Site Layout Map	
3.	Generalized Cross Section	
4.	Groundwater Elevation Contour Map	
5.	Benzene Concentration Contour Map	

TABLES

- 1. Site History Timeline
- 2. Monitoring Well Specifications and Groundwater Elevation Data
- 3. Groundwater Analytical Results Summary

APPENDICES

Appendix A. Groundwater Sampling Field Forms

Appendix B. Groundwater Laboratory Analytical Reports

Tetra Tec, Inc. i 1/24/2011

JUNE 2010 GROUNDWATER MONITORING REPORT FLORA VISTA NO. 1, FLORA VISTA, NEW MEXICO

1.0 INTRODUCTION

This report presents the results of the groundwater monitoring event conducted by Tetra Tech, Inc. (Tetra Tech) on June 10 and 11, 2010 at the ConocoPhillips Company, Flora Vista No. 1 site near Flora Vista, New Mexico (**Figure 1**). The site is located in on private property in Unit Letter F, Section 22, Township 30N, Range 12W, of San Juan County, New Mexico. The site consists of a gas production well and associated equipment and installations. A detailed site layout map is provided as **Figure 2**.

I.I Site Background

Historic petroleum contaminated soil was discovered at the Flora Vista No. I location during a production facility resetting activity in 2003. Soil excavation activities were conducted to remove impacted soil. Groundwater was observed in the bottom of the excavation at approximately 25 feet below the ground surface. During excavation, field screening was conducted by collecting samples to determine extent of impacted soil. To enhance the remediation of the remaining amounts of residual hydrocarbon contamination in the excavated area, approximately 80 barrels (bbls) of a potassium permanganate oxidizer solution was sprayed on the soil.

A groundwater monitoring well (MW-I) was installed slightly down gradient from the center of the excavation (Figure 2). Subsequent monitoring during September 2003 included analyses for benzene, toluene, ethylbenzene, and total xylenes (BTEX), as well as total petroleum hydrocarbons (TPH). Groundwater analyses indicated the presence of benzene and total xylenes above regulatory standards. The existing monitor well network consists of monitor wells MW-I, MW-2, MW-3, and MW-4 which are sampled on a quarterly basis. Monitoring wells MW-2, MW-3, and MW-4 were installed at the site during August of 2008 in response to a request by the New Mexico Oil Conservation Division (OCD) for site characterization and enhanced laboratory analyses. This request was communicated to Tetra Tech during an April 2008 meeting conducted in Santa Fe, New Mexico with Glenn VonGonten, OCD Environmental Bureau Hydrologist. A generalized geologic cross section was prepared using boring logs from the August. 2008 monitoring well installation and is presented as Figure 3. The Flora Vista No. I site history is summarized in Table 1.

2.0 MONITORING SUMMARY AND SAMPLING METHODOLOGY / RESULTS

2.1 Monitoring Summary

Groundwater sampling was conducted on June 10 and 11, 2010. Groundwater samples were collected from all site Monitoring Wells MW-1, MW-2, MW-3 and MW-4. Depth to groundwater measurements were

Tetra Tech, Inc. 1 1/24/2011

taken prior to sampling. Groundwater elevation and well completion data is provided in **Table 2**. Using the groundwater elevation data collected during the June 2010 sampling event, Tetra Tech produced a groundwater elevation contour map which is provided as **Figure 4**.

2.2 Groundwater Sampling Methodology

Each monitoring well was purged of three volumes of water or where bailed dry, and allowed to recharge prior to being sampled. A 1.5-inch clear, polyethylene, dedicated bailer was used to purge each well and to collect the groundwater sample. The purge water generated during the event was disposed of in the produced water tank located on site (**Figure 2**). The groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped with chain-of-custody documentation to Southern Petroleum Laboratories (SPL) of Houston, Texas. All samples collected were analyzed for the presence of BTEX by Environmental Protection Agency (EPA) Method 8260B, dissolved iron and manganese by EPA Method 6010B, and sulfate by EPA method 300.0. The dissolved metals samples were collected in unpreserved containers supplied by the laboratory, which were filtered and preserved by laboratory personnel prior to analysis for dissolved metals.

2.3 Groundwater Sampling Analytical Results

Samples collected during the June 2010 monitoring period indicate the following results:

- Groundwater concentrations exceeded the New Mexico Water Quality Control Commission (NMWQCC) standard for benzene (10 micrograms per liter [μg/L]) and total xylenes (620 μg/L) in MW-1; at 1,700 μg/L and 990 μg/L, respectively.
- Groundwater concentrations in MW-4 exceeded the NMWQCC standard for benzene during the sampling event; at 140 μ g/L.
- BTEX concentrations in MW-2 and MW-3 were non-detect during the sampling event.
- Groundwater concentrations in MW-1 and MW-4 exceeded the NMWQCC standard for dissolved manganese during the sampling event.
- All monitoring wells had sulfate concentrations bellow NMWQCC standard (600 μg/L).

Table 3 summarizes the groundwater sample laboratory analytical results. Groundwater sampling field forms are presented in **Appendix A**. The corresponding laboratory analytical report including a quality control summary is included in **Appendix B**.

3.0 CONCLUSIONS

Tetra Tech recommends a change in monitoring schedule from annual sampling to quarterly sampling of MW-I through MW-4 in order to monitor ongoing natural attenuation at the site. The next sampling event will take place in September of 2010. Tetra Tech will collect samples for BTEX, dissolved iron, and dissolved manganese. Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.

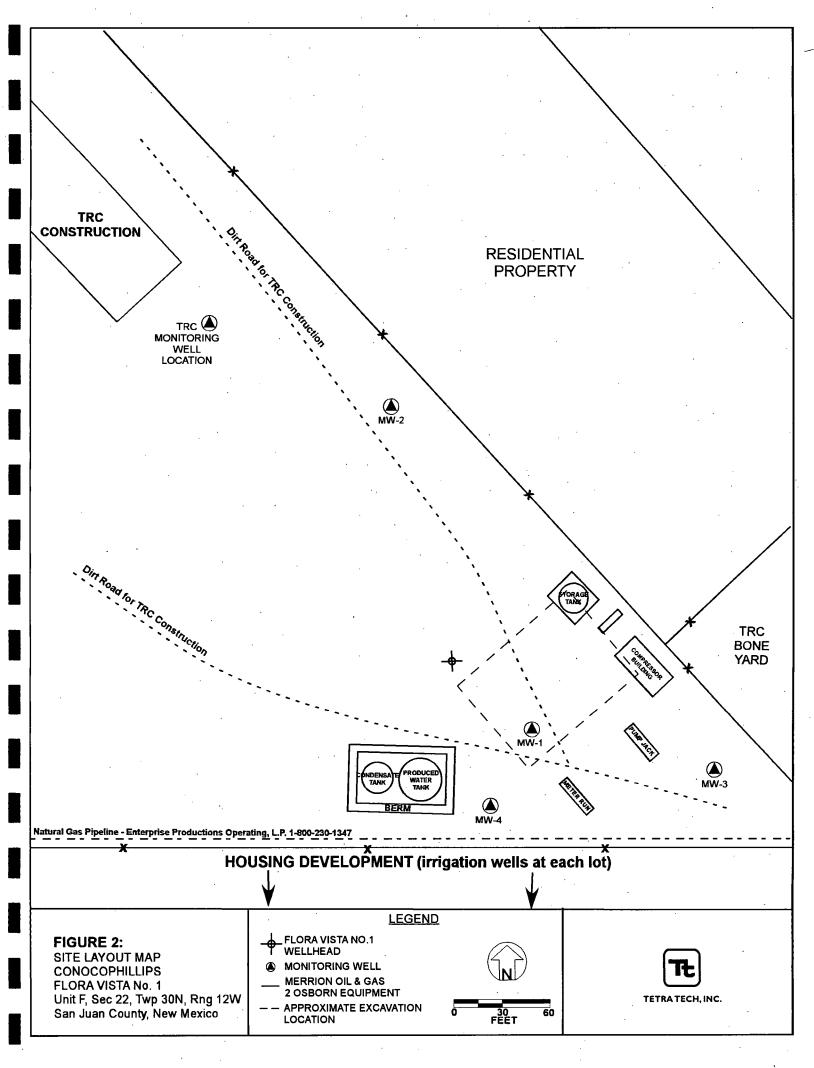
Tetra Tec, Inc. 2 1/24/2011

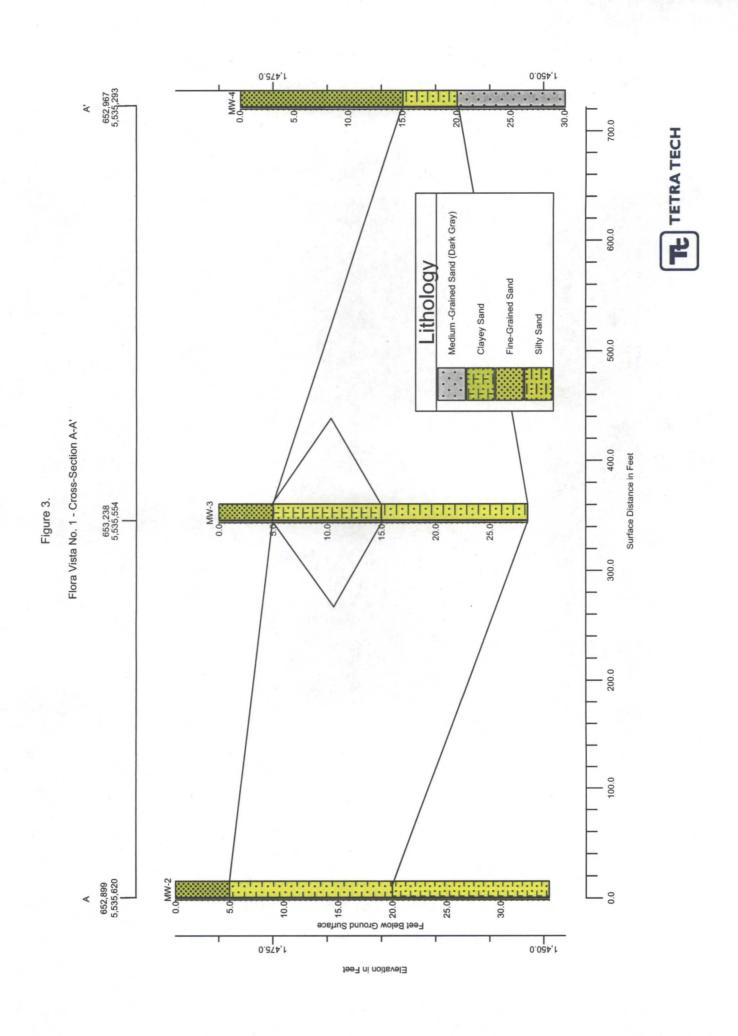
FIGURES

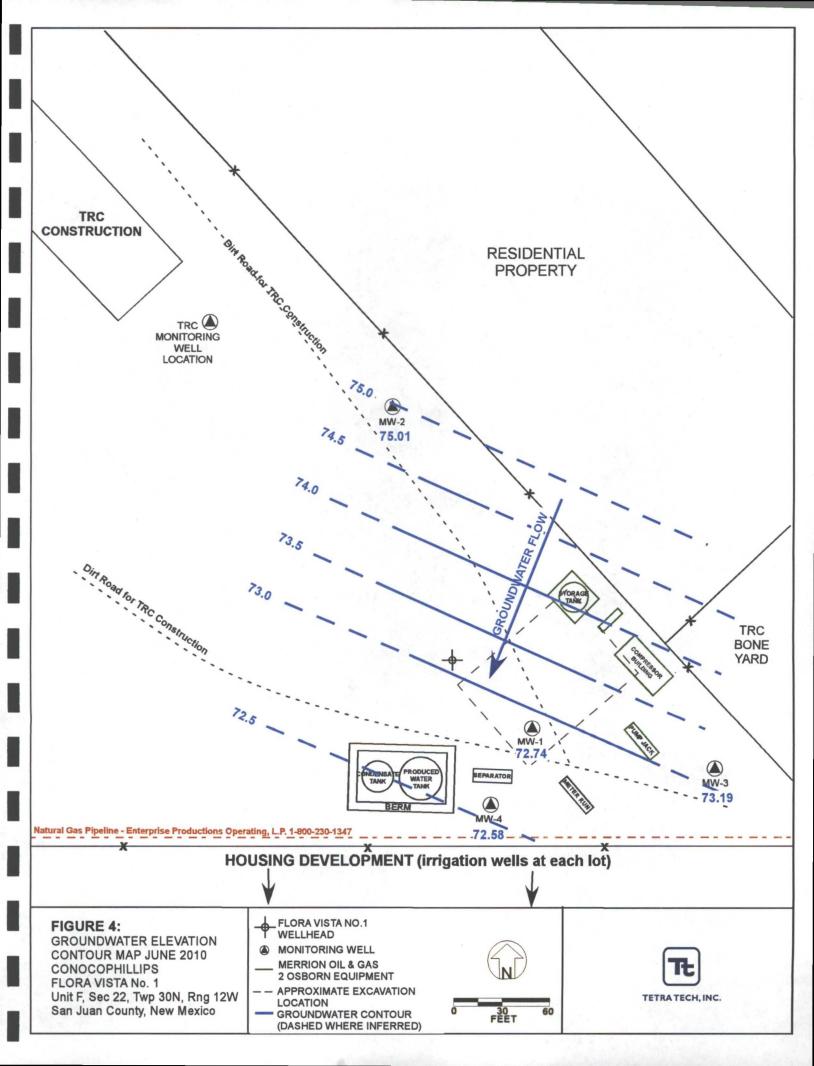
- 1. Site Location Map
 - 2. Site Layout Map
- 3. Generalized Geologic Cross Section
- 4. Groundwater Elevation Contour Map
- 5. Benzene Concentration Contour Map

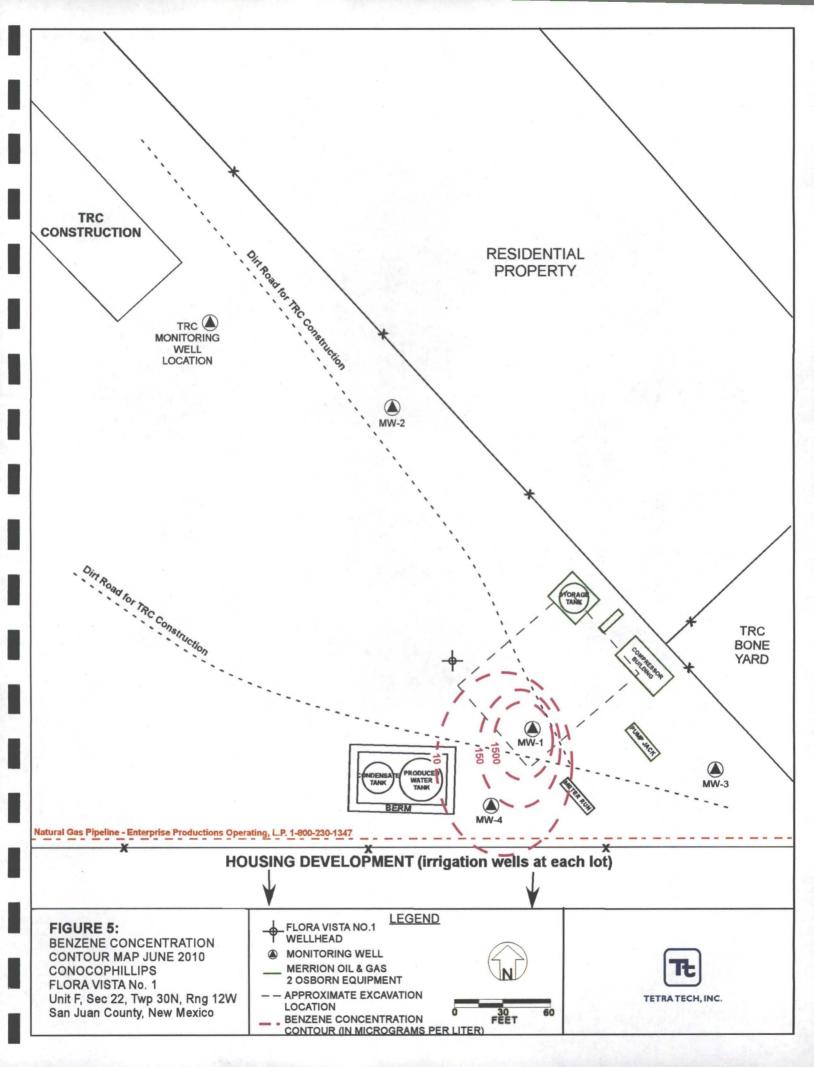
FIGURE 1.

Site Location Map ConocoPhillips Flora Vista No. 1 Flora Vista, NM


Approximate ConocoPhillips Flora Vista No. 1 Site location


Latitude = 36°47'54.37" N Longitude = 108°05'17.60" W





TETRA TECH, INC.

TABLES

I. Site History Table

2. Monitoring Well Specifications and Groundwater Elevations

3. Groundwater Analytical Summary

Table 1. Site History Timeline - ConocoPhillips Flora Vista No. 1

Date/Time Period	Event/Action	Description/Comments
November 28, 1995	Pit Closure Activities	Philip Environmental excavated and removed approximatley 850 cubic yards of soil from the area where the Flora Vista No. 1 dehydrator pit was located. Excavation activities were stopped in the north and west directions due to the positions of the compressor and meter run equipment.
July and August 1996	Submital of Pit Closure	El Paso Field Services submits Pit Closure Reports to the New Mexico Oil Conservation Division outlining the excavation and clsoure of the dehydrator pit at the site.
January 24, 1997	Pit Closure Approval	El Paso Field Sservices receives approval of pit closure from the New Mexico Oil Conservation Division.
June and July 2003	Initial Site Assessment	Historic petroleum contaminated soil discovered during a routine production resetting activity. Environmental investigation began with the excavation of approximately 49,986 cubic yards of impacted soil and 4,446 cubic yards of clean soil. Groundwater was encountered at approximately 25 feet below the ground surface. The impacted soil was taken to a commercial landfill facility located on Crouch Mesa in Farmington, New Mexico. Approximately 80 bbls of potassium permanganate was sprayed on the soils to breakdown any minor amounts of residual petroleum contaminants. The excavation area was backfilled with clean soil.
September 2, 2003	Groundwater Monitoring Well Installation	One ground water Monitoring Well, MW-1, was installed slightly down-gradient from the center of the soil excavation by Envirotech. Total depth of well is 26 feet.
September of 2003 through December 13, 2006	Quarterly Groundwater Monitoring	Quarterly groundwater monitoring of MW-1 for analysis of BTEX constituents. MW-1 remained above standards for benzene, ethylbenzene, and total xylenes.
March 31, 2006	Site Transfer	ConocoPhillips Company completes acquisition of Burlington Resources.
March 2007 through January 2008		After the acquisition of Burlington Resources by ConocoPhillips, consulting responsibilities were transferred from Lode Star LLC of Farmington New Mexico to Tetra Tech of Albuquerque. Tetra Tech began sampling the Flora Vista site quarterly in March of 2007. Four consecutive quarters of goundwater sampling were conducted at the Flora Vista site. Groundwater was sampled from MW-1 and was analyzed for BTEX constituents during all sampling events. MW-1 remained above standards for benzen, ethylbenzene, and total xylenes.
March 28, 2008	Reporting	Annual report for 2007 is submitted to the Oil Conservation Division of NM Energy, Minerals, and Resources Department (OCD).
April 1, 2008	Additional Monitoring Requested by OCD	Oil Conservation Division of NM Energy, Minerals, and Resources Dept. indicates additional investigation and sampling is necessary for closure consideration during a meeting with Glenn Von Gonten.
July 23, 2008	Groundwater Monitoring	Groundwater monitoring of MW-1. One sample and a duplicate were collected. Benzene and Xylenes are above NMWQCC standards.
August 12 and 13, 2008	Groundwater Monitoring Well Installation and Groundwater Monitoring	Three additional groundwater Monitoring Wells, MW-2, MW-3 and MW-4 were installed by WDC and overseen by Tetra Tech. MW-2 was installed upgradient of MW-1. Both MW-3 and MW-4 were installed downgradient of MW-1. Soil samples were collected from just above the groundwater interface for each boring location and sent to Southern Petroleum Laboratory for a baseline soil analysis. All wells were developed by purging approximately 80 gallons of fluid using a surge block and hand bailer/purge pump.
October 21, 2008	Groundwater Monitoring	Third quarter 2008 groundwater monitoring was completed and was the first quarter of sampling to include all four monitoring wells on site. A baseline suite was completed including major ions, total metals, semi-volatile organic compounds (SVOCs), volatile organic compounds (VOCs) including BTEX, diesel range organics, and gasoline range organics. There were 3 constituents that returned results above NMWQCC limits, Benzene (MW-1 and MW-4), Total Xylenes (MW-1), and Sulfate (MW-1).
January 28, 2009	Groundwater Monitoring	Tetra Tech conducted fourth quarter 2008 groundwater monitoring at the site for BTEX constituents in all four monitoring wells. Benzene (MW-1 and MW-4), Ethylbenzene (MW-1) and Xylenes (MW-1) were above NMWQCC standards.
March 1, 2009	Initiate Annual Sampling	The Flora Vista No. 1 site is put on an annual monitoring schedule. The next sampling event is scheduled for September 2009.
September 30, 2009	Groundwater Monitoring	Tetra Tech conducted 2009 annual groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese, and sulfate. Benzene (MW-1 and MW-4), xylenes (MW-1) and manganese (MW-1 and MW-4) were above NMWQCC standards.

Table 1. Site History Timeline - ConocoPhillips Flora Vista No. 1

Date/Time Period	Event/Action	Description/Comments
December 16, 2009	Private Irrigation Well Sampling	Tetra Tech collected a groundwater sample from a private domestic irrigation well located to the south of the site to be analyzed for BTEX. All constituents were found to be below laboratory detection limits and NMWQCC standards.
May 14, 2010	Initiate Quarterly Sampling	The Flora Vista No. 1 site is put on a semi-annual monitoring schedule. Private domestic irrigation well sampling is also to be included in semi-annual sampling events.
June 10, 2010	Private Irrigation Well Sampling	Tetra Tech collected a groundwater sample from a second private down-gradient domestic irrigation well to be sampled for BTEX. All constituents were found to be below laboratory detection limits and NMWQCC standards.
June 10 and 11, 2010		Tetra Tech conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese, and sulfate. Benzene (MW-1 and MW-4), xylenes (MW-1) and manganese (MW-1 and MW-4) were above NMWQCC standards.

Table 2. Monitoring Well Specifications and Groundwater Elevations ConocoPhillps Flora Vista No.1

Well ID	Total Depth (ft bgs)	Surface Elevation, Top of Casing* (ft)	Screen Interval (ft)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Water Level (ft BMP)	
				6/20/2003	standing	94.38	
				9/23/2003	17.03	77.35	
		, "		12/16/2003	20.11	74.27	
				3/16/2004	23.69	70.69	
Ī				6/21/2004	19.92	74.46	
				9/30/2004	16.82	77.56	
				12/13/2004	20.40	73.98	
				3/22/2005	24.32	70.06	
	,		·	6/22/2005			
			3	10/24/2005		- '	
·				12/13/2005	21.24	73.14	
MW-1	26.02	94.38	11.02 - 26.02	3/22/2006	24.75	69.63	
			•	6/22/2006	20.48	73.9	
				10/20/2006	19.13	75.25	
				12/13/2006	21.24	73.14	
				11/9/2007	19.71	74.67	
				1/15/2008	NM	NA '	
				3/19/2008	24.35	70.03	
				7/23/2008	19.89	74.49	
				10/21/2008	19.48	74.9	
			4	1/28/2009	23.96	70.42	
				9/30/2009	18.16	76.22	
				6/10/2010	21.64	72.74	
				10/21/2008	20.71	76.39	
MW-2	31.35	. 97.1	12 35 - 27 35	1/28/2009	22.75	74.35	
1000 2			12.35 - 27.35	9/30/2009	18.83	78.27	
				6/11/2010	22.09	75.01	
		92.9			10/21/2008	17.92	74.98
MW-3	30.87		11.87 - 26.87	1/28/2009	21.53	71.37	
14144-0	55.57	32.3	11.07 - 20.07	9/30/2009	16.43	76.47	
				6/10/2010	19.71	73.19	
				10/21/2008	18.06	75.54	
MW-4	30.42	93.6	11.42-26.42	1/28/2009	24.55	69.05	
17177-7	00.72	55.6	11,72,20,72	9/30/2009	17.89	75.71	
				6/10/2010	21.02	.72.58	

^{*}Casing elevations are based on a 100 foot relative surface elevation of the gas well head

ft = Feet

TOC = Top of casing

NM = Not measured

NA = Not applicable

bgs = below ground surface

BMP = below measuring point

Table 3. Groundwater Analytical Results Summary - ConocoPhillips Flora Vista No. 1

Well ID	Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	Sulfate (µg/L)	Dissolved Iron (µg/L)	Dissolved Manganese (µg/L)
	6/20/2003	1700	300	490	5090	ΝA	N.A	NA
-	9/23/2003	7500	20	099	9220	٧N	ΑN	ΝA
-	12/16/2003	7930	10	1180	864	ΝΑ	NA	NA
	3/16/2004	0989	n	1160	8470	٧N	ΝΑ	NA
	6/21/2004	4140	n .	430	3120	٧N	NA	NA
	9/30/2004	0806	30	1410	9980	۷A	ΝΑ	ΝA
	12/13/2004	8520	n	1340	9390	٧N	٧×	ΥN
	3/22/2005	4550	n	850	5950	۸N	VA	ΝA
	6/22/2005	1	21.88	•	•	۷A	NA	٧N
	10/24/2005	0689	n	1010	7416	VΑ	NA	VΝ
	12/13/2005	.6170	n	1010	7570	VΑ	ΝA	NA
	3/22/2006	3580	n	022	5840	ΝΑ	NA	NA.
MW-1	6/22/2006	3100	n	200	3500	NA	NA	NA
	10/20/2006	0099	10	. 1220	8910	NA .	NA .	NA
	12/13/2006	4230	10	1090	8130	NA	NA	NA .
	3/27/2007	2370	7	504	3749	ΝΑ	NA	WA
	6/25/2007	2870	140	510	3890	NA	NA	٧N
	11/9/2007	2600	2.0 >	910	6800	NA	NA	٧N
	1/15/2008	4200	£'0 >	890	5700	NA	NA .	٧N
	3/19/2008	2700	0'9 >	290	4700	NA	NA	VA
	7/23/2008	2000	< 5.0	380	1400	NA	NA	VN
	10/21/2008	4500	0.5 >	089	5300	NA	NA	NA
	1/28/2009	4000	< 5.0	880	8700	NA	NA	NA
	9/30/2009	4200	1.6	530	5100	11.7	2.08	1.09
	6/10/2010	1700	1.2	330	066	27	0.126	1.28

Explanation
NMWQCC = New Mexico Water Quality Control Commission
µg/L = micrograms per liter (parts per billion)
<0.5 = Below laboratory detection limit in ug/L
Bold = concentrations that exceed the NMWQCC limits
NA = Not analyzed

Table 3. Groundwater Analytical Results Summary - ConocoPhillips Flora Vista No. 1

(µg/c) (µg/c)	Ethylbenzene (μg/L)	Aylenes (μg/L)	Sulfate (µg/L)	lron (μg/L)	Manganese (μg/L)
< 5.0 < 5.0	< 5.0`	< 5.0	115	0.656*	0.248*
< 5.0 < 5.0	< 5.0	< 5.0	ΑN	NA	ΑN
<1.0	<1.0	<1.0	123	0.0223	< 0.00500
<1.0	<1.0	<1.0	156	< 0.0200	< 0.00500
< 5.0 < 5.0	< 5.0	< 5.0	63	0.739*	*4980.0
< 5.0 < 5.0	< 5.0	< 5.0	NA	NA	NA
<1.0	<1.0	<1.0	144	0.0543	< 0.00500
<1.0	<1.0	<1.0	122	0.0425	< 0.00500
< 5.0	31	180	90.1	8.4*	4.16*
< 5.0	64	583	ΑN	ΑN	Ą
<1.0	54	572	48.9	0.148	4.48
< 1.0	27	252	53.3	0.0566	4.65
10 (hg/L) 750 (hg/L)	750 (µg/L)	620 (µg/L)	(T/6rl) 009	1 (µg/L)	0.2 (µg/L)
	<5.0 <5.0 <1.0 <1.0 <1.0 <5.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		<5.0` <5.0 <5.0 <1.0 <1.0 <1.0 <5.0 <5.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	<pre><5.0</pre>	 <5.0 < 5.0

Explanation

NMWQCC = New Mexico Water Quality Control Commission

µg/L = micrograms per liter (parts per billion)

<0.5 = Below laboratory detection limit in ug/L

Bold = concentrations that exceed the NMWQCC limits

NA = Not analyzed

* = Results reported for total metals analysis, results can not be compared to NMWQCC Standards for dissolved metals

APPENDIX A

GROUNDWATER SAMPLING FIELD FORMS

TETRATECH, INC.	WATER	RSAMPLING	FIELD FOR	M ·		
roject Name Flora Vista No. 1	·		Page	1	of	4
ect No.						
te Location Flora Vista, NM			•	1	J	•
	cate No.		Date	6/10	0/10	
leather Sunny, hot 950 Bega	Sampling 5	0	Time Sampling Completed	1	700	
•	EVACUA	ATION DATA				
escription of Measuring Point (MP) Top of Cas	sing					
eight of MP Above/Below Land Surface	<u> </u>	MP Elevation				
	3.02 25.96	Water-Level E	levation	1		
1	1.(1)					
eld Depth to Water Below MP	1104	Diameter of Ca Gallons Pump	ed/Bailed			
/et Water Column in Well	7.8U	Prior to Samp				
Gallons per Foot	0.16					
Gallons in Well	.6752	Sampling Pum (feet below lan	np Intake Setting nd surface)	~		
	V3-9	A25/a	, <u> </u>			
urging Equipment Purge pump / Bailer	1)-1-	N Z D V				
Time Temperature (°C) pH	SAMPLING DATA Conductivity (µS/	rield paramete cm³) TDS (g/L)	RS DO (mg/L)	DO %	ORP (mV)	Volume (
1503 14.89 6.4F	1.033		3.79	34.0-	-40.8	1.0
576 14.74 6.86		037	. 92	89	-22.5	15
						2.0
ampling Equipment Purge Purg	ob/Bailer	•				
Constituents Sampled	Container Descr	iption		Preser	vative	
TEX 3 40	nL VOA's		HCI			

Well Casing Volumes

Gal./ft. $1 \frac{1}{4}$ = 0.077

Remarks

Sampling Personnel

2" = 0.16

3" = 0.37

4" = 0.65

1 1/2" = 0.10

2 ½" = 0.24

3° ½ = 0.50

6" = 1.46

Tŧ	TETRA	TECH, INC
Project	Name	Flora Vis

WATER SAMPLING FIELD FORM

Project Name	Flora Vista No. 1				Page	2	of	4
, ect No.					•			·
Site Location	Flora Vista, NM			· .		. 1	1	
Site/Well No.	MW-2	Coded/ Replicate	e No.		Date	6/3	1./0	
Weather 5	surmy, hot 95	0 Time Sai Began		25	Time Samplin Completed	g (1355	
	•		EVACUATIO	N DATA		•		
Description of	Measuring Point (MP)	Top of Casing						
Height of MP	Above/Below Land Surf	ace		MP Elevation			····· <u>·</u>	
Total Sounded	Depth of Well Below M	MP31.35	<u>;</u>	Water-Level Ele	evation		· · · · ·	
Held	_ Depth to Water Belo	w MP	09	Diameter of Ca			· 	
Wet	Water Column i	n Well	26	Gallons Pumpe Prior to Samplin		·		
	Gallons pe	r Foot	0.16	Constitute Dans	. Latatia '			
	Gallons i	n Well	148	Sampling Pump (feet below land				·
Purging Equip	ment Purge pumit	/ Bailer	X3=4,44	·	· · · · · ·		·—	militaria (m. 1920)
		s	AMPLING DATAFIE					
Time	Temperature (°C)	684	Conductivity (p8/cm	TDS (g/L)	DO (mg/L)	DO %	ORP (mV)	Volume (gal.)
25	10.00	9.72	905		4.97	407	1400	225
1.00		W 1 - 2	1 000	1	1,10	W: 1		5000
		,						
<u></u>	<u> </u>	L]	
Sampling Equi	pment	Purge Purip/B	ailer	·	·····			
Consti	tuents Sampled		Container Description	<u>on</u>		<u>Prese</u>	<u>rvative</u>	• •
BTEX	2	3 40mL \	VOA's	·	HCI			
Surian	and To do not			· ·				<u> </u>
1.)155011	rd Fe & Mi	1 ——					· · ·	
Remarks	bailed de	MB. 9	1.5 gallon	: A=0	15 r	nxthi	COAN	to.
Sampling Pers	onnel	4 B	Jazzara	7-1100		h	of V	Mum.
								no oder
	0-1 #4 4 4 4 4 1	. 0.77	Well Casing			49 0.00		n's shoen
	Gal./ft. 1 1/4" = 1 1/2" =		2'' = 0.16 $2\frac{1}{2}'' = 0.24$	3" = 0 3" 1/2 = 0	0.37 0.50	4" = 0.65 6" = 1.46		ן ישטוג טיין

TŁ	TETRA TECH, INC.
----	------------------

WATER SAMPLING FIELD FORM

Project Name Flora Vista No. 1			Page	3 of <u>4</u>
⊰ct No.	<u> </u>			•
Site Location Flora Vista, NM	—			1-1
Site/Well No. MW-3	Coded/ Replicate No.		Date (O	1000_
Waster Girmy hat 950	Time Sampling	1500	Time Sampling	1555
Weather SWYW, Not 95	Began	1020	Completed	1000
	•	UATION DATA		
Description of Measuring Point (MP) To	p of Casing			
Height of MP Above/Below Land Surface	· / /	MP Elevation		
Total Sounded Depth of Well Below MP	30.87 30,5	Water-Level E	levation	
Held Depth to Water Below N	лр <u>[9,7]</u>	Diameter of Ca Gallons Pump	asing 2"	
Wet Water Column in W	ell 0	Prior to Sampl		2025
Gallons per Fo	oot <u>0.16</u>			
Gallons in W	'ell 128		np Intake Setting and surface)	
Purging Equipment Purge pump / Ba	$\chi = 0$	5.184		
	SAMPLING DAT	Z A/FIELD PARAMETER	RS	
Time Temperature (°C)	pH Conductivity (TDS (g/L)	DO (mg/L) DO 9	ORP (mV) Volume (gal.)
1561 1162	900 700		1001 70	2785 15
1652 1453	6.00 10	2 =	3.84 37	6834 50
Sampling Equipment Pu	irge Pump/Bailer			
Constituents Sampled	Container De	scription	<u>Pr</u>	eservative
BTEX	3 40mL VOA's		HCI	
Sultate	le or pla	stic	More	
Dissolved FRENM	1602 pla	1stic	More	<u> </u>
Remarks Han 15	don't	light how	ass all as	cachon
ON	Clar 70	right wo	MI NO GOOD	OI SITUI
Sampling Personnel				Observed.
	Well C	asing Volumes		
Gal./ft. 1 1/4" = 0.0			= 0.37 4" = 0	
1 1/2" = 0.1	0 2 1/2" = 0.24	3" 1/2 =	= 0.50 6" = 1	1.40

TETRA	TECH, INC.
Project Name	Flora Vista No
ect No.	

WATER SAMPLING FIELD FORM

	,							
Project Name Flora Vista No. 1		 _	Page	4	of <u>4</u>			
ect No.					•			
Site Location Flora Vista, NM				, 1				
Site/Well No. MW-4	Coded/ Replicate No. 1640		ate	6/10/1	0			
Weather	Time Sampling Began(p /)		me Sampling ompleted	1635				
EVACUATION DATA								
Description of Measuring Point (MP)	Top of Casing							
Height of MP Above/Below Land Surfa	ace	MP Elevation		···				
Total Sounded Depth of Well Below M	1P 30.42 30.48	Water-Level Elevati	lon					
Held Depth to Water Belo	WMP_2102_	Diameter of Casing	2"					
Wet Water Column in	1 Well 9,46	Gallons Pumped/Ba Prior to Sampling	A A	15				
Gallons per		Sampling Pump Inta	aka Sattina					
Gallons in	1 Well 100136	(feet below land sur	face)	<u> </u>				
Purging Equipment Purge pump	$\chi_3 = 4$:5408		··	· · · · · · · · · · · · · · · · ·			
`	SAMPLING DATA/FIEL	LD PARAMETERS						
Time Temperature (°C)	pH Conductivity (μS/cm ³		OO (mg/L) [(mV) Volume (gal.)			
1627 15.18	7,02 1,051	//	2.47	23,7 -89	7,5 3,5			
1629 14.78	10.99 11053		1,29	2,6 -90	26 410			
1631 14.53	6,95 1,053		1,15	11/2 -89	1.9 4.5			
Sampling Equipment	Purge Pump/Bailer							
Constituents Sampled	Container Description	<u>nc</u>	٠	Preservative	2			
BTEX	3 40mL VOA's	HC	<u> </u>	· <u> </u>				
Sultate	1/2 oz plastic		Vone		·			
Dissolved Fe 31	In Close plastic		Vone	<u> </u>				
	~ docc + 2th b	Lask Dark	ic I do	26.	- 1 //			
Remarks (1)	S (Par Will b)	lack fair	11 U 1415,	45rm	g hydro-			
Sampling Personnel	CD CALOST	lodor ar	101a	SPOTTY E	West.			
	Well Casing	Volumes	<u> </u>					
Gal./ft. 11/4" = 1		3" = 0.37		= 0.65				
11%" =	0.10 2 ½" = 0.24	3"½ = 0.50	5"	= 1.46				

APPENDIX B
LABORATORY ANALYTICAL REPORT

8880 Interchange Drive Houston, TX 77054

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

June 29, 2010

Workorder: H10060336

Kelly Blanchard Tetra Tech 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110

Project: COP - Flora Vista

Project Number: COP - Flora Vista

Site: COP - Flora Vista, Flora Vista, New Mexico

PO Number: ENFOS

NELAC Cert. No.: T104704205-09-1

This Report Contains A Total Of 21 Pages

Excluding Any Attachments

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

June 29, 2010

Workorder: H10060336

Kelly Blanchard Tetra Tech 6121 Indian School Road NE Suite 200

Albuquerque, NM 87110

Project: COP - Flora Vista

Project Number: COP - Flora Vista

Site: COP - Flora Vista, Flora Vista, New Mexico

PO Number: ENFOS

NELAC Cert. No.: T104704205-09-1

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

Upon receipt of your samples, the lab received vials labeled as "#34" collected on 6/10/10 at 14:25 for BTEX however this ID is not listed on the COC. Per clients request, "#34" was logged in for BTEX.

II: ANALYSES AND EXCEPTIONS:

Per the Conoco Phillips TSM Revision 0, a copy of the internal chain of custody is to be included in final data package. However, due to LIMS limitations, this cannot be provided at this time.

There were no exceptions noted.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Report ID: H10060336_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

June 29, 2010

Workorder: H10060336

Kelly Blanchard Tetra Tech 6121 Indian School Road NE Suite 200

Albuquerque, NM 87110

Project: COP - Flora Vista

Project Number: COP - Flora Vista

Site: COP - Flora Vista, Flora Vista, New Mexico

PO Number: ENFOS

NELAC Cert. No.: T104704205-09-1

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

Erica Cardenas, Senior Project Manager

Enclosures

Report ID: H10060336_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

SAMPLE SUMMARY

Workorder: H10060336: COP - Flora Vista

Project Number: COP - Flora Vista

Lab ID	Sample ID	Matrix	COC ID	Date/Time Collected	Date/Time Received
H10060336001	MW-1	Water		6/10/2010 17:00	6/15/2010 09:00
H10060336002	MW-2	Water		6/11/2010 13:55	6/15/2010 09:00
H10060336003	MW-3	Water		6/10/2010 15:55	6/15/2010 09:00
H10060336004	MW-4	Water		6/10/2010 16:35	6/15/2010 09:00
H10060336005	DUPLICATE	Water		6/10/2010 16:40	6/15/2010 09:00
H10060336006	TRIP BLANK	Water		6/14/2010 11:00	6/15/2010 09:00
H10060336007	#34	Water		6/10/2010 14:25	6/15/2010 09:00

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060336 : COP - Flora Vista

Project Number: COP - Flora Vista

Lab ID:

H10060336001

Date/Time Received: 6/15/2010 09:00

Water

Matrix:

Sample ID: MW-1

Date/Time Collected: 6/10/2010 17:00

WET CHEMISTRY

•					
Analysis Desc: EPA 300.0	Analytical Batches:			14	Transference and
	Batch: 1337 EPA 300:0 on 0	6/16/2010 11:37	by CFS	Sec. 1	
garan Salah Karangaran (1991)	Results			100	Batch Information
Parameters		Report Limit	MDL	DF	RegLmt Prep Analysis
with the second	mg/s				Bangara A
Sulfate	27.0	5.00	0.435	10	1337

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	Preparation Batches:						
	Batch: 1829 SW-846 301	0A on 06/15/201	0 16:00 by R_	٧			
	Analytical Batches:						
	Batch: 1467 SW-846 601	0B on 06/26/201	0 17:15 by EB	G DF=	1.	and the second	
	Batch: 1467 SW-846 6010	0B on 06/28/201	0 15:44 by EB	G DF=	1.		
Parameters	Results mg/l Qual	Report Limit	MDL	DF	RegLmt	Batch Info Prep	ormation Analysis
Iron	0.126	0.0200	0.00640	1		1829	1467
Manganese	1.28	0.00500	0.000300	1		1829	1467

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Batches:							
and the state of t	Batch: 2071 SW-846 82	Batch: 2071 SW-846 8260B on 06/21/2010 20:24 by LKL DF = .1.						
	Batch: 2079 SW-846 82	Batch: 2079 SW-846 8260B on 06/22/2010 17:28 by LKL DF = 25.						
diamental district the second of the second	Results		200		Batch Information			
Parameters 2	ug/I Qual	Report Limit	MDL	DF RegLmt	Prep Analysis			
Benzene	. 1700	25	2.5	2 5 ·	2079			
Ethylbenzene	330	25	3.8	25	2079			
Toluene	1.2	1.0	0.29	1	2071			
m,p-Xylene	990	25	4.6	25	2079			
o-Xylene	ND	1.0	0.13	, 1	2071			
Xylenes, Total	990	1.0	0.13	25	2079			
4-Bromofluorobenzene (S)	104 %	74-125		1	2071			
4-Bromofluorobenzene (S)	107 %	74-125		25	2079			
1,2-Dichloroethane-d4 (S)	87.4 %	70-130		25	2079			
1,2-Dichloroethane-d4 (S)	93.3 %	70-130		1	2071			
Toluene-d8 (S)	94.9 %	82-118		25	2079			
Toluene-d8 (S)	99 %	82-118	•	1	2071			

Report ID: H10060336_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060336 : COP - Flora Vista

Project Number: COP - Flora Vista

Lab ID:

H10060336002

Date/Time Received: 6/15/2010 09:00

Water

Matrix:

Sample iD: MW-2

Date/Time Collected: 6/11/2010 13:55

WET CHEMISTRY

Analysis Desc: EPA 300.0	Analytical Batches:	14-15			ALCHARA.
	Batch: 1337 EPA 300:0 on	06/16/2010 11:53	by CFS		100 mg 100 mg 100 mg 100 mg
		10.00			4 (10 mg/s)
	3 NOOURO				Batch Information
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt Prep Analysis
Sulfate	156	5.00	0.435	10	1337

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	Preparation Batches:						
	Batch: 1829 SW-846 301	OA on 06/15/201	0 16:00 by R_\	/			
	Analytical Batches:			esz.			
	Batch: 1467 SW-846 601	OB on 06/26/201	0 17:21 by EB	G DF=	1.		
	Batch: 1467 SW-846 6010	0B on 06/28/201	0.15:56 by EB	G DF =	1.	and the second	
	Results					Batch Info	
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep	Analysis
Iron .	ND	0.0200	0.00640	1		1829	1467
Manganese	ND	0.00500	0.000300	1		1829	1467

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Batches:						
	Batch: 2079 SW-846 8260B on 06/22/2010 13:25 by LKL					$= \frac{1}{2} \frac{p_{1}}{p_{2}} \frac{p_{2}}{p_{1}} \frac{p_{2}}{p_{2}} $	
Parameters	Results ug/l	Qual Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis	
Benzene	ND	1.0	0.10	1		· 2079	
Ethylbenzene	ND	1.0	0.15	. 1		2079	
Toluene	ND	1.0	0.29	1		2079	
m,p-Xylene	ND	1.0	0.18	1		2079	
o-Xylene	ND	1.0	0.13	1		2079	
Xylenes, Total	ND	1.0	0.13	1		2079	
4-Bromofluorobenzene (S)	106 %	74-125		1		2079	
1,2-Dichloroethane-d4 (S)	98.5 %	70-130		1		2079	
Toluene-d8 (S)	95.5 %	82-118		1		2079	

Report ID: H10060336_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060336 : COP - Flora Vista

Project Number: COP - Flora Vista

Lab ID: H10060336003

Date/Time Received: 6/15/2010 09:00

Matrix:

Water

Sample ID: MW-3

Date/Time Collected: 6/10/2010 15:55

WET CHEMISTRY

Analysis Desc: EPA 300.0	Analytical Batches: Batch: 1337 - EPA 300.0 on 0	06/16/2010 12:09	by CFS			
Parameters	Results mg/l Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis
Sulfate	122	5.00	0.435	10		1337

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	Preparation Batches:								
Section 1 Sectio	Batch: 1829 SW-846 3010	A on 06/15/2010	0 16:00 by R_	٧					
Tally State of the	Analytical Batches:								
Description of the first state of the state	Batch: 1467 SW-846 6010	Batch: 1467 SW-846 6010B on 06/26/2010 17:27 by EBG DF = 1.							
	Batch: 1467 SW-846 6010	OB on 06/28/201	0 16:03 by EB	G DF=	i.	10.0	eralis Paraga		
i (1866) kalendari kanan kerajarah kalendari Karajan	Results					Batch In	formation		
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep	Analysis		
Iron	0.0425	0.0200	0.00640	1		1829	1467		
Manganese	ND	0.00500	0.000300	1		1829	1467		

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Batches:						
	Batch: 2071 SW-846 826						
Parameters	Results .ug/l Qual	Report Limit		DF	RegLmt	Batch Information Prep Analysis	
Benzene	ND	1.0	0.10	1		2071	
Ethylbenzene	ND	1.0	0.15	1		2071	
Toluene	· ND	1.0	0.29	1		2071	
m,p-Xylene	, ND	1.0	0.18	1		2071	
o-Xylene	ND	1.0	0.13	1		2071	
Xylenes, Total	. ND	1.0	0.13	1		2071	
4-Bromofluorobenzene (S)	105 %	74-125		1		2071	
1,2-Dichloroethane-d4 (S)	92.3 %	70-130		1		2071	
Toluene-d8 (S)	94.3 %	82-118		1		, 2071	

Report ID: H10060336_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060336 : COP - Flora Vista

Project Number: COP - Flora Vista

Lab ID:

H10060336004

Date/Time Received: 6/15/2010 09:00

Water

Matrix:

Sample, ID: MW-4

Date/Time Collected: 6/10/2010 16:35

WET CHEMISTRY

Analysis Desc: EPA 300.0	Analytical Batches:			ourse.	1917 145 UP
	Batch: 1337 EPA 300.0 on 06	6/16/2010 12:25 I	y CFS		and the second s
				1000000	2.7 (1.1.1) 2.7 (1.1.1)
	Results				Batch Information
Parameters .	mg/I Qual F	Report Limit	MDL	DF RegLm	t Prep Analysis
Sulfate	53.3	5.00	0.435	10	1337

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	Preparation Batches:						
	Batch: 1829 SW-846 3010)A on 06/15/2010	0 16:00 by R_	V			
	Analytical Batches:	100					
	Batch: 1467 SW-846 6010	B on 06/26/201	0 17:33 by EB	G DF=	1.	Britania Britania	
	Batch: 1467 SW-846 6010	B on 06/28/201	0 15:50 by EB	G DF=	1.		
	Results				4.00	Batch In	formation
Parameters	mg/I Qual	Report Limit	MDL	DF '	RegLmt	Prep	Analysis
Iron	0.0566	0.0200	0.00640	1		1829	1467
Manganese	4.65	0.00500	0.000300	1		1829	1467

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Batches; Batch: 2071 SW-846 8260B on 06/21/2010 21:46 by LKL								
Parameters	Results ug/l	Qual Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis			
Benzene	140	1.0	0.10	1		2071			
Ethylbenzene	27	1.0	0.15	1		2071			
Toluene	· ND	1.0	0.29	1		2071			
m,p-Xylene	240	1.0	0.18	1		2071			
o-Xylene	12	1.0	0.13	1		2071			
Xylenes, Total	252	1.0	0.13	1		2071			
4-Bromofluorobenzene (S)	107 %	74-125		1		2071			
1,2-Dichloroethane-d4 (S)	92.4 %	70-130		1		2071			
Toluene-d8 (S)	93.9 %	82-118		1		2071			

Report ID: H10060336_6089

Printed: 06/29/2010 15:16

Page 8 of 21

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060336 : COP - Flora Vista

Project Number: COP - Flora Vista

Lab ID:

H10060336005

Date/Time Received: 6/15/2010 09:00

Matrix:

Water

Sample ID: DUPLICATE

Date/Time Collected: 6/10/2010 16:40

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical B	atches:				1272
	Batch: 2071 SW-846 82	60B on 06/21/2010	22:12 by LKI	-		
Parameters (5.1.1)	Results ug/l Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis
Benzene	130	1.0	0.10	1	and the second s	2071
Ethylbenzene	30	1.0	0.15	1		2071
Toluene	, ND	1.0	0.29	1		2071
m,p-Xylene	250	1.0	0.18	1		2071
o-Xylene	13	1.0	. 0.13	1		2071
Xylenes, Total	263	1.0	0:13	1		2071
4-Bromofluorobenzene (S)	106 %	74-125		1		2071
1,2-Dichloroethane-d4 (S)	90.8 %	70-130		1		2071
Toluene-d8 (S)	97.5 %	82-118		1		2071

Report ID: H10060336_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060336 : COP - Flora Vista

Project Number: COP - Flora Vista

Lab ID:

H10060336006

Date/Time Received: 6/15/2010 09:00

2010 09:00 Matrix:

Water

Sample ID: TRIP BLANK

Date/Time Collected: 6/14/2010 11:00

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical B Batch: 2079 SW-846 826		14:18 by LKI			Alpha Agent
Parameters	Results ug/I Qual	Report Limit	² MDL _i .	DF	RegLmt	Batch Information Prep Analysis
Benzene	ND	1.0	0.10	1		2079
Ethylbenzene	ND .	1.0	0.15	1		2079
Toluene	ND	1.0	0.29	1		2079 [°]
m,p-Xylene	ND	1.0	0.18	1		2079
o-Xylene .	ND	1.0	0.13	1		2079
Xylenes, Total	ND	1.0	0.13	1		2079
4-Bromofluorobenzene (S)	105 %	74-125		1		2079
1,2-Dichloroethane-d4 (S)	94.7 %	70-130		1		2079
Toluene-d8 (S)	92.6 %	82-118		1		2079

Report ID: H10060336_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060336: COP - Flora Vista

Project Number: COP - Flora Vista

Lab ID:

H10060336007

Date/Time Received: 6/15/2010 09:00

Water

Matrix:

Sample ID: #34

Date/Time Collected: 6/10/2010 14:25

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Ba	tches:				
Magazine and American State of the Control of the C	Batch: 2079 SW-846 826	0B on 06/22/2010 1	3:52 by LK	L		Page 2000
Parameters	Results ug/l Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis
Benzene	. ND	1.0	0.10	1		2079
Ethylbenzene	. ND	1.0	0.15	1		2079
Toluene	ND	1.0	0.29	1		2079
m,p-Xylene	. ND	1.0	0.18	1		2079
o-Xylene	ND	1.0	0.13	1		2079
Xylenes, Total	ND	1.0	0.13	1		2079
4-Bromofluorobenzene (S)	104 %	74-125		1		2079
1,2-Dichloroethane-d4 (S)	94.7 %	70-130 ·		11		2079
Toluene-d8 (S)	94 %	82-118	•	1		2079

Report ID: H10060336_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060336: COP - Flora Vista

Project Number: COP - Flora Vista

QC Batch:

DIGM/1829

Analysis Method:

SW-846 6010B

QC Batch Method:

SW-846 3010A

Preparation:

06/15/2010 16:00 by R_V

Associated Lab Samples:

H10060328001 H10060328002 H10060336001 H10060336002

H10060328003 H10060336003 H10060328004 H10060335001 H10060335002

METHOD BLANK: 51057

Analysis Date/Time Analyst:

06/26/2010 15:12 EBG

Blank

Reporting

H10060336004

Parameter

Units

Result Qualifiers

Limit

Iron Manganese mg/l mg/l ND ND

0.0200 0.00500

LABORATORY CONTROL SAMPLE: 51058

Analysis Date/Time Analyst:

06/26/2010 15:18 EBG

Parameter

Units

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Iron Manganese

mg/l mg/l

mg/l

1.0 0.10

1.045 0.1064 104 106 80-120 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 51059

51060

1.198

Original: H10060328001

MS Analysis Date/Time Analyst:

06/26/2010 15:29 EBG

MSD Analysis Date/Time Analyst:

06/26/2010 15:35 EBG

Parameter Iron

Manganese

Original Spike

1.08

Conc.

1.0

0.10

Units Result 0.0345 mg/l

MSD MS Result Result 1.063 1.043

1.176

% Rec 103 NC

MS

MSD % Rec 101

NC

RPD Limit 75-125

% Rec

75-125

20 20 NC

Max RPD

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060336 6089

06/29/2010 15:16 Printed:

Page 12 of 21

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060336: COP - Flora Vista

Project Number: COP - Flora Vista

QC Batch:

IC/1337

Analysis Method:

EPA 300.0

EPA 300.0 QC Batch Method:

Associated Lab Samples:

H10060336001

H10060336002

H10060336003

H10060336004

H10060349001

H10060368001

METHOD BLANK: 51377

Analysis Date/Time Analyst:

06/16/2010 08:50 CFS

Blank

Reporting

Parameter

Units

Result Qualifiers

Limit

Sulfate

mg/l

ND

0.500

LABORATORY CONTROL SAMPLE: 51378

Analysis Date/Time Analyst:

06/16/2010 09:07 CFS

Spike

LCS

LCS

% Rec

Parameter

Units

Conc.

Result

10.41

% Rec

Sulfate

mg/l

10

104

Limits 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 51379

51380

Original: H10060368001

MS Analysis Date/Time Analyst:

06/16/2010 14:25 CFS

MSD Analysis Date/Time Analyst:

06/16/2010 14:41 CFS

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Ļimit F	RPD	Max RPD
Sulfate	mg/l	ND	. 10	9.85	9.324	98.5	93.2	80-120	5.5	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060336_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060336 : COP - Flora Vista

Project Number: COP - Flora Vista

QC Batch:

MSV/2070

Analysis Method:

SW-846 8260B

QC Batch Method:

SW-846 5030

Preparation:

06/21/2010 00:00 by LKL

Associated Lab Samples:

H10060335001 H10060336004 H10060335003

H10060335004

H10060336001

H10060336003

METHOD BLANK: 52265

Analysis Date/Time Analyst:

06/21/2010 13:36 LKL

H10060335002

H10060336005

Parameter	Units	Blank Result Qualifiers	Reporting Limit
Benzene	ug/l	ND .	1.0
Ethylbenzene	ug/l	ND .	1.0
Toluene	ug/l	· ND	1.0
m,p-Xylene	ug/l	ND .	1.0
o-Xylene	ug/l	ND	1.0
Xylenes, Total	ug/l	ND	1.0
4-Bromofluorobenzene (S)	%	103	74-125
1,2-Dichloroethane-d4 (S)	%	92.7	70-130
Toluene-d8 (S)	%	96.1 ·	82-118

LABORATORY CONTROL SAMPLE: 52266

Analysis Date/Time Analyst:

06/21/2010 12:43 LKL

Parameter	Units	Spike Conc.	LCS Result	LCS . % Rec	% Rec Limits	
			0.4 =		74.400	
Benzene	ug/l	20	21.7	109	74-123	
Ethylbenzene	ug/l	20	20.4	102	72-127	
Toluene	ug/i	20	21.5	107	74-126	
m,p-Xylene	ug/l	40	40.7	102	71-129	
o-Xylene	ug/l	20	20.4	102	74-130	
Xylenes, Total	ug/l	60	61.07	102	71-130	
4-Bromofluorobenzene (S)	%	*		105	74-125	
1,2-Dichloroethane-d4 (S)	%			96.1	70-130	
Toluene-d8 (S)	%			96.5	82-118	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 52267

52268

Original: H10060335002

MS Analysis Date/Time Analyst:

06/21/2010 14:58 LKL

MSD Analysis Date/Time Analyst:

06/21/2010 15:24 LKL

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD.	Max RPD
Benzene	ug/l	ND	20	21.2	21.4	106	107	70-124	0.9	20
Ethylbenzene	ug/l	ND	20	18.4	19.0	92.2	94.8	35-175	2.8	20
Toluene	ua/l	· ND	20	20.3	19.3	101	96.5	70-131	4.9	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060336_6089

Printed: 06/29/2010 15:16

Page 14 of 21

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060336 : COP - Flora Vista

Project Number: COP - Flora Vista

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 52267

52268

Original: H10060335002

MS Analysis Date/Time Analyst:

06/21/2010 14:58 LKL

MSD Analysis Date/Time Analyst:

06/21/2010 15:24 LKL

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	ŔPD	Max RPD
m,p-Xylene	ug/l	ND	40	37.3	37.3	93.3	93.2	35-175	0.1	20
o-Xylene	ug/l	ND	20	19.1	19.0	95.4	94.8	35-175	0.6	20
Xylenes, Total	ug/l	ND	60	56.41	56.26	94.0	93.8	35-175	0.3	20
4-Bromofluorobenzene (S)	%	103				102	101	74-125		30
1,2-Dichloroethane-d4 (S)	%	91.3				92.2	94.5	70-130		30
Toluene-d8 (S)	. %	95.9				97.0	91.3	82-118		30

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060336_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060336: COP - Flora Vista

Project Number: COP - Flora Vista

QC Batch:

MSV/2078

Analysis Method:

SW-846 8260B

QC Batch Method:

SW-846 5030

Preparation:

06/22/2010 00:00 by LKL

Associated Lab Samples:

H10060336001 H10060337006 H10060336006

H10060336007

H10060337002

H10060337003

METHOD BLANK: 52585

Analysis Date/Time Analyst:

06/22/2010 12:56 LKL

H10060336002

Parameter	Units	' Blank Result Qualifiers	Reporting Limit	
Benzene	ug/l	· ND	1.0	
Ethylbenzene	ug/l	ND	1.0	
Toluene	ug/l	ND	1.0	
m,p-Xylene	ug/l	ND	1.0	
o-Xylene	ug/l	ND	1.0	
Xylenes, Total	ug/l	ND	1.0	•
4-Bromofluorobenzene (S)	%	106	74-125	·
1,2-Dichloroethane-d4 (S)	%	93.6	70-130	
Toluene-d8 (S)	%	95.6	82-118	

LABORATORY CONTROL SAMPLE: 52586

Analysis Date/Time Analyst:

06/22/2010 12:29 LKL

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	
Benzene	ug/l	20	19.7	98.3	74-123	
Ethylbenzene	ug/l	20	18.2	91.1	72-127	
Toluene	ug/l	20	19.2	95.9	74-126	
m,p-Xylene	ug/l	40	36.7	91.8	71-129	
o-Xylene	ug/l	20	18.2	90.9	74-130	
Xylenes, Total	ug/l	60	54.91	91.5	71-130	
4-Bromofluorobenzene (S)	%			106	74-125	
1,2-Dichloroethane-d4 (S)	%	,		92.6	70-130	
Toluene-d8 (S)	%			97.5	82-118	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 52587

52588

Original: H10060337003

MS Analysis Date/Time Analyst:

06/22/2010 18:21 LKL

MSD Analysis Date/Time Analyst:

06/22/2010 18:51 LKL

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	. Max RPD
Benzene	ug/i	ND	20	20.4	20.3	102	. 102	70-124	0.7	20
Ethylbenzene	ug/l	ND	20	18.0	18.5	90.1	92.5	35-175	2.6	20
Toluene	ug/l	ND	20	19.2	19.0	95.9	95.0	70-131	1.0	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060336_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060336 : COP - Flora Vista

Project Number: COP - Flora Vista

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 52587

52588

Original: H10060337003

MS Analysis Date/Time Analyst:

06/22/2010 18:21 LKL

MSD Analysis Date/Time Analyst:

06/22/2010 18:51 LKL

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
m,p-Xylene	ug/l	ND	40	36.6	36.9	91.5	92.4	35-175	1.0	20
o-Xylene	ug/l	ND	20	18.7	18.2	93.3	91.0	35-175	2.6	20
Xylenes, Total	ug/l	ND	60	55.25	55.13	92.1	91.9	35-175	0.2	20
4-Bromofluorobenzene (S)	%	104				107	106	74-125		30
1,2-Dichloroethane-d4 (S)	%	91.7				93.4	94.8	70-130		30
Toluene-d8 (S)	%	93.4				94.8	96.1	82-118		30

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060336_6089

Page 17 of 21

Printed:

06/29/2010 15:16

Phone: (713) 660-0901 Fax: (713) 660-8975

Legend

(S) - Indicates analyte is a surrogate

Qualifier	Qualifier Description	<u> </u>	
MI	Matrix Interference		
1	Estimated value, between MDL and PQL (Florida)		
JN -	The analysis indicates the presence of an analyte		
С	MTBE results were not confirmed by GCMS		
NC	Not Calculated - Sample concentration > 4 times the spike		
*	Recovery/RPD value outside QC limits		
E	Results exceed calibration range		
Н	Exceeds holding time	•	
J	Estimated value		
Q	Received past holding time		
В	Analyte detected in the Method Blank	•	
N	Recovery outside of control limits		
D	Recovery out of range due to dilution		
NC ·	Not Calculable (Sample Duplicate)		•
Р	Pesticide dual column results, greater then 25%		
TNTC	Too numerous to count		

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: H10060336 : COP - Flora Vista

Project Number COP - Flora Vista

					Analytical
Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Batch
H10060336001	MW-1	SW-846 3010A	DIGM/1829	SW-846 6010B	ICP/1467
H10060336002	MW-2	SW-846 3010A	DIGM/1829	SW-846 6010B	ICP/1467
H10060336003	MW-3	SW-846 3010A	DIGM/1829	SW-846 6010B	ICP/1467
H10060336004	MW-4	SW-846 3010A	DIGM/1829	SW-846 6010B	ICP/1467
H10060336001	MŴ-1	EPA 300.0	IC/1337	•	1
H10060336002	MW-2	EPA 300.0	IC/1337		
H10060336003	MW-3	EPA 300.0	IC/1337		•
H10060336004	MW-4	EPA 300.0	IC/1337		3
H10060336001	MW-1	SW-846 5030	MSV/2070	SW-846 8260B	MSV/2071
H10060336003	MW-3	SW-846 5030	MSV/2070	SW-846 8260B	MSV/2071
110060336004	MW-4	SW-846 5030	MSV/2070	SW-846 8260B	MSV/2071
H10060336005	DUPLICATE	SW-846 5030	MSV/2070	SW-846 8260B	MSV/2071
H10060336001	MW-1	SW-846 5030	MSV/2078	SW-846 8260B	MSV/2079
H10060336 002	MW-2	SW-846 5030	MSV/2078	SW-846 8260B	MSV/2079
H10060336006	TRIP BLANK	SW-846 5030	MSV/2078	SW-846 8260B	MSV/2079
H10060336007	#34	SW-846 5030	MSV/2078	SW-846 8260B	MSV/2079

Page 19 of 21

Phone: (713) 660-0901 Fax: (713) 660-8975

Sample Receipt Checklist

Wor	rkOrder:	H10060336	Received By	LOG	
Date	e and Time	06/15/2010 09:00	Carrier Name:	FEDEXS	
Tem	nperature:	3.0°C	Chilled By:	Water Ice	
1.	Shipping container/co	oler in good condition?		YES	
2.	Custody seals intact o	n shipping container/cooler?	-	YES	
3.	Custody seals intact o	n sample bottles?		Not Present	
4.	Chain of custody pres	ent?		YES	
5.	Chain of custody signe	ed when relinquished and received?		YES	
6.	· -	es with sample labels?		NO	
		ed #34 collected on 6/10/10 at 14:25 for BTE) C. Logged in per container label.	(per client container		
7.	Samples in proper cor			YES ●	
8.	Samples containers in	tact?		YES	
9.	Sufficient sample volu	me for indicated test?		YES	
	Received only one concontainer.	ntainer for analysis so login split sample MW-4	into 1 / 16 oz plastic		
10.	All samples received v	vithin holding time?		YES	
11.	Container/Temp Blank	temperature in compliance?		YES	
12.	Water - VOA vials hav	e zero headspace?		YES	
13.	Water - Preservation o	checked upon receipt(except VOA*)?		YES	
	*VOA Preservation Ch	ecked After Sample Analysis			
	SPL Representative:	Erica Cardenas	Contact Date & Time:	6/16/2010	
	Client Name Contacte	d: Christine Matthews			•

Report ID: H10060336_6089

Client Instructions:

Analyze #34 for BTEX.

SPL Inc. 8880 Interchange Drive Houston, TX 77054 Phone: (713) 660-0901 Fax: (713) 660-8975

3 Business Days Other Rush TAT requires prior notice The conditions of the condit	d TAT	on on	7- WW 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	MW ScmW	2-mm 2-mm	MW- J.M.	Address: (2) 2 PAIGO City H30 Phone/Fax: 57.5, 23 Citent Contact: 12/11/13/20/20 Project Name/No.: 12/10/20 Site Location: 13/20/20 PAILIU Invoice To: 13/20/20 PAILIU SAMPLE ID	Analysis Red
and by:	Special Reporting Requirements Results: Fax Email Supporting Results: Fax Em		9591 01:01:0 9691 01:01:0	6:10:10 1555	of 61.10 13.55 of 61.10 13.55	6:10:10 1700	State NIN ZID BZ	SPL, Inc. Analysis Request & Chain of Custody Record
15/10 1130 15/10 1130	A RECAP Special Detection	X W V 40 1		1 00 0 W X	> W Y 40 W	X	W=water S=soi O=oil A=air SL=sludge E=eneore X=other P=plastic A=amber glass G=glass V=vial X=other 1=1 liter 4=4oz 40=vial 8=8oz 16=16oz X=other 1=HC1 2=HNO3 3=H2SO4 X=other	bottle size pr
Laboratory: M. U.S.	Temp: 7	annea i A	2 X X X		20X X X	X	BIEX Sulfate Dissolved Fe 7100	H10060336 Requested Analysis
			(5				eta estamenta et esta	Sis of