# 3R - 430

# MARCH 2011 QUARTERLY GWMR

06/03/2011



6121 Indian School Rd. NE Suite 200 Albuquerque, NM 87110 (505) 237-8440

#### TETRA TECH, INC.

June 3, 2011

RECEIVED OCD

2011 JUN -7 A 10: 59

Mr. Glenn von Gonten State of New Mexico Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

> RE: (1 and 2) ConocoPhillips Company, Nell Hall No. 1, San Juan County, New Mexico -September 2010 and March 2011 Semi-Annual Groundwater Monitoring Reports

(3) ConocoPhillips Company Randleman No. I Site, San Juan County, New Mexico -September 2010 Quarterly Groundwater Monitoring Report

(4) ConocoPhillips Company, San Juan 27-5 No. 34A, Rio Arriba County, New Mexico -March 2011 Quarterly Groundwater Monitoring Report

(5) ConocoPhillips Company, Sategna No. 2E, San Juan County, New Mexico - March 2011Quarterly Groundwater Monitoring Report

(6) ConocoPhillips Company, Shepherd & Kelsey No. 1E, San Juan County, New Mexico -March<sup>2</sup>011 Quarterly Groundwater Monitoring Report

(7 and 8) ConocoPhillips Company Wilmuth No. 1 Site, San Juan County, New Mexico -December 2010 and March 2011 Quarterly Groundwater Monitoring Reports

Dear Mr. von Gonten:

Enclosed please find a copy of the above-referenced documents as compiled by Tetra Tech, Inc., for these San Juan Basin sites.

Please do not hesitate to contact me at (505) 237-8440 if you have any questions or require additional information.

Sincerely,

Kelly E. Blanchard

Kelly E. Blanchard Project Manager/Geologist

Enclosures (8)

Cc: Brandon Powell, New Mexico Oil Conservation Division (Aztec, NM Office) Terry Lauck, ConocoPhillips Company Risk Management and Remediation (electronic only) Chris Jaquez, Landowner (Nell Hall No. 1 only)

# 3R430

### MARCH 2011 GROUNDWATER MONITORING REPORT

# CONOCOPHILLIPS COMPANY WILMUTH NO. I NATURAL GAS PRODUCTION SITE SAN JUAN COUNTY, NEW MEXICO

OCD Order # <u>TBD</u>. API # 30-045-10370

**Prepared for:** 

**ConocoPhillips** 

Risk Management and Remediation 420 South Keeler Avenue Bartlesville, OK 74004

**Prepared by:** 



TETRATECH, INC.

6121 Indian School Rd. NE, Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 114-690153

May 2011

March 2011 Quarterly Groundwater Monitoring Report ConocoPhillips Company, Wilmuth No. 1, San Juan County, New Mexico

#### TABLE OF CONTENTS

| 1.0 |                                                                    |
|-----|--------------------------------------------------------------------|
|     | I.I Site BackgroundI                                               |
| 2.0 | MONITORING SUMMARY, SAMPLING METHODOLOGY, AND ANALYTICAL RESULTS I |
|     | 2.1 Monitoring SummaryI                                            |
|     | 2.2 Groundwater Sampling Methodology2                              |
|     | 2.3 Groundwater Sampling Analytical Results2                       |
| 3.0 | CONCLUSIONS AND RECOMMENDATIONS                                    |

#### FIGURES

- I. Site Location Map
- 2. Site Detail Map
- 3. Generalized Geologic Cross Section
- 4. Groundwater Elevation Contour Map March 2011

#### TABLES

- I. Site History Timeline
- 2. Groundwater Elevation Data Summary (April 2010 March 2011)
- 3. Groundwater Laboratory Analytical Results Summary (April 2010 March 2011)

#### **APPENDICES**

Appendix A. March 2011 Quarterly Groundwater Sampling Field Forms

Appendix B. March 2011 Quarterly Groundwater Laboratory Analytical Report

### MARCH 2011 GROUNDWATER MONITORING REPORT WILMUTH NO. I, SAN JUAN COUNTY, NEW MEXICO

#### **I.0 INTRODUCTION**

This report discusses the groundwater monitoring event conducted by Tetra Tech, Inc. (Tetra Tech) on March 16, 2011 at the ConocoPhillips Company (ConocoPhillips) Wilmuth No. 1 site located north of Aztec, New Mexico (Site). This report also presents the analytical results of the quarterly groundwater monitoring event.

The Site is located on private land leased to ConocoPhillips and is situated in Section 26, Township 31N, Range 11W, of San Juan County, New Mexico (Figure 1). A Site detail map is included as Figure 2.

#### I.I Site Background

The Wilmuth No. I natural gas production well was spudded in 1958 by El Paso Natural Gas Company. Meridian Oil, Inc., a subsidiary of Burlington Resources, Inc. (Burlington), took over operation of the well on November 1, 1986. ConocoPhillips acquired Burlington on March 31, 2006.

A release of approximately 22 barrels (bbls) of produced water occurred within the bermed area around the produced water tank on May 17, 2001. Twenty bbls were later recovered. A release of condensate occurred on December 17, 2002 from a corrosion hole in the condensate tank. Burlington excavated a total of 85 cubic yards of impacted soil and disposed of it at JFJ landfarm, located in Aztec, NM.

ConocoPhillips personnel notified the New Mexico Oil Conservation Division (NMOCD) in December 2009 of groundwater seeping into two separate areas that were undergoing excavation to remove stained soil discovered during line tie-in procedures. Four groundwater monitoring wells were subsequently installed under the supervision of Tetra Tech in April, 2010. A generalized geologic cross section was produced using boring logs from monitoring well installation at the Site. The cross section is presented as **Figure 3**.

Tetra Tech began quarterly sampling immediately following development of the wells by collecting a baseline round of groundwater samples on April 8, 2010. The most recent sampling event took place on March 16, 2011, and represents the fifth round of quarterly sampling conducted by Tetra Tech at the Site. The historical timeline is also presented in **Table 1**.

# 2.0 MONITORING SUMMARY, SAMPLING METHODOLOGY, AND ANALYTICAL RESULTS

#### 2.1 Monitoring Summary

A groundwater quality monitoring event was conducted on March 16, 2011 at the Wilmuth No. 1 site. Prior to collection of groundwater samples from Monitor Wells MW-1, MW-2, MW-3 and MW-4, depth to

groundwater in each well was determined. The casings for Site monitoring wells were surveyed on April 8, 2010 using an arbitrary reference-elevation of 100 feet above mean sea level (amsl). The data obtained from the Site survey and groundwater elevations collected during the March 2011 sampling event were used to create a groundwater elevation contour map for the Site (**Figure 4**). Using these data, it was determined that the groundwater flow direction at the Site is to the southwest. Numerical groundwater elevation information from March 2011 is also included in **Table 2**.

#### 2.2 Groundwater Sampling Methodology

During the March 2011 groundwater monitoring event, Site monitor wells were purged of at least 3 casing volumes of groundwater using a 1.5-inch diameter, polyethylene, dedicated bailer. While bailing each well, groundwater parameter data such as temperature, pH, conductivity, total dissolved solids (TDS), oxidation-reduction potential (ORP) and dissolved oxygen (DO) were collected using a YSI 556 multi-parameter sonde and results were recorded on a Tetra Tech Water Sampling Field Form (**Appendix A**). Groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain-of-custody documentation. Analysis of all groundwater samples collected during the March 2011 event was performed by Southern Petroleum Laboratory (SPL) of Houston, Texas.

Samples collected during the March 2011 sampling event were analyzed for benzene, toluene, ethylbenzene, total xylenes (BTEX) by EPA Method 8260B; sulfate by EPA Method 300.0; and dissolved manganese by EPA Method 6010B. This list of constituents was determined based on the analytical results from the groundwater baseline and initial Site groundwater concerns. Results of the March 2011 groundwater monitoring event are summarized in **Table 3** and discussed in more detail in the following section.

#### 2.3 Groundwater Sampling Analytical Results

The New Mexico Water Quality Control Commission (NMWQCC) mandates that groundwater quality in New Mexico be protected, and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC). Groundwater quality standards have been set for the protection of human health, domestic water supply, and irrigation use. Exceedences of NMWQCC groundwater quality standards in Site monitor wells are discussed below. Results are summarized in **Table 3**.

#### Dissolved Manganese

The groundwater quality standard for dissolved manganese is 0.2 micrograms per liter (mg/L). Groundwater collected from all Site monitoring wells was found to be above the standard for dissolved manganese during March 2011. Manganese concentrations were 2.36 mg/L, 1.57 mg/L, 1.57 mg/L, and 2.18 mg/L for wells MW-1, MW-2, MW-3, and MW-4, respectively.

#### • Total Dissolved Solids

• The groundwater quality standard for Total Dissolved Solids (TDS) is 1,000 mg/L. Groundwater collected from Monitor Well MW-1was found to contain TDS at a concentration of 1,200 mg/L during the March 2011 quarterly sampling event. All other Site monitor wells contained concentrations of TDS below the NMWQCC standard.

No other analyzed constituents, including BTEX, were found above NMWQCC groundwater quality standards in Site monitor wells during the March 2011 monitoring event.

The corresponding laboratory analytical report for the March 2011 groundwater sampling event, including a quality control summary, is included in **Appendix B**.

#### 3.0 CONCLUSIONS AND RECOMMENDATIONS

Tetra Tech conducted the fifth round of quarterly groundwater monitoring at the Wilmuth No. I site on March 16, 2011. The groundwater monitoring wells will continue to be sampled on a quarterly monitoring schedule, and the next groundwater monitoring event at the Site is scheduled for June 2011. The groundwater flow direction at the Site was determined to be to the southwest as of March 2011. Tetra Tech will continue to monitor the groundwater flow direction at the Site and will note any changes should they occur.

In order to move toward NMOCD remediation project closure, Tetra Tech will continue to monitor for BTEX, chloride, sulfate, TDS and dissolved manganese. Tetra Tech recommends the continuation of quarterly groundwater monitoring until these constituents are all below NMWQCC standards, appear stable or reach regional background levels. Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.

# **FIGURES**

Site Location Map
 Site Detail Map
 Generalized Geologic Cross Section
 Groundwater Elevation Contour Map – March 2011









# TABLES

Site History Timeline
 Groundwater Elevation Data Summary (April 2010 – March 2011)
 Groundwater Laboratory Analytical Results Summary (April 2010 – March 2011)

| Table 1. ConocoPhil                    | lips Company, Wilmu                                                                         | th No. 1 - Site History Timeline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date/Time Period                       | Event/Action                                                                                | Description/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| July 24, 1958 to<br>August 11, 1958    | Production Well<br>Completion                                                               | Well spudded and completed by El Paso Natural Gas Company.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| November 1, 1986                       | Change of Operator                                                                          | Operator changed from EI Paso Natural Gas Company to Meridian Oil Inc. (a subsidiary of Burlington Resources, Inc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| May 17, 2001                           | Release                                                                                     | Due to a broken dump arm, 22 barrels (bbls) of produced water was released within the bermed area around the produced water tank. 20 bbls were reported to be recovered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| December 17, 2002                      | Release                                                                                     | A corrosion hole in the bottom of a steel pit tank that collected fluids from the separator and condensate tank drain allowed an unknown volume of produced water and condensate to leak onto the ground. All fluids were contained inside the tank berm. Impacted gravel and soils were excavated and disposed of at JFJ Landfarm. Excavation dimensions were approximately 30 feet by 25 feet by 3 feet for a total 85 cubic vards.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| May 21, 2004                           | Workover Pit Proposal<br>Approved                                                           | A lined workover pit was approved by Denny Faust of the NMOCD as detailed in Burlington Resources general pit construction plan dated<br>April 26, 2004 which was also approved by the NMOCD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| March 31, 2006                         | Change of Operator                                                                          | ConocoPhillips Company completed acquisition of Burlington Resources.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| December 22 and 23,<br>2009            | Potential for<br>Groundwater Impacts<br>Discovered                                          | ConocoPhilips company notified Brandon Powell and Kelly Roberts of the OCD about groundwater seeping into two excavated areas on<br>Stie where discolored soils had been found during line lie-in procedures. The type, volume and origin of the initial release was unknown.<br>Groundwater samples were collected from the two areas and analyzed by Envirotech Inc. of Farmington, NM for benzene, toluene,<br>eithylbenzene and total xylenes (BTEX), total petroleum hydrocarbons (TPH) and chloride. Analytical results indicate that BTEX and TPH<br>are below NMWQCC groundwater standards, however, chloride was present at a concentration above the standard of 250 mg/L in the area of the excavation and a concentration of 950 mg/L in an trench associated with line tie-in<br>procedures. Soil samples were collected from the same trench groundwater samples were collected from the same trench groundwater standards from the same trench groundwater standard of 250 mg/L with a<br>procedures. Soil samples were collected from the same trench groundwater samples were collected from where discolored soil were below NMOCD<br>procedures. Soil samples were collected from the same trench groundwater samples were collected from where discolored soil action levels. |
| January 7, 2010                        | NMOCD<br>Correspondence                                                                     | C-141 Release Notification and Corrective Action form was submitted to the NMOCD by ConocoPhilips.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| April 5, 2010 through<br>April 7, 2010 | Groundwater<br>Groundwater<br>Monitoring Well<br>Installation and<br>Baseline Soil Sampling | Tetra Tech supervised the installation of 4 groundwater Monitoring Weills; MW-1, MW-2, MW-3 and MW-4, by Enviro-Drill Inc. of<br>Abuquerque, NM. Each well was installed with 25 feet of screen. MW-1, MW-2 and MW-3 were all set at 30 feet below ground surface. M<br>4 was set at 35 feet below ground surface. A confining layer of gray sillstone was found at depth in each of the four boring locations. Soil<br>samples were collected from all four soil borings and analyzed for major ions, total metals, semi-volatile organic compounds (SVOCs),<br>volatile organic compounds (VOCs) including BTEX, disert range organics, and gasoline range organics. Analytical results for all soil<br>samples were below NMOCD recommended soil action tevels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| April 8, 2010                          | Baseline Groundwater<br>Sampling                                                            | Tetra Tech conducted the initial groundwater sampling from Site Monitoring Wells, MW-1, MW-2, MW-3 and MW-4. A baseline suite was<br>completed including major ions, NMWQCC dissolved metals, SVOCs, VOCs including BTEX, diesel range organics. and gasoline range<br>organics. All four Site monitoring wells were below NMWQCC standards for BTEX constituents. All four wells were above the standard for<br>dissolved manganese. MW-1, MW-2 and MW-4 were above the standard for total dissolved solids (TDS), MW-1 and MW-4 were also<br>above the standard for sulfate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| June 9, 2010                           | Quarterly<br>Groundwater<br>Monitoring Event                                                | Quarterly groundwater sampling was conducted by Tetra Tech. Samples were collected from all site monitoring wells and analyzed for<br>BTEX, dissound manganese, chioride, suifate, and TDS. All four site monitoring wells were below NMWQCC standards for BTEX<br>constituents. Samples collected from all four site wells were above the standard for dissolved manganese. Samples collected from MW-1,<br>MW-2 and MW-4 were above the standard for TDS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| September 20, 2010                     | Quarterly<br>Groundwater<br>Monitoring Event                                                | Quarterly groundwater sampling was conducted by Tetra Tech. Samples were collected from all Site monitoring wells and analyzed for<br>IETX, dissound manganese, chindre, suifate, and TDS. All four Site monitoring wells were below NMWQCC standards for BTEX<br>constituents. Samples collected from all four site wells were above the standard for dissolved manganese. Samples collected from MW-1 and MW-4 were above the standard for TDS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| December 16, 2010                      | Quarterly<br>Groundwater<br>Monitoring Event                                                | Forth quarterly groundwater sampling was conducted by Tetra Tech. Samples were collected from all Stle monitoring wells and analyzed<br>for ETEX, discoved manaparese, suitable, and TDS. All four Stle monitoring wells were below NMWOCC standards for BTEX constituents.<br>Samples collected from all four Stle wells were above the standard for dissolved manganese. Samples collected from MW-1, MW-2 and<br>MW-4 were above the standard for TDS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| March 16, 2011                         | Quarterly<br>Groundwater<br>Monitoring Event                                                | Fifth quarterly groundwater sampling was conducted by Tetra Tech. Samples were collected from all Site monitoring wells and analyzed to<br>IETX; dissoved manganese, chinche, suffate, and TDS. All four Site monitoring wells were below NMWQCC standards for chloride,<br>suffate and BTEX constituents. Samples cuelced from all four Site wells were above the standard for dissolved manganese. The sample<br>collected from MW-1 was above the standard for TDS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

1 Wilm å ć

I collected from MW-1 was above the MMCCD = New Mexico Oil Conservation Division To MMCCC = New Mexico Oil Conservation Division mg/Mg - dry = milligrams per Nilogram, analyzed after residual water removed from the soil µg/kg - dry = micrograms per Nilogram

Tetra Tech, Inc.

5/20/2011

Page 1 of 1

| -                                  |
|------------------------------------|
| Ξ                                  |
| U,                                 |
| 5                                  |
| Ŧ                                  |
| ñ                                  |
| -                                  |
| Š                                  |
| .9                                 |
| f                                  |
| S                                  |
| đ                                  |
| ũ                                  |
| 1                                  |
| đ                                  |
| Ť                                  |
| 2                                  |
| <del>2</del>                       |
| č                                  |
| 1                                  |
| ē                                  |
| Ĕ,                                 |
| C                                  |
| I                                  |
| T                                  |
| 2                                  |
| 2                                  |
| 4                                  |
|                                    |
| £                                  |
| uth                                |
| nuth                               |
| lmuth                              |
| Vilmuth                            |
| Wilmuth                            |
| v. Wilmuth                         |
| nv. Wilmuth                        |
| anv. Wilmuth                       |
| pany. Wilmuth                      |
| mpany. Wilmuth                     |
| ompany. Wilmuth                    |
| Company, Wilmuth                   |
| s Company, Wilmuth                 |
| os Company. Wilmuth                |
| lins Company, Wilmuth              |
| illins Company, Wilmuth            |
| Phillins Company, Wilmuth          |
| Phillips Company, Wilmuth          |
| soPhillins Company, Wilmuth        |
| ocoPhillins Company. Wilmuth       |
| nocoPhillins Company, Wilmuth      |
| onocoPhillins Company. Wilmuth     |
| ConocoPhillips Company, Wilmuth    |
| ConocoPhillips Company, Wilmuth    |
| 2. ConocoPhillins Company, Wilmuth |

|         | onocornilips            | CUIIDAIIY, WI           |                    | GIOUIIUWALEI EIEVALI | UII Data Summary                       |                                   |
|---------|-------------------------|-------------------------|--------------------|----------------------|----------------------------------------|-----------------------------------|
| Mell ID | Total Depth<br>(ft bgs) | Screen<br>Interval (ft) | *Elevation<br>(ft) | Date Measured        | Depth to Groundwater<br>(ft below TOC) | Relative Groundwater<br>Elevation |
|         |                         |                         |                    | 4/8/2010             | 5.21                                   | 90.59                             |
|         |                         |                         |                    | 6/9/2010             | 1.94                                   | 93.86                             |
| MW-1    | 30.00                   | 4.5 - 29.5              | 95.8               | 9/20/2010            | 1.51                                   | 94.29                             |
|         |                         |                         |                    | 12/16/2010           | 3.31                                   | 92.49                             |
|         |                         |                         |                    | 3/16/2011            | 4.98                                   | 90.82                             |
|         |                         |                         |                    | 4/8/2010             | 6.48                                   | 89.32                             |
|         |                         |                         |                    | 6/9/2010             | 3.68                                   | 92.12                             |
| MW-2    | 30.00                   | 4.5 - 29.5              | 95.8               | 9/20/2010            | 3.28                                   | 92.52                             |
|         |                         |                         |                    | 12/16/2010           | 4.83                                   | 90.97                             |
|         |                         |                         |                    | 3/16/2011            | 6.31                                   | 89.49                             |
|         |                         |                         | ·                  | 4/8/2010             | 6.37                                   | 89.95                             |
|         |                         |                         |                    | 6/9/2010             | 3.39                                   | 92.93                             |
| MW-3    | 30.00                   | 4.5 - 29.5              | 96.32              | 9/20/2010            | 3.02                                   | 93.30                             |
|         |                         |                         |                    | 12/16/2010           | 4.65                                   | 91.67                             |
|         |                         |                         |                    | 3/16/2011            | 6.20                                   | 90.12                             |
|         |                         |                         | •                  | 4/8/2010             | 9.68                                   | 89.02 <sup>(1)</sup>              |
|         |                         | -                       |                    | 6/9/2010             | 4.41                                   | 94.29                             |
| MW-4    | 35.00                   | 9.5 - 34.5              | 98.7               | 9/20/2010            | 3.78                                   | 94.92                             |
|         |                         |                         |                    | 12/16/2010           | 5.70                                   | 93.00                             |
|         |                         |                         |                    | 3/16/2011            | . 7.44                                 | 91.26                             |
|         |                         |                         |                    |                      |                                        |                                   |

TOC = Top of casing ft = Feet

bgs = Below ground surface \* = Elevation relative to an arbitrary reference elevation of 100 feet (1) = Anomalous data point

Tetra Tech, Inc.

5/31/2011

1 of 1

| Table 3. ConocoPhil | lips Company,       | Wilmuth No. 1 - Ground | water Laboratory Analy | ytical Results Summary |                      |                 |                | •                                |                               |
|---------------------|---------------------|------------------------|------------------------|------------------------|----------------------|-----------------|----------------|----------------------------------|-------------------------------|
| Well ID             | Date                | Benzene (µg/L)         | Toluene (µg/L)         | Ethylbenzene (µg/L)    | Total Xylenes (µg/L) | Chloride (mg/L) | Sulfate (mg/L) | Total Dissolved<br>Solids (mg/L) | Dissolved Manganese<br>(mg/L) |
|                     | 4/8/2010            | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | 143             | 879            | 1780                             | 3.03                          |
|                     | 6/9/2010            | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | 26.9            | 375            | 1190                             | 1.08                          |
| MW-1                | 9/20/2010           | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | 30.0            | 425            | 1020                             | 0.933                         |
|                     | 12/16/2010          | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | NA              | 381            | 1010                             | 0.896                         |
|                     | 3/16/2011           | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | 26.0            | 499            | 1200                             | 2.36                          |
|                     | 4/8/2010            | < 1.0                  | 1.1                    | < 1.0                  | L                    | NA              | NA             | NA                               | NA                            |
|                     | 6/9/2010            | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | NA              | NA             | NA                               | NA                            |
| Duplicate           | 9/20/2010           | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | NA              | NA             | NA                               | NA                            |
|                     | 12/16/2010          | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | NA              | NA             | NA                               | NA                            |
|                     | 3/16/2011           | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | NA              | NA             | NA                               | NA                            |
|                     | 4/8/2010            | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | 27.7            | 533            | 1120                             | 2.48                          |
|                     | 6/9/2010            | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | 19.8            | 337            | 1070                             | 1.66                          |
| MW-2                | 9/20/2010           | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | 20.4            | 304            | 1130                             | 0.822                         |
|                     | 12/16/2010          | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | NA              | 281            | 1410                             | 1.37                          |
|                     | 3/16/2011           | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | 20.1            | 280            | 858                              | 1.57                          |
|                     | 4/8/2010            | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | 19.2            | 259            | 930                              | 1.38                          |
|                     | 6/9/2010            | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | 18.5            | 241            | 269                              | 1.43                          |
| MW-3                | 9/20/2010           | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | 20.3            | 271            | 830                              | 0.736                         |
|                     | 12/16/2010          | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | NA              | 265            | 1200                             | 1.33                          |
|                     | 3/16/2011           | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | 18.1            | 263            | 896                              | 1.57                          |
|                     | 4/8/2010            | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | 40              | 918            | 1900                             | 3.94                          |
|                     | 6/9/2010            | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | 29.6            | 542            | 1380                             | 3.44                          |
| MW-4                | 9/20/2010           | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | 22.4            | 445            | 1160                             | 2.59                          |
|                     | 12/16/2010          | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | NA              | 464            | 1350                             | 2.85                          |
|                     | 3/16/2011           | < 1.0                  | < 1.0                  | < 1.0                  | < 1.0                | 20.6            | 385            | 026                              | 2.18                          |
| NMWQCC Ground       | vater Quality<br>Is | 10 (µg/L)              | 750 (µg/L)             | 750 (µg/L)             | 620 (µg/L)           | 250 (mg/L)      | 600 (mg/L)     | 1000 (mg/L)                      | 0.2 (mg/L)                    |
|                     |                     |                        |                        |                        |                      |                 |                |                                  |                               |

j

5/20/2011

1 of 1

Notes:MW = monitoring wellMW = monitoring wellMWVQCC = New Mexico Water Quality Control CommissionConstituents in BOLD are in excess of NMVQCC groundwater quality standardsµg/L = micrograms per liter (parts per billion)mg/L = milligrams per liter (parts per million)< 1.0 = Below laboratory detection limit of 1.0 µg/L</td>MA = not analyzed

i

Tetra Tech, Inc.

# **APPENDIX A**

March 2011 Quarterly Groundwater Sampling Field Forms

| TETRATECH, INC.                                              | WATER                                                | RSAMPLING                                   | FIELD FOR                        | M                      |          |              |
|--------------------------------------------------------------|------------------------------------------------------|---------------------------------------------|----------------------------------|------------------------|----------|--------------|
| Project Name Wilmuth No. 1                                   |                                                      |                                             | Page                             | 1                      | of       | 4            |
| ect No.                                                      |                                                      |                                             |                                  |                        | •        |              |
| Site Location Aztec, NM                                      |                                                      |                                             |                                  |                        |          |              |
| Site/Well No. <u>MW-1</u>                                    | Coded/<br>Replicate No.                              | 630                                         | Date                             | 3.1011                 |          |              |
| Weather MANY, Wot                                            | Time Sampling<br>Began                               |                                             | Time Samplir<br>Completed        | ŋg                     | 1625     | >            |
| Too                                                          | EVACUA                                               | TION DATA                                   |                                  |                        |          |              |
| Description of Measuring Point (MP_Top o                     | of Casing                                            |                                             | <u></u>                          |                        |          |              |
| Height of MP Above/Below Land Surface                        |                                                      | MP Elevation                                |                                  | •                      |          | 95.8         |
| Total Sounded Depth of Well Below MP                         | 25,44                                                | Water-Level E                               | levation                         | -                      |          |              |
| Held Depth to Water Below N                                  | 498 H                                                | Diameter of C                               | asino > 2"                       |                        |          |              |
| Wet Water Column in W                                        | ell 20,46                                            | Gallons Pump<br>Prior to Sampl              | ed/Bailed                        | <u>ا</u> ر             | )        |              |
| Gallons per Fo                                               | oot 0.16                                             |                                             |                                  |                        |          |              |
| Gallons in W                                                 | ell 3.274                                            | Sampling Pun<br>(feet below lar             | np Intake Setting<br>nd surface) |                        |          |              |
| Purging Equipment Purge pumpy Bai                            | $\chi_3 = 9$                                         | .82                                         | / <u></u>                        |                        |          |              |
| · • • • • • • • • • • • • • • • • • • •                      |                                                      |                                             |                                  |                        | · .      | · · ·        |
| Time Temperature (°C)                                        | DH Conductivity (uS/                                 | $\frac{\text{rield PARAMete}}{\text{rm}^3}$ |                                  | DO %                   |          | Volume (gal) |
| 1616 1440                                                    | 7.58 1053                                            | 0.925                                       | 17.02                            | 840                    | -75.2    | 9.6          |
| 1618 11.19                                                   | 7.42 908                                             | 208                                         | 12 4.R                           | 37.7                   | -Inda    | 4.5          |
| 620 .00                                                      | 7.35 959                                             | 0.849                                       | 3.17                             | 28.6                   | -45.1    | 10.0         |
|                                                              |                                                      |                                             |                                  |                        |          |              |
|                                                              |                                                      |                                             |                                  |                        |          |              |
| Sampling Equipment <u>Purge</u>                              | Pump/Bailer                                          |                                             |                                  | <u> </u>               |          |              |
| Constituents Sampled                                         | Container Descri                                     | ption                                       | . I.                             | Pres                   | ervative |              |
| 125, Sultate                                                 | _3/02. Mas                                           | stic.                                       | <u> </u>                         | <u> </u>               |          |              |
| Dissolved Mn                                                 | POZ Pla                                              | stic                                        | Nov                              | yL                     |          |              |
| BIEN                                                         | (3) 40 mL                                            | . VOAS                                      | <u>[]C</u>                       | Le                     |          |              |
| Remarks Had is brown                                         | 12 siltu no.                                         | odar or                                     | sheen a                          | obser                  | red      |              |
| Sampling Personnel Christine Mathew                          | s. Cassie Brown                                      |                                             |                                  |                        | <u></u>  |              |
|                                                              | <u></u>                                              |                                             |                                  |                        |          | 1            |
| ,                                                            | Well Casi                                            | ng Volumes                                  |                                  |                        |          |              |
| Gal./ft. $1 \frac{14}{12} = 0.07$<br>$1 \frac{12}{2} = 0.10$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 3" =<br>3" ½ =                              | = 0.37<br>= 0.50                 | 4" = 0.65<br>6" = 1.46 |          |              |
|                                                              |                                                      |                                             |                                  |                        |          | •            |

.

•

|                                       |                                        |                                       |                             |                                       | ,                 |
|---------------------------------------|----------------------------------------|---------------------------------------|-----------------------------|---------------------------------------|-------------------|
| TETRA TECH, INC.                      | WATE                                   | R SAMPLING                            | FIELD FORM                  |                                       |                   |
| Project Name Wilmuth No. 1            |                                        |                                       | Page                        | 2 of                                  | 4                 |
| ,act No.                              | ······································ |                                       |                             |                                       |                   |
| Site Location Aztec, NM               |                                        |                                       |                             |                                       |                   |
| Site/Well No. MW-2                    | Coded/<br>Replicate No.                |                                       | Date 3.10.1                 | 1                                     |                   |
| Alian 1                               | Time Sampling                          | 55                                    | Time Sampling               | \$35                                  |                   |
| Weather Winy, Wor                     | Began                                  |                                       |                             |                                       |                   |
|                                       | EVACU.                                 | ATION DATA                            |                             |                                       |                   |
| Description of Measuring Point (MI 10 |                                        |                                       | <u> </u>                    |                                       |                   |
| Height of MP Above/Below Land Surf    | ace                                    | MP Elevation                          |                             | · · · · · · · · · · · · · · · · · · · | 95.8              |
| I otal Sounded Depth of Well Below N  | np <u>(02.1</u>                        | Water-Level El                        | evation                     |                                       |                   |
| Held Depth to Water Below             | MP <u>(0.01</u>                        | Diameter of Ca<br>Gallons Pumpe       | sing <u>2</u> "<br>d/Bailed | 26                                    |                   |
| Wet Water Column in W                 |                                        | Prior to Sampli                       |                             | D                                     | <br>              |
| Gallons per F                         | oot 0.16                               | Sampling Pump                         | o Intake                    | <b></b>                               | •                 |
|                                       | (12,37)                                | (feet below land                      | <u> </u>                    | · · · · · · · · · · · · · · · · · · · |                   |
| Purging Equipment Purge pump          | 7 Bailer                               |                                       |                             |                                       | •••• • <u>•</u> • |
| Time Temperature (°C)                 | DH Conductivity (uS/                   |                                       |                             | % ORP (m\/)                           | Volume (gal.)     |
| 1528 12.79                            | 7.10 850                               | 0.720                                 | 1.51 14                     | .3 25                                 | 11.5              |
| 1536 12.05                            | 7.14 863                               | 0.750                                 | 1.52 14                     | 2 29.0                                | ;2.0              |
| 1531 11.69                            | 7.15 872                               | 0.760                                 | 1,58, 14                    | 1.6 30.6                              | 12.5              |
|                                       |                                        |                                       |                             |                                       | <u></u>           |
| Sampling Equipment Pu                 | Irge Pumo/Bailer                       | · ·                                   |                             | II                                    |                   |
| Constituents Sampled                  | Container Descri                       | ption                                 |                             | Preservative                          |                   |
| TOS culfate                           | 3202. Plast                            | rC.                                   | Non                         | L                                     |                   |
| Dissolved MMn                         | 1.602.0/95                             | nc                                    | Nona                        | 2                                     |                   |
| BTEX                                  | (3) 40 mi                              | VIRS                                  | HI                          |                                       |                   |
| Remarks H20 is br                     | own w/ sitt.                           | no odo                                | ror che                     | en obser                              | red               |
| Sampling Personnel Christine Ma       | thews, Cassie Brown                    |                                       | ·.                          | <u></u>                               |                   |
|                                       | Well Car                               | sing Volumes                          | <u></u>                     | ·                                     |                   |
| Gal./ft. 1 ¼" = 0.0                   | )77 2" = 0.16                          | 3" =                                  | 0.37 4" =                   | 0.65                                  |                   |
| 1 ½" = 0.1                            | $10 	 2 \frac{1}{2} = 0.24$            | 3" ½ =                                | 0.50 6" =                   | 1.46                                  |                   |
|                                       | <b></b>                                | · · · · · · · · · · · · · · · · · · · |                             |                                       |                   |
| ,                                     |                                        |                                       |                             |                                       |                   |

.

| TETRATECH,                | NC.                        |                     | WA            | ATER                  | SAMPLING       | G FIELD FO                | RM              |                                              | ·             |
|---------------------------|----------------------------|---------------------|---------------|-----------------------|----------------|---------------------------|-----------------|----------------------------------------------|---------------|
| Project Name Wilm         | uth No. 1                  |                     |               |                       |                | Page                      | e3              | of                                           | 4             |
| s ect No.                 | ,<br>                      |                     |               |                       | <u> </u>       |                           |                 |                                              | t             |
| Site Location Azteo       | , NM                       |                     |               |                       |                |                           |                 |                                              |               |
| Site/Well No. <u>MW-3</u> | 3 .                        | Coded/<br>Replicate | No.           |                       |                | Date                      | 3.16            | l[                                           |               |
| Weather                   | my, hot                    | Time San<br>Began   | npling        | 15 K                  | 5              | Time Samplin<br>Completed | ۱g              | 1545                                         | )             |
| •                         | 700                        |                     | EV            | ACUATI                | ON DATA        |                           | ·               |                                              |               |
| Description of Measu      | ring Point (MP) <u>Top</u> | of Casing           |               |                       |                |                           |                 |                                              |               |
| Height of MP Above/       | Below Land Surface         |                     |               |                       | MP Elevation   |                           | · · · · · · · - |                                              | 96.32         |
| ,Total Sounded Depth      | of Well Below MP           | 32.6                | <del>68</del> |                       | Water-Level E  | Elevation                 |                 |                                              |               |
| Held Depth                | n to Water Below MF        | <u>ie.2</u>         | 0             |                       | Diameter of C  | asing <u>2"</u>           |                 |                                              | <u> </u>      |
| Wet W                     | Vater Column in We         | <u>   26.</u>       | 88            |                       | Prior to Samp  | ling                      |                 | •                                            |               |
|                           | Gallons per Foo            |                     | 0.16          | ·                     | Sameling Dun   | nn Intoko Sottina         |                 |                                              |               |
|                           | Gallons in We              | <u>4.22</u>         | X3=           |                       | (feet below la | nd surface)               |                 |                                              |               |
| Purging Equipment         | Purge pump// Ba            | ailer               | (12.6)        |                       |                |                           |                 | · · ·                                        |               |
| ·                         |                            |                     | SAMPLING I    | DATA/FI               |                |                           | ·<br>           | ·                                            | ·<br>         |
| Time Tem                  | iperature (°C)             | pH                  | Conductivity  | (µS/cm <sup>3</sup> ) | TDS (g/L)      | DO (mg/L)                 |                 | ORP (mV)                                     | Volume (gal.) |
|                           | 11.00 1                    | 1.00                | 162           |                       | 0.66           | 2 2 2 2 7                 | 210             | 40.3                                         | 1.20          |
| 1544                      | 1.83                       | 7.20                | 760           | 5                     | 0.66           | 1 1 95                    | 18.0            | 40.8                                         | 25            |
|                           |                            |                     | <u> </u>      |                       |                |                           |                 |                                              |               |
|                           |                            |                     |               |                       | <br>           |                           |                 |                                              |               |
| Sampling Equipment        | Purç                       | ge Pump/Ba          | ailer         |                       |                |                           | •               |                                              |               |
| Constituents S            | ampled                     |                     | Container D   | escriptio             | <u>n</u>       |                           | Pres            | ervative                                     | · .           |
| Sultate;                  | IDS                        | 3                   | 202 F         | <u>)jas</u>           | trc_           |                           | None            |                                              |               |
| _ <u>Dissolveo</u>        | <u>i</u> mn                |                     | 002           | Plas                  | HC_            |                           | More            | <u>,                                    </u> |               |
| -DIRX                     |                            | -(5                 | ) 40          | ML                    | VOHS           | ff                        |                 |                                              |               |
| Remarks                   | 20 is b                    | nxun                | È si          | Hy,                   | no oc          | lar ar                    | - she           | en obs                                       | iened.        |
| Sampling Personnel        | Christine Mather           | ws, Cassie          | Brown         |                       |                |                           |                 |                                              |               |
| Г <sup></sup>             |                            |                     | We            | II Casing             | g Volumes      |                           | · · ·           | · · · · · · · · · · · · · · · · · · ·        |               |
| Gal./                     | ft. 1¼" = 0.077            | 7                   | 2" = 0.16     | j.                    | 3"             | = 0.37                    | 4" = 0.65       |                                              |               |
|                           | 1 ½" = 0.10                |                     | 2 ½" = 0.24   | L.                    | 3" 1⁄2         | = 0.50                    | 6" = 1.46       |                                              |               |
| <b></b>                   |                            |                     |               |                       |                |                           | · · ·           |                                              | •             |

| TETRA                      | TECH, INC.            | W                          | ATER SAMPLIN                     | G FIELD FOR                         | RM        |                                       |               |
|----------------------------|-----------------------|----------------------------|----------------------------------|-------------------------------------|-----------|---------------------------------------|---------------|
| Project Name               | Wilmuth No. 1         |                            |                                  | Page                                | ə4        | of                                    | 4             |
| ject No.                   |                       | · ·                        |                                  |                                     |           |                                       |               |
| Site Location              | Aztec, NM             |                            |                                  |                                     |           |                                       |               |
| Site/Well No.              | MW - 4                | Coded/<br>Replicate No.    |                                  | Date                                | 3:16.     | 11                                    |               |
| Weather                    | Sunny, hot,           | Time Sampling<br>Began     | 600                              | Time Samplir<br>Completed           | ng        | 1635                                  | )<br>         |
|                            | -700                  | E                          | VACUATION DATA                   |                                     | . •       |                                       |               |
| Description of             | Measuring Point (MP   | Top of Casing              |                                  |                                     |           |                                       |               |
| Height of MP A             | Above/Below Land Su   | rface                      | MP Elevatio                      | on                                  |           |                                       | 98.7          |
| Total Sounded              | Depth of Well Below   | MP 32.44                   | Water-Leve                       | Elevation                           |           |                                       |               |
| Heid                       | Depth to Water Below  | NMP 7,44                   | Diameter of                      | Casing <u>2"</u>                    |           |                                       |               |
| Wet                        | Water Column in       | Well 25                    | Gallons Pur<br>Prior to San      | nped/Bailed                         | 12        | 2.25                                  |               |
|                            | -<br>Gallons per      | Foot # 0.16                |                                  | · · · ·                             |           |                                       |               |
|                            | Gallons in            | Well 4x3=(12)              | Sampling P<br>(feet below        | ump Intake Setting<br>land surface) |           |                                       |               |
| Purging Equip              | ment <u>Purge pum</u> | p//Bailer                  |                                  |                                     |           | <b>S</b> 10                           |               |
|                            | •                     | SAMPLING                   | DATA/FIELD PARAME                | TERS                                |           | • •                                   |               |
| Time                       | Temperature (°C)      | pH Conductivit             | y (µS/cm <sup>3</sup> ) TDS (g/l | _) DO (mg/L)                        | DO %      | ORP (mV)                              | Volume (gal.) |
| 1626                       | 2,2                   | 1.37 100                   | 3 0.86                           | 4 3.60                              | 33.6      | 4.0                                   | 1.0           |
| 1628                       | 11.77                 | 1.32 103                   | 35 0.90                          | 0 4.10                              | 38.       | 11.3                                  | 11.5          |
| 1630                       | 1.84                  | 7.31 10-                   | 27 0.8                           | 11 3.92                             | 36.5      | 15.5                                  | 12.0          |
|                            |                       |                            | ·                                |                                     | <u> </u>  | · .                                   |               |
|                            |                       |                            |                                  |                                     |           |                                       |               |
| Sampling Equi              | pment                 | Purge Pump/Bailer          | ·                                | ·                                   |           |                                       |               |
| <u>Constitu</u><br>S N C N | ents Sampled          | Container                  | Description                      |                                     | Prese     | rvative                               | • •           |
| Juitat                     | T, TUJ                | 32 62 0                    | laste                            | NOY                                 | <u>e</u>  | · · · · · · · · · · · · · · · · · · · |               |
| 1.220                      | Nea Win               | 1602                       | plastic                          | <u></u> <u>No</u> `                 | ne        | ······                                |               |
| <u></u>                    | EX                    | (37 40-                    | -02 VOAS                         | <u> </u>                            |           |                                       |               |
| Remarks                    | H20 is                | brown & s                  | itte, no c                       | odar ar e                           | sheer     | obse                                  | ried.         |
| Sampling Pers              | onnel Christine M     | athews, Cassie Brown       | 2 f                              |                                     |           |                                       |               |
|                            |                       | ······                     | ell Casino Volumes               |                                     |           |                                       | •             |
|                            | Gal./ft. 1 ¼" = 0     | ).077 2" = 0. <sup>-</sup> | 16 3"                            | = 0.37                              | 4" = 0.65 |                                       |               |
|                            | 1 ½" = 0              | ).10 2 ½" = 0.2            | 24 3" ½                          | = 0.50                              | 6" = 1.46 |                                       |               |

. .

|

Marc

APPENDIX B

### March 2011 Quarterly Groundwater Laboratory Analytical Report

.



#### **Conoco Phillips**

| Certifi                               | cate of A  | nalysis Number:  |               |
|---------------------------------------|------------|------------------|---------------|
|                                       | <u>110</u> | <u>30462</u>     |               |
| <u>Report To:</u>                     |            | Project Name:    | Wilmuth No. 1 |
| Tetra Tech, Inc.                      |            | <u>Site:</u>     | Aztec, NM     |
| Kelly Blanchard                       |            | Site Address:    |               |
| 6121 Indian School Road, N.E.         | ,          |                  |               |
| Suite 200                             |            |                  |               |
| Albuquerque                           | '          | PO Number:       |               |
| NM                                    |            | State:           | New Mexico    |
| 87110-                                |            | State Cert. No.: |               |
| ph (505) 237-8440 fax: (505) 881-3283 |            | Date Reported:   | 3/28/2011     |

## This Report Contains A Total Of 18 Pages

## Excluding This Page, Chain Of Custody

And

### Any Attachments

3/28/2011

Date

Test results meet all requirements of NELAC, unless specified in the narrative. Version 2.1 - Modified February 11, 2011



#### Case Narrative for: Conoco Phillips

#### **Certificate of Analysis Number:** 11030462 **Report To:** Wilmuth No. 1 **Project Name:** Aztec, NM Site: Tetra Tech, Inc. Kelly Blanchard Site Address: 6121 Indian School Road, N.E. Suite 200 PO Number: Albuquerque State: New Mexico NM 87110-State Cert. No .: ph (505) 237-8440 fax: (505) 881-3283 **Date Reported:** 3/28/2011

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

#### II: ANALYSES AND EXCEPTIONS:

Per the Conoco Phillips TSM Revision 0, a copy of the internal chain of custody is to be included in final data package. However, due to LIMS limitations, this cannot be provided at this time.

#### **III. GENERAL REPORTING COMMENTS:**

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by

& Cardenas

11030462 Page 1

3/28/2011

Date

Erica Cardenas Project Manager

Test results meet all requirements of NELAC, unless specified in the narrative.



Case Narrative for: Conoco Phillips

| Certificate of Analysis Number:                       |                 |  |  |  |  |  |  |
|-------------------------------------------------------|-----------------|--|--|--|--|--|--|
|                                                       | <u>11030462</u> |  |  |  |  |  |  |
| his designee, as verified by the following signature. |                 |  |  |  |  |  |  |

a Cardinas

11030462 Page 2 3/28/2011

Erica Cardenas Project Manager

Test results meet all requirements of NELAC, unless specified in the narrative. Version 2.1 - Modified February 11, 2011 Date



~

SPL ENVIRONMENTAL 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Conoco Phillips**

| Contificate | ~~ A | nalvaia | Numbe |     |
|-------------|------|---------|-------|-----|
| Certificate | OT A | naivsis | NUMD  | ег: |

#### 11030462

| <u>Report To:</u> | Tetra Tech, Inc.<br>Kelly Blanchard<br>6121 Indian School Road, N.E.<br>Suite 200<br>Albuquerque | Project Name: Wilmuth No. 1<br><u>Site:</u> Aztec, NM<br><u>Site Address:</u>                      |
|-------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| <u>Fax To:</u>    | NM<br>87110-<br>ph (505) 237-8440 fax: (505) 881-3283                                            | <u>PO Number:</u> <u>State:</u> New Mexico <u>State Cert. No.:</u> <u>Date Reported:</u> 3/28/2011 |

| Client Sample ID | Lab Sample ID | Matrix | Date Collected   | Date Received        | COC ID | HOLD |
|------------------|---------------|--------|------------------|----------------------|--------|------|
| MW-1             | 11030462-01   | Water  | 03/16/2011 16:25 | 3/18/2011 9:06:00 AM | 302849 |      |
| MW-2             | 11030462-02   | Water  | 03/16/2011 15:35 | 3/18/2011 9:06:00 AM | 302849 |      |
| MW-3             | 11030462-03   | Water  | 03/16/2011 15:45 | 3/18/2011 9:06:00 AM | 302849 |      |
| MW-4             | 11030462-04   | Water  | 03/16/2011 16:35 | 3/18/2011 9:06:00 AM | 302849 |      |
| MW-4             | 11030462-04   | Water  | 03/16/2011 16:35 | 3/18/2011 9:06:00 AM | 302851 | · ·  |
| Duplicate        | 11030462-05   | Water  | 03/16/2011 16:30 | 3/18/2011 9:06:00 AM | 302851 |      |
| Trip Blank       | 11030462-06   | Water  | 03/16/2011 21:30 | 3/18/2011 9:06:00 AM | 302851 |      |

& Cardenas 8 લ

3/28/2011

Date

Erica Cardenas Project Manager

> Kesavalu M. Bagawandoss Ph.D., J.D. Laboratory Director

> > Ted Yen Quality Assurance Officer

Version 2.1 - Modified February 11, 2011

11030462 Page 3 3/28/2011 3:37:49 PM

# ACCUTEST.

LABORATORIES

SPL ENVIRONMENTAL

8880 INTERCHANGE DRIVE

HOUSTON, TX 77054

44000400.04

(713) 660-0901

| Client Sample ID MVV-1                         | · · · · · · · · · · · · · · · · · · · |               |                | lected: U | 3/16/201 | 1 16:25     |           | mpie   | D: 1103    | 0462-01 |
|------------------------------------------------|---------------------------------------|---------------|----------------|-----------|----------|-------------|-----------|--------|------------|---------|
|                                                |                                       |               | Sit            | e: Azte   | ec, NM   |             | ·         |        |            |         |
| Analyses/Method                                | Result                                | QUAL          | Re             | ep.Limit  | [        | Dil. Factor | Date Ana  | alyzed | Analyst    | Seq. #  |
| ION CHROMATOGRAP                               | HY                                    |               |                |           | MCL      |             | E300.0    | Ur     | nits: mg/L |         |
| Chloride                                       | 26                                    |               |                | 1         |          | 2           | 03/19/11  | 13:40  | ESK        | 5747466 |
| Sulfate                                        | 499                                   |               |                | 25        |          | 50          | 03/19/11  | 16:54  | ESK        | 5747478 |
| METALS BY METHOD                               | 5010B, DISSOLVED                      |               |                |           | MCL      | S           | W6010B    | Ur     | nits: mg/L |         |
| Manganese                                      | 2.36                                  |               |                | 0.005     |          | 1           | 03/25/11  | 18:32  | EG         | 5752212 |
| Prep Method F<br>SW3005A C                     | Prep Date<br>03/18/2011 10:15         | Prep Initials | s Prep<br>1.00 | Factor    |          |             |           |        |            |         |
| TOTAL DISSOLVED SO                             | LIDS                                  |               |                |           | MCL      | SI          | 12540 C   | Ur     | hits: mg/L |         |
| Total Dissolved Solids<br>(Residue,Filterable) | 1200                                  |               |                | 10        |          | . 1         | .03/22/11 | 11:30  | MM1        | 5749754 |
| VOLATILE ORGANICS                              | BY METHOD 8260B                       | 3             |                |           | MCL      | S           | W8260B    | Ur     | nits: ug/L |         |
| Benzene                                        | ND                                    |               | -              | 1         |          | 1           | 03/21/11  | 16:41  | JC         | 5748368 |
| Ethylbenzene                                   | ND                                    |               |                | 1         |          | 1           | 03/21/11  | 16:41  | JC         | 5748368 |
| Toluene                                        | ND                                    |               |                | 1         |          | 1           | 03/21/11  | 16:41  | JC         | 5748368 |
| m,p-Xylene                                     | ND                                    |               | _              | 2         |          | . 1         | 03/21/11  | 16:41  | JC         | 5748368 |
| o-Xylene                                       | ND                                    |               |                | 1         |          | 1           | 03/21/11  | 16:41  | JC         | 5748368 |
| Xylenes,Total                                  | ND                                    |               |                | 1         |          | 1           | 03/21/11  | 16:41  | JC         | 5748368 |
| Surr: 1,2-Dichloroethane                       | -d4 86.8                              |               | %              | 70-130    |          | 1.          | 03/21/11  | 16:41  | JC         | 5748368 |
| Surr: 4-Bromofluorobenz                        | ene 93.6                              |               | %              | 74-125    |          | 1.          | 03/21/11  | 16:41  | JC         | 5748368 |
| Surr: Toluene-d8                               | 97.2                                  | •             | %              | 82-118    |          | 1           | 03/21/11  | 16:41  | JC         | 5748368 |

Qualifiers: ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

3/28/2011 3:37:57 PM

11030462 Page 4

### 

SPL ENVIRONMENTAL

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

| Client Sample ID MW                            | /-2               |               | Collect   | t <b>ed:</b> 03 | 3/16/2011 | 15:35     | SPL Sa   | mple i | I <b>D:</b> 1103 | 0462-02 |
|------------------------------------------------|-------------------|---------------|-----------|-----------------|-----------|-----------|----------|--------|------------------|---------|
|                                                |                   |               | Site:     | Azte            | c, NM     |           | -        |        | -                |         |
| Analyses/Method                                | Resul             | t QUAL        | Rep.L     | imit            | Di        | I. Factor | Date Ana | lyzed  | Analyst          | Seq. #  |
| ION CHROMATOGRA                                | <b>NPHY</b>       |               |           |                 | MCL       |           | E300.0   | Ur     | its: mg/L        |         |
| Chloride                                       | 20.1              |               |           | 1               |           | -2        | 03/19/11 | 13:56  | ESK              | 5747467 |
| Sulfate                                        | 280               |               |           | 25              |           | 50        | 03/19/11 | 17:42  | ESK              | 5747481 |
| METALS BY METHO                                | D 6010B, DISSOLVE | D             |           |                 | MCL       | SV        | V6010B   | Ur     | its: mg/L        |         |
| Manganese                                      | 1.57              |               | 0.        | .005            |           | 1         | 03/25/11 | 18:39  | EG               | 5752213 |
| Prep Method                                    | Prep Date         | Prep Initials | Prep Fac  | tor             |           |           |          |        |                  |         |
| SW3005A                                        | 03/18/2011 10:15  | M_W           | 1.00      |                 |           |           |          |        |                  | •       |
| TOTAL DISSOLVED                                | SOLIDS            |               |           |                 | MCL       | SN        | 12540 C  | Ur     | its: mg/L        |         |
| Total Dissolved Solids<br>(Residue,Filterable) | 858               |               |           | 10              |           | 1         | 03/22/11 | 11:30  | MM1              | 5749756 |
| VOLATILE ORGANIC                               | S BY METHOD 8260  | В             |           |                 | MCL       | SV        | N8260B   | Ur     | its: ug/L        |         |
| Benzene                                        | ND                | · .           | · · · · · | 1               |           | 1         | 03/21/11 | 18:07  | JC               | 5748371 |
| Ethylbenzene                                   | ND                |               |           | 1               |           | 1         | 03/21/11 | 18:07  | JC               | 5748371 |
| Toluene                                        | ND                |               |           | 1               |           | 1         | 03/21/11 | 18:07  | JC               | 5748371 |
| m,p-Xylene                                     | ND                |               |           | 2               |           | 1 ·       | 03/21/11 | 18:07  | JC               | 5748371 |
| o-Xylene                                       | ND                |               |           | 1               |           | 1         | 03/21/11 | 18:07  | JC               | 5748371 |
| Xylenes,Total                                  | ND                |               |           | 1               |           | 1         | 03/21/11 | 18:07  | JC               | 5748371 |
| Surr: 1,2-Dichloroetha                         | anè-d4 81.1       |               | % 70-     | -130            |           | 1         | 03/21/11 | 18:07  | JC               | 5748371 |
| Surr: 4-Bromofluorobe                          | enzene 91.8       |               | % 74-     | -125            |           | 1         | 03/21/11 | 18:07  | JC               | 5748371 |
| Surr: Toluene-d8                               | 95.9              |               | % 82-     | 118             |           | 1         | 03/21/11 | 18:07  | JC               | 5748371 |

Qualifiers: N

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

> 11030462 Page 5 3/28/2011 3:37:57 PM

# ACCUTEST.

SPL ENVIRONMENTAL

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

| L | Α | в | 0 | R | A | т | Ο | R | I | Ε. | 3 |
|---|---|---|---|---|---|---|---|---|---|----|---|
|   |   |   |   |   |   |   |   |   |   |    |   |

| Client | Sample | ID MW-3 | 5 |
|--------|--------|---------|---|

Collected: 03/16/2011 15:45 SPL Sample ID:

le ID: 11030462-03

|                                                |                               |                      | Site        | o: Azto  | c NM |            |          |       | ·          |         |
|------------------------------------------------|-------------------------------|----------------------|-------------|----------|------|------------|----------|-------|------------|---------|
| Analyses/Method                                | Result                        | QUAL                 | Re          | p.Limit  | D    | il. Factor | Date Ana | lyzed | Analyst    | Seq. #  |
| ION CHROMATOGRAP                               | PHY .                         |                      |             |          | MCL  |            | E300.0   | Ur    | nits: mg/L |         |
| Chloride                                       | 18.1                          |                      |             | 1        |      | 2          | 03/19/11 | 14:12 | ESK        | 5747468 |
| Sulfate                                        | 263                           |                      |             | 25       |      | 50         | 03/19/11 | 17:58 | ESK        | 5747482 |
| METALS BY METHOD                               | 6010B, DISSOLVED              | )                    |             | <u> </u> | MCL  | SI         | W6010B   | Ur    | hits: mg/L |         |
| Manganese                                      | 1.57                          |                      |             | 0.005    |      | 1          | 03/25/11 | 18:45 | EG         | 5752214 |
| Prep Method<br>SW3005A                         | Prep Date<br>03/18/2011 10:15 | Prep Initials<br>M_W | <u>Prep</u> | Factor   |      |            |          |       |            | ,       |
| TOTAL DISSOLVED SC                             | DLIDS                         |                      |             |          | MCL  | SM         | 12540 C  | Ur    | hits: mg/L |         |
| Total Dissolved Solids<br>(Residue,Filterable) | 896                           |                      |             | 10       |      | 1          | 03/22/11 | 11:30 | MM1        | 5749757 |
| VOLATILE ORGANICS                              | BY METHOD 8260E               | 3                    |             | · · · ·  | MCL  | SI         | W8260B   | Ur    | nits: ug/L |         |
| Benzene                                        | . ND                          |                      |             | 1        |      | 1          | 03/21/11 | 18:37 | JC         | 5748372 |
| Ethylbenzene                                   | ND                            | :                    |             | 1        |      | 1 -        | 03/21/11 | 18:37 | JC         | 5748372 |
| Toluene                                        | ND                            |                      |             | 1        |      | 1          | 03/21/11 | 18:37 | JC         | 5748372 |
| m,p-Xylene                                     | · ND                          |                      |             | 2        |      | 1          | 03/21/11 | 18:37 | JC         | 5748372 |
| o-Xylene                                       | ND                            |                      |             | 1        |      | 1          | 03/21/11 | 18:37 | JC         | 5748372 |
| Xylenes,Total                                  | ND                            |                      |             | 1        |      | 1          | 03/21/11 | 18:37 | JC         | 5748372 |
| Surr: 1,2-Dichloroethane                       | <del>.</del> d4 83.3          |                      | %           | 70-130   |      | 1          | 03/21/11 | 18:37 | JC         | 5748372 |
| Surr: 4-Bromofluoroben:                        | zene 94.5                     |                      | %           | 74-125   |      | 1          | 03/21/11 | 18:37 | JC         | 5748372 |
| Surr: Toluene-d8                               | 99.4                          |                      | %           | 82-118   |      | 1          | 03/21/11 | 18:37 | JC         | 5748372 |

Qualifiers: ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

> 11030462 Page 6 3/28/2011 3:37:58 PM

# ACCUTEST

SPL ENVIRONMENTAL

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

LABORATORIES

| Client Sample ID MV                          | V-4                |               | Col  | lected: 03 | 3/16/201 | 1 16:35    | SPL Sa     | mple   | <b>ID:</b> 1103 | 30462-04 |
|----------------------------------------------|--------------------|---------------|------|------------|----------|------------|------------|--------|-----------------|----------|
|                                              |                    |               | Sit  | e: Azte    | ec, NM   |            |            |        |                 |          |
| Analyses/Method                              | Result             | QUAL          | Re   | ep.Limit   |          | Dil. Facto | r Date Ana | alyzed | Analyst         | Seq. #   |
| ION CHROMATOGR                               | APHY               |               |      |            | MCL      | -          | E300.0     | U      | nits: mg/L      | ,        |
| Chloride                                     | 20.6               |               |      | 1          |          | 2          | 03/19/11   | 15:01  | ESK             | 5747471  |
| Sulfate                                      | 385                |               |      | 25         |          | 50         | 03/19/11   | 18:14  | ESK             | 5747483  |
| METALS BY METHO                              | D 6010B, DISSOLVED | )             |      |            | MCL      | S          | W6010B     | U      | nits: mg/L      | ,        |
| Manganese                                    | 2.18               |               |      | 0.005      |          | 1          | 03/25/11   | 18:51  | EG              | 5752215  |
| Prep Method                                  | Prep Date          | Prep Initials | Prep | Factor     |          |            |            |        |                 |          |
| SW3005A                                      | 03/18/2011 10:15   | M_W           | 1.00 |            |          |            |            |        |                 |          |
| TOTAL DISSOLVED                              | SOLIDS             |               |      |            | MCL      | S          | M2540 C    | U      | nits: mg/L      | · ·      |
| Total Dissolved Solids (Residue, Filterable) | 970                |               |      | 10         |          | 1          | 03/22/11   | 11:30  | MM1             | 5749758  |
| VOLATILE ORGANIC                             | CS BY METHOD 8260  | 3             |      |            | MCL      | S          | W8260B     | U      | nits: úa/L      |          |
| Benzene                                      | ND                 |               |      | · 1        |          | 1          | 03/21/11   | 19:06  | JC              | 5748373  |
| Ethylbenzene                                 | ND                 |               |      | 1          |          | 1          | 03/21/11   | 19:06  | JC              | 5748373  |
| Toluene                                      | ND                 |               |      | 1          |          | 1          | 03/21/11   | 19:06  | JC              | 5748373  |
| m,p-Xylene                                   | · ND               |               |      | 2          |          | 1          | 03/21/11   | 19:06  | JC              | 5748373  |
| o-Xylene                                     | ND                 |               |      | 1          |          | 1          | 03/21/11   | 19:06  | JC              | 5748373  |
| Xylenes,Total                                | ND                 |               |      | 1          |          | 1          | 03/21/11   | 19:06  | JC              | 5748373  |
| Surr: 1,2-Dichloroeth                        | ane-d4 107         |               | %    | 70-130     |          | 1          | 03/21/11   | 19:06  | JC              | 5748373  |
| Surr: 4-Bromofluorob                         | enzene 93.6        |               | %    | 74-125     |          | 1          | 03/21/11   | 19:06  | JC              | 5748373  |

%

82-118

Qualifiers: ND/U - Not Detected at the Reporting Limit

Surr: Toluene-d8

B - Analyte Detected In The Associated Method Blank

102

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)
 D - Surrogate Recovery Unreportable due to Dilution
 MI - Matrix Interference

03/21/11 19:06 JC

1

11030462 Page 7 3/28/2011 3:37:59 PM

5748373



SPL ENVIRONMENTAL

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

LABORATORIES

Client Sample ID Duplicate

Collected: 03/16/2011 16:30

SPL Sample ID: 11030462-05

| i                           |           | Site     | : Azte  | c, NM      |              |      |         |         |
|-----------------------------|-----------|----------|---------|------------|--------------|------|---------|---------|
| Analyses/Method             | Result C  | QUAL Rep | o.Limit | Dil. Facto | or Date Anal | yzed | Analyst | Seq. #  |
| VOLATILE ORGANICS BY MET    | HOD 8260B |          |         | MCL S      | SW8260B      | Unit | s: ug/L |         |
| Benzene                     | ND        |          | 1       | 1          | 03/21/11 1   | 9:34 | JC      | 5748374 |
| Ethylbenzene                | ND        |          | 1       | 1          | 03/21/11 1   | 9:34 | JC      | 5748374 |
| Toluene                     | ND        |          | 1       | 1          | 03/21/11 1   | 9:34 | JC      | 5748374 |
| m,p-Xylene                  | ND        |          | 2       | 1          | 03/21/11     | 9:34 | JC      | 5748374 |
| o-Xylene                    | ND        |          | 1       | . 1        | 03/21/11 1   | 9:34 | JC      | 5748374 |
| Xylenes,Total               | . ND      |          | 1       | 1          | 03/21/11 1   | 9:34 | JC      | 5748374 |
| Surr: 1,2-Dichloroethane-d4 | 74.8      | %        | 70-130  | 1          | 03/21/11     | 9:34 | JC      | 5748374 |
| Surr: 4-Bromofluorobenzene  | 94.3      | %        | 74-125  | 1          | 03/21/11 1   | 9:34 | JC      | 5748374 |
| Surr: Toluene-d8            | 100       | %        | 32-118  | 1          | 03/21/11 1   | 9:34 | JC      | 5748374 |

Qualifiers: ND/U - Not Detected at the Reporting Limit

- B Analyte Detected In The Associated Method Blank
- \* Surrogate Recovery Outside Advisable QC Limits
- J Estimated value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)
 D - Surrogate Recovery Unreportable due to Dilution
 MI - Matrix Interference

(

11030462 Page 8 3/28/2011 3:37:59 PM

# 

SPL ENVIRONMENTAL

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID Trip Blank

Collected: 03/16/2011 21:30

SPL Sample ID: 11030462-06

|                             |           | S      | ite: Azte  | ec, NM |             |            |       |           |         |
|-----------------------------|-----------|--------|------------|--------|-------------|------------|-------|-----------|---------|
| Analyses/Method             | Result    | QUAL I | Rep.Limit  | ·      | Dil. Factor | Date Anal  | yzed  | Analyst   | Seq. #  |
| VOLATILE ORGANICS BY MET    | HOD 8260B |        |            | MCL    | SV          | V8260B     | Un    | its: ug/L |         |
| Benzene                     | ND        |        | 1          |        | 1           | 03/21/11 2 | 20:04 | JC        | 5748375 |
| Ethylbenzene                | ND        |        | . <u>1</u> |        | 1           | 03/21/11 2 | 20:04 | JC        | 5748375 |
| Toluene                     | ND        |        | 1          |        | 1           | 03/21/11 2 | 20:04 | JC        | 5748375 |
| m,p-Xylene                  | ND        |        | 2          |        | 1           | 03/21/11 2 | 20:04 | JC        | 5748375 |
| o-Xylene                    | ND        |        | 1          |        | <b>1</b> ·  | 03/21/11 2 | 20:04 | JC        | 5748375 |
| Xylenes,Total               | . ND      |        | 1          |        | 1           | 03/21/11 2 | 20:04 | JC        | 5748375 |
| Surr: 1,2-Dichloroethane-d4 | 87.1      | . %    | 70-130     |        | 1           | 03/21/11 2 | 20:04 | JC        | 5748375 |
| Surr: 4-Bromofluorobenzene  | 95.8      | %      | 74-125     |        | 1           | 03/21/11 2 | 20:04 | JC        | 5748375 |
| Surr: Toluene-d8            | 99.2      | %      | 82-118     |        | 1           | 03/21/11 2 | 20:04 | JC        | 5748375 |

Qualifiers: ND

J

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)
 D - Surrogate Recovery Unreportable due to Dilution
 MI - Matrix Interference

11030462 Page 9 3/28/2011 3:37:59 PM

# **Quality Control Documentation**

Version 2.1 - Modified February 11, 2011

11030462 Page 10 3/28/2011 3:37:59 PM



#### **Quality Control Report**

**Conoco Phillips** 

Wilmuth No. 1

| Analysis:<br>Method:                            | Metals by<br>SW6010B                                    | Method                                   | 6010B, Dissol                                         | ved                                |                                                    |                    |                                  |                                            |                                   | Worl<br>Lab    | kOrder:<br>Batch ID                   | 11)<br>): 10 | 030462<br>5539 |              |                       |
|-------------------------------------------------|---------------------------------------------------------|------------------------------------------|-------------------------------------------------------|------------------------------------|----------------------------------------------------|--------------------|----------------------------------|--------------------------------------------|-----------------------------------|----------------|---------------------------------------|--------------|----------------|--------------|-----------------------|
| • • • • • • • • • • • • • • • • • • •           |                                                         | Me                                       | thod Blank                                            |                                    |                                                    |                    | Sa                               | mples                                      | in Analy                          | tical Batc     | h:                                    |              |                |              |                       |
| RunID: ICP2<br>Analysis Date:<br>Preparation Da | 2_110325A-575220<br>03/25/201<br>ate: 03/18/201         | 1.<br>1 17:25<br>1 10:15                 | Units:<br>Analyst:<br>Prep By:                        | mg/L<br>EG<br>M_                   | Method S                                           | W3005A             | <u>La</u><br>. 11(<br>11(<br>11) | <u>b Sam</u><br>030462<br>030462<br>030462 | ple ID<br>2-01B<br>2-02B<br>2-03B |                | <u>Client</u><br>MW-1<br>MW-2<br>MW-3 | Sample II    | 2              |              |                       |
|                                                 | Manganese                                               | Analyte                                  |                                                       | Result<br>N                        | Rep Limi                                           | it .<br>5          | 11                               | 030462                                     | 2-04B                             |                | MW-4                                  |              |                |              |                       |
| · · · ·                                         |                                                         |                                          |                                                       | Ŀ                                  | aboratory                                          | Control            | Sample                           | (LCS)                                      |                                   | -              |                                       |              |                |              |                       |
|                                                 | • •<br>•<br>•                                           | Runlī<br>Analy<br>Prepa                  | D:<br>sis Date:<br>aration Date:                      | ICP2_11<br>03/25/2<br>03/18/2      | 0325A-5752<br>011 17:31<br>011 10:15               | 202 Ui<br>Ai<br>Pi | nits:<br>nalyst:<br>rep By:      | mg/L<br>EG<br>M_                           | Method                            | SW 3005A       | <b>x</b>                              |              |                |              |                       |
|                                                 | •                                                       |                                          | Analy                                                 | te                                 |                                                    | Spike<br>Added     | Resu                             | lt P<br>Re                                 | ercent<br>ecovery                 | Lower<br>Limit | Upper<br>Limit                        |              |                |              |                       |
|                                                 | •                                                       | Mangan                                   | ese                                                   |                                    |                                                    | 0.1000             | 0.10                             | 50                                         | 105.0                             | 80             | 12                                    | 0            |                |              |                       |
|                                                 |                                                         |                                          |                                                       |                                    |                                                    |                    |                                  |                                            |                                   |                |                                       |              |                |              |                       |
|                                                 | · .                                                     | San<br>Rur<br>Ana<br>Prej                | nple Spiked:<br>ID:<br>Ilysis Date:<br>paration Date: | 11030<br>ICP2_<br>03/25/<br>03/18/ | )446-02<br>110325A-57<br>/2011 17:4:<br>/2011 10:1 | 52204<br>3 5       | Units:<br>Analyst:<br>Prep By    | mg/<br>EG<br>: M_                          | /L<br>Methoo                      | SW3008         | 5A                                    |              |                |              |                       |
|                                                 | Analyte .                                               |                                          | Sample<br>Result                                      | MS<br>Spike<br>Added               | MS<br>Result                                       | MS<br>Reco         | % I<br>wery S                    | VISD<br>Spike<br>Added                     | MSD<br>Result                     | MSI<br>Rec     | D %<br>overy                          | RPD          | RPD<br>Limit   | Low<br>Limit | High<br>Limit         |
| Manganese                                       | •                                                       |                                          | 1.211                                                 | 0.1                                | 1.3                                                | 54                 | N/C                              | 0.1                                        | 1.                                | 308            | N/C                                   | N/C          | 20             | 75           | 125                   |
| Qualifiers:                                     | ND/U - Not Dete<br>B - Analyte Dete<br>J - Estimated Va | ected at th<br>ected in Th<br>alue Betwe | e Reporting Lir<br>ne Associated<br>een MDL And F     | nit<br>Method E<br>PQL             | Blank                                              | .                  | MI - Mat<br>D - Reco             | rix Inte<br>overy L<br>very O              | rference<br>Inreportat            | le due to I    | Dilution<br>C Limits                  |              |                |              |                       |
|                                                 | E - Estimated V<br>N/C - Not Calcu<br>TNTC - Too nu     | alue excee<br>lated - Sa<br>merous to    | eds calibration<br>mple concentra<br>count            | curve<br>ation is g                | reater than                                        | 4 times th         | e amou                           | nt of sp                                   | oike addeo                        | I. Control I   | imits do i                            | not apply.   | 11             | 030462       | 2 Page 1 <sup>-</sup> |

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

11030462 Page 11 3/28/2011 3:38:01 PM



#### **Quality Control Report**

**Conoco Phillips** 

Wilmuth No. 1

| Analysis<br>Method: | :         | Volatile Organics by<br>SW8260B | Method 826 | 60B      |             | ·            |               | WorkOrde<br>Lab Batch | er:<br>ID: | 11030462<br>R317340 |   |
|---------------------|-----------|---------------------------------|------------|----------|-------------|--------------|---------------|-----------------------|------------|---------------------|---|
|                     |           | Meth                            | od Blank   | . •      | •           | Sa           | amples in Ana | lytical Batch:        |            | . •                 |   |
| RunID:              | Q_11      | 0321A-5748366                   | Units:     | ug/L     |             | La           | ab Sample ID  | Clie                  | ent Sam    | ple ID              |   |
| Analysis            | Date:     | 03/21/2011 16:12                | Analyst:   | JC       |             | 11           | 1030462-01C   | MW                    | /-1        |                     |   |
| ,                   |           |                                 |            |          |             | 11           | 1030462-02C   | MW                    | -2         |                     |   |
|                     |           |                                 |            |          |             | 11           | 1030462-03C   | MW                    | /-3        |                     | • |
|                     | _         |                                 | r          |          |             | 11           | 1030462-04C   | MW                    | -4 .       |                     |   |
|                     |           | Analyte                         |            | Result   | Rep Limit   | 11           | 1030462-050   | Dur                   | licate     |                     |   |
|                     | Be        | enzene                          |            | ND       | 1.0         | 11           | 1000402-000   |                       | Disale     |                     |   |
|                     | Et        | hylbenzene                      |            | ND       | 1.0         | 31           | 1030462-060   | i rip                 | Blank      |                     |   |
|                     | T         | pluene                          |            | ND       | 1.0         |              |               |                       |            |                     |   |
|                     | m         | ,p-Xylene                       |            | ND       | 2.0         |              |               |                       |            |                     |   |
|                     | <u>o-</u> | Xylene                          |            | ND       | 1.0         |              |               |                       |            |                     |   |
|                     | X         | /lenes,Total                    |            | ND       | 1.0         |              |               |                       | ·          |                     |   |
|                     |           | Surr: 1,2-Dichloroethane-d4     |            | 103.3    | 70-130      |              |               |                       |            |                     |   |
|                     |           | Surr: 4-Bromofluorobenzene      |            | 91.3     | 74-125      |              |               |                       |            |                     |   |
|                     | . L_      | Surr: Toluene-d8                |            | 99.8     | 82-118      |              |               |                       |            |                     |   |
|                     |           |                                 |            |          |             |              |               |                       |            |                     |   |
|                     |           |                                 |            |          |             |              | •             |                       |            |                     |   |
|                     |           | ······                          |            | La       | boratory Co | ntrol Sample | e (LCS)       |                       |            |                     |   |
|                     |           | RunID:                          |            | Q_110321 | A-5748365   | Units:       | ug/L          |                       |            |                     |   |
|                     |           | Analysi                         | s Date:    | 03/21/20 | 11 15:43    | Analyst:     | JC            |                       |            |                     |   |
|                     |           |                                 |            |          |             |              | •             |                       |            |                     | I |

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| Benzene                     | 20.0           | 17.2   | 86.1                | 74             | 123            |
| Ethylbenzene                | 20.0           | 20.9   | 105                 | 72             | 127            |
| Toluene                     | 20.0           | 21.2   | 106                 | 74             | 126            |
| m,p-Xylene                  | 40.0           | 42.2   | 105                 | 71             | 129            |
| o-Xylene                    | 20.0           | . 20.7 | 103                 | 74             | 130            |
| Xylenes, Total              | 60.0           | 62.9   | 105                 | 71             | 130            |
| Surr: 1,2-Dichloroethane-d4 | 50.0           | 38.6   | 77.2                | 70             | 130            |
| Surr: 4-Bromofluorobenzene  | 50.0           | 47     | 94.1                | 74             | 125            |
| Surr: Toluene-d8            | 50.0           | 48     | 96.1                | 82             | 118            |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Qualifiers: ND/U - Not Detected at the Reporting Limit

- B Analyte Detected In The Associated Method Blank
  - J Estimated Value Between MDL And PQL

- MI Matrix Interference
- D Recovery Unreportable due to Dilution
- \* Recovery Outside Advisable QC Limits
- E Estimated Value exceeds calibration curve
- N/C Not Calculated Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.
- TNTC Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

Version 2.1 - Modified February 11, 2011

11030462 Page 12 3/28/2011 3:38:01 PM



#### SPL ENVIRONMENTAL

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

#### (713) 660-0901

#### Quality Control Report

**Conoco Phillips** 

Wilmuth No. 1

| Analysis: | Volatile Org | anics by Method 82 | 60B               |          |      | WorkOrder:    | 11030462 |  |
|-----------|--------------|--------------------|-------------------|----------|------|---------------|----------|--|
| Method:   | SW8260B      |                    |                   |          |      | Lab Batch ID: | R317340  |  |
|           | . •          | Sample Spiked:     | 11030462-01       |          |      |               |          |  |
|           |              | RunID:             | Q_110321A-5748369 | Units:   | ug/L |               |          |  |
|           |              | Analysis Date:     | 03/21/2011 17:10  | Analyst: | JC   |               |          |  |

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| Benzene                     | ND               | 20                   | 19.4         | 97.0             | 20                    | 18.7          | 93.4              | 3.77  | 22           | 70           | 124           |
| Ethylbenzene                | ND               | 20                   | 21.4         | 107              | 20                    | 21.6          | 108               | 0.795 | 20           | 76           | 122           |
| Toluene                     | ND               | 20                   | 21.8         | 109              | 20                    | 21.0          | 105               | 3.57  | 24           | 80           | 117           |
| m,p-Xylene                  | ND               | 40                   | 43.4         | 108              | 40                    | 43.9          | 110               | 1.13  | 20           | 69           | 127           |
| o-Xylene                    | ND               | 20                   | 21.1         | 105              | 20                    | 21.0          | 105               | 0.247 | 20           | 84           | 114           |
| Xylenes,Total               | ND               | 60                   | 64.5         | 107              | 60                    | 64.9          | 108               | 0.682 | 20           | 69           | 127           |
| Surr: 1,2-Dichloroethane-d4 | ND               | 50                   | 43           | 86.0             | 50                    | 36.7          | 73.5              | 15.7  | 30           | 70           | 130           |
| Surr: 4-Bromofluorobenzene  | ND               | 50                   | 46.4         | 92.8             | 50                    | 47.6          | 95.2              | 2.57  | 30           | 74           | 125           |
| Surr: Toluene-d8            | ND               | 50                   | 48.5         | 96.9             | 50                    | 49.3          | 98.5              | 1.64  | 30           | 82           | 118           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

\* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

11030462 Page 13 3/28/2011 3:38:01 PM



#### **Quality Control Report**

**Conoco Phillips** 

|                                        |                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                      | •                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0. 1                                                                                                                                                                                                                      |                                                                                                                        |                                                           |                                                      |                                                        |           |                   |                    |                                         |                                               |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|-----------|-------------------|--------------------|-----------------------------------------|-----------------------------------------------|
| Analysis:<br>Method:                   | lon Chro<br>E300.0                                                                                                                                                 | matograph                                                                                                                               | у                                                                                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                           |                                                                                                                        |                                                           | Work<br>Lab I                                        | <order<br>Batch I</order<br>                           | :<br>ID:  | 1103<br>R31       | 30462<br>7283      |                                         |                                               |
| ······································ |                                                                                                                                                                    | Me                                                                                                                                      | hod Blank                                                                                                                                                                                                           |                                                                                                                                                      |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sam                                                                                                                                                                                                                       | oles in Ana                                                                                                            | alytica                                                   | I Batch                                              | h:                                                     |           |                   |                    |                                         |                                               |
| RunID: IC                              | 1_110319A-5747460                                                                                                                                                  | )                                                                                                                                       | Units:                                                                                                                                                                                                              | mg/L                                                                                                                                                 |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lah S                                                                                                                                                                                                                     | Sample ID                                                                                                              |                                                           |                                                      | Clier                                                  | nt Sami   | nie ID            |                    |                                         |                                               |
| nalvsis Dat                            | e: 03/19/201                                                                                                                                                       | 1 10:31                                                                                                                                 | Analyst:                                                                                                                                                                                                            | ESK                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11030                                                                                                                                                                                                                     | 0462-01A                                                                                                               |                                                           |                                                      | MW-                                                    | 1         |                   | •                  |                                         |                                               |
| ·                                      | 00/10/201                                                                                                                                                          | 1 10.01                                                                                                                                 | 7 uldiyot.                                                                                                                                                                                                          | Lon                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1103                                                                                                                                                                                                                      | 0462-02A                                                                                                               |                                                           |                                                      | MW-                                                    | 2         |                   |                    |                                         |                                               |
| •                                      |                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                      |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1103                                                                                                                                                                                                                      | 0462-03A                                                                                                               |                                                           |                                                      | MW-                                                    | 3         |                   |                    |                                         |                                               |
|                                        | r                                                                                                                                                                  |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                      | 1                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1103                                                                                                                                                                                                                      | 0462-04A                                                                                                               |                                                           |                                                      | MW-                                                    | 4         |                   |                    |                                         |                                               |
|                                        |                                                                                                                                                                    | Analyte                                                                                                                                 |                                                                                                                                                                                                                     | Result                                                                                                                                               | Rep Lim                                                                                                                            | it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                           |                                                                                                                        |                                                           |                                                      |                                                        |           |                   |                    |                                         |                                               |
|                                        | Sulfate                                                                                                                                                            |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                      | 0.5                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                           |                                                                                                                        |                                                           |                                                      |                                                        |           |                   |                    |                                         |                                               |
|                                        | · ·                                                                                                                                                                |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                      |                                                                                                                                    | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                           |                                                                                                                        |                                                           |                                                      |                                                        |           |                   |                    |                                         |                                               |
|                                        |                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                      |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                           |                                                                                                                        |                                                           |                                                      |                                                        |           |                   |                    |                                         |                                               |
|                                        |                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                                                                                                     | · Li                                                                                                                                                 | aboratory                                                                                                                          | Control S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample (L                                                                                                                                                                                                                 | <u>CS)</u>                                                                                                             |                                                           |                                                      |                                                        |           |                   |                    |                                         |                                               |
| •                                      |                                                                                                                                                                    | RunID                                                                                                                                   | ): <sup>`</sup>                                                                                                                                                                                                     | IC1_1103                                                                                                                                             | 319A-57474                                                                                                                         | 61 Ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nits: n                                                                                                                                                                                                                   | na/L                                                                                                                   |                                                           |                                                      |                                                        |           |                   |                    |                                         | •                                             |
| ·                                      |                                                                                                                                                                    | Analys                                                                                                                                  | sis Date:                                                                                                                                                                                                           | 03/19/20                                                                                                                                             | 011 10:47                                                                                                                          | Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nalyst: E                                                                                                                                                                                                                 | SK                                                                                                                     |                                                           |                                                      |                                                        |           |                   |                    |                                         |                                               |
|                                        |                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                      |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                           | •                                                                                                                      |                                                           |                                                      |                                                        |           |                   |                    |                                         |                                               |
|                                        |                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                      |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                           |                                                                                                                        |                                                           |                                                      |                                                        |           |                   |                    |                                         |                                               |
|                                        |                                                                                                                                                                    |                                                                                                                                         | Analvt                                                                                                                                                                                                              | te                                                                                                                                                   |                                                                                                                                    | Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result                                                                                                                                                                                                                    | Percent                                                                                                                | Lc                                                        | wer                                                  | Uppe                                                   | r         |                   |                    |                                         |                                               |
|                                        |                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                      |                                                                                                                                    | Added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                           | Recovery                                                                                                               | / L                                                       | imit                                                 | Limit                                                  | t         |                   |                    |                                         |                                               |
|                                        | ·                                                                                                                                                                  | Chloride                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                      |                                                                                                                                    | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 841                                                                                                                                                                                                                     | 98.4                                                                                                                   | 11                                                        | 90                                                   | 1                                                      | 10        |                   |                    |                                         | •                                             |
|                                        |                                                                                                                                                                    | [Onlondo                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                      |                                                                                                                                    | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.011                                                                                                                                                                                                                     |                                                                                                                        |                                                           |                                                      |                                                        |           |                   |                    |                                         |                                               |
|                                        | . •                                                                                                                                                                | Sulfate                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                      |                                                                                                                                    | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.02                                                                                                                                                                                                                     | 100                                                                                                                    | .2                                                        | 90                                                   | 1                                                      | 10        |                   |                    |                                         |                                               |
|                                        |                                                                                                                                                                    | Sulfate                                                                                                                                 | Matrix                                                                                                                                                                                                              | <u>Spike (N</u>                                                                                                                                      | MS) / Matr<br>462-01                                                                                                               | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.02                                                                                                                                                                                                                     | 100<br>(MSD)                                                                                                           | .2                                                        | 90                                                   | 1                                                      | 10        |                   |                    |                                         |                                               |
|                                        |                                                                                                                                                                    | Sulfate<br>Sulfate<br>Run<br>Ana                                                                                                        | <u>Matrix</u><br>ple Spiked:<br>ID:<br>ysis Date:                                                                                                                                                                   | 5 Spike (N<br>110304<br>IC1_111<br>03/19/2                                                                                                           | <u>MS) / Matr</u><br>462-01<br>0319A-5743<br>2011 17:10                                                                            | 10.00<br>10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jnits:<br>Analyst:                                                                                                                                                                                                        | 100<br>(MSD)<br>mg/L<br>ESK                                                                                            | .2                                                        | 90                                                   | 1                                                      | 10        |                   |                    |                                         |                                               |
|                                        | Analvte                                                                                                                                                            | Sulfate<br>Sam<br>Run<br>Ana                                                                                                            | <u>Matrix</u><br>ple Spiked:<br>ID:<br>ysis Date:<br>Samole                                                                                                                                                         | 110304<br>110304<br>IC1_111<br>03/19/2                                                                                                               | MS) / Matr<br>462-01<br>0319A-574<br>2011 17:10<br>MS                                                                              | 10.00<br>10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jnits:<br>Analyst:                                                                                                                                                                                                        | 100<br>( <u>MSD)</u><br>mg/L<br>ESK                                                                                    | .2                                                        | 90                                                   | 1                                                      | 10        |                   |                    | low                                     | Hiah                                          |
|                                        | Analyte                                                                                                                                                            | Sulfate<br>Sam<br>Run<br>Ana                                                                                                            | <u>Matrix</u><br>ple Spiked:<br>ID:<br>ysis Date:<br>Sample<br>Result                                                                                                                                               | Spike (N<br>110304<br>IC1_111<br>03/19/2<br>MS<br>Spike                                                                                              | MS) / Matr<br>462-01<br>0319A-574<br>2011 17:10<br>MS<br>Result                                                                    | 10.00<br>10.00<br>ix Spike I<br>7479 (<br>0 //<br>MS<br>Reco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jnits:<br>Analyst:<br>% MS<br>very Spi                                                                                                                                                                                    | 100<br>(MSD)<br>mg/L<br>ESK<br>D MS<br>ke Res                                                                          | SD<br>sult                                                | 90<br>MSE<br>Recc                                    | D %                                                    | 10<br>RPI | D                 | RPD                | Low                                     | High<br>Limit                                 |
|                                        | Analyte                                                                                                                                                            | Sulfate<br>Sam<br>Run<br>Ana                                                                                                            | <u>Matrix</u><br>iple Spiked:<br>ID:<br>ysis Date:<br>Sample<br>Result                                                                                                                                              | Spike (N<br>110304<br>IC1_111<br>03/19/2<br>MS<br>Spike<br>Added                                                                                     | MS) / Matr<br>462-01<br>0319A-5743<br>2011 17:10<br>MS<br>Result                                                                   | 10.00<br>10.00<br>ix Spike I<br>7479 (<br>0 /<br>MS<br>Reco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jnits:<br>Analyst:<br>% MS<br>very Spi<br>Add                                                                                                                                                                             | 100<br>(MSD)<br>mg/L<br>ESK<br>D MS<br>ke Res<br>led                                                                   | SD<br>sult                                                | 90<br>MSE<br>Recc                                    | D %                                                    | 10<br>RPI | D                 | RPD<br>Limit       | <sup>2</sup> Low<br>Limit               | High<br>Limit                                 |
| ulfate                                 | Analyte                                                                                                                                                            | Sulfate                                                                                                                                 | <u>Matrix</u><br>ple Spiked:<br>ID:<br>ysis Date:<br>Sample<br>Result<br>499.3                                                                                                                                      | Spike (N<br>110304<br>IC1_110<br>03/19/2<br>MS<br>Spike<br>Added<br>250                                                                              | MS) / Matr<br>462-01<br>0319A-574<br>2011 17:10<br>MS<br>Result<br>79:                                                             | 10.00<br>10.00<br>ix Spike I<br>7479 (<br>0 /<br>MS<br>Reco<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jnits:<br>Analyst:<br>% MS<br>Very Spi<br>Adc                                                                                                                                                                             | 100<br>(MSD)<br>mg/L<br>ESK<br>ESK<br>led<br>250                                                                       | .2<br>5D<br>sult<br>780.0                                 | 90<br>MSE<br>Recc                                    | 0 %<br>overy<br>112.3                                  | 10<br>RPI | D<br>.565         | RPD<br>Limit       | Low<br>Limit                            | High<br>Limit<br>120                          |
| ulfate                                 | Analyte                                                                                                                                                            | Sulfate                                                                                                                                 | <u>Matrix</u><br>ple Spiked:<br>ID:<br>lysis Date:<br>Sample<br>Result<br>499.3                                                                                                                                     | Spike (N<br>110304<br>IC1_11<br>03/19/2<br>MS<br>Spike<br>Added<br>250                                                                               | MS) / Matr<br>462-01<br>0319A-574:<br>2011 17:10<br>MS<br>Result<br>79:                                                            | 10.00<br>10.00<br>ix Spike I<br>7479 (<br>0 /<br>MS<br>Reco<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.02       Duplicate       Jnits:       Analyst:       %     MS       very     Spii       Adc       117.2                                                                                                                | 100<br>(MSD)<br>mg/L<br>ESK<br>ESK<br>Res<br>led<br>250                                                                | .2<br>5D<br>sult<br>780.0                                 | 90<br>MSE<br>Recc                                    | 0 %<br>overy<br>112.3                                  | 10<br>RPI | D<br>.565         | RPD<br>Limit<br>15 | Low<br>Limit<br>80                      | High<br>Limit<br>120                          |
| ulfate                                 | Analyte                                                                                                                                                            | Sulfate                                                                                                                                 | <u>Matrix</u><br>ple Spiked:<br>ID:<br>ysis Date:<br>Sample<br>Result<br>499.3                                                                                                                                      | Spike (N<br>110304<br>IC1_111<br>03/19/2<br>MS<br>Spike<br>Added<br>250                                                                              | MS) / Matr<br>462-01<br>0319A-574<br>2011 17:10<br>MS<br>Result<br>79:                                                             | 10.00<br>10.00<br>ix Spike I<br>7479 (<br>0 /<br>MS<br>Reco<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.02<br>Duplicate<br>Jnits:<br>Analyst:<br>% MS<br>Spi<br>Adc<br>117.2                                                                                                                                                   | 100<br>(MSD)<br>mg/L<br>ESK<br>led<br>250                                                                              | SD<br>sult<br>780.0                                       | 90<br>MSI<br>Recc                                    | 2 %<br>overy<br>112.3                                  | 10<br>RPI | D<br>.565         | RPD<br>Limit<br>15 | Low<br>Limit<br>80                      | High<br>Limit<br>120                          |
| ulfate                                 | Analyte                                                                                                                                                            | Sulfate                                                                                                                                 | <u>Matrix</u><br>iple Spiked:<br>ID:<br>ysis Date:<br>Sample<br>Result<br>499.3                                                                                                                                     | Spike (N<br>11030-<br>IC1_111<br>03/19/2<br>MS<br>Spike<br>Added<br>250                                                                              | MS) / Matr<br>462-01<br>0319A-5743<br>2011 17:10<br>MS<br>Result<br>795                                                            | 10.00<br>10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.02<br>Duplicate<br>Jnits:<br>Analyst:<br>Very Spi<br>Adc<br>117.2                                                                                                                                                      | 100<br>(MSD)<br>mg/L<br>ESK<br>ESK<br>led<br>250                                                                       | .2<br>SD<br>sult<br>780.0                                 | 90<br>MSE<br>Recc                                    | 0 %<br>overy<br>112.3                                  | 10<br>RPI | D<br>.565         | RPD<br>Limit<br>15 | Low<br>Limit<br>80                      | High<br>Limit<br>120                          |
| ulfate                                 | Analyte                                                                                                                                                            | Sulfate                                                                                                                                 | <u>Matrix</u><br>ple Spiked:<br>ID:<br>ysis Date:<br>Sample<br>Result<br>499.3                                                                                                                                      | Spike (N<br>11030-<br>IC1_111<br>03/19/2<br>MS<br>Spike<br>Added<br>250                                                                              | MS) / Matr<br>462-01<br>0319A-574<br>2011 17:10<br>MS<br>Result<br>79:                                                             | 10.00<br>10.00<br>ix Spike I<br>7479 (<br>0 /<br>MS<br>Reco<br>2.3 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.02       Duplicate       Jnits:       Analyst:       %     MS       very     Spid       Add       117.2                                                                                                                | 100<br>(MSD)<br>mg/L<br>ESK<br>ESK<br>led<br>250                                                                       | .2<br>5D<br>sult<br>780.0                                 | 90<br>MSE<br>Reco                                    | 2 %<br>overy<br>112.3                                  | 10<br>RPI | D<br>.565         | RPD<br>Limit       | Low<br>Limit                            | High<br>Limit<br>120                          |
| ulfate                                 | Analyte                                                                                                                                                            | Sulfate                                                                                                                                 | <u>Matrix</u><br>ple Spiked:<br>ID:<br>lysis Date:<br>Sample<br>Result<br>499.3                                                                                                                                     | Spike (N<br>110304<br>IC1_111<br>03/19/2<br>MS<br>Spike<br>Added<br>250                                                                              | MS) / Matr<br>462-01<br>0319A-574<br>2011 17:10<br>MS<br>Result<br>79                                                              | 10.00<br>10.00<br>ix Spike I<br>7479 (<br>0 /<br>Reco<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.02<br>Duplicate<br>Jnits:<br>Analyst:<br>% MS<br>Spi<br>Adc<br>117.2                                                                                                                                                   | 100<br>(MSD)<br>mg/L<br>ESK<br>Res<br>led<br>250                                                                       | 3D<br>sult<br>780.0                                       | 90<br>MSE<br>Recc                                    | 0 %<br>overy<br>112.3                                  | 10<br>RPI | D<br>.565         | RPD<br>Limit<br>15 | Low<br>Limit                            | High<br>Limit<br>120                          |
| ulfate<br>Qualifiers:                  | Analyte<br>ND/U - Not Det                                                                                                                                          | Sulfate<br>Sulfate<br>Run<br>Anal                                                                                                       | <u>Matrix</u><br>ple Spiked:<br>ID:<br>ysis Date:<br>Sample<br>Result<br>499.3                                                                                                                                      | Spike (N<br>11030-<br>IC1_111<br>03/19/2<br>MS<br>Spike<br>Added<br>250                                                                              | MS) / Matr<br>462-01<br>0319A-5743<br>2011 17:10<br>MS<br>Result<br>793                                                            | 10.00<br>10.00<br>ix Spike I<br>7479 (<br>0 /<br>Reco<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.02<br>Duplicate<br>Jnits:<br>Analyst:<br>% MS<br>Very Adc<br>117.2<br>MI - Matrix                                                                                                                                      | 100<br>(MSD)<br>mg/L<br>ESK<br>led<br>250                                                                              | SD<br>sult<br>780.0                                       | 90<br>MSE<br>Recc                                    | 2 %<br>overy<br>112.3                                  | 10<br>RPI | D<br>.565         | RPD<br>Limit<br>15 | Low<br>Limit<br>80                      | High<br>Limit<br>120                          |
| ulfate<br>Qualifiers:                  | Analyte<br>ND/U - Not Det<br>B - Analyte Det                                                                                                                       | Sulfate<br>Sulfate<br>Run<br>Anal                                                                                                       | Matrix<br>Iple Spiked:<br>ID:<br>ysis Date:<br>Sample<br>Result<br>499.3<br>e Reporting Lin<br>e Associated N                                                                                                       | Spike (N<br>11030-<br>IC1_111<br>03/19/2<br>MS<br>Spike<br>Added<br>250                                                                              | MS) / Matr<br>462-01<br>0319A-5743<br>2011 17:10<br>MS<br>Result<br>793                                                            | 10.00<br>10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.02       Duplicate       Jnits:       Analyst:       %     MS       yery     Spi       Add       117.2                                                                                                                 | Interference<br>Interference<br>Interference                                                                           | .2<br>SD<br>sult<br>780.0                                 | 90<br>MSE<br>Recc                                    | 0 %<br>overy<br>112.3<br>Dilution                      | 10<br>RPI | D<br>.565         | RPD<br>Limit<br>15 | Low<br>Limit<br>80                      | High<br>Limit<br>120                          |
| ulfate<br>Qualifiers:                  | Analyte<br>ND/U - Not Det<br>B - Analyte Det<br>J - Estimated V                                                                                                    | Sam<br>Run<br>Anal                                                                                                                      | Matrix<br>Iple Spiked:<br>ID:<br>ID:<br>Iysis Date:<br>Sample<br>Result<br>499.3<br>499.3                                                                                                                           | Spike (N<br>11030-<br>IC1_111<br>03/19/2<br>MS<br>Spike<br>Added<br>250<br>nit<br>Method B<br>PQL<br>Curve                                           | MS) / Matr<br>462-01<br>0319A-5743<br>2011 17:10<br>MS<br>Result<br>793                                                            | 10.00<br>10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.02         Duplicate         Jnits:         Analyst:         %       MS         Spid         Add         117.2         MI - Matrix         O - Recover         * - Recover                                             | 100<br>(MSD)<br>mg/L<br>ESK<br>led<br>250<br>Interference<br>ery Unrepor<br>ry Outside /                               | 3D<br>Sult<br>780.0                                       | 90<br>MSE<br>Reco                                    | 0 %<br>overy<br>112.3<br>Dilution<br>Limits            | 10<br>RPI | D<br>.565         | RPD<br>Limit<br>15 | Low<br>Limit                            | High<br>Limit<br>120                          |
| ulfate<br>Qualifiers:                  | Analyte<br>ND/U - Not Det<br>B - Analyte Det<br>J - Estimated V<br>E - Estimated V                                                                                 | Sulfate<br>Sulfate<br>Run<br>Anal<br>ected at the<br>ected in Th<br>alue Betwee<br>/alue excee                                          | Matrix<br>Iple Spiked:<br>ID:<br>ID:<br>Iysis Date:<br>Sample<br>Result<br>499.3<br>e Reporting Lin<br>e Associated N<br>en MDL And F<br>ds calibration of<br>note concentra                                        | Spike (M<br>110304<br>IC1_110<br>03/19/2<br>MS<br>Spike<br>Added<br>250<br>nit<br>Method B<br>PQL<br>curve<br>ation is growthing                     | MS) / Matr<br>462-01<br>0319A-574<br>2011 17:10<br>MS<br>Result<br>79:<br>lank                                                     | 10.00<br>10.00<br>ix Spike I<br>7479 (<br>0 /<br>MS<br>Reco<br>2.3 /<br>I<br>I<br>I<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.02       Duplicate       Jnits:       Analyst:       %     MS       yery     Spii       Add       117.2                                                                                                                | 100<br>(MSD)<br>mg/L<br>ESK<br>ESK<br>led<br>250<br>Interference<br>ry Unrepor<br>ry Outside A                         | 3D<br>Solit<br>780.0<br>re<br>table d<br>Advisa           | 90<br>MSE<br>Reco                                    | 0 %<br>overy<br>112.3<br>Dilution<br>Limits            | RPI       | D<br>.565         | RPD<br>Limit<br>15 | Low<br>Limit                            | High<br>Limit<br>120                          |
| ulfate<br>Qualifiers:                  | Analyte<br>ND/U - Not Det<br>B - Analyte Det<br>J - Estimated V<br>E - Estimated V<br>N/C - Not Calco                                                              | Sam<br>Run<br>Anal<br>ected at the<br>ected in Th<br>alue Betwe<br>/alue excee<br>Jated - Sar                                           | Matrix<br>ple Spiked:<br>ID:<br>ysis Date:<br>Sample<br>Result<br>499.3<br>e Reporting Lin<br>e Associated M<br>en MDL And F<br>ds calibration of<br>nple concentra                                                 | Spike (N<br>110304<br>IC1_111<br>03/19/2<br>MS<br>Spike<br>Added<br>250<br>nit<br>Method B<br>PQL<br>curve<br>ation is grave                         | MS) / Matr<br>462-01<br>0319A-574<br>2011 17:10<br>MS<br>Result<br>79:<br>lank<br>eater than                                       | 10.00<br>10.00<br>ix Spike I<br>7479 to<br>7479 to<br>7470                                                         | 10.02         Duplicate         Jnits:         Analyst:         %       MS         Very       Spi         Add         117.2         MI - Matrix         O - Recover         ' - Recover         e amount of               | 100<br>(MSD)<br>mg/L<br>ESK<br>ESK<br>Res<br>led<br>250<br>Interference<br>ery Unrepor<br>ry Outside /                 | 3D<br>sult<br>780.0<br>re<br>table d<br>Advisa<br>ded. Co | 90<br>MSE<br>Reco<br>lue to D<br>ble QC<br>ontrol li | 0 %<br>overy<br>112.3<br>Dilution<br>Limits<br>mits do | 10<br>RPI | D<br>.565<br>ply. | RPD<br>Limit<br>15 | Low<br>Limit<br>80                      | High<br>Limit<br>120                          |
| ulfate<br>Qualifiers:                  | Analyte<br>ND/U - Not Det<br>B - Analyte Det<br>J - Estimated V<br>E - Estimated V<br>N/C - Not Calct<br>TNTC - Too nu<br>presented on the C                       | Sam<br>Run<br>Anal<br>ected at the<br>ected in Th<br>alue Betwe<br>/alue excee<br>ulated - Sar<br>merous to<br>C Summa                  | Matrix<br>Iple Spiked:<br>ID:<br>ID:<br>Iysis Date:<br>Sample<br>Result<br>499.3<br>e Reporting Lin<br>e Associated I<br>en MDL And F<br>ds calibration o<br>nple concentra<br>count<br>y Report have               | Spike (N<br>11030-<br>IC1_110<br>03/19/2<br>MS<br>Spike<br>Added<br>250<br>nit<br>Method B<br>2QL<br>curve<br>ation is group                         | MS) / Matr<br>462-01<br>0319A-5743<br>2011 17:10<br>MS<br>Result<br>793<br>lank<br>lank<br>eater than                              | 10.00<br>10.00<br>ix Spike I<br>7479 (<br>7479 (<br>747) | 10.02         Duplicate         Jnits:         Analyst:         %       MS         very       Spil         Add         117.2         MI - Matrix         O - Recover         * - Recover         e amount of cent recover | 100<br>(MSD)<br>mg/L<br>ESK<br>ESK<br>led<br>250<br>Interference<br>ery Unrepor<br>ry Outside /<br>of spike add        | 2<br>SD<br>Sult<br>780.0                                  | 90<br>MSE<br>Reco                                    | 0 %<br>overy<br>112.3<br>Dilution<br>Limits            | RPI       | D                 | RPD<br>Limit<br>15 | Low<br>Limit<br>80<br>030462<br>28/2011 | High<br>Limit<br>120<br>Page 1                |
| Qualifiers:                            | Analyte<br>ND/U - Not Det<br>B - Analyte Det<br>J - Estimated V<br>E - Estimated V<br>N/C - Not Calco<br>TNTC - Too nu<br>presented on the C<br>by the SPL LIMS sy | Sam<br>Run<br>Anal<br>ected at the<br>ected in Th<br>alue Betwee<br>/alue excees<br>Jated - Sam<br>merous to<br>C Summan<br>/stem are d | Matrix<br>ple Spiked:<br>ID:<br>ysis Date:<br>Sample<br>Result<br>499.3<br>e Reporting Lin<br>e Associated N<br>en MDL And F<br>ds calibration of<br>nple concentration<br>count<br>y Report have<br>erived from QC | Spike (N<br>110304<br>IC1_110<br>03/19/2<br>MS<br>Spike<br>Added<br>250<br>nit<br>Method B<br>250<br>nit<br>Method B<br>PQL<br>curve<br>ation is gru | MS) / Matr<br>462-01<br>0319A-574<br>2011 17:10<br>MS<br>Result<br>79:<br>lank<br>lank<br>eater than<br>inded. RPI<br>ior to the a | 10.00<br>10.00<br>ix Spike I<br>7479 (<br>7479 (<br>747) | 10.02       Duplicate       Jnits:       Analyst:       %     MS       yery     Spid       Add       117.2                                                                                                                | 100<br>(MSD)<br>mg/L<br>ESK<br>ESK<br>Res<br>led<br>250<br>Interference<br>ery Unrepor<br>ry Outside /<br>of spike add | .2<br>SD<br>sult<br>780.0<br>table d<br>Advisa<br>ded. Co | 90<br>MSE<br>Reco<br>lue to D<br>ble QC<br>ontrol li | 0 %<br>overy<br>112.3<br>Dilution<br>Limits            | 10<br>RPI | D<br>.565<br>ply. | RPD<br>Limit<br>15 | Low<br>Limit<br>80<br>030462<br>28/2011 | High<br>Limit<br>120<br>Page 14<br>3:38:01 PM |



#### **Quality Control Report**

· Conoco Phillips

|                               |                     |                          |                             |                                  | Wi                           | lmuth N          | o. 1                   |                     |               |               |                    |             |                   |              |               |
|-------------------------------|---------------------|--------------------------|-----------------------------|----------------------------------|------------------------------|------------------|------------------------|---------------------|---------------|---------------|--------------------|-------------|-------------------|--------------|---------------|
| Analysis:<br>Method:          | lon Chrom<br>E300.0 | atography                | ,                           |                                  | -                            |                  |                        |                     |               | Wori<br>Lab I | Order:<br>Batch II | 11<br>D: R: | 030462<br>317283/ | <b>A</b> .   |               |
|                               |                     | Meth                     | od Blank                    |                                  |                              |                  | Sar                    | nples in            | Analyti       | cal Batcl     |                    |             |                   |              |               |
| RunID: IC1                    | _110319A-5747460    |                          | Units:                      | mg/L                             |                              |                  | Lab                    | Sample              | e ID          |               | Clien              | t Sample i  | D                 |              |               |
| Analysis Date                 | e: 03/19/2011       | 10:31                    | Analyst:                    | ESK                              |                              | ,                | 110                    | 30462-0             | )1A           |               | MW-1               |             |                   |              |               |
|                               |                     |                          |                             |                                  |                              | *                | 110                    | 30462-0             | )2A           |               | MW-2               | 2           |                   |              | •             |
|                               |                     |                          | · `                         |                                  |                              |                  | 110                    | 30462-0             | 13A<br>14A    |               | MW-4               | ) ·<br>L    |                   |              |               |
|                               | A                   | nalyte                   |                             | Result                           | Rep Limit                    |                  |                        |                     |               |               |                    |             |                   |              |               |
|                               | Sulfate             |                          |                             | NE                               | 0.50                         |                  |                        |                     |               |               |                    |             |                   |              |               |
|                               |                     |                          |                             |                                  |                              |                  |                        |                     |               |               |                    |             |                   |              |               |
|                               |                     |                          |                             | Li                               | aboratory (                  | Control S        | Sample                 | (LCS)               |               | •             |                    |             |                   |              |               |
|                               |                     | RunID:                   |                             | IC1_1103                         | 319A-574746                  | 1 Ui             | nits:                  | mg/L                |               | •             | •                  | • •         |                   |              |               |
|                               |                     | Analysi                  | s Date:                     | 03/19/20                         | 011 10:47 .                  | Ar               | nalyst:                | ESK                 |               |               |                    |             |                   |              | •             |
|                               |                     |                          |                             |                                  |                              |                  |                        |                     |               | *             |                    |             |                   |              |               |
|                               |                     |                          |                             | te .                             |                              | Snike            | Result                 | Per                 | cent          | Lower         | Unper              |             |                   |              |               |
|                               |                     |                          |                             |                                  |                              | Added            | - Result               | Rec                 | overy         | Limit         | Limit              |             |                   |              |               |
|                               | •.                  | Chloride                 | •                           |                                  |                              | 10.00            | 9.84                   | 1                   | 98.41         | 90            | 1                  | 10          |                   | ,            |               |
|                               | ;                   | Sulfate                  | •                           |                                  |                              | 10.00            | 10.0                   | 2                   | 100.2         | 90            | 1                  | 10          |                   |              | •             |
|                               |                     | Samp                     | <u>Matrix</u><br>le Spiked: | <mark>: Spike (M</mark><br>11030 | <u>MS) / Matri</u><br>462-03 | <u>x Spike I</u> | Duplicat               | e (MSD)             | 1             |               |                    |             |                   |              |               |
|                               |                     | Runic                    | ):<br>-i- Data:             | IC1_11                           | 0319A-57474                  | \$69             | Units:                 | mg/L                |               |               |                    |             |                   |              |               |
|                               | · ·<br>·            | Analy                    | sis Date:                   | 03/19/.                          | 2011 14:28                   |                  | Analyst:               | ESK                 | •             |               |                    |             |                   |              |               |
|                               | Analyte             |                          | Sample<br>Result            | MS<br>Spike<br>Added             | MS<br>Result                 | MS<br>Reco       | % N<br>wery S<br>A     | ISD<br>pike<br>dded | MSD<br>Result | MSI<br>Reco   | D %<br>overy       | RPD         | RPD<br>Limit      | Low<br>Limit | High<br>Limit |
| Chloride                      |                     |                          | 18.06                       | 10                               | 28.0                         | )7               | 100.1                  | 10                  | 28.           | 12            | 100.6              | 0.181       | 5 15              | 80           | 120           |
|                               |                     | · ·                      | •                           | L                                |                              |                  | <b>I</b>               |                     |               |               |                    |             |                   | ۰            |               |
|                               |                     |                          |                             |                                  |                              |                  |                        |                     |               |               |                    |             |                   |              |               |
|                               |                     |                          | ,                           |                                  |                              |                  |                        |                     |               |               |                    |             |                   |              |               |
| Qualifiers:                   | ND/U - Not Dete     | ected at the             | Reporting Lir               | nit                              |                              | I                | MI - Matr              | ix Interfe          | erence        |               |                    |             |                   |              |               |
|                               | B - Analyte Dete    | cted In The              | Associated                  | Method B                         | llank                        | I                | D - Reco               | very Uni            | reportable    | e due to E    | Dilution           |             |                   |              |               |
|                               | J - Estimated Va    | lue Betwee               | n MDL And F                 | PQL                              |                              | •                | * - Recov              | ery Out             | side Advi     | sable QC      | Limits             |             |                   |              |               |
|                               | E - Estimated Va    | aiue exceed              | s calibration               | curve<br>ation is cr             | eater than A                 | l times th       | e amoun                | t of enit           | hahha a       | Control       | imite do           | not apply   |                   |              |               |
|                               | TNTC - Too nun      | nerous to co             | ount                        | adon is gi                       |                              |                  |                        | n or spik           |               | Johnoff       |                    | nor appiy.  | 11                | 030462       | Page 15       |
| QC results p<br>calculated by | presented on the QC | C Summary<br>stem are de | Report have                 | e been rou<br>C data pri         | inded. RPD<br>ior to the ap  | and perc         | cent reco<br>of roundi | overy valu          | ues           |               |                    |             | 3                 | /28/2011     | 3:38:02 PM    |
|                               |                     | •                        |                             | Versior                          | n 2.1 - Modil                | ied Febr         | uary 11, :             | 2011                |               |               |                    |             |                   |              |               |
|                               |                     |                          |                             |                                  |                              |                  |                        |                     |               |               |                    |             |                   |              |               |



#### **Quality Control Report**

**Conoco Phillips** 

Wilmuth No. 1

| Analysis:<br>Method: | Total Dissolved So<br>SM2540 C | lids                         |                                   |                        |                | ·<br>v                      | /orkOrder:<br>ab Batch ID | ): (         | 110304<br>R31741 | 62<br>9        |
|----------------------|--------------------------------|------------------------------|-----------------------------------|------------------------|----------------|-----------------------------|---------------------------|--------------|------------------|----------------|
|                      | Me                             | thod Blank                   |                                   |                        | Samples in     | Analytical B                | atch:                     |              |                  |                |
| RunID: Wi            | ET_110322K-5749750             | Units:                       | mg/L                              |                        | Lab Sample     | e ID                        | Client                    | Sample       | e iD             |                |
| Analysiş Date        | e: 03/22/2011 11:30            | Analyst:                     | MM1                               |                        | 11030462-0     | 1A                          | MW-1                      |              |                  |                |
|                      |                                |                              |                                   |                        | 11030462-0     | 2A .                        | - MW-2                    |              |                  |                |
|                      | •                              |                              |                                   |                        | 11030462-0     | 3A                          | MW,-3                     |              |                  |                |
|                      | Analyte                        |                              | Result Rep Limi                   | it                     | 11030462-0     | 4A                          | MW-4                      |              |                  |                |
|                      | Total Dissolved Solids (Residu | e Filterable)                |                                   |                        | -              |                             |                           |              |                  |                |
|                      | RuniD:                         | WET_1                        | 10322K-5749752                    | Units:                 | mg/L           |                             | <u>51</u>                 |              | •                |                |
|                      | Analysis Da                    | ite: 03/22/2                 | 2011 11:30                        | Analyst:               | MM1            |                             |                           |              | •                |                |
|                      | Analyte                        | LCS LC<br>Spike Res<br>Added | S LCS<br>sult Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD                       | RPD<br>Limit | Lower<br>Limit   | Upper<br>Limit |
| Total Dissolv        | ed Solids (Residue, Filterabl  | 200.0 2                      | 05.0 102.5                        | 200.0                  | 205.0          | 102.5                       | 0.0                       | 10           | 95               | 107            |
|                      |                                |                              | Sa                                | ample Duplic           | ate .          | •                           |                           |              |                  |                |
|                      | Ol                             | riginal Sample:              | 11030462-01                       |                        |                |                             |                           |              |                  |                |
|                      | Ri                             | uniD:                        | WET 110322K-                      | 5749754 U              | nits: ma/l     |                             | ,                         |              |                  |                |

 RunID:
 WET\_110322K-5749754
 Units:
 mg/L

 Analysis Date:
 03/22/2011 11:30
 Analyst:
 MM1

| Analyte                                    | Sample<br>Result | DUP<br>Result | RPD | RPD<br>Limit |
|--------------------------------------------|------------------|---------------|-----|--------------|
| Total Dissolved Solids (Residue, Filterabl | 1200             | 1202          | 0   | 10           |

| Qualifiers:                                | ND/U - Not Detected at the Reporting Limit                                                                                             | MI - Matrix Interference                                | ·                    |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------|
|                                            | B - Analyte Detected In The Associated Method Blank                                                                                    | D - Recovery Unreportable due to Dilution               |                      |
|                                            | J - Estimated Value Between MDL And PQL                                                                                                | * - Recovery Outside Advisable QC Limits                |                      |
|                                            | E - Estimated Value exceeds calibration curve                                                                                          |                                                         |                      |
|                                            | N/C - Not Calculated - Sample concentration is greater than 4 times                                                                    | the amount of spike added. Control limits do not apply. |                      |
|                                            | TNTC - Too numerous to count                                                                                                           |                                                         | 11030462 Page 16     |
| QC results proceeding of the calculated by | esented on the QC Summary Report have been rounded. RPD and p<br>the SPL LIMS system are derived from QC data prior to the application | ercent recovery values<br>n of rounding rules.          | 3/28/2011 3:38:02 PM |

# Sample Receipt Checklist And Chain of Custody

Version 2.1 - Modified February 11, 2011

11030462 Page 17 3/28/2011 3:38:02 PM



#### Sample Receipt Checklist

| Workorder:<br>Date and Time Received:<br>Temperature: | 11030462<br>3/18/2011 9:06:00 AM<br>2.5/2.5°C |              | Received By:<br>Carrier name:<br>Chilled by: | NB<br>Fedex-Standard Overnight<br>Water Ice |
|-------------------------------------------------------|-----------------------------------------------|--------------|----------------------------------------------|---------------------------------------------|
| 1. Shipping container/co                              | poler in good condition?                      | Yes 🗹        | No                                           | Not Present                                 |
| 2. Custody seals intact                               | on shippping container/cooler?                | Yes 🔽        | No                                           | Not Present                                 |
| 3. Custody seals intact of                            | on sample bottles?                            | Yes 🗌        | Νο                                           | Not Present                                 |
| 4. Chain of custody pres                              | sent?                                         | Yes 🔽        | No 🗌                                         |                                             |
| 5. Chain of custody sigr                              | ned when relinquished and received?           | Yes 🔽        | No                                           |                                             |
| 6. Chain of custody agre                              | ees with sample labels?                       | Yes 🗹        | No                                           |                                             |
| 7. Samples in proper co                               | ntainer/bottle?                               | Yes 🔽        | No 🗍 👘                                       |                                             |
| 8. Sample containers int                              | act?                                          | Yes 🔽        | Νο                                           |                                             |
| <b>9</b> Sufficient sample volu                       | ume for indicated test?                       | Yes 🗹        | Νο                                           |                                             |
| 0. All samples received                               | within holding time?                          | Yes 🗹        | No                                           | •                                           |
| 1. Container/Temp Blan                                | k temperature in compliance?                  | Yes 🗹        | No                                           |                                             |
| 2. Water - VOA vials hav                              | e zero headspace?                             | Yes 🗹        |                                              | Vials Not Present                           |
| 3. Water - Preservation of                            | checked upon receipt (except VOA*)?           | Yes          | No                                           | Not Applicable                              |
| *VOA Preservation Ch                                  | necked After Sample Analysis                  |              |                                              |                                             |
| SPL Representation<br>Client Name Contactor           | ve:                                           | Contact Date | & Time:                                      | · · · · · · · · · · · · · · · · · · ·       |
| Non Conformance                                       | · · · ·                                       |              |                                              |                                             |
| Client Instructions:                                  | · · · · · · · · · · · · · · · · · · ·         |              |                                              |                                             |

| Chain of Custooly Record<br>Chain of Custooly Record<br>Chain of Custooly Record<br>Chain of Custooly Record<br>Chain of Custooly Record<br>State K/H Zip Record<br>Pin: Chain of Custooly Record<br>State K/H Zip Record Custool Record Custool Record Custool Record<br>Pin: Chain of Custooly Record<br>State K/H Zip Record Custool                                                                                                                                                             | page     of     2       Requested Analysis     |                                                                                                |                                                   |                                     |        |        |         |         |               |             |          |                   |          |         |                 | ): PM re/iew (initial):      |                      |                 |                 | Appral MM            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------|--------|--------|---------|---------|---------------|-------------|----------|-------------------|----------|---------|-----------------|------------------------------|----------------------|-----------------|-----------------|----------------------|
| Chain of Custody Record<br>Chain of Custody Record<br>Chain of Custody Record<br>State AIPT Zho<br>Finalit: Util J. L. M. R. L. C.<br>State AIPT Zho<br>Finalit: Util J. L. M. R. L. C.<br>Finalit: Util J. L. M. R. L. C.<br>Finalit: Util J. L. M. R. L. C.<br>DATE TIME comp. grab<br>3. 10. 11 10.25 M. W. P. H.<br>3. 10. 11 10.25 M. W. P.<br>3. 10. 11 10.25 M. W. P.<br>4. 10. 10.25 M. M. P.<br>4. 10.05 M. M. P.<br>4. 10. 10.25 M. M. P.<br>4. 10.05 M | pun<br>bies<br>bies                            | Containers<br>S=Other<br>2=HNO3<br>X=other<br>Containers                                       | H2SOt<br>H2SOt<br>HCI<br>H2I<br>HCI<br>HCI<br>HCI | n <sub>N</sub><br>I=E<br>I=1<br>8=8 | N X    | XIIX   | 0 - 0   | NG 1 X  | 0 NG 1 X      | 0 1 A B B A | N. N. N. | O[W] T            | 91.3     |         |                 | I Detection Limits (specify) |                      | 2. Received by: | 4. Received by: | 106 6. Received by 1 |
| Chain of Custody Record<br>Chain of Custody Record<br>State AIM Zap Email: UNIX LaW Latt CHA<br>Email: UNIX LaW Latt CHA<br>Email: UNIX LaW Latt CHA<br>Email: UNIX LaW Latt CHA<br>Email: UNIX Latt ChA<br>Email: UNIX Latt CHA<br>Email: UNIX Latt CHA<br>Email: UNIX Latt CHA<br>State Latt CHA<br>State Latt Charles Results: Fax L<br>Contract Results: Fax L<br>Contract Charles Char                                                                                                                                           | A=air ma<br>othet ix<br>bothet ix<br>bothet ix | E=eficore X=<br>B=eficore X=<br>A=amber glas<br>V=vial X=otho<br>V=vial X=otho<br>I=402 40=via | =sludge<br>=sludge<br>plastic<br>glass            |                                     | IdmX   | XWPIL  | XW/VA   | XWP     | X   W   P   W | XWVA        | X   w P  | $X   w   P   \mu$ | XWVA     | XWP     | rks:            | mai A PDF Specia             | LA RECAP             | 5/7/1 DK        | date time       | date/19/11 lind      |
| Chain of Custody Record<br>State $M/M$<br>State $M/M$<br>State $M/M$<br>Email: $U/M$<br>B/M / M<br>B/M / M<br>M / M / M / M<br>M / M / M / M<br>M / M / M / M / M<br>M / M / M / M / M / M / M / M / M / M /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M 200                                          | zin nexumora                                                                                   | P.                                                | TIME   comp                         | 570    | 11025  | 5201    | 1635    | 1535          | 635         | 1545     | 1646              | 1545     | 165     | Laboratory rema | Results: Fax <b>G</b>        | vel 4 QC L TX TRRP L | )               |                 |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chain of Custody Record                        | State N/M<br>Fernait: U///                                                                     |                                                   | DATE                                | 3/10/1 | 3 10/1 | 11.91.5 | 3.16.11 | 3.16.11       | 3.16.11     | 316.11   | 211011            | 3./10.11 | 3.16.11 | hall O ket      | Reporting Requirements       | OCH Level 3 QC L La  | Me Manules      | uished by:      | uished by:           |

|                   |                                              |                           |                     |                     |                 | A. 11                             |          |                |                          |          |    |       |          |     |          |        |                        |          |            |                 |            | <u></u>              | •      |
|-------------------|----------------------------------------------|---------------------------|---------------------|---------------------|-----------------|-----------------------------------|----------|----------------|--------------------------|----------|----|-------|----------|-----|----------|--------|------------------------|----------|------------|-----------------|------------|----------------------|--------|
|                   |                                              |                           |                     |                     |                 |                                   |          |                |                          |          |    |       |          |     |          |        | ZZ                     | itial):  |            |                 |            |                      |        |
| -   \<br>0   -5   | sis                                          |                           |                     |                     |                 |                                   |          |                |                          |          |    |       |          |     |          |        |                        | iew (in  |            |                 |            |                      |        |
|                   | naly                                         |                           |                     | : · ·               | <u>.</u> .<br>  | <u></u><br>                       |          |                |                          |          |    |       |          | ••• |          |        |                        | PM rey   |            |                 |            |                      | Drive  |
| See 3             | ed A                                         |                           |                     | <u></u><br>         |                 | <u>.</u>                          |          |                |                          |          |    |       |          |     |          |        | ntact?<br>ce?<br>[cmu: |          |            |                 |            |                      | ughes  |
| <u> </u>          | luest                                        |                           |                     |                     |                 |                                   |          |                |                          |          |    |       |          | •   |          |        |                        |          |            | •               |            | ry:<br>Nev           | H 651  |
| 2                 | Rec                                          | - 1/ 1                    |                     | X                   | $\frac{1}{2}$   | L.                                |          | $\times$       | $\times$                 | $\times$ |    |       |          |     |          | · · ·  |                        |          |            |                 | . (        | DOP 10               |        |
| and a             | 17                                           | ן א<br>הורה               | 1 K                 | 11/1<br>1.15        |                 | $\frac{\pi p}{\alpha t}$          |          | •<br>• • •     |                          |          |    |       |          | •   |          |        |                        | specify) |            | l by:           | 1.by:      | py La                |        |
| 0                 | r, 4                                         | <u>110</u>                |                     | u02                 | 7<br>10 19      |                                   |          | E.             | n.                       | -        |    |       |          |     |          |        |                        | imits (s | • *        | teceived        | teceived   | teceived             | 5      |
| F                 | res.                                         |                           | other               | )=X                 | <del>,</del> 00 | 3=H7                              | ->       | $\underline{}$ | (``)<br>                 | ~~       |    |       |          |     |          |        |                        | ction L  |            | 2. R            | 4<br>4     | 6. R                 | Γ.     |
| • . •             | ize p                                        | i)<br>Jəu                 | $\frac{2000}{10=X}$ | 1=C<br>209[=        | 1<br>-91        | JH=1<br>z08=8                     | 4        | 2              | 0                        | Ś        |    |       |          |     |          | •<br>• |                        | al Dete  |            | 282             |            | 90                   |        |
|                   | ottle s                                      | -vial<br>other<br>East    | -07 ISU             | $\Lambda = \Lambda$ | SSE             | <u>ا ا ا ا</u><br>1 (=1)<br>الأ=1 | E d      | 7 /            | 14                       | V 4      |    |       |          | -   |          |        | -                      | Speci    |            | Citi            | time       | time.                | kway   |
|                   | atrix bo                                     | X=0th                     | super<br>succes     | - V                 | -site<br>Spu    | IS=7S                             | 0        | 11             | $\overline{\mathcal{D}}$ | 1        |    |       | ·<br>·   |     | <u> </u> |        |                        | DFZ      |            | 11/2            |            | 3/11                 | .V Par |
|                   | <u>"                                    </u> | $\mathbf{F} = \Delta$ [ic |                     |                     | 1916            | ™=M<br>g                          |          | X              |                          | X        |    | · .   |          |     |          | -      |                        | ষ্       | LA RÉC     |                 | ite        | )  1                 | Caffer |
|                   |                                              | 20                        | er kel              |                     |                 | 18 du                             | <b>.</b> |                |                          |          |    |       |          |     | -        |        | emarks                 | Emai     |            | - <b>3,</b> N _ | 3b         | d,                   | sador  |
|                   | 4                                            | 3                         | aft.                |                     |                 | 100                               |          |                |                          |          |    |       |          |     |          |        | atory r                |          | IX TRF     |                 |            |                      | mbas   |
|                   | -                                            | r loop                    | hard                |                     |                 | ME                                | 2        | R              | Q                        | 2        |    |       |          |     |          | ,      | Labor                  |          |            |                 | -          |                      | 500 A  |
| · -               |                                              | Zip                       | JANC                |                     |                 | Ph:<br>TI                         | ĺ        | 9              | 102                      | 17       |    |       |          |     |          |        |                        | Resu     | cvel 4 Q   |                 |            |                      |        |
| Record            |                                              |                           | alt                 |                     |                 | .   <u>-</u> -                    |          |                | /                        | /        |    | · · · |          |     |          |        | 2                      | ements   | c 🗖 L      | eri             | •          | ·                    |        |
| Custody           | 4                                            |                           | inail:              |                     |                 | ATE                               | <u> </u> | 1.01           | 101                      | 1.01     |    |       |          |     |          |        | Z,                     | Requir   | evel 3 Q   | June S          |            |                      |        |
| , Inc.<br>hain of | Ĩ                                            |                           |                     |                     |                 |                                   | $\omega$ | $\mathcal{O}$  | $\dot{\omega}$           | $\sim$   |    |       | <u> </u> |     |          | •      | RO                     | ) orting |            | the dry         | shed by    | shed by              | ۰.     |
| SPL<br>est & C    |                                              | 1° R                      | 12 D                | 3                   |                 |                                   |          | •              |                          | · .      |    |       |          |     |          | •      | heer                   | cial Re  | dard Q     | Alingue a       | et in dire | elinqui              | ive    |
| is Requ           |                                              |                           | 541                 | <                   | I               |                                   |          |                |                          | х.,      |    |       |          |     |          |        | 1 F                    | Spe      | t Stay     | <u>*</u>        | ž.         | 5. 8                 | ge Dr  |
| Analys            | T                                            |                           | Blay                | 111                 | N               | E ID                              |          |                |                          | J.       | •  |       |          |     |          | •      | ĽŽ                     | L        | Contract   | Standard        |            | r notice             | rchan  |
| Nº.               | A                                            | 167                       |                     |                     | 13              | )<br>MPLI                         |          |                | 124                      | AC       | }. | ·     |          |     |          |        | emarks                 | d TA     | <b>_</b> - | <b>À</b> <      |            | es prio              | 0 Inte |
|                   |                                              | 13                        |                     | No. 6               | M               | SA                                | 1-4      | 1-1            | Dlic                     |          |    |       |          |     |          |        | Itan R                 | neste    | s Day      | ss Days         | ss Days.   | r <del>g</del> quire | 888    |
|                   | Name:                                        | H.                        | Contac              | ct Name<br>ame:     | ocation         | e To:                             | Mn       | Mu             | du                       | -1       | •  |       |          |     |          |        | Consu                  | Requ     | Busine     | Busine          | Busine     | TAT .                | 1      |
| N                 | Client                                       | Addre                     | Phone<br>Client     | Projec<br>Site N    | Site L          | Invoic                            |          |                |                          |          |    |       |          |     |          |        | Client                 |          |            |                 | <b>]</b> [ | L C<br>Rush          |        |