3R - 427

OCT 2008 GWMR

03/04/2009

March 4, 2009

Mr. Glen von Gonten
State of New Mexico Oil Conservation Division
1220 South St. Francis Dr.
Santa Fe, New Mexico 87505

RE:

(I) ConocoPhillips Shepherd & Kelsey IE 2008 Quarterly Report

Bloomfield, New Mexico

(2) ConocoPhillips Faye Burdette No. 1 2008 Quarterly Report

Aztec, New Mexico

(3) ConocoPhillips El Paso 1A 2008 Quarterly Report

Blanco, New Mexico

Dear Mr. von Gonten:

Enclosed please find a copy of the above-referenced documents as compiled by Tetra Tech, Inc., formerly Maxim Technologies, for these Farmington area sites.

Please do not hesitate to contact me at (505) 237-8440 if you have any questions or require additional information.

Sincerely,

Kelly E. Blanchard

Project Manager/Geologist

Kelly & Blanchard

Enclosures (3)

QUARTERLY GROUNDWATER MONITORING REPORT OCTOBER 2008 SAMPLING EVENT

CONOCOPHILLIPS EL PASO IA BLANCO, NEW MEXICO

Prepared for:

420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

6121 Indian School Rd. NE Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 96900122.100

February 11, 2009

TABLE OF CONTENTS

1.0	INT	RODUCTION	I
	1.1	Site History	I
2.0	MET	HODOLOGY AND RESULTS	1
	2.1	Groundwater Monitoring Methodology	I
	2.2	Groundwater Sampling Analytical Results	2
3.0	CON	NCLUSIONS	2

FIGURES

- 1. Site Location Map
- 2. Site Layout Map

TABLES

- 1. Site History Timeline
- 2. Groundwater Laboratory Analytical Results Summary (October 2008)

APPENDICES

- Appendix A. Groundwater Sampling Field Form
- Appendix B. Laboratory Analytical Report

QUARTERLY GROUNDWATER MONITORING REPORT CONOCOPHILLIPS EL PASO IA, BLANCO, NEW MEXICO

1.0 INTRODUCTION

This report presents the results of quarterly groundwater monitoring completed by Tetra Tech, Inc. (Tetra Tech) on October 25, 2008, at the ConocoPhillips, formerly Burlington Resources, El Paso IA Site in Blanco, New Mexico. This event represents the first quarter of groundwater sampling conducted by Tetra Tech at the site.

The site is located near the intersection of Highway 64 and county road 4450 east of Blanco, NM. The site can be reached by turning right on county road 4450 and traveling for approximately 300 feet before taking another right, for 0.1 mile at which point travel should continue to the left downhill toward Canyon Largo for 0.4 miles until reaching the site. The site consists of two gas production wells, well head 1S and well head 1A and associated equipment and installations. The location and general features of the El Paso 1A site are shown on **Figures 1** and **2**, respectively.

1.1 Site History

The history of the ConocoPhillips El Paso IA Site is outlined in Table 1.

2.0 METHODOLOGY AND RESULTS

The following subsections describe the groundwater monitoring methodology and sampling analytical results.

2.1 Groundwater Monitoring Methodology

Groundwater sampling

Monitor well MW-I was sampled during this event to initiate quarterly groundwater monitoring at the site. Approximately 4 gallons of water, or greater than three well volumes, were purged from the monitoring well before sampling was performed. The purged water was disposed of in the waste water tank located on site (Figure 2). A 1.5-inch dedicated bailer was used to purge and collect groundwater samples. The samples were placed in laboratory prepared bottles, packed on ice, and shipped with chain of custody documentation to Southern Petroleum Laboratory located in Houston, Texas. The samples were analyzed for presence of volatile organic compounds (VOC) including but not limited to benzene, toluene, ethyl-benzene, and xylenes (BTEX) by Environmental Protection Agency (EPA) Method 8260B, semi-volatile organics compounds (SVOC) by EPA Method 8270C, total petroleum hydrocarbons (TPH) by EPA Method SW8015B, ion chromatography by EPA Method E300.0, metals including mercury by EPA Methods SW7470A, 6010B, 6020A, and nitrogen by EPA Method E353.2.

2.2 Groundwater Sampling Analytical Results

The October 2008 analysis of the collected groundwater samples indicates that all contaminants of concern are below the NMWQCC standards. Laboratory analytical data from the October 2008 sampling are summarized on **Table 2**. The field groundwater sampling form is presented in **Appendix A** and the laboratory analytical report is presented in **Appendix B**.

3.0 CONCLUSIONS

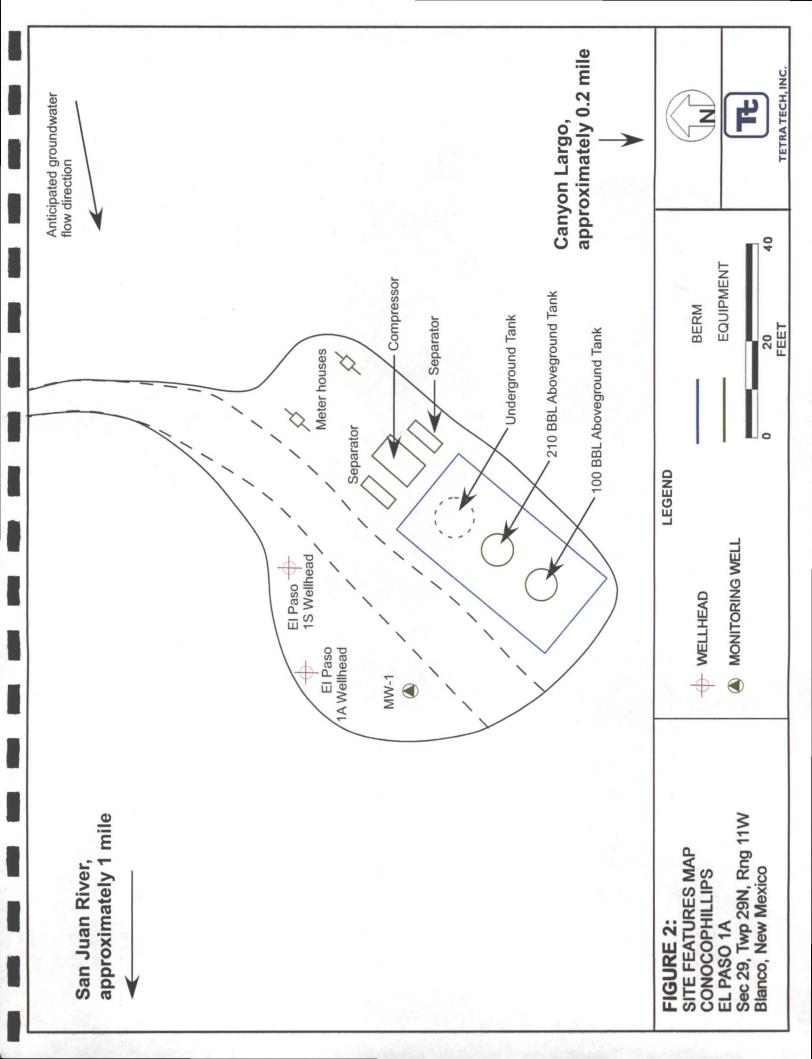
Tetra Tech recommends continued quarterly groundwater monitoring and the installation of 3 additional monitoring wells in order to provide sufficient data for site closure. Tetra Tech will conduct future groundwater monitoring following additional monitoring well installation. If results indicate all constituents of concern are below NMWQCC standards, groundwater monitoring will be discontinued and site closure will be requested.

FIGURES

- I. Site Location Map
 - 2. Site Layout Map

FIGURE 1.

Site Location Map ConocoPhillips El Paso 1A Blanco, NM



Directions from HW 64 to ConocoPhillips El Paso 1A site Location Approximate ConocoPhillips El Paso 1A Site location

TETRA TECH, INC.

TABLES

I. Site History Timeline

2. Laboratory Analytical Data Summary (October 2008)

Table 1. Site History Timeline - ConocoPhillips El Paso 1A

DATE	ACTIVITY
Feb-07	Hydrocarbon-impacted soils discovered during trench work being conducted for a new flowline. Original source of contamination is unknown.
Feb-07	Contaminated soil excavated from the Site. Soil samples collected and analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX) were below NMOCD regulations.
21-Sep-07	Ground water monitoring well installed to a depth of ten (10) feet below ground surface (bgs) by Envirotech Inc. of Farmington, NM (Envirotech). A soil sample obtained from the well boring was
	analyzed for benzene, BTEX and total petroleum hydrocarbons (TPH). Results were below NMOCD regulations of 10 parts per million (ppm), 50 ppm, and 100 ppm, respectively.
21-Sep-07	A ground water sample was collected from the temporary monitoring well and analyzed for BTEX; results were below the State of New Mexico drinking water standard for this constituent.
27-Sep-07	Depth to groundwater measured at seven (7) feet bgs.
Sep-07	Envirotech report recommends plugging and abandonment of the temporary ground water monitoring well and a No Further Action determination for the Site (Envirotech, 2007).
Apr-09	Oil Conservation Division of NM Energy, Minerals, and Resources Dept. indicates additional
	investigation and sampling is necessary for closure consideration during a meeting with Glenn Vor Gonten
25-Oct-08	1st quarter sampling of MW-1 by Tetra Tech
Jan-09	Attempt to install additional monitoring wells; roads not accessable by drill rig due to winter weather conditions.
28-Jan-09	2nd quarter sampling of MW-1 by Tetra Tech

Table 2.

Analytical Data El Paso 1A October 25, 2008

	NM Groundwater	EPA Groundwater	Well ID
	Stnadards	Standards	MW-1
Vol	Volatile Organic Compounds (ug/L	mpounds (ug/L)	
Benzene	10	2	5>
Toluene	750	ı	<5
Ethylbenzene	750	700	<5
Xylenes	620	•	<5>
Diesel Range Organics	•	•	0.27
	General Chemistry (mg/L)	stry (mg/L)	
Chloride Chloride	250	250	74.1
Sulfate	009	250 / 400	6400
1	Inorganic Contaminants (mg/L	ninants (mg/L)	٠
Calcium			239
Iron	1	0.3	26
Magnesium	•	ŧ	38.3
Sodium	•		3490
Arsenic	0.1	0.05	0.01
Lead	0.05	0.015	0.0175
Barium	1	2	0.0245
Manganese	0.2	0.05	5.49
إدروا والمراجع والمتالين والمتالين والمتالين والمتالين والمتالين والمتالين والمتالي والمتالي والمتال			

Notes

Concentrations marked **bold** exceed NMWQCC standards Only detected constituents are included on Table 2.

APPENDIX A GROUNDWATER SAMPLING FIELD FORM

Tt	TETRATECH, INC.
----	-----------------

WATER SAMPLING FIELD FORM

Project Name	El Paso 1A			<u> </u>	Page_	1 of _	1
Project No.			. 				
Site Location	San Juan County, NM						
Site/Well No.	MW-1	Coded/ Replicate	No.		Date	0/25/	<u> 198</u>
Weather	Sunnyman	Time Sai M Began	mpling 14()0	Time Sampling Completed	1410	
	V	E\	ACUATION D	ATA	•		
Description of	Measuring Point (MP)	10C					· · · · · · · · · · · · · · · · · · ·
Height of MP	Above/Below Land Surfa	ce		MP Elevation			
Total Sounded	Depth of Well Below M	P 13.	2	Water-Level Ele	evation		
Held	Depth to Water Belo Water Column in	7	<u>16</u> 24	Diameter of Car Gallons Pumpe Prior to Samplir	d(Bailed	2" 4 a	allens
	Gallons per		16 D(a	Sampling Pump			
Durala a Faula	Gallons in		V2-1	(feet below land	зипасе)		
Purging Equipa	ment <u>bailer</u> purge		<u> </u>	100			
Time	Temperature (C°)	SAMPLING pH	DATA/FIELD I Conductivity	TDS in g/L	ORP (mV)	DO	
1900	58.2	6.81	2814	1432	126	6.1	
1405	57.9	6.74	2801	1921	120	.8	
Sampling Equi	pment	Disposable pol	yethylene baile	ır	. 1		
Consti	tuents Sampled	. C	ontainer Descr	iption	Pre	servative	
BTEX 1 V	"s SILOCS MAT	1, 6	ٍ glass VOAs	2 Ambers	HOL JHNO		
Gen On	m, TPH	2 plas	Hics 160z,	2 plastics 3	, ,,,)	
				<u> </u>			
Remarks	Removed	bailer	from	bottom	of we	U	
Sampling Pers	onnel Christine Mat	hews, Ana More	eno	water 13		hero o	gor.
		•	Well Casing V	olumes	0 0		
	Gal./ft. 1 1/4" = 1 1/2" = 1	0.077 ,	2" = 0.16 2½" = 0.24		0.37 4 ^t 0.50 6 ^t	' = 0.65 ' = 1.46	
	1 /2 -	U. IU	£ /2 - U.24	3 /2 -	0.50	- 1,40	

APPENDIX B LABORATORY ANALYTICAL REPORT

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Certificate of Analysis Number:

<u>08101626</u>

Report To: COP ElPaso1A **Project Name:** Aztec, NM Site: Tetra Tech, Inc. Kelly Blanchard Site Address: 6121 Indian School Road, N.E. Suite 200 PO Number: Albuquerque State: **New Mexico** NM 87110-State Cert. No.: ph: (505) 237-8440 fax: **Date Reported:** 11/21/2008

This Report Contains A Total Of 36 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Case Narrative for: **Conoco Phillips**

Certificate of Analysis Number:

08101626

Report To:

Project Name:

COP EIPaso1A

Tetra Tech, Inc.

Site:

Aztec, NM

Kelly Blanchard

Site Address:

6121 Indian School Road, N.E.

PO Number:

Suite 200 Albuquerque

State:

New Mexico

NM

State Cert. No.:

87110ph: (505) 237-8440

fax:

Date Reported:

11/21/2008

All samples received outside the 48-hour hold time for Nitrate and Orthophosphate analysis. Per historical records SPL, Inc continued with analysis.

Per the Conoco Phillips TSM Revision 0, a copy of the internal chain of custody is to be included in final data package. However, due to LIMS limitations, this cannot be provided at this time.

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted with Batch ID: 84920 for the Diesel Range Organics analysis by Method 8015B. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted with Batch ID:84949 for the Semivolatile Organics analysis by SW846 Method 8270C. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met.

Your sample ID "MW-1" (SPL ID: 08101626-01) was randomly selected for use in SPL's quality control program for the Total Nitrate Nitrogen analysis by EPA Method 353.2. The Matrix Spike (MS) recovery was outside of the advisable quality control limits for Batch ID: R256285A due to matrix interference. A Laboratory Control Sample (LCS) was analyzed as a quality control check for the analytical batch and all recoveries were within acceptable limits.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

a Cordinas

08101626 Page 1 11/21/2008

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Certificate of Analysis Number:

08101626

Report To:

Fax To:

Tetra Tech, Inc.

Kelly Blanchard

6121 Indian School Road, N.E.

Suite 200

Albuquerque

NM

87110-

ph: (505) 237-8440

fax: (505) 881-3283

Project Name:

COP ElPaso1A

Site:

Aztec, NM

Site Address:

PO Number:

State:

New Mexico

State Cert. No.:

Date Reported:

11/21/2008

Client Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COC ID	HOLD
MW-1	08101626-01	Water	10/25/2008 2:10:00 PM	10/28/2008 9:30:00 AM		
Trip Blank	. 08101626-02	Water	10/27/2008 2:30:00 PM	10/28/2008 9:30:00 AM		

5- a Cordinas

11/21/2008

Date

Erica Cardenas Project Manager

> Richard R. Reed Laboratory Director

Ted Yen

Quality Assurance Officer

08101626 Page 2 11/21/2008 2:49:28 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Comple ID: MM/ 1	Callastad, 10/25/2009 14:10 SDI Sample ID:	09101626 01
Client Sample ID:MW-1	Collected: 10/25/2008 14:10 SPL Sample ID:	00101020-01

Chefit Sample 1D. WW	· - 1		Conec	ieu. 10/	23/2000	14.10	SPL Sam	ipie ib. o	3101020-01
		•	Site:	Aztec	, NM				
Analyses/Method	Result	QUAL	Rep.	Limit	Di	il. Facto	r Date Analy	yzed Analy	st Seq.#
DIESEL RANGE ORG	ANICS				MCL	S	W8015B	Units: mg	ı/L
Diesel Range Organics	(C10-C28) 0.27			0.1		.1 ·	11/06/08 1		475725
Surr: n-Pentacosane	49.6		% 20	0-150		.1	11/06/08 1	18:46 NW	475725
Prep Method	Prep Date	Prep Initials	S Prep Fa	actor					
SW3510C	10/29/2008 18:43	N_M	1.00						
GASOLINE RANGE C	RGANICS				MCL	S	W8015B	Units: mg	n/L
Gasoline Range Organic				0.1		1		2:57 WLV	474974
Surr: 1,4-Difluorobenz	·		% 60	0-155		1	11/04/08	2:57 WLV	474974
Surr: 4-Bromofluorobe	enzene 105		% 50	0-158		1	11/04/08	2:57 WLV	4749742
ION CHROMATOGRA	\PHY				MCL.		E300.0	Units: mg	n/L
Chloride	74.1			2		4		21:37 TW	4766032
Fluoride	ND			2		4	11/10/08 2		4766032
Ortho-phosphate (As P)	. ND			5		10	11/20/08	7:20 TW	478077
Sulfate	6400			250		500	11/11/08 1	19:56 TW	476646
MERCURY, TOTAL					MCL	S	W7470A	Units: mg	
Mercury	. ND		0.	.0002		1		14:22. F_S	475569
		·							•
Prep Method	Prep Date	Prep Initials		actor					
SW7470A	11/06/2008 13:18	F_S	1.00						
METALS BY METHO	D 6010B, TOTAL				MCL	S	W6010B	Units: mg	g/L
Calcium	239			0.1		1	11/04/08 2	23:43 S_C	475207
Iron	26	•		0.02 · .		.1	11/04/08 2	23:43 S_C	475207
Magnesium	38.3			0.1		1.	11/04/08 2	23:43 S_C	475207
Manganese	5.49			0.005		1	11/04/08 2	23:43 S_C	475207
Sodium	3490			5		10	11/05/08 1	11:15 S_C	4752126
Prep Method	Prep Date	Prep Initials	S Prep Fa	actor					
SW3010A	10/31/2008 15:00	BDG	1.00	2.31					
METALS BY METHO	DENZOA TOTAL				MCL		W6020A	Units: mg	
Arsenic	· 0.01			0.005	IVICE	1		Offits. III 14:00 AL_H	4755589
Barium	0.0215			0.005		1.		14:00 AL_H	4755589
Cadmium	ND	•		0.005		1		14:00 AL H	4755589
Chromium	ND		···········	0.005		1		14:00 AL H	4755589
Lead	0.0175			0.005		1		14:00 AL_H	4755589
Selenium	· ND		(0.005		1	11/06/08 1	14:00 AL_H	4755589
 									

0.005

Qualifiers:

Silver

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

ND

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

11/06/08 14:00 AL_H

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

08101626 Page 3 11/21/2008 2:49:49 PM

4755589

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-1 Collected: 10/25/2008 14:10 SPL Sample ID: 08101626-01

Site: Aztec, NM

Analyses/Method Result QUAL Rep.Limit Dil. Factor Date Analysed Analyst Seq. #

 Prep Method
 Prep Date
 Prep Initials
 Prep Factor

 SW3010A
 10/31/2008 15:00
 BDG
 1.00

 NITRATE NITROGEN (AS N), TOTAL
 MCL
 E353.2
 Units: mg/L

 Nitrogen, Nitrate (As N)
 ND
 0.5
 1
 11/03/08 15:17
 TW
 4757606

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

08101626 Page 4 11/21/2008 2:49:50 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-1

Collected: 10/25/2008 14:10 SPL Sample ID: 08101626-01

Site: Aztec, NM

	•		Site:	AZIE	C, INIVI			
Analyses/Method	Result	QUAL	Rep.l	.imit	Dil. Factor	Date Analyzed	Analyst	Seq.#
SEMIVOLATILE ORGANICS BY	METHOD 82	270C			MCL SV	V8270C U	nits: ug/L	
1,2,4-Trichlorobenzene	ND			5	1	11/06/08 16:28	GY GY	4755842
1,2-Dichlorobenzene	ND			5	.1	11/06/08 16:28	GY GY	4755842
1,2-Diphenylhydrazine	ND			10	1	11/06/08 16:28	GY GY	4755842
1,3-Dichlorobenzene	ND			5	· 1	11/06/08 16:28	GY.	4755842
1,4-Dichlorobenzene	ND			5	1	11/06/08 16:28	GY GY	4755842
2,4,5-Trichlorophenol	ND			10	1	11/06/08 16:28	GY GY	4755842
2,4,6-Trichlorophenol	ND.			5	1	11/06/08 16:28	GY .	4755842
2,4-Dichlorophenol	ND			5	· 1	11/06/08 16:28	GY GY	4755842
2,4-Dimethylphenol	· ND			5	1	11/06/08 16:28	GY GY	4755842
2,4-Dinitrophenol	ND			25	1	11/06/08 16:28	GY GY	4755842
2,4-Dinitrotoluene	ND			5	1	11/06/08 16:28	GY GY	4755842
2,6-Dinitrotoluene	ND			5	1	11/06/08 16:28	GY	4755842
2-Chloronaphthalene	· ND		·	5	1	11/06/08 16:28	GY	4755842
2-Chlorophenol	ND			5	1	11/06/08 16:28	GY GY	4755842
2-Methylnaphthalene	ND			5	1	11/06/08 16:28	GY	4755842
2-Nitroaniline	ND			25	1	11/06/08 16:28	GY GY	4755842
2-Nitrophenol	ND			5	1	11/06/08 16:28	GY GY	4755842
3,3'-Dichlorobenzidine	ND			10	1	11/06/08 16:28	GY GY	4755842
3-Nitroaniline	ND			25	1	11/06/08 16:28	GY	4755842
4,6-Dinitro-2-methylphenol	- ND -	• • • •		25	. 1	11/06/08 16:28	GY	4755842
4-Bromophenyl phenyl ether	ND-			5	1	11/06/08 16:28	GY -	4755842
4-Chloro-3-methylphenol	ND		,	5 .	1	11/06/08 16:28	GY GY	4755842
4-Chloroaniline	ND			5	1	11/06/08 16:28	GY	4755842
4-Chlorophenyl phenyl ether	ND			5	1	11/06/08 16:28	GY GY	4755842
4-Nitroaniline	ND			25	1	11/06/08 16:28	GY GY	4755842
4-Nitrophenol	ND	,		25	1	11/06/08 16:28	GY GY	4755842
Acenaphthene	ND			5	1	11/06/08 16:28	GY	4755842
Acenaphthylene	ND			5	1	11/06/08 16:28	GY	4755842
Aniline	ND			5	1	11/06/08 16:28	GY	4755842
Anthracene	ND			5	1	11/06/08 16:28	GY GY	4755842
Benz(a)anthracene	ND			5	1	11/06/08 16:28	GY GY	4755842
Benzo(a)pyrene	ND			5	1	11/06/08 16:28	GY	4755842
Benzo(b)fluoranthene	ND			5	1	11/06/08 16:28	B GY	4755842
Benzo(g,h,i)perylene	ND			5	1	11/06/08 16:28	GY GY	4755842
Benzo(k)fluoranthene	. ND			5	1	11/06/08 16:28	GY .	4755842
Benzoic acid	ND			25	1	11/06/08 16:28	GY	4755842
Benzyl alcohol	ND			5	1	11/06/08 16:28	GY	4755842
Bis(2-chloroethoxy)methane	ND			5	1	11/06/08 16:28		4755842
Bis(2-chloroethyl)ether	ND			5	1 .	11/06/08 16:28	GY GY	4755842

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:MW-1

Collected: 10/25/2008 14:10

SPL Sample ID:

08101626-01

Analyses/Mothod	Passil	QUAL	Don I :-	mit	Dil Esster	Date Analyzed	Analyet	Seq. #
Analyses/Method Bis(2-chloroisopropyl)ether	Result ND	QUAL	Rep.Lii	TIIT.	Dil. Factor	11/06/08 16:28	Analyst GY	3eq. #
Bis(2-ethylhexyl)phthalate	ND ND			5	<u>'</u>	11/06/08 16:28	GY .	475584
Butyl benzyl phthalate	ND ND		•	5	· 1	11/06/08 16:28	GY	475584
Carbazole	ND ND			5		11/06/08 16:28	GY	475584
Chrysene	ND ND	···········		5	· 1	11/06/08 16:28	GY	475584
· · · · · · · · · · · · · · · · · ·	ND ND	•		5		11/06/08 16:28	GY	475584
Dibenz(a,h)anthracene Dibenzofuran			· · · · · · · · · · · · · · · · · · ·	5	.1		GY	475584
	ND			5 5	1	11/06/08 16:28	GY ·	475584
Diethyl phthalate	ND ND				11	11/06/08 16:28	:	
Dimethyl phthalate	ND			5	1	11/06/08 16:28	GY	475584
Di-n-butyl phthalate	ND .			5	1	11/06/08 16:28	GY	475584
Di-n-octyl phthalate	ND	•		5	1	11/06/08 16:28	GY	475584
Fluoranthene	ND			5	1	11/06/08 16:28	GY	475584
Fluorene	ND			5	1	11/06/08 16:28	GY	475584
Hexachlorobenzene	ND			5	1	11/06/08 16:28	GY	475584
Hexachlorobutadiene	ND ND			5	11	11/06/08 16:28	GY	475584
Hexachlorocyclopentadiene	ND			5	1	11/06/08 16:28	GY	47,5584.
Hexachloroethane	ND			5	. 1	11/06/08 16:28	GY	475584
Indeno(1,2,3-cd)pyrene	ND			5	1	11/06/08 16:28	GY	475584
Isophorone	ND			5	· 1	11/06/08 16:28	GY	475584
Naphthalene	ND			5	1	11/06/08 16:28	GY	475584
Nitrobenzene	ND			5	1	11/06/08 16:28	GY	475584
N-Nitrosodi-n-propylamine	ND			5	1	11/06/08 16:28	GY	475584
N-Nitrosodiphenylamine	ND			5	, 1	11/06/08 16:28	GY ,	475584
Pentachlorophenol	ND			25 ·	1	11/06/08 16:28	GY	475584
Phenanthrene	ND			5	1.	11/06/08 16:28	GY	475584
Phenol	ND			5	1	11/06/08 16:28	GY	475584
Pyrene	ND			5	1	11/06/08 16:28	GY	475584
Pyridine	ND			5	1	11/06/08 16:28	GY	4755842
2-Methylphenol	. ND			5	1	11/06/08 16:28	GY	4755842
3 & 4-Methylphenol	ND			5	1	11/06/08 16:28	GY	4755842
Surr: 2,4,6-Tribromophenol	60.0		% 10-1	123 .	1	11/06/08 16:28	GY	4755842
Surr: 2-Fluorobiphenyl	74.0		% 23-1	16	· 1	11/06/08 16:28	GY	4755842
Surr: 2-Fluorophenol	30.7		% 16-1	110	1	11/06/08 16:28	GY	4755842
Surr: Nitrobenzene-d5	72.0		% 21-1	14	1	11/06/08 16:28	GY	4755842
Surr: Phenol-d5	28.0		% 10-1		1	11/06/08 16:28	GY	4755842
Surr: Terphenyl-d14	74.0		% 22-1		1	11/06/08 16:28	GY	4755842

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3510C	10/30/2008 16:53	LLL	1.00

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-1

Collected: 10/25/2008 14:10

SPL Sample ID:

08101626-01

Site:	Aztec,	NM
-------	--------	----

Analyses/Method	Result Ql	JAL Rep.Limit	Dil. Factor	Date Analyzed Analyst	Seq. #
VOLATILE ORGANICS BY ME	THOD 8260B		MCL SV	V8260B Units: ug/L	<u> </u>
1,1,1,2-Tetrachloroethane	ND	5	. 1	10/31/08 20:07 E_G	4746727
1,1,1-Trichloroethane	. ND	. 5	1	10/31/08 20:07 E_G	4746727
· 1,1,2,2-Tetrachloroethane	ND	5	1	10/31/08 20:07 E_G	4746727
1,1,2-Trichloroethane	ND	. 5	1	10/31/08 20:07 E_G	4746727
1,1-Dichloroethane	· ND	5	1	10/31/08 20:07 E_G	4746727
1,1-Dichloroethene	ND	5	1	10/31/08 20:07 E_G	4746727
1,1-Dichloropropene	ND	5	1	10/31/08 20:07 E_G	4746727
1,2,3-Trichlorobenzene	ND	5	1	10/31/08 20:07 E_G	4746727
1,2,3-Trichloropropane	ND	5	· 1	10/31/08 20:07 E_G	4746727
1,2,4-Trichlorobenzene	ND	5	1	10/31/08 20:07 E_G	4746727
1,2,4-Trimethylbenzene	ND	5	1	10/31/08 20:07 E_G	4746727
1,2-Dibromo-3-chloropropane	ND	5	1	10/31/08 20:07 E_G	4746727
1,2-Dibromoethane	ND	. 5	1	10/31/08 20:07 E_G	4746727
1,2-Dichlorobenzene	ND	. 5	1	10/31/08 20:07 E_G	4746727
1,2-Dichloroethane	ND	5	1	10/31/08 20:07 E_G	4746727
1,2-Dichloropropane	. ND	. 5	1	10/31/08 20:07 E_G	4746727
1,3,5-Trimethylbenzene	ND	5	1	10/31/08 20:07 E_G	4746727
1,3-Dichlorobenzene	ND	5	1	10/31/08 20:07 E_G	4746727
1,3-Dichloropropane	ND	5	1	10/31/08 20:07 E_G	4746727
1,4-Dichlorobenzene	ND	5	. 1	10/31/08 20:07 E_G	4746727
2,2-Dichloropropane	ND	. 5	· 1	10/31/08 20:07 E_G	4746727
2-Butanone	ND	20	1	10/31/08 20:07 E_G	4746727
2-Chloroethyl vinyl ether	ND	10	1 .	10/31/08 20:07 E_G	4746727
2-Chlorotoluene	ND	5	1	10/31/08 20:07 E_G	4746727
2-Hexanone	ND	10	1	10/31/08 20:07 E_G	4746727
4-Chlorotoluene	ND	5	1	10/31/08 20:07 E_G	4746727
4-Isopropyltoluene	ND	- 5	1	10/31/08 20:07 E_G	4746727
4-Methyl-2-pentanone	ND	10	1	10/31/08 20:07 E_G	4746727
Acetone	ND	100	1	10/31/08 20:07 E_G	4746727
Acrylonitrile	ND	50	1	10/31/08 20:07 E_G	4746727
Benzene	, ND	5	1	10/31/08 20:07 E_G	4746727
Bromobenzene	ND	5	1	10/31/08 20:07 E_G	4746727
Bromochloromethane	ND	5	1	10/31/08 20:07 E_G	4746727
Bromodichloromethane	ND	5	1	10/31/08 20:07 E_G	4746727
Bromoform	ND	5	. 1	10/31/08 20:07 E_G	4746727
Bromomethane	ND	10	11	10/31/08 20:07 E_G	4746727
Carbon disulfide	ND	5	1	10/31/08 20:07 E_G	4746727
Carbon tetrachloride	ND	5	1	10/31/08 20:07 E_G	4746727
Chlorobenzene	ND	5	1	10/31/08 20:07 E_G	4746727

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

08101626 Page 7 11/21/2008 2:49:50 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-1

Collected: 10/25/2008 14:10 S

SPL Sample ID:

08101626-01

		S	Site:	Aztec, NM			•	
Analyses/Method	Result	QUAL	Rep.Lim	nit	Dil. Factor	Date Analyzed	Analyst	Seq.#
Chloroethane	ND			10	1	10/31/08 20:07	E_G	4746727
Chloroform	· ND			5	1	10/31/08 20:07	E_G	4746727
Chloromethane	ND			10	1 .	10/31/08 20:07	E_G	4746727
Dibromochloromethane	· ND			5	1	10/31/08 20:07	E_G	4746727
Dibromomethane	ND			5	1	10/31/08 20:07	E_G	4746727
Dichlorodifluoromethane	ND			10 ·	1	10/31/08 20:07	E_G	4746727
Ethylbenzene	ND		-	5	1	10/31/08 20:07	E_G	4746727
Hexachlorobutadiene	ND			5	1	10/31/08 20:07	E_G	4746727
Isopropylbenzene	ND	•		5	· 1	10/31/08 20:07	E_G	4746727
Methyl tert-butyl ether	ND			5	1	10/31/08 20:07	E_G	4746727
Methylene chloride	ND			5	1	10/31/08 20:07	E_G	4746727
Naphthalene	ND			5	1	10/31/08 20:07	E_G	4746727
n-Butylbenzene	ND			5	1	10/31/08 20:07	E_G	4746727
n-Propylbenzene	ND			5	1	10/31/08 20:07	E_G	4746727
sec-Butylbenzene	ND			5	1	10/31/08 20:07	E_G	4746727
Styrene	ND			5	1	10/31/08 20:07	E_G	4746727
tert-Butylbenzene	ND			5 .	1 ,	10/31/08 20:07	E_G	4746727
Tetrachloroethene	ND			5	1	10/31/08 20:07	E_G	474672
Toluene	ND			5	1	10/31/08 20:07	E_G	474672
Trichloroethene	ND			5	1	10/31/08 20:07	E_G	4746727
Trichlorofluoromethane	. ND			5	1	10/31/08 20:07	E_G	4746727
Vinyl acetate .	ND			10	1	10/31/08 20:07	E_G	4746727
Vinyl chloride	ND	. *.	,	10	1	10/31/08 20:07	E_G	4746727
cis-1,2-Dichloroethene	ND			5	• 1	10/31/08 20:07	E_G	4746727
cis-1,3-Dichloropropene	ND			5	1	10/31/08 20:07	E_G	4746727
m,p-Xylene	ND			5	1	10/31/08 20:07	E_G	4746727
o-Xylene	ND			5	1,	10/31/08 20:07	E_G	4746727
trans-1,2-Dichloroethene	ND			5	1	10/31/08 20:07	E_G	4746727
trans-1,3-Dichloropropene	ND			5	1	10/31/08 20:07	E_G	4746727
1,2-Dichloroethene (total)	ND			5	1	10/31/08 20:07	E_G	4746727
Xylenes,Total	ND			5	. 1	10/31/08 20:07	E_G	4746727
Surr: 1,2-Dichloroethane-d4	104	9	6 62-13	30	.1	10/31/08 20:07	E_G	4746727
Surr: 4-Bromofluorobenzene	100	9/	6 70-13	30	1	10/31/08 20:07	E_G	4746727
Surr: Toluene-d8	104	9/	6 74-12	22 .	1	10/31/08 20:07	E_G	4746727

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: Trip Blank

Collected: 10/27/2008 14:30 **SPL Sample ID:**

08101626-02

Analyses/Method	Result QUAL	Rep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
VOLATILE ORGANICS BY ME	THOD 8260B		MCL SV	V8260B Un	its: ug/L	
1,1,1,2-Tetrachloroethane	ND	5	1	10/31/08 17:52	E_G	4746724
1,1,1-Trichloroethane	ND	. 5	· 1	10/31/08 17:52	E_G	4746724
1,1,2,2-Tetrachloroethane	ND	5	1	10/31/08 17:52	E_G	4746724
1,1,2-Trichloroethane	ND	5	· 1	10/31/08 17:52	E_G	4746724
1,1-Dichloroethane	ND	. 5	1	10/31/08 17:52	E_G	4746724
1,1-Dichloroethene	· ND	5	1	10/31/08 17:52	E_G	4746724
1,1-Dichloropropene	ND	5	1	10/31/08 17:52	E_G	4746724
1,2,3-Trichlorobenzene	ND ·	5	1	10/31/08 17:52	E_G	4746724
1,2,3-Trichloropropane	ND	5	. 1	10/31/08 17:52	E_G	4746724
1,2,4-Trichlorobenzene	ND	5	1	10/31/08 17:52	E_G	4746724
1,2,4-Trimethylbenzene	ND	5	1	10/31/08 17:52	E_G	4746724
1,2-Dibromo-3-chloropropane	ND ·	5	1	10/31/08 17:52	E_G	4746724
1,2-Dibromoethane	ND	5	. 1	10/31/08 17:52	E_G	4746724
1,2-Dichlorobenzene	ND	5	. 1	10/31/08 17:52	E_G	4746724
1,2-Dichloroethane	ND	5	1	10/31/08 17:52	E_G	4746724
1,2-Dichloropropane	ND .	5	1	10/31/08 17:52	E_G	4746724
1,3,5-Trimethylbenzene	ND	5	1	10/31/08 17:52	E_G	4746724
1,3-Dichlorobenzene	ND	5	1	10/31/08 17:52	E_G	4746724
1,3-Dichloropropane	ND	5	1	10/31/08 17:52	E_G .	4746724
1,4-Dichlorobenzene	ND .	5	1	10/31/08 17:52	E_G	4746724
2,2-Dichloropropane	ND	5	1	10/31/08 17:52	E_G	4746724
2-Butanone	ND	20	1	10/31/08 17:52	E_G	4746724
2-Chloroethyl vinyl ether	ND	. 10	1	10/31/08 17:52	E_G	4746724
2-Chlorotoluene	· ND	5	1	10/31/08 17:52	E_G	4746724
2-Hexanone	ND	10	1	10/31/08 17:52	E_G	4746724
4-Chlorotoluene	. ND	5	1	10/31/08 17:52	E_G	4746724
4-Isopropyltoluene	ND	5	1	10/31/08 17:52	E_G	4746724
4-Methyl-2-pentanone	ND	10	1	10/31/08 17:52	E_G	4746724
Acetone	ND	100	1	10/31/08 17:52	E_G	4746724
Acrylonitrile	ND	50	1	10/31/08 17:52	E_G	4746724
Benzene	ND	5	1	10/31/08 17:52	E_G	4746724
Bromobenzene	ND .	5	1	10/31/08 17:52	E_G	4746724
Bromochloromethane	ND	5	1	10/31/08 17:52	E_G	4746724
Bromodichloromethane	ND	5	1	10/31/08 17:52	E_G	4746724
Bromoform	ND	5	· 1	10/31/08 17:52	E_G	4746724
Bromomethane	· ND	10	1	10/31/08 17:52	E_G	4746724
Carbon disulfide	ND	5	1	10/31/08 17:52	E_G	4746724
Carbon tetrachloride	ND	5	1	10/31/08 17:52	E_G	4746724
Chlorobenzene	ND	. 5	1	10/31/08 17:52	E_G	4746724

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

08101626 Page 9 11/21/2008 2:49:51 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID: Trip Blank

Collected: 10/27/2008 14:30

SPL Sample ID:

08101626-02

	· .	•	Site	: Aztec	, NM .			-	
Analyses/Method	Result	QUAL	Rep	p.Limit		Dil. Factor	Date Analyzed	Analyst	Seq.#
Chloroethane	ND		•	10		1	10/31/08 17:52	E_G	4746724
Chloroform	ND	,		5	•	1 .	10/31/08 17:52	E_G	4746724
Chloromethane	ND			10		1	10/31/08 17:52	E_G	4746724
Dibromochloromethane	ND			5		1	10/31/08 17:52	E_G	4746724
Dibromomethane	ND			5		1	10/31/08 17:52	E_G	4746724
Dichlorodifluoromethane	ND			10	•	1	10/31/08 17:52	E_G	4746724
Ethylbenzene	ND			5		1	10/31/08 17:52	E_G	4746724
Hexachlorobutadiene	ND			5 -		1	10/31/08 17:52	E_G	4746724
Isopropylbenzene	ND			5		1	10/31/08 17:52	E_G	4746724
Methyl tert-butyl ether	ND			5		1	10/31/08 17:52	E_G	4746724
Methylene chloride	ND			5		1	10/31/08 17:52	E_G	4746724
Naphthalene	ND			5	,	1	10/31/08 17:52	E_G	4746724
n-Butylbenzene	ND			5		1	10/31/08 17:52	E_G .	4746724
n-Propylbenzene	ND		•	5		1	10/31/08 17:52	E_G	4746724
sec-Butylbenzene	ND			5		1 .	10/31/08 17:52	E_G	4746724
Styrene .	ND			5		1	10/31/08 17:52	E_G	4746724
tert-Butylbenzene	ND			5		1	10/31/08 17:52	E_G	4746724
Tetrachloroethene	ND	• • • • • • • • • • • • • • • • • • • •		5		1	10/31/08 17:52	E_G	4746724
Toluene	ND			5		1	10/31/08 17:52	E_G	4746724
Trichloroethene	ND			5		· 1	10/31/08 17:52	E_G	4746724
Trichlorofluoromethane	ND			5		1	10/31/08 17:52	E_G	4746724
Vinyl acetate	ND			. 10		1	10/31/08 17:52	E_G	4746724
Vinyl chloride	ND			10 .		1	10/31/08 17:52	E_G	4746724
cis-1,2-Dichloroethene	ND			5		1 .	10/31/08 17:52	E_G	4746724
cis-1,3-Dichloropropene	ND			5		1	10/31/08 17:52	E_G	4746724
m,p-Xylene	ND			5		1	10/31/08 17:52	E_G	4746724
o-Xylene .	ND			5		1	10/31/08 17:52	E_G	4746724
trans-1,2-Dichloroethene	ND			5		1 .	10/31/08 17:52	E_G	4746724
trans-1,3-Dichloropropene	ND			5		1	10/31/08 17:52	E_G	4746724
1,2-Dichloroethene (total)	ND			5		1	10/31/08 17:52	E_G	4746724
Xylenes,Total	ND			5		1	10/31/08 17:52	E_G	4746724
Surr: 1,2-Dichloroethane-d4	104		%	62-130		1	10/31/08 17:52	E_G	4746724
Surr: 4-Bromofluorobenzene	98.0		%	70-130		1	10/31/08 17:52	E_G	4746724
Surr: Toluene-d8	104		%	74-122		1	10/31/08 17:52	E_G	4746724
				· · ·			•		

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

08101626 Page 10 11/21/2008 2:49:51 PM

Quality Control Documentation

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP EIPaso1A

Analysis:

Diesel Range Organics

Method:

RunID:

SW8015B

HP Z 081106A-4757246

WorkOrder:

08101626

Lab Batch ID:

84920

Method Blank

Units:

Lab Sample ID

Client Sample ID

Analysis Date:

11/06/2008 14:26

Analyst:

08101626-01C

Samples in Analytical Batch:

MW-1

Preparation Date:

10/29/2008 18:43

Prep By: N

mg/L

NW

N M Method SW3510C

Analyte	Result	Rep Limit
Diesel Range Organics (C10-C28)	ND	0.10
Surr: n-Pentacosane	57.8	20-150

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

HP_Z_081106A-4757247

Units:

mg/L

Analysis Date: Preparation Date: 11/06/2008 14:48

Analyst: NW

10/29/2008 18:43 Prep B

Prep By: N_M Method SW3510C

Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
Diesel Range Organics (C10-C28)	2.00	1.90	94.9	2.00	2.07	104	8.8	. 20	21	130
Surr: n-Pentacosane	0.0500	0.0443	88.6	0.0500	0.0478	95.6	7.6	30	20	150

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 12

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP ElPaso1A

Analysis:

RunID:

Gasoline Range Organics

Method: SW8015B

WorkOrder:

08101626

Lab Batch ID:

R255843

Method Blank

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

HP_P_081103A-4749727

,....

Analyst: WLV

08101626-01B

MW-1

Preparation Date:

11/03/2008 17:55 11/03/2008 17:55

Prep By:

Units:

Method SW5030B

Analyte	Result	Rep Limit
Gasoline Range Organics	ND	0.10
Surr: 1,4-Difluorobenzene	90.8	60-155
Surr: 4-Bromofluorobenzene	103.7	50-158

Laboratory Control Sample (LCS)

RunID:

HP_P_081103A-4749736

Units:

mg/L WLV

Analysis Date: Preparation Date: 11/03/2008 22:40 11/03/2008 22:40 Analyst: Prep By:

Method SW5030B

Analyte	Spike Added	Result	Percent Recovery	Lower - Limit	Upper Limit
Gasoline Range Organics	1.00	1.05	105	42	. 136
Surr: 1,4-Difluorobenzene	0.100	0.0943	94.3	60	155
Surr: 4-Bromofluorobenzene	0.100	0.106	106	50	158

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

08101530-02

RunID: Analysis Date: 00101330-02

11/03/2008 21:15

HP_P_081103A-4749733

Units: Analyst: mg/L

WLV

Analyte	Sample Result	MS Spike	MS Result	MS % Recovery	MSD Spike	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
		Added			Added						
Gasoline Range Organics	1.07	1	1.17	10.2 *	1	1.17	10.6 *	0.359	36	22	174
Surr: 1,4-Difluorobenzene	ND	0.1	0.0993	99.3	0.1	0.104	104	4.82	30	60	155
Surr: 4-Bromofluorobenzene	ND	0.1	0.112	112	0.1	0.112	112	0.268	30	50	158

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank.

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 13

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP ElPaso1A

Analysis:

RunID:

Metals by Method 6010B, Total

Method: SW

WorkOrder:

08101626

SW6010B

Lab Batch ID:

85019

Method Blank

Blank Units:

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

TJA_081104A-4752057

mg/L

Lab Sample ID

Chefft Sam

Preparation Date:

11/04/20

11/04/2008 22:40 10/31/2008 15:00 Analyst: Prep By: S_C BDG Method SW3010A 08101626-01E

MW-1

Analyte	Result	Rep Limit
Calcium	· ND	0.1
Iron	ND	0.02
Magnesium	ND	0.1
Manganese	ND	0.005
Sodium	ND	0.5

Laboratory Control Sample (LCS)

RunID:

TJA_081104A-4752058

Units:

mg/L S C

Analysis Date: Preparation Date: 11/04/2008 22:44 10/31/2008 15:00 Analyst: Prep By:

BDG Method SW3010A

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Calcium	1.000	1.052	105.2	80	120
Iron	1.000	1.005	100.5	80	120
Magnesium	1.000	1.005	100.5	80	120
Manganese	1.000	1.016	101.6	80	120
Sodium	1.000	1.079	107.9	80	120

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

08101725-02

RunID:

TJA_081104A-4752060

Units:

mg/L

Analysis Date:

11/04/2008 22:53

Analyst: S_C

Preparation Date:

10/31/2008 15:00

Prep By: BDG Method SW3010A

Analyte	Sample Result	MS Spike Added	MS. Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low . Limit	High Limit
Calcium	1026	1	1001	· N/C	1	1055	N/C	N/C	20	75	125
Iron	0.5156	1	1.480	96.44	1	1.502	98.59	1.440	20	75	125
Magnesium	1406	1	1370	N/C	1	1442	N/C	N/C	20	75	125
Manganese	18.28	1	18.82	N/C	1	19.79	N/C	N/C	20	75	125

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 14

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP ElPaso1A

Analysis:

Metals by Method 6010B, Total

Method:

SW6010B

WorkOrder:

08101626

Lab Batch ID:

85019

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

08101725-02

RunID:

TJA 081104A-4752060

Units:

mg/L

Analysis Date:

11/04/2008 22:53

S_C Analyst:

Preparation Date: 10/31/2008 15:00 Prep By:

BDG Method SW3010A

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Sodium	4678	1	4547	N/C	1	4751	N/C	N/C	20	75	125

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 15

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP ElPaso1A

Analysis:

Metals by Method 6020A, Total

Method:

RunID:

SW6020A

WorkOrder:

08101626

Lab Batch ID:

85019d-I

Method Blank

ICPMS_081104A-4750503

Units:

mg/L AL H

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

11/04/2008 13:42

Analyst:

08101626-01E

MW-1

Preparation Date:

10/31/2008 15:00

Prep By:

BDG Method SW3010A

Analyte	Result	Rep Limit
Arsenic	ND	0.005
Barium	ND	0.005
Cadmium	. ND	0.005
Chromium	ND	0.005
Lead	ND	0.005
Selenium	ND	0.005
Silver	ND	0.005

Laboratory Control Sample (LCS)

RunID:

ICPMS_081104A-4750511

Units:

ma/L

Analysis Date: Preparation Date: 11/04/2008 14:41 10/31/2008 15:00 Analyst: AL H Prep By:

BDG Method SW3010A

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Arsenic	0.1000	0.1014	101.4	80	120
Barium	0.1000	0.09790	97.90	80	120
Cadmium	0.1000	0.09410	94.10	80	120
Chromium	0.1000	0.09262	92.62	80	120
Lead	0.1000	0.09830	98.30	80	120
Selenium	0.1000	0.1038	103.8	80	120
Silver	0.1000	0.09411	94.11	80	120

Post Digestion Spike (PDS) / Post Digestion Spike Duplicate (PDSD)

Sample Spiked:

08101725-02

RunID:

ICPMS_081104A-4750512 Units:

mg/L AL_H

Analysis Date:

11/04/2008 14:46

Analyst:

Analyte	Sample Result	PDS Spike Added	PDS Result	PDS % Recovery	PDSD Spike Added	PDSD Result	PDSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Arsenic	0.00857	0.1	0.08618	77.61	0.1	0.0854	76.83	0.9092	20	75	125
Cadmium .	ND	0.1	0.06186	61.86 *	0.1	0.06181	61.81 *	0.08086	20	75	125

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 16

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Conoco Phillips COP ElPaso1A

Analysis:

Metals by Method 6020A, Total

Method:

WorkOrder:

08101626

SW6020A

Lab Batch ID:

85019d-I

DN

0.06299 62.99 * 0.06274

62.74 * 0.3977 20 75 125

Silver

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

RunID:

08101725-02

0.1

ICPMS_081104A-4750505

Units:

mg/L

Analysis Date:

11/04/2008 13:56

Analyst: AL_H

Preparation Date:

10/31/2008 15:00

Prep By:

BDG Method SW3010A

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Arsenic .	0.008570	0.1	0.08153	72.96 *	0.1	0.08008	71.51 *	1.794	20	75	125
Barium	0.03462	0.1	0.1285	93.88	0.1	0.1218	87.18	5.354	20	75	125
Cadmium	ND	0.1	0.06051	60.51 *	0.1	0.05932	59.32 *	1.986	20	. 75	125
Chromium	. ND	0.1	0.07857	· 78.57	0.1	0.07566	75.66	3.774	20	75	125
Lead	ND	0.1	0.1001	100.1	0.1	0.1008	100.8	0.6969	20	- 75	125
Selenium	0.02830	0.1	0.1066	78.30	0.1	0.1125	84.20	5.386	20	75	125
Silver	ND	0.1	0.06497	64.97 *	0.1	0.06439	64.39 *	0.8967	20	75	125

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 17

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Conoco Phillips COP ElPaso1A

Analysis: Method:

RunID:

Mercury, Total

SW7470A

WorkOrder:

Samples in Analytical Batch:

08101626

Lab Batch ID:

85178

Method Blank

mg/L

Lab Sample ID

Client Sample ID

Analysis Date:

HGLC_081106A-4755670

11/06/2008 13:32

Analyst:

Units:

08101626-01E

Preparation Date:

11/06/2008 13:18

F_S Prep By:

F_S Method SW7470A

MW-1

Analyte	Result	Rep Limit
Mercury	ND.	0.0002

Laboratory Control Sample (LCS)

RunID:

HGLC_081106A-4755671

Units:

Analysis Date:

11/06/2008 13:35

Analyst: F_S

Preparation Date: 11/06/2008 13:18 Prep By: F_S Method SW7470A

mg/L

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Mercury	0.002000	0.001983	99.15	80	120

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

08101734-09

RunID:

HGLC_081106A-4755673

Units:

Analysis Date:

11/06/2008 13:39

F_S

mg/L

Analyst:

Preparation Date:

11/06/2008 13:18

Prep By:

F_S Method SW7470A

Analyte	Sample Result	MS Spike Added	NIS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Mercury	ND	0.002	0.001885	94.26	0.002	0.001843	92.14	2.266	20	75	125

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 18

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP ElPaso1A

Analysis:

RunID:

Semivolatile Organics by Method 8270C

Method: SW8270C WorkOrder:

Samples in Analytical Batch:

08101626

Lab Batch ID:

84949

Method Blank

H_081106B-4755273

ug/L GY

Lab Sample ID

Client Sample ID

08101626-01D

MW-1

Analysis Date: Preparation Date:

11/06/2008 10:56 10/30/2008 16:53 Analyst:

Units:

Prep By: LLL Method SW3510C

Analyte	Result	Rep Limit
1,2,4-Trichlorobenzene	ND	5.0
1,2-Dichlorobenzene	· ND	5.0
1,2-Diphenylhydrazine	ND	10
1,3-Dichlorobenzene	. ND	5.0
1,4-Dichlorobenzene	ND	5.0
2,4,5-Trichlorophenol	ND	10
2,4,6-Trichlorophenol	. ND	5.0
2,4-Dichlorophenol	ND	5.0
2,4-Dimethylphenol	ND	5.0
2,4-Dinitrophenol	ND	25
2,4-Dinitrotoluene	' ND	5.0
2.6-Dinitrotoluene	ND	5.0
2-Chloronaphthalene	ND	5.0
2-Chlorophenol	ND	· 5.0
2-Methylnaphthalene	ND	5.0
2-Nitroaniline	ND	25
2-Nitrophenol	ND	5.0
3,3'-Dichlorobenzidine	. ND	10
3-Nitroaniline	ND.	25
4.6-Dinitro-2-methylphenol	ND	25
4-Bromophenyl phenyl ether	ND	5.0
4-Chloro-3-methylphenol	ND	5.0
4-Chloroaniline	ND	5.0
4-Chlorophenyl phenyl ether	ND	5.0
4-Nitroaniline	ND	25
4-Nitrophenol	ND	25
Acenaphthene	ND	5.0
Acenaphthylene	ND	5.0
Aniline	ND.	5.0
Anthracene	ND	5.0
Benz(a)anthracene	ND	5.0
Benzo(a)pyrene	· ND	5.0
Benzo(b)fluoranthene	ND	5.0
Benzo(g,h,i)perylene	ND	
Benzo(k)fluoranthene	ND	5.0
Benzoic acid	ND	25
Benzyl alcohol	ND	5.0
Bis(2-chloroethoxy)methane	ND	5.0
Bis(2-chloroethyl)ether	ND	5.0
Bis(2-chloroisopropyl)ether	ND	
Bis(2-ethylhexyl)phthalate	ND	5.0
Butyl benzyl phthalate	ND	
Carbazole	ND	5.0
Chrysene	ND	
Dibenz(a,h)anthracene	ND ND	5.0
Dibenzofuran	ND	5.0
Discrizordian	·	3.0

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

MI - Matrix Interference

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 19

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Conoco Phillips COP ElPaso1A

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

08101626

Lab Batch ID:

84949

Method Blank

RunID: H_08

H_081106B-4755273

Units:

ug/L

Analysis Date: Preparation Date: 11/06/2008 10:56

Analyst: GY

10/30/2008 16:53

Prep By: LLL Method SW3510C

Analyte	Result	Rep Limit
Diethyl phthalate	ND	5.0
Dimethyl phthalate	ND ND	5.0
Di-n-butyl phthalate	ND	5.0
Di-n-octyl phthalate	ND	5.0
Fluoranthene	ND ND	5.0
Fluorene	ND	5.0
Hexachlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Hexachlorocyclopentadiene	ND	5.0
Hexachloroethane	ND	5.0
Indeno(1,2,3-cd)pyrene	ND	5.0
Isophorone	ND	5.0
Naphthalene	ND	. 5.0
Nitrobenzene	ND	5.0
N-Nitrosodi-n-propylamine	ND	5.0
N-Nitrosodiphenylamine	. ND	5.0
Pentachlorophenol	. ND	25
Phenanthrene	ND	5.0
Phenol	ND	5.0
Pyrene	ND	5.0
Pyridine .	ND	5.0
2-Methylphenol	ND	5.0
3 & 4-Methylphenol .	ND	5.0
Surr: 2,4,6-Tribromophenol	76.0	10-123
Surr: 2-Fluorobiphenyl	82.0	23-116
Surr: 2-Fluorophenol	78.7	16-110
Surr: Nitrobenzene-d5	76.0	21-114
Surr: Phenol-d5	85.3	10-110
Surr: Terphenyl-d14	80.0	22-141

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H_081106B-4755274

Units: ug/L

Analysis Date:

11/06/2008 11:26

Analyst: GY

Preparation Date:

10/30/2008 16:53

ilalyst. GT

Prep By: LLL Method SW3510C

Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
1,2,4-Trichlorobenzene	25.0	19.0	76.0	25.0	20.0	80.0	5.1	39	21	120
1,2-Dichlorobenzene	25.0	20.0	80.0	25.0	20.0	80.0	0.0	50	20	150

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 20

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

Conoco Phillips COP ElPaso1A

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

08101626

Lab Batch ID:

84949

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H_081106B-4755274

Units:

ug/L

Analysis Date.

11/06/2008 11:26

Analyst: GY

Preparation Date: 10/30/2008 16:53

Prep By: LLL Method SW3510C

Analyte	LCS	LCS	LCS	LCSD	LCSD	LCSD	RPD	RPD	Lower	Upper .
	Spike	Result	Percent	Spike	Result	Percent		Limit	Limit	Limit
	Added		Recovery	Added		Recovery				
1,2-Diphenylhydrazine	25.0	18.0	72.0	25.0	19.0	76.0	5.4	50	10	251
1,3-Dichlorobenzene	25.0	19.0	76.0	25.0	20.0	80.0	5.1	50	20	150
1,4-Dichlorobenzene	25.0	20.0	80.0	25.0	20.0	80.0	0.0	45	20	150
2,4,5-Trichlorophenol	25.0	20.0	80.0	25.0	23.0	92.0	14.0	50	30	150
2,4,6-Trichlorophenol	25.0	20.0	80.0	25.0	22.0	88.0	9.5	50	30	150
2,4-Dichlorophenol	25.0	20.0	80.0	25.0	21.0	84.0	4.9	50	30	150
2,4-Dimethylphenol	25.0	21.0	84.0	25.0	22.0	88.0	4.7	50	32	140
2,4-Dinitrophenol	25.0	14.0	56.0	25.0	15.0	60.0	6.9	50	10	160
2,4-Dinitrotoluene	25.0	22.0	88.0	25.0	24.0	96.0	8.7	50	30	150
2,6-Dinitrotoluene	25.0	20.0	80.0	25.0	23.0	92.0	14.0	50	30	150
2-Chloronaphthalene	25.0	22.0	88.0	25.0	24.0	96.0	8.7	50	30	150
2-Chlorophenol	25.0	21.0	84.0	25.0	22.0	88.0	4.7	40	23,	134
2-Methylnaphthalene	25.0	22.0	88.0	25.0	23.0	92.0	4.4	50	20	170
2-Nitroaniline	25.0	22.0	88.0	25.0	24.0	96.0	8.7	50	20	160
2-Nitrophenol	25.0	19.0	76.0	25.0	22.0	88.0	14.6	50	29	182
3,3'-Dichlorobenzidine	25.0	19.0	. 76.0	25.0	20.0	80.0	5.1	50	30	200
3-Nitroaniline	25.0	· 19.0	76.0	25.0	22.0	88.0	14.6	50	20	160
4,6-Dinitro-2-methylphenol	25.0	. 17.0	- 68.0	25.0	18.0	72.0	5.7	50	10	160
4-Bromophenyl phenyl ether	25.0	22.0	88.0	25.0	22.0	88.0	0.0	50	30	150
4-Chloro-3-methylphenol	25.0	20.0	80.0	25.0	22.0	88.0	9.5	42	25	160
4-Chloroaniline	25.0	21.0	84.0	25.0	23.0	92.0	9.1	50	20	160
4-Chlorophenyl phenyl ether	25.0	23.0	92.0	25.0	24.0	96.0	4.3	50	25	158
4-Nitroaniline	25.0	20.0	80.0	25.0	24.0	96.0	18.2	50	20	160
4-Nitrophenol	25.0	18.0	72.0	25.0	20.0	80.0	10.5	50	10	132
Acenaphthene	25.0	21.0	84.0	25.0	22.0	88.0	4.7	31	30	150
Acenaphthylene	25.0	21.0	84.0	25.0	22.0	88.0	4.7	50	33	250
Aniline	50.0	41.0	82.0	50.0	44.0	88.0	. 7.1	50	10	135
Anthracene	25.0	21.0	84.0	25.0	22.0	88.0	. 4.7	50	27	133
Benz(a)anthracene	25.0	22.0	88.0	25.0	22.0	88.0	0.0	50	33	143
Benzo(a)pyrene	25.0	19.0	76.0	25.0	20.0	80.0	5.1	50	17	163
Benzo(b)fluoranthene	25.0	20.0	80.0	25.0	22.0	88.0	9.5	50	24	159
Benzo(g,h,i)perylene	25.0	22.0	88.0	25.0	23.0	92.0	4.4	50	30	160
Benzo(k)fluoranthene	25.0	23.0	92.0	25.0	22.0	88.0	4.4	50	11	162

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

08101626 Page 21

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

Conoco Phillips COP EIPaso1A

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

08101626

Lab Batch ID:

84949

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H 081106B-4755274

Units:

Analysis Date:

ug/L

11/06/2008 11:26

Analyst: GY

Preparation Date: 10/30/2008 16:53 Prep By:

LLL Method SW3510C

Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
Benzoic acid	25.0	40.0	. 160	25.0	40.0	160	0.0	50	10	400
Benzyl alcohol	25.0	19.0	76.0	25.0	20.0	80.0	5.1	50	30	160
Bis(2-chloroethoxy)methane	25.0	33.0	132	25.0	36.0	144	8.7	50	33	184
Bis(2-chloroethyl)ether	25.0	22.0	- 88.0	25.0	22.0	88.0	0.0	50	12	158
Bis(2-chloroisopropyl)ether	25.0	23.0	92.0	25.0	24.0	96.0	4.3	50	20	160
Bis(2-ethylhexyl)phthalate	25.0	22.0	88.0	25.0	22.0	88.0	0.0	50	10	158
Butyl benzyl phthalate	25.0	22.0	88.0	. 25.0	23.0	92.0	4.4	50	30	160
Carbazole	25.0	21.0	84.0	25.0	22.0	88.0	• 4.7	50	30	150
Chrysene	25.0	22.0	88.0	25.0	22.0	88.0	. 0.0	50	17	168
Dibenz(a,h)anthracene	25.0	22.0	88.0	25.0	22.0	88.0	0.0	50	30	160
Dibenzofuran	25.0	21.0	84.0	25.0	22.0	88.0	4.7	50	30	150
Diethyl phthalate	25.0	21.0	84.0	25.0	23.0	92.0	9.1	50	30	160
Dimethyl phthalate	25.0	21.0	84.0	25.0	22.0	88.0	4.7	50	30	160
Di-n-butyl phthalate	25.0	21.0	84.0	25.0	22.0	88.0	4.7	50	30	160
Di-n-octyl phthalate	.25.0	21.0	84.0	25.0	22.0	88.0	4.7	50	20	150
Fluoranthene	25.0	21.0	84.0	25.0	22.0	88.0	4.7	50	- 26	137
Fluorene	25.0	21.0	84.0	25.0	23.0	92.0	9.1	50	30	150
Hexachlorobenzene	25.0	20.0	80.0	25.0	21.0	84.0	4.9	50	20	150
Hexachlorobutadiene	25.0	. 19.0	76.0	25.0	20.0	80.0	5.1	50	20	140
Hexachlorocyclopentadiene	25.0	17.0	68.0	25.0	18.0	72.0	5.7	50	10	150
Hexachloroethane	25.0	19.0	76.0	.25.0	20.0	80.0	5.1	50	14	120
Indeno(1,2,3-cd)pyrene	25.0	23.0	92.0	25.0	24.0	96.0	4.3	50	30	160
Isophorone	25.0	22.0	88.0	25.0	24.0	96.0	8.7	-50	21	196
Naphthalene	25.0	20.0	80.0	25.0	21.0	84.0	4.9	50	21	133
Nitrobenzene	25.0	20.0	80.0	25.0	21.0	84.0	4.9	50	20	160
N-Nitrosodi-n-propylamine	25.0	- 22.0	88.0	25.0	23.0	92.0	4.4	38	30	160
N-Nitrosodiphenylamine	50.0	51.0	102	50.0	52.0	.104	1.9	50	30	150
Pentachlorophenol	25.0	14.0	56.0	25.0	15.0	60.0	6.9	50	. 14	176
Phenanthrene	25.0	20.0	80.0	25.0	21.0	84.0	4.9	50	10	140
Phenol	25.0	21.0	. 84.0	25.0	23.0	92.0	9.1	42	40	132
Pyrene	25.0	22.0	88.0	25.0	· 22.0	88.0	0.0	38	30	150
Pyridine	50.0	35.0	70.0	·50.0	34.0	68.0	2.9	50	10	150
2-Methylphenol	25.0	21.0	84.0	25.0	23.0	92.0	9.1	50	30	160

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 22

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

(713) 660-0901

Conoco Phillips COP ElPaso1A

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

08101626

Lab Batch ID:

84949

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H_081106B-4755274

Units:

ug/L

Analysis Date:

11/06/2008 11:26

Analyst:

GΥ

Preparation Date:

10/30/2008 16:53

Prep By:

LLL Method SW3510C

Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
3 & 4-Methylphenol	25.0	19.0	76.0	25.0	21.0	84.0	10.0	50	10	160
Surr: 2,4,6-Tribromophenol	75.0	64.0	85.3	75.0	70.0	93.3	9.0	30	10	123
Surr: 2-Fluorobiphenyl	50.0	42.0	84.0	50.0	41.0	82.0	2.4	30	23	116
Surr: 2-Fluorophenol	75.0	62.0	82.7	75.0	65.0	86.7	4.7	30	16	110
Surr: Nitrobenzene-d5	50.0	40.0	80.0	50.0	42.0	84.0	4.9	30	21	114
Surr. Phenol-d5	75.0	65.0	86.7	75.0	69.0	92.0	6.0	30	. 10	110
Surr: Terphenyl-d14	50.0	42.0	84.0	50.0	42.0	84.0	0.0	30	22	141

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 23

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

(713) 660-0901

Conoco Phillips COP ElPaso1A

Analysis:

Volatile Organics by Method 8260B

Method:

WorkOrder:

08101626

Lab Batch ID:

R255697

Method Blank

RunID: L 081031D-4746718

ug/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

10/31/2008 12:00

Analyst: E G

Units:

08101626-01A 08101626-02A

MW-1 Trip Blank

Preparation Date:

10/31/2008 12:00

Prep By:

Method

Result Rep Limit Analyte 1,1,1,2-Tetrachloroethane ND 5.0 ND 5.0 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane ND 5.0 1,1,2-Trichloroethane ND 5.0 1,1-Dichloroethane ND 5.0 1,1-Dichloroethene ND 5.0 1,1-Dichloropropene ND 5.0 ND 5.0 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane ND 5.0 1,2,4-Trichlorobenzene ND 5.0 1,2,4-Trimethylbenzene ND 5.0 1,2-Dibromo-3-chloropropane ND 5.0 1,2-Dibromoethane ND 5.0 ND 5.0 1,2-Dichlorobenzene 1,2-Dichloroethane ND 5.0 1,2-Dichloropropane ND 5.0 ND 1,3,5-Trimethylbenzene 5.0 1,3-Dichlorobenzene ND 5.0 ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichlorobenzene 5.0 2,2-Dichloropropane ND ND 20 2-Butanone 2-Chloroethyl vinyl ether ND 10 ND 5.0 2-Chlorotoluene ND 2-Hexanone 10 4-Chlorotoluene ND 5.0 ND 5.0 4-Isopropyltoluene 4-Methyl-2-pentanone ND 10 ND 100 Acetone Acrylonitrile ND 50 5.0 ND Benzene ND 5:0 Bromobenzene Bromochloromethane ND 5.0 Bromodichloromethane ND 5.0 ND 5.0 Bromoform ND 10 Bromomethane Carbon disulfide ND 5.0 ND 5.0 Carbon tetrachloride Chlorobenzene ND 5.0 10 ND Chloroethane ND 5.0 Chloroform Chloromethane ND 10 Dibromochloromethane ND 5.0 5.0 Dibromomethane ND Dichlorodifluoromethane ND 10 Ethylbenzene

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution * - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 24

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

(713) 660-0901

Conoco Phillips COP ElPaso1A

Analysis:

Volatile Organics by Method 8260B

Method:

WorkOrder:

08101626

SW8260B

Lab Batch ID:

R255697

Method Blank

RunID:

L_081031D-4746718

Units: ug/L

Analysis Date:

10/31/2008 12:00

Analyst: E_G

Preparation Date:

10/31/2008 12:00

Prep By:

Method

Analyte	Result	Rep Limit
Hexachlorobutadiene	· ND	5.0
Isopropylbenzene	ND	5.0
Methyl tert-butyl ether	ND	5.0
Methylene chloride	ND	5.0
Naphthalene	ND	5.0
n-Butylbenzene	ND	5.0
n-Propylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
Styrene	· ND	5.0
tert-Butylbenzene	ND	5.0
Tetrachloroethene	ND	5.0
Toluene	ND.	5.0
Trichloroethene ·	ND	5.0
Trichlorofluoromethane	ND	5.0
Vinyl acetate	ND.	10
Vinyl chloride	ND	10
cis-1,2-Dichloroethene	ND	5.0
cis-1,3-Dichloropropene	ND ND	5.0
m,p-Xylene	ND	5.0
o-Xylene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1.2-Dichloroethene (total)	ND	5.0
Xylenes,Total	ND.	5.0
Surr: 1,2-Dichloroethane-d4	106.0	62-130
Surr: 4-Bromofluorobenzene	98.0	70-130
Surr: Toluene-d8	104.0	74-122

Laboratory Control Sample (LCS)

RunID:

L 081031D-4746717

Units: ug/L

Analysis Date:

Preparation Date:

10/31/2008 11:33 10/31/2008 11:33 Analyst:

Prep By:

Method

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
1,1,1,2-Tetrachloroethane	20.0	22.0	110	71	136
1,1,1-Trichloroethane	20.0	19.0	95.0	66	132
1,1,2,2-Tetrachloroethane	20.0	27.0	135	55	139
1,1,2-Trichloroethane	20.0	25.0	125	70	130
1,1-Dichloroethane	20.0	22.0	. 110	67	131

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 25

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

(713) 660-0901

Conoco Phillips COP ElPaso1A

Analysis: Method:

Volatile Organics by Method 8260B

SW8260B

WorkOrder:

08101626

Lab Batch ID:

Laboratory Control Sample (LCS)

RunID:

L_081031D-4746717

Units: ug/L

R255697

Analysis Date:

10/31/2008 11:33

Analyst: E_G

Preparation Date:

10/31/2008 11:33

Prep By:

Method

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
1,1-Dichloroethene	20.0	22.0	110	. 71	146
1,1-Dichloropropene	20.0	22.0	110	59	138
1,2,3-Trichlorobenzene	20.0	25.0	125	37	155
1,2,3-Trichloropropane	20.0	27.0	135	70	145
1,2,4-Trichlorobenzene	20.0	24.0	120	39	133
1,2,4-Trimethylbenzene	20.0	21.0	105	53	147
1,2-Dibromo-3-chloropropane	20.0	27.0	135	43	137
1,2-Dibromoethane	20.0	24.0	· 120	63	126
1,2-Dichlorobenzene	20.0	23.0	115	70	130
1,2-Dichloroethane	20.0	22.0	110	64	150
1,2-Dichloropropane	20.0	23.0	115	76	124
1,3,5-Trimethylbenzene	20.0	21.0	105	57	146
1,3-Dichlorobenzene	20.0	22.0	110	72	134
1,3-Dichloropropane	20.0	24.0	120	78	130
1,4-Dichlorobenzene	20.0	23.0	115	70	130
2,2-Dichloropropane	20.0	17.0	85.0	45	156
2-Butanone	120	230	192	20	235
2-Chloroethyl vinyl ether	20.0	22.0	110	13	179
2-Chlorotoluene	20.0	22.0	110	64	122
2-Hexanone	20.0	34.0	170	34	182
4-Chlorotoluene	20.0	22.0	110	64	. 142
4-Isopropyltoluene	20.0	22.0	110	60	134
4-Methyl-2-pentanone	20.0	25.0	125	11	145
Acetone	200	500	250	13	386
Acrylonitrile	100	130	130	43	194
Benzene	20.0	23.0	115	76	126
Bromobenzene	20.0	23.0	115	70	130
Bromochloromethane	20.0	23.0	115	63	131
Bromodichloromethane	20.0	23.0	115	77	138
Bromoform	20.0	19.0	95.0	55	129
Bromomethane	20.0	22.0	110	58	148
Carbon disulfide	20.0	19.0	95.0	46	146
Carbon tetrachloride	20.0	19.0	95.0	66	137
Chlorobenzene	20.0	23.0	115	. 67	136

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply

TNTC - Too numerous to count

08101626 Page 26

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

Conoco Phillips COP ElPaso1A

Analysis: Method: Volatile Organics by Method 8260B

SW8260B

WorkOrder:

08101626

Lab Batch ID:

R255697

Laboratory Control Sample (LCS)

RunID:

L_081031D-4746717

Units: ug/

ug/L E_G

Analysis Date: Preparation Date: 10/31/2008 11:33 10/31/2008 11:33 Analyst: Prep By:

Method

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Chloroethane	20.0	20.0	100	50	137
Chloroform	20.0	22.0	110	. 70	135
Chloromethane	20.0	18.0	90.0	51	140
Dibromochloromethane	20.0	21.0	105	69	127
Dibromomethane	20.0	25.0	125	· 74	. 130
Dichlorodifluoromethane	20.0	19.0	95.0	32	161
Ethylbenzene	20.0	24.0	120	67	122
Hexachlorobutadiene	20.0	23.0	115	43	144
Isopropylbenzene	20.0	20.0	100	60	. 135
Methyl tert-butyl ether	40.0	43.0	108	48	160
Methylene chloride	20.0	21.0	105	52	143
Naphthalene	20.0	25.0	125	24	150
n-Butylbenzene	20.0	22.0	110	50	140
n-Propylbenzene	20.0	22.0	110	62	137
sec-Butylbenzene	20.0	22.0	110	66	126
Styrene	20.0	22.0	110	60	139
tert-Butylbenzene	20.0	21.0	105	67	140
Tetrachloroethene	20.0	23.0	115	26	200
Toluene	20.0	· 23.0	115	70	131
Trichloroethene	20.0	22.0	110	64	137
Trichlorofluoromethane	20.0	18.0	90.0	46	167
Vinyl acetate	20.0	24.0	120	10	193
Vinyl chloride	20.0	25.0	125	31	147
cis-1,2-Dichloroethene	20.0	22.0	110	70	142
cis-1,3-Dichloropropene	20.0	22.0	110	.61	134
m,p-Xylene	40.0	50.0	125	72	150
o-Xylene	20.0	23.0	115	78	141
trans-1,2-Dichloroethene	20.0	22.0	110	67	141
trans-1,3-Dichloropropene	20.0	21.0	105	56	136
1,2-Dichloroethene (total)	40	44	110	73	139
Xylenes,Total	60	73	120	72	150
Surr: 1,2-Dichloroethane-d4	50.0	54	108	62	130
Surr: 4-Bromofluorobenzene	50.0	52	104	70	130
Surr: Toluene-d8	. 50.0	52	104	74	122
Detected at the Reporting Limit	M	- Matrix Int	orforonco		

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 27

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP EIPaso1A

Analysis:
Method:

Volatile Organics by Method 8260B

SW8260B

WorkOrder:

08101626

Lab Batch ID:

R255697

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

RuniD:

08101667-01

L_081031D-4746720

Units:

ug/L

Analysis Date:

10/31/2008 16:04

Analyst:

E_G

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
1,1,1,2-Tetrachloroethane	ND	20	17.0	85.0	20	17.0	85.0	0	20	· 35	175
1,1,1-Trichloroethane	ND	20	15,0	75.0	20	16.0	80.0	6.45	20	35	. 175
1,1,2,2-Tetrachloroethane	ND	20	17.0	85.0	20	17.0	85.0	. 0	20	35	175
1,1,2-Trichloroethane	ND	20	20.0	100	20	20.0	100	0	20	35	175
1,1-Dichloroethane	ND	20	19.0	95.0	20	19.0	95.0	0	20	35	175
1,1-Dichloroethene	ND	20	18.0	90.0	20	19.0	95.0	5.41	22	61	145
1,1-Dichloropropene	ND	20	18.0	90.0	20	19.0	95.0	5.41	20	35	175
1,2,3-Trichlorobenzene	ND	20	17.0	85.0	20	16.0	80.0	6.06	20	27	187
1,2,3-Trichloropropane	ND	20	18.0	90.0	20	19.0	95.0	5.41	20	35	175
1,2,4-Trichlorobenzene	ND	. 20	18.0	90.0	20	18.0	90.0	.0	20	34	.150
1,2,4-Trimethylbenzene	ND	20	18.0	90.0	20	18.0	90.0	0	20	35	175
1,2-Dibromo-3-chloropropane	ND	20	18.0	90.0	20	20.0	100	10.5	20	15	175
1,2-Dibromoethane	ND	20	19.0	95.0	20	19.0	95.0	0	20	35	175
1,2-Dichlorobenzene	ND	20	19.0	95.0	20	18.0	90.0	5.41	20	35	175
1,2-Dichloroethane	ND	20	18.0	90.0	20	18.0	90.0	0	20	35	175
1,2-Dichloropropane	ND	20	19.0	95.0	20	20.0	100	5.13	20	35	175
1,3,5-Trimethylbenzene	ND	20	18.0	90.0	20	18.0	90.0	. 0	20	35	175
1,3-Dichlorobenzene	· ND	20	18.0	90.0	20	18.0	90.0	0	20	35	175
1,3-Dichloropropane	ND	20	20.0	100	20	20.0	100	0	20	35	175
1,4-Dichlorobenzene	ND	20	18.0	90.0	20	18.0	90.0	0	20	35	175
2,2-Dichloropropane	ND	20	13.0	65.0	20	14.0	70.0	7.41	20	35	175
2-Butanone	ND	20	18.0	-90.0	20	21.0	. 105	15.4	20	10	230
2-Chloroethyl vinyl ether	ND	20	. 0	0 *	20	0	0 *	0	20	10	250
2-Chlorotoluene	ND	20	. 18.0	90.0	20	18.0	90.0	. 0	20	31	175
2-Hexanone	ND	20	15.0	75.0	20	17.0	85.0	12.5	20	10	250
4-Chlorotoluene	ND	. 20	18.0	90.0	20	19.0	95.0	5.41	20	31	175
4-Isopropyltoluene	ND	20	17.0	85.0	20	17.0	85.0	0	20	35	175
4-Methyl-2-pentanone	ND	20	17.0	85.0	20	18.0	90.0	5.71	20	10	175
Acetone	ND	100	92.0	92.0	100	96.0	96.0	4.26	20	10	400
Acrylonitrile .	. ND	200	200	100	200	210	105	4.88	20	15	250

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 28

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

(713) 660-0901

Conoco Phillips COP ElPaso1A

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

08101626

Lab Batch ID:

R255697

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

08101667-01

RunID:

L 081031D-4746720

Units:

ug/L

Analysis Date:

10/31/2008 16:04

Analyst:

E_G

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzene	ND	20	19.0	95.0	. 20	19.0	95.0	0	22	76	127
Bromobenzene	ND	20	19.0	95.0	20	19.0	95.0	0	20	35	175
Bromochloromethane	ND	20	20.0	100	20	21.0	105	4.88	20	35	175
Bromodichloromethane	ND	. 20	17.0	85.0	20	18.0	90.0	5.71	20	35	175
Bromoform	ND	20	15.0	75.0	20	15.0	75.0	0	20	35	175
Bromomethane	ND	20	18.0	90.0	20	. 19.0	95.0	5.41	20	35	175
Carbon disulfide	ND	20	16.0	80.0	20	17.0	85.0	6.06	20	30	225
Carbon tetrachloride	ND	20	15.0	75.0	20	15.0	75.0	0	20	35	175
Chlorobenzene	ND	20	18.0	90.0	20	18.0	90.0	0	21	70	130
Chloroethane	. ND	20	20.0	100	20	21.0	105	4.88	20	35	175
Chloroform	ND	20	19.0	95.0	20	20.0	100	5.13	20	35	175
Chloromethane	ND	20	16.0	80.0	20	17.0	85.0	6.06	20	35	175
Dibromochloromethane	ND	20	16.0	80.0	20	16.0	80.0	0	-20	35	175
Dibromomethane	ND	20	20.0	100	20	19.0	95.0	5.13	20	35	175
Dichlorodifluoromethane	ND	20	14.0	70.0	20	14.0	70.0	0	20	35	175
Ethylbenzene	ND	20	18.0	90.0	20	18.0	90.0	. 0	20	35	175
Hexachlorobutadiene	. ND	. 20	18.0	90.0	20	17.0	85.0	5.71	20	43	144
Isopropylbenzene	ND	20	18.0	90.0	20	18.0	90.0	. 0	20	35	175
Methyl tert-butyl ether	ND	20	18.0	90.0	20	19.0	95.0	5.41	20	35	175
Methylene chloride	. ND	20	18.0	90.0	20	19.0	95.0	5.41	20	35	175
Naphthalene	ND	20	20.0	100	20	19.0	95.0	5.13	20	20	210
n-Butylbenzene	ND	20	18.0	90.0	20	18.0	90.0	0	20	35	175
n-Propylbenzene	ND	20	18.0	90.0	-20	19.0	95.0	5.41	20	35	175
sec-Butylbenzene	ND	20	18.0	90.0	20	18.0	90.0	0	20	35	175
Styrene	ND	20	18.0	90.0	20	18.0	90.0	0	20	35	175
tert-Butylbenzene	ND	20	17.0	85.0	20	18.0	90.0	. 5.71	20	35	175
Tetrachloroethene	ND	- 20	18.0	90.0	20	18.0	90.0	. 0	20	30	250
Toluene	ND	20	18.0	90.0	20	18.0	90.0	0		70	131
Trichloroethene	. ND	20	18.0	90.0	20	18.0	90.0	0	21	60	140
Trichlorofluoromethane	ND	20	16.0	80.0	20	. 16.0	80.0	0	20	17	250
Vinyl acetate	ND	20	18.0	90.0	20	19.0	95.0	5.41	20	10	250
Vinyl chloride	ND	20	25.0	1,10	20	27.0	120	7.69	20	35	175

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply. TNTC - Too numerous to count

08101626 Page 29

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

Conoco Phillips COP ElPaso1A

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

OP EIPaso IA

WorkOrder:

08101626

Lab Batch ID:

R255697

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

08101667-01

RunID:

L_081031D-4746720

Units:

ug/L

Analysis Date:

10/31/2008 16:04

Analyst:

E_G

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
cis-1,2-Dichloroethene	ND	20	20.0	95.0	20	20.0	95.0	0	20	35	175
cis-1,3-Dichloropropene	ND	20	18.0	90.0	20	18.0	90.0	0	20	35	175
m,p-Xylene	ND	40	37.0	92.5	40	36.0	90.0	2.74	20	35	175
o-Xylene	, ND	20	18.0	90.0	20	18.0	90.0	. 0	20	35	175
trans-1,2-Dichloroethene	ND	20	18.0	90.0	20	19.0	95.0	5.41	20	35	175
trans-1,3-Dichloropropene	ND	20	16.0	80.0	20	16.0	80.0	0	20	35	175
1,2-Dichloroethene (total)	ND	40	38	92	40	39	. 95	2.6	20	35	175
Xylenes,Total	ND	60	55	92	60	54	90	1.8	. 20	35	175
Surr: 1,2-Dichloroethane-d4	ND	50	51	102	50	52.0	104	1.94	30	62	130
Surr: 4-Bromofluorobenzene	ND	50	51	102	50	50.0	. 100	1.98	30	70	130
Surr: Toluene-d8	ND	50	51	102	50	51.0	102	. 0	30	74	122

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 30

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

Conoco Phillips COP ElPaso1A

Analysis:

RunID:

Nitrate Nitrogen (as N), Total

Method:

WorkOrder:

Samples in Analytical Batch:

08101626

Lab Batch ID:

R256285A

Method Blank

Units:

Lab Sample ID

Client Sample ID

Analysis Date:

WET_081103ZD-4757587 11/03/2008 15:17

mg/L Analyst: ΤŴ

08101626-01F

MW-1

Analyte	Result	Rep Limit
Nitrogen, Nitrate (As N)	ND	0.50

Laboratory Control Sample (LCS)

RuniD:

WET_081103ZD-4757590

Units: mg/L

Analysis Date:

11/03/2008 15:17

TW Analyst:

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Nitrogen,Nitrate (As N)	5.000	5.372	107.4	90	110

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

08101626-01

RunID:

WET_081103ZD-4757607

Units:

mg/L

Analysis Date:

11/03/2008 15:17

Analyst: TW

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Nitrogen.Nitrate (As N)	ND	5	4.471	89.43 *	5	4.920	98.39	9,548	20	90	110

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 31

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP ElPaso1A

Analysis: Method:

RunID:

Ion Chromatography

IC1_081110B-4766069

WorkOrder:

Samples in Analytical Batch:

08101626

Lab Batch ID:

R256813A

Method Blank

mg/L TW

Lab Sample ID

Client Sample ID

Analysis Date:

11/10/2008 16:35

Units: Analyst:

08101626-01F

MW-1

	Analyte	,	Result	Rep Limit
Chloride			ND	0.50
Fluoride			. ND	0.50

Laboratory Control Sample (LCS)

RunID:

IC1_081110B-4766017

Units: mg/L

Analysis Date:

11/10/2008 16:51

Analyst: TW

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Chloride	10.00	9.409	94.09	85	115
Fluoride	10.00	10.03	100.3	85	115

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

08101597-01

RunID:

IC1_081110B-4766020

Units:

mg/L

Analysis Date:

11/10/2008 18:20

Analyst:

TW

	Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Chloride		18.90	· 40	58.79	99.73	40	. 56.56	94.14	3.874	20	80	120
Fluoride		ND	40	40.16	98.60	40	38.85	95.32	3.324	20	80	120

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 32

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP ElPaso1A

Analysis: Method:

RunID:

Ion Chromatography

E300.0

WorkOrder:

08101626

Lab Batch ID:

R256827

Method Blank

IC1_081111A-4766432

Units:

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

11/11/2008 10:53

Analyst:

t: TW

08101626-01F

MW-1

	· · · · · · · · · · · · · · · · · · ·		
	Analyte	Result	Rep Limit
Sulfate		ND	0.50

Laboratory Control Sample (LCS)

RunID:

IC1_081111A-4766433

Units:

mg/L

Analysis Date:

11/11/2008 11:10

Analyst: TW

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Sulfate	10.00	9.448	94.48	85	115

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

08101597-01

RunID:

IC1_081111A-4766437

Units:

mg/L

Analysis Date:

11/11/2008 12:16

Analyst: TW

Analyte	Sample Result	MS Spike Added	· MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low	High Limit
Sulfate	1482	1000	2451	96.96	1000	2461	97.94	0.4013	20	80	120

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 33

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

(713) 660-0901

Conoco Phillips COP ElPaso1A

Analysis:

Ion Chromatography

Method:

E300.0

WorkOrder:

08101626

Lab Batch ID:

R257651A

Method Blank

Samples in Analytical Batch:

RunID:

IC1_081119A-4780752

mg/L TW

Lab Sample ID

Client Sample ID

Analysis Date:

11/19/2008 18:44

Units: Analyst:

08101626-01F

MW-1

Analyte	Result	Rep Limit
Ortho-phosphate (As P)	ND	0.50

Laboratory Control Sample (LCS)

RunID:

IC1_081119A-4780753

Units:

mg/L

Analysis Date:

11/19/2008 19:01

Analyst:

TW

· Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Ortho-phosphate (As P)	10.00	9.167	91.67	85	. 115

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

Analysis Date:

08101597-01

11/20/2008 5:09

RuniD:

IC1_081119A-4780767

Units:

Analyst:

mg/L TW

MSD RPD Sample MS MS MS % MSD MSD % RPD Low High Analyte Result Spike Result Recovery Spike Result Recovery Limit Limit Limit Added Added Ortho-phosphate (As P) ND 100 101.9 101.9 100 100.9 100.9 0.9614 20 80 120

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

08101626 Page 34

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

Sample Receipt Checklist And Chain of Custody

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Sample Receipt Checklist

Workord Date and Tempera	d Time Received:	08101626 10/28/2008 9:30:00 AM 4.5°C			Received E Carrier nan Chilled by:		RE Fedex-Priority Water Ice		
1. Shi	oping container/co	oler in good condition?	Yes	✓ .	No 🗌		Not Present		
2. Cus	tody seals intact _. c	on shippping container/cooler?	Yes	✓ .	No 🗆	•	Not Present		
3. Cus	tody seals intact o	on sample bottles?	Yes		No 🗆	,	Not Present	•	
4. Cha	in of custody pres	ent?	Yes	✓	No 🗆				
5. Cha	in of custody sign	ed when relinquished and received?	Yes	\checkmark	No 🗆				
6. Cha	in of custody agre	es with sample labels?	Yes	✓	No 🗆				
7. San	nples in proper co	ntainer/bottle?	Yes	✓	No 🗌				
8. San	nple containers int	act?	Yes		No 🗀				
9. Suff	ficient sample volu	me for indicated test?	Yes	✓	No 🗆				
		vithin holding time? d Ortho-phosphate collected on 10/25/08.	Yes		No 🗹				
		temperature in compliance?	Yes	✓	No 🗆				
I2. Wat	er - VOA vials hav	e zero headspace?	Yes		No 🗆	VOA Vi	als Not Present	~	
I3. Wat	er - Preservation o	hecked upon receipt (except VOA*)?	Yes		No 🗆		Not Applicable	V	
*۷0	A Preservation Ch	ecked After Sample Analysis							
	SPL Representativ	∕e: Elder, Allen	Cont	act Date & T	ime: 10/29/20	08 3:00:0	00 PM		
Cli	ent Name Contacte	ed: Kelley Blanchard							
Non	Conformance Issues:	Continue with analysis per historicals.				· · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Clie	nt Instructions: No	tified client of expirations via email and that	we will prod	eed with ana	lysis.		`		

1	Cro	in of C	Ustody R	Record			- 1				
Chern, terra secry corocco crimps Alternon Kelly Blorchard Rear lech	ferd lech			NF. WORKOIGE	S CALLED OF S	J	Pecuestra Analysis	\$ 5 T	\$ 2 \$		and the second
Multiple 10 Sample 10 Multiple 10 Sample 10 Multiple	10 25 1410 10 10 10 10 10 10 10 10 10 10 10 10 1		2 8 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	agyt authorism color color of constants of color colors of colors	XII XELLOSED X	080-\$:65 X	364 6985 X	70AS-3695 : X	-605-105-3-3142-1142-11-101 X	WAD UCE SURVIVE X	HECOLON SECTEMBER CONTINUES OF THE PROPERTY AND THE SECTION OF THE
} - }	in in the new Remarks Anions of Control	Chorry.		\			indact) v			<i>P</i>	COLUMN CO
	Presentative Types:	1. World Viels 1. World 1. Oct. 1. Oct	2 11 Gives 2 11 mos 2 11 mos 2 12 mos 2 12 mos 2 12 mos 2 12 mos 2 12 mos 3		FRASIC A	II Amb H2804	SO4		5. Roz. Hastic	<u>.</u>	
		86/9/40/			**	1				:	idento de la companya de la company La companya de la companya de

	Minimized Felly Microchast Charles and State Communication and State Communica		adat sustantases for the formation of th	E. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23 X 1246-1705 X 1	S = DOAS-CERS N X	S dicarcolora ensalatancial X 2 S S S S S S S S S S S S S S S S S S	runture X	
--	--	--	--	--	--	-------------------	---	-----------	--