
3R - 434

APR 2010 GWMR

06/10/2011

CEIVED OCL

JUN 15 P 2:

52

June 10, 2011

Mr. Glen von Gonten State of New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

> RE: ConocoPhillips Company Faye Burdette No. I – April 2010 Groundwater Monitoring Report San Juan County, New Mexico

Dear Mr. von Gonten:

Enclosed please find one copy of the above-referenced document as compiled by Tetra Tech, Inc. for this San Juan County area site.

Please do not hesitate to contact me at (505) 237-8440 if you have any questions or require additional information.

Sincerely,

Kelly E. Blanchard

Kelly E. Blanchard Project Manager/Geologist

Enclosures (1)

Cc: Brandon Powell, NMOCD (hardcopy) Terry Lauck, ConocoPhillips Company (electronic)

QUARTERLY GROUNDWATER MONITORING REPORT APRIL 2010 SAMPLING EVENT

CONOCOPHILLIPS COMPANY FAYE BURDETTE NO. I AZTEC, NEW MEXICO

API NO. 30-045-09725

Prepared for:

420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

TETRA TECH, INC.

6121 Indian School Rd. NE Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 9690127.100

July 2010

TABLE OF CONTENTS

1.0	INTRODUCTIONI
	I.I Site HistoryI
2.0	METHODOLOGY AND RESULTSI
	2.1 Groundwater Sampling MethodologyI
	2.2 Groundwater Sampling Analytical Results2
3.0	CONCLUSIONS2

FIGURES

- I. Site Location Map
- 2. Site Layout Map
- 3. Geologic Cross Section
- 4. Groundwater Contour Map April 2010

TABLES

- I. Site History Timeline
- 2. Groundwater Elevation Data Summary
- 3. Groundwater Laboratory Analytical Results Summary

APPENDICES

Appendix A.Groundwater Sampling Field FormsAppendix B.Groundwater Laboratory Analytical Report

QUARTERLY GROUNDWATER MONITORING REPORT CONOCOPHILLIPS FAYE BURDETTE NO. I, AZTEC, NEW MEXICO

I.0 INTRODUCTION

This report presents the results of quarterly groundwater monitoring completed by Tetra Tech, Inc. (Tetra Tech) on April I, 2010, at the ConocoPhillips Company Faye Burdette No. I natural gas well site located on private land in Aztec, New Mexico (Site). This event represents the seventh quarter of groundwater sampling conducted by Tetra Tech at the Site.

The Site is located near the intersection of Highway 550 and Pioneer Avenue in Aztec, NM. The Site consists of a gas production well head and associated equipment and installations. The location and general features of the Site are presented as **Figures I** and **2**, respectively. A generalized cross section of the site is included as **Figure 3**.

I.I Site History

The Faye Burdette No. I wellhead was spudded by Southwest Production Company in April 1962. Ownership was transferred to Beta Development Company in September 1963 and again to Mesa Operating Limited Partnership in August 1988. Conoco Inc., predecessor to ConocoPhillips Company, acquired the well in July 1991. A release occurred in May 2007 from a rusted portion of the on-site produced water tank. Evidence of pre-existing hydrocarbon impacted soil was encountered during excavation; possibly related to a former earthen pit. Temporary Monitoring Well, MW-1, was drilled by Envirotech in September 2007. Groundwater samples from MW-1 indicate that benzene, toluene, ethylbenzene, and xylenes (BTEX) were below the New Mexico Water Quality Control Commission (NMWQCC) standards. Subsequently, Envirotech recommended plugging and abandoning MW-1 (Envirotech, 2007).

To complete additional investigation and sampling of the Site, Monitor Wells MW-2, MW-3, and MW-4 were installed under the supervision of Tetra Tech during January 2009 at the request of the New Mexico Oil Conservation Division (OCD). All four monitor wells have been incorporated into a quarterly monitoring program that was initiated on January 29, 2009. Site history is outlined in **Table I**.

2.0 METHODOLOGY AND RESULTS

2.1 Groundwater Monitoring Methodology

Groundwater Elevation Measurements

On April 1, 2010, groundwater elevation measurements were recorded in Monitor Wells MW-1, MW-2, MW-3, and MW-4 using a dual interface probe. Groundwater elevations are detailed in **Table 2**. A groundwater elevation contour map is presented as **Figure 4**. Based on April 2010 monitoring event

Quarterly Groundwater Monitoring Report Faye Burdette No. 1, Aztec, New Mexico

data, groundwater flow is to the northwest and is consistent with historic records at this site. The Animas River is approximately 1/3 mile from the site and flows west.

Groundwater sampling

Monitor Wells MW-1, MW-2, MW-3 and MW-4 were sampled, representing the seventh round of consecutive quarterly groundwater monitoring at the Site. Approximately three well volumes were purged from each monitor well with a dedicated polyethylene 1.5-inch disposable bailer. Purge water was placed in the on site produced water tank. Groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain of custody documentation to Southern Petroleum Laboratories in Houston, Texas. The samples were analyzed for the presence of BTEX in accordance with Environmental Protection Agency (EPA) Method 8260B and dissolved manganese according to EPA Method 6010B. Groundwater sampling field forms are included as **Appendix A**.

2.2 Groundwater Sampling Analytical Results

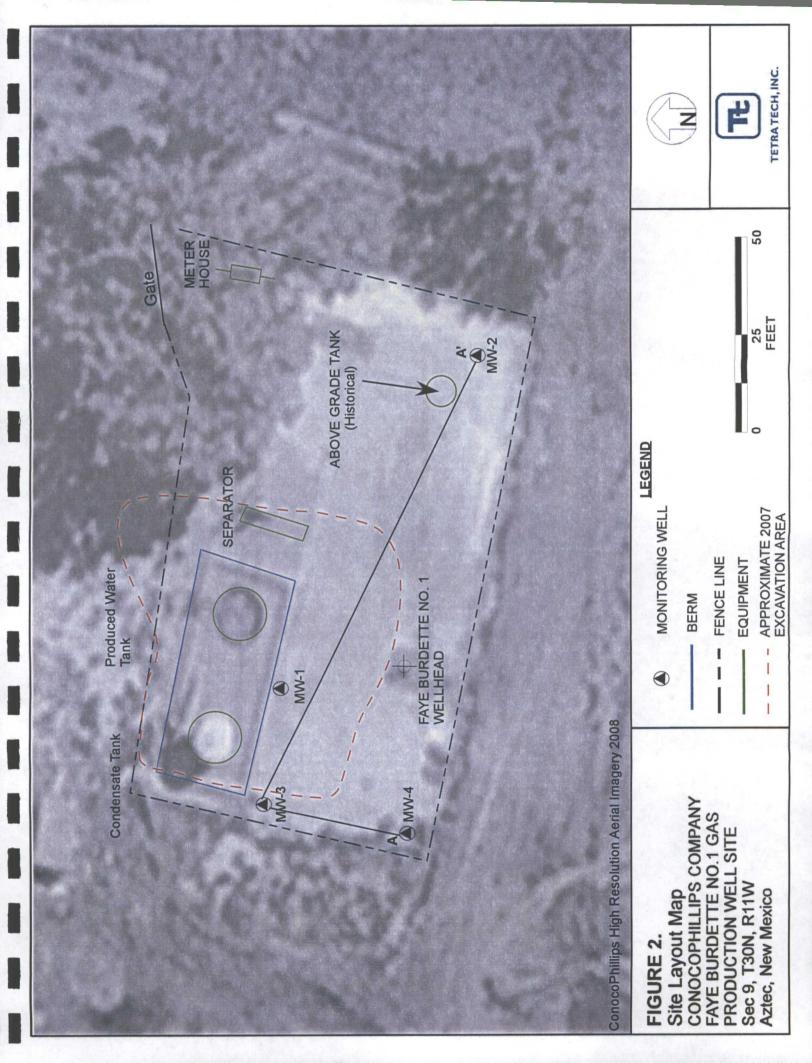
Groundwater quality samples collected during the April 1, 2010 monitoring event indicate that Monitor Well MW-1 exceeds NMWQCC standard for manganese at 1.71 milligrams per liter (mg/L). The NMWQCC standard for manganese is 0.2 mg/L. BTEX concentrations were below laboratory detection limits for all monitor wells. **Table 3** summarizes the laboratory analytical results for the April 2010 groundwater sampling event. The corresponding laboratory analysis report is included in **Appendix B**.

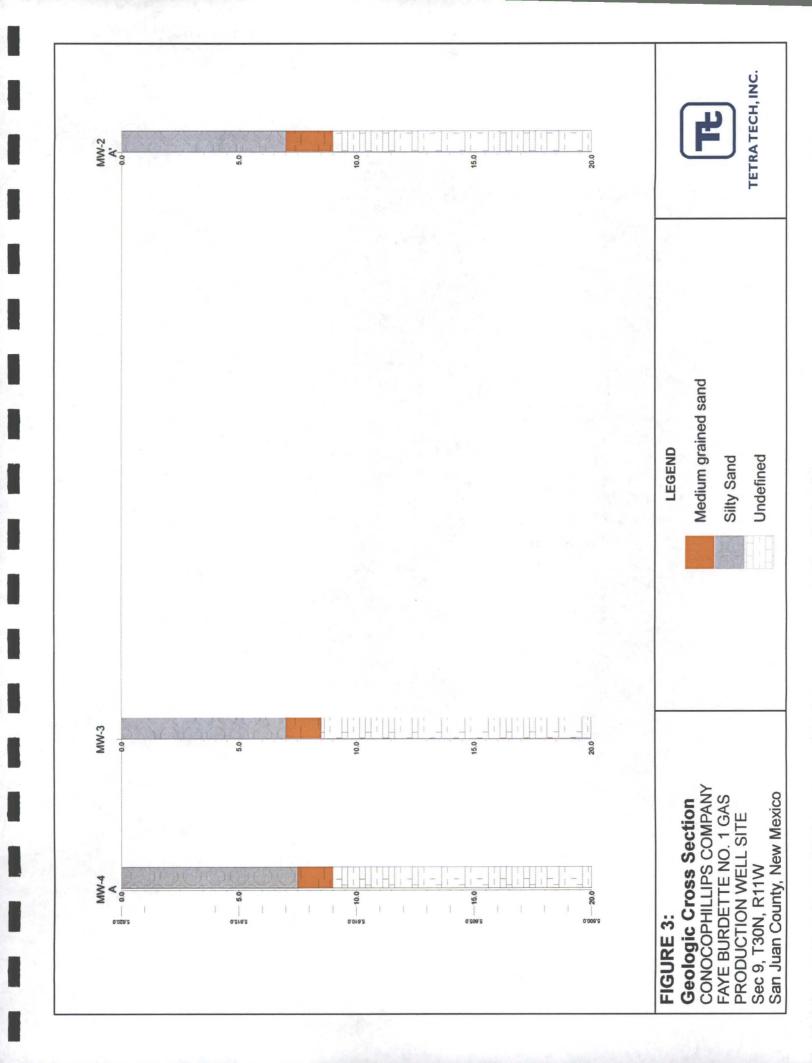
3.0 CONCLUSIONS

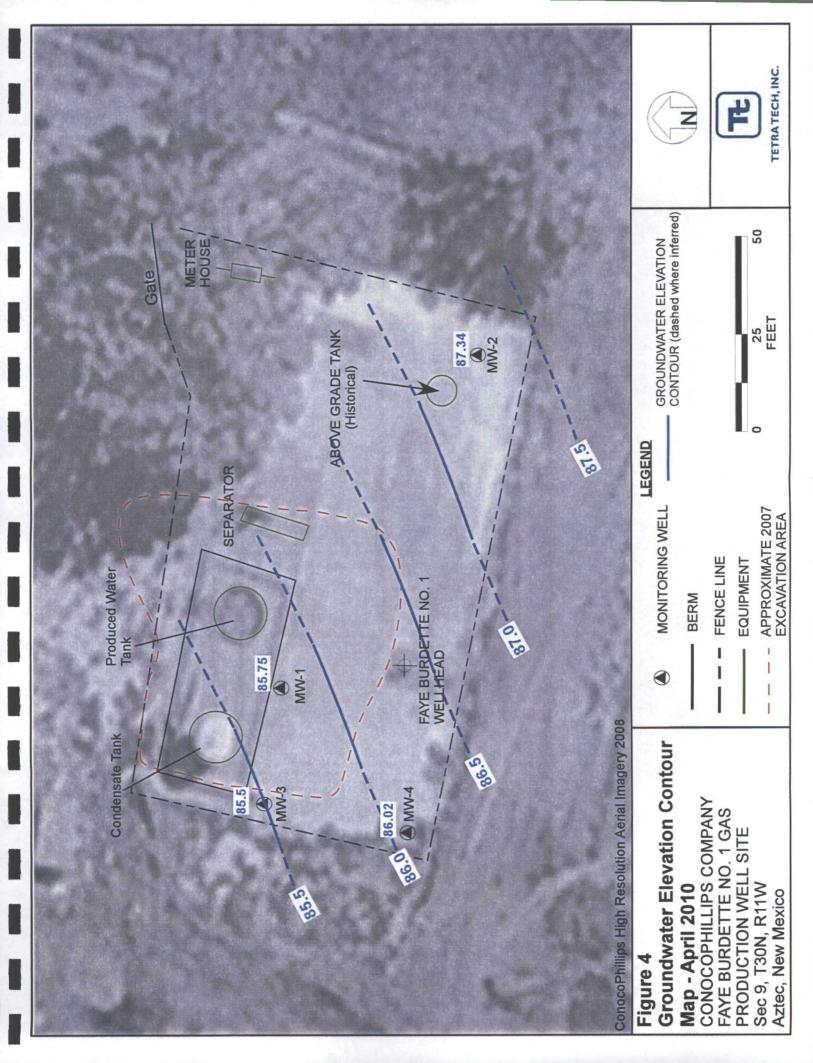
Tetra Tech recommends continued quarterly groundwater sampling at the Site in order to provide sufficient data for Site closure. Site closure will be requested when groundwater quality results begin to indicate that all constituents of concern are consistently below NMWQCC groundwater quality standards; or are representative of background conditions at the Site. Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.

REFERENCES

Envirotech, Inc. (2007). Drilling and Groundwater Sampling Report at Faye Burdette No. 1 Aztec, NM. Prepared for ConocoPhillips, dated December 12, 2007.


FIGURES


I. Site Location Map 2. Site Layout Map 3. Geologic Cross Section Groundwater Contour Map – April 2010


4.

ConcocoPhillips High Resolution Aerial Imagery 2008

TABLES

Site History Timeline
 Groundwater Elevation Data Summary
 Groundwater Laboratory Analytical Results Summary

 Table 1. Site History Timeline - ConocoPhillips Company Faye Burdette No. 1

DATE	ACTIVITY
29-Apr-1962	Well was spudded by Southwest Production Company.
1-Sep-1963	Ownership of well transferred to Beta Development Company.
21-Feb-1983	NMOCD inspection noted a leaky 2-inch valve on a storage tank.
15-Aug-1988	Ownership of well transferred to Mesa Operating Limited Partnership.
1-Jul-1991	Ownership of well transferred to Conoco Inc.
24-May-2007	A small (<25 gallons) release occurred from the produced water tank after a rusty spot was scraped off. Follow-up excavation encountered evidence of pre-existing hydrocarbon-impacted soil, apparently related to a former earthen pit beneath the tank.
Jul-07	Contaminated soil excavated from the Site. Two ground water samples were obtained at the time of this excavation, and one (1) of these samples was found to contain total xylenes above the State of New Mexico drinking water standard.
26-Sep-07	Ground water monitoring well installed to a depth of 15 feet below ground surface (bgs) by Envirotech Inc. of Farmington, NM (Envirotech). A soil sample obtained from the well boring was analyzed for benzene, BTEX and total petroleum hydrocarbons (TPH). Results were below NMOCD regulations of 10 parts per million (ppm), 50 ppm, and 100 ppm, respectively.
	A ground water sample was collected from the temporary monitoring well (MW-1) and analyzed for BTEX; results were below the State of New Mexico drinking water standard for this constituent. Depth to ground water recorded at 9.5 feet bgs.
Nov-07	Envirotech report recommends plugging and abandonment of the temporary ground water monitoring well and a no further action determination for the Site (Envirotech, 2007).
Apr-08	Oil Conservation Division of NM Energy, Minerals, and Resources Dept. indicates additional investigation and sampling is necessary for closure consideration during a meeting with Glenn Von Gonten.
22-Oct-08	1st quarter sampling of MW-1 by Tetra Tech.
Jan-09	WDC installed additional Monitoring Wells MW-2, MW-3 and MW-4 under the supervision of Tetra Tech.
29-Jan-09	Second quarter sampling of MW-1 by Tetra Tech. Initial sampling of Monitoring Wells MW-2, MW-3, and MW-4.
31-Mar-09	Third consecutive quarter of sampling MW-1 by Tetra Tech. Second quarter sampling of Monitoring Wells MW-2, MW-3, and MW-4.
17-Jun-09	Fourth consecutive quarter of sampling MW-1 by Tetra Tech. Third quarter of sampling Monitoring Wells MW-2, MW-3, and MW-4.
22-Sep-09	Monitoring Wells MW-2, MW-3, and MW-4. Sampling for total metals discontinued as requesting by NMOCD. Sampling for select dissolved metals based on total metals analyses begins since standards are
16-Dec-09	Sixth consecutive quarter sampling of MW-1 by Tetra Tech. Fifth consecutive quarter sampling of Monitoring Wells MW-2, MW-3, and MW-4 for BTEX and dissolved manganese only.
1-Apr-10	Seventh consecutive quarter sampling of MW-1 by Tetra Tech. Sixth consecutive quarter sampling of Monitoring Wells MW-2, MW-3, and MW-4 for BTEX and dissolved manganese only.

ve Burdette No. 1 È ¢ ~~Dhillins έ Table 2 Groundwater Flevation Data Su

ו able z. ש	I able 2. Groundwater El	evation Data S	oummary - C	onocornilips	<u>Elevation Data Summary - ConocoPhilips Company Faye Burgette No. 1</u>		- 6
Well ID	Total Depth (ft bgs)	Screen Interval (ft)	*Elevation (ft) (TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Groundwater Elevation	
				10/22/2008	10.91	86.75	
				1/29/2009	11.72	85.94	
				3/31/2009	11.88	85.78	
MW-1	17.52	4.8 - 14.8	97.66	6/17/2009	11.24	86.42	
				9/22/2009	10.87	86.79	
				12/16/2009	11.56	86.1	
				4/1/2010	11.91	85.75	
				1/29/2009	10.91	87.63	
				3/31/2009	11.12	87.42	_
C-IVIV	10.15	50-200	08 54	6/17/2009	10.48	88.06	_
7-4414	0 	0.02 - 0.0	t 0.00	9/22/2009	10.76	87.78	_
				12/16/2009	10.61	87.93	
				4/1/2010	11.2	87.34	
				1/29/2009	11.44	85.72	
				3/31/2009	11.62	85.54	
MM/3	77 OF	5 0 - 20 0	07 16	6/17/2009	10.97	86.19	
	000.44	0.04 - 0.0	2.5	9/22/2009	10.57	86.59	
				12/16/2009	11.32	85.84	_
	_			4/1/2010	11.66	85.50	
				1/29/2009	11.02	86.04	
				3/31/2009	11.18	85.88	
- MW-4	22 2R	50-200	97.06	6/17/2009	10.59	86.47	
	2	2.2	22.12	9/22/2009	10.16	86.90	
				12/16/2009	10.87	86.19	
				4/1/2010	11.04	86.02	

ft = Feet

TOC = Top of casing

bgs = below ground surface

·

* Elevation relative to an arbitrary point set at 100 feet

Tetra Tech

1 of 1

			ſ			T - L - L - L - L		
Well ID	Date	Aluminum		manganese	allazijad	alianio	curyidenzene	Total Xvlenes (uo/I)
		(mg/L)	(mg/L)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	
	10/22/2008	NA	3.74*	2.09*	< 5	< 5 <	< 5	< 5
	1/29/2009	2.14*	2.77*	1.41*	< 5	< 5	< 5	< 5
	3/31/2009	3.64*	4.83*	1.24*	< 5	< 5	< 5	< 5
, MW-1	6/17/2009	2.5*	5.58*	2.47*	< 5	< 5	< 5	< 5
	9/22/2009	0.443	0.445	1.44	<1	<1	<1	<1
	12/16/2009	NA	NA	0.732	<1	<1	د ا	<1
	4/1/2010	NA	NA	1.71	1 < 1	<1	<1	<1
	1/29/2009	٩N	AN	NA	<u> </u>	< 5 .	< 5	< 5
	3/31/2009	NA	NA	NA	< 5 <	< 5	< 2	< 5
MM-1 Dunlicate	6/17/2009	2.83	6.13*	2.52*	< 5	< 5 <	< 5	< 5
	9/22/2009	AN	٩N	NA	1>	۲ ۲	4	4
	12/16/2009	AN	NA	NA.	<1	<1	<1	<1
	4/1/2010	NA	NA	NA	<1	<1	<1	<1
	1/29/2009	4.15*	3.15*	1.79*	<u> </u>	< 5	< 5	< 5
	3/31/2009	1.17*	1.02*	0.326*	<u> </u>	< 5	< 5	< 5
C-IMMA	6/17/2009	3.4*	2.8*	1.37*	< 5 >	. < 5	< 5	< 5
7-44141	9/22/2009	<0.1	<0.02	0.0264	`<1	. <1	<1	<1
	12/16/2009	AA	NA	0.0654	. <1	<۲	- <1	<1
	4/1/2010	AN	NA	0.16	<1	<1	<1	<1
	1/29/2009	1.82*	2.24*	0.374*	< 5	< 5 <	< 5	< 5
	3/31/2009	1.64*	1.91*	0.271*	< 5	< 5	< 5	< 5
NVV/ 3	6/17/2009	1.68*	2.14*	0.628*	< 5	. < 5	< 5	< 5
	9/22/2009	<0.1	0.0291	0.0201	<1	<1	<1	<1
	12/16/2009	AN	NA	0.0607	<1	<1	<1	<1
	4/1/2010	NA	NA	0.0232	<1	<1	<1	<1
•	1/29/2009	6.92*	3.17*	4.15*	<u> </u>	< 5	< 5	< 5
	3/31/2009	4.21*	3.22*	1.45*	< 5	< 5	< 5	< 5
AVVV-4	6/17/2009	2.43*	2.05*	0.854*	< 5	< 5	< 5	< 5
	9/22/2009	<0.1	0.108	0.476	<1	<1	<1	<1
	12/16/2009	NA	NA	0.0149	<1	<1 .	<1	· <1
	4/1/2010	AN	. AN	< 0.005	۰ ۲	¢	₹	-1
Method		SW6010B	SW6010B	SW6010B	8260B	8260B	8260B	8260B
NMWQCC Groundwater Quality	Standard	5.0	1.0	0.2	10	750	750	620

Table 3. Groundwater Laboratory Analytical Results - ConocoPhillips Company Faye Burdette No. 1

<u>Notes:</u> MW = monitoring well

NMWQCC = New Mexico Water Quality Control Commission Constituents in **BOLD** exceed NMWQCC groundwater quality standards

mg/L = milligrams per liter

µg/L = micrograms per liter NA = not analyzed

<5 = result below laboratory detection limit Total Metals analysis run for all samples through June 2009; September 2009 dissolved metals analysis run in order to compare to standards * = total metals analysis result (NMWQCC standards do not apply)

Tetra Tech

APPENDIX A

	ECH, INC.	WATE	ER SAMPL	ING FIEL	JFORM		
Project Name	Faye Burdette No. 1			···	Page	ə <u>. 1</u>	of <u>4</u>
Project No.							
Site Location	Aztec, NM						
لِي Site/Well No.	MU-2	Coded/ Replicate No.		· · · · · · · · · · · · · · · · · · ·	Date	2-4	-1-10
Weather _		Time Sampling Began	020		Time Samplir Completed		30
		EVAC	UATION DATA				
Description of M	leasuring Point (MP) To	op of Casing					
Height of MP Ab	ove/Below Land Surface			IP Elevation			
Total Sounded [Depth of Well Below MP	-17-52 94	15 v	/ater-Level Ele	vation		
	Depth to Water Below I	1100		liameter of Cas		· · · · ·	
Wet	Water Column in W	0.06	G	allons Pumped rior to Samplin	d(Bailed)	4 00	llans
	Gallons per Fo				• <u> </u>	J	
	Gallons in W		`S	ampling Pump	Intake Setting		-
	. (h		eet below land	sunace)		
Purging Equipm	ent <u>Purge pump</u> Ba	ailer –	5,76				
Time	Temperature (°C)	SAMPLING DAT	A/FIELD PARA	METERS TDS (g/L)	DO (mg/L)	ORP (mV)	DO %
10255	1.2.46	7.33 114	57	,752	8.15	-37.3	690
626	2.5	7.29	52	· 749	4,20	-466	39.0
					241,02		
			<u> </u>			1 1	
		_ ())					
Sampling Equip	ment <u>Pu</u>	urge Pump/Bailer					
	ment Pu		er Description			Preservative	
			er Description	·	НСІ	<u>Preservative</u>	
Constitu		Contain	er Description		HCI None	<u>Preservative</u>	
<u>Constitu</u> BTEX		<u>Contain</u> 3 40mL VOA's	er Description			<u>Preservative</u>	
<u>Constitu</u> BTEX		<u>Contain</u> 3 40mL VOA's	er Description	· · · · · · · · · · · · · · · · · · ·		<u>Preservative</u>	
<u>Constitu</u> BTEX		<u>Contain</u> 3 40mL VOA's	er Description			<u>Preservative</u>	
Constitu BTEX Dissolved Mn	Phone I	<u>Contain</u> 3 40mL VOA's		ly Bla		Preservative	
Constitu BTEX Dissolved Mn Remarks	Phone I	<u>Contain</u> <u>3 40mL VOA's</u> <u>16 oz Plastic</u> INE MAHEL	IS KU		None	Preservative	
Constitu BTEX Dissolved Mn Remarks Sampling Person	Phone I	<u>Contain</u> <u>3 40mL VOA's</u> <u>16 oz Plastic</u> Ine Mathew Well	ust Kel	nes	None	<u>Preservative</u> 4" = 0.65	
Constitu BTEX Dissolved Mn Remarks Sampling Person	nnel	<u>Contain</u> <u>3 40mL VOA's</u> <u>16 oz Plastic</u> <u>16 oz Plastic</u> <u>Well</u> Well	JS KU I Casing Volun 0.16	nes	None <u>NCMQVO</u> 0.37		

R:\Share\Maxim Forms\Field Forms\Faye Burdette No. 1 Water Sampling Field Forms.xis

R	D							
P C	TETRA	TECH, INC.		WATER SAM	PLING FIEL	D FORM		
	Project Name	Faye Burdette No. 1	·	·		Pag	e2	of <u>4</u>
	Project No.							
	Site Location	Aztec, NM		•				
	Site/Well No.	MW-1	Coded/ Replica	te No.	35	Date	4-1-1	0
í,	Weather	toudy, cold	Time Sa Began	ampling (1:15		Time Sample Completed	119 173	2.5
ł				EVACUATION DA	ATA		11	50
	Description of I	Measuring Point (MP)	Top of Casing]	·			
1	Height of MP A	bove/Below Land Surfa	ce		MP Elevation	· · · · · · · · · · · · · · · · · · ·		
•	Total Sounded	Depth of Well Below M	P	5-17.92	Water-Level	Elevation		
	Held	Depth to Water Below	MP_HT	2011.91	Diameter of (·
,	Wet	Water Column in	Well T	320,5	Gallons Pum Prior to Samp			-
		Gallons per	Foot	01 0.16				
	-	Gallons in	Well	13273	Sampling Put (feet below la			
	Purging Equipr	nent Purge pump	Bailer × 3 -	8 = 3000				
	• • • •			LING DATA/FIELD P	ARAMETERS	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
٦	Time	Temperature (°C)	pH	Conductivity (µS/cr	the second s	DO (mg/L)	ORP (mV)	DO %
þ[11:22	11.07	7.00	1422	0.425	3.08	-46.7	19,4
4	11-23	11.05	2.02	1418	0.421	1-68	-50.1	14.6
24	11:25	11.03	7.02	1425	0.926	1.47	-51.7	13.4
•	Sampling Equi	pment	Purge Pump/	Bailén				
ļ	<u>Constit</u>	uents Sampled		Container Descript	ion		Preservative	
_	BTEX		<u>3 40mL</u>	VOA's	· ·	HCI		
	Dissolved Mn		<u>16 oz P</u>	lastic	· · · · · ·	None		
.								
I								
	Remarks	. ·					······	· · · · · · · · · · · · · · · · · · ·
	Sampling Pers	onnel	·	. п				
	·			Well Casing Vo	olumes			
l		Gal./ft. 1 ¼" = 0 1 ½" = 0		2" = 0.16 2 ½" = 0.24	3" : 3" <i>1</i> ⁄2 :	= 0.37 = 0.50	4" = 0.65 6" = 1.46	
		1 /2 = (2 /2 - U.24	J /2 ·	- 0.00	v - 1.40	

.

R:\Share\Maxim Forms\Field Forms\Faye Burdette No. 1 Water Sampling Field Forms.xis

Project Name Faye Burdette No. 1 Page3 of Project No.	
Site Location Aztec, NM Site/Well No. MW-3 Weather Coded/ (OUA), Cold Time Sampling Began D57 EVACUATION DATA Description of Measuring Point (MP) Top of Casing Height of MP Above/Below Land Surface MP Elevation Total Sounded Depth of Well Below MP 22.96 Wet Water Column in Well Hi Diameter of Casing Gallons per Foot 0.16 Gallons in Well 1.800 X.3 Sampling Pump Intake Setting (feet below land surface) Sampling Pump Intake Setting (feet below land surface)	
Site/Well No. MW-3 Coded/ Replicate No. Date 4-1-10 Weather COULDY, COLD Time Sampling Began 0.57 Time Sampling Completed 10.10 EVACUATION DATA Description of Measuring Point (MP) Top of Casing Height of MP Above/Below Land Surface MP Elevation Total Sounded Depth of Well Below MP 22.96 Water-Level Elevation Heid Depth to Water Below MP 11.60 Diameter of Casing 2" Gallons per Foot 0.16 Sampling Pump Intake Setting (feet below land surface) 5c 5 Gallore Gallons in Well Purging Equipment Purge pump/Baller = 5t, 42	e i
Site/Well No. MW-3 Replicate No. Date 1-10 Weather COULdy, COLd Time Sampling D57 Time Sampling Weather COULdy, COLd Time Sampling D57 Time Sampling EVACUATION DATA EVACUATION DATA Description of Measuring Point (MP) Top of Casing MP Elevation Height of MP Above/Below Land Surface MP Elevation Total Sounded Depth of Well Below MP 22.96 Water-Level Elevation Heid Depth to Water Below MP 11.00 Wet Water Column in Well 11.3 Gallons per Foot 0.16 Sampling Pump Intake Setting Gallons in Well 1.0009 X.3 Sampling Pump Intake Setting Purging Equipment Purge pump/ Bailer = 57, 42	
Weather Image: Construction of Measuring Point (MP) Began Image: Construction Data Description of Measuring Point (MP) Top of Casing Height of MP Above/Below Land Surface MP Elevation Total Sounded Depth of Well Below MP 22.96 Heid Depth to Water Below MP 11.66 Wet Water Column in Well 11.3 Gallons per Foot 0.16 Sampling Pump Intake Setting (feet below land surface) Purging Equipment Purge pump/ Bailer = 5.42	· •
Description of Measuring Point (MP) Top of Casing Height of MP Above/Below Land Surface MP Elevation Total Sounded Depth of Well Below MP 22.96 Held Depth to Water Below MP 11.000 Wet Water Column in Well 11.3 Gallons per Foot 0.16 Gallons in Well 1.0000 X 3 Purging Equipment Purge pump (Bailer)	
Height of MP Above/Below Land Surface MP Elevation Total Sounded Depth of Well Below MP 22.96 Water-Level Elevation Held Depth to Water Below MP 11.00 Diameter of Casing 2" Wet Water Column in Well 11.3 Diameter of Casing 2" Gallons per Foot 0.16 5c 5 gallar Gallons in Well 1.0004 X 3 Sampling Pump Intake Setting (feet below land surface) Purging Equipment Purge pump/Bailer = 5c 4/2	
Total Sounded Depth of Well Below MP 22.96 Water-Level Elevation Held Depth to Water Below MP 11.00 Diameter of Casing Gallons Pumped/Bailed 2" Wet Water Column in Well 11.3 Diameter of Casing Gallons Pumped/Bailed 2" Gallons per Foot 0.16 Sampling Pump Intake Setting (feet below land surface) 5.5 Gallone Purging Equipment Purge pump/Bailer = 5., 42 5.42	
Held Depth to Water Below MP 11.64 Diameter of Casing 2" Wet Water Column in Well 11.3 Diameter of Casing 2" Gallons per Foot 0.16 Sampling Pump Intake Setting (feet below land surface) 5.5 Gallone Purging Equipment Purge pump (Bailer) = 5.42 5.42	
Wet Water Column in Well 11.3 Gallons Pumped/Bailed 5.5 Gallore Gallons per Foot 0.16 Sampling Pump Intake Setting 6et below land surface) Purging Equipment Purge pump (Bailer) = 5.42	
Wet Water Column in Well III Prior to Sampling 0c0 ()all(A) Gallons per Foot 0.16 Sampling Pump Intake Setting Gallons in Well Io00(X) Sampling Pump Intake Setting Purging Equipment Purge pump () Bailer = 55, 42	_
Gallons per Foot 0.16 Gallons in Well 1.809×3 Sampling Pump Intake Setting (feet below land surface) Purging Equipment Purge pump (Bailer) $= 5.42$	
Gallons in Well Logog X 3 Sampling Pump Intake Setting (feet below land surface) Purging Equipment Purge pump (Bailer) = 5, 42	
	,
SAMPLING DATA/FIELD PARAMETERS	
Time Temperature (°C) pH Conductivity (µS/cm ³) TDS (g/L) DO (mg/L) ORP (mV) DO 9	
5 106 2.49 7.14 1282 .833 1.91 -48.8 17.	
<u>108 12,31 7.13 1282 834 2,55 -49,6 22</u>	
Sampling Equipment Purge Pump/Bailen	
Constituents Sampled Container Description Preservative	· .
BTEX 3 40mL VOA's HCI	
Dissolved Mn 16 oz Plastic None	
Remarks	
Sampling Personnel Christian Mathews 2 Kolly Blanchard	
Well Casing Volumes	
Gal./ft. $1 \frac{1}{4}$ " = 0.077 2" = 0.16 3" = 0.37 4" = 0.65	
$1 \frac{1}{2^{\circ}} = 0.10$ $2 \frac{1}{2^{\circ}} = 0.24$ $3^{\circ} \frac{1}{2} = 0.50$ $6^{\circ} = 1.46$	
DiOl - Marine Exceptions Burdette No. 1 Water Sempling Field Forms via	

R:\Share\Maxim Forms\Field Forms\Faye Burdette No. 1 Water Sampling Field Forms.xls

					_		
	Faye Burdette No. 1	<u></u>			P.	age4	l of
Project No.	<u> </u>			<u>_</u>			
Site Location	Aztec, NM		· · · · · · · · · · · · · · · · · · ·	· · ·		<i>Aa</i>	
Site/Well No.	MW-4	Coded/ Replicate No.			Date _	<u>374-1-</u>	-10
Weather	Silow, Clundy,	Time Sampling Began	1039		Time Sam Completed		50
·	Cold.	EVA	CUATION DAT	A			
Description of	Measuring Point (MP) To	p of Casing		·			
Height of MP	Above/Below Land Surface			MP Elevation			
Total Sounded	Depth of Well Below MP	22.28	•	Water-Level El	evation		
Held	Depth to Water Below N	11 211		Diameter of Ca		IP	•
Wet	_ Water Column in W	1 0/1	 	Gallons Pumpe Prior to Sampli	d <mark>/Bailed</mark>	5.5	
	– Gallons per Fo	pot (0.16		. –		
•	Gallons in W	lell 1.766	¥3	Sampling Pump (feet below land		ng	
Purging Equip	•	~	= 5.28		. '		
Բայցուց Էզաթ	ment <u>Fuige pump / Ba</u>						• .
Time	Temperature (°C)	pH Condu	tta/FIELD PAF		DO (mg/	L) ORP (mV) DO
1044	10.89		31	(1.930	3.71	-37.2	31.1
1046	11.92		28	0.927	2.13		19.8
			ـــــــــــــــــــــــــــــــــــــ				
Sampling Equ	ioment Pu	Irge Pump/Bailer)		<u> </u>	_ I	<u>_</u>	
	ituents Sampled		ainer Descriptio		· · · · · · · · · · · · · · · · · · ·	Preservativ	e
BTEX		3 40mL VOA's		· · ·	HCI		÷ .
Dissolved Mn		16 oz Plastic		<u> </u>	None		
	·····		<u> </u>		110116		
		· · · · · · · · · · · · · · · · · · ·		<u></u>	<u></u>		
Remarks							
Sampling Pers	sonnel K. Blanc	hard, C.M	la thews				
			ell Casing Volu	umes			7
	Gal./ft. 1 ¼" = 0.0	77 2"	= 0.16	3" =	0.37	4" = 0.6	5
	1 ½" = 0.1	0 2 ½"	= 0.24	3" 1/2 =	0.50	6" = 1.4	6

.

. . .

. .

· ·

. .

APPENDIX B

.

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

April 15, 2010	0	1	0	2	15,		pri	Α
----------------	---	---	---	---	-----	--	-----	---

Workorder: H10040049

Kelly Blanchard Tetra Tech 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110 Project: Faye Burdette No.1 Project Number: Faye Burdette No.1 Site: Albuquerque, NM PO Number: ENFOS#4510713617 NELAC Cert. No.: T104704205-09-1

This Report Contains A Total Of 17 Pages

Excluding Any Attachments

Phone: (713) 660-0901 Fax: (713) 660-8975

the main of	Certificate of Analysis
April 15, 2010	Workorder: H10040049

Kelly Blanchard Tetra Tech 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110

Workorder: H10040049

Project: Faye Burdette No.1 Project Number: Faye Burdette No.1 Site: Albuquerque, NM PO Number: ENFOS#4510713617 NELAC Cert. No.: T104704205-09-1

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSES AND EXCEPTIONS:

There were no exceptions noted.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg/kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

April 15, 2010

Workorder: H10040049

Kelly Blanchard Tetra Tech 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110

Project: Faye Burdette No.1 Project Number: Faye Burdette No.1 Site: Albuquerque, NM PO Number: ENFOS#4510713617 NELAC Cert. No.: T104704205-09-1

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

Erica Cardenas, Senior Project Manager

, Enclosures

Phone: (713) 660-0901 Fax: (713) 660-8975

SAMPLE SUMMARY

Workorder: H10040049 : Faye Burdette No.1

Project Number: Faye Burdette No.1

.ab ID	Sample ID	Matrix	COC ID	Date/Time Collected	Date/Time Received
10040049001	MW-1	Water		4/1/2010 11:35	4/2/2010 09:15
110040049002	MW-2	Water		4/1/2010 10:30	4/2/2010 09:15
110040049003	MW-3	Water		4/1/2010 11:10	4/2/2010 09:15
110040049004	MW-4	Water		4/1/2010 10:50	4/2/2010 09:15
110040049005	Trip Blank	Water		4/1/2010 00:00	4/2/2010 09:15
110040049006	Duplicate	Water		4/1/2010 11:25	4/2/2010 09:15

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040049 : Faye Burdette No.1

Project Number: Faye Burdette No.1

Lab ID: H10040049001	Date/Time Received: 4/2/2010 09:15 Matrix: Water
Sample ID: MW-1	Date/Time Collected: 4/1/2010 11:35
CP DISSOLVED METALS	
Analysis Desc: SW-846 6010B	Preparation Batches:

Manganese	1.71	0.00500	0.000300	1	1638	1334
Parameters	mg/l Qual	Report Limit	MDL	DF RegLmt	Prep 4	Analysis
	Results				Batch Info	
					£	
	Batch: 1334 SW-846 601	0B on 04/11/2010	16:29 by EBG			
and the second				-		
	Analytical Batches:		- A		1	
	Daluii. 1030 SVI-040 301	UA UN 04/00/2010	111.00 DY R_V	Q. 49.	N	(1997) A. (1997) A. (1997)

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical E	2.00			
	Batch: 1745 SW-846 82	260B on 04/13/2010 0)3:42 by LK	Г	
			28 e		
A second s	Results	-			Batch Information
Parameters	ug/i Qual	Report Limit	MDL	DF RegLmt	Prep Analysis
Benzene	ND	1.0	0.10	1	1745
Ethylbenzene	ND	1.0	0.15	1	1745
Toluene	· ND	1.0	0.29	1	1745
m,p-Xylene	ND	1.0	0.18	1	1745
o-Xylene	ND	1.0	0.13	1	1745
Xylenes, Total	ND	1.0	0.13	1	1745
4-Bromofluorobenzene (S)	96.5 %	74-125		<u></u> 1	1745
1,2-Dichloroethane-d4 (S)	100 %	70-130		1	1745
Toluene-d8 (S)	92.4 %	82-118		1	1745

ANALYTICAL RESULTS

Workorder: H10040049 : Faye Burdette No.1

Project Number: Faye Burdette No.1

Lab ID:	H10040049002	Date/Time Received: 4/2/2010 09:15 Matrix: Water
Sample ID:	MW-2	Date/Time Collected: 4/1/2010 10:30
CP DISSOL	VED METALS	

Batch: 1638 SW-846 3010A on 04/05/2010 17:00 by R_V Analytical Batches: Batch: 1334 SW-846 6010B on 04/11/2010 16:34 by EBG Results Parameters MDL DF RegLmt Prep Analysis	Manganese	0.160	0.00500	0.000300	1	1638	1334
Analytical Batches: Batch: 1334 SW-846 6010B on 04/11/2010 16:34 by EBG Results Batch Information	Parameters	mg/l Qual	Report Limit	MDL	DF RegLm	t Prep A	unalysis -
Analytical Batches:		Results					100 B 100
Analytical Batches:		Datch: 1004 011-040 0010	0 011 04/11/2010	, 10.04 by 200			
			B on 04/11/2010) 16:34 by EBG	- 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199		
Batch: 1638 SW-846 3010A on 04/05/2010 17:00 by R_V		Analytical Batches:	144		·		115
		Batch: 1638 SW-846 3010	A on 04/05/2010) 17:00 by R_V			

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Ba	atches:				1. S.
	Batch: 1745 SW-846 826	0B on 04/13/2010 0	4:09 by LK1	.		
Parameters.	Results ug/i Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis
Benzene	· ND	1.0	0.10	1		1745
Ethylbenzene	ND	1.0	0.15	1		1745
Toluene	ND	1.0	0.29	1		1745
m,p-Xylene	ND	1.0	0.18	1		1745
o-Xylene	ND	1.0	0.13	1		1745
Xylenes, Total	ND	· 1.0	0.13	1		1745
4-Bromofluorobenzene (S)	95.1 %	74-125		1		1745
1,2-Dichloroethane-d4 (S)	92.3 %	70-130		1		1745
Toluene-d8 (S)	92.7 %	82-118		1		1745

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040049 : Faye Burdette No.1				Project	Number:	Faye Burdette	No.1
Lab ID: H10040049003		ime Received: 4/2/20		Matrix:	Water		
Sample ID: MW-3	Date/1	ime Collected: 4/1/20					
ICP DISSOLVED METALS							
Analysis Desc: SW-846 6010B	Preparation Batches:				2.5		
	Batch: 1638 SW-846 3	010A on 04/05/2010 1	7:00 by R_	V			
Constant of the second second	Analytical Batches:				1		
- Garde	Batch: 1334 SW-846 6	010B on 04/11/2010 1	6:40 by EB	G			
					1. A. A. A.	9 7	
Anter Anter Anter Anter	Results	- e e				Batch Inform	ation
Parameters	mg/l Qua	Report Limit	MDL	DF F	RegLmt	Prep Ana	
					-3-	<u>.</u>	
Manganese	0.0232	0.00500	0.000300	1		1638	1334
VOLATILES							• •
Analysis Desc: SW-846 8260B	SW-846 5030Analytical	Batches:					
	Batch: 1745 SW-846 8	260B on 04/13/2010 ()4:37 by LK	Tee	1.00		
	1. 美林						
	Results					Batch Inform	ation
Parameters	ug/l Qua	I Report Limit	MDL	DF F	RegLmt	Prep Ana	alysis
Benzene	· ND	1.0 ⁻	0.10	· 1	· ·		1745
Ethylbenzene	ND	1.0	0.15	1			1745
Toluene	ND	1.0	0.29	1			1745
m,p-Xylene	ND	1.0	0.18	1			1745
o-Xylene	ND	1.0	0.13	1			1745
Xylenes, Total	ND	1.0	0.13	1	•		1745
4-Bromofluorobenzene (S)	96.2 %	74-125		1			1745
1,2-Dichloroethane-d4 (S)	101 %	70-130	•	1			1745
Toluene-d8 (S)	92.2 %	82-118		1			1745

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Lab ID:	H10040049004		Date/Time	Received: 4/2/2	2010 09:15	Matrix:	Water			
Sample ID:	MW-4		Date/Time	Collected: 4/1/2	2010 10:50					
CP DISSO	VED METALS							·····		
nalysis De	sc: SW-846 6010B	Preparation	Batches:						- 1 1	
		Batch: 1638	SW-846 3010	A on 04/05/2010	17:00 by R	/				
		Analytical B						5. State 1.		
for a second							- 16 T			
		Batch: 1334	SW-846 6010	B on 04/11/2010) 16:46 by EB	3				
1. A.			esults		and a			Batch Info	1	
	The second se		mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep	Analys	
arameters						C. FRANKETT WE WERE A			400	
			ND	0.00500	0.000300	1		1638	133	
/anganese			ND	0.00500	0.000300	1		1638	130	
Parameters Manganese /OLATILES			ND 30Analytical Bat		0.000300	1		1638	13.	

	Results				Batch Information
Parameters	ug/l Qual	Report Limit	MDL	DF F	RegLmt Prep Analysis
Benzene	ND	1.0	0.10	1	1745
Ethylbenzene	ND	1.0	0.15	1	1745
Toluene	ND	1.0	0.29	1	1745
m,p-Xylene	ND	1.0	0.18	1	1745
o-Xylene	ND	1.0	0.13	1	1745
Xylenes, Total	ND	1.0	0.13	1	1745
4-Bromofluorobenzene (S)	96.1 %	74-125		1	1745
1,2-Dichloroethane-d4 (S)	92.7 %	70-130		· 1	1745
Toluene-d8 (S)	93.4 %	82-118		1	1745

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040049 : Faye Burdette No.1

Project Number: Faye Burdette No.1

Lab ID:	H10040049005	Date/Time Received: 4/2/2010 09:15	Matrix: Water
Sample ID:	Trip Blank	Date/Time Collected: 4/1/2010 00:00	

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical E	atches:			
	Batch: 1745 SW-846 82	60B on 04/13/2010	01:53 by LK	Г. —	
Parameters	Results ug/I Qual	Report Limit	MDL	DF Re	Batch Information
Benzene	ND	1.0	0.10	1	1745
Ethylbenzene	ND	· 1.0	0.15	1	1745
Toluene	ND	1.0	0.29	· 1	1745
m,p-Xylene	ND	1.0	0.18	[.] 1	1745
o-Xylene	ND	· 1.0	0.13	. 1	1745
Xylenes, Total	ND	1.0	0.13	1	1745
4-Bromofluorobenzene (S)	96.7 %	74-125		1	1745
1,2-Dichloroethane-d4 (S)	99 %	70-130	• •	· 1	1745
Toluene-d8 (S)	92 %	82-118		1	1745

ANALYTICAL RESULTS

Workorder: H10040049 : Faye Burdette No.1

Project Number: Faye Burdette No.1

Lab ID:H10040049006Date/Time Received:4/2/2010 09:15Matrix:WaterSample ID:DuplicateDate/Time Collected:4/1/2010 11:25

VOLATILES

SW-846 5030Analytical Batches: Analysis Desc: SW-846 8260B Batch: 1745 SW-846 8260B on 04/13/2010 02:20 by LKT Results Batch Information DF RegLmt Prep Analysis MDL ug/l Qual Report Limit Parameters ND 1.0 0.10 1745 1 Benzene 1745 Ethylbenzene ND 1.0 0.15 1 1745 0.29 Toluene ND 1.0 1 ND 1.0 0.18 1745 m,p-Xylene 1 ND 1.0 0.13 1745 o-Xylene 1 1745 ND 1.0 0.13 Xylenes, Total 1 1745 4-Bromofluorobenzene (S) 98.4 % 74-125 1 1745 1,2-Dichloroethane-d4 (S) 93.2 % 70-130 1745 93.1 % 82-118 Toluene-d8 (S)

QUALITY CONTROL DATA

Workorder	H10040049	: Faye	Burdette No.1
-----------	-----------	--------	---------------

Project Number: Faye Burdette No.1

QC Batch: DIGM/ QC Batch Method: SW-84	1638 6 3010A	·		nalysis Meth reparation:		/-846 6010B 05/2010 17:00 b	y R V			
Associated Lab Samples:	H1004001900 H1004002100 H10040049002 H1004005100	3 H100400 2 H100400)19002)21004)49003	H100400 H100400 H100400	19003 25001	H10040019004 H10040025002 H10040050001	H1004 H1004	0021001 0025003 0051001	H100400 H100400 H100400	049001
METHOD BLANK: 37509 Analysis Date/Time Analyst:	04/11/2010) 13:44 EBG								
Parameter	Units		-	Blank esult Quali	fiers	Reporting Limit			·	• :
Manganese	mg/l			ND		0.00500			-	
LABORATORY CONTROL S	AMPLE: 3751	10								
Analysis Date/Time Analyst: Parameter	04/11/20 Units	10 13:49 EBC	S	pike onc.	LCS Result	LCS % Rec		% Rec Limits	• •	•
Manganese	mg/l	· ·	(0.10	0.1052	105	· {	30-120		
MATRIX SPIKE & MATRIX S	PIKE DUPLICA	TE: 37507		37508	948 - 2 - 2 - 2 - 2	Original: H	1004002500)2		i.
MS Analysis Date/Time Anal	yst: 0	4/11/2010 14:0	0 EBG							
MSD Analysis Date/Time An	alyst: 04	4/11/2010 14:0	6 EBG							
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result		MSD % Rec	% Rec Limit	RPD	Max RPD
Manganese	mg/l	0.136	0.10	0.2285	0.2325	92.9	96.9	75-125	1.7	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

QUALITY CONTROL DATA

Workorder: H10040049 : Faye Burdette No.1

Project Number: Faye Burdette No.1

	10040042005 10040049006 04/12/2010 2 Units ug/l ug/l ug/l ug/l ug/l ug/l % % %	H1004004	Blank	Qualifiers	Reporting Limit 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-	0049004	H1004(0049005
Analysis Date/Time Analyst: Parameter Benzene Ethylbenzene Toluene n.p-Xylene Xylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S) ABORATORY CONTROL SAM Analysis Date/Time Analyst: Parameter Benzene	Units ug/l ug/l ug/l ug/l ug/l % % % %	 	Result ND ND ND 95.2 91.5 92.2	Qualifiers	Limit 1.0 1.0 1.0 1.0 1.0 1.0 74-125 70-130			· · · · · · · · · · · · · · · · · · ·	
Parameter Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene Xylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S) ABORATORY CONTROL SAM Analysis Date/Time Analyst: Parameter Benzene	Units ug/l ug/l ug/l ug/l ug/l % % % %	 	Result ND ND ND 95.2 91.5 92.2	Qualifiers	Limit 1.0 1.0 1.0 1.0 1.0 1.0 74-125 70-130	· · ·		· · ·	
Benzene Ethylbenzene Toluene m.p-Xylene o-Xylene Xylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S) LABORATORY CONTROL SAM Analysis Date/Time Analyst: Parameter Benzene	ug/l ug/l ug/l ug/l ug/l % % % % /PLE: 38948 04/12/2010	921:47 LKT	Result ND ND ND 95.2 91.5 92.2	Qualifiers	Limit 1.0 1.0 1.0 1.0 1.0 1.0 74-125 70-130	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
Ethylbenzene Toluene m,p-Xylene o-Xylene Xylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S) LABORATORY CONTROL SAM Analysis Date/Time Analyst: Parameter Benzene	ug/l ug/l ug/l ug/l % % % % MPLE: 38948 04/12/2010	921:47 LKT	ND ND ND 95.2 91.5 92.2		1.0 1.0 1.0 1.0 1.0 74-125 70-130	· · ·		· · · · · · · · · · · · · · · · · · ·	
Toluene m,p-Xylene o-Xylene Xylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S) LABORATORY CONTROL SAM Analysis Date/Time Analyst: Parameter Benzene	ug/I ug/I ug/I % % % /PLE: 38948 04/12/2010	921:47 LKT	ND ND 95.2 91.5 92.2		1.0 1.0 1.0 74-125 70-130		-	· · ·	
m,p-Xylene o-Xylene Xylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S) LABORATORY CONTROL SAM Analysis Date/Time Analyst: Parameter Benzene	ug/l ug/l % % % /PLE: 38948 04/12/2010	921:47 LKT	ND ND 95.2 91.5 92.2		1.0 1.0 1.0 74-125 70-130		- - 	· · ·	· · · · ·
p-Xylene Xylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S) ABORATORY CONTROL SAM Analysis Date/Time Analyst: Parameter Benzene	ug/l ug/l % % % /PLE: 38948 04/12/2010	921:47 LKT	ND 95.2 91.5 92.2		1.0 1.0 74-125 70-130		- - 		·
p-Xylene Kylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Foluene-d8 (S) ABORATORY CONTROL SAM Analysis Date/Time Analyst: Parameter Benzene	ug/l % % % /PLE: 38948 04/12/2010	921:47 LKT	ND 95.2 91.5 92.2		1.0 74-125 70-130		- - 		
Xylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S) LABORATORY CONTROL SAM Analysis Date/Time Analyst: Parameter Benzene	ug/l % % % /PLE: 38948 04/12/2010	021:47 LKT	95.2 91.5 92.2		74-125 70-130				· · · · ·
4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S) LABORATORY CONTROL SAM Analysis Date/Time Analyst: Parameter Benzene	% % % MPLE: 38948 04/12/2010	021:47 LKT	95.2 91.5 92.2		74-125 70-130				
1,2-Dichloroethane-d4 (S) Toluene-d8 (S) LABORATORY CONTROL SAM Analysis Date/Time Analyst: Parameter Benzene	% % /PLE: 38948 04/12/2010	021:47 LKT	91.5 92.2		70-130			•	
Toluene-d8 (S) LABORATORY CONTROL SAM Analysis Date/Time Analyst: Parameter Benzene	% //PLE: 38948 04/12/2010	021:47 LKT	92.2		1			-	
LABORATORY CONTROL SAM Analysis Date/Time Analyst: Parameter Benzene	/IPLE: 38948 04/12/2010	21:47 LKT	· · · · · ·			- · ·		· · ·	· · ·
Analysis Date/Time Analyst: Parameter Benzene	04/12/2010	21:47 LKT	Spike				•	· ·	·
Parameter Benzene		21:47 LKT	Spike	 		•			· · .
Benzene	Units		Spike	10					. •
Benzene	Units				S LCS	9	% Rec		
			Conc.	Resi	ult % Rec		Limits		
Ethylbenzene	ug/l		20	18	93.7	7	4-123		
	ug/l		20	18	.3 91.4	• 7	2-127		
Toluene	ug/l		20	18	.2 91.1	7	4-126		
n,p-Xylene	ug/l		40	35	.9 89.7	7	1-129		
-Xylene	ug/l		20	18	.0 90.2	7	4-130		
(ylenes, Total	ug/l		60	53.9	92 89.9	7	1-130		
-Bromofluorobenzene (S)	%				97.7		4-125		
1,2-Dichloroethane-d4 (S)	%				102	7	0-130		
Toluene-d8 (S)	%				91.2		82-118		
MATRIX SPIKE & MATRIX SPI		E: 38949		950	Original:	H1004004900	6		
MS Analysis Date/Time Analyst	t: 04/1	13/2010 02:47	7 LKT						
MSD Analysis Date/Time Analy	vst: 04/1	13/2010 03:15	5 LKT						
Parameter	Units	Original Result	Spike Conc. R	MS M esult Res	SD MS sult % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
Benzene	ug/l	ND	20	20.2 2	4.0 101	120	70-124	17.2	20
Ethylbenzene	ug/l	ND	20		8.7 96.4	93.5	35-175	3.0	20
Toluene	ug/l	ND	20		9.2 96.9	95.9	70-131	1.0	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

ug/l

%

%

%

Xylenes, Total

Toluene-d8 (S)

4-Bromofluorobenzene (S)

1,2-Dichloroethane-d4 (S)

SPL Inc. 8880 Interchange Drive Houston, TX 77054

Phone: (713) 660-0901 Fax: (713) 660-8975

Max

RPD

20

20

20

30

30

30

RPD

2.0

2.5

2.2

35-175

74-125

70-130

82-118

QUALITY CONTROL DATA

57.22

55.99

95:4

99.0

103

92.0

93.3

97.1

94.4

91.7

Workorder: H10040049 : Faye Burdette No.1 Project Number: Faye Burdette No.1 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 38949 38950 Original: H10040049006 MS Analysis Date/Time Analyst: 04/13/2010 02:47 LKT MSD Analysis Date/Time Analyst: 04/13/2010 03:15 LKT Original Spike MS MSD MS MSD % Rec Parameter Units Result Result % Rec % Rec Limit Conc. Result m,p-Xylene 40 37.5 36.7 93.7 ug/l ND 91.8 35-175 o-Xylene ug/l ND 20 19.7 19.3 98.7 96.3 35-175

60

ND

98.4

93.2

93.1

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10040049_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

Legend

(S) - Indicates analyte is a surrogate

Qualifier	Qualifier Description
MI	Matrix Interference
, I i i i	Estimated value, between MDL and PQL (Florida)
JN	The analysis indicates the presence of an analyte
С	MTBE results were not confirmed by GCMS
NC	Not Calculated - Sample concentration > 4 times the spike
* .	Recovery/RPD value outside QC limits
E	Results exceed calibration range
н	Exceeds holding time
J	Estimated value
Q	Received past holding time
В	Analyte detected in the Method Blank
Ν	Recovery outside of control limits
D	Recovery out of range due to dilution
NC	Not Calculable (Sample Duplicate)
P	Pesticide dual column results, greater then 25%

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: H10040049 : Faye Burdette No.1

Project Number: Faye Burdette No.1

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
H10040049001	MW-1	SW-846 3010A	DIGM/1638	SW-846 6010B	ICP/1334
H10040049002	MW-2	SW-846 3010A	DIGM/1638	SW-846 6010B	ICP/1334
H10040049003	MW-3	SW-846 3010A	DIGM/1638	SW-846 6010B	ICP/1334
H10040049004	MW-4	SW-846 3010A	DIGM/1638	SW-846 6010B	ICP/1334
'		1			
110040049001	MW-1	SW-846 5030	MSV/1744	SW-846 8260B	MSV/1745
110040049002	MW-2	SW-846 5030	MSV/1744	SW-846 8260B	MSV/1745
110040049003	MW-3	SW-846 5030	MSV/1744	SW-846 8260B	MSV/1745
H10040049004	MW-4	SW-846 5030	MSV/1744	SW-846 8260B	MSV/1745
110040049005	Trip Blank	SW-846 5030	MSV/1744	SW-846 8260B	MSV/1745
H10040049006	Duplicate	SW-846 5030	MSV/1744	SW-846 8260B	MSV/1745

Phone: (713) 660-0901 Fax: (713) 660-8975

Sample Receipt Checklist

WorkOrder:	H10040049	Received By	LOG
Date and Time	04/02/2010 09:15	Carrier Name:	FEDEXS
Temperature:	3.0°C	Chilled By:	Water Ice
1. Shipping container/coo	ler in good condition?	· .	YES
2. Custody seals intact o	n shipping container/cooler?		YES
3. Custody seals intact of	n sample bottles?		Not Present
4. Chain of custody prese	ent?		YES
5. Chain of custody signed	d when relinquished and received?		YES
6. Chain of custody agree	es with sample labels?		YES
7. Samples in proper con	tainer/bottle?		YES
8. Samples containers in	lact?	•	YES
9. Sufficient sample volu	ne for indicated test?		YES
10. All samples received w	vithin holding time?		YES
11. Container/Temp Blank	temperature in compliance?		YES
12. Water - VOA vials have	e zero headspace?		VOA Vials Not Present
13. Water - Preservation c	hecked upon receipt(except VOA*)?		YES

*VOA Preservation Checked After Sample Analysis

SPL Representative: Client Name Contacted: Client Instructions: Contact Date & Time:

Phone: (713) 660-0901 Fax: (713) 660-8975

	and a second	and an		
 A sustained Days (M) (Standard D) (A strathmer Days (D) (Standard Days) (D) (Standard Days) (M) (Standard Days) (Standard Days) (M) (Standard Days) (M) (Standard Days) (M) (Standard Days) (Standard Days) (M) (Standard Days) (M) (Standard	The Unit	MUL MUL	SIL NAME: SILE LANDING INVICE MUNICIPALITY M	Citra Names
	Blank U TAT			a ledor Black
CUVUVOVU r Reimignieniet by: 5 Reimignieniet by: 100Hvg1 100Hvg1	101-1-10 101-1-11-10			Shiring Connection
				A Constant
Ambassador Čat				Winter B
1.10.11160	December Reduced K Anton Vision	M A M	C SL-sludge E C-glassic, C-glass W	soil D=oil A=air =ehcore-X=other = =amber glass vial X=other = 4oz, 40=vial = 20 X=other =
OL INTERNET			Set 1=HC1 2 3=H2SO4 *X Set 1 = SO 1 3=H2SO4 *X Number of C × PTEX	intainers,
n Aldrendow III. Aso Hug				
nee oy North Albertatow North Albertatow Insverse City Al 99686 [23]] 947;5(17)				

Report ID: H10040049_6089