3R - 429

RP WORKPLAN

04/13/2011

6121 Indian School Rd. NE Suite 200 Albuquerque, NM 87110 (505) 237-8440

April 13, 2011

Mr. Brandon Powell State of New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, NM 87410

RE:

(1) ConocoPhillips Company, Martin 34 No. 2 Site Soil Boring Installation and Sampling Report

(2) ConocoPhillips Company, Martin 34 No. 2 Site Remediation Plan Monitoring Well Installation and Groundwater Monitoring Work Plan

Dear Mr. Powell:

Enclosed please find a copy of the above-referenced documents as compiled by Tetra Tech, Inc., for the San Juan Basin ConocoPhillips Martin 34 No. 2 Site. Tetra Tech plans to begin monitoring well installation on April 19, 2011.

Please do not hesitate to contact me at (505) 237-8440 if you have any questions or require additional information.

Sincerely,

Kelly E. Blanchard

Kelly E. Blanchard Project Manager/Geologist

Enclosures (2)

2011	
APR	<u>CE</u>
Ē	VT I
\triangleright	00
çò	$\overline{\bigcirc}$
ÖĻ	\bigcirc

Cc: Glenn VonGonten, New Mexico Oil Conservation Division Terrry Lauck, ConocoPhillips Company Risk Management and Remediation (electronic only) Kelsi Harrington, ConocoPhillips Company San Juan Business Unit Gwen Frost, ConocoPhillips Company San Juan Business Unit

Remediation Plan Monitoring Well Installation and Groundwater Monitoring

ConocoPhillips Company Martin 34 No. 2 San Juan County, New Mexico API No. 30-045-08934 NMOCD Case No. <u>TBD</u>

Prepared for:

ConocoPhillips Company

Risk Management and Remediation 420 South Keeler Avenue Bartlesville, OK 74004 (918) 661-0935 office

Prepared by:

Tetra Tech

6121 Indian School Road NE, Suite 200 Albuquerque, NM 87110 (505) 237-8440

April 2011

TABLE OF CONTENTS

I.0 PURPOSE AND NEED	I
2.0 SITE HISTORY	2
2.1 Site Activities	2
3.0 SCOPE OF WORK	4
3.1 Pre Field Work Preparation	4
3.2 Site Investigation	4
3.2.1 Soil Boring Advancement and Soil Sample Collection	4
3.2.2 Groundwater Monitoring Well Construction	6
3.2.3 Investigation Derived Waste	6
3.2:4 Groundwater Monitoring	6
3.3 Reporting	7
4.0 QUALITY ASSURANCE AND QUALITY CONTROL	9
4.0 QUALITY ASSURANCE AND QUALITY CONTROL 5.0 ADDITIONAL MEASURES TO DELINEATE SOIL AND	9
4.0 QUALITY ASSURANCE AND QUALITY CONTROL 5.0 ADDITIONAL MEASURES TO DELINEATE SOIL AND GROUNDWATER IMPACTS	9 10
 4.0 QUALITY ASSURANCE AND QUALITY CONTROL 5.0 ADDITIONAL MEASURES TO DELINEATE SOIL AND GROUNDWATER IMPACTS	9 10 11
 4.0 QUALITY ASSURANCE AND QUALITY CONTROL 5.0 ADDITIONAL MEASURES TO DELINEATE SOIL AND GROUNDWATER IMPACTS	9 10 11
 4.0 QUALITY ASSURANCE AND QUALITY CONTROL. 5.0 ADDITIONAL MEASURES TO DELINEATE SOIL AND GROUNDWATER IMPACTS 6.0 REMEDIATION OPTIONS 6.1 Soil Vapor Extraction 6.2 Chemical Oxidation 	9 10 11 11
 4.0 QUALITY ASSURANCE AND QUALITY CONTROL. 5.0 ADDITIONAL MEASURES TO DELINEATE SOIL AND GROUNDWATER IMPACTS 6.0 REMEDIATION OPTIONS 6.1 Soil Vapor Extraction 6.2 Chemical Oxidation 6.3 Trap and Treat® 	9 10 11 11 11
 4.0 QUALITY ASSURANCE AND QUALITY CONTROL. 5.0 ADDITIONAL MEASURES TO DELINEATE SOIL AND GROUNDWATER IMPACTS 6.0 REMEDIATION OPTIONS 6.1 Soil Vapor Extraction 6.2 Chemical Oxidation 6.3 Trap and Treat® 6.4 Monitored Natural Attenuation 	9 10 11 11 11 11
 4.0 QUALITY ASSURANCE AND QUALITY CONTROL. 5.0 ADDITIONAL MEASURES TO DELINEATE SOIL AND GROUNDWATER IMPACTS 6.0 REMEDIATION OPTIONS 6.1 Soil Vapor Extraction 6.2 Chemical Oxidation 6.3 Trap and Treat® 6.4 Monitored Natural Attenuation 7.0 ESTIMATED TIMELINE	9 10 11 11 11 11

LIST OF FIGURES

Figure I – Site Location Map

Figure 2 – Soil Boring and Proposed Monitoring Well Location Map

Figure 3 – Typical Monitoring Well Completion Diagram

APPENDICES

Appendix A – Analytical Results Summary Tables

Appendix B – B-I Soil Boring Log

Appendix C – Soil Boring Log, Soil Sampling, Monitoring Well Completion, Groundwater Sampling Field Forms

Appendix D – Laboratory Analytical Report

I.0 PURPOSE AND NEED

This document presents the scope of work to be performed at the ConocoPhillips Company (ConocoPhillips) Martin 34 No. 2 gas well production facility (Site) located at Latitude: 36.76394° N; Longitude: -107.97562° W within Unit Letter O, Section 34, Township 30N, Range 11W, San Juan County, New Mexico (**Figure 1**). The surface of the Site is a privately owned.

This work is being conducted as follow-up to the discovery of hydrocarbon-impacted soils in December of 2010, subsequent excavation in January 2011, and horizontal and vertical soil impact delineation during the week of March 1, 2011. All work will follow New Mexico Oil Conservation Division (NMOCD) guidelines. The NMOCD is located at 1220 South St. Francis Drive, Santa Fe, NM 87505.

2.0 SITE HISTORY

The chronology of activities previously performed at the Site is presented below. The proposed scope of work for the Site is presented following the chronology section.

2.1 Site Activities

The following table summarizes activities that have occurred at the Site regarding the response to the December 2010 release discovery.

DATE	ACTIVITY
December 3, 2010	ConocoPhillips removed the above ground production tank and the landowner subsequently discovered hydrocarbon-stained soil in the vicinity while regrading the area. ConocoPhillips obtained samples of the soil following notification from the landowner.
December 6, 2010	Laboratory analytical results from the soil samples collected on December 3, 2010 revealed hydrocarbons in excess of regulatory standards.
January 12 through 24, 2011	Excavation of soil and confirmatory sampling was conducted in the location of the former production tank. Brandon Powell of the New Mexico Oil Conservation Division (NMOCD) requested on January 20 th that the excavation be continued to a depth of 30 feet below ground surface (bgs) from a depth of 25 feet bgs. Final excavation dimensions were approximately 60 ft long by 75 feet wide by 30 feet deep. Analytical results from the final round of confirmation sampling of the excavated area indicated that the north wall and both north and south bottom areas of the excavation still contained hydrocarbons in excess of regulatory standards. The lateral extent of the excavation to the north was reached due to the proximity to a roadway. Continued lateral and vertical delineation by means other than excavation would be necessary.
January 31, 2011	Backfilling of the excavation began in preparation for delineation by means of soil boring.
February 16, 2011	Tetra Tech and ConocoPhillips made a site visit to discuss delineation plans and to meet with the property owner.
March I st and 2 nd , 2011	Tetra Tech supervised a direct-push Geoprobe rig to delineate soil impacts. Boring B-I was advanced in the backfilled area of the former excavation. Boring B-2 was advanced north of B-I, approximately 10 feet from the edge of the excavation. Boring B-3 was advanced about halfway up the sloped ramp/bench on the south side of the former excavation, southwest of B-I(Figure 2). With the exception of the sample collected from B-I at 38-40 feet bgs, all laboratory soil samples collected from all borings were either below laboratory detection limits or below recommended action levels. The laboratory sample

from the 38 to 40 foot interval in B-1 contained total BTEX at 428.7 mg/kg. The sample also contained TPH GRO at 4,800 mg/kg, and TPH DRO at 200 mg/kg. PID readings were elevated in soil samples collected B-I from excavation bottom to Geoprobe refusal, PID readings PID readings above the water in B-2 and B-3 were all low (~2-10 ppmv). Groundwater was encountered in borings B-2 and B-3 at approximately 40 feet bgs. The same interval in B-I, the first boring advanced in the center of the excavated area, did not appear wet, so a groundwater sample was not collected. Groundwater collected from borings B-2 and B-3 exceeded the New Mexico Water Quality Control Commission (NMWQCC) standard for benzene and chloride. Groundwater collected from B-2 contained a concentration of benzene at 920 μ g/L and chloride at 352 μ g/L. Groundwater collected from B-3 contained a concentration of benzene at 10 μ g/L and a concentration of chloride at 316 μ g/L. The NMWQCC standard for benzene is 10 μ g/L. The NMWQCC standard for chloride is 30 μ g/L.

3.0 SCOPE OF WORK

The Scope of Work for Site activities is described below. Work conducted at the Site will consist of field preparation prior to the start of work (Section 3.1); a Site investigation (Section 3.2) consisting of soil boring advancement and soil sample collection (Section 3.2.1); soil boring completion to groundwater monitoring wells (Section 3.2.2); proper handling and disposal of investigation-derived waste (Section 3.2.3); and groundwater monitoring (Section 3.2.4). Reporting is discussed in Section 3.3, and quality assurance/quality control (QA/QC) is discussed in Section 4.0. Section 5.0 discusses additional measures to delineate soil and groundwater impacts. Section 6.0 discusses possible future remediation options which will be determined following monitoring well installation and additional soil and groundwater sampling. References used for completion of this report are noted in section 7.0. Figure 1 is a Site location map, Figure 2 displays the Site layout and proposed location of groundwater monitoring wells to be installed, and Figure 3 is a diagram of proposed monitoring well completion details for the Site based on data collected during the March 1st and 2nd, 2011 Geoprobe investigation. Appendices follow the Figures and include:

- Appendix A Analytical Results Summary Tables
- Appendix B Soil Boring Logs
- Appendix C Soil Boring Log, Soil Sampling, Monitoring Well Completion, Groundwater Sampling Field Forms
- Appendix D Laboratory Analytical Reports

3.1 Pre Field Work Preparation

The proposed groundwater monitoring well location map (Figure 2) will be reviewed and approved by ConocoPhillips Risk Management and Remediation personnel, ConocoPhillips San Juan Business Unit personnel, and the landowner. Once these well locations have been approved, New Mexico One-Call will be contacted to perform a utility locate at the property. Additionally, a site specific Health and Safety Plan (HASP) will be prepared by Tetra Tech prior to the start of field work. In section 1-17.2 of the *Rules and Regulations Governing the Appropriation and Use of Groundwater in New Mexico*, it is not necessary to apply for or to gain a permit for groundwater monitoring well installation prior to drilling, provided that the well is used solely for water level measurement and groundwater sampling. This rule was confirmed by a phone call to the New Mexico Office of the State Engineer (NMOSE) Aztec, New Mexico office on February 22, 2011 and again on April 12, 2011.

3.2 Site Investigation

3.2.1 Soil Boring Advancement and Soil Sample Collection

The subject Site is scheduled to have at least four (4) soil borings completed into monitoring wells in order to define the groundwater flow direction and to determine the extent of petroleum hydrocarbon impacts to groundwater. Monitoring Well MW-1 will be completed as a four-inch diameter well in the center of the former excavation, to allow for additional flexibility for any potential future remediation approaches. Monitoring Wells MW-2, MW-3 and MW-4 will be completed into two-inch diameter wells. Data will also be collected to determine if an aquitard exists and if groundwater is perched, and/or of limited areal extent. Borings will be advanced until auger refusal is met or until a sufficient depth into groundwater is achieved. Depth to the potentially perched water bearing zone at the Site is expected to be found at approximately 40 feet bgs, with a change in lithology to dry clay expected at approximately 43 feet bgs. The boring installed topographically up-gradient of the Site (Figure 2) will be advanced through the water bearing zone and as deep as necessary beyond that interval to determine if an aquitard is present, and if so, it's composition and thickness. The bottom of the boring will be filled with bentonite to the base of the water bearing zone prior to well installation. This procedure will only occur in the event that there is no evidence of hydrocarbon-impacted soil during the drilling at this location. The soil cuttings will be screened at regular intervals with a PID as a precaution.

Prior to the start of drilling operations, each boring location will be pre-cleared in order to ensure that no underground utilities or other potential buried obstacles will be encountered. Pre-clearing of each boring will be performed by Riley industrial Services of Farmington, New Mexico, using a vacuum truck and water pressure to advance each hole to approximately ten (10) inches in diameter and five (5) feet deep. A hand auger may be used in the previously excavated area to pre-clear the location for MW-1.

Soil samples will be collected from the vadose zone to just above the water table in each borehole. The lithology of each borehole will be recorded to total depth during borehole advancement using split spoon sampling techniques. Soil samples collected from the vadose zone will be field screened with a PID using the heated headspace method. PID results will be recorded on the boring log. A soil sample with the highest PID reading, and another from just above the water table from each borehole will be submitted to Accutest Laboratories located in Houston, TX to be analyzed for the following parameters:

- Volatile Organic Compounds (VOCs), EPA Method 8260B
- Polynuclear Aromatic Hydrocarbons (PAHs), EPA Method 8270C
- Total petroleum hydrocarbons (TPH), EPA Method 8015B
- Total metals aluminum, boron, iron, arsenic, barium, cadmium, chromium, cobalt, copper, lead, manganese, molybdenum, nickel, selenium, silver, zinc by EPA Method 6010B and mercury by EPA Method 7471A

5

- General chemistry (as described in 40 CFR 136.3), including
 - Alkalinity, EPA Method SM2320B
 - Bromide, chloride, fluoride, orthophosphate, sulfate, nitrate/nitrite, EPA Method 300.0
 - o Bicarbonate/carbonate, EPA Method 310.1
 - o pH, EPA Method 4500-HB
 - Specific conductance, EPA Method E120.1

3.2.2 Groundwater Monitoring Well Construction

Enviro-Drill will be utilized as the drilling contractor at the Site, and drilling operations will be supervised by Tetra Tech personnel. Groundwater monitoring wells will be constructed using two-inch diameter polyvinyl chloride (PVC) casing and at least 10 feet of 0.010-inch slot PVC screen. Monitoring wells will be installed with as much screen below the water table as possible since the water bearing zone appears to be relatively thin according to the previous Geoprobe investigation findings. A sand filter pack will be installed to two feet above the top of the screen. A two-foot thick bentonite seal will be placed over the sand, followed by cement grouting to the land surface. Monitoring Well MW-1 will be completed with a locking, flush mount manhole type vault. The remaining monitoring wells will be completed with either the flush mount vault or a stick-up well monument, depending on landowner preference. Each well will be set in a 3-foot by 3-foot concrete pad (**Figure 3**). The groundwater monitoring wells will be incorporated into a semi-annual groundwater monitoring program.

3.2.3 Investigation Derived Waste

All well development water will be placed into the on-Site produced water tank. Soil cuttings will be placed on polyethylene sheeting and will be covered in the event of precipitation during field activities. Once each soil boring is complete, a representative sample of soil cuttings from each soil boring will be field screened using a PID and will be spread on-Site if the results are less than 100 ppm. If soil cutting PID results are greater than 100 ppm, soil cuttings will be placed in 55 gallon drums and transported by Envirotech to the Envirotech Soil Remediation Facility, or other ConocoPhillips-approved waste disposal facility.

3.2.4 Groundwater Monitoring

During the first regularly scheduled semi-annual groundwater monitoring event covered under this work plan, an expanded baseline groundwater parameter list will be submitted for laboratory analysis. Constituents of concern (COCs) detected in groundwater at concentrations above the New Mexico Water Quality Control Commission (NMWQCC)

6

Groundwater Quality Standards during the first groundwater monitoring event will be carried forward for analyses in subsequent groundwater monitoring events.

The baseline parameter list for groundwater includes analyses of the following parameters:

- VOCs, EPA Method 8260B
- PAHs, EPA Method 8270C
- TPH, gasoline range organics (GRO), EPA Method 8015B
- TPH, diesel range organics (DRO), EPA Method 8015B
- Dissolved metals aluminum, boron, iron arsenic, barium, cadmium, chromium, cobalt, copper, lead, manganese, molybdenum, nickel, selenium, silver and zinc by EPA Method 6010B
- Total metals mercury by EPA Method 7470A
- General chemistry (as described in 40 CFR 136.3), including
 - Alkalinity, EPA Method SM2320B
 - Bromide ,chloride, fluoride, orthophosphate, sulfate, nitrate/nitrite, EPA Method 300.0
 - Bicarbonate/carbonate, EPA Method 310.1
 - o pH, EPA Method 4500-HB
 - Specific conductance, EPA Method E120.1
 - TDS, EPA Method SM2540C
 - Hardness, EPA Method SM2430C

Semi-annual groundwater sampling will be conducted at the Site beginning in June of 2011. During each sampling event, a dedicated, 1.5-inch polyethylene bailer will be used to purge and sample each well. A groundwater sample will be collected once specific conductance, pH, dissolved oxygen, and temperature have stabilized (within a 10% margin) or once three well volumes have been purged. Records of each sampling event will be kept on Tetra Tech groundwater sampling forms and in a bound field notebook. Groundwater samples will be containerized in bottles supplied by Accutest Laboratories of Houston, Texas. The groundwater samples will be placed on ice and shipped under chain of custody documentation to the laboratory for analysis. Groundwater samples will be shipped by overnight courier.

3.3 Reporting

Semi-annual groundwater monitoring reports will be prepared for the Site. The first semiannual report will include a summary of the groundwater monitoring well installation and a brief narrative of the sampling events. In general, the reports will include the date(s) the events occurred, copies of sampling field forms from each sampling event, copies of laboratory chain-ofcustody documentation and results, laboratory quality assurance/quality control (QA/QC) documentation, tabulated groundwater elevations, soil results, groundwater concentration/elevation maps, a generalized geologic cross section, and a summary of key findings. Starting with the second semi-annual report, the groundwater elevations and groundwater analytical results from the previous events will be tabulated with the results from the current event. For each monitoring event a hard copy, along with an electronic copy on CD, of the report will be submitted to the NMOCD.

Based on the extent of groundwater impacts determined by laboratory analysis, Site characterization and interpretation of analytical data by Tetra Tech, it is possible that the frequency of groundwater monitoring events may change. If the groundwater monitoring schedule is revised at any time, the NMOCD will be notified. Once groundwater results begin to approach compliance, quarterly sampling will begin. Following eight (8) quarters of compliance, no further action will be requested.

A C-141 form (Release Notification and Corrective Action) was completed and submitted to NMOCD for groundwater impacts at the Site on behalf of ConocoPhillips on March 3, 2011.

4.0 QUALITY ASSURANCE AND QUALITY CONTROL

A quality assurance evaluation will be conducted by the analytical laboratory on collected samples to check for accuracy, precision and reliability of each reported analyte concentration. Sample spiked-matrix batch samples will be analyzed to determine the accuracy of laboratory results. A duplicate sample will be taken from one monitoring well during each sampling event to check for consistency. Trip blanks will be included along with groundwater samples to rely against cross-contamination during shipping. Quality assurance documentation will be provided on the laboratory report.

At least one field audit of investigation and sampling protocol will be conducted by the project manager during the period covered by this work plan. Variations from standard operating procedures will be documented and corrected, if necessary.

5.0 ADDITIONAL MEASURES TO DELINEATE SOIL AND GROUNDWATER IMPACTS

If impacts are not fully delineated following the initial monitoring well installation and sampling event, additional wells will be added to the site in order to achieve three (3) dimensional delineation. Proposed additional monitoring wells are will be presented to the NMOCD for review once approved by the ConocoPhillips San Juan Business Unit and the landowner. If additional monitoring wells are necessary, those wells will be installed and sampled according to this plan.

6.0 REMEDIATION OPTIONS

Tetra Tech will evaluate the data collected from soil borings and monitoring well sampling to determine an appropriate remediation option, or combination of options, based upon Site characteristics, proximity to receptors, landowner considerations, NMOCD input, and technical feasibility. This will be documented in a remediation action plan proposal which will be submitted to the NMOCD for review and concurrence.

6.1 Soil Vapor Extraction

Based on results of the forthcoming monitoring well installation and soil and groundwater sampling events, soil vapor extraction (SVE) may be considered as an option for in situ remediation. Some of the important considerations include soil composition and structure, hydrocarbon concentrations, thickness of the hydrocarbon-impacted zone, utility connection feasibility, and air emissions.

6.2 Chemical Oxidation

Based on results of the forthcoming monitoring well installation and soil and groundwater sampling events, chemical oxidation may be considered as an option for in situ remediation. This would involve using a direct push Geoprobe rig to advance several injection points in and around the impacted area in order to deliver an oxidizing compound, and possibly water, to soil and groundwater. The network of monitoring wells would be used to monitor effects and progress and determine need for additional treatments. Some of the important considerations include soil composition and structure, soil moisture content, hydrocarbon concentrations, thickness of the hydrocarbon-impacted zone, areal extent of hydrocarbon-impacted groundwater, and potential air emissions.

6.3 Trap and Treat®

Based on results of the forthcoming monitoring well installation and soil and groundwater sampling events, Trap & Treat® may be considered an option for in situ remediation. This would involve using a direct push Geoprobe rig to advance several injection points in and around the impacted area in order to deliver a proprietary blend of activated carbon, sulfate reduction media, micronutrients, facultative microbes, and water. Some of the important considerations include soil composition and structure, soil moisture content, hydrocarbon concentrations, thickness of the hydrocarbon-impacted zone, and areal extent of hydrocarbon-impacted groundwater.

6.4 Monitored Natural Attenuation

Based on results of the forthcoming monitoring well installation and soil and groundwater sampling events, monitored natural attenuation may be considered as an option for in situ remediation of soil and groundwater. The network of installed monitoring wells would be used to evaluate the physical, chemical, and biological processes that contribute to naturally occurring biodegradation and other non destructive attenuation mechanisms.

12

7.0 ESTIMATED TIMELINE

Environmental Work Plan

8.0 REFERENCES

- Envirotech Incorporated (January 2011). Analytical Report and Sampling Location Figure ConocoPhillips Martin 34 #2. Prepared for ConocoPhillips Company. Figure Dated January 28, 2011. 2 pp.
- New Mexico Office of the State Engineer (1995, Revised August 15, 2006) Rules and Regulation Governing the Appropriation and Use of Groundwater in New Mexico. August 15, 2006. 31 pp.

New Mexico Oil Conservation Division (1993). Guidelines for Remediation of Leaks, Spills and Releases. August 13, 1993. 16 pp. (not including Appendices).

2.)

FIGURES

I.) Site Location Map
 Boring Location and Proposed Monitoring Well Location Map
 3.) Typical Monitoring Well Completion Diagram

ŦŁ

APPENDIX A

Analytical Results Summary Tables

ConocoPhillips Company Martin 34 No. 2

Appendix A. Martin 34 No. 2 Site Soil	Boring Laboratory	Analytical Res	sults							
Constitu	ient				Sample ID (soil samples collecte	d March 1st-2nd, 2011			
VOCs (BTEX only)	Method	Units	B-1 (38-40 feet)	B-1 (41.5-43 feet)	B-1 (43-43.5 feet)	B-2 (30-32 feet)	B-2 (36-38 feet)	B-3 (26-28 feet)	B-3 (38-40 feet)	NMOCD
Benzene	8260B	mg/kg - dry	2.7	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	10
Toluene	8260B	mg/kg - dry	110	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NE
Ethylbenzene	8260B	mg/kg - dry	23	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NE
Total Xylenes	8260B	mg/kg - dry	293	0.0061	<0.005	0.009	<0.005	0.0074	<0.005	NE
Total BTEX	8260B	mg/kg - dry	428.7	0.0061	<0.005	0.009	<0.005	0.0074	<0.005	50
Petroleum Hydrocarbons	Method	Units	B-1 (38-40 feet)	B-1 (41.5-43 feet)	B-1 (43-43.5 feet)	B-2 (30-32 feet)	B-2 (36-38 feet)	B-3 (26-28 feet)	B-3 (38-40 feet)	NMOCD
TPH Gasoline Range	8015B	mg/kg - dry	4800	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	100
TPH Diesel Range	8015B	mg/kg - dry	200	9	<5	<5	<5	10	<5	100
Chloride	Method	Units	B-1 (38-40 feet)	B-1 (41.5-43 feet)	B-1 (43-43.5 feet)	B-2 (30-32 feet)	B-2 (36-38 feet)	B-3 (26-28 feet)	B-3 (38-40 feet)	NMOCD
Chloride	300	mg/kg - dry	92.9	114	111	16.4	24	97.4	16.7	NE

Martin 34 No. 2 Site Groundwater Laboratory Analytical Results

Constit	uent	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sample ID (collecte	ed March 2nd, 2011)	
VOCs (BTEX only)	Method	Units	B-2 Water	B-3 Water	NMWQCC Standard
Benzene	8260B	hg/L	920	160	10
Toluene	8260B	hg/L	3.7	<1	750
Ethylbenzene	8260B	hg/L	120	110	750
Total Xylenes	8260B	hg/L	5.6	250	620
Chloride	Method	Units	B-2 Water	B-3 Water	NMWQCC Standard
Chloride	300	hg/L	352	316	30
Petroleum Hydrocarbons	Method	Units	B-2 Water	B-3 Water	NMWQCC Standard
TPH Gasoline Range	8015B	mg/L	1.5	3.1	NE
TPH Diesel Range	8015B	mg/L	3.1	5.9	NE

VOCs = Volatile organic compounds SVOCs = Semi-volatile organic compounds mg/kg - dry = Milligrams per kilogram (parts per million), analyzed after residual water removed from the soil mg/L = Milligrams per liter (parts per million) µg/L = Micrograms per liter (parts per billion) NE = Not established Notes: B = soil boring NMOCD = New Mexico Oil Conservation Division recommended action level NMWQCC = New Mexico Water Quality Control Commission Standard

Environmental Work Plan

APPENDIX B Soil Boring Logs

PROJEC		IE: Mart	in 34 No. 2		SOIL BORING NO. B-2		1.41	
LOCATIC	N: Sa	in Juan	County, NM		DRILL TYPE: Geoprobe 540-UD		1997	
FIELD LC	GGE	BY: B	ernie Lauctes		Direct Push	100	1- 14 8	
ELEVATI	ON: G	ROUND	SURFACE (msl): 5773		BORE HOLE DIAMETER: 2.25 inches	1.5	1	
GROUND	WATE		/ATION (msl): ~ 5733 fe	et	DRILLED BY: JR Drilling	1	1	
REMARK	S: On	ce total	depth was reached and	a GW sample collected,	DATE/TIME: HOLE STARTED: March 1,	2011 -	1500	1.5
	bo	ring was	backfilled with hydrated	bentonite to surface.	DATE/TIME: COMPLETED: March 2,	2011 - 1	2:45	_
	All	depths	are measured from grou	ind surface.			2	
ELEVATION (msl) - ft	SAMPLE TO LAB	SAMPLE ID		CLASSIFICA AND DESCRI	TION PTION	USCS SYMBOL	PID RESULT (ppm)	DEPTH (bgs) - ft
5770 -	-			SAND, silty: Light brown some silt.	, damp, loose, subrounded, sand with	SM	5.2	-0 -5
5765 -				CLAY: Brown, damp, firr with trace silt and sand.	n, subrounded, stratified, non plastic, clay White crystalline veins observed.	M	6.2	- 10
5760 -				SAND, silty: Light brown and some thin clay lense veins observed in clay le	, damp, loose, subrounded, sand with silt es with silt and sand. White crystalline enses.	SM	14.5	- 15
5755 -				SILT: Brown, damp, loos	se, stratified, non plastic, silt with coarse	- Cim	5.3	- 20
5750 -				sand observed between	24 and 28 ft bgs.	MI	9.7	- 25
5745 -	-					WIL	6.5	
	×	B-2		CLAY: Brown, damp, firr with silt and sand.	n, subrounded, stratified, non plastic, clay \	~	9.8	- 30
5740 -		(36-38)		SAND, silty: Light brown with some silt.	, damp, loose, subrounded, stratified sand	CL	6.2	- 35
						SM	9.7	00
5735 -	X	B-2 (36-38)		CLAY: Brown, damp to stratified, low plasticity, veins observed. Color cl	wet @ 40 ft bgs, firm, subrounded, clay with silt and sand. White crystalline nanged from brown to gray at 43 ft bgs.		3.3 4.1	- 40
						CL	6.6	
5730 -				SAND: Gray, saturated, coarse grained sand.	loose, subrounded, stratified, fine to	614	2.1	- 45
	1	1.1		CLAY: Brown, wet, soft,	subrounded, stratified, low plasticity, clay	CL	9.3	
5725 -	L			with silt and sand. White	crystalline veins observed.	UL	0.0	

Total depth = -48 feet

TE TETRA TECH

PROJEC	TNAM	IE: Mart	in 34 No. 2		SOIL BORING NO. B-3			
LOCATIO	N: Sa	in Juan (County, NM		DRILL TYPE: Geoprobe 540-UD			
FIELD LO	GGE	BY: B	ernie Lauctes		Direct Push			
ELEVATIO	ON: G	ROUND	SURFACE (msl): 5770		BORE HOLE DIAMETER: 2.25 inches			
ROUND	WATE	RELEV	/ATION (msl): ~ 5730 fe	et	DRILLED BY: JR Drilling	-		
REMARK	S: On	ce total	depth was reached and	a GW sample collected,	DATE/TIME: HOLE STARTED: March 2	, 2011 -	0900	
	bo	ring was	backfilled with hydrated	bentonite to surface.	DATE/TIME: COMPLETED: March 2,	2011 -	12:45	
	All	depths a	are measured from grou	nd surface.				
ELEVATION (msl) - ft	SAMPLE TO LAB	SAMPLE ID		CLASSIFICAT AND DESCRIF	FION PTION	USCS SYMBOL	PID RESULT (ppm)	DEPTH (has) - ft
5770 -				SAND, silty: Light brown some silt. Sand fine to m	, damp, loose, subrounded, sand with nedium grained. Coarser sand at 13 ft bgs.			-0
5765 -						SM	1.7 6.5	-5
5760 -							10.2	- 10
		1					12.8	-
5755 -							19.4	- 15
				SILT, sandy: Light brown fine to medium grained s	n, dry, loose, subrounded, silt with some sand.		8.5	-
5750 -							8.1	- 20
-						ML	9.0	F
5745 -				CLAX: Poddich brown	lay firm subrounded non plastic clay		2.2	- 25
	x	B-3 (26-28)		with trace silt		CL	14.6	-
5740 -				with some fine to mediur	n grained sand.	ML	6.9	- 30
-				CLAY: Brown, damp, so	rt, subrounded, non plastic, clay with some ved.	CL	4.4	-
5735 -				SAND, silty: Light brown medium grained sand wi	, damp, loose, subrounded, fine to the some silt.	GM	5.4	- 35
						Givi	5.7	-
5730 -	X	B-3 (38-40)		CLAY: Greenish gray, m plasticity, clay with silt ar	orst, firm, subrounded, stratified, low nd sand. White mottles observed.	- CL	8.7	- 40
-				SAND: Dark Gray, moist coarse grained sand.	t, loose, subrounded, stratified, fine to	SM CL	28.0	-
1	<u> </u>			CLAY: Gray,moist, firm, with silt and sand.	subrounded, stratified, low plasticity, clay	SM	10.6	1_
				SAND: Dark Gray, moist coarse grained sand. Pro	, loose, subrounded, stratified, fine to obe refusal at 44.5 ft bgs.			

Total depth = -48 feet

BORING LOG

APPENDIX C

Lange Soil Boring Log, Soil Sampling, Monitoring Well Completion and Groundwater Sampling Field Forms

Litholog Project/Client	y Record	F 1				₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩							.	
Borehole:	:					Method:						TETRAT	ECH, INC	<i>c</i> i
Geologist:					••		-	1.14					 Na	
Date:	·				-		-	0						
Driller:									-				Pageo	,
	Pue	-		ţuə <u>ş</u>	is (Clan)		Jo əde	& Type						
Interval (ft.)	Description ame Storp Name	NSCS CIASS	Color	Moisture Con	Consistency Consistency	Cohesity of No Density of No	Angularity/SH Particles	Cementation	Structure	Dry Strength	plasticity	IsnoitibbA noitemnoin		Rec (ft/ft)
				, And	/. soft	v. loose	angular	none	stratified	none	nonplastic			
Blow Ct. Sample: Y N				damp moist f	soft irm (stiff)	loose m. dense	subangular subrounded	weak moderate	laminated fissured	low medium	low medium			
Analytes:				wet	ard	dense	rounded	strong	slickensided	high	high			
				sat.	/. hard	v. dense	flat elongated	CHOOSE:	blocky Jensed	v. high				
								OR	homogenous				• .	
Time:			i I I		/. soft	v. loose	angular	Silicious none	interbedded stratified	none	nonplastic	-		
Blow Ct.				damp	soft	loose	subangular	weak	laminated	low	low .		•.	
Sample: Y N	-			moist	īrm (stiff)	m. dense	subrounded	moderate	fissured	medium	medium			
Analytes:				wet saf	hard A hard	dense v dense	rounded	strong CHOOSE-	stickensided hlocky	high v hich	high			
				;	5	2	elongated	Calcareous	lensed	R				
Time:	PIO:							OR Silicious	homogenous interbedded		• -			
				dry	r. soft	v. loose	angular	none	stratified	none	nonplastic			
Blow Ct.				damp	soft	loose	subangular	weak	laminated	low	low			
Analytes:				wet	ard	dense	rounded	strong	slickensided	high	high			
				sat.	/. hard	v. dense	llat .	CHOOSE:	blocky	v. high				
							elongated	Calcareous OR	lensed homoaenous					
Time:	PID:							Silicious	interbedded					1
				dry	r. soft	v. loose	angular	none	stratified	none	nonplastic			
Blow Ct.				damp	soft	loose	subangular	weak	laminated	low	low			
Sample: Y N				moist	lirm (stiff)	m. dense	subrounded	moderate	fissured	medium biob	medium			
Aliary too.				wet sat.	nard /. hard	v. dense	rounceu flat	Strong CHOOSE:	slickensweu blocky	hign v. hígh	ugn			
			-				elongated	Calcareous	lensed	¢				
Time:	Úľa							OR Silicious	homogenous interhedded					
										_				

k:\forms\field\lithology.xls

Broiget No.	Project Name:		Data
			Date:
	Station No.:		
Sampled By:	Mean Time:	SMS	Control No.:
Record No.:	Sample Purpose:		
	· . 		
SAMPLES COLLE	CTED		
Туре:	Color:	USCS Classific	ation
% Clay	Dry	GW SW	ML
% Silt	Moist	GP SP	CL
% Sand	Saturated	GM SM	OL
% Gravel		GC SC	MH
	WETCH		СН
SAMPLING PATTERN S			ОН
· · · · · · · · · · · · · · · · · · ·	ft	Sample depth	PT
		•	
		Sample volume	
	1	- ·	
		Primary sample	
i l		_	
	\$	Duplicate sample	e
	·		
		Other	
	1		
	•	,	
· · · · · · · · · · · · · · · · · · ·			
Containers:		Analysis:	
□250 mL plastic		Metals	
500 mL plastic			
1000 mL plastic		Anions	
LlOther		☐ Other	,
·	·····		
Comments:			
			<u>.</u>

.

ant - 1 - 1 an 51 - 1 - 19

)

2

	Well Completio	n Diagram	St	ickup (feet): approx. 3 f
Job Name	· · · · · · · · · · · · · · · · · · ·	·····		
Job No.	Date			Steel Casing Other:
Project Manager	·	· · · · · ·		
Well I D				Casing:
Field Geologist				ft. to
Driller				inch diameter
Equipment	·			ft. to
	· · ·	· · · ·		Outer Casing:
Materials	:			ft. to
Pounds		Filter Pack		Concrete: approx. 4' well
magnet can Pounds		Bentonite Seal		ft. to
Gallons		Grout		Grout
Pounds	· · ·	Concrete		ft. to
Feet of native fill/ slough	•••			
Feet ofinch	pvc	Blank Casing		Bentonite Seal:
Feet of inch		Slotted Screen		. ft. to
E		Outer Casing		Filter Pack:
Feet of		Sump/ Silt Trap		ft. to
Placement Method	· · · · · · · · · · · · · · · · · · ·	·		Slotted Screen:
Notes				ft. to
				Native fill/ slough:
Development	·			ft. to
	<u>. </u>			8 inch diameter Borehole:
Method	· · · ·			ft. to
Date				Sump/ Silt Trap:
Amount Purged	gallons			ft. to
Notes				

TETRA TECH, INC.	WATER	SAMPLING FIE	LD FORM		
Project Name		· · ·	Page	of	
Project No.					
Site Location					
Site/Well No. <u>MW - </u>	Coded/ Replicate No.	D	ate		
Weather	Time Sampling Began	Ci	me Sampling		
	EVACUATI	ON DATA			
Description of Measuring Point (MP)	Top of Casing				
- Height of MP Above/Below Land Surf	ace	MP Elevation			
Fotal Sounded Depth of Well Below N	ЛР	Water-Level Elevati	on		
Held	/ MP	Diameter of Casing	2"		
Wet Water Column in	Well	Gallons Pumped/Ba Prior to Sampling	ailed		
Gallons per	Foot			····	
Gallons in	Well	Sampling Pump Inta (feet below land sur	ake Setting		
	/ Bailer	(ی کور اور اور اور اور اور اور اور اور اور اور
Time Time 'Temperature (°C)	pH Conductivity (μS/cm ³) TDS (g/L)	DO (mg/L) DO	0 % ORP (mV) V	olume (gal.)
;					
Sampling Equipment	Purgo Pump/Roilor				
Constituents Sampled	<u>Container Descriptio</u>	<u>n</u>		Preservative	-
<u> </u>		<u> </u>	· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·			· · · ·		<u> </u>
Remarks	······································	· · · · · · · · · · · · · · · · · · ·			
Sampling Personnel			<u></u>		
	Wall Casing	1 Volumes			
Gal./ft. 11/4" = 0	.077 2" = 0.16	3" = 0.3	7 [.] 4" =	0.65	
$1 \frac{1}{2} = 0$	$2 \frac{1}{2} = 0.24$	$3" \frac{1}{2} = 0.5$	0 6" =	1.46	

Section 1.

Lagar Base Round

APPENDIX D RECEIPTION

:-::

÷

的感染的新闻等于中的

1000000

1.72

Laboratory Analytical Reports

· · ·

SPL ENVIRONMENTAL 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Certifica	te of Ana <u>11030</u>	lysis Number: <u>104</u>	
Report To: Tetra Tech, Inc. Kelly Blanchard		Project Name: <u>Site:</u> Site Address:	Martin 34 No.2 Bloomfield, NM
6121 Indian School Road, N.E. Suite 200 Albuquerque		<u>PO Number:</u> State:	New Mexico
NM 87110- ph: (505) 237-8440 fax: (505) 881-3283		<u>State Cert. No.:</u> Date Reported:	3/15/2011

A setting the set of this Report Contains A Total Of 21 Pages

Excluding This Page, Chain Of Custody

(

And

Any Attachments

3/15/2011

Date

Test results meet all requirements of NELAC, unless specified in the narrative.

Version 2.1 - Modified February 11, 2011

Case Narrative for: Conoco Phillips

Certificate of Analysis Number: 11030104									
Report To:		Project Name:	Martin 34 No.2	· · · ·					
Tetra Tech, Inc.		Site:	Bloomfield, NM						
Kelly Blanchard		Site Address:							
6121 Indian School Road, N.E.	ĩ								
Suite 200 Albuquerque		PO Number:							
₩ ¹ / NM	4	State:	New Mexico						
87110-	•1	State Cert. No .:							
ph: (505) 237-8440 fax: (505) 881-3283	1	Date Reported:	3/15/2011	· · ·					

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSES AND EXCEPTIONS:

No exceptions were noted.

III. GENERAL REPORTING COMMENTS:

". Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

adunas

11030104 Page 1

3/15/2011

Date

Erica Cardenas Project Manager

Test results meet all requirements of NELAC, unless specified in the narrative.

Conoco Phillips

.

LABORATORIES

,	· .	Certificate o	of Analysis Numb	per:		
i		<u>1</u>	<u>1030104</u>			· · ·
Report To:	Tetra Tech, Inc.			Project Name:	Martin 34 No.2	
	Kelly Blanchard			Site:	Bloomfield, NM	•
	6121 Indian School Ro	oad, N.E.		Site Address:		1
	Suite 200	· .				
	NM			PO Number:		•
	87110-	· · · · · · · · · · · · · · · · · · ·		<u>State:</u>	New Mexico	
	ph: (505) 237-8440	fax: (505) 881-3283		State Cert. No.:		1
Fax To:				Date Reported:	3/15/2011	· ÷
		· ·				

Client Sample II	D Classifier	Lab Sample ID	Matrix	Date Collected	Date Received	COC ID	HOLD
B-1@38.0-40.0'	ي بين اليوني من الدوني	11030104-01	Soil	03/01/2011 14:05	3/3/2011 9:20:00 AM	306322	Π.
B-1@41.5-43.0'@@	and the state of the	11030104-02	Soil	03/01/2011 14:10	3/3/2011 9:20:00 AM	306322	
B-1@43.0-43.5'		11030104-03	Soil	03/01/2011 14:30	3/3/2011 9:20:00 AM	306322	
B-2@30.0-32.0% @@??******		11030104-04	Soil	03/01/2011 16:00	3/3/2011 9:20:00 AM	306322	
B-2@36.0-38.0'		11030104-05	Soil	03/01/2011 16:15	3/3/2011 9:20:00 AM	. 306322	
B-3@26.0-28.0'	1.25 25	.0e11030104-06	Soil	03/02/2011 9:55	3/3/2011 9:20:00 AM	306322	
B-3@38.0-40.0'	. 2	11030104-07	Soil	03/02/2011 10:20	3/3/2011 9:20:00 AM	306322	

ternesta den

Alaha she hadin Ala Maria ana Sha Shi alao Maria She She Alao She She She She She She

L

a Oarder

3/15/2011

Date

Erica Cardenas Project Manager

> Kesavalu M. Bagawandoss Ph.D., J.D. Laboratory Director

> > Ted Yen Quality Assurance Officer

Version 2.1 - Modified February 11, 2011

11030104 Page 2 3/15/2011 9:04:12 AM

8880 INTERCHANGE DRIVE

HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:B-1	@38.0-40.0'		Colle	cted:	03/01/2011 14:05	SPL Sample	ID: 11030	0104-01
<i>,</i> .			Site:	Blo	oomfield, NM			
Analyses/Method	Result	QUAL	Rep	.Limit	Dil. Facto	or Date Analyzed	d Analyst	Seq. #
DIESEL RANGE ORG	ANICS				MCL S	SW8015B L	Jnits: mg/kg	!
Diesel Range Organics	(C10-C28) 200			25	5	03/10/11 12:4	8 NW	5741647
Surr: n-Pentacosane	78.1		% 2	20-154	5	03/10/11 12:4	8 NW	5741647
Prep Method	Prep Date	Prep Initials	Prep F	actor				•
SW3550B	03/08/2011 14:35	QMT	1.00					
GASOLINE RANGE C	RGANICS				MCL S	SW8015B L	Jnits: ma/ka	
Gasoline Range Organic	s 4800		• .	100	1000	03/04/11 22:4	8 WLV	5738470
Surr: 1,4-Difluorobenz	tene 119	······	% 6	53-142	1000	03/04/11 22:4	8 WLV	5738470
Surr: 4-Bromofluorobe	enzene 151		% 5	50-159	1000	03/04/11 22:4	B WLV .	5738470
Prop Mothod	Pron Data	Brop Initiale	Drop E	octor				
SW5030B	03/04/2011 10:09	XML	1.00					
ION CHROMATOGRA	PHY	•			MCI E30		lnits: ma/ka	
Chloride	92.9			10	2	03/04/11 15:3	9 ESK	5737820
VOLATILE ORGANIC	S BY METHOD 8260E	3			MCL S	SW8260B L	Inits: ua/ka	
Benzene 2	0300 a gales 1 - 2700		-	1200	250	03/08/11 20:4	BLUL	5739989
Ethylbenzene	Santar (1997 23000	· · ·		1200	250	03/08/11 20:4	BLU_L	5739989
Toluene 🖅	110000	÷; •		12000	2500	03/08/11 20:2	2 LU L	5739988
m,p-Xylene	<u>240000</u>			12000	2500	03/08/11 20:2	2 LU_L	5739988
o-Xylene	53000	• •.		12000	2500	03/08/11 20:2	2 LU L	5739988
Xylenes, Total	293000			12500	2500	03/08/11 20:2	2 LU_L	5739988
Surr: 1,2-Dichloroetha	ine-d4 93.7		% 7	78-116	2500	03/08/11 20:2	2 LU_L	5739988
Surr: 1,2-Dichloroetha	ne-d4 94.0		% 7	78-116	250	03/08/11 20:4	BLU_L	5739989
Surr: 4-Bromofluorobe	enzene 102		% 7	4-125	2500	03/08/11 20:2	2 LU_L .	5739988
Surr: 4-Bromofluorobe	enzene 103		% 7	74-125	250	03/08/11 20:4	BLU_L	5739989
Surr: Toluene-d8	101		% 8	32-118	2500	03/08/11 20:2	2 LU_L	5739988
Surr: Toluene-d8	108		% 8	32-118	250	03/08/11 20:4	B LU_L	5739989
· · · · · ·		,						

Prep Method	Prep Date	Prep Initials	Prep Factor
SW5030B	03/04/2011 10:07	XML	1.00

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

> 11030104 Page 3 3/15/2011 9:04:23 AM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

11030104-02

Million -

......

51. 4 3

C	lient	Samp	le l	ID:B-1@41.5-43.0'
-				

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Toluene-d8

Collected: 03/01/2011 14:10 **SPL Sample ID:**

			Site: Bloc	omfield, N	М			
Analyses/Method	Resu	lt QUAL	Rep.Limit	Dil	Factor	Date Analy	zed Analyst	Seq. #
DIESEL RANGE ORG	ANICS			MCL	SV	V8015B	Units: mg/kg	
Diesel Range Organics (C10-C28)	6	. 5		1	03/09/11 1	7:27 NW	5741635
Surr: n-Pentacosane	77.	9	% 20-154		1	03/09/11 1	7:27 NW	5741635
Prep Method	Prep Date	Prep Initials	Prep Factor					
SW3550B	03/08/2011 14:35	QMT	1.00					•
GASOLINE RANGE O	ASOLINE RANGE ORGANICS					V8015B	Units: mg/kg	
Gasoline Range Organic	s 0.:	2	0.1		1	03/05/11	1:22 WLV	5738473
Surr: 1,4-Difluorobenz	ene 10	1	% 63-142		1	03/05/11	1:22 WLV	5738473
Surr: 4-Bromofluorobe	nzene 11	1 . :	% 50-159		1	03/05/11	1:22 WLV	5738473
Prep Method	Prep Date	Preo Initials	Prep Factor					
SW5030B	03/04/2011 9:42	XML	1.00					
ION CHROMATOGRA	PHY →			MCL	E300	.0 MOD	Units: mg/kg	
Chloride	11 (11)	4	5		1	03/04/11 1	5:56 ESK	5737821
VOLATILE ORGANIC	SEY METHOD 8260)B		MCL	SV	V8260B	Units: ug/kg	
Benzene	NI	۰ <i>۰</i> ۲	5		1	03/08/11 1	8:57 TLE	5739776
Ethylbenzene	NE NE)	5		1	03/08/11 1	8:57 TLE	5739776
Toluene	N) ~	5		1	03/08/11 1	8:57 TLE	5739776
m,p-Xylene	···· 6.	1	5		1	03/08/11 1	8:57 TLE	5739776
o-Xylene	NE) 😳	5		1	03/08/11 1	8:57 TLE	5739776
Xylenes,Total	6.	1	5		1	03/08/11 1	8:57 TLE	5739776

71-130

65-131

75-136

%

%

%

Prep Method Prep Date Prep Initials Prep Factor SW5030B 03/04/2011 9:38 XML 1.00

99.2

103

107

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

03/08/11 18:57 TLE

03/08/11 18:57 TLE

TLE

03/08/11 18:57

1

1

1

11030104 Page 4 3/15/2011 9:04:24 AM

5739776

5739776

5739776

SPL ENVIRONMENTAL

8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

LABORATORIES

lient Sample ID:B-1@43.0-43.5			Collected: 03/01/2011 14:30		SPL Samp	le ID: 1103	11030104-03			
, ×				Sit	e: Blo	omfield	, NM			
Analyses/Method	•*• • • •	Result	QUAL	R	ep.Limit		Dil. Factor	Date Analyz	ed Analyst	Seq. #
DIESEL RANGE ORG	ANICS					MCL	. SI	N8015B	Units: mg/kç	
Diesel Range Organics	(C10-C28)	ND			5		1	03/09/11 19):08_NW	5741638
Surr: n-Pentacosane		83.3		%	20-154		1	03/09/11 19):08 NW	5741638
Prep Method	Prep Date	,	Prep Initials	Prer	Factor					
SW3550B	03/08/2011 14:	35	QMT	1.00						
GASOLINE RANGE C	RGANICS					MCL	. SI	N8015B	Units: mg/kg	 1
Gasoline Range Organic	s	ND			0.1		1	03/05/11 2	2:48 WLV	5738476
Surr: 1,4-Difluorobenz	iene 🗢 🐂	96.9		%	63-142		1 .	03/05/11 2	2:48 WLV	5738476
Surr: 4-Bromofluorobe	nzene		··	%	50-159		1	03/05/11 2	2:48 WLV	5738476
Prep Method	Prep Date		Prep Initials	Prer	Factor					
SW5030B	03/04/2011 9:5	1	XML	1.00						
ION CHROMATOGRA	APHY					MCL	E300	.0 MOD	Units: mg/kç	J
Chloride	•	111			5		1	03/04/11 16	:13 ESK	5737822
VOLATILE ORGANIC	S:BY METHO	D: 8260E	3			MCL	SI	N8260B	Units: ug/kg	
Benzene	and the state of the	ND			5		1	03/08/11 20):22 TLE	5739779
Ethylbenzene	63 (t) (t) (t)	ND			· 5		1	03/08/11 20):22 TLE	5739779
Toluene		~~ ND			5		1	03/08/11 20):22 TLE	5739779
m,p-Xylene		7.1			5		1	03/08/11 20):22 TLE	5739779
o-Xylene		ND	÷ •		5		1	03/08/11 20):22 TLE	5739779
Xylenes,Total		7.1			· 5		1	03/08/11 20):22 TLE	5739779
Surr: 1,2-Dichloroetha	ine-d4	95.6		%	71-130		1	03/08/11 20):22 TLE	5739779
Surr: 4-Bromofluorobe	enzene	101		%	65-131		1	03/08/11 20):22 TLE	5739779
						the second se				

Prep Method	Prep Date	Prep Initials	Prep Factor
SW 5030B	03/04/2011 9:49	XML	1.00

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

 ${\bf J}$ - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

> 11030104 Page 5 3/15/2011 9:04:25 AM

20.1

8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

LABORATORIES

11030104-04 Client Sample ID:B-2@30.0-32.0' Collected: 03/01/2011 16:00 SPL Sample ID: Site: **Bloomfield**, NM Analyses/Method Result QUAL Dil. Factor Date Analyzed Analyst Seq. # Rep.Limit Units: mg/kg **DIESEL RANGE ORGANICS** SW8015B MCL ND 5 03/09/11 19:48 NW 5741639 Diesel Range Organics (C10-C28) 1 03/09/11 19:48 NW 5741639 66.6 20-154 1 Surr: n-Pentacosane % Prep Method Prep Date Prep Initials Prep Factor SW3550B 03/08/2011 14:35 QMT 1.00 Units: mg/kg **GASOLINE RANGE ORGANICS** MCL SW8015B Gasoline Range Organics ND 0.1 1 03/05/11 3:17 WLV 5738477 03/05/11 3:17 WLV 5738477 Surr: 1,4-Difluorobenzene 94.8 % 63-142 1 03/05/11 3:17 WLV Surr: 4-Bromofluorobenzene 106 % 50-159 1 5738477 Prep Method Prep Date Prep Initials Prep Factor SW 5030B 03/04/2011 9:54 XML 1.00 ION CHROMATOGRAPHY MCL E300.0 MOD Units: mg/kg Chloride 5 03/04/11 16:30 ESK 5737823 16.4 1 Units: ug/kg VOLATILE ORGANICS BY METHOD 8260B MCL SW8260B Benzene ND 5 1 03/08/11 20:44 TLE 5739780 . Ethylbenzene A ND 5 1 03/08/11 20:44 TLE 5739780 ND 5739780 Toluene 2 5 1 03/08/11 20:44 TLE 9 03/08/11 20:44 TLE 5739780 5 1 m,p-Xylene

o-Xylene	a tanan ang ang ang ang ang ang ang ang ang	• ND	•	5	1	03/08/11 20:44	TLE	5739780
Xylenes,Total		9		5	1	03/08/11 20:44	TLE	5739780
Surr: 1,2-Dichlord	pethane-d4	99.6	%	71-130	1	03/08/11 20:44	TLE	5739780
Surr: 4-Bromoflue	orobenzene	102	%	65-131	1	03/08/11 20:44	TLE	5739780
Surr: Toluene-d8	·. ·	106	%	75-136	1	03/08/11 20:44	TLE	5739780

Prep Method	Prep Date	Prep Initials	Prep Factor
SW 5030B	03/04/2011 9:53	XML	1.00

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

> 11030104 Page 6 3/15/2011 9:04:26 AM

CUT LABORATORIES

SPL ENVIRONMENTAL

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

lient Sample ID:B-2@36.0-38.0'			Col	lected:	03/01/20 [.]	11 16:15	SPL Sam	ple I	D: 1103	0104-05	
		·		Sit	te: Blo	oomfield	, NM				
Analyses/Method	- R	esult	QUAL	R	ep.Limit	•	Dil. Factor	Date Analy	zed	Analyst	Seq. #
DIESEL RANGE ORG	ANICS					MCL	SI	V8015B	Un	its: mg/kg	1
Diesel Range Organics (C10-C28)	ND			5		1	03/09/11 2	0:28	NW .	5741640
Surr: n-Pentacosane		83.7		%	20-154		1	03/09/11 2	0:28	NW	5741640
Prep Method	Prep Date	-•	Prep Initials	Prer	Eactor						
SW3550B	03/08/2011 14:35		QMT	1.00							
ASOLINE RANGE ORGANICS						MCL	SI	N8015B	Un	its: ma/ka	
Gasoline Range Organic	S .	ND			0.1		1	03/05/11	3:52	WLV	5738478
Surr: 1,4-Difluorobenz	ene 🚑 👘 😳	96.4		%	63-142		1	03/05/11	3:52	WLV	5738478
Surr: 4-Bromofluorobe	nzene	105	• • •	%	50-159		1	03/05/11	3:52	WLV	5738478
Prep Method	Prep Date		Preo Initials	Prec	Factor						
SW5030B	03/04/2011 9:57		XML	1.00							
ION CHROMATOGRA	PHY					MCL	E300	.0 MOD	Un	its: mg/kg	
Chloride	······································	24			5		1	03/04/11 1	7:21	ESK.	5737826
VOLATILE ORGANIC	S.BY.METHOD 8	260B				MCL	SI	N8260B	Un	its: ug/kg	• . •
Benzene	7. <u>1</u>	ND			5		1 -	03/08/11 2	1:05	TLE	5739781
Ethylbenzene	alasi yay	ND	17.1		5		1	03/08/11 2	1:05	TLE	5739781
Toluene		ND			5		1	03/08/11 2	1:05	TLE	5739781
m,p-Xyiene		ND			5		1	03/08/11 2	1:05	TLE	5739781
o-Xylene	the second second	ND	•5 _*		5		1	03/08/11 2	1:05	TLE	5739781
Xylenes,Total		ND			5		1	03/08/11 2	1:05	TLE	5739781
Surr: 1,2-Dichloroetha	ne-d4	98.4		%	71-130		1	03/08/11 2	1:05	TLE	5739781
Surr: 4-Bromofluorobe	nzene	103		%	65-131		1	03/08/11 2	1:05	TLE	5739781
Surr: Toluene-d8		105		%	75-136		1	03/08/11 2	1:05	TLE	5739781

Prep Method	Prep Date	Prep Initials	Prep Factor
SW 5030B	03/04/2011 9:55	XML	1.00

Qualifiers: ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

> 11030104 Page 7 3/15/2011 9:04:27 AM

100

10.00

ACCUTEST

SPL ENVIRONMENTAL

8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

LABORATORIES

Collected: 03/02/2011 9:55

SPL Sample ID: 11030104-06

	.				Site: B	loomfield	H, NM				
Analy	ses/Method	· · ·	Result	QUAL	Rep.Limit	t .	Dil. Fact	or Date Ana	lyzed	Analyst	Seq. #
DIES	EL RANGE ORG	ANICS				МС	L	SW8015B	Ur	nits: mg/kg	
Die	sel Range Organics	(C10-C28)	. 10		5	5	1	03/09/11	21:08	NW	5741641
5	Surr: n-Pentacosane	< _	86.9		% 20-154		· 1	03/09/11	21:08	NW	5741641
	Prep Method	Prep Date		Prep Initials	Prep Factor]					
4	SW3550B	03/08/2011 14:	35	QMT	1.00]					

GASOLINE RANGE ORGANICS					MCL		SW8015B	Units: mg/kg	
Gasoline Range Organics	ND			0.1		1	03/05/11	4:21 WLV	5738479
Surr: 1,4-Difluorobenzene	96.6	•	%	63-142		1	03/05/11	4:21 WLV	5738479
Surr: 4-Bromofluorobenzene	105		%	50-159		1	03/05/11	4:21 WLV	5738479

Prep Method	Prep Date	<u>Prep Initials</u>	Prep Factor
SW5030B	03/04/2011 10:01	XML	1.00

ION CHROMA	TOGRAPHY					MCL	E	300.0 MOD	Ur	nits: mg/kg	
Chloride		97.4			10		2	03/04/11	17:38	ESK	5737827
VOLATILE OR	GANICS BY METHOD	8260B				MCL ·		SW8260B	Ur	nits: ug/kg	-
Benzene	The set of the	ND			5		1	03/08/11	21:27	TLE	5739782
Ethylbenzene		ND	1+.		5	·	1	03/08/11	21:27	TLE	5739782
Toluene	a at the second	ND			5		1	03/08/11	21:27	TLE	5739782
m,p-Xylene		7.4			5		1	03/08/11	21:27	, TLE	5739782
o-Xylene		ND			5		1	03/08/11	21:27	TLE	5739782
Xylenes,Total		7.4			5		1	03/08/11	21:27	TLE	5739782
Surr: 1,2-Dict	nloroethane-d4	98.0		%	71-130		1	03/08/11	21:27	TLE	5739782
Surr: 4-Brome	ofluorobenzene	102		%	65-131		1	03/08/11	21:27	TLE	5739782
Surr: Toluene	⊱d8 [™]	107	**********	%	75-136		. 1	03/08/11	21:27	TLE	5739782

Prep Method	Prep Date	Prep Initials	Prep Factor
SW5030B	03/04/2011 9:59	XML	1.00

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

> 11030104 Page 8 3/15/2011 9:04:28 AM

8880 INTERCHANGE DRIVE

HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:B-3@38.0-40.0'	Collecte	d: 03/02/201	1 10:20	SPL Sample	ID: 11030)104-07
	Site:	Bloomfield,	NM			
Analyses/Method	AL. Rep.Lii	nit .	Dil. Factor	Date Analyzed	l Analyst	Seq. #
DIESEL RANGE ORGANICS		MCL	SV	V8015B L	Inits: mg/kg	
Diesel Range Organics (C10-C28) ND		5	. 1	03/09/11 21:4	9 NW	5741642
Surr: n-Pentacosane 52.0	% 20-1	54	1	03/09/11 21:4	9 NW	5741642
Prep Method Prep Date Prep In	nitials Prep Facto	r				
SW3550B 03/08/2011 14:35 QMT	1.00			.*		
GASOLINE RANGE ORGANICS		MCL	SV	V8015B L	Inits: mg/kg	
Gasoline Range Organics ND		0.1	1	03/05/11 4:49	9 WLV	5738480
Surr: 1,4-Difluorobenzene 97.1	% 63-1	42	1	03/05/11 4:4	9 WLV	5738480
Surr: 4-Bromofluorobenzene 104	% 50-1	59	1	03/05/11 4:4	9 WLV	5738480
Prep Method Prep Date Prep In	nitials Prep Facto	r				
SW5030B 03/04/2011 10:05 XML	1.00	·				
ION CHROMATOGRAPHY		MCL	E300	.0 MOD U	nits: mg/kg	
Chloride 16.7		5	• 1	03/04/11 17:5	5 ESK	5737828
VOLATILE ORGANICS BY METHOD.8260B	•	MCL	SV	V8260B L	nits: ug/kg	
Benzene ND		5	1	03/08/11 21:4	3 TLE	5739783
Ethylbenzene Collection ND	<u>.</u>	5	1	03/08/11 21:4	3 TLE	5739783
Toluene ND		5	1	03/08/11 21:4	B TLE	5739783
m,p-Xylene ND		5	1	03/08/11 21:4	3 TLE	5739783
o-Xylene ND		5	1	03/08/11 21:4	3 TLE	5739783
Xylenes, Total ND		5	1	03/08/11 21:4	B TLE	5739783
Surr: 1,2-Dichloroethane-d4 99.9	% 71-1	30	1	03/08/11 21:4	3 TLE	5739783
Surr: 4-Bromofluorobenzene 101	% 65-1	31	1	03/08/11 21:4	3 TLE	5739783
Surr: Toluene-d8 105	% 75-1	36	1	03/08/11 21:4	3 TLE	5739783

Prep Method	Prep Date	Prep Initials	Prep Factor
SW 5030B	03/04/2011 10:03	XML	1.00

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

> 11030104 Page 9 3/15/2011 9:04:29 AM

Quality Control Documentation

Version 2.1 - Modified February 11, 2011

11030104 Page 10 3/15/2011 9:04:29 AM

Quality Control Report

CUTES

LABORATORIES

0

Conoco Phillips

Martin 34 No.2

÷		•		Mar	τιη 34 NO.2				•			
Analysis: Method:	Diesel Rang SW8015B	e Organics						WorkOrder: Lab Batch I	11 D: 10	030104 5385		
•		Method Blank				Sample	s in Analytica	I Batch:			<u> </u>	
RunID: HP V	/ 110309A-5741634	Units:	ma/ka			I ah Bau	anto ID	Clien	t Comple I	_		
	- 02/00/2011 1	5:06 Applet:	NIM/			1102010			1 Sample I			
Analysis Date.	03/09/2011 1	10.00 Analysi.		thad SW		1103010	14-01B	D-1(U)	11 5 42 0'			
Freparation Dat	le. 03/06/2011 1	4.55 Ріер Бу.			3000B	1103010	4-028	-100 - 100	41.5-43.0			
						1103010	4-03A	B-2@	30 0-32 0'			
	An	alyte	Result F	Rep Limit		1103010	/4-05B	B-2@	36 0-38 0'		•	
Þ	iesel Range Organic	s (C10-C28)	ND	5.0		1103010	4-06B	B-3@	26 0-28 0'			
· L.	Surr: n-Pentacosan	e	112.0	20-154		1103010	4-07B	B-3@	38 0_40 0'			
	· ·	· · · · · ·	,			1105010	,	0-000	,00.0-40.0			
			Lah	oratory C	ontrol Sam	ole (LCS	;)					
			<u>Luo</u>	014(01) 0	ond of oding		4					
		RunID:	HP_V_1103	09A-57416	33 Units:	mg/i	kg					
$(a_{1}^{1},a_{2}^{1},a_{2}^{2},a_{$	<i>i</i>	Analysis Date:	03/09/201	1 14:47	Analys	t <mark>. NW</mark>						
• • • •	n ngawa ing	Preparation Date:	03/08/201	1 14:35	Prep B	y: QM	T Method: SW	3550B				
· * .		Analyt	e	5	Spike Re	sult	Percent Lo	wer Upper	•			
				A	Added	F	Recovery L	imit Limit				
	i i	Diesel Range Organics	(C10-C28))	33.3	34.4	103	57 1	50			
		Surr: n-Pentacosane			1.66	1.65	99.2	20 1	54			
		· · · · · · · · · · · · · · · · · · ·				•						
										•		
		<u>Matrix</u>	Spike (MS	<u>6) / Matrix</u>	Spike Dupl	icate (M	SD)					
		Sample Spiked	1102010	4 01								
		Sample Spiked:		4-U1	649 11-34-		- //					
		RuniD: Analysia Data:	02/40/20	1309A-3741	1040 Units	: mij mti Nili	J/Kg					
		Analysis Date:	03/10/20	11 13:20	Anaiy	INV	WT Mothod: S	N/25500				
		Preparation Date:	03/06/20	11 14:55	Prep	By: Qi	vir ivieuriou: 5	A0000				
			110		1 110 0	1.000	1100			000		1.01-
	Analyte	Result	Soike	MS Result	Recovery	Spike	Result	Recovery	RPD	Limit	Low	Limit
		1 toodic	Added	, tooun		Added						
Dissal Bassa O			22.2	050			2 200	N/C	N/C	50	21	175
Diesei Range O	organics (C10-C28) 190	33.3	200	7 76.0		3 309		16.1	30	21	175
Sun: n-Penta	acosane		1.00	1.2	/ /0.0	1.00	5 1.49	90.0	10.	30	20	104
Ouell6		•	-14									
Qualitiers:	ND/U - Not Detect	ted at the Reporting Lin	nit A-th t Ci		MI - I	viatrix Int	errerence					
	B - Analyte Detect		vietnod Blai	IK	D-R	ecovery						
	J - Estimated Valu	E Between MDL And F	'QL		* - Re	ecovery (Jutside Advisa	DIE QU'LIMIts				
	E - Estimated Valu	le exceeds calibration	curve				.					
	N/C - Not Calculat	ed - Sample concentra	tion is grea	ter than 4	times the arr	ount of s	pike added. C	ontrol limits do	not apply.			

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

11030104 Page 11 3/15/2011 9:04:32 AM

CUTEST LABORATORIES

SPL ENVIRONMENTAL 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Quality Control Report

Conoco Phillips

			I	Martin 34 N	lo.2						
Analysis: Method:	Gasoline F SW8015B	Range Organics					Work Lab I	Order: Batch ID:	11030104 R316686	₽ ⁻	
		Method Blank			Samp	les in Analy	tical Batch	n:			· · ·
RunID: HP_O_	110304B-573846	8 Units:	mg/kg		Lab S	ample ID		Client Sa	ample ID		: :
Analysis Date:	03/04/2011	21:20 Analyst:	WLV		11030	104-01B		B-1@38.	0-40.0'		•
Preparation Date	: 03/04/2011	21:20 Prep Bv:	Method: 5	SW 5030B	11030	104-02B		B-1@41.	5-43.0'		
•	1				11030	104-03A		B-1@43.	0-43.5'		
				_	11030	104-04B		B-2@30.0	0-32.0'		
	A	nalyte	Result Rep Lin	nit	11030	104-05B		B-2@36.0	0-38.0'		
Ga	soline Range Org		ND 0.	<u>10</u> 42	11030	104-06B		B-3@26.0	0-28.0'		-
	Surr: 4-Bromofluo	robenzene	94.0 50-1	59	11030	104-07B		B-3@38.0	0-40.0'		
	Me	ethanolic Preparation	Blank			•					
unID: HP_O_		9 Units:	ma/ka							 	norm assume or a
nalvsis Date	03/04/2011	21.49 Analyst	WIV								
renaration Date	· 03/04/2011	21.49 Analyst. 21.49 Dran Ru	Method: 9	SW 5030B							
	. 05/04/2011	21.49 Fiep by.	Mediod.	344 30300							
	A	nalyte	Result Rep Lin	nit							
Ga	soline Range Org	anics	ND 2	2.5							
	Surr: 1,4-Difluorot Surr: 4-Bromofluo	robenzene	94.1 63-1	<u>42</u> 59							
		Analysis Date: Preparation Date:	03/04/2011 20:52 03/04/2011 20:52	2 An 2 Pro	alyst: W ep By:	LV Method:	SW5030B			÷	nan a' ann - Saonan - S
				1			r				
· · · .	• •	Analy	te	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit			• .
· .		Gasoline Range Organ	ics _	1.00	0.910	91.0	70	130		•	
		Surr: 1,4-Difluorobe	nzene	0.100	0.099	99.0	63	142			
		Surr: 4-Bromofluoro	penzene	0.100	0.103	103	50	159		. •	
			¢.					•			
		Matrix	Spike (MS) / Ma	trix Spike [Duplicate (MSD)				,	
							:				<u> </u>
Qualifiers: N	ND/U - Not Dete	cted at the Reporting Li	nit	N	MI - Matrix	Interference					
Qualifiers: N B	ND/U - Not Dete	cted at the Reporting Li	nit Method Blank	N	MI - Matrix D - Recove	Interference Ty Unreportat	le due to D	Dilution			
Qualifiers: N B J	ND/U - Not Dete 3 - Analyte Deter - Estimated Va	cted at the Reporting Li cted In The Associated lue Between MDL And I	nit Method Blank PQL	N [*	MI - Matrix D - Recover - Recover	Interference ry Unreportat y Outside Ad	le due to D visable QC	Dilution Limits			

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

3/15/2011 9:04:33 AM

SPL ENVIRONMENTAL 8880 INTERCHANGE DRIVE

HOUSTON, TX 77054

(713) 660-0901

Quality Control Report

Conoco Phillips

Martin 34 No.2

Analysis: Method:	Gasoline Range Or SW8015B	rganics						WorkOrder Lab Batch	: 110 ID: R3	30104 16686		
	Sar Rur Ana Pre	nple Spiked: nID: alysis Date: paration Date:	11030104-02 HP_O_110304B-5738471 Units: 03/05/2011 0:25 Analy: 03/04/2011 9:43 Prep			: mg /st: WL By: XN	/kg _V IL Method: S\	W5030B				, . 2
An 	alyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Gasoline Range Or	ganics	0.195	. 1	1.12	92.8	3 1	1.02	82.8	9.35	50	26	147
Surr: 1,4-Difluoro	benzene	ND	0.1	. 0.105	10	5 Ó.1	0.103	103	2.12	30	63	142
Surr: 4-Bromoflu	orobenzene	ND	0.1	0.119	119	0.1	0.118	118	0.844	30	. 50	159

Qualifiers:

s: ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

LABORATORIES

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

11030104 Page 13 3/15/2011 9:04:33 AM

Quality Control Report

Conoco Phillips

2					M	lartin 34 N	lo.2					
Analysis: Method:	Volatile Or SW8260B	ganics by Me	thod 826	60B					Worl Lab∛	kOrder: Batch ID:	11030104 R316785	
<u>, , , , , , , , , , , , , , , , , , , </u>	·· ·	Method	<u>Blank</u>		,		Samp	les in Analy	tical Batcl	h:		
RunID: MS	SDVOA4_110308C-57	39775	Units:	ug/kg			Lab S	ample ID		Client Sa	mple ID	
Analysis Date	e: 03/08/2011	14:40	Analyst:	TLE			11030)104-02A		_, B-1@41.5	-43.0'	
							11030)104-03A		B-1@43.0	-43.5'	
•				2			11030)104-04A		B-2@30.0	-32.0'	1
	· · ·	nalute	•	Docult	Poplim	i+]	11030)104-05A		B-2@36.0	-38.0'	I
	Benzene			ND			11030)104-06A		B-3@26.0	-28.0'	i
	Ethylbenzene			ND ND	5.	0	11030)104-07A		B-3@38.0	-40.0'	
	Toluene			ND	5.	0						ب <u>ال</u> ۲۰۹ مند به ۲۰۰ می می الم
	m,p-Xylene			ND	5.	0						
	O-Xylene				5.							- 1.e. 1.au
	Surr: 1,2-Dichloro	ethane-d4		99.5	71-13	0						
	Surr: 4-Bromofluo	robenzene		103.8	65-13	1						
	Surr: Toluene-d8			106.0	75-13	6						
					*				,			•
				La	boratory	Control S	Sample (L	<u>CS)</u>	,			
		RunID: Analysis Da	ate:	<u>La</u> MSDVOA 03/08/20	boratory 4_1103080 11 12:38	Control S C-57397 Un An	Sample (L hits: u halyst: T	<u>CS)</u> g/kg LE	• • •			
		RunID: Analysis Da	ate: Analyl	<u>La</u> MSDVOA 03/08/20 te	boratory 4_1103080 11 12:38	Control S C-57397 Un An Spike Added	Sample (L hits: u halyst: T Result	CS) g/kg LE Percent Recovery	Lower Limit	Upper Limit		
<u>.</u> <u> </u>		RunID: Analysis Da	ate: Analyl	<u>La</u> MSDVOA 03/08/20 te	boratory 4_1103080 11 12:38	Control S C-57397 Un An Spike Added 20.0	Sample (L hits: u halyst: T Result 19.0	CS) g/kg LE Percent Recovery 94.9	Lower Limit 64	Upper Limit 130		
		RunID: Analysis Da Benzene Ethylbenzene	ate: Analyl	<u>La</u> MSDVOA 03/08/20 te	boratory 4_1103080 11 12:38	Control S C-57397 Un An Spike Added 20.0 20.0	Sample (Lu hits: un halyst: T Result 19.0 20.2	CS) g/kg LE Percent Recovery 94.9 101	Lower Limit 64 58	Upper Limit 130 143		
		RunID: Analysis Da Benzene Ethylbenzene Toluene	Analyi	La MSDVOA 03/08/20 te	boratory 4_1103080 11 12:38	C-57397 Un An Spike Added 20.0 20.0 20.0	Sample (Lu nits: un nalyst: T Result 19.0 20.2 19.4	CS) g/kg LE Percent Recovery 94.9 101 96.8	Lower Limit 64 58 63	Upper Limit 130 143 139		
	· · · · ·	RunID: Analysis Da Benzene Ethylbenzene Toluene m,p-Xylene	ate: Analyi	La MSDVOA 03/08/20 te	boratory 4_1103080 11 12:38	C-57397 Un An Spike Added 20.0 20.0 20.0 40.0	Sample (L nits: u nalyst: T Result 19.0 20.2 19.4 41.1	CS) g/kg LE Percent Recovery 94.9 101 96.8 103	Lower Limit 64 58 63 63	Upper Limit 130 143 139 137		
		RunID: Analysis Da Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene	Analyi	La MSDVOA 03/08/20 te	boratory 4_1103080 11 12:38	C-57397 Un An Spike Added 20.0 20.0 20.0 40.0 20.0	Sample (L nits: u nalyst: T Result 19.0 20.2 19.4 41.1 20.2	CS) g/kg LE Percent Recovery 94.9 101 96.8 103 101	Lower Limit 64 58 63 63 64 64	Upper Limit 130 143 139 137 143		
		RunID: Analysis Da Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene Xylenes,Total	Analy	La MSDVOA 03/08/20 te	boratory 4_1103080 11 12:38	Control S C-57397 Un An Spike Added 20.0 20.0 20.0 20.0 40.0 20.0 60.0	Sample (L hits: u halyst: T Result 19.0 20.2 19.4 41.1 20.2 61.3	CS) g/kg LE Percent Recovery 94.9 101 96.8 103 101 102	Lower Limit 64 58 63 63 64 64 64	Upper Limit 130 143 139 137 143 143		
	· · · · · · · · · · · · · · · · · · ·	RunID: Analysis Da Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene Xylenes,Total Surr: 1,2-D	ate: Analyt	La MSDVOA 03/08/20 te	boratory 4_1103080 11 12:38	Control S C-57397 Un An Spike Added 20.0 20.0 20.0 20.0 20.0 20.0 20.0 60.0 50.0	Sample (L hits: u halyst: T Result 19.0 20.2 19.4 41.1 20.2 61.3 49.5	CS) g/kg LE Percent Recovery 94.9 101 96.8 103 101 102 99.0	Lower Limit 64 58 63 64 64 64 64 71	Upper Limit 130 143 139 137 143 143 143		
		RunID: Analysis Da Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene Xylenes,Total Surr: 1,2-Di Surr: 4-Bro	ate: Analyl	La MSDVOA 03/08/20 te	boratory 4_1103080 11 12:38	Control S C-57397 Un An Spike Added 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.	Sample (L hits: u halyst: T Result 19.0 20.2 19.4 41.1 20.2 61.3 49.5 52.4	CS) g/kg LE Percent Recovery 94.9 101 96.8 103 101 102 99.0 105	Lower Limit 64 58 63 64 64 64 64 71 65	Upper Limit 130 143 139 137 143 143 143 130 131		
		RunID: Analysis Da Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene Xylenes,Total Surr: 1,2-Di Surr: 4-Broo	Analyt	La MSDVOA 03/08/20 te	boratory 4_1103080 11 12:38	Control S C-57397 Un An Spike Added 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.	Sample (L hits: u halyst: T Result 19.0 20.2 19.4 41.1 20.2 61.3 49.5 52.4 51.8	CS) g/kg LE Percent Recovery 94.9 101 96.8 103 101 102 99.0 105 104	Lower Limit 64 58 63 64 64 64 64 71 65 75	Upper Limit 130 143 139 137 143 143 143 130 131 136		

Qualifiers: N

ND/U - Not Detected at the Reporting Limit

- B Analyte Detected In The Associated Method Blank
- MI Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

J - Estimated Value Between MDL And PQL E - Estimated Value exceeds calibration curve

E - Estimated value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

Version 2.1 - Modified February 11, 2011

11030104 Page 14 3/15/2011 9:04:33 AM

SPL ENVIRONMENTAL 8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

Quality Control Report

Conoco Phillips

Martin 34 No.2

Analysis: Volatile Organics Method: SW8260B	by Method 826	0B					WorkOrder Lab Batch I	: 110 D: R3 ⁻	30104 16785			
S F A F	ample Spiked: unID: nalysis Date: reparation Date:	11030 MSDV0 03/08/ 03/04/	104-02 DA4_110308C- 2011 19:18 2011 9:48	57397 Units: Analys Prep I	kg E L Method: SV	W5030В				2 * *		
Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit	
Benzene	ND	20	16.9	83.5	20	17.1	84.5	1.18	21	49	135	
Ethylbenzene	ND	20	18.6	90.4	20	19.4	94.3	4.16	30	39	135	
Toluene	nD	20	17.5	84.9	20	17.8	86 <u>.</u> 5	1.77	21	49	133	1
m,p-Xylene	6.10	40	41.4	88.2	40	44.7	96.5	7.75	30	32	140	-
o-Xylene	ND	20	19.2	85.2	20	20.3	91.1	5.94	30	- 36	142	
Xylenes, Total	8.22	60	60.6	87.2	60	65.0	94.7	7.18	30	32	142	•
Surr: 1,2-Dichloroethane-d4		50	48.5	97.0	50	48.8	97.6	0.597	. 30	71	130	
Surr: 4-Bromofluorobenzene:	-se ND	. 50	- 52	104	50	52.1	104	0.236	30	-65		
Surr: Toluene-d8	ND	50	52.4	105	50	52.3	105	0.151	30	75	136	

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

11030104 Page 15 3/15/2011 9:04:33 AM

; ·

SPL ENVIRONMENTAL 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Quality Control Report

- 2				Con M	oco Ph artin 34 N	illips o.2		·			
Analysis: Method:	Volatile Organics SW8260B	by Method 826	60B					Wor Lab	kOrder: Batch ID:	1103010 R316798	4
	<u>N</u>	lethod Blank			•	Sam	ples in Analy	ytical Batc	h:		· · · · · · · · · · · · · · · · · · ·
RunID: K_	_110308F-5739983	Units:	ug/kg			Lah	Sample ID		Client Sa	mole ID	
Analysis Dat	te: 03/08/2011 11:36	Analyst:	LU_L			1103	30104-01A		B-1@38.0)-40.0'	
	Analyte		Result	Rep Limit	E						-
	Benzene		ND	5.0	5						
	Ethylbenzene		ND	5.0	2				,		
	Toluene		ND	5.0	2						
	n,p-xylene			5.0	2						
	Xylenes,Total		ND	5.0							· · ·
	Surr: 1,2-Dichloroethane-	14	94.9	71-130	2						•
	Surr: 4-Bromofluorobenze	ne	98.6	65-131	ļ					•	
	Surr: Foluene-d8		101.1	75-136)						, <u></u>
	Methanol	ic Preparation	<u>Blank</u>								Lister of Diety
RunID [,] K	110308F-5739984	Units [.]	ua/ka								الشور كالدحظ بالمعدي
		ernes.									·····
	Analyte		Result	Ren Limil	Ā						
	Benzene		ND	250							
	Ethylbenzene		ND	250	5						
	Toluene		ND	250	2						
	m,p-Xylene		ND ND	250	2						
	Xvienes.Total		ND	250							
	Surr: 1,2-Dichloroethane-	14	97.7	78-116	5		•				
	Surr: 4-Bromofluorobenze	ne	99.8	74-125	5						
	Surr: Toluene-d8		102.0	82-118	3						
			Lab	oratory	Control S	ample (I	LCS)				
	Rur	nID:	K_110308F	-5739982	Un	its:	ug/kg				
	Ana	lysis Date:	03/08/201	1 11:10	An	alyst: I	LU_L				
		Analy	to		Spike	Recult	Percent	Lower	Unner		
					Added	rtosuit	Recoverv	Limit	Limit		
		i					1	1			
Qualifiers:	ND/U - Not Detected at	the Reporting Lir	 mit		 N	1I - Matrix	x Interference			· · · · · ·	· · ·
	B - Analyte Detected In		Method Bla	nk	 C) - Recov	erv Linrenorta	ble due to	Dilution		•
,	L - Estimated Value Pot				*	- Recover	ny Outeide A	tvisable Of	2 Limite		
	E Estimated Value Dell								2 EITII(3		
		eeus calibration	curve	1 an 11	4 Alman = 41		af and		limite d=	annh.	
	IN/C - INOT CAICULATED - S	ample concentra	auon is grea	iter than 4	4 times the	e amount	or spike adde	a. Control	innits do not	appiy.	4000404 0. 40
	INIC - Too numerous t	o count								1	1030104 Page 16
calculated b	presented on the QC Sumn by the SPL LIMS system are	ary Report have derived from Q	c deen round C data prior	to the ap	pand perco plication c	ent recov of roundir	very values ng rules.				3/15/2011 9:04:34 AM

Quality Control Report

Conoco Phillips

·				Mart	tin 34 No.	2								
Analysis: Vo Method: SV	olatile Organics b V8260B	by Method 826	0B				×.	Wor Lab	kOrder: Batch ID	11(c: R3)30104 16798			
		•.	La	aboratory Co	ontrol Sa	mple (LC	<u>;s)</u>							
• .	Runil Analy	D: /sis Date:	K_110308 03/08/20	3F-5739982 911 11:10	Units Anal <u>y</u>	s: ug yst: LL	I/kg J_L					1.	:	
		Analyt	e.	S	ipike I dded	Result	Percent Recovery	Lower Limit	Upper Limit					
and and the set of and the set of a set	Benzen	e !			20.0	20.7	103	74	12	3				, 1
	Ethylber	nzene			20.0	19.4	96.8	72	2 12	7				÷
	Toluene	• · · · ·			20.0	19.4	97.0	74	12	6				سمبر : ۱۰۰۰ ب
	m,p-Xyle	ene			40.0	38.3	95.8	71	12	9 ·				1.17
	o-Xylene	e			20.0	19.5	97.4	• 74	13	0				
	Xylenes	,Total			60.0	57.8	96.3	71	13	0			-	
	Surr:	1,2-Dichloroeth	ane-d4		50.0	47.9	95.8	78	11	6				
·····	Surr:	4-Bromofluorot	benzene		50.0	49	97.9	74	12	5				
	Surr:	Toluene-d8			50.0	50.1	100	82	2 11	8		: "		
an an tha an t	Sar Rur	<u>Matrix</u> nple Spiked: nID:	Spike (M 110300 K_1103	MS) / Matrix 073-02 08F-5739986	<u>Spike Du</u> Uni	<mark>plicate (</mark> its: ι	<u>MSD)</u> Jg/kg	, ,			-			
	Ana Pre	alysis Date: paration Date:	03/08/2 03/02/2	2011 16:52 2011 10:00	Ana Pre	alyst: I ep By:	LU_L Metho	d: SW503	5A					-
Take and Analyte)	Sample Result	MS Spike Added	∂ MS Result	MS % Recover	ry Spik Adde	o MSD e Resu ed) MS It Rec	iD % covery	RPD	RPD Limit	Low Limit	High Limit	
Benzene		ND	893	995	1	11 8	93	994	111	0.100	22	70	124	
Ethylbenzene	-	ND	893	1110	1	04 8	93 -	1100	102	0.992	20	76	122	
Toluene	· ···	ND	893	915	1	03 8	93	906	101	1.06	24	80	117	
m,p-Xylene		ND	1790	1780	· 99	9.8 17	'90 ⁻	1800	101	1.01	20	69	127	
o-Xylene	•	ND	893	909	1	02 8	93	899	101	1.09	20	84	114	
Xylenes, Total		ND	2679	2689	100	0.4 26	79 2	2699	100.7	0.3074	20	69	127	
Surr: 1,2-Dichloroetha	ane-d4	ND	2230	2170	97	7.4 22	30 2	2100	94.2	3.32	30	78	116	
Surr: 4-Bromofluorob	enzene	ND	2230	2230	1	00 22	30 2	2170	97.1	3.08	30	74	125	
Surr: Toluene-d8		ND	2230	2270	1	02 22	30 2	2220	99.6	2.28	30	82	118	
Qualifiers: ND/U - B - Anal J - Estir	Not Detected at th yte Detected In Ti nated Value Betwo	e Reporting Lin he Associated Meen MDL And F	nit Vethod B PQL	lank	MI D - * -	- Matrix I Recover	nterference y Unreporta	ble due to	Dilution C Limits					

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

11030104 Page 17 3/15/2011 9:04:34 AM

Quality Control Report

Conoco Phillips Martin 34 No.2

Analysis:	Volatile Organics by Method 8260B	WorkOrder:	11030104
Method:	SW8260B	Lab Batch ID:	R316798
1			

Qualifiers: N

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

11030104 Page 18 3/15/2011 9:04:34 AM

Quality Control Report

					Cond	oco Ph	illip	s							
Analysis: Method:	Ion Chron E300.0 MC	natograph)D	у		Ma	rtin 34 N	10.2	· · · ·		Wor Lab	kOrder: Batch II	110 D: R3)30104 16642		
		Me	thod Blank				s	amples	s in Analy	ical Batc	h:				
RunID: IC2_	110304B-5737816		Units:	ma/ka		-		ah San	nnia ID		Clien	t Sample II	.		
Analysis Date:	03/04/2011	14:31	Analvst:	ESK			<u>ب</u>	103010	4-01B	•	B-1@	38.0-40.0'	2		
			, ,	,			1	103010	4-02B		B-1@	41.5-43.0'			
				3'			1	103010	4-03A		B-1@	43.0-43.5'			
. [Analyte	· · · ·	Result	Rep Limit		1	103010	4-04B		B-2@	30.0-32.0'			
	Chloride			N	5.0		1	103010	14-05B		B-2@	36.0-38.0'			
			· · ·	;			1	103010	14-06B		B-3@	26.0-28.0			
• •	L		•••	;			I	103010	4-07 B		<u>ь-э</u> ш	38.0-40.0			
				<u>L</u> a	aboratory (Control S	Samp	le (LCS	<u>i)</u>						
		Runi):	IC2 1103	04B-573781	7 Ur	nits:	ma/ł	ka						
· · · ,		Analy	sis Date:	03/04/20)11 14:48	An	nalyst:	ESK	~ 5						
						•									
			Analy	te		Spike	Res	ult f	Percent	Lower	Upper				
						Added		۲ ۲	Recovery	Limit	Limit				
		Chloride				100.0	9	8.22	98.22	90	1	10			
·			Matrix	Spike (I	AS) / Matrix	k Spike [Duplic	ate (M	SD)						
1	· .														
		Sarr	ple Spiked:	11030	104-04		1.4.								
•		, Run Ana	ID: Veis Dato:	03/04/	03040-3/3/0 2011 16·47	/	Jnits: Voalve	mg .+. ⊏s	g∕kg sk∕						•
, 	`	Ana	ysis Dale.	03/04/2	2011 10.47	,	naiya					•			•
			•			1						·			
· · · · · · · · · · · · · · · · · · ·	Analyte		Sample	MS	MS	MS	%	MSD	MSD	MS	D %	RPD	RPD	Low	High
			Result	Spike	Result	Reco	very	Spike	Result	Rec	overy		Limit	Limit	Limit
				Addeu				Auueu	_						
Chloride			16.37	50	58.3	89 8	84.04	50	0 _. 57	.56	82.38	1.432	15	80	120
					•										
	<u>_</u>				<u> </u>							·····			
Qualifiers:	ND/U - Not Dete	ected at the	e Reporting Lir	nit		Ň	MI - M	atrix Int	erference				•		
	B - Analyte Dete	cted In Th	e Associated I	Method B	lank	[D - Re	covery	Unreportab	le due to l	Dilution				
· .	J - Estimated Va	alue Betwe	en MDL And F	VQL		*	- Rec	covery C	Jutside Adv	/isable QC	Limits				
		aine excee	us canoration	CULLE	•										

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

11030104 Page 19 3/15/2011 9:04:34 AM

Sample Receipt Checklist And Chain of Custody

Version 2.1 - Modified February 11, 2011

11030104 Page 20 3/15/2011 9:04:35 AM

SPL ENVIRONMENTAL 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Sample Receipt Checklist

Workorder: 11030104 Date and Time Received: 3/3/2011 9:20:00 AM Temperature: 2.0/2.0°C		Received By: Carrier name: Chilled by:	NB Fedex-Standard Overnight Water Ice
1. Shipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Present
2. Custody seals intact on shippping container/cooler?	Yes 🗹	No 🗔	Not Present
3. Custody seals intact on sample bottles?	Yes	No 🗌	Not Present
4. Chain of custody present?	Yes 🗹	No	
5. Chain of custody signed when relinquished and received?	Yes 🗹	No.	
6. Chain of custody agrees with sample labels?	Yes 🗹	No	
7. Samples in proper container/bottle?	Yes 🗹	No	
8. Sample containers intact?	Yes 🗹	No	<i>.</i>
9. Sufficient sample volume for indicated test?	Yes 🗹	Νο	
10. All samples received within holding time?	Yes 🗹	No 🗔	
11. Container/Temp Blank temperature in compliance?	Yes 🗹	Νο	
12. Water - VOA vials have zero headspace?	Yes		Vials Not Present
13. Water - Preservation checked upon receipt (except VOA*)?	Yes 🗌 .	No 🗌	Not Applicable
*VOA Preservation Checked After Sample Analysis			
SPL Representative:	Contact Date &	& Time:	
Non Conformance 1. No analysis was listed marked off on COC. Issues:	Logged in per clients	request.	
Client Instructions:	·		
· · ·			· · ·

306322	1030/04 page / of /	ze pres Requested Analysis		2 /	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	200 200 200 200 200 200 200 200 200 200	- p - j = 1(c)	61 0 19	Soz Soz	L 8 [=] [=] [=]	1	- 7		2 - %	2 - 7	, , ,	<u>k</u> – 2				ide to will samples Intact?		I Detection Limits (specify): PM review (initial):		2. Received by:	4. Received by:	6. Received by Laboratory:	Traverse City, MI 49686 (231) 947-5777
		natrix bottle siz	A=al =0the 355 761 Al	=01 =01 =01	^{1]} X upç upç vcou	19=5 19=5 102=2 10 102=2 10 102=2 10 102=2 10 102=2 10 102=2 10 102=2 10 102=2 10 102=2 10 10 102=2 10 10 10 10 10 10 10 10 10 10 10 10 10	-τ Λ Λ - Γ -	ier 185 stic 192 stic 192	il [] [] [] [] [] [] [] [] [] [] [] [] [] [=1 =0 =d TS M	S C 8,	S C &	2 2 3	2 F 6,	ک ور کړ	S 6 5,1	5 6 31		•		the chier	fuest. y	PDF		1-1 time	time	li fime	47. Parkway 237-4775
		E	0.000 D		9 Tedes Pail	Y 0 (7			~	comp grab	×	×	×	X	X	K	×				ory remarks: へ。	client re	Email E	TRRP 🔲 LA RE	date 0.3-0	date	date 33	bassador Caffe A 70583 (337) 2
	ord		Stk. 200		1. Blanchard	<i>θ</i>			Ph:	TIME	1405	1410	1430	1660	1615	0955	1020	-			Laborate	P	its Results: Fax	Level 4 QC				Scott, L/
	nain of Custody Reco	retry Pech	00) [20] NG		Email: Kak	Jo, 2	-			DATE	11 - 1 - 80	11-1-20	1-1-50	1-1-50	0 3-1-11	03-2-11	03-2-11						orting Requiremen	c 🗌 Level 3 Qč 🛄	thed by Sampler:	hed by:	hed by:	
Jas Jas	lysis Request & Cl	X 19/11/2	dian Sch	237- 944N	Blancherd	ر 34° م		WN P			, 0.	,0,	3,5)	, Q.	8.01	28.0'	0.0)			•			Special Rep	act Standard Q(ard I. Relinquis	3. Relinquis	5. Relinquis	ange Drive (713) 660-0901
	© Anal	PNOCO P.	12 12 12 12 V	(Sor)	Icelly (makt		31 60~ 510		SAMPLE ID	38.0 - 40	41.5-43	43.0-43	30,0-32.	36.6-35	26.0-	38.0 - 41				nt Remarks:		sted TAT	bay Contra	bays 🔁 Stands	Jays	uires prior noti	8880 Intercha 1, TX 77054 (
		Client Name: C	Address: A/L	Phoné/Fax:	Client Contact:	Project Name/No	Site Name:	Site Location:	Invoice To:		G - 1 @	G - 9	<u>B-1</u>	G-7 (S	B-1 @	8-3 2	ß - 3Q				Client/Consultar		Reque	1 Business D	2 Business D	3 Business D	L Other L Rush TAT req	Houston

. .

SPL ENVIRONMENTAL 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Certificate of Analysis Number: <u>11030106</u>											
Report To:		Project Name:	Martin 34 No.2		_						
Tetra Tech, Inc.		<u>Site:</u>	Bloomfield, NM			e					
Kelly Blanchard		Site Address:									
6121 Indian School Road, N.E.											
Suite 200	i i	PO Number:									
Albuquerque		States	New Mexico								
NM		State:	New Mexico								
87110-		State Cert. No .:									
ph: (505) 237-8440 fax: (505) 881-3283		Date Reported:	3/15/2011	ر وجون محرف را د ب							

This Report Contains A Total Of 16 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments

3/15/2011

Date

Test results meet all requirements of NELAC, unless specified in the narrative. Version 2.1 - Modified February 11, 2011

Case Narrative for: Conoco Phillips

Certificate of Analysis Number: <u>11030106</u>											
Report To:	Project Name: Martin 34 No.2										
Tetra Tech, Inc.	Bloomfield, NM										
Kelly Blanchard	Site Address:										
6121 Indian School Road, N.E.											
Suite 200 Albuquerque	PO Number:										
NM	State: New Mexico										
	State Cert. No.:										
ph: (505) 237-8440 fax: (505) 881-3283	Date Reported: 3/15/2011										

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSES AND EXCEPTIONS:

SW8260B Volatile Organics:

The pH of sample ID's "B-2", "B-3", and "DUP" (Laboratory ID's: 11030106-01, -02, and -03) was checked at the time of the Volatile Organics analysis and the pH was greater than 2. Although the samples were collected in VOA vials preserved with HCI, the samples were not properly preserved to a pH less than 2, which may be due to the matrix of the samples. The analyses of the samples were completed within seven days of the collection date.

SW8015B Diesel Range Organics:

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted for Batch ID: 105353. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

In Cardenas

11030106 Page 1

3/15/2011

Date

Erica Cardenas Project Manager

Test results meet all requirements of NELAC, unless specified in the narrative.

SPL ENVIRONMENTAL 8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

Case Narrative for: Conoco Phillips

Certificate of Analysis Number:

<u>11030106</u>

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

h Card 4

11030106 Page 2 3/15/2011

Date

Erica Cardenas Project Manager

Test results meet all requirements of NELAC, unless specified in the narrative. Version 2.1 - Modified February 11, 2011

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

0

LABORATORIES

		<u>11030106</u>		
Report To:	Tetra Tech, Inc.	Project Name:	Martin 34 No.2	
	Kelly Blanchard	<u>Site:</u>	Bloomfield, NM	• · · ·
	6121 Indian School Road, N.E. Suite 200 Albuquerque	Site Address:		· ,
	NM	PO Number:		
	87110-	State:	New Mexico	
	ph: (505) 237-8440 fax: (505) 881-3283	State Cert. No.:		
<u>Fax To:</u>		Date Reported:	3/15/2011	and an

	Client Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COC ID	HOLD
B-2		11030106-01	Water	03/02/2011 8:00	3/3/2011 9:20:00 AM	306321	
В-3		11030106-02	Water	03/02/2011 11:30	3/3/2011 9:20:00 AM	306321	
DUP		11030106-03	Water	03/02/2011 12:00	3/3/2011 9:20:00 AM	306321	

h Carde 0

3/15/2011

Date

Erica Cardenas Project Manager

> Kesavalu M. Bagawandoss Ph.D., J.D. Laboratory Director

> > Ted Yen Quality Assurance Officer

Version 2.1 - Modified February 11, 2011

11030106 Page 3 3/15/2011 9:14:35 AM

SPL ENVIRONMENTAL

8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (713) 660-0901

· (713

Client Sample ID:B-2			Col	lected: (03/02/201	1 8:00	SPL San	nple ID	: 1103	0106-01
			Sit	te: Blo	omfield,	NM				
Analyses/Method	Result	QUAL	R	ep.Limit		Dil. Factor	Date Anal	yzed	Analyst	Seq. #
DIESEL RANGE ORGANICS	5				MCL	SI	N8015B	Unit	s: mg/L	
Diesel Range Organics (C10-C	28) <u>3.1</u>			0.2		2	03/08/11	20:14 1	1W	5740785
Surr: n-Pentacosane	46.4		%	20-150		2	03/08/11	20:14	1W	5740785
Prep Method Prep	Date	Prep Initials	Prep	Factor						
SW3510C 03/07	/2011 12:10	A_G	1.00							×
GASOLINE RANGE ORGAN	NICS				MCL	SI	N8015B	Unit	s: mg/L	
Gasoline Range Organics	. 1.5			0.5		5	03/07/11	16:22 N	IMa	5738802
Surr: 1,4-Difluorobenzene	96.3		· %	60-155		5	03/07/11	16:22 N	IMa	5738802
Surr: 4-Bromofluorobenzene	110		%	50-158		5	03/07/11	16:22 N	IMa	5738802
ION CHROMATOGRAPHY		;			MCL		E300.0	Unit	s: mg/L	
Chloride	352			25		50	03/05/11	14:14 E	SK	5737873
VOLATILE ORGANICS BY	METHOD 8260E	3			MCL	SI	N8260B	Unit	s: ug/L	
Benzene	920	·· # ·· ·		10		10	03/08/11	12:56 L	U_L	5739957
Ethylbenzene	. 120	· · ·		1		1	03/08/11	1:15 L	U_L	5739160
Toluene	3.7	-		1		1	03/08/11	1:15 L	U_L ·	5739160
m,p-Xylene	5.6			2		1	03/08/11	1:15 L	U_L	5739160
o-Xylene	ND			1		. 1	03/08/11	1:15 L	U_L	5739160
Xylenes,Total	5.6			1		1	03/08/11	1:15 L	U_L	5739160
Surr: 1,2-Dichloroethane-d4	. 94.5		%	70-130		10	03/08/11	12:56 L	U_L	5739957
Surr: 1,2-Dichloroethane-d4	. 96.9		%	70-130		1	03/08/11	1:15 L	U_L	5739160
Surr: 4-Bromofluorobenzene	98.2		%	74-125		10	03/08/11	12:56 L	U_L	5739957
Surr: 4-Bromofluorobenzene	98.2		%	74-125		1	03/08/11	1:15 L	U_L	5739160
Surr: Toluene-d8	99.3		%	82-118		10	03/08/11	12:56 L	UL	5739957

% 82-118

Qualifiers:

Surr: Toluene-d8

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

100

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

03/08/11 1:15 LU_L

1

11030106 Page 4 3/15/2011 9:14:45 AM

5739160

8880 INTERCHANGE DRIVE

HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:B-	-3			· Col	lected: 0	3/02/2011	1 11:30	SPL Sam	ple II	D: 110	30106-02 ·
				Si	te: Blo	omfield, I	NM				
Analyses/Method		Result	QUAL	R	ep.Limit	D	il. Factor	Date Analy	zed	Analyst	Seq. #
DIESEL RANGE OR	GANICS					MCL	SV	N8015B	Un	its: mg/L	
Diesel Range Organic	s (C10-C28)	5.9			0.5		5	03/08/11 2	20:54	NW	5740786
Surr: n-Pentacosan	e	91.6		%	20-150		5	03/08/11 2	20:54	NW	5740786
Prep Method	Prep Date		Prep Initials	Prep	Factor						
SW3510C	03/07/2011	12:10	A_G	1.00							
GASOLINE RANGE	ORGANICS				-,- "	MCL	SV	N8015B	Un	its: mg/L	
Gasoline Range Organ	nics	3.1	•		0.5		5	03/07/11	15:51	NMa	5738801
Surr: 1,4-Difluorobe	nzene	100		%	60-155		5	03/07/11 1	15:51	NMa	5738801
Surr: 4-Bromofluoro	benzene	121		%	50-158		5	03/07/11 1	15:51	NMa	5738801
ION CHROMATOGE	RAPHY					MCL		E300.0	Un	its: mg/L	· · ·
Chloride	· · ·	316			25		50	03/05/11 1	15:05	ESK	5737876
VOLATILE ORGANI	CS BY METH	IOD 8260E	3			MCL	SV	V8260B	Un	its: ug/L	
Benzene		160			1		1	03/08/11	0:20	LU_L	5739158
Ethylbenzene		110			1		1	03/08/11	0:20	LU_L	5739158
Toluene	1	ND.			1	•	1	03/08/11	0:20	LU_L .	5739158
m,p-Xylene	· · · · ·	250			2		1	03/08/11	0:20	LU_L	5739158
o-Xylene		ND			1		1	03/08/11	0:20	LU_L	5739158
Xylenes, Total		250			1		1	03/08/11	0:20	LU_L	5739158
Surr: 1,2-Dichloroet	hane-d4	100		%	70-130		1	03/08/11	0:20	LU_L	5739158
Surr: 4-Bromofluoro	benzene	99.9		%	74-125		1	03/08/11	0:20	LU_L	5739158
Surr: Toluene-d8		101		%	82-118		1	03/08/11	0:20	LUL	5739158

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

> 11030106 Page 5 3/15/2011 9:14:46 AM

8880 INTERCHANGE DRIVE

HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:DUP

Collected: 03/02/2011 12:00

SPL Sample ID: 11030106-03

			Sit	e: Bloc	omfield, NM			
Analyses/Method	Result	QUAL	R	ep.Limit	Dil. Fact	or Date Anal	vzed Analyst	Seq. #
VOLATILE ORGANICS BY METH	OD 8260B		-		MCL	SW8260B	Units: ug/L	
Benzene	160			1	1	03/08/11	0:49 LU_L	5739159
Ethylbenzene	110			1	1	03/08/11	0:49 LU_L ·	5739159
Toluene	ND		}	1	1	03/08/11	0:49 LU_L	5739159
m,p-Xylene	250			2	1	03/08/11	0:49 LU_L	5739159
o-Xylene	ND			1	1	03/08/11	0:49 LU_L	5739159
Xylenes,Total	250			1	- 1	03/08/11	0:49 LU_L	5739159
Surr: 1,2-Dichloroethane-d4	96.6	-	%	70-130	1	03/08/11	0:49 LU_L	5739159
Surr: 4-Bromofluorobenzene	102		%	74-125	. 1	03/08/11	0:49 LU_L	5739159
Surr: Toluene-d8	102		%	82-118	1	03/08/11	0:49 LU_L	5739159

Qualifiers:

ND/U - Not Detected at the Reporting Limit

- B Analyte Detected In The Associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

> 11030106 Page 6 3/15/2011 9:14:46 AM

Quality Control Documentation

Version 2.1 - Modified February 11, 2011

11030106 Page 7 3/15/2011 9:14:46 AM

Quality Control Report

Conoco Phillips

Martin 34 No.2

Analysis: Method:	Diesel Range Organic SW8015B	S		:	WorkOrder: Lab Batch ID:	11030106 105353	
	Metho	od Blank		Samples in Analytic	cal Batch:		
RunID: HP_V	_110307A-5740778	Units: mg/L		Lab Sample ID	Client Sar	nple ID	
Analysis Date:	03/07/2011 19:48	Analyst: NW		11030106-01C	B-2		
Preparation Date	e: 03/07/2011 12:10	Prep By: A_G Method: SV	N3510C	11030106-02C	B-3		
	Surr: n-Pentacosane	101.8 20-150	<u>,</u>				
	Laborator	y Control Sample/Laboratory	Control Sa	mple Duplicate (LCS)	(LCSD)		
	RunID:	HP_V_110307A-5740779	Units:	mg/L			
	Analysis Date:	03/07/2011 20:08	Analyst:	NW			
	Preparation Da	te: 03/07/2011 12:10	Prep By:	A G Method SW351	00		

. Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
Diesel Range Organics (C10-C28)	1.00	0.922	92.2	1.00	0.864	86.4	6.6	39	21	- 130
Surr: n-Pentacosane	0.0500	0.0433	86.6	0.0500	0.0436	87.2	. 0.7	30	20	150

Qualifiers: ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

11030106 Page 8 3/15/2011 9:14:50 AM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 LABORATORIES (713) 660-0901 **Quality Control Report Conoco Phillips** Martin 34 No.2 Analysis: **Gasoline Range Organics** WorkOrder: 11030106 Method: SW8015B Lab Batch ID: R316715 Samples in Analytical Batch: **Method Blank**

RunID: HP_U_110307A-5738796 Units: mg/L Lab Sample ID **Client Sample ID** B-2 Analysis Date: 03/07/2011 10:06 NMa 11030106-01B Analyst: B-3 11030106-02B Rep Limit Analyte Result ND Gasoline Range Organics 0.10 Surr: 1,4-Difluorobenzene 97.3 60-155 Surr: 4-Bromofluorobenzene 102.7 50-158

RunID:	HP_U_110307A-5738797	Units:	mg/L	
Analysis Date:	03/07/2011 10:36	Analyst:	NMa	

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Gasoline Range Organics	1.00	0.984	98.4	42	136
Surr: 1,4-Difluorobenzene	0.100	0.101	101	. 60	155
Surr: 4-Bromofluorobenzene	0.100	0.108	108	50	158

Laboratory Control Sample (LCS)

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:	11030153-03		
RunID:	HP_U_110307A-5738804	Units:	mg/L
Analysis Date:	03/07/2011 17:25	Analyst:	NMa

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Gasoline Range Organics	ND	1	0.927	92.7	1	. 0.944	94.4	1.82	36	22	174
Surr: 1,4-Difluorobenzene	ND	0.1	0.0987	98.7	0.1	0.102	102	3.58	30	60	155
Surr: 4-Bromofluorobenzene	ND	0.1	0.106	: 106	0.1	0.109	109	2.97	30	50	158

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

Version 2.1 - Modified February 11, 2011

11030106 Page 9 3/15/2011 9:14:50 AM

SPL ENVIRONMENTAL

Quality Control Report

Conoco Phillips

Result Rep Link Inits: ug/L nalyst: LU_L Result Rep Link ND ND 101.3 82-1	mit 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Samp Lab S 11030 11030 11030	oles in Analyti ample ID 0106-01A 0106-02A 0106-03A	Work(Lab B cal Batch:	Order: atch ID: Client Sar B-2 B-3 DUP	11030106 R316740 nple ID	
Iank Inits: ug/L Inalyst: LU_L Result Rep Lit ND ND 101.3 82-1	mit 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Samp Lab S 11030 11030 11030	eles in Analyti ample ID 0106-01A 0106-02A 0106-03A	cal Batch:	Elient Sar B-2 B-3 DUP	nple ID	- ,
Inits: ug/L nalyst: LU_L Result Rep Lin ND ND ND ND ND 97.4 70-1 99.3 74-1 101.3 82-1	mit 1.0 1.0 2.0 1.0 30 30 125 118	<u>Lab S</u> 11030 11030 11030	ample ID 106-01A 106-02A 106-03A	•	<u>Client Sar</u> B-2 B-3 DUP	nple ID	· · · · · ·
nalyst: LU_L Result Rep Lin ND ND ND ND ND 97.4 70-1 99.3 74-1 101.3 82-1	mit 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	11030 11030 11030	0106-01A 0106-02A 0106-03A	•	B-2 B-3 DUP		
Result Rep Lit ND ND ND ND ND ND ND ND ND 97.4 99.3 74-1 101.3 82-1	mit 1.0 1.0 2.0 1.0 30 225 118	11030 11030	0106-02A 0106-03A		B-3 DUP		
Result Rep Lin ND ND ND ND ND ND ND ND 97.4 70-1 99.3 74-1 101.3 82-1	mit 1.0 1.0 2.0 1.0 30 125 118	11030	0106-03A		DUP		
Result Rep Lit ND ND ND ND ND ND ND 97.4 99.3 74-1 101.3 82-1	mit 1.0 1.0 2.0 1.0 1.0 300 125 118		·				
ND ND ND ND ND ND 97.4 99.3 74-1 101.3	1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.25 118						
ND ND ND ND 97.4 70-1 99.3 74-1 101.3 82-1	1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1						
ND ND ND 97.4 70-1 99.3 74-1 101.3 82-1	1.0 2.0 1.0 130 125 118						•
ND ND 97.4 70-1 99.3 74-1 101.3 82-1	2.0 1.0 130 125 118						
ND 97.4 70-1 99.3 74-1 101.3 82-1	1.0 30 25 18		·				
97.4 70-1 99.3 74-1 101.3 82-1	30 25 18						· · · · · · · · · · · · · · · · · · ·
101.3 82-1	118		·				
e: 03/07/2011 15:00	6 An	nalyst: LL	U_L				
Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit		
	20.0	21.8	109	74	123		
I .	20.0	20.4	102	72	127		
4 .	20.0	21.3	107	74	126		
}	40.0	40.6	102	71	129		
1	20.0	20.7	103	74	130		
1	- 60.0	61.3	102	71	130		
hloroethane-d4	50.0	· 47.1	94.2	70	130		
ofluorobenzene	50.0	49.6	99.2	74	125		4
	50.0	. 51	102	82	118		
hl	oroethane-d4 luorobenzene d8	1 20.0 1 40.0 1 20.0 1 20.0 1 60.0 oroethane-d4 50.0 1uorobenzene 50.0 d8 50.0	20.0 21.3 40.0 40.6 20.0 20.7 60.0 61.3 oroethane-d4 50.0 47.1 luorobenzene 50.0 49.6 d8 50.0 51	1 20.0 21.3 107 40.0 40.6 102 20.0 20.7 103 20.0 20.7 103 0 60.0 61.3 102 0 60.0 61.3 102 0 60.0 47.1 94.2 1 00.0 51 102 0 60.0 51 102	1 20.0 21.3 107 74 40.0 40.6 102 71 1 20.0 20.7 103 74 1 60.0 61.3 102 71 0roethane-d4 50.0 47.1 94.2 70 1uorobenzene 50.0 49.6 99.2 74 d8 50.0 51 102 82	1 20.0 21.3 107 74 126 40.0 40.6 102 71 129 1 20.0 20.7 103 74 130 1 60.0 61.3 102 71 130 oroethane-d4 50.0 47.1 94.2 70 130 iuorobenzene 50.0 49.6 99.2 74 125 d8 50.0 51 102 82 118	1 20.0 21.3 107 74 126 1 40.0 40.6 102 71 129 1 20.0 20.7 103 74 130 1 60.0 61.3 102 71 130 oroethane-d4 50.0 47.1 94.2 70 130 iluorobenzene 50.0 49.6 99.2 74 125 d8 50.0 51 102 82 118

Qualifiers: ND/U - Not Detected at the Reporting Limit

- B Analyte Detected In The Associated Method Blank
- J Estimated Value Between MDL And PQL

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

- * Recovery Outside Advisable QC Limits
- E Estimated Value exceeds calibration curve
- N/C Not Calculated Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.
- TNTC Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

11030106 Page 10 3/15/2011 9:14:51 AM

99.5

97.6

98.7

30

30

30

4.88

2.68

2.59

70

74

82

130

125

118

Quality Control Report

Conoco Phillips

4				· .								
Analysis: Method:	Volatile Orga SW8260B	anics by Method 826	0 B					WorkOrder Lab Batch	: 110 ID: R3)30106 16740		
	Analyte	Sample Spiked: RunID: Analysis Date: Sample Result	11030 K_1103 03/07/2 MS Spike	146-22 107D-5739156 2011 18:37 MS Result	Units: Analy MS % Recovery	ug/l st: LU_ MSD Spike	L_L MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
			Added			Added						
Benzene 😳		ND	20	21.0	105	20	21.3	106	1.24	22	- 70	12
Ethylbenzene		ND	20	19.2	95.9	20	18.9	94.7	1.27	20	76	12
Toluene		ND	20	19.6	97.8	20	19.5	97.6	0.271	24	. 80	11
m,p-Xylene		ND	40	37.8	94.4	40	37.8	94.5	0.106	20	69	12
o-Xylene		ND	20	19.2	95.9	· 20	19.2	96.1	0.307	20	84	11
Xylenes,Total		ND	60	57	95	60	57	95	0.17	20	69	12

47.4

50.1

50.7

94.8

100

101

50

50

50

49.8

48.8

49.4

50

50

50

ND

ND

ND

Qualifiers:

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Toluene-d8

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

11030106 Page 11 3/15/2011 9:14:51 AM

Quality Control Report

		Co	noco Ph Martin 34 N	nillips √o.2					
Analysis: V Method: S	olatile Organics by Metho W8260B	od 8260B				Worl Lab	kOrder: Batch ID:	11030106 R316795	
	Method Bl	ank		Samp	les in Analy	tical Batcl	h:		······································
RunID: K_110308C-8 Analysis Date: 0	5739956 Ur 3/08/2011 11:36 Ar	its: ug/L alyst: LU_L		Lab S	ample ID 0106-01A		<u>Client Sar</u> B-2	nple ID	
	Analyte	Result Rep Li	nit						t t
Benzene Surr: 1 Surr: 4 Surr: T	2-Dichloroethane-d4 Bromofluorobenzene oluene-d8	ND 94.9 70-1 98.6 74-1 101.1 82-1	1.0 30 25 18		·		·		
·		Laborator	v Control S	Sample (L	<u>CS)</u>				
	RunID: Analysis Date	K_110308C-57399 03/08/2011 11:10	55 Ur D Ar	nits: u nalyst: L	g/L U_L				
		Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit		
	Benzene		20.0	20.7	103	74	123		
	Surr: 1,2-Dich	loroethane-d4	50.0	47.9	95.8	70	130		
	Surr: 4-Bromo	fluorobenzene	50.0	49	97.9	74	125		

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

	Sample Spiked:	11030106-01		
1.	RunID:	K_110308C-5739958	Units:	ug/L
	Analysis Date:	03/08/2011 13:21	Analyst:	LU_L

Analyte	Sample Result	MS Spike Added	MS Result	MS Rec	3 % overy	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzene	920	200	1040	I	N/C	200	1050	N/C	N/C	22	70	124
Surr: 1,2-Dichloroethane-d4	ND	500	474		94.8	500	467	93.4	1.48	30	70	130

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

J - Estimated Value Between MDL And PQL E - Estimated Value exceeds calibration curve

B - Analyte Detected In The Associated Method Blank

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

11030106 Page 12 3/15/2011 9:14:51 AM

Surr: 4-Bromofluorobenzene

Surr: Toluene-d8

SPL ENVIRONMENTAL 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Quality Control Report

Conoco Phillips

Martin 34 No.2

		Martin 34 No.2											
Analysis: Method:	Volatile Organics by Method 8260B SW8260B							WorkOrder Lab Batch I	: 110 D: R3	11030106 R316795			
		Matri	ix Spike (I	MS) / Matrix	Spike Dupli	cate (MS	<u>D)</u>				۰.	•	
	а. Д.	Sample Spiked: RunID: Analysis Date:	11030 K_1103 03/08/	106-01 308C-5739958 2011 13:21	Units: Analy	ug/l st: LU_	L _L						-
	Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit	

513

507

103

101

500

500

509

498

102

99.5

0.731

1.90

30

30

74

82

125

118

.500

500

ND

ND

Qualifiers: ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

11030106 Page 13 3/15/2011 9:14:51 AM
	CCL	JT	'ES						. 88	SPL EN BO INTE HOUST	VIRONMEN RCHANGE TON, TX 77	NTAL DRIVE 7054		
	E a	ABOI	RATOR	IES	Quality	Control	l Repor	t		(71:	3) 660-0901	1		
					Con	oco Phi	llips		•					
2			• .		Ма	rtin 34 No	o.2							
Analysis: Method:	lon Chroma E300.0	atograph	У						Wo Lab	kOrder: Batch I	: 11 ID: R3	030106 816644A		
· · ·		Met	hod Blank				Samp	les in Anal	ytical Bate	:h:		۰.		
RunID: IC2_1 Analysis Date:	10305B-5737863 03/05/2011	11:24	Units: `Analyst:	mg/L ESK			<u>Lab S</u> 11030	ample ID 106-01D		<u>Clien</u> B-2	nt Sample I	<u>D</u> .		
			•		• .		11030	106-02D	١	B-3				
	Ar	nalyte		Result	Rep Limit]					•			
	nionde				<u>0.50</u>	J								
300			· · ·	L	aboratory (Control S	ample (L(CS)						•••
്-കമ്മാണ് ഷ്ണ്ചാ - കാസം	i	RunID	•	IC2 1103	305B-573786	4 Uni	te m	a/I						
in a sain an		RunID Analys	: sis Date:	IC2_1103 03/05/20	305B-573786)11 11:41	4 Uni Ana	ts: m alyst: E	g/L SK					-	•••
°	12 <i>4</i>	RunID Analys	: sis Date:	IC2_1103 03/05/20	305B-573786)11 11:41	4 Uni Ana	ts: m alyst: E	g/L SK					-	· · ·
ing total district on the second	ш ,: [RunID Analys): sis Date: Analy	IC2_1103 03/05/20	305B-573786 011 11:41	4 Uni Ana Spike	ts: m alyst: E Result	g/L SK Percent	Lower	Uppe	r		-	· · · ·
in the second		RunID Analys	e: sis Date: Analy	IC2_1103 03/05/20 te	305B-573786 011 11:41	4 Uni Ana Spike Added	ts: m alyst: E Result	g/L SK Percent Recovery	Lower Limit	Uppe Limit	rr t			· · ·
ing talaf distance of an or	2 v 	RunID Analys Chloride): sis Date: Analy	IC2_1103 03/05/20 te	305B-573786 011 11:41	4 Uni Ana Spike Added 10.00	ts: m alyst: E Result 9.416	g/L SK Percent Recovery 94.1	Lower Limit 5 90	Uppe Limit	er t 110			· · · ·
	2 y	RunID Analys Chloride): sis Date: Analy	IC2_1103 03/05/20 te	305B-573786 011 11:41	4 Uni Ana Spike Added 10.00	ts: m alyst: E Result 9.416	g/L SK Percent Recovery 94.1	Lower Limit 5 90	Uppe Limit) 1	r t 110			· · · ·
		RunID Analys Chloride	e: sis Date: Analy <u>Matrix</u>	IC2_1103 03/05/20 te <u>c Spike (1</u>	305B-573786 011 11:41 MS) / Matri	4 Uni Ana Spike Added 10.00 x Spike D	ts: m alyst: E Result 9.416 uplicate (g/L SK Percent Recovery 94.1 MSD)	Lower Limit 5 90	Uppe Limit	r t 110		-	· · · · ·
		RunID Analys Chloride): sis Date: Analy <u>Matrix</u> ple Spiked:	IC2_1103 03/05/20 te <u>Spike (1</u> 11030	305B-573786 011 11:41 MS) / Matri 106-01	4 Uni Ana Spike Added 10.00 x Spike D	ts: m alyst: E Result 9.416 uplicate (g/L SK Percent Recovery 94.1 <u>MSD)</u>	Lower Limit 3 90	Uppe Limil) 1	97 t 110			· · · ·
		RunID Analys Chloride Sam Runi Anal	sis Date: Analy <u>Matrix</u> ple Spiked: ID: vsis Date:	IC2_1103 03/05/20 te <u>Spike (1</u> 11030 IC2_11 03/05/	305B-573786 011 11:41 MS) / Matri 106-01 0305B-57378 2011 14:31	4 Uni Ana Spike Added 10.00 x Spike D	ts: m alyst: E Result 9.416 uplicate (nits: nalyst:	g/L SK Percent Recovery 94.1 MSD) mg/L ESK	Lower Limit 5 90	Uppe Limit	97 t 110		-	· · · ·
	с.	RunID Analys Chloride Sam Runi Anal	: sis Date: Analy <u>Matrix</u> ple Spiked: ID: ysis Date:	IC2_1103 03/05/20 te <u>Spike (1</u> 11030 IC2_11 03/05/	305B-573786 011 11:41 MS) / Matri 106-01 0305B-57378 2011 14:31	4 Uni Ana Spike Added 10.00 x Spike D	ts: m alyst: E Result 9.416 uplicate (nits: nalyst:	g/L SK Percent Recovery 94.1 <u>MSD)</u> mg/L ESK	Lower Limit 3 90	Uppe Limil) 1	97 t 110			
	ца ра	RunID Analys Chloride Sam Runi Anal	: sis Date: Analy <u>Matrix</u> ple Spiked: ID: ysis Date:	IC2_1103 03/05/20 te <u>Spike (1</u> 11030 IC2_11 03/05/	305B-573786 011 11:41 MS) / Matri 106-01 0305B-57378 2011 14:31	4 Uni Ana Spike Added 10.00 x Spike D	ts: m alyst: E Result 9.416 uplicate (nits: nalyst:	g/L SK Percent Recovery 94.1 MSD) mg/L ESK	Lower Limit 3 90	Uppe Limil	er t 110			· · · ·
	Analyte	RunID Analys Chloride Sam Runi Anal	e: sis Date: Analy Matrix ple Spiked: ID: ysis Date: Sample Result	IC2_1103 03/05/20 te Spike (1 11030 IC2_11 03/05/ MS Spike Added	3058-573786 011 11:41 MS) / Matri 106-01 03058-57378 2011 14:31 MS Result	4 Uni Ana Spike Added 10.00 x Spike D 374 Un An 374 Un An 374 Un An	ts: m alyst: E Result 9.416 uplicate (nits: nalyst: 6 MSI ery Spik Add	g/L SK Percent Recovery 94.1 MSD) mg/L ESK D Res Res ed	Lower Limit 3 90	Uppe Limil D 1	rt 110 RPD	RPD Limit	Low Limit	High Limit
Chloride	Analyte	RunID Analys Chloride Sam Runi Anal	: sis Date: Analy <u>Matrix</u> ple Spiked: ID: ysis Date: Sample Result 351.8	IC2_1103 03/05/20 te 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MS) / Matri MS) / Matri 106-01 0305B-57378 2011 14:31 MS Result 619	4 Uni Ana Spike Added 10.00 x Spike D 374 Ui Ai 374 Ui Ai 4 10	ts: m alyst: E Result 9.416 uplicate (nits: nalyst: 6 MSI ery Spik Add 07.0 2	g/L SK Percent Recovery 94.1 MSD) mg/L ESK D Rest ed	D MS JIT Re	Uppe Limit) 1 5D % covery 103.2	RPD	RPD Limit 7 15	Low Limit	High Limit
Chloride	Analyte	RunID Analys Chloride Sam Runi Anal	e: sis Date: Analy <u>Matrix</u> ple Spiked: ID: ysis Date: Sample Result 351.8	IC2_1103 03/05/20 te 11030 IC2_11 03/05/ MS Spike Added 3 250	305B-573786 011 11:41 MS) / Matri 106-01 0305B-57378 2011 14:31 MS Result 619	4 Uni Ana Spike Added 10.00 x Spike D 374 Ui Ai 374 Ui Ai 4 10	ts: m alyst: E Result 9.416 uplicate (nits: nalyst: 6 MSI ery Spik Add 07.0 2	g/L SK Percent Recovery 94.1 MSD) mg/L ESK D MS Res ed	D MS JIT Re 509.7	Uppe Limil) 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	RPD	RPD Limit 7 15	Low Limit 80	High Limit 120
Chloride	Analyte	RunID Analys Chloride Sam Runi Anal	sis Date: Analy <u>Matrix</u> ple Spiked: ID: ysis Date: Sample Result 351.8	IC2_1103 03/05/20 te 11030 IC2_11 03/05/ MS Spike Added 250	3058-573786 011 11:41 MS) / Matri 106-01 03058-57378 2011 14:31 MS Result 619	4 Uni Ana Spike Added 10.00 x Spike D 374 Un An 374 Un An 377 An 377 An 377 An 377 Un 377 An 377 An 377 An 377 An 377 An 377 An 377 An 377 An 377 An 3	ts: m alyst: E Result 9.416 uplicate (nits: nalyst: 6 MSI ery Spik Add 07.0 2	g/L SK Percent Recovery 94.1 MSD) mg/L ESK C Res ed	Lower Limit 3 90 Jult Rei 509.7	Uppe Limil D 1 SD % covery 103.2	RPD	RPD Limit 7 15	Low Limit 80	High Limit 120
Chloride	Analyte	RunID Analys Chloride Sam Runi Anal	e: sis Date: Analy <u>Matrix</u> ple Spiked: ID: ysis Date: Sample Result 351.8	IC2_1103 03/05/20 te 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	305B-573786 011 11:41 MS) / Matri 106-01 0305B-57378 2011 14:31 MS Result 619	4 Uni Ana Spike Added 10.00 x Spike D 374 Ui Ai 374 Ui Ai 4 10	ts: m alyst: E Result 9.416 uplicate (nits: nalyst: 6 MSI ery Spik Add 07.0 2	g/L SK Percent Recovery 94.1 MSD) mg/L ESK D MS res ed 250	Lower Limit 3 90	Uppe Limit) 1	RPD	RPD Limit 7 15	Low Limit 80	High Limit 120
Chloride	Analyte	RunID Analys Chloride Sam Runi Anal	sis Date: Analy <u>Matrix</u> ple Spiked: ID: ysis Date: Sample Result 351.8	IC2_1103 03/05/20 te 11030 IC2_11 03/05/ MS Spike Added 250	305B-573786 011 11:41 MS) / Matrii 106-01 0305B-57378 2011 14:31 MS Result 619	4 Uni Ana Spike Added 10.00 x Spike D 374 Un An 374 An 377 An 377 An 377 An 377 An 377 An 377 An 377 An 377 An 3	ts: m alyst: E Result 9.416 uplicate (nits: nalyst: 6 MSI ery Spik Add 07.0 2	g/L SK Percent Recovery 94.1 MSD) mg/L ESK D MS Rest ed 250	Lower Limit 3 90 Jult Rei 509.7	Uppe Limil D 1	RPD	RPD Limit 7 15	Low Limit 80	High Limit 120

- J Estimated Value Between MDL And PQL
- E Estimated Value exceeds calibration curve
- * Recovery Outside Advisable QC Limits
- N/C Not Calculated Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.
- TNTC Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

11030106 Page 14 3/15/2011 9:14:52 AM

Version 2.1 - Modified February 11, 2011

Sample Receipt Checklist And Chain of Custody

Version 2.1 - Modified February 11, 2011

11030106 Page 15 3/15/2011 9:14:52 AM

SPL ENVIRONMENTAL 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Sample Receipt Checklist

Workorder: 11030106 Date and Time Received: 3/3/2011 9:20:00 AM		Received By: Carrier name:	NB Fedex-Standard Overnight
Temperature: 3.0/3.0°C		Chilled by:	Water Ice '
1. Snipping container/cooler in good condition /	res ⊡		Not Present
2. Custody seals intact on shippping container/cooler?	Yes 🗀	No	Not Present
3. Custody seals intact on sample bottles?	Yes 🗌	No 🗌	Not Present 🗹
4. Chain of custody present?	Yes 🗹	No	
5. Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌	
6. Chain of custody agrees with sample labels?	Yes 🗹	No	
7. Samples in proper container/bottle?	Yes 🗹	No 🗌	·
8. Sample containers intact?	Yes 🗹	No 🗌	
9. Sufficient sample volume for indicated test?	Yes 🗹	No 🗌	
10. All samples received within holding time?	Yes 🗹	No 🗌	
11. Container/Temp Blank temperature in compliance?	Yes 🗹	No	
12. Water - VOA vials have zero headspace?	Yes 🗹		Vials Not Present
13. Water - Preservation checked upon receipt (except VOA*)?	Yes 🗹	Νο	Not Applicable
*VOA Preservation Checked After Sample Analysis		•	
SPL Representative:	Contact Date 8	& Time:	
Client Name Contacted:			· ·
Non Conformance Issues:			· .
Client Instructions:		`	
		,	· ·

Version 2.1 - Modified February 11, 2011

, Inc. 10301 Set L Workforder No.	5 / 72 445 72ch matrix bottle size pres. Request	Ca NE STE 20 0		Email: Kerly bknck and O Texter O Date 1 2 100 100 100 100 100 100 100 100 100		1 •	7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	DATE TIME comp grab $\forall \forall \forall \forall \forall \forall \exists \forall \forall$	03-2-11 0800 X W 944 1/4% 1 9 × × × ×	03-2-11 /130 × W ** ** 9 × × ×	03-2-11 1200 × w V 40 1 3 ×				Laboratory remarks:	Porting Requirements Results: Fax Demail A PDF D Special Detection Limits (specify):	QCM Level 3 QC I Level 4 QC TX TRRP T LA RECAP	ished by Sampler: date date time 2. Received by: $O \mathcal{F} - Z - H$	ished by: date time 4. Received by:	ichort hv. date date date date date
Analysis Reque	Name: CONOCO Phill	55: 61 31 Ind 120 School	HIBUG VERS NO.	Contact: 16814 Blanchar	1 Name/No.: MAC +1 N 34	neation: Blog while / M		SAMPLE ID	-2	3	4				/Consultant Remarks:	Spec	Kequested IAI Business Day Contract Stan	Business Days X Standard 1. R.	Business Days	Other, 5. Ru