3R - 431

MAR 2010 GWMR

JUN 2010

MARCH 2010 QUARTERLY GROUNDWATER MONITORING REPORT

CONOCOPHILLIPS HOWELL K No. I SAN JUAN COUNTY, NEW MEXICO

OCD # _____ API 300-045-09313

Prepared for:

420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

6121 Indian School Rd. NE, Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 114-690132

TABLE OF CONTENTS

1.0	INTRODUCTION	I
	I.I Site Background	I
2.0	MONITORING SUMMARY AND SAMPLING METHODOLOGY AND ANALYTICAL RESULTS	2
	2.1 Monitoring Summary	2
	2.2 Groundwater Sampling Methodology	2
	2.3 Groundwater Sampling Analytical Results	2
3.0	CONCLUSIONS	3
FIGU	JRES	
1.	Site Location Map	
2.	Site Layout Map	
3.	Cross Section	
4.	Groundwater Elevation Contour Map (March 2010)	
TABI	LES	
١.	Site History Timeline	
2.	Groundwater Elevation Data Summary (March 2010)	

3. Groundwater Laboratory Analytical Results Summary (March 2006 through March 2010)

APPENDICES

Appendix A. Groundwater Sampling Field Forms

Appendix B. Groundwater Laboratory Analytical Report

ANNUAL GROUNDWATER MONITORING HOWELL K NO. I, SAN JUAN COUNTY, NEW MEXICO

1.0 INTRODUCTION

This report presents the results of a quarterly groundwater monitoring event conducted by Tetra Tech, Inc. (Tetra Tech) in March of 2010, at the ConocoPhillips Howell K No. I site, located on BLM land, approximately ½ mile southeast of Navajo Lake State Park and 10 miles east of Aztec in Unit Letter K, Section 21, Township 30N, Range 8W of San Juan County, New Mexico (Site). The Site consists of a gas production well and associated equipment and installations. The location and general features of the Site are shown on **Figures 1** and **2**, respectively.

1.1 Site Background

The environmental investigation at the Site began in August 2005 with the excavation of approximately 4000 cubic yards of hydrocarbon impacted soil from an area southwest of the wellhead at the Howell K No. I site. The hydrocarbon impacted soils were discovered in the area during below grade tank removal activities. The final dimensions of the excavation were 70 feet by 50 feet by 36 feet deep (groundwater was encountered at a depth of approximately 34 feet below ground surface (bgs). Once this extent had been reached, the excavation was stopped due to the inability of the equipment to operate safely at this depth; however, the limits of the hydrocarbon impact had not been delineated. The excavation was backfilled with clean soil. In March 2006, one groundwater monitoring well (MW-I) was installed in the general area of the backfilled excavation by Envirotech. The location of this well is shown on **Figure 2**.

Due to the transition of Site consulting responsibilities from Lode Star LLC of Farmington, NM, to Tetra Tech following the acquisition of Burlington Resources by ConocoPhillips Company in March 2006, groundwater monitoring was not performed at the Site in March and June 2007. Tetra Tech began sampling groundwater at the Howell K No. I site in November of 2007 using MW-I and continued to do so until August of 2008, when 3 additional monitoring wells were installed at the Site by WDC Exploration and Wells of Peralta, NM and under Tetra Tech supervision. Additional wells were installed in response to a request by the New Mexico Oil Conservation Division (OCD) for Site characterization and enhanced laboratory analyses. This request was communicated to Tetra Tech during an April 2008 meeting conducted in Santa Fe, New Mexico with Glenn Von Gonten, OCD Environmental Bureau Hydrologist. Groundwater Monitoring Well MW-2 was installed upgradient of MW-I and Monitoring Wells MW-3 and MW-4 were installed downgradient of MW-I (Figure 2). A generalized geologic cross-section was compiled using subsurface data collected from each boring location during installation of Monitoring Wells; MW-2, MW-3 and MW-4. Monitoring Wells MW-2 and MW-4 are represented on the cross-section which can be seen as Figure 3. October 2008 marked the first quarterly groundwater monitoring event to

Tetra Tech, Inc. 1 7/6/2010

include all 4 monitoring wells for analysis at the Site. A summary of the Howell K No. 1 site history can be seen in **Table 1**.

2.0 MONITORING SUMMARY AND SAMPLING METHODOLOGY AND ANALYTICAL RESULTS

2.1 Monitoring Summary

Quarterly groundwater sampling was conducted by Tetra Tech on March 30, 2010. The groundwater sampling event included samples from Monitoring Wells; MW-1, MW-2, MW-3 and MW-4. Groundwater levels were measured in each site monitoring well prior to sampling and can be found in **Table 2**. Groundwater elevations for MW-1, however, can not be calculated or included on the groundwater contour map due to the gradual, continuous, upward shifting of the PVC well casing. The continual shifting of the PVC casing of MW-1 is likely due to the proximity of MW-1 to the 2005, underground tank removal excavation and the severe settling and shifting of the fill material in this area. Groundwater elevations are calculated from top of casing elevations which were derived from survey data collected from each site monitoring well by Tetra Tech on August 14, 2008. Survey data obtained from MW-1 is no longer valid due to the uplifting of the well casing which will continue to change over time, therefore; MW-1 will no longer be factored into future groundwater elevation contour maps. The groundwater flow direction is to the west based on groundwater elevation data collected on March 30, 2010 from MW-2, MW-3 and MW-4, and as seen on **Figure 4**.

2.2 Groundwater Sampling Methodology

During the sampling event, each monitoring well was purged either of three casing volumes of water or was purged until groundwater parameters had stabilized. Measured groundwater parameters included; temperature, pH, conductivity, total dissolved solids (TDS), oxidation-reduction potential (ORP) and dissolved oxygen (DO), and were collected using a YSI 556 multi-parameter sonde. A 1.5-inch clear, polyethylene, dedicated bailer was used to purge each well and to collect the groundwater samples. The purge water generated during the event was disposed of in the produced water tank located on site (**Figure 2**). The groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped with chain-of-custody documentation to Southern Petroleum Laboratory (SPL) in Houston, Texas. All groundwater samples collected were analyzed for the presence of benzene, toluene, ethylbenezene, and xylenes (BTEX) by Environmental Protection Agency (EPA) Method 8260B, dissolved iron and manganese by EPA Method 6010B, and sulfate by EPA method 300.0. The dissolved metals samples were collected in unpreserved containers supplied by the laboratory, to be filtered and preserved by laboratory personnel prior to analysis for dissolved metals. Dissolved metals testing will continue for metals exceeding NMWQCC drinking water standards.

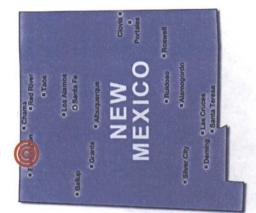
2.3 Groundwater Sampling Analytical Results

Tetra Tech, Inc. 2 7/6/2010

Samples collected from MW-1, MW-2, MW-3, MW-4 on March 30, 2010 indicate that groundwater concentrations for BTEX were below laboratory method detection limits (MDL).

Although BTEX constituents were found to be below NMWQCC standards during the March 2010 quarterly analysis, other constituents were found to be above standards. Analyses of samples collected from all 4 wells on Site were found to be above the NMWQCC standard for sulfate. MW-1, MW-3 and MW-4 were also above standard for dissolved manganese. **Table 3** lists the analytical results from groundwater sampling done during March 2010. Groundwater sampling field forms showing field parameters can be found in **Appendix A** and the corresponding laboratory analysis reports including quality control summaries can be found in **Appendix B**.

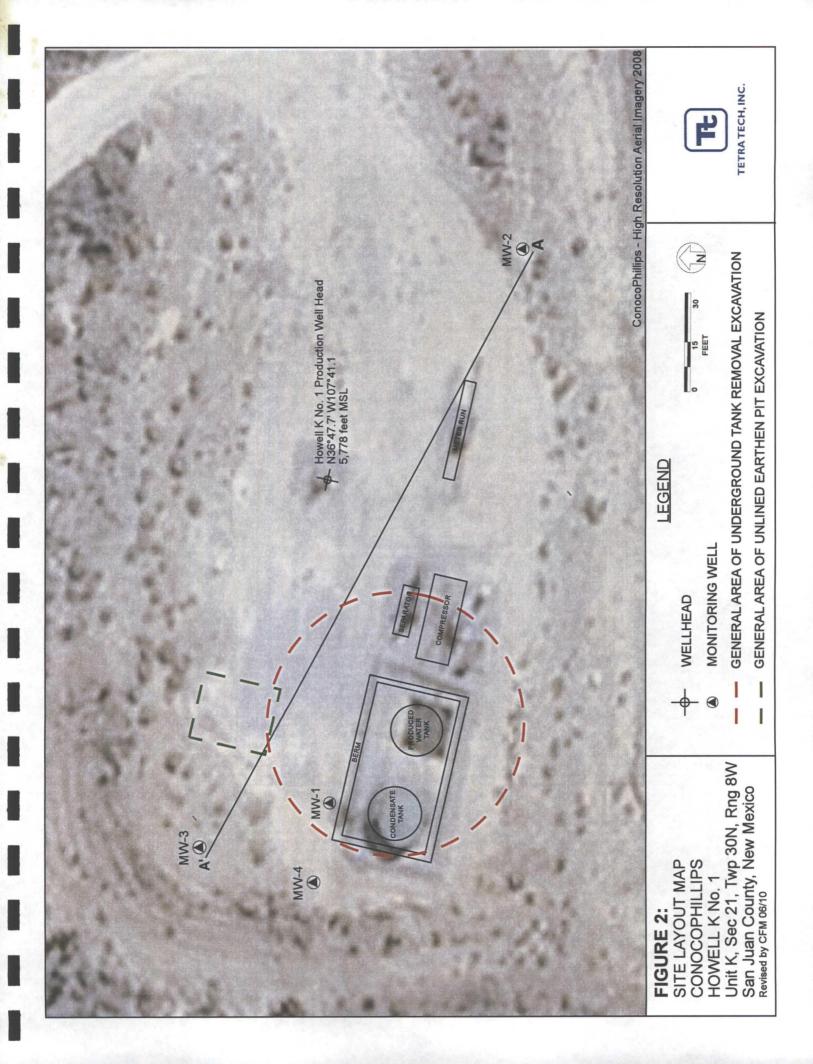
3.0 CONCLUSIONS

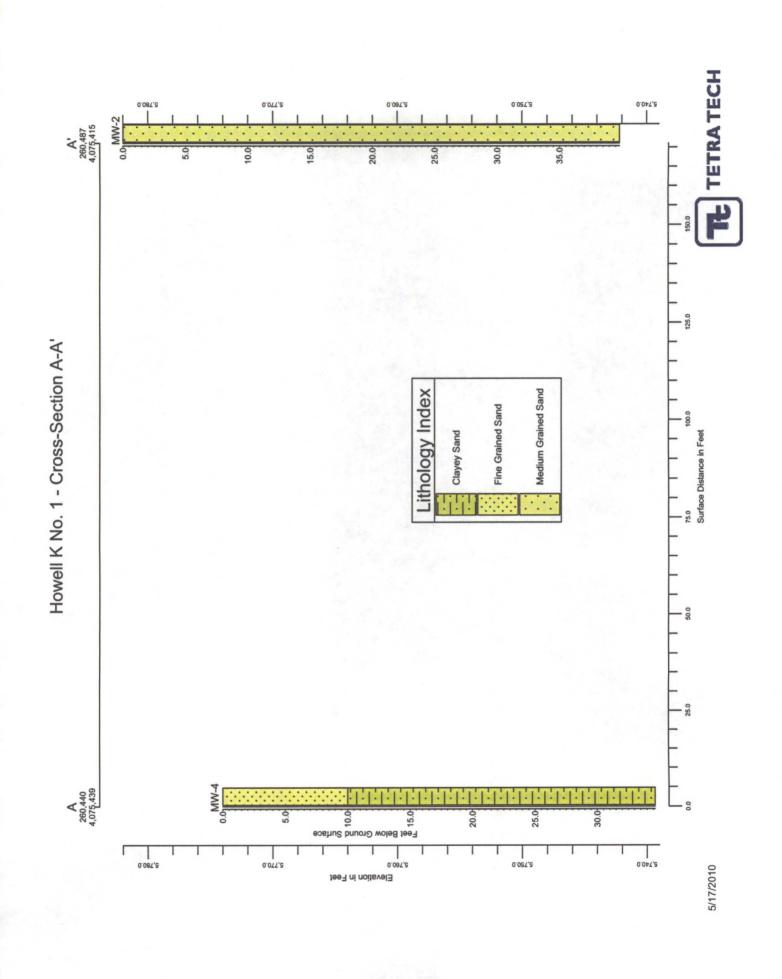

Based on the historical groundwater quality data, groundwater samples collected from MW-I have never exceeded NMWQCC groundwater quality standards for BTEX constituents during sampling conducted from March 2006 to March 2010. BTEX concentrations were found to be below the minimum laboratory detection limits for these constituents consistently since October 2006. In addition, groundwater samples collected from MW-2, MW-3 and MW-4 have also not exceeded NMWQCC groundwater quality standards for BTEX constituents from October 2008 to March 2010. Since BTEX is below standards in all 4 monitoring wells but there are other constituents of concern above NMWQCC standard. Tetra Tech recommends the continuation of quarterly groundwater monitoring until sulfate, dissolved manganese, dissolved iron and fluoride concentrations are also below NMWQCC standards, appear stable or reach regional background levels. Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.

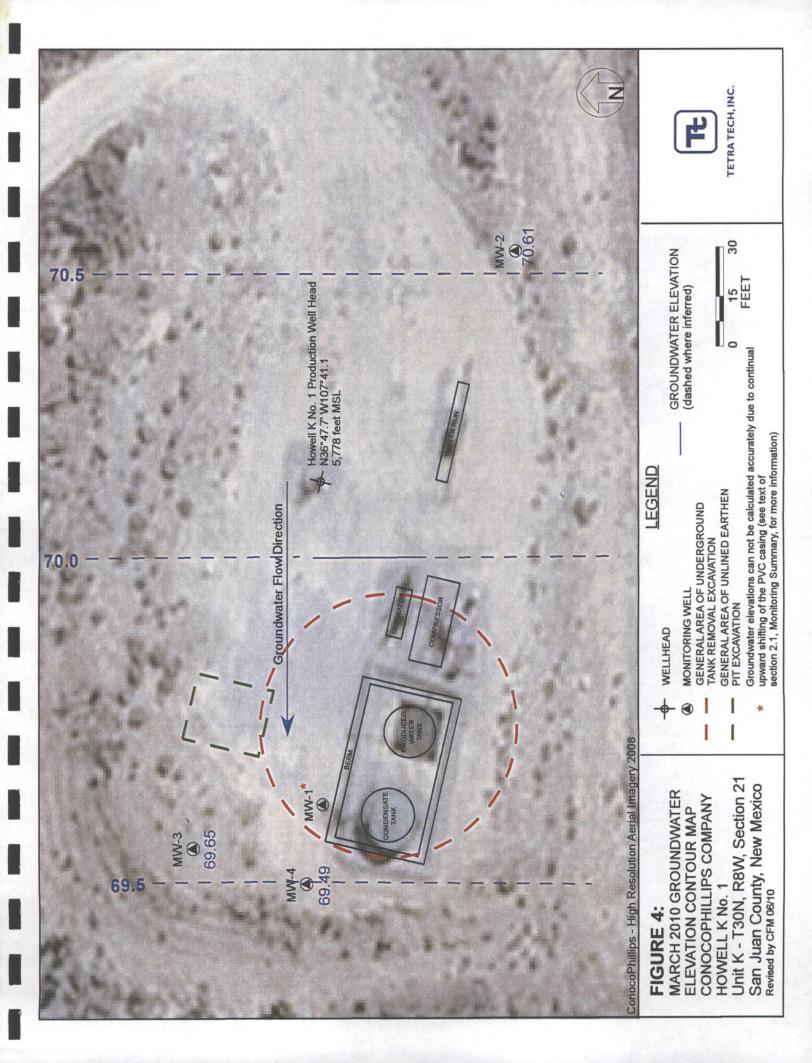
FIGURES

FIGURE 1

Site Location Map ConocoPhillips Howell K No. 1 Aztec, NM


Approximate ConocoPhillips Howell K No. 1 Site location


Latitude = 36.79505 deg N Longitude = -107.68474 deg W



TETRA TECH, INC.

TABLES

Table 1. Site History Timeline

Table 1. Site History		Daniel and Community
Date/Time Period	Event/Action	Description/Comments
July 26, through August 18, 2005	Initial Site Assessment	Environmental investigation began with the excavation of approximately 4000 cubic yards of impacted soil from an area southwest of the Howell K No.1 well head. Impacted soils were discovered during the removal activities of a below grade tank. Dimensions of the excavation were approximately 70 feet long by 50 feet wide by 36 feet deep. Groundwater was encountered at approximately 34 feet and soils were still impacted at 36 feet deep, the point at which excavation machinery was stopped at the practical limit for safe operation. The total verticle extent of hydrocarbon impacts were not completely deliniated. Soil was treated with 600 total gallons of potassium permanganate solution. The excavation area was backfilled with clean soil.
March 10, 2006	Groundwater monitoring well installation	One ground water monitoring well, MW-1, was installed in the center of the backfilled excavation by Envirotech. Total depth of well was set at 35 feet.
March 31, 2006	Site Transfer	ConocoPhillips Company completed acquisition of Burlington Resources.
March and June 2007	Groundwater monitoring not performed	After the acquisition of Burlington Resources by ConocoPhillips, consulting responsibilities were transferred from Lode Star LLC of Farmington New Mexico to Tetra Tech of Albuquerque. Due to the transition, first and second quarter sampling of 2007 was not performed.
November 9, 2007 through March 19, 2008	Groundwater monitoring	Tetra Tech began sampling the Howell K No. 1 site quarterly in November of 2007. Groundwater was sampled from MW-1 and was analyzed for BTEX constituents. No constituents were detected at levels that exceeded the NMWQCC standards at any point during this period.
April 1, 2008	Additional Monitoring Requested by OCD	Oil Conservation Division of NM Energy, Minerals, and Resources Dept. indicates additional investigation and sampling is necessary for closure consideration during a meeting with Glenn Von Gonten.
July 23, 2008	Groundwater monitoring postponed	Groundwater monitoring of MW-1 was postponed after it was found that there was an obstruction caused by settling and shifting of the MW-1 casing. It was determined that the obstruction could be avoided by using a smaller bailer to collect samples. Sampling was postponed and was set to follow upcoming monitoring well installation so that proper sampling materials could be used.
August 13 and 14, 2008	Groundwater monitoring well installation and groundwater monitoring	Three additional groundwater monitoring wells (MW-2, MW-3 and MW-4) were installed by WDC and overseen by Tetra Tech. MW-2 was installed up-gradient of MW-1. Both MW-3 and MW-4 were installed down-gradient of MW-1. All wells were developed by purging approximately 80 gallons of fluid using a surge block and a purge pump. A sample was collected from MW-1 on August 14th since sampling could not be done in July of 2008. A 3/4 inch disposable bailer was used to avoid obstruction in MW-1. Sample was analyzed for BTEX constituents. All constituents were below NMWQCC standards.
October 24, 2008	Groundwater monitoring	Third quarter 2008 groundwater monitoring was completed and was the first quarter of sampling to include all four monitoring wells on site. A baseline suite was completed including major ions, total metals, semi-volatile organic compounds (SVOCs), volatile organic compounds (VOCs) including BTEX, diesel range organics, and gasoline range organics. All BTEX constituents were below NMWQCC standards. All four wells were above standard for sulfate, and showed elevated total iron and total manganese concentrations. MW-4 was also above the NMWWCC standard for Fluoride.
January 30, 2009	4th quarter 2008 groundwater monitoring	Tetra Tech conducted forth quarter 2008 groundwater monitoring at the site for BTEX constituents in all four monitoring wells. All wells are below NMWQCC standards for BTEX.
September 25,2009	2009 annual groundwater monitoring	Tetra Tech conducted 2009 annual groundwater monitoring of MW-2, MW-3 and MW-4 for BTEX, dissoved iron, dissolved manganese, sulfate, and fluoride. All three wells were below NMWQCC standards for BTEX. All three wells were above standard for sulfate. Dissolved manganese was above standard in MW-3 and MW-4 and flouride was above standard in MW-4. Dissolved metals analyses conducted for the first time since standards are based on dissolved metals testing. OCD concurred, allowing total metals testing to be discontinued.

ConocoPhillips Company Howell K No. 1

Date/Time Period	Event/Action	Description/Comments
October 18, 2009	Groundwater monitoring	Tetra Tech conducted 2009 annual groundwater monitoring of MW-1 for BTEX, dissoved iron, dissolved manganese, sulfate, and fluoride. MW-1 was below NMWQCC standards for BTEX. Sulfate, dissolved manganese and dissolved iron were above standard in MW-1.
December 15, 2009	Groundwater monitoring	Tetra Tech conducted quarterly groundwater monitoring at the site for BTEX, dissolved iron, dissolved manganese, sulfate and flouride. All four monitoring wells are below NMWQCC standards for BTEX. All four monitoring wells were above standard for sulfate. MW-1, MW-3 and MW-4 were above standard for dissolved manganese and MW-3 and MW-1 were also above standard for dissolved iron.
March 30, 2010	Groundwater monitoring	Tetra Tech conducted quarterly groundwater monitoring at the site for BTEX, dissolved iron, dissolved manganese, sulfate and flouride. All four monitoring wells are below NMWQCC standards for BTEX. All four monitoring wells were above standard for sulfate. MW-1, MW-3 and MW-4 were also above standard for dissolved manganese.

Table 2. Groundwater Elevation Data Summary

Well ID	Total Depth (ft bgs)	Screen Interval (ft)	*Elevation (ft) (TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Groundwater Elevation
				3/22/2006	28.54	69.30
				6/21/2006	29.15 68.69 27.83 70.01 28.22 69.62 NS NS 29.03 68.81 28.34 69.5 NM NM 28.46 69.38 29.91 67.93 28.37 69.47 29.95 67.89 29.97 67.87 29.51(1) 28.18(1) 28.18(1) 25.74 69.54 24.74 70.54 26.48 68.80 25.97 69.31 24.67 70.61 26.95 68.49 25.92 69.52 27.57 67.87 27.05 68.39 25.79 69.65 NM NM 26.00 69.36 27.64 67.72	
				10/19/2006	29.15 68.69 27.83 70.01 28.22 69.62 3 NS	
				12/12/2006		
	:			March 2006	NS	
				June 2006	NS	
				11/9/2007	29.03	68.81
MW-1	37,47	21.0 - 36.0	97.84	1/15/2008	28.34	69.5
10100-1	57,47	21.0 - 30.0	97.04	3/19/2008	NM	NM
				7/23/2008	28.46	69.38
				10/24/2008	29.91	67.93
				1/30/2009	28.37	69.47
				9/25/2009	29.95	67.89
				10/18/2009	29.97	67.87
				12/15/2009 29.51 3/30/2010 28.18 10/24/2008 25.74		(1)
				3/30/2010	28.18	(1)
	· · · · ·			10/24/2008	25.74	69.54
				1/30/2009	24.74	70.54
MW-2	39.81	21.0 - 36.0	95.28	9/25/2009	26.48	68.80
	MW-2 39.81			12/15/2009	25.97	69.31
				3/30/2010	24.67	70.61
				10/24/2008	26.95	68.49
				1/30/2009	25.92	69.52
MW-3	37.47	19.0 - 34.0	95.44	9/25/2009	27.57	
MW-3				12/15/2009	27.05	68.39
				3/30/2010	25.79	69.65
				10/24/2008	NM	NM
				1/30/2009	26.00	69.36
MW-4	34.66	17.0 - 32.0	95.36	9/25/2009	27.64	67.72
				12/15/2009	27.14	68.22
				3/30/2010	25.87	69.49

ft = Feet

TOC = Top of casing

bgs = below ground surface

^{* =} Elevation relative to wellhead

^{(1) =} Groundwater elevations can not be calculated accurately due to continual upward shifting of the PVC casing (see text of section 2.1, Monitoring Summary, of this report for more information)

NS = Not Sampled (quarters not sampled due to change in consulting responsibilities from Lodestar LLC to Tetra Tech Inc.)

ConocoPhillips Howell K No. 1

Table 3. Groundwater Analytical Results Summary

Well ID	Date	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Xylenes (μg/L)	Fluoride (mg/L)	Sulfate (mg/L)	Dissolved Iron (mg/L)	Dissolved Manganese (mg/L)
	3/22/2006	QN	QN	1.00	2.00	NA	NA	ΝA	NA
	6/21/2006	1.40	1.40	ND	10.60	NA	NA	NA	ΝA
	10/19/2006	ON	QN	QN	1.10	ΝΑ	NA	VΝ	٧N
	12/12/2006	ND	0.50	0.40	2.10	NA	NA	ΝA	٧N
	11/9/2007	<0.5 U	∪ 7.0>	∨8.0>	ر 6.0>	NA	NA	ΝA	۷N
	1/15/2008	− 40.5 U	U 2.0>	0.8.0>	<0.8 U	NA	NA .	VΝ	۷V
MW-1	3/19/2008	<0.5	<0.5	<0.5	<0.5	NA	NA	ΝA	٧N
	8/14/2008	<0.5	<0.5	<0.5	<0.5	NA	NA	VΝ	۷N
	10/24/2008	<0.5	. <0.5	<0.5	<0.5	< 2.0	2390	32.1*	13.4*
	1/30/2009	−6.5 U	<0.5 U	<0.5 ∪	<0.5 U	ΝΑ	NA	VΝ	٧N
	10/18/2009	<1.0	<1.0	<1.0	<1.0	0.88	3840	2.24	17.40
	12/15/2009	<1.0	<1.0	<1.0	<1.0	< 50	3290	1.70	16.50
	3/30/2010	<1.0	<1.0	<1.0	<1.0	NA	2950	0.87	14.90
	10/24/2008	<0.5 U	<0.5 U	<0.5 U	<0.5 U	< 2	1480	3.28*	0.231*
	1/30/2009	<0.5 U	<0.5 U	<0.5 U	<0.5 U	NA	NA	NA	Ą
MW-2	9/25/2009	<1.0	<1.0	<1.0	<1.0	1.09	1700	<0.02	<0.005
	12/15/2009	<1.0	<1.0	<1.0	<1.0	< 100	1570	<0.02	<0.005
	3/30/2010	<1.0	<1.0	<1.0	<1.0	NA	1410	<0.02	0.14
	10/24/2008	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<2	1480	3.38*	1.31*
	1/30/2009	<0.5 U	<0.5 U	<0.5 U	<0.5 U	Ą	NA	NA	NA
MW-3	9/25/2009	<1.0	<1.0	<1.0	<1.0	1.00	1840	<0.02	0.38
	12/15/2009	<1.0	<1.0	<1.0	<1.0	< 50	2500	1.35	0.32
	3/30/2010	<1.0	<1.0	<1.0	<1.0	NA	1890	<0.02	0.43

Explanation

ND = Not Detected

NMWQCC = New Mexico Water Quality Control Commission mg/L = milligrams per liter (parts per million) ug/L = micrograms per liter (parts per billion) NA = Not Analyzed

 ^{-0.7 =} Below laboratory detection limit of 0.7 ug/L

 U = Analyte was analyzed for but not detected at the indicated MDL
 Bold = concentrations that exceed the NMWQCC limits
 * = Results recorded by total metals analysis, not comparable to NMWQCC standards which are based on dissolved metals concentrations

ConocoPhillips Howell K No. 1

	10/24/2008	<0.5 U	U 3.0>	<0.5 U	U 5.0>	2.43	3400	2.7*	¥6 <i>L</i> .7
	1/30/2009	<0.5 U	−0.5 U	<0.5 U	U 5.0>	ΑN	٧N	NA	NA
MW-4	9/25/2009	<1.0	<1.0	<1.0	<1.0	2.47	3860	<0.02	7.80
	12/15/2009	<1.0	<1.0	<1.0	<1.0	< 50	4540	0.03	7.40
	3/30/2010	<1.0	<1.0	<1.0	<1.0	NA	3970	<0.02	7.83
NWWQCC	NMWQCC Standards	10 (µg/L)	750 (µg/L)	750 (µg/L)	620 (µg/L)	1.6 (mg/L)	(T/6w) 009	1 (mg/L)	0.2 (mg/L)

Explanation

ND = Not Detected

NMWQCC = New Mexico Water Quality Control Commission

mg/L = miligrams per liter (parts per million)

ug/L = micrograms per liter (parts per million)

NA = Not Analyzed

-0.7 = Below laboratory detection limit of 0.7 ug/L

U = Analyte was analyzed for but not detected at the indicated MDL

Bold = concentrations that exceed the NMWQCC limits

* = Results recorded by total metals analysis, not comparable to NMWQCC standards which are based on dissolved metals concentrations

APPENDIX A
GROUNDWATER SAMPLING FIELD FORMS

APPENDIX A GROUNDWATER SAMPLING FIELD FORMS

TETRATECH, INC.	WATER SAM	PLING FIELD FORM
Project Name Howell K1		Page 2 of 4
Project No.		
Site Location San Juan County, N	M	
Site/Well No. MW-2	Coded/ Replicate No.	Date 3-30-10
Weather Sinwuran	Time Sampling Began 555	Time Sampling Completed
- 11	EVACUATION DA	T A
Description of Measuring Point (MP)	Top of Casing	
Height of MP Above/Below Land Su		MP Elevation
Total Sounded Depth of Well Below	MP39.81	Water-Level Elevation
HeldDepth to Water Belo	WMP 24.67	Diameter of Casing 2"
Wet Water Column in	- · ·	Prior to Sampling 7,5 gallons
Gallons per Gallons ir	Foot 0.16 Well 2.42 X3	Sampling Pump Intake Setting (feet below land surface)
Purging Equipment Purge pum	p (Bailer) = 7.26	
	SAMPLING DATA/FIELD PA	RAMETERS
Time Temperature (°C) (60 14.30 14.30 14.31 14.31	pH Conductivity (µS/cm³ 6.57 259.6 6.52 259.6 6.51 259.6	TDS (g/L) DO (mg/L) ORP (mV) DO (50.3 1.35 4.04 -34.3 39.6
Sampling Equipment	Purge Pulnp/Bailer	
Constituents Sampled	Container Description	on Preservative
BTEX	3 40mL VOA's	HCI

Remarks Parge Hz Dight orangish-brown, no sheen or odor observed

Sampling Personnel Christishe Mathews & Kelly Blanchard

Well	Casing	Volumes
------	--------	---------

Gal./ft. $1 \frac{1}{2}$ " = 0.077 $1 \frac{1}{2}$ " = 0.10

Sulfate

Dissolved Metals

2" = 0.16 2 ½" = 0.24

16 oz. Plastic

16 oz. Plastic

3" = 0.37 3" ½ = 0.50

None

None

4" = 0.65 6" = 1.46

R:\Share\Maxim Forms\Field Forms\Howell KT Water Sampling Field Forms.xls

Ŧ	TETRA TECH, INC.
---	------------------

WATER SAMPLING FIELD FORM

Project Name Howell K1	Page <u>3</u> of <u>4</u>
Project No.	
Site Location San Juan County, NM	
Site/Well No. MW-3 Coded/ Replicate No.	Date 3-30-10
Weather Why Began 1615	Time Sampling Completed 1635
Partly Clordy EVACUATION DATA	
Description of Measuring Point (MP) Top of Casing	
Height of MP Above/Below Land Surface MP Elevation	l
Total Sounded Depth of Well Below MP 37.47 Water-Level	Elevation
Held Depth to Water Below MP 25. 79 Diameter of C	
Wet Water Column in Well 1.68 Gallons Pum Prior to Samp	
Gallons per Foot 0.16	
Sampling Pu	mp Intake Setting and surface)
Purging Equipment Purge pump (Bailer) = 5.60	
- 1.3.1 parties	
SAMPLING DATA/FIELD PARAMETERS Time Temperature (°C) pH Conductivity (µS/cm³) TDS (g/L)	DO (mg/L) ORP (mV) 90 %
5 1624 15.12 6.60 2867 1.863	1.85 -43.2 18.8
7626 15.10 C.61 2861 1859 5 1628 15.09 6.63 2867 1.866	1.99 -43,6 20.6
55 1630 15.66 6.62 2879 1.8571	1.85 - 443 18.6
	,
Sampling Equipment Purge Pump(Bailer)	
Constituents Sampled Container Description	<u>Preservative</u>
BTEX 3 40mL VOA's	HCI
Sulfate 16 oz. Plastic	None
Dissolved Metals 16 oz. Plastic	None
Sampling Personnel Kelly Blanchard, Christine Man	ν
Sampling Personnel Kelly Blanchard, Christine Man	Thows.
Well Casing Volumes	
Gal./ft. 1 ½" = 0.077 2" = 0.16 3"	=-0.37 4" = 0.65
	= 0.50 6" = 1.46

R:\Share\Maxim Forms\Field Forms\Howell K1 Water Sampling Field Forms.xls

T	TETRA TECH, INC.
---	------------------

WATER SAMPLING FIELD FORM

Project Name Howe	II K1				Page	4	of <u>4</u>
Project No.		,					of Comments
Site Location San J	luan County, NM				Ä		
Site/Well No. MW-4	4	Coded/ Replicate No.	Dwel	645	Date	3-30:	10
Weather <u>Silv</u>	any warm	Onime Sampling Began	1638		Time Samplin	g [6t	55
	1	EVA	CUATION DAT	A			
Description of Measu	ring Point (MP <u>Top</u>	of Casing					
Height of MP Above/	Below Land Surface	·		MP Elevation			
Total Sounded Depth	of Well Below MP	34.66	·	Water-Level Ele	vation		
HeldDepth	n to Water Below MF /ater Column in Wel		1	Diameter of Cas Gallons Pumped Prior to Samplin	(` 'X' 	1.5 ga	llons
•	Gallons per Foo	t	0.16 06x3	Sampling Pump (feet below land	Intake Setting surface)		
Purging Equipment	Purge pump / B	ailer	= 4.241				<u>.</u>
			ATA/FIELD PAF				
Time Tem	perature (°C)		uctivity (µS/cm³) 139	TDS (g/L)	DO (mg/L) 4,59	ORP (mV)	D0% 45.0
0 650	15.33	6.62 61	179	4.211	4.37	-368	44.5
5 652	15.37	6.64 60	514	4.233	4010	-32.5	41.7
Sampling Equipment	Purc	ge Pump/Bailer			<u></u>	1	
			-i Diti-	_			
Constituents S	ampied		ainer Descriptio	<u>n</u>	-	reservative	
BTEX		3 40mL VOA's			HCI		
Sulfate		16 oz. Plastic			None		
Dissolved Metals		16 oz. Plastic		··	None		
Remarks L	started out	light by	ownsole	ared up to	PART	early clea	ic no
Sampling Personnel	Christi	ne Mather	us, Kell	y 131anian	navd.	· · · · · · · · · · · · · · · · · · ·	- oda
			Well Casing Vo	lumes			7 Sheen
Gal.	/ft. 1 ½" = 0.077		= 0.16		0.37	4" = 0.65	
	1 ½" = 0.10 Forms\Field Forms\How	2 1/2"	= 0.24	3" 1/2 =		6" = 1.46	

TETRA TECH, INC.	WATER SAM	ЛPLING FIEL	.D FORM
Project Name Howell K1			Page1 of4
Project No.			
Site Location San Juan County, NN	Λ		
Site/Well No. MW-1	Coded/ Replicate No.	6	Date 3,30.10
Weather Sinn Warm	Time Sampling Began	至1638	Time Sampling Completed 720
·	EVACUATION D	DATA	
Description of Measuring Point (MP	Top of Casing		
Height of MP Above/Below Land Sur	face	MP Elevation	
Total Sounded Depth of Well Below	MP 37.47	Water-Level E	levation
HeldDepth to Water Below	V MP 28.18	Diameter of Ca	asing 2"
Wet Water Column in	9 00	Gallons Pumpe Prior to Sampli	ed/Bailed)
Gallons per	Foot	Compline Dum	p Intake Setting
Gallons in	Well 1.486X3		d surface)
Purging Equipment Purge pump	(/Bailer) 4. 450	<u> </u>	
	SAMPLING DATA/FIELD	PARAMETERS	
Time Temperature (°C)	pH Conductivity (μS/cr	n ³) TDS (g/L)	DO (mg/L) ORP (mV)
Sampling Equipment	Purge Pump/Bailer		
Constituents Sampled	Container Descrip	tion	Preservative
BTEX	3 40mL VOA's		<u>ÁCI</u>
Sulfate	16 oz. Plastic		None
Dissolved Metals	16 oz. Plastic		None

Remarks H20 is light yellow-brown, no odon and shen observed.

Sampling Personnel Christine Mattews Kelly Blanchard purge vollume low due

Well (Casing	Volun	nes
--------	--------	-------	-----

Gal./ft. $1 \frac{1}{2}$ " = 0.077 $1 \frac{1}{2}$ " = 0.10

2" = 0.16 $2\frac{1}{2}" = 0.24$ $3^{n} = 0.37$ $3^{n} \frac{1}{2} = 0.50$ 4" = 0.65 6" = 1.46 to Wind

and day

light

R: IShare Maxim Forms I Field Forms Howell KT Water Sampling Field Forms xis low volume in ballers.

Parameters could not be will eved due to low volume in ballers.

Small 5 in bailer used.

GROUNDWATER LABORATORY ANALYSIS REPORT

APPENDIX B
GROUNDWATER LABORATORY ANALYSIS REPORT

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

April 15, 2010

Workorder: H10040021

Kelly Blanchard Tetra Tech 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110

Project: Howell K-1
Project Number: Howell K-1
Site: Albuquerque, New Mexico

PO Number: 4510016701

NELAC Cert. No.: T104704205-09-1

This Report Contains A Total Of 18 Pages

Excluding Any Attachments

Report ID: H10040021_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

April 15, 2010

Kelly Blanchard Tetra Tech 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110 Workorder: H10040021

Project: Howell K-1

Project Number: Howell K-1
Site: Albuquerque, New Mexico
PO Number: 4510016701

NELAC Cert. No.: T104704205-09-1

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSES AND EXCEPTIONS:

There were no exceptions noted.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Report ID: H10040021_6089 Page 2 of 18

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

April 15, 2010

Kelly Blanchard Tetra Tech 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110 Workorder: H10040021

Project: Howell K-1

Project Number: Howell K-1 Site: Albuquerque, New Mexico

PO Number: 4510016701

NELAC Cert. No.: T104704205-09-1

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

Erica Cardenas, Senior Project Manager

Enclosures

Report ID: H10040021_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

SAMPLE SUMMARY

Workorder: H10040021: Howell K-1

Project Number: Howell K-1

Lab ID	Sample ID	Matrix	COC ID	Date/Time Collected	Date/Time Received
H10040021001	MW-1	Water		3/30/2010 17:20	4/1/2010 12:22
H10040021002	MW-2	Water		3/30/2010 16:10	4/1/2010 09:00
H10040021003	MW-3	Water		3/30/2010 16:35	4/1/2010 09:00
H10040021004	MW-4	Water		3/30/2010 16:55	4/1/2010 09:00
H10040021005	Duplicate	Water		3/30/2010 16:45	4/1/2010 09:00
H10040021006	Trip Blank	Water		3/30/2010 17:45	4/1/2010 09:00

Report ID: H10040021_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040021: Howell K-1

Project Number: Howell K-1

Lab ID:

H10040021001

Date/Time Received: 4/1/2010 12:22

Water Matrix:

Sample ID: MW-1

Date/Time Collected: 3/30/2010 17:20

WET CHEMISTRY

Analysis Desc: EPA 300.0	Analytical Batches:				
	Batch: 1238 EPA 300.0 on 0	4/01/2010 19:31 b	y CFS		
place Parlines					
2 3.	Results				Batch Information
Parameters	mg/I Qual	Report Limit	MDL	DF Reg	ıLmt Prep Analysis
Sulfate	2950	500	43.5	1000	1238

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	Preparation Batches:						
A STATE OF THE STA	Batch: 1638 . SW-846 301	0A on 04/05/201	0 17:00 by R_\	/			
	Analytical Batches:						
	Batch: 1334 SW-846 601	0B on 04/11/2010	0 16:06 by EB	G			
0.00							
	Results					Batch In	formation
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep	Analysis
Iron	0.869	0.0200	0.00640	1		1638	1334
Manganese	14.9	0.00500	0.000300	1		1638	1334

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Ba	tches:			Value (
The state of the s	Batch: 1727 SW-846 826	0B on 04/05/2010 1	8:29 bÿ LKI	-	
Parameters	Results ug/l Qual	Report Limit	MDL	DF RegLm	Batch Information at Prep Analysis
Benzene	ND	1.0	0.10	1	1727
Ethylbenzene	ND	1.0	0.15	· 1	1727
Toluene	ND	1.0	0.29	1	1727
m,p-Xylene	ND	1.0	0.18	1	1727
o-Xylene	ND	1.0	0.13	1	1727
Xylenes, Total	ND	1.0	0.13	1	1727
4-Bromofluorobenzene (S)	106 %	74-125		1	1727
1,2-Dichloroethane-d4 (S)	93.9 %	70-130		1	1727
Toluene-d8 (S)	99.6 %	82-118		1	1727

Report ID: H10040021_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040021: Howell K-1

Project Number: Howell K-1

Lab ID:

H10040021002

Date/Time Received: 4/1/2010 09:00

Water

Matrix:

Sample ID: MW-2

Date/Time Collected: 3/30/2010 16:10

WET CHEMISTRY

Analysis Desc: EPA 300.0	Analytical Batches: Batch: 1238 EPA 300.0 on 0	04/01/2010 19:48 t	y CFS		
	Results				Batch Information
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt Prep Analysis
Sulfate	1410	500	43.5	1000	1238

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	Preparation Batches:						
	Batch: 1638 SW-846 301	0A on 04/05/2010	0 17:00 by R_V				
100 pg	Analytical Batches:						
	Batch: 1334 SW-846 601	0B on 04/11/2010	16:12 by EBG	;			
purposek kenyengang	Results					Batch Info	ormation
Parameters	mg/I Qual	Report Limit	MDL	DF	RegLmt	Prep	Analysis
Iron	ND	0.0200	0.00640	1		1638	1334
Manganese	0.140	0.00500	0.000300	1		1638	1334

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Ba Batch: 1727 SW-846 826		8:55 by L K l	-		
Parameters	Results ug/I Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis
Benzene	ND	1.0	0.10	1		1727
Ethylbenzene	ND	1.0	0.15	1		1727
Toluene	ND	1.0	0.29	1		1727
m,p-Xylene	ND	1.0	0.18	1		1727
o-Xylene	ND	1.0	0.13	1		1727
Xylenes, Total	ND	1.0	0.13	1		1727
4-Bromofluorobenzene (S)	102 %	74-125		1		1727
1,2-Dichloroethane-d4 (S)	91.3 %	70-130		1		1727
Toluene-d8 (S)	103 %	82-118		1		1727

Report ID: H10040021_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040021: Howell K-1

Project Number: Howell K-1

Lab ID:

H10040021003

Date/Time Received: 4/1/2010 09:00

Water

Matrix:

Sample ID: MW-3

Date/Time Collected: 3/30/2010 16:35

WET CHEMISTRY

Analysis Desc; EPA 300.0	Analytical Batches:				100
	Batch: 1238 .EPA 300.0 on 04	/01/2010 20:04 by	CFS		
The second secon	Particular Constitution	1886 1886			Professional Control
	Results				Batch Information
Parameters	mg/i Qual F	Report Limit	MDL	DF Re	gLmt Prep Analysis
Sulfate	1890	500	43.5	1000	1238

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	Preparation Batches:							
270	Batch: 1638 SW-846 3010	A on 04/05/2010	0 17:00 by R_\	/				Chimeran
	Analytical Batches:							on the second
	Batch: 1334 SW-846 6010	B on 04/11/2010	16:17 by EBC	}				
Parameters	Results mg/l Qual	Report Limit	MDL	DF	RegLmt	Batch In Prep	formation Analysis	A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.
Iron	ND	0.0200	0.00640	1		1638	1334	dipose.
Manganese	0.430	0.00500	0.000300	1		1638	1334	

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Ba	tches:				
	Batch: 1727 SW-846 826	0B on 04/05/2010	19:21 by LKI	14.0		
Parameters	Results ug/I Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis
Benzene	ND	1.0	0.10	1		1727
Ethylbenzene	ND	1.0	0.15	1		1727
Toluene	ND	1.0	0.29	1		1727
m,p-Xylene	ND	1.0	0.18	1		1727
o-Xylene	ND	1.0	0.13	1		1727
Xylenes, Total	ND	1.0	0.13	1		1727
4-Bromofluorobenzene (S)	98.2 %	74-125		1		1727
1,2-Dichloroethane-d4 (S)	95.9 %	70-130		1		1727
Toluene-d8 (S)	96.8 %	82-118		1		1727

Report ID: H10040021_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040021: Howell K-1

Project Number: Howell K-1

Lab ID:

H10040021004

Date/Time Received: 4/1/2010 09:00

Water

Sample ID: MW-4

Date/Time Collected: 3/30/2010 16:55

WET CHEMISTRY

Analysis Desc: EPA 300.0	Analytical Batches: Batch: 1238 EPA 300:0 on	04/01/2010 20:21 E	y CFS		
	Results				Batch Information
Parameters	mg/I Qual	Report Limit	MDL	DF	RegLmt Prep Analysis
Sulfate	3970	500	43.5	1000	1238

Matrix:

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	Preparation Batches:				and the second	
1000 mg	Batch: 1638 SW-846 3010	A on 04/05/2010	0 17:00 by R_\	1		
	Analytical Batches:				200	
	Batch: 1334 SW-846 6010	B on 04/11/2010	0 16:23 by EB	3		
			- 1			1
	Results				Batch I	nformation
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt Prep	Analysis
Iron	ND	0.0200	0.00640	1	1638	1334
Manganese	7.83	0.00500	0.000300	1	1638	1334

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Ba	atches:				
	Batch: 1727 SW-846 826	0B on 04/05/2010 1	19:48 by LKI			Maria de la companya
	Results				e de la company	Batch Information
Parameters	ug/j Qual	Report Limit	MDL	DF	RegLimt	Prep Analysis
Benzene	ND	1.0	0.10	1		1727
Ethylbenzene	ND	1.0	0.15	1		1727
Toluene	· ND	1.0	0.29	1		1727
m,p-Xylene	ND	1.0	0.18	1		1727
o-Xylene	ND ·	1.0	0.13	1		1727
Xylenes, Total	ND	1.0	0.13	1		1727
4-Bromofluorobenzene (S)	103 %	74-125		1		1727
1,2-Dichloroethane-d4 (S)	93.7 %	70-130		1		1727
Toluene-d8 (S)	100 %	82-118		1		1727

Report ID: H10040021_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040021: Howell K-1

Project Number: Howell K-1

Lab ID:

H10040021005

Date/Time Received: 4/1/2010 09:00

Matrix: Wa

Water

Sample ID: Duplicate

Date/Time Collected: 3/30/2010 16:45

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Batches: Batch: 1727 SW-846 8260B on 04/05/2010 14:03 by LKL							
Parameters	Results ug/I Qual	Report Limit	MDL	DF	Batch information RegLmt Prep Analysis			
Benzene	ND	1.0	0.10	1	1727			
Ethylbenzene	ND	1.0	0.15	1	1727			
Toluene	ND	1.0	0.29	1	1727			
m,p-Xylene	ND	1.0	0.18	1	1727			
o-Xylene	ND	1.0	0.13	1	1727			
Xylenes, Total	ND	1.0	0.13	1	1727			
4-Bromofluorobenzene (S)	102 %	74-125		1	1727			
1,2-Dichloroethane-d4 (S)	94.8 %	70-130		1	1727			
Toluene-d8 (S)	99.4 %	82-118		1	1727			

Report ID: H10040021_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040021: Howell K-1

Project Number: Howell K-1

Lab ID:

H10040021006

Date/Time Received: 4/1/2010 09:00

Water

Matrix:

Sample ID: Trip Blank

Date/Time Collected: 3/30/2010 17:45

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical B Batch: 1727 SW-846 826		16:16 by LKL	entral de la companya	
Paraméters	Results ug/I Qual	Report Limit	MDL	DF RegLmt	Batch Information Prep Analysis
Benzene	. ND	1.0	0.10	1	1727
Ethylbenzene	ND	1.0	0.15	1	1727
Toluene	ND	1.0	0.29	1	1727
m,p-Xylene	ND	1.0	0.18	1	1727
o-Xylene	ND	1.0	0.13	1	1727
Xylenes, Total	ND	1.0	0.13	1	1727
4-Bromofluorobenzene (S)	101 %	74-125		1	1727
1,2-Dichloroethane-d4 (S)	91 %	70-130		1	1727
Toluene-d8 (S)	96.9 %	82-118		1	1727

Report ID: H10040021_6089 Page 10 of 18

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10040021: Howell K-1

Project Number: Howell K-1

QC Batch:

IC/1238

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

Associated Lab Samples:

H10040013001

H10040021004

H10040017001 H10040017002 H10040022001 H10040025001

H10040021001 H10040025002

H10040021002 H10040025003 H10040021003

METHOD BLANK: 37213

Analysis Date/Time Analyst:

04/01/2010 10:36 CFS

Blank

Reporting

Parameter

Units

Result Qualifiers

Limit

Sulfate

mg/l

mg/l

mg/l

ND

0.500

LABORATORY CONTROL SAMPLE & LCSD: 37214

37223

LCS Analysis Date/Time Analyst: 04/01/2010 10:53 CFS

LCSD Analysis Date/Time

04/01/2010 21:27 CFS

Parameter

Spike Conc.

LCSD

9.391

LCSD

% Rec **RPD** Max

Sulfate

Units

LCS Result 10.17

Spike

Conc.

1000

LCS Result % Rec

102

% Rec 93.9 Limit

85-115

RPD 20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 37221

37222

Original: H10040017001

MS Analysis Date/Time Analyst:

04/01/2010 14:13 CFS

10

MSD Analysis Date/Time Analyst:

04/01/2010 15:38 CFS

107

Parameter

Sulfate

Original Units Result

MS Result 1023

MSD MS Result % Rec

91.7

1006

MSD % Rec

89.9

% Rec Limit RPD

80-120

7.9

Max **RPD**

20

1.8

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10040021_6089 Printed: 04/15/2010 18:57

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10040021: Howell K-1

Project Number: Howell K-1

QC Batch:

DIGM/1638

Analysis Method:

SW-846 6010B

QC Batch Method:

SW-846 3010A

Preparation:

04/05/2010 17:00 by R V

Associated Lab Samples:

H10040019001

H10040019002 H10040021004

H10040019003 H10040019004

H10040021001 H10040025003 H10040021002 H10040049001

H10040021003 H10040049002 H10040051003

H10040025001 H10040049003 H10040049004 H10040051004

H10040025002 H10040050001

H10040051001

H10040051002

METHOD BLANK: 37509

Analysis Date/Time Analyst:

04/11/2010 13:44 EBG

Blank Result Qualifiers Reporting Limit

Parameter Iron Manganese

mg/l mg/l

Units

ND ND

0.0200 0.00500

LABORATORY CONTROL SAMPLE: 37510

Analysis Date/Time Analyst:

04/11/2010 13:49 EBG

Parameter

Units

Spike Conc.

LCS % Rec % Rec Limits

Iron Manganese

mg/l mg/l

1.0 0.10

1.02 0.1052

Result

LCS

102 105 80-120 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 37507

37508

Original: H10040025002

MS Analysis Date/Time Analyst:

04/11/2010 14:00 EBG

MSD Analysis Date/Time Analyst:

04/11/2010 14:06 EBG

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
Iron	mg/l	0.0072	1.0	1.091	1.003	109	100	75-125	8.4	20
Manganese	mg/l	0.136	0.10	0.2285	0.2325	92.9	96.9	75-125	1.7	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10040021_6089

04/15/2010 18:57 Printed:

Page 12 of 18

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10040021: Howell K-1

Project Number: Howell K-1

QC Batch:

MSV/1726

Analysis Method:

SW-846 8260B

QC Batch Method:

SW-846 5030

Preparation:

04/05/2010 00:00 by LKL

Associated Lab Samples:

H10040021001 H10040025001 H10040021002 H10040021003 H10040025002 H10040025003 H10040021004 H10040025004 H10040021005 H10040025005 H10040021006

METHOD BLANK: 38400

Analysis Date/Time Analyst:

04/05/2010 13:36 LKL

Parameter	Units	Blank Result Qualifiers	Reporting Limit	
Benzene	ug/l	ND	1.0	
Ethylbenzene	ug/l	ND	1.0	
Toluene	ug/l	ND	1.0	
m,p-Xylene	ug/l	ND	1.0	
o-Xylene	ug/l	ND	1.0	
Xylenes, Total	ug/l	ND	1.0	
4-Bromofluorobenzene (S)	%	105	74-125	
1,2-Dichloroethane-d4 (S)	%	97.8	70-130	
Toluene-d8 (S)	%	102	82-118	•

LABORATORY CONTROL SAMPLE: 38401

Analysis Date/Time Analyst:

04/05/2010 12:43 LKL

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	
Benzene	ug/l	20	19.7	98.7	74-123	
Ethylbenzene	ug/l	20	20.8	104	72-127	
Toluene	ug/l	20	20.0	100	74-126	
m,p-Xylene	ug/l	40	43.9	110	71-129	
o-Xylene	ug/l	20	21.3	106	74-130	
Xylenes, Total	ug/l	60	65.17	109	71-130	
4-Bromofluorobenzene (S)	%			103	74-125	
1,2-Dichloroethane-d4 (S)	%			93.7	70-130	
Toluene-d8 (S)	%			100	82-118	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 38402

38403

Original: H10040021005

MS Analysis Date/Time Analyst:

04/05/2010 14:29 LKL

MSD Analysis Date/Time Analyst:

04/05/2010 14:57 LKL

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
Benzene	ug/l	ND	20	19.5	19.1	97.4	95.5	70-124	2.0	20
Ethylbenzene	ug/l	ND	20	19.8	19.6	99.2	98.0	35-175	1.3	20
Toluene	ug/l	ND	20	19.1	19.9	95.3	99.5	70-131	4.3	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10040021_6089

Page 13 of 18

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10040021: Howell K-1

Project Number: Howell K-1

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 38402

38403

Original: H10040021005

MS Analysis Date/Time Analyst:

04/05/2010 14:29 LKL

MSD Analysis Date/Time Analyst:

04/05/2010 14:57 LKL

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
m,p-Xylene	ug/l	ND	40	39.2	40.4	98.1	101	35-175	3.1	20
o-Xylene	ug/l	ND	20	19.5	19.6	97.4	98.0	35-175	0.6	20
Xylenes, Total	ug/l	ND	60	58.72	60.06	97.9	100	35-175	2.3	20
4-Bromofluorobenzene (S)	%	102				99.4	103	74-125		30
1,2-Dichloroethane-d4 (S)	%	94.8				95.9	88.4	70-130		30
Toluene-d8 (S)	%	99.4				97.7	99.9	82-118		30

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10040021_6089 Page 14 of 18

Phone: (713) 660-0901 Fax: (713) 660-8975

Legend

(S) - Indicates analyte is a surrogate

Qualifier	Qualifier Description
MI	Matrix Interference
1	Estimated value, between MDL and PQL (Florida)
JN	The analysis indicates the presence of an analyte
С	MTBE results were not confirmed by GCMS
NC	Not Calculated - Sample concentration > 4 times the spike
*	Recovery/RPD value outside QC limits
Ε	Results exceed calibration range
Н	Exceeds holding time
J	Estimated value
Q	Received past holding time
В	Analyte detected in the Method Blank
N	Recovery outside of control limits
D	Recovery out of range due to dilution
NC	Not Calculable (Sample Duplicate)
Р	Pesticide dual column results, greater then 25%

Report ID: H10040021_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: H10040021: Howell K-1

Project Number: Howell K-1

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
H10040021001	MW-1	EPA 300.0	IC/1238		
H10040021002	MW-2	EPA 300.0	IC/1238		
H10040021003	MW-3	EPA 300.0	IC/1238		
H10040021004	MW-4	EPA 300.0	IC/1238		
H10040021001	MW-1	SW-846 3010A	DIGM/1638	SW-846 6010B	ICP/1334
H10040021002	MW-2	SW-846 3010A	DIGM/1638	SW-846 6010B	ICP/1334
H10040021003	MW-3	SW-846 3010A	DIGM/1638	SW-846 6010B	ICP/1334
H10040021004	MW-4	SW-846 3010A	DIGM/1638	SW-846 6010B	ICP/1334
H10040021001	MW-1	SW-846 5030	MSV/1726	SW-846 8260B	MSV/1727
H10040021002	MW-2	SW-846 5030	MSV/1726	SW-846 8260B	MSV/1727
H10040021003	MW-3	SW-846 5030	MSV/1726	SW-846 8260B	MSV/1727
H10040021004	MW-4	SW-846 5030	MSV/1726	SW-846 8260B	MSV/1727
H10040021005	Duplicate	SW-846 5030	MSV/1726	SW-846 8260B	MSV/1727
H10040021006	Trip Blank	SW-846 5030	MSV/1726	SW-846 8260B	MSV/1727

Report ID: H10040021_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

Sample Receipt Checklist

		· · ·	
WorkOrder:	H10040021	Received By	LOG
Date and Time	04/01/2010 12:22	Carrier Name:	FEDEXS
Temperature:	4.0°C	Chilled By:	Water Ice
1. Shipping container/cooler in good condition?			YES
2. Custody seals intact on shipping container/cooler?			YES
3. Custody seals intact on sample bottles?			Not Present
4. Chain of custody present?			YES
5. Chain of custody signed when relinquished and received?			YES
6. Chain of custody agrees with sample labels?			YES
7. Samples in proper container/bottle?			YES
8. Samples containers intact?			YES
9. Sufficient sample volume for indicated test?			YES
10. All samples received within holding time?			YES
11. Container/Temp Blank temperature in compliance?			YES
12. Water - VOA vials have zero headspace?			YES
13. Water - Preservation checked upon receipt(except VOA*)?			Not Applicable
*VOA Preservation Che	cked After Sample Analysis		
SPL Representative:	SPL Representative:		:
Client Name Contacted:	:		

Report ID: H10040021_6089 Page 17 of 18

Printed: 04/15/2010 18:57

Client Instructions:

Phone: (713) 660-0901 Fax: (713) 660-8975