3R - 48 34

JUN GWMR

07/22/2010

JUL 27 A 10:

တ္

ECEIVED OCE

TETRA TECH, INC.

July 22, 2010

Mr. Glen von Gonten State of New Mexico Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

RE: Sategna No. 2E, Quarterly Groundwater Monitoring Report – June 2010 Sampling Event

Dear Mr. von Gonten:

Enclosed please find a copy of the above-referenced document created by Tetra Tech, Inc. for this Bloomfield area ConocoPhillips site.

Please do not hesitate to contact me at (505) 237-8440 if you have any questions or require additional information.

Sincerely,

Kelly & Blanchard

Kelly E. Blanchard Project Manager

Cc: Brandon Powell, NMOCD

Enclosures (1)

2010 QUARTERLY GROUNDWATER MONITORING REPORT JUNE 2010

CONOCOPHILLIPS COMPANY SATEGNA No. 2E PRODUCTION FACILITY SAN JUAN COUNTY, NEW MEXICO

OCD No. - TBD API # 30-045-24060

Prepared for:

ConocoPhillips

Risk Management and Remediation 420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

Tt	

TETRATECH, INC.

6121 Indian School Rd. NE, Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 1158690090

July 2010

TABLE OF CONTENTS

FIGL	URES	
3.0	CONCLUSIONS AND RECOMMENDATIONS	3
	2.3 Groundwater Sampling Analytical Results	3
	2.2 Groundwater Sampling Methodology	2
	2.1 Monitoring Summary	2
2.0	MONITORING SUMMARY AND SAMPLING METHODOLOGY AND RESULTS	2
	I.I Site Background	I
1.0		I

- I. Site Location Map
- 2. Site Detail Map
- 3. Groundwater Elevation Map June 2010
- 4. General Geologic Cross Section
- 5. Groundwater Quality Map (Manganese, Total Dissolved Solids, and Sulfate) June 2010

TABLES

- I. Site History Timeline
- 2. Groundwater Elevation Data Summary
- 3. Groundwater Laboratory Analytical Results Summary

APPENDICES

Appendix A. Groundwater Sampling Field Forms

Appendix B. Groundwater Laboratory Analysis Reports

QUARTERLY GROUNDWATER MONITORING REPORT SATEGNA NO. 2E, SAN JUAN COUNTY, NEW MEXICO JUNE 2010

1.0 INTRODUCTION

This report presents the results of the June 2010 quarterly groundwater monitoring event conducted by Tetra Tech, Inc. (Tetra Tech) at the ConocoPhillips Company (ConocoPhillips) Sategna No. 2E gas well production facility (Site) located on private land within Section 21, Township 29N, Range 11W of Bloomfield, New Mexico (**Figure 1**). A Site detail map is included as **Figure 2**.

I.I Site Background

The historical timeline for the privately-owned Site is summarized below, and is presented in more detail in **Table 1**.

On November 24, 2008, approximately 8 barrels of condensate were found to have been released from an on-Site, aboveground storage tank (AST) as a result of corrosion in the tank. New Mexico Oil Conservation Division (OCD) Form C-141 was filled out by ConocoPhillips staff and notice was given to OCD via electronic mail. Form C-141 stated that the well was shut down and the production tank was emptied. The spilled fluids remained in the berm and none of the condensate was recovered. On November 25, 2008, Envirotech Inc. of Farmington, New Mexico (Envirotech) obtained grab soil samples from just outside the affected area for analysis of organic vapors. Results of this analysis were below OCD recommended action levels. Envirotech also hand-augered 2 soil borings to groundwater at a depth of approximately 8 feet below ground surface (bgs) and submitted two groundwater samples to an analytical laboratory for benzene, toluene, ethylbenzene and xylenes (BTEX) analysis. Results of these analyses revealed BTEX in concentrations below OCD action levels for these constituents.

On December 4, 2008, Envirotech returned to the Site and obtained grab and composite soil samples from an excavation measuring approximately 30 feet by 18 feet by 5 feet deep (**Figure 2**). Heated headspace organic vapor results ranged from 6.5 parts per million (ppm) in a grab soil sample obtained from the bottom of the excavation to 1,400 ppm from a composite soil sample taken from the former location of the AST; the OCD action level for organic vapors is 100 ppm. Total petroleum hydrocarbons (TPH), BTEX, and chloride samples were obtained for soils analysis, and results were all below OCD action levels for BTEX. Results for TPH analysis obtained through Environmental Protection Agency (EPA) method 8015B for the composite soil sample taken at the site of the AST revealed results of 205 mg/kg; the OCD action level is 100 mg/kg. Results for TPH analysis obtained through EPA method 418.1 for the composite soil sample obtained at the location of the below ground tank revealed results of 521 mg/kg. The below ground tank was located within the berm and adjacent to the AST (**Figure 2**).

Envirotech noted seepage of groundwater into the excavation on December 4, 2008, and returned to the Site on December 5, 2008 to collect groundwater samples from the excavation for BTEX analysis. The OCD groundwater action levels for benzene, toluene, and total xylenes are 10 ug/l, 750 ug/l, and 620 ug/l, respectively. Benzene was found at a concentration of 327 ug/l, toluene was detected at 4,300 ug/l, and total xylenes were found at a concentration of 8,480 ug/L. During the week of December 8, 2008, a vacuum truck was utilized to pump the groundwater seepage from the surface of the excavated area. Once removed, further excavation took place and groundwater slowly seeped into the excavation; this process was repeated a total of 4 times. The first time water was pumped from the surface of the excavation, a hydrocarbon odor and free-phase, light non-aqueous phase liquid (LNAPL) were present. By the fourth and last event, neither the hydrocarbon odor nor free-phase LNAPL was present in the groundwater seepage. Each pumping event removed approximately 30-60 barrels of liquid from the Site.

In January 2009, Tetra Tech conducted a site visit to determine proposed groundwater monitor well locations. Groundwater monitor wells were installed at the Site on March 4, 2009 and March 5, 2009. Tetra Tech initiated quarterly groundwater monitoring events with a baseline in April 2009.

2.0 MONITORING SUMMARY AND SAMPLING METHODOLOGY AND RESULTS

2.1 Monitoring Summary

Prior to collection of groundwater samples from Monitor Wells MW-1, MW-2 and MW-3, depth to groundwater was measured in each well using a dual interface probe. Results are displayed in **Table 2**.

The casings for Monitor Wells MW-1, MW-2, and MW-3 were surveyed in March 2009 using an arbitrary reference-elevation of 100 feet. The data obtained from the Site survey and from the June 2010 sampling event was used to create a groundwater elevation map for the Site (**Figure 3**). Using these data, it was determined that the groundwater flow direction at the Site is to the southwest. A generalized geologic cross section for the Site is presented as **Figure 4**.

2.2 Groundwater Sampling Methodology

During the groundwater monitoring event, Site monitor wells were purged of at least 3 casing volumes of groundwater using a 1.5-inch diameter, polyethylene disposable bailer. While bailing each well, groundwater parameters were collected using a YSI 556 multi-parameter sonde and results were recorded on a Tetra Tech Water Sampling Field Form (**Appendix A**). Collected groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain-of-custody documentation to Southern Petroleum Laboratory (SPL) of Houston, Texas.

Each groundwater sample collected was analyzed for dissolved manganese by Environmental Protection Agency (EPA) Method 6010B; BTEX by EPA Method 8260B; and TDS by EPA Method 2540C. Results of all analyses are displayed in **Table 3**.

Tetra Tech, Inc.	2	June 2010

2.3 Groundwater Sampling Analytical Results

The New Mexico Water Quality Control Commission (NMWQCC) mandates that groundwater quality in New Mexico be protected, and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC). Groundwater quality standards have been set for the protection of human health, domestic water supply, and irrigation use. Exceedences of NMWQCC groundwater quality standards in Site monitor wells are discussed below.

• Total Dissolved Solids

The NMWQCC domestic water supply groundwater quality standard for TDS is 1,000 mg/L; groundwater collected from Monitor Wells MW-1, MW-2 and MW-3 was found to contain TDS concentrations of 2,580 mg/L, 2,590 mg/L, and 2,650 mg/L, respectively.

Manganese

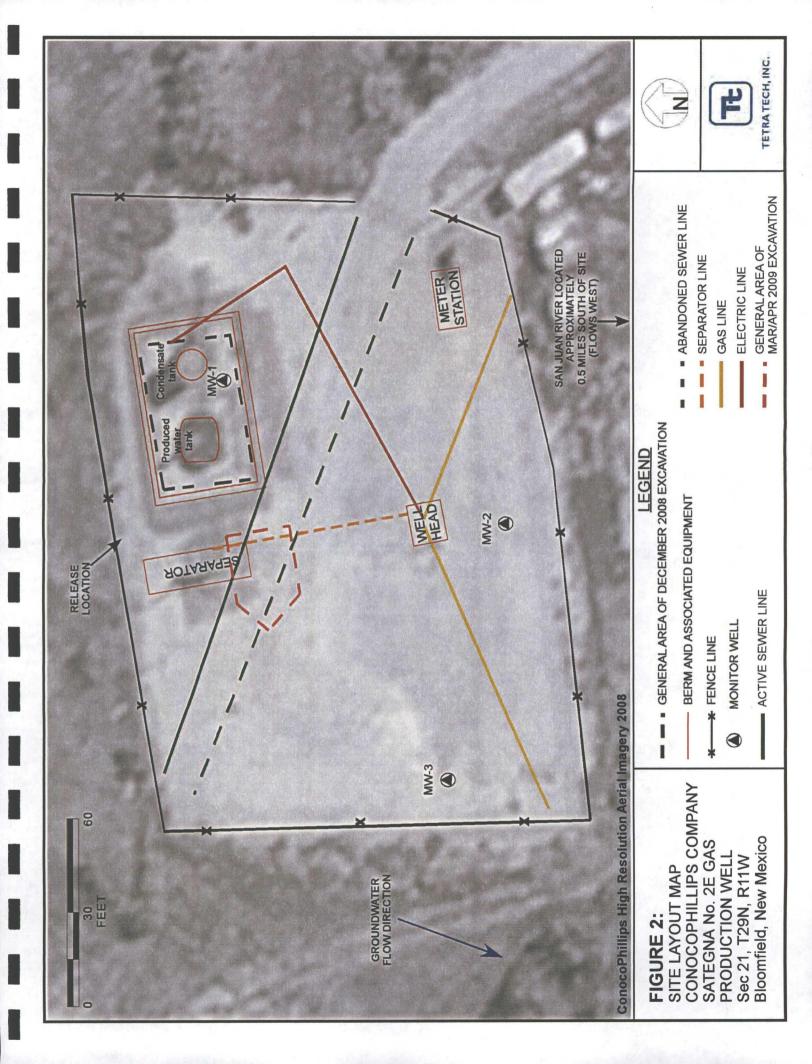
The NMWQCC domestic water supply groundwater quality standard for manganese is 0.2 mg/L; groundwater collected from Monitor Wells MW-I and MW-3 was found to contain a manganese concentration of 0.206 and 0.968 mg/L, respectively.

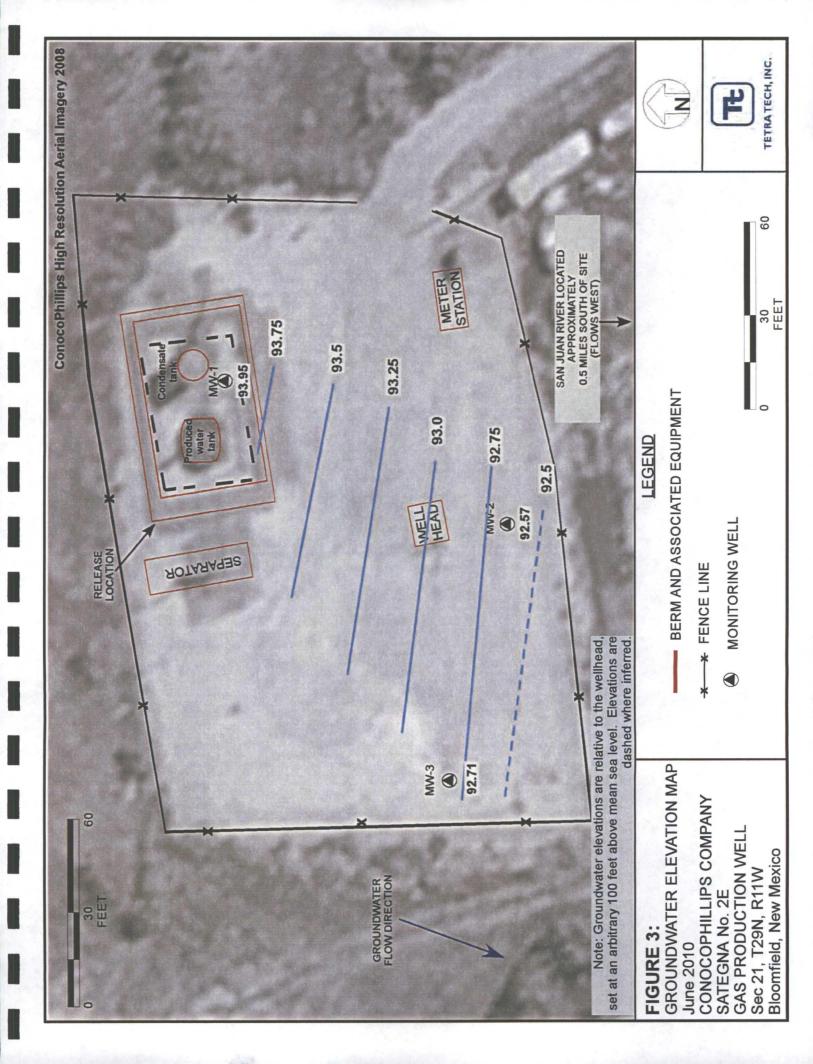
• Sulfate

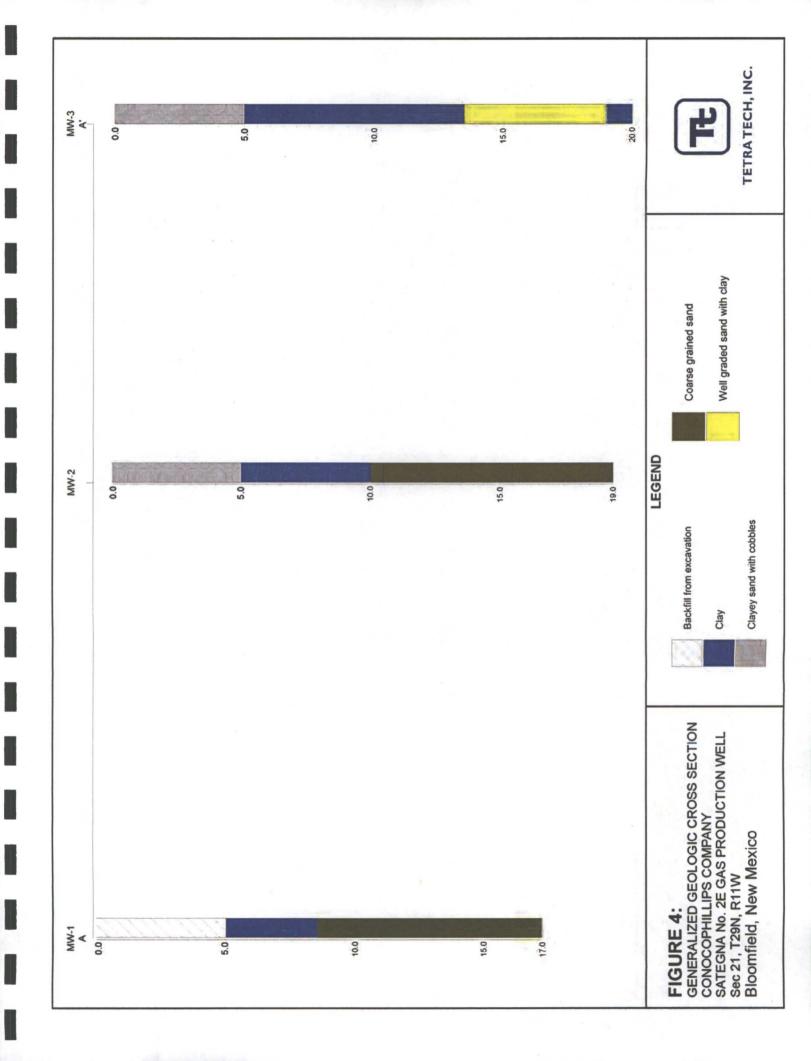
The NMWQCC domestic water supply groundwater quality standard for sulfate is 600 mg/L; groundwater collected from Monitor Wells MW-1, MW-2, and MW-3 were found to contain sulfate in concentrations of 1,330; 1,290; and 1,760; respectively.

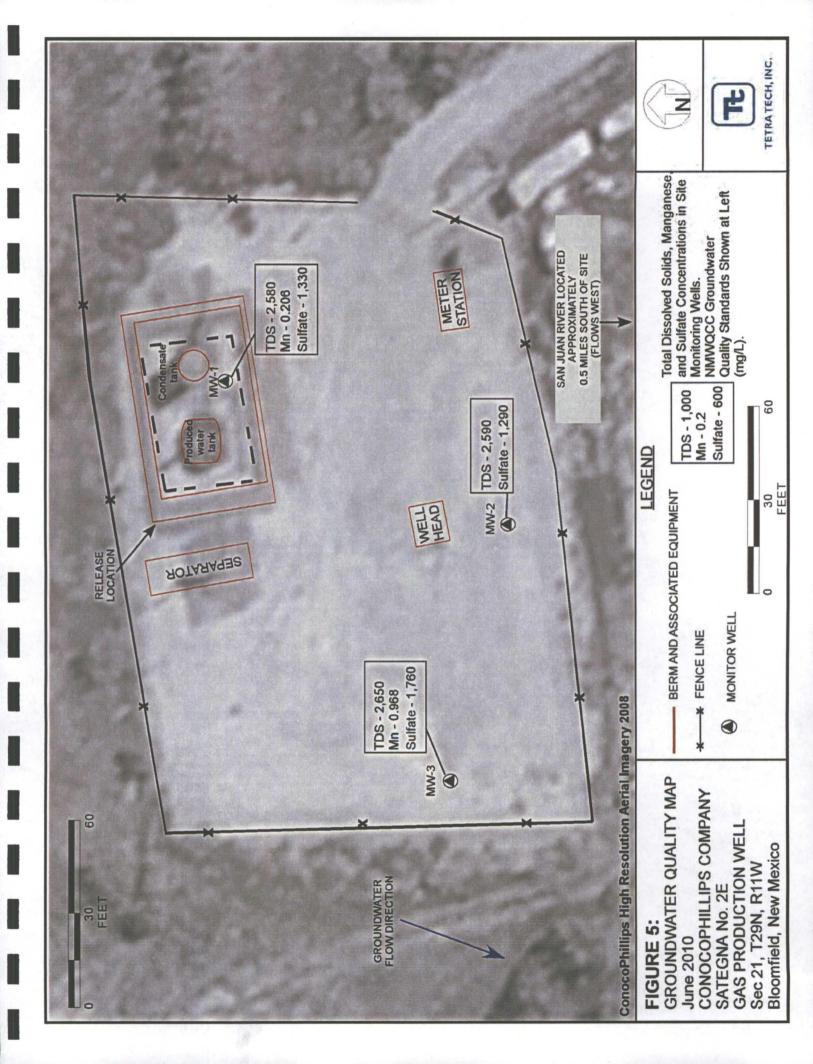
The corresponding laboratory analysis report for the June 2010 groundwater sampling event is included in **Appendix B**. A map showing TDS, manganese, and sulfate concentrations in Site wells during the June 2010 groundwater sampling event is included as **Figure 4**.

3.0 CONCLUSIONS AND RECOMMENDATIONS


The next quarterly groundwater monitoring event at the Site is scheduled for September 2010. Concentrations of dissolved manganese, sulfate and TDS have been detected above NMWQCC groundwater quality standards in groundwater monitor wells at the Site. As a result, Tetra Tech recommends that these constituents continue to be monitored as part of the quarterly monitoring program at the Site. BTEX was not found above laboratory detection limits in any Site monitor well, and Tetra Tech will continue to monitor for BTEX parameters in order to move toward Site closure.


Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.


FIGURES



ConocoPhillips High Resolution Aerial Imagery - 2008

TABLES

Table 1. Site History Timeline

Date	Activity
November 24, 2008	Approximately eight (8) barrels of condensate were found to have spiiled from an on-Site, aboveground storage tank (AST); corrosion was thought to be the cause of the release. Form C-141 was filled out by ConocoPhillips staff and notice was given to Brandon Powell via electronic mail. Form C-141 stated that the well was shut down and the production tank was emptied. The spilled fluids remained in the berm and none of the condensate was recovered.
November 25, 2008	Envirotech Inc. of Farmington, NM (Envirotech) obtained heated headspace soil results from just outside of the affected area; results were 0.2 and 1.1 parts per million (ppm). Depth of soil samples was not noted. Envirotech hand augered two soil borings to groundwater at a depth of approximately 8 feet below ground surface (bgs) and submitted groundwater samples for analysis. Results were below OCD action levels for benzene, toluene, ethylbenzene, and total xylenes (BTEX) in groundwater. Envirotech notes that groundwater levels in the soil borings increased to approximately 5 feet bgs, and groundwater beneath the Site was thought to be under confined aquifer conditions (Kerr, 2009).
December 4, 2008	Envirotech returned to the Site and obtained grab and composite soil samples from an excavation measuring approximately* 30 feet by 18 feet by 5 feet deep (Figure 2). Heated headspace results show values ranging from 6.5 ppm in a grab soil sample obtained from the bottom of the excavation to 1,400 ppm from a composite soil sample taken from the former location of the AST. Total petroleum hydrocarbons (TPH), BTEX, and chloride samples were obtained for soils analysis, and results were all below OCD action levels for BTEX; one soil sample obtained for chlorides showed results of 370 milligrams per kilogram (mg/kg). Results for TPH analysis obtained through Environmental Protection Agency (EPA) method 8015B for the composite soil sample dutioned through Environmental Protection Agency (EPA) method 8015B for the composite soil sample through Environmental Protection Agency (EPA) method 8015B for the composite soil sample taken at the site of through Environmental Protection Agency (EPA) method 8015B for the composite soil sample taken at the site of through Environmental Protection Agency (EPA) method 8015B for the composite soil sample taken at the site of through EPA method 418.1 for the composite soil sample obtained at the location of the below ground tank revealed through EPA method 418.1 for the composite soil sample obtained at the location of the below ground tank was located within the berm and adjacent to the AST (Figure 2). Results of all other soil analyses at all other sampling locations were below OCD action levels (Appendix A).
December 5, 2008	Envirotech notes seepage of groundwater into the excavation on December 4, 2008, and returns to the Site on December 5, 2008 to collect groundwater samples from the excavation for BTEX analysis. (Kerr, 2009). The OCD groundwater action levels for benzene, toluene, and total xylenes are 10 ug/l, 750 ug/l, and 620 ug/l, respectively. Benzene was found at a concentration of 327 ug/l, toluene was detected at 4,300 ug/l, and total xylenes were found at a concentration of 8,480 ug/L (Appendix A).
Week of December 8, 2008	
600	& Tetra Tech conducted a Site visit to determine proposed groundwater monitoring well locations.
March 4-5, 2009 March 2009 Anril 2, 2009	Tetra Tech installed three groundwater monitor wells at the Site: MW-1, MW-2, and MW-3. Construction and trenching for relocation of well operational equipment and tanks uncovered additional hydrocarbon impacted soils between the well head and separator tank. Work was stopped. Tetra Tech conducted the first quarteriv provindwater monitoring event at the Site
Aprıl z, zuus	I erra i ech conducted the rirst quarterry groundwater monitoring event at the Site.

Tetra Tech, Inc.

Conoco Phillips Company - Sategna No. 2E

1 of 2

Table 1. Site History Timeline

Date	Activity
	Envirotech created an exploratory trench between the proposed location of the separator tank and the well head and
	found an abandoned sewer line associated with hydrocarbon-impacted soils. The trenching was stopped and the
April 2, 2009	excavated soils were stockpiled on site.
	Tetra Tech provided oversight for removal of approximately 96 cubic yards of hydrocarbon-impacted soils located
April 23 - 24, 2009	west of the tank berm and in the vicinity of the abandoned sewer line.
June 17, 2009	Tetra Tech conducted the second quarterly groundwater monitoring event at the Site.
September 28, 2009	Tetra Tech conducted the third quarterly groundwater monitoring event at the Site.
December 14, 2009	Tetra Tech conducted the fourth quarterly groundwater monitoring event at the Site.
March 31, 2010	Tetra Tech conducted the fith quarterly groundwater monitoring event at the Site.
June 7, 2010	Tetra Tech conducted the sixth quarterly groundwater monitoring event at the Site.

Tetra Tech, Inc.

Conoco Phillips Company - Sategna No. 2E

Table 2 - Groundwater Elevation Data Summary

Well ID	Total Depth (ft bgs)	Screen Interval (ft)	*Elevation (ft) (TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Groundwater Elevation
				4/2/2009	5.15	94.21
				6/17/2009	5.43	93.93
	20.30	0.01.00	90 36	9/28/2009	5.45	93.91
	20.02	-	00.00	12/14/2009	5.06	94.30
			 .	3/31/2010	5.03	94.33
				6/7/2010	5.41	93.95
	-			4/2/2009	5.96	92.82
				6/17/2009	6.21	92.57
CINNA		3 33 - 18 33	08 78	9/28/2009	6.23	92.55
7-44141	00.07		0.00	12/14/2009	5.92	92.86
				3/31/2010	5.90	92.88
				6/7/2010	6.21	92.57
				4/2/2009	5.70	92.96
				6/17/2009	5.97	92.69
NIN 3	80 00	20,180	08.66	9/28/2009	5.96	92.70
	07'07		00.00	12/14/2009	5.63	93.03
				3/31/2010	5.61	93.05
				6/7/2010	5.95	92.71

ft = Feet

TOC = Top of casing

bgs = below ground surface

* Elevation relative to wellhead, set at 100 feet.

Tetra Tech, Inc.

ConocoPhillips Company - Sategna No. 2E

1 of 1

Table 3. Groundwater Laboratory Analytical Results Summary

Well ID	Date	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Xylenes (μg/L)	Sulfate (mg/L)	Aluminum (mg/L)	lron (mg/L)	Manganese (mg/L)	Total Dissolved Solids (mg/L)
	4/2/2009	د 5	< 5	< د 5	< 5	1790	7.25*	7.2*	2.7*	NA
	6/17/2009	< 5	< 5	< 5	< 5	1420	6.87*	5.63*	2.37*	٩N
MW-4	9/28/2009	<۲	1 >	<1 د	<1 د	1770	<0.1	<0.02	0.243	2590
	12/14/2009	2	1	۶	£	AN	AN	NA	0.152	2470
	3/31/2010	۶	<۲	ŗ	£	1320	ŇĂ	NA	0.176	2470
	6/7/2010	<1	<1	۶	4	1330	NA	NA	0.206	2580
	4/2/2009	< 5 <	< 5 <	< 5	< 5	1850	10.1*	10.4*	6.76*	٩N
	6/17/2009	< 5	< 5	<5	< 5	1610	5.24*	5.52*	2.6*	AN
C-WW	9/28/2009	< 1	1 >	< ۲	۰ ۲	1840	<0.1	0.0217	0.168	2260
7-44	12/14/2009	<1	<1	۲	4	NA	NA	NA	0.158	2470
	3/31/2010	4	1>	4	4	1530	NA	NA	0.136	2620
	6/7/2010	<1	<1	4	4	1290	NA	NA	0.157	2590
	4/2/2009	< 5	< 5	< 5	< 5	2110	0.848*	1.02*	1.9*	N A
	6/17/2009	< 5	< 5	< 5	< 5	1650	0.702*	1.49*	2.22*	NA
MW/-2	9/28/2009	< 1	< 1	< 1	< 1	2230	<0.1	<0.02	2.68	3340
	12/14/2009	4	<1	۶	2	NA	NA	AN	2.4	3060
	3/31/2010	<1	<1	₽	4	1660	NA	NA	1.71	3090
	6/7/2010	<1	<1	<1 [,]	<1	1760	AN	NA	0.968	2650
NMWQCC	NMWQCC Standards	10 (hg/L)	150 (µg/L)	750 (µg/L)	620 (µg/L)	600 (mg/L)	2 (mg/L)	1 (mg/L)	0.2 (mg/L)	1000 (mg/L)

Explanation ND = Not Detected

MMWQCC = New Mexico Water Quality Control Commission
 mg/L = miligrams per liter (parts per milion)
 µg/L = micrograms per liter (parts per billion)
 NA = Not Analyzed
 C0.7 = Below laboratory detection limit of 0.7 ug/L
 60.7 = Below laboratory detection limit of 0.7 ug/L
 61.8 = concentrations that exceed the NMWQCC limits
 * = Results reported for total metals analysis, results cannot be compared to NMWQCC Standards for dissolved metals

Tetra Tech, Inc.

ConocoPhillips Company - Sategna No. 2E

1 of 1

· · ·

.

· · ·

APPENDICES

APPENDIX A

Groundwater Sampling Field Forms

ĺ

R

Project Name Sategna 2E	· · · · · · · · · · · · · · · · · · ·		· <u> </u>	Page	1	l_of	3
əct No.		·					
Site Location Bloomfield, NM			<u> </u>		I	1	
Site/Well No. <u>MW-1</u>	Coded/ Replicate N		ate 13	Date	6]7	<u>1/11</u>	
Weather Sunny, Not	<u> </u>	1310)	Completed	·····	132	5
		EVACUATIO	N DATA				
Description of Measuring Point (MF	P) Top of Casing		<u></u>		<u></u>		·
Height of MP Above/Below Land S	urface		MP Elevation	<u></u>	·		
Total Sounded Depth of Well Below	v MP	20.18	Water-Level Ele	evation			
Held Depth to Water B	<u> </u>	1	Diameter of Ca				
Wet Water Column	11	,11	Gallons Pumpe Prior to Samplir	(/Bailed)	7.25		
	- <u></u>		i noi to oampiii	'a _ <u> </u>		<u> </u>	
	per Foot	<u> </u>	Sampling Pump		د		
			(feet below land	I surface)			<u></u>
Purging Equipment Purge pun	np (Bailer)	X.3= 7.0	13				<u> </u>
Time Temperature (°C)		MPLING DATAFIEL	D PARAMETER	DO (mg/L)	DO %	ORP (mV)	Volume
			TDS (g/L)	1.68	15.8	1976	5.5
1320 12.94		1.816		1 (1(27))	10.2		
1320 12.94	7.28	20827		1.45	13,7	190.5	6.0
		2.825		1.45	13,7	190.5 1.79.1	6.0
1322 12.96	7.27	2.825		1.45	13,7	[90.5 [.79.]	6.0 6-1
1322 12.96	7.27	2.825		1.45	13,7	190,5 179,1	6.0 6.1
1322 12.96	7.27	2.825		1.45	13,7	190.5 179.1	6.0 6-1
1322 12.96 1324 12.61	7:27 7:28 Purge Purp/Bail	2.825		1.45	13,7	190.5 179.1	6.0 6.1
1322 12.96 1324 12.61 Sampling Equipment Constituents Sampled	7:27 7:28 Purge Purp/Bail	2.825 er Container Description	1	1.45	13,7	190.5 179.1	6.0 6.1
1322 12.96 1324 12.61 Sampling Equipment <u>Constituents Sampled</u> BTEX	7:27 7.28 Purge Purp/Bail	2:825 er Container Description		1,45 1,34	13,7	190.5 179.1	6.0
1322 12.96 1324 12.61 Sampling Equipment	7:27 7:28 Purge Purp/Bail	2.825		<u>1,45</u> <u>1,34</u> нсі	13,7	190.5 179.1	6.0
322 12.96 1324 12.61 Sampling Equipment Constituents Sampled BTEX Dissolved Mn	7:27 7:28 Purge Purp/Bail <u>3 40mL VO</u> <u>16 oz Plast</u>	2.825		<u>I, 45</u> <u>I, 34</u> <u>HCI</u> None	13,7		6.0
322 12.96 1324 12.61 Sampling Equipment Constituents Sampled BTEX Dissolved Mn	7:27 7:28 Purge Purp/Bail <u>3 40mL VO</u> <u>16 oz Plast</u>	2.825	sheen or	<u>I, 45</u> <u>I, 34</u> <u>HCI</u> None	13,7	190,5 179+1 179+1	6.0
322 12.96 1322 12.61 1324 12.61 Sampling Equipment Constituents Sampled BTEX Dissolved Mn Sulfate, TDS	7:27 7:28 Purge Purp/Bail <u>3 40mL VO</u> <u>16 oz Plast</u>	2.825	hæn or	<u>I, 45</u> <u>I, 34</u> <u>HCI</u> None	13,7	190.5 179.1 179.1	
1322 12.96 1322 12.61 1324 12.61 Sampling Equipment Constituents Sampled BTEX Dissolved Mn Sulfate, TDS Remarks 12.015	7:27 7:28 Purge Purp/Bail <u>3 40mL VO</u> <u>16 oz Plast</u>	2.825 er Container Description A's ic ic ic ic ic ic ic ic ic ic ic ic ic	then or ussie F	HCI None BOLAC	13,7	190.5 179.1	
1322 12.96 1322 12.61 Sampling Equipment <u>Constituents Sampled</u> BTEX Dissolved Mn Sulfate, TDS Remarks 12.15 Sampling Personnel	7:27 7:28 Purge Purp/Bail <u>3 40mL VO</u> <u>16 oz Plast</u>	2.825 er Container Description A's ic ic ic Well Casing	then or assie F	HCI None BOLAC	13,7	r.d.	

· · · · · · · · · · · · · · · · · · ·						
TETRA TECH, INC.	WATER SA	AMPLING F		M		
Project Name Sategna 2E			Page	2	of	· 3
)ct No.	·					
Site Location Bloomfield, NM					1	
	oded/ eplicate No.		Date	6	7/10	
Charles last Que Ti	me Sampling 1245		Time Samplin Completed	9 /	300	
1.	EVACUATION	I DATA		`		
Description of Measuring Point (MP) Top of (Casing			. <u></u>		
Height of MP Above/Below Land Surface	. <u></u>	MP Elevation				
Total Sounded Depth of Well Below MP	20.9 20.85	Water-Level Ele	evation			
Held Depth to Water Below MP	6.21	Diameter of Ca	sing 2"		·	
Wet Water Column in Well	14.64	Gallons Pumpe Prior to Samplir	d/Báiled'	7.5	25 ac	llons
Gallons per Foot	0.16				U.	
Gallons in Well	2.34	Sampling Pump (feet below land			·	
Purging Equipment Purge pump Bailer	$\chi_3 = 7.02$	7				
	SAMPLING DATA/FIELI	D PARAMETER	S			•
Time Temperature (°C) pl	- Conductivity (µS/cm ³)		DO (mg/L)	DO %	ORP (mV)	Volume
1259 12,99 6,90	$\begin{array}{c c} p & -Liy 5(p) \\ 13 & 7 & 065 \end{array}$		102	148	1202	
	910 1.9 43	· · · ·	1,40	1210	229,1	7,0
	-					
Sampling Equipment Purge P	Pump/Bailer					
Constituents Sampled	Container Description			Pres	ervative	
BTEX 3	40mL VOA's		HCI			
Dissolved Mn16	oz Plastic		None			•
Sulfate, TDS 32	2 oz Plastic		None			
Remarks <u>H.O. is light</u> Sampling Personnel <u>(MiSHIM</u> ,	F Murky broz Matteress & Ci	unij <u>No a</u> Ussie Br	br or	Gheen	doent	d
	Well Casing V	/olumes	····			
Gal./ft. 1 ¼" = 0.077	2" = 0.16		0.37	4" = 0.65		
$1 \frac{1}{2}$ = 0.10	$2\frac{1}{2} = 0.24$	$3^{n}\frac{1}{2} = 0$		6" = 1.46		

	· ·				
Project Name Sategna 2E	·		Page	<u>3</u> of	3
ect No.					
Site Location Bloomfield, NM	Coded/	<u> </u>		1/1/10	
Site/Well No. <u>MW-3</u>	Replicate No	J 1 gmm	Date	6[1]()	<u> </u>
Weather SUNN, NOT	Began	45	Completed	1345	
1	EVAC	JATION DATA			
Description of Measuring Point (MP	Top of Casing		· · · · · · · · · · · · · · · · · · ·		
Height of MP Above/Below Land Su	rface	MP Elevation			
Total Sounded Depth of Well Below	MP	Water-Level E	Elevation		
Held Depth to Water Be	low MP 5,95	Diameter of C Gallons Pump	asing 2"		
Wet Water Column	in Well 14,26	Prior to Samp		5.5 (baile	ed dry &
Gallons		Sampling Pur	np Intake Setting	~	
Gallons	in Well <u>2.28</u>	feet below la		\mathcal{L}	
Purging Equipment Purge pum	p (Bailer) $\chi 3 = 6$				
Time Temperature (°C)	SAMPLING DAT	A/FIELD PARAMETE S/cm ³) TDS (g/L)		00 % ORP (mV	/) Volume (gal.
Time Temperature (°C)	7,51 3,333)	2,40	2206 -17.4	4.5
1342 260	7.41 3.335	3	1.72	6.3 -53,4	15.0
1344 12.30	7.38 3.336	2	1.48	4.0-706	5.2
<u></u>					
Sampling Equipment	Purge Pump/Bailer	,,,,,,		L	
Constituents Sampled	<u>Container Des</u>	scription	<u></u> *	Preservative	
BTEX	3 40mL VOA's		HCI		
Dissolved Mn	16 oz Plastic	· · · ·	None		
Sulfate, TDS	32 oz Plastic	<u>, , , , , , , , , , , , , , , , , , , </u>	None p		177-2
- Cliph ul	daya ~ 3ga	tons and	ne slight	veris e	1250
Remarks $5 (A + 0) (A + 0)$	intra matance	Cassie B	O'SWIT (May (DiDi	
Sampling Personnel (//)/			rain -		
		asing Volumes			
Gal./ft. 1 ¼" : 1 ½" :	= 0.077 $2" = 0.16= 0.10 2\frac{1}{2}" = 0.24$		= 0.37 4" = 0.50 6"	= 0.65 = 1.46	
				·	

ß

APPENDIX B

Groundwater Laboratory Analysis Reports

1

SPL Inc. 8880 Interchange Drive Houston, TX 77054

Phone: (713) 660-0901 Fax: (713) 660-8975

	Certificate of Analysis		
June 24, 2010	Workorder: H10060241		
Cassandre Brown	Project: COP - Sategna 2E		
Tetra Tech, Inc. 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110	Project Number: Sategna 2E		
	Site: Bloomfield, New Mexico		
	PO Number: ENFOS		
	NELAC Cert. No.: T104704205-09-1		

This Report Contains A Total Of 17 Pages

Excluding Any Attachments

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis June 24, 2010 Workorder: H10060241 Project: COP - Sategna 2E Cassandre Brown Tetra Tech. Inc. Project Number: Sategna 2E 6121 Indian School Road NE Suite 200 Site: Bloomfield, New Mexico Albuquerque, NM 87110 PO Number: ENFOS NELAC Cert. No.: T104704205-09-1 1. SAMPLE RECEIPT: All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist. II: ANALYSES AND EXCEPTIONS: Per the Conoco Phillips TSM Revision 0, a copy of the internal chain of custody is to be included in final data package. However, due to LIMS limitations, this cannot be provided at this time. Ion Chromatography, Method 300: Your sample ID "MW-1" (SPL ID: H10060241001) was randomly selected for use in SPL's quality control program for Batch ID IC/1330 The Matrix Spike Duplicate (MSD) recovery was outside of the advisable quality control limits for Sulfate due to matrix interference. A Laboratory Control Sample (LCS) was analyzed as a quality control check for the analytical batch and all recoveries were within acceptable limits.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Report ID: H10060241_6125 Printed: 06/24/2010 19:55

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis June 24, 2010 Workorder: H10060241 Cassandre Brown Project: COP - Sategna 2E

Tetra Tech, Inc. 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110 Project: COP - Sategna 2E Project Number: Sategna 2E Site: Bloomfield, New Mexico PO Number: ENFOS NELAC Cert. No.: T104704205-09-1

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

Erica Cardenas, Senior Project Manager

Enclosures

Phone: (713) 660-0901 Fax: (713) 660-8975

SAMPLE SUMMARY

Workorder: H10060241 : COP - Sategna 2E

Į

l

E

Project Number: Sategna 2E

Lab ID	Sample ID	Matrix		Date/Time Collected	Date/Time . Received
H10060241001	MW-1	Water		6/7/2010 00:00	6/10/2010 09:30
H10060241002	MW-2	Water		6/7/2010 00:00	6/10/2010 09:30
H10060241003	MW-3	Water		6/7/2010 00:00	6/10/2010 09:30
H10060241004	Duplicate	Water	i.	6/7/2010 00:00	6/10/2010 09:30

Report ID: H10060241_6125 Printed: 06/24/2010 19:55

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060241 : COP - Sategna 2E

Project Number: Sategna 2E

Water

Lab ID:	H10060241001	Date/Time Received:	6/10/2010 09:30	Matrix:
Sample ID:	MW-1	Date/Time Collected:	6/7/2010 00:00	

Analytical Batches:

WET CHEMISTRY

Analysis	Desc: EPA	300.0	Silent	
South State Stat				

	Batch: 1330 EPA 300.0 o	n 06/11/2010 11:20	by CFS	ar Se d		
Parameters	Results mg/l Qual	Report Limit	MDL	DF	RegLmt	Batch Information
Sulfate	1330	50.0	4.35	100		1330
Analysis Desc: SM 2540 C	Analytical Batches: Batch: 1649 SM 2540 C d	on 06/12/2010 12:1	5 by CFS			
Parameters	Results mg/l ^{Qual}	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis
Residue, Filterable (TDS)	2580	20.0	7.88	2		1649

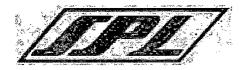
je, riitera

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	Preparation Batches:			<i>a</i> ()		
	Batch: 1819 SW-846 3010	A on 06/10/2010	0 15:00 by R_V	/		
	Analytical Batches:					
	Batch: 1456 SW-846 6010	B on 06/18/2010	0 13:25 by EBC	G		
	Results					formation
Parameters	mg/l Qual	Report Limit	MDL	DF Re	gLmt Prep	Analysis
Manganese	0.206	0.00500	0.000300	1	1819	1456

VOLATILES

Analysis Desc: SW-846,8260B	SW-846 5030Analytical Ba	tches:			
 A statistical particular statistical provides and the statistical particular statisticae statisticae statisticae statisticae statisticae statisticae statisticae statisticae statis statisticae statisticae statisticae statisticae statisticae	Batch: 2049 SW-846 826	0B on 06/16/2010 2	20:52 by JM	2	
Parameters	Results ug/i Qual	Report Limit	MDL.	DF	Batch Information RegLmt Prep Analysis
Benzene	ND	1.0	0.10	1	2049
Ethylbenzene	ND	1.0	0.15	1	2049
Toluene	ND	1.0	0.29	1	2049
m,p-Xylene	ND	1.0	0.18	1	2049
o-Xylene	ND	1.0	0.13	1	2049
Xylenes, Total	ND	1.0	0.13	1	2049
4-Bromofluorobenzene (S)	88.8 %	74-125		1	2049
1,2-Dichloroethane-d4 (S)	84.9 %	70-130		1	2049
Toluene-d8 (S)	100 %	82-118		1	2049


SPL Inc. 8880 Interchange Drive Houston, TX 77054

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060241 : COP - Sategna	2E				Project N	umber: Sat	egna 2
Lab ID: H10060241002 Sample ID: MW-2		e Received: 6/10/ e Collected: 6/7/2		Matrix:	Water		
WET CHEMISTRY							
Analysis Desc: EPA 300.0	Analytical Batches:					1000	
	Batch: 1330 EPA 300.0 c	on 06/11/2010 11:3	6 by CFS		24		64)
	Describe		1999. 1997			Datab lafa	
Parameters	Results mg/l = Qual	Report Limit	MDL	DF I	RegLmt	Batch Info Prep /	
Sulfate	1290	50.0	4.35	100			133
		50.0	4.00	100			
Analysis Desc: SM 2540 C	Analytical Batches:						
	Batch: 1649 SM 2540 C	on 06/12/2010 12:	15 DY CFS				
	Results					Batch Info	rmatio
Parameters	mg/l Qual	Report Limit	MDL	DF I	RegLmt		Analys
Residue, Filterable (TDS)	2590	20.0	7.88	2			164
ICP DISSOLVED METALS							
Analysis Desc: SW-846 6010B	Preparation Batches:	a succession of					
	Batch: 1819 SW-846 301	10A on 06/10/2010	15:00 by R_\	í.			
	Analytical Batches:						
a series and the series of the	Batch: 1456 SW-846 601	10B on 06/18/2010	14:20 by EB	G			1. 19 A.
	Results	Description	МО	55	Developed	Batch Info	
Parameters	mg/l Qual	Report Limit	MDL		RegLmt	Prep /	
Manganese	0.157	0.00500	0.000300	1		1819	145
VOLATILES							
Analysis Desc: SW-846 8260B	SW-846 5030Analytical B		e de la composición d				1911 - 1914
	Batch: 2049 SW-846 826	30B on 06/16/2010	21:20 by JM	3			
	Results					Batch Info	rmatic
Parameters	ug/I Qual	Report Limit	MDL	DF I	RegLmt	S. 1997 1. 36 C. 30 (C. C. 196) 110	nnauo Analys
Benzene	1.7	1.0	0.10	1			204
Ethylbenzene	ND	1.0	0.15	1			204

Benzene	1.7	1.0	0.10	1	2049
Ethylbenzene	ND	1.0	0.15	1	2049
Toluene	ND	1.0	0.29	1	2049
m,p-Xylene	ND	1.0	0.18	1	2049
o-Xylene	ND	1.0	0.13	1	2049
Xylenes, Total	ND	1.0	0.13	1	2049
4-Bromofluorobenzene (S)	88 %	74-125		1	2049
1,2-Dichloroethane-d4 (S)	86.6 %	70-130		1	2049
Toluene-d8 (S)	100 %	82-118		1	2049

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060241 : COP - Sategna 2E

Project Number: Sategna 2E

Lab ID:	H10060241003	Date/Time Received:	6/10/2010 09:30	Matrix:	Water
Sample ID:	MW-3	Date/Time Collected:	6/7/2010 00:00		

WET CHEMISTRY

Ĺ

Analysis Desc: EPA 300.0	Analytical Batches:				Ac 13	
	Batch: 1330 EPA 300.0 or	06/11/2010 11:52	by CFS			
	Results					Batch Information
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep Analysis
Sulfate	1760	50.0	4.35	100		1330
Analysis Desc: SM 2540 C	Analytical Batches:			00.000		
	Batch: 1649 SM 2540 C o	n 06/12/2010 12:15	5 by CFS			
			1.			
	Results					Batch Information
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep Analysis
Residue, Filterable (TDS)	2650	20.0	7.88	2		1649

ICP DISSOLVED METALS

Manganese	0.968	0.00500	0.000300	1		1819	1456
Parameters	mg/I Qual	Report Limit	MDL	DF	RegLmt	Prep	Analysis
	Results			1.1		Batch Info	rmation
			- 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 194				
a an ann an Air an A	Batch: 1456 SW-846 6010)B on 06/18/201	0 14:26 by EB	G			
	Analytical Batches:						
	Batch: 1819 SW-846 3010	A on 06/10/2010	0 15:00 by R_	V			
Analysis Desc: SW-846 6010B	Preparation Batches:				1. L.		

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Ba	atches:				
	Batch: 2049 SW-846 826	0B on 06/16/2010 2	21:48 by JM	С		
Parameters	Results ug/l Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis
Benzene	· ND	1.0	0.10	1	•	2049
Ethylbenzene	· ND	1.0	0.15	່ 1		2049
Toluene	ND	1.0	0.29	1		2049
m,p-Xylene	ND	1.0	0.18	1		2049
o-Xylene	ND	1.0	0.13	1		2049
Xylenes, Total	ND	1.0	0.13	1		2049
4-Bromofluorobenzene (S)	87.4 %	74-125		1		2049
1,2-Dichloroethane-d4 (S)	84.5 %	70-130	•	1		2049
Toluene-d8 (S)	101 %	82-118		1		2049

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060241 : COP - Sategna 2E

Project Number: Sategna 2E

Lab ID: H10060241004 Date/Time Received: 6/10/2010 09:30 Matrix:

Sample ID: Duplicate

Date/Time Collected: 6/7/2010 00:00

Water

VOLATILES

1

ļ

Analysis Desc: SM/ 8/6 8260B

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Bat	iches:				
	Batch: 2049 SW-846 8260)B on 06/16/2010 2	2:16 by JM	C		
Parameters	Results ug/I Qual *	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis
Benzene	ND	1.0	0.10	1		2049
Ethylbenzene	ND	1.0	0.15	1		2049
Toluene	ND	1.0	0.29	1		2049
m,p-Xylene	ND	1.0	0.18	1		2049
o-Xylene	ND	1.0	0.13	1		2049
Xylenes, Total	ND	1.0	0.13	1		2049
4-Bromofiuorobenzene (S)	89.2 %	74-125		1		2049
1,2-Dichloroethane-d4 (S)	84.2 %	70-130		1		2049
Toluene-d8 (S)	102 %	82-118		1		2049

0141 040 50004

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

	COP - Sategna 2E					1 10,000	t Number: S	atogine
	GM/1819 /-846 3010A	,	Analysis Meth Preparation:		-846 6010B 0/2010 15:00 by	R_V		•
Associated Lab Samples:	H10060237001 H10060241003 H10060245002 H10060245005	B H100602430 2 H100602450	01 H100602	43002	H10060237004 H10060243003 H10060247001	H10060241001 H10060243004 H10060247002	H100602 H100602 H100602	245001
METHOD BLANK: 50257								
Analysis Date/Time Analy	/st: 06/18/2010) 13:14 EBG						
Parameter	Units		Blank Result Quali	fiers	Reporting Limit			
Manganese	mg/l		ND		0.00500			
LABORATORY CONTRO	L SAMPLE: 5025	8		<u></u>			<u></u> ,,,,	
Analysis Date/Time Analy	/st: 06/18/201	10 13:20 EBG	·					
		-	Spike	LCS	LCS % Rec	% Rec Limits		
Parameter	Ųnits		Conc.	Result	, 70 Rec	Enno		
Parameter Manganese	Ųnits `mg/l		0.10	0.1008	101	80-120		
Manganese	`mg/l	TE: 50259				80-120		
Manganese MATRIX SPIKE & MATRI	mg/l	TE: 50259 6/18/2010 13:32 E	0.10		101	80-120		
Manganese MATRIX SPIKE & MATRI MS Analysis Date/Time A	mg/i X SPIKE DUPLICA		0.10 50260 EBG		101	80-120		
•	mg/i X SPIKE DUPLICA	5/18/2010 13:32 E 5/18/2010 13:38 E Original S	0.10 50260 EBG		101 Original: H10 MS	80-120 060241001		Max RPD

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060241_6125

E

Printed: 06/24/2010 19:55

Page 9 of 17

SPL Inc. 8880 Interchange Drive Houston, TX 77054

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

	DP - Sategna 2E	•						Project 1	Number: S	
QC Batch: IC/13:	30		Analy	ysis Methoo	I: EP/	A 300.0				
QC Batch Method: EPA 3	300.0									
Associated Lab Samples:	H10060241001 H10060243004 H10060269001	H10060241 H10060247 H10060275	'001 H	H10060241 H10060247 H10060283	002	H1006024300 H1006024700 H1006028300	3 H10060)243002)247005)283003	H100602 H100602 H100602	26200
METHOD BLANK: 50605										
Analysis Date/Time Analyst	t: 06/11/2010 0	9:09 CFS								
Parameter	Units		Bla Res	nk ult Qualifie	rs	Reporting Limit	~			
Sulfate	mg/l		Ν	١D		0.500				
LABORATORY CONTROL S	SAMPLE & LCSD	50606		50607						
LCS Analysis Date/Time An	nalyst: 06/11/2010	09:25 CFS		50007						
LCS Analysis Date/Time An LCSD Analysis Date/Time Parameter	nalyst: 06/11/2010		LCS Result	LCSD	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD	
LCS Analysis Date/Time An LCSD Analysis Date/Time	nalyst: 06/11/2010 06/11/2010	09:25 CFS 21:00 CFS Spike	LCS	LCSD				RPD 6.8 ~		
LCS Analysis Date/Time An LCSD Analysis Date/Time Parameter	nalyst: 06/11/2010 06/11/2010 Units mg/l	09:25 CFS 21:00 CFS Spike Conc. 10	LCS Result 9.469	LCSD Result	% Rec	% Rec 101	Limit	6.8	RPD	
LCS Analysis Date/Time An LCSD Analysis Date/Time Parameter Sulfate MATRIX SPIKE & MATRIX S	nalyst: 06/11/2010 06/11/2010 Units mg/I SPIKE DUPLICATE	09:25 CFS 21:00 CFS Spike Conc. 10	LCS Result 9.469	LCSD Result 10.14	% Rec	% Rec 101	Limit 85-115	6.8	RPD	
LCS Analysis Date/Time An LCSD Analysis Date/Time Parameter Sulfate MATRIX SPIKE & MATRIX S MS Analysis Date/Time Ana	nalyst: 06/11/2010 06/11/2010 Units mg/I SPIKE DUPLICATE	09:25 CFS 21:00 CFS Spike Conc. 10 E: 50610	LCS Result 9.469 CFS	LCSD Result 10.14	% Rec	% Rec 101	Limit 85-115	6.8	RPD	
LCS Analysis Date/Time An LCSD Analysis Date/Time Parameter Sulfate	nalyst: 06/11/2010 06/11/2010 Units mg/I SPIKE DUPLICATE	09:25 CFS 21:00 CFS Spike Conc. 10 11/2010 16:58 11/2010 17:15 Original	LCS Result 9.469 CFS	LCSD Result 10.14	% Rec	% Rec 101 Original: H	Limit 85-115	6.8	RPD 20	Ma

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060241_6125

Printed: 06/24/2010 19:55

Page 10 of 17

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

QC Batch: WET	Batch: WETS/1649					540 C			
QC Batch Method: SM 2	540 C						-		
Associated Lab Samples:	ab Samples: H10060196001 H10060241001 H100602410 H10060245003 H10060245004 H100602470				10060241003 10060247002			H10060245002 H10060247005	
METHOD BLANK: 50631								,	
Analysis Date/Time Analyst	:: 06/12/2010 12	2:15 CFS							
Parameter	Units		Blank Resulf	Qualifiers	ſ	Reporting Limit			
Residue, Filterable (TDS)	mg/l		ND	1		10.0			
LABORATORY CONTROL	SAMPLE & LCSD:	50632	50)633					
LCS Analysis Date/Time Ar	nalyst: 06/12/2010	12:15 CFS							
LCSD Analysis Date/Time	06/12/2010	12:15 CFS							
Parameter	Units	Spike Conc.	LCS Result	LCSD L Result % F	CS tec	LCSD % Rec	% Rec Limit	RPD	Max RPD
Residue, Filterable (TDS)	mg/l	200	201.0	199.0 1	00	99,5	95-107	1.0	10
SAMPLE DUPLICATE: 506	335		Original:	H100602470	05				<u></u>
Parameter	Units	Original · Result ·	DUI Resu		RPD	Max RPD	DF	-	
WET CHEMISTRY Residue, Filterable (TDS)	mg/l	3380	338	0	0.1	10	2 2		
SAMPLE DUPLICATE: 506	336		Original:	H100602410	001				·
Parameter	Units	Original Result	DU Resu		RPD	Max RPD	DF	-	
WET CHEMISTRY Residue, Filterable (TDS)	mg/l	2580	258	0	0.1	10	2		

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

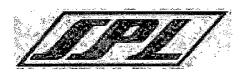
Report ID: H10060241_6125

Printed: 06/24/2010 19:55

l

SPL Inc. 8880 Interchange Drive Houston, TX 77054

Phone: (713) 660-0901 Fax: (713) 660-8975


QUALITY CONTROL DATA

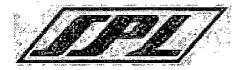
	048		Analysis Method	SW-	-846 8260B				
QC Batch Method: SW-840	6 5030		Preparation:	06/1	6/2010 00:00 by	JMC	•		
	H10060233002 H10060237004 H10060241004 H10060243006	H10060233003 H10060237005 H10060243001	H100602330 H100602370 H100602430	06	H10060237001 H10060241001 H10060243003	H100602 H100602 H100602	241002	H10060 H10060 H10060	241003
METHOD BLANK: 51465									
Analysis Date/Time Analyst:	06/16/2010 15	5:16 JMC							
Parameter	Units		Blank Result Qualifier	5	Reporting Limit				
Benzene	ug/l		ND		1.0				
Ethylbenzene	ug/l		ND		1.0				
Toluene	ug/l		ND		1.0				
m,p-Xylene	ug/l		ND		1.0				
o-Xylene	ug/l		ND		1.0				
Xylenes, Total	ug/l		ND		1.0				
4-Bromofluorobenzene (S)	%		90.4		74-125				
• •									
1,2-Dichloroethane-d4 (S)	% %		89.2 100		70-130 82-118				
Toluene-d8 (S)	70				02-110				
LABORATORY CONTROL SA	AMPLE: 51466								
	AMPLE: 51466 06/16/2010	14:48 JMC	Spike	LCS	LCS	. %	Rec		;
Analysis Date/Time Analyst:		14:48 JMC	•	LCS Result	LCS % Rec		Rec imits		i
Analysis Date/Time Analyst: Parameter	06/16/2010	14:48 JMC	•			L			:
Analysis Date/Time Analyst: Parameter Benzene	06/16/2010 Units	14:48 JMC	Conc. I	Result	% Rec	L 74	imits		:
Analysis Date/Time Analyst: Parameter Benzene Ethylbenzene	06/16/2010 Units ug/l	14:48 JMC	Conc. I 20	Result 16.3	% Rec 81.4	L 74 72	imits -123		:
Analysis Date/Time Analyst: Parameter Benzene Ethylbenzene Toluene	06/16/2010 Units ug/l ug/l	14:48 JMC	Conc. I 20 20	Result 16.3 17.9	% Rec 81.4 89.6	L 74 72 . 74	imits -123 -127		;
Analysis Date/Time Analyst: Parameter Benzene Ethylbenzene Toluene m,p-Xylene	06/16/2010 Units ug/l ug/l ug/l	14:48 JMC	Conc. I 20 20 20	Result 16.3 17.9 20.5	% Rec 81.4 89.6 102	74 72 . 74 71	imits 123 127 126		:
Analysis Date/Time Analyst: Parameter Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene	06/16/2010 Units ug/l ug/l ug/l ug/l	14:48 JMC	Conc. I 20 20 20 40 20	Result 16.3 17.9 20.5 37.3	% Rec 81.4 89.6 102 93.3	L 74 72 74 74 71 74	-123 -127 -126 -129		:
Analysis Date/Time Analyst: Parameter Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene Xylenes, Total	06/16/2010 Units ug/l ug/l ug/l ug/l ug/l	14:48 JMC	Conc. I 20 20 20 40 20	Result 16.3 17.9 20.5 37.3 19.3	% Rec 81.4 89.6 102 93.3 96.6	L 74 72 74 71 74 71 74	imits -123 -127 -126 -129 -130		:
Analysis Date/Time Analyst: Parameter Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene Xylenes, Total 4-Bromofluorobenzene (S)	06/16/2010 Units ug/l ug/l ug/l ug/l ug/l ug/l %	14:48 JMC	Conc. I 20 20 20 40 20	Result 16.3 17.9 20.5 37.3 19.3	% Rec 81.4 89.6 102 93.3 96.6 94.4	L 74 72 74 71 74 71 74 71	imits -123 -127 -126 -129 -130 -130		:
Analysis Date/Time Analyst: Parameter Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene Xylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S)	06/16/2010 Units ug/l ug/l ug/l ug/l ug/l ug/l	14:48 JMC	Conc. I 20 20 20 40 20	Result 16.3 17.9 20.5 37.3 19.3	% Rec 81.4 89.6 102 93.3 96.6 94.4 103	74 72 74 71 74 71 74 71 74 70	imits -123 -127 -126 -129 -130 -130 -125		:
LABORATORY CONTROL S/ Analysis Date/Time Analyst: Parameter Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene Xylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S)	06/16/2010 Units ug/l ug/l ug/l ug/l ug/l ug/l %	14:48 JMC	Conc. I 20 20 20 40 20	Result 16.3 17.9 20.5 37.3 19.3	% Rec 81.4 89.6 102 93.3 96.6 94.4 103 86.5	74 72 74 71 74 71 74 71 74 70	imits -123 -127 -126 -129 -130 -130 -125 -130		:
Analysis Date/Time Analyst: Parameter Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene Xylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S)	06/16/2010 Units ug/l ug/l ug/l ug/l ug/l % %		Conc. I 20 20 20 40 20	Result 16.3 17.9 20.5 37.3 19.3	% Rec 81.4 89.6 102 93.3 96.6 94.4 103 86.5	L 74 72 74 71 74 71 74 71 74 70 82	imits -123 -127 -126 -129 -130 -130 -125 -130 2-118	· · ·	:
Analysis Date/Time Analyst: Parameter Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene Xylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S)	06/16/2010 Units ug/l ug/l ug/l ug/l ug/l ug/l % % %		Conc. 1 20 20 20 40 20 60 51468	Result 16.3 17.9 20.5 37.3 19.3	% Rec 81.4 89.6 102 93.3 96.6 94.4 103 86.5 104	L 74 72 74 71 74 71 74 71 74 70 82	imits -123 -127 -126 -129 -130 -130 -125 -130 2-118		
Analysis Date/Time Analyst: Parameter Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene Xylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S) MATRIX SPIKE & MATRIX SP MATRIX SPIKE & MATRIX SP	06/16/2010 Units ug/l ug/l ug/l ug/l ug/l ug/l % % % %	: 51467	Conc. 1 20 20 20 40 20 60 51468	Result 16.3 17.9 20.5 37.3 19.3	% Rec 81.4 89.6 102 93.3 96.6 94.4 103 86.5 104	L 74 72 74 71 74 71 74 71 74 70 82	imits -123 -127 -126 -129 -130 -130 -125 -130 2-118	· · · ·	:
Analysis Date/Time Analyst: Parameter Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene Xylenes, Total 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S)	06/16/2010 Units ug/l ug/l ug/l ug/l ug/l ug/l % % % %	: 51467 6/2010 17:35 JM	Conc. I 20 20 20 40 20 60 51468 C C c se MS	Result 16.3 17.9 20.5 37.3 19.3	% Rec 81.4 89.6 102 93.3 96.6 94.4 103 86.5 104	L 74 72 74 71 74 71 74 71 74 70 82	imits -123 -127 -126 -129 -130 -130 -125 -130 2-118	RPD	Max

are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060241_6125

Printed: 06/24/2010 19:55

Phone: (713) 660-0901 Fax: (713) 660-8975


QUALITY CONTROL DATA

Workorder: H10060241 : COP - Sategna 2E								Project Number: Sategna 2		
MATRIX SPIKE & MATRIX SP		51468		Original:	H10060237001	•				
MS Analysis Date/Time Analys	st:	06/16/2010 17:3	5 JMC							
MSD Analysis Date/Time Analyst: 06/16/2010 18:03 JM			3 JMC							
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
Ethylbenzene	ug/l	ND	20	18.1	18.8	90.4	94.0	35-175	3.9	20
Toluene	ug/l	ND	20	20.6	21.4	103	107	70-131	4.0	20
m,p-Xylene	ug/l	ND	40	37.6	38.2	93.9	95.5	35-175	1.7	20
o-Xylene	ug/l	ND	20	19.0	19.6	95.2	97.9	35-175	2.8	20
Xylenes, Total	ug/l	ND	60	56.6	57.78	94.3	96.3	35-175	2.1	20
4-Bromofluorobenzene (S)	%	87.9				100	101	74-125		30
1,2-Dichloroethane-d4 (S)	%	86.1				83.5	82.0	70-130		30
Toluene-d8 (S)	%	99.7				102	105	82-118		30

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060241_6125

Printed: 06/24/2010 19:55

Phone: (713) 660-0901 Fax: (713) 660-8975

Legend

(S) - Indicates analyte is a surrogate

Qualifier	Qualifier Description
MI	Matrix Interference
1	Estimated value, between MDL and PQL (Florida)
JN	The analysis indicates the presence of an analyte
С	MTBE results were not confirmed by GCMS
NC	Not Calculated - Sample concentration > 4 times the spike
*	Recovery/RPD value outside QC limits
Е	Results exceed calibration range
н	Exceeds holding time
J	Estimated value
Q	Received past holding time
В	Analyte detected in the Method Blank
Ν	Recovery outside of control limits
D	Recovery out of range due to dilution
NC	Not Calculable (Sample Duplicate)
Р	Pesticide dual column results, greater then 25%
TNTC	Too numerous to count

E

U

Í

SPL Inc. 8880 Interchange Drive Houston, TX 77054

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: H10060241 : COP - Sategna 2E

Project Number: Sategna 2E

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
H10060241001	MW-1	SW-846 3010A	DIGM/1819	SW-846 6010B	ICP/1456
H10060241002	MW-2	SW-846 3010A	DIGM/1819	SW-846 6010B	ICP/1456
H10060241003	MW-3	SW-846 3010A	DIGM/1819	SW-846 6010B	ICP/1456
H10060241001	MW-1	EPA 300.0	IC/1330	ч 	
H10060241002	MW-2	EPA 300.0	IC/1330		
H10060241003	MW-3	EPA 300.0	IC/1330		•
H10060241001	MW-1	SM 2540 C	WETS/1649		
H10060241002	MW-2	SM 2540 C	WETS/1649		
H10060241003	MW-3	SM 2540 C	WETS/1649		
H10060241001	MW-1	SW-846 5030	MSV/2048	SW-846 8260B	MSV/2049
H10060241002	MW-2	SW-846 5030	MSV/2048	SW-846 8260B	MSV/2049
H10060241003	MW-3	SW-846 5030	MSV/2048	SW-846 8260B	MSV/2049
H10060241004	Duplicate	SW-846 5030	MSV/2048	SW-846 8260B	MSV/2049

l

Į

ł

SPL Inc. 8880 Interchange Drive Houston, TX 77054

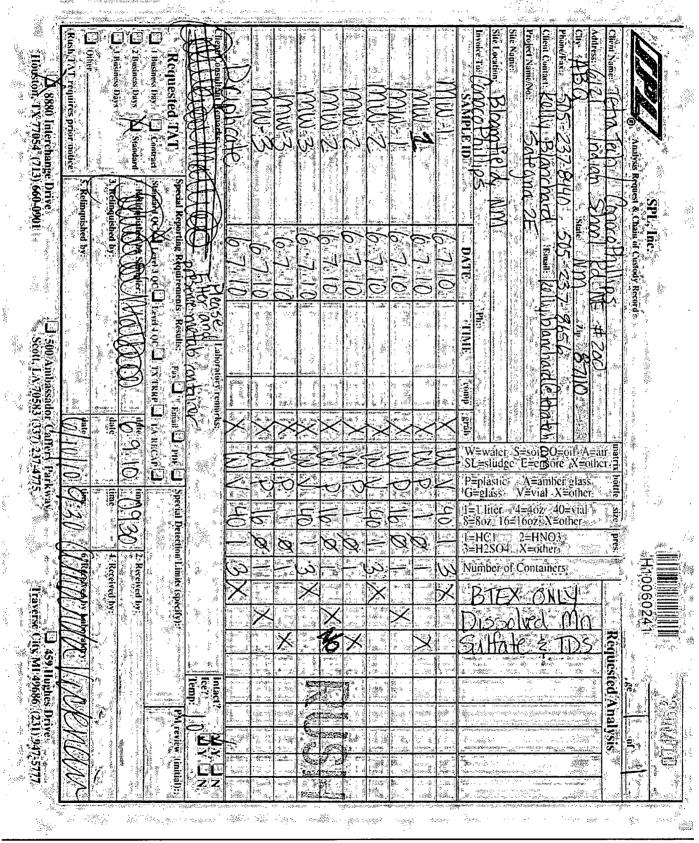
Phone: (713) 660-0901 Fax: (713) 660-8975

Sample Receipt Checklist

		·	
WorkOrder:	H10060241	Received By	LOG
Date and Time	06/10/2010 09:30	Carrier Name:	FEDEXS
Temperature:	1.0°C	Chilled By:	Water Ice
1. Shipping container/coo	ler in good condition?		YES
2. Custody seals intact or	a shipping container/cooler?		YES
3. Custody seals intact or	n sample bottles?		Not Present
4. Chain of custody prese	int?		YES
5. Chain of custody signe	d when relinquished and received?		YES
6. Chain of custody agree	es with sample labels?		YES .
7. Samples in proper cont	tainer/bottle?	· .	YES
8. Samples containers int	act?		YES
9. Sufficient sample volum	ne for indicated test?	•	YES
10. All samples received w	ithin holding time?		YES
11. Container/Temp Blank	temperature in compliance?		YES
12. Water - VOA vials have	zero headspace?		YES
13. Water - Preservation cl	necked upon receipt(except VOA*)?	•	Not Applicable

*VOA Preservation Checked After Sample Analysis

SPL Representative: Client Name Contacted: Client Instructions:


Contact Date & Time:

I

SPL Inc. 8880 Interchange Drive Houston, TX 77054

Phone: (713) 660-0901 Fax: (713) 660-8975

Report ID: H10060241_6125 Printed: 06/24/2010 19:55 Page 17 of 17