3R - 084

Q2 2009 GWMR

06/01/2010

3R084

6121 Indian School Rd. NE Suite 200
Albuquerque, NM 87110
PECEIVED (505) 237-8440

· 2010 JUN -2 P 2:59

June 1, 2010

Mr. Glenn von Gonten State of New Mexico Oil Conservation Division 1220 South Saint Francis Drive Santa Fe, New Mexico 87505

RE: Farmington B-COM No. IE, Farmington, New Mexico. 2009 Quarterly Groundwater Monitoring Report - Second Quarter 2009

Dear Mr. von Gonten:

Enclosed please find one (I) copy of each of the above-referenced documents as compiled by Tetra Tech, Inc., formerly Maxim Technologies, for this Farmington area site. This report supersedes any previously submitted reports for this quarter at this site.

Please do not hesitate to contact me at (505) 237-8440 if you have any questions or require additional information.

Sincerely,

Kelly E. Blanchard

Project Manager/Geologist

Kelly & Blanchard

Enclosures (1)

QUARTERLY GROUNDWATER MONITORING REPORT JUNE 2009 SAMPLING EVENT

FARMINGTON B COM NO. IE GAS PRODUCTION WELL SITE FARMINGTON, SAN JUAN COUNTY, NEW MEXICO

OCD # 3R0084 API # 30-045-24774

Prepared for:

420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

TETRATECH, INC.

6121 Indian School Rd. NE Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 8690096.100

June 2010

TABLE OF CONTENTS

1.0 2.0 3.0 4.0	INTRODUCTION	
FIG	URES	
١.	Site Location Map	
2.	Site Layout Map	
3.	Site Cross Section	
4.	Groundwater Elevation Contour Map	
5.	BTEX Concentration Map	
TAI	BLES	
١.	Site History Timeline	
2.	Groundwater Elevation Summary (May 2005 – June 2009)	
3.	Groundwater Laboratory Analytical Results Summary (February 1998 – June 2009)	
API	PENDICES	
Арр	endix A. Groundwater Sampling Field Forms	
Арр	endix B. Laboratory Analytical Report	
Арр	endix C. Historical Analytical Data	

QUARTERLY GROUNDWATER MONITORING REPORT JUNE 2009 SAMPLING EVENT FARMINGTON B COM NO.IE GAS PRODUCTION WELL SITE FARMINGTON, SAN JUAN COUNTY, NEW MEXICO

1.0 INTRODUCTION

This report presents the results of quarterly groundwater monitoring completed by Tetra Tech, Inc. (Tetra Tech) on June 10, 2009, at the ConocoPhillips Farmington B Com No. IE site in Farmington, New Mexico (Site). This sampling event represents the second quarter of groundwater monitoring for 2009.

The Site is located on private property in southeast Farmington, New Mexico, near the corner of East Murray Drive and South Carlton Avenue. The Site consists of a gas production well and associated equipment and installations. The location and general features of the Site are shown on **Figures 1** and **2**, respectively. A generalized cross section is presented as **Figure 3**.

1.1 Site History

Conoco Inc., predecessor to ConocoPhillips Company, owned the property and operated the gas well between July 1991 and January 1997. Merrion Oil & Gas Company is the current property owner and well operator. A Phase II Environmental Site Assessment associated with the property transfer was conducted by On Site Technologies, Limited (On Site) in March 1997. Soil hydrocarbon impacts were confirmed north of a production storage tank and west of a separator/dehydrator pit (**Figure 2**). Impacts were described by On Site as limited to a former unlined pit area with hydrocarbon migration primarily occurring vertically through the soil profile due to the porous and permeable subsurface soils; lateral migration was considered minimal (On Site, 1997). Soil excavation of the two impacted areas occurred in September 1997. A total of 906 cubic yards of impacted soil were removed from two excavation areas. Of the 906 cubic yards, 328 were transported offsite and 578 were screened and placed back into the excavated areas along with clean fill. During backfill activities, approximately 10 gallons of liquid fertilizer was sprayed into both excavations to enhance insitu degradation of residual hydrocarbons (On Site, 1997).

Groundwater Monitor Wells MW-1, MW-2, MW-3, MW-4, MW-5, and MW-6 were installed at the Site in February and August 1998 under the supervision of On Site. During 1998 and 1999, results from groundwater samples collected from MW-2 through MW-6 did not have BTEX concentrations in excess of New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards. On Site then requested that groundwater quality monitoring in monitor wells MW-2 through MW-6 be discontinued. The request was approved by the New Mexico Energy, Minerals, and Natural Resources Department (NMEMNRD) in a letter to Ms. Shirley Ebert of Conoco Inc. (NMEMNRD, 2000). Although Monitor Wells MW-2 through MW-6 showed no hydrocarbon impacts during 1998 and 1999, light non-aqueous phase liquid (LNAPL) has been present in MW-1 since its installation and recovery has

Tetra Tech, Inc. I June 2010

Quarterly Groundwater Monitoring Report B Com No.1E, Farmington, New Mexico OCD # 3R0084

been ongoing. Souder Miller and Associates (Souder Miller) placed active and passive skimmers in MW-I in May 2004. The passive skimmer collected a small amount of LNAPL; the active skimmer did not collect any LNAPL. Souder Miller determined that an active skimmer was not a viable method of LNAPL recovery in MW-I and proposed passive skimming or periodic hand bailing for recovery.

Tetra Tech began groundwater quality monitoring at the site in May 2005. Tetra Tech monitors MW-6 in addition to MW-1 since it is down-gradient to MW-1. Most recently, groundwater quality monitoring took place on June 10, 2009. Groundwater elevation measurements were collected from MW-1, MW-2, MW-3, MW-4, MW-5 and MW-6. Groundwater samples collected from Monitor Wells MW-1 and MW-6 were shipped to Southern Petroleum Laboratories in Houston, Texas to be analyzed for the presence of BTEX and ferrous iron.

2.0 METHODOLOGY AND RESULTS

2.1 Groundwater Monitoring Methodology

Groundwater Elevation Measurements

On June 10, 2009, groundwater elevation measurements were recorded in Monitor Wells MW-1, MW-2, MW-3, MW-4, MW-5, and MW-6. **Table 1** presents the groundwater elevation summary from May 2005 to June 2009. Based on June 2009 monitoring event data, groundwater flow is to the west and is consistent with historic records at this site. The Animas River is approximately ³/₄ miles west of the Site and flows west.

Groundwater sampling

Monitor Wells MW-I and MW-6 were sampled during this event to initiate the sixth round of consecutive quarterly groundwater monitoring conducted at the Site by Tetra Tech. Approximately three well volumes were purged from each monitor well with dedicated polyethylene I.5-inch disposable bailers. Purge water was placed in a 55-gallon steel drum for storage until disposal at a ConocoPhillips approved facility. Groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain of custody documentation to Southern Petroleum Laboratories located in Houston, Texas. The samples were analyzed for the presence of BTEX by Environmental Protection Agency (EPA) Method 8260B and ferrous iron by Standard Method (SM) 18, 3500-D. Monitor well MW-I was analyzed for GRO and DRO by EPA Method SW8015B. Groundwater sampling field forms are presented in **Appendix A**.

2.2 Groundwater Sampling Analytical Results

During the June 2009 quarterly sampling event, benzene, toluene and total xylenes were not found above their respective laboratory detection limits in the groundwater quality sample collected from monitor well MW-I; ethylbenzene was detected at a concentration of 96 micrograms per liter (ug/L). The New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standard for ethylbenzene is 750 ug/L. Ferrous iron was detected at a concentration of 9.8 mg/L in MW-I. BTEX constituents in MW-6 were not detected above the laboratory detection limit of 5.0 ug/L, while ferrous iron was detected in MW-6 at a concentration of 3.86 mg/L. **Table 2** presents the laboratory analytical

results. The laboratory analytical reports are included as **Appendix B**, and a BTEX concentration map is included as **Figure 5**. The Souder Miller historical analytical data is attached as **Appendix C**.

3.0 CONCLUSIONS

Although LNAPL was found in Monitor Well MW-I during the monitoring event conducted in January 2009, BTEX constituents in June 2009 samples were either below laboratory detection limits or were below NMWQCC groundwater quality standards. LNAPL sheen was intermittently detectable during quarterly groundwater pumping events from 2005 into 2008. The absence of LNAPL in MW-I during the June 2009 sampling event could be the result of Tetra Tech's placement of an oil-absorbent sock in the well during the January 2009 sampling event. The sock was removed in April 2009.

Groundwater analytical results for monitor well MW-6 continue to show BTEX concentrations below NMWQCC groundwater quality standards in both site monitor wells. Tetra Tech will continue quarterly monitoring of groundwater in MW-1 and MW-6. The second quarter monitoring event for 2009 is scheduled for September 2009.

4.0 REFERENCES

- New Mexico Energy, Minerals, and Natural Resources Department. (2000). Re: Farmington B Com #1E Well Site. Letter to Ms. Shirley Ebert, Conoco, Inc. December 13, 2000.
- On-Site Technologies, Ltd. (1997). Annual Summary, Pit Closures and Groundwater Impact Updates,
 State of New Mexico, 1996. Prepared for Conoco Inc., Midland Division. Report dated April 22, 1997. 21 pp.
- On-Site Technologies, Ltd. (1997). Re: Remediation Summary Farmington B Com #1E. . Letter Attn: Mr. Neal Goates, Senior Environmental Specialist, Conoco, Inc. November 26, 1997.

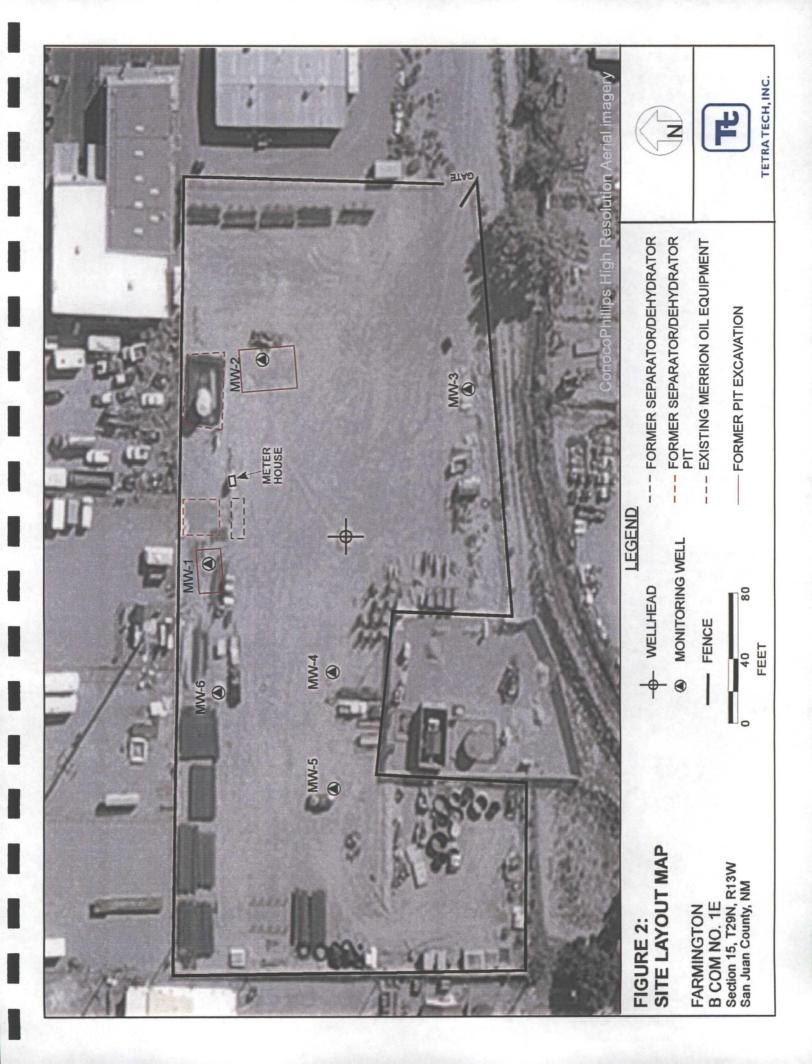
FIGURES

- 1. Site Location Map
 - 2. Site Layout Map
- 3. Site Cross Section
- 4. Groundwater Elevation Contour Map
 - 5. BTEX Concentration Map

FIGURE 1.

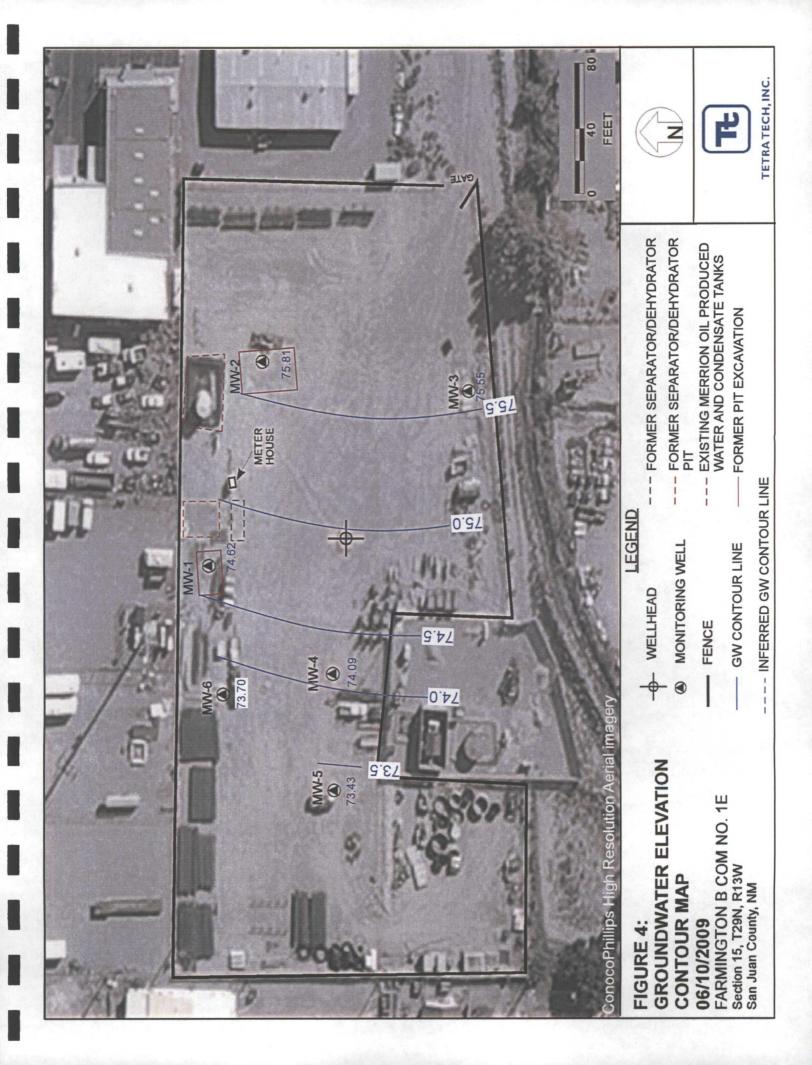
Site Location Map Farmington B Com No.1E Farmington, NM

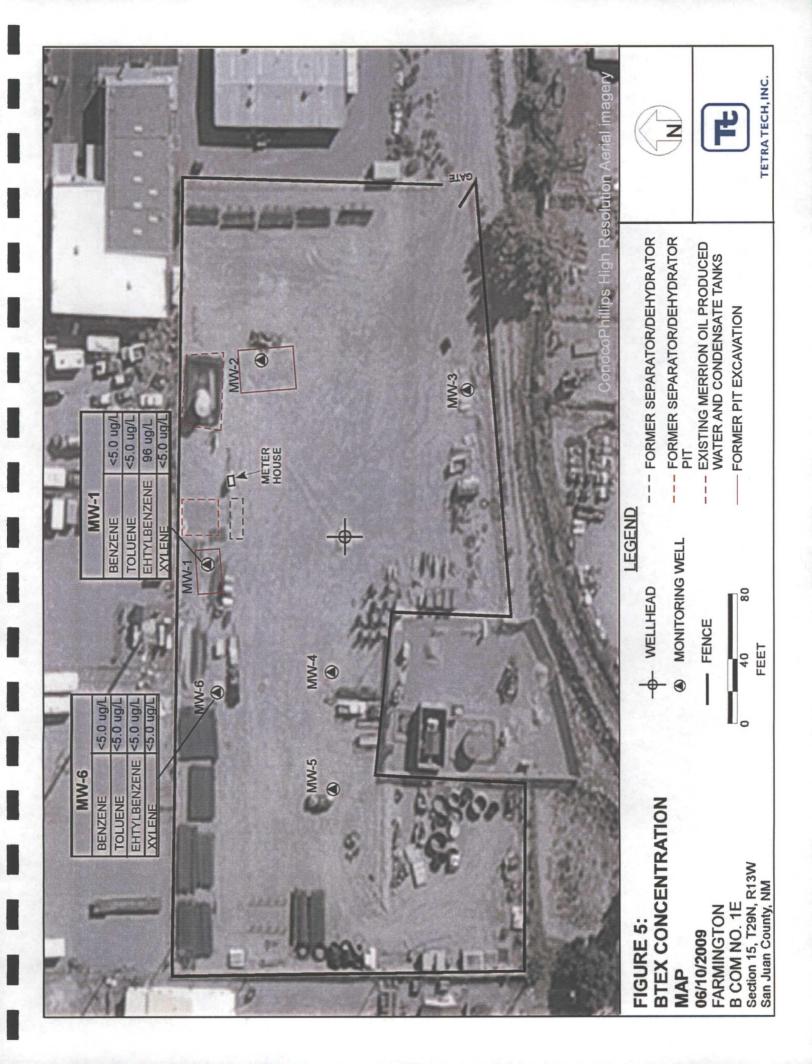
ConocoPhillips Company B Com #1E Site Location


Section 15, T29N, R13W San Juan County, NM

F

TETRA TECH, INC.


ConocoPhillips High Resolution Aerial imagery



TETRA TECH

5/24/2010

Figure 3.

TABLES

- I. Site History Timeline
- 2. Groundwater Elevation Summary (May 2005 June 2009)
- 3. Groundwater Laboratory Analytical Results Summary (February 1998 June 2009)

Table 1. Site History Timeline - Farmington B Com No. 1E

Date/Time Period	Event/Action	Description
February 18, 1982	Well Completed	Pioneer Production Corp. completed the Farmington B-COM No. 1E gas production well
July 1, 1991	Conoco Inc. well purchase	Conoco Inc. purchases wellsite from Mesa Operating Limited Partnership of Amarillo, Texas
January 1, 1997	Change of ownership	Conoco Inc. sold the property and mineral lease to Merrion Oil & Gas Co.
March, 1997	Site Assessment	Phase II Environmental Site Assessment is conducted by On Site Technologies. Three test holes advanced with Auger refusal encountered at 7 feet below ground surface (bgs) due to gravel and cobbles. No samples collected. On Site Technologies later excavates four additional test holes ranging in depth from 14 to 19 feet bgs. Soil samples are collected from each excavation. TPH and BTEX contamination is found in the vicinity of a former unlined pit.
September, 1997	Soil Excavation	On Site Technologies oversees soil excavation of two pits. 906 cubic yards of impacted soil were removed; of which 328 were ′ disposed of offsite and 578 cubic yards were placed back in the pits along with clean fill. Approximately 10 gallons of liquid fertilizer was sprayed into each pit during backfill.
February and August 1998	Monitor Well Installation	Six monitor wells (MW-1 through MW-6) installed at the site under the supervision of On Site.
October 29, 2004	Groundwater Removal from Monitor Well MW-1	First removal of groundwater - 160 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM
November 1, 2004	Groundwater Removal from Monitor Well MW-1	40 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM
December 3, 2004	Groundwater Removal from Monitor Well MW-1	150 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM
May 9th and 10th, 2005	Monitor Well Sampling	Tetra Tech begins quarterly monitoring at the site. Groundwater samples collected from monitor wells MW-1 and MW-6. A sheen is noted in MW-1; an oil absorbant sock is placed in the well.
July 6, 2005	Groundwater Removal from Monitor Well MW-1	138 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM
October 19, 2005	Groundwater Removal from Monitor Well MW-1 and Monitor Well Sampling	Groundwater samples collected from monitor wells MW-1 and MW-6. 186 gallons removed from MW-1; a sheen is observed in purge water and oil absorbant sock is replaced.
February 16, 2006		144 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM
May 15, 2006	Groundwater Removal from	152 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM
August 2, 2006	Monitor Well MW-1	457 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM
November 14, 2006		423 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM
November 14, 2006	Monitor Well Sampling	Third sampling of monitor wells MW-1 and MW-6 conducted by Tetra Tech
February 20, 2007		220 gallons removed vacuum truck operated by Riley Industrial Services of Farmington, NM
May 15, 2007	Groundwater Removal from	364 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM
August 21, 2007	Monitor Well MW-1	684 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM
November 7, 2007		651 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM
November 7, 2007	Monitor Well Sampling	Fourth sampling of monitor wells MW-1 and MW-6 conducted by Tetra Tech
January 16, 2008	Groundwater Removal from Monitor Well MW-1	149 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM
March 18, 2008	Groundwater Removal from Monitor Well MW-1	93 gallons removed by vacuum truck operated by Riley Industrial Services of Farmington, NM

Table 1. Site History Timeline - Farmington B Com No. 1E

Date/Time Period	Event/Action	Description
July 24, 2008	Monitor Well Sampling	Initiation of quarterly sampling for monitor wells MW-1and MW-6
October 22, 2008	Monitor Well Sampling	Continuation of quarterly sampling for monitor wells MW-1 and MW-6
January 21, 2009	Monitor Well Sampling	Continuation of quarterly sampling for monitor wells MW-1 and MW-6. Free product found in MW-1; oil absorbent sock placed in the well.
April 1, 2009	Monitor Well Sampling	Continuation of quarterly sampling for monitor wells MW-1 and MW-6. No free product detected in MW-1.
June 10, 2009	Monitor Well Sampling	Continuation of quarterly sampling for monitor wells MW-1 and MW-6. No free product detected in MW-1.

Table 2. Farmington B Com #1E Groundwater Elevation Summary

Well ID	Total Depth (ft. bgs)	Screen Interval (ft)	*Elevation (ft.) (TOC)	Date Measured	Depth to Water (ft. below TOC)	Depth to Product (ft. below TOC)**	Relative Groundwater Elevation (ft TOC)
				5/9/2005	28.30	Sheen	73.07
				7/6/2005	26.50	NA	74.87
				10/19/2005	25.12	Sheen	76.25
				2/16/2006	28.23	NA	73.14
		1		5/15/2006	27.02	NA	74.35
				8/2/2006	24.37	NA	77.00
				11/14/2006	26.48	Sheen	74.89
				2/20/2007	29.03 [.]	Sheen	72.34
MW-1	34.09	19.09 - 34.09	101.37	5/15/2007	26.97	NA	74.40
10100-1	34.09	19.09 - 34.09	101.37	8/21/2007	25.20	Sheen	76.17
				11/7/2007	26.30	26.1	75.07
			l —	1/16/2008	29.24	27.88	tt (ft. Groundwater Elevation (ft TOC) en 73.07 74.87 en 76.25 73.14 74.35 77.00 en 74.89 en 72.34 74.40 en 76.17 1 75.07 18 72.10 en 75.64 en 76.02 00 73.12 71.90 74.62 74.29 76.05 77.27 74.19 75.95 78.06 75.49 73.44 75.71 77.12 76.26 74.30 72.89 76.80 77.02 74.34 72.81
				3/18/2008	29.27	29.27	
				. 7/24/2008	25.73	Sheen	
				10/22/2008	25.35	Sheen	76.02
				1/21/2009	28.25	27.90	73.12
				4/1/2009	29.47	NA	71.90
				6/10/2009	26.75	NA	74.62
				5/9/2005	27.28	NA	74.29
				7/6/2005	25.52	NA	76.05
				10/19/2005	24.30	NA	77.27
				2/16/2006	27.38	NA	74.19
				5/15/2006	25.62	NA	75.95
				8/2/2006	23.51	NA	78.06
				11/14/2006	26.08	NA	75.49
				2/20/2007	28.13	NA	29.27 72.10 Sheen 75.64 Sheen 76.02 27.90 73.12 NA 71.90 NA 74.62 NA 74.29 NA 76.05 NA 77.27 NA 74.19 NA 75.95 NA 78.06 NA 75.49 NA 73.44
MW-2	33.72	18.72 - 33.72	101.57	5/15/2007	25.86	NA	75.71
10100-2	33.72	10.72 - 33.72	101.57	8/21/2007	24.45	NA	77.12
				11/7/2007	25.31	NA	76.26
				1/16/2008	27.27	NA	74.30
				3/18/2008	28.68	NA	72.89
				7/24/2008	24.77	NA	76.80
				10/22/2008	24.55	NA	77.02
				1/21/2009	27.23	NA	74.34
				4/1/2009	28.76	NA .	72.81
				6/10/2009	25.76	NA	75.81

Table 2. Farmington B Com #1E Groundwater Elevation Summary

Well ID	Total Depth (ft. bgs)	Screen Interval (ft)	*Elevation (ft.) (TOC)	Date Measured	Depth to Water (ft. below TOC)	Depth to Product (ft. below TOC)**	Relative Groundwater Elevation (ft TOC)								
				5/9/2005	27.81	NA	74.29								
				7/6/2005	26.03	NA	76.07								
				10/19/2005	20.00		77.04								
				2/16/2006	28.57	NA	73.53								
				5/15/2006	26.15	NA	75.95								
				8/2/2006	23.83	NA	78.27								
ļ				11/14/2006	26.75	NA .	75.35								
				2/20/2007	29.31	NA	72.79								
MW-3	32.44	17.44 - 32.44	102.1	5/15/2007	26.23	NA	75.87								
IVIVV-3	. 32.44	17.44 - 32.44	102.1	8/21/2007	25.00	NA	Product (ft. elow TOC)** Groundwater Elevation (ft TOC) NA 74.29 NA 76.07 NA 77.04 NA 73.53 NA 75.95 NA 75.35 NA 72.79 NA 75.87								
				11/7/2007	26.12	NA									
				1/16/2008	28.46	NA									
				3/18/2008	29.97	9.97 NA 72.13 5.27 NA 76.83 5.35 NA 76.75 8.56 NA 73.54 0.20 NA 71.90	72.13								
				7/24/2008	25.27		76.83								
				10/22/2008	25.35	NA	76.75								
				1/21/2009	28.56	NA	73.54								
				4/1/2009 30.20	NA	71.90									
				6/10/2009	26.55	NA	75.55								
				5/9/2005	28.73	NA	72.67								
				7/6/2005	26.66	NA	74.74								
				10/19/2005	25.62	NA	75.78								
				2/16/2006	28.91	NA	72.49								
				5/15/2006	26.86	NA.	74.54								
				8/2/2006	24.59	NA	76.81								
				11/14/2006	27.02	NA	74.38								
				2/20/2007	29.61	NA	71.79								
MW-4	32.72	17.72 - 32.72	101.4	5/15/2007	27.25	NA	74.15								
10100-4	32.12	17.72 - 32.72	101.4	8/21/2007	25.56	NA	75.84								
				11/7/2007	26.50	NA	74.90								
				1/16/2008	28.55	NA	72.85								
				3/18/2008	29.99	NA	71.41								
				7/24/2008	26.02	NA									
				10/22/2008	25.84	NA	75.56								
						 	 		 		 	1/21/2009	28.69	NA	72.71
				4/1/2009	30.22	NA	71.18								
				6/10/2009	27.31	NA	74.09								

Table 2. Farmington B Com #1E Groundwater Elevation Summary

Well ID	Total Depth (ft. bgs)	Screen Interval (ft)	*Elevation (ft.) (TOC)	Date Measured	Depth to Water (ft. below TOC)	Depth to Product (ft. below TOC)**	Relative Groundwater Elevation (ft TOC)					
		·		5/9/2005	28.50	NA	72.02					
				7/6/2005	26.32	NA	74.20					
				10/19/2005	25.30	· NA	75.22					
				2/16/2006	28.62	NA	71.90					
				5/15/2006	26.55	NA	73.97					
				8/2/2006	24.23	NA	76.29					
				11/14/2006	27.67	NA	ft. Groundwater Elevation (ft TOC) 72.02 74.20 75.22 71.90 73.97					
		19.09 - 34.09		2/20/2007	29.34	NA						
MW-5	34.09		100.52	5/15/2007	27.04	NA						
14144-5	34.03	19.09 - 54.09	100.52	8/21/2007	25.21	NA	75.31					
į į				11/7/2007	26.13	NA	74.39					
				1/16/2008	28.18	NA	72.34					
				3/18/2008	29.65	NA	70.87					
				7/24/2008	25.73	NA	74.79					
				10/22/2008	25.49	NA	75.03					
				1/21/2009	28.38	NA	72.14					
				4/1/2009	29.92		70.60					
			20.02	NA	73.43							
				5/9/2005	29.94	NA	72.20					
			:	7/6/2005	27.89	NA	74.25					
				10/19/2005	26.70	NA	75.44					
									2/16/2006	29.85	NA	72.29
	. :			5/15/2006	28.11	NA	74.03					
	_			8/2/2006	25.83	NA	76.31					
				11/14/2006	27.91	NA	74.23					
				2/20/2007	30.52	NA	71.62					
MW-6	34.02	19.02 - 34.02	102.14	5/15/2007	28.61	NA	73.53					
10100-0	04.02	19.02 - 34.02	102.14	8/21/2007	26.67	NA	75.47					
				11/7/2007	27.52	NA	74.62					
				1/16/2008	29.43	NA	72.71					
				3/18/2008	30.85	NA	71.29					
				7/24/2008	27.26	NA	74.88					
				10/22/2008	26.85	NA	75.29					
						1/21/2009	29.52	NA	72.62			
				4/1/2009	31.00	NA	71.14					
				6/10/2009	28.44	NA	73.70					

ft. = Feet

TOC = Top of casing
bgs = below ground surface
* Relative Elevation

NA - not applicable or not measured.

^{**} Where non-aqueous phase liquid (NAPL) is present, depth to water equals the Top of Casing elevation minus the depth to water, plus the NAPL thickness multiplied by 0.79.

Table 3. Farmington B Com No.1E Groundwater Laboratory Analytical Results Summary

Well ID	Date	Benzene (µg/L)	Benzene (µg/L) Toluene (µg/L)	Ethylbenzene (μg/L)	Xylenes (μg/L)	Nitrate as N (mg/L)	Sulfate (mg/L)	Iron (mg/L)
	2/19/1998	210	34	370	2,044	NS	SN	SN
	6/12/1998			3" free prod	3" free product in bailer - not sampled	not sampled		
	9/15/1998			free pr	free product - not sampled	mpled		
	12/29/1998	350	BDL	420	2,800	NS	SN	NS
	1/22/2004			free pr	free product - not sampled	mpled	,	
	5/9/2005	11	2.0>	74	250	<0.40	8.77	14.9*
	10/19/2005	34	<1.0	170	1400	0.15	39.9	15*
MW.4	11/14/2006	18	2.0>	190	1600	<0.015	145	8.8*
	11/7/2007	2	2.0>	120	250	<0.015	38.4	6.4*
	7/24/2008	<5.0	<5.0	06	35	<0.5	4.76	17.2*
	Duplicate	<5.0	<5.0	110	59	SN	SN	SN
	10/22/2008	<5.0	<5.0	88	165	<0.5	17	21.1*
	Duplicate	<5.0	<5.0	92	186	SN	SN	SN
	1/21/2009			free pr	free product - not sampled	mpled		
	4/1/2009	<5.0	<5.0	11	<5.0	SN	SN	5.26*
	6/10/2009	<5.0	<5.0	96	<5.0	NS	NS	9.8*
	9/15/1998	BDL	BDL	BDL	BDL	NS	SN	SN
	12/29/1998	BDL	BDL	BDL	BDL	NS	SN	NS
	3/3/1999	BDL	BDL	BDL	BDL	NS	SN	SN
	6/15/1999	BDL	BDL	TOB	BDL	NS	SN	SN
	9/15/1999	BDL	0.7	1.1	BDL	SN	SN	SN
	12/14/1999	BDL	1.8	2.0	1.9	NS	SN	SN
	1/22/2004	BDL	BDL	BDL	BDL	NS	· SN	NS
MIN G	5/9/2005	<0.5	<0.7	<0.8	<0.8	<0.4	26	15.9*
	10/19/2005	<0.5	<0.7	<0.8	<0.8	5.4	52.6	1.4*
	11/14/2006	<0.5	2.0>	<0.8	1	<0.015	159	5.8*
	11/7/2007	<0.5	<0.7	<0.8	<0.8	<0.015	112	3*
	7/24/2008	<5.0	<5.0	<5.0	<5.0	<0.5	44.4	28.5*
	10/22/2008	<5.0	<5.0	<5.0	<5.0	<0.5	43.7	1.77*
	1/21/2009	<5.0	<5.0	<5.0	<5.0	<0.5	31.1	9.59*
	4/1/2009	<5.0	<5.0	<5.0	<5.0	NS	SN	16.2*
	6/10/2009	<5.0	<5.0	<5.0	<5.0	SN	SN	3.86*
NMWQCC	NMWQCC Standards	10 (µg/L)	750 (µg/L)	750 (µg/L)	620 (µg/L)	10 (mg/L)	(mg/L)	1 (mg/L)

NMWQCC = New Mexico Water Quality Control Commission mg/L = milligrams per liter (parts per million) µg/L = micrograms per liter (parts per billion)
NE=Not Established
NS = not sampled

BDL = Below laboratory detection limits <0.7 = Below laboratory detection limit of 0.7 µg/L

* = Results reported for total ferrous iron, not comparable to NMWQCC standard for dissolved iron

APPENDIX A GROUNDWATER SAMPLING FIELD FORMS

Te.			WATER S	AMPLING F	IELD FO	RM		
Project No.	Con It	Dr. Sarpe	lino			(of	2
Site Location	Fr mng.		0		(س		•	
Site/Well No. MW	- 1	Code Replie	cata No	uplicate	Date	6-1	0-09	
Weather <u></u>	reenzz, War	↑M Time Bega	Sampling 50	5 <u>0</u>	Time Sam Completed		30	
	Sun	ny	EVACUATIO			•		
Description of Meas	uring Pt (MP)	TOC	·					
Height of MP Above	/Below Land Sui	rface	<u> </u>	MP Elevation				
Total Sounded Dept	h of Well Below	MP		Water-Level Ele	evation			
Held	Depth to Wate	r Below MP <u>2(</u>	5.75	Diameter of Car Gallons Pumpe		2 inch 4 in	ich	
Wet	Water Colu	umn in Well		Prior to Samplin		<u> 2.5</u>	-3	
	Gallo	ns per Foot $\underline{}$.16	Sampling Pump	n Intake			
	•	lons in Well		(feet below land	l surface)			
Purging Equipment	bailer	dedicated a	disposable	2 1.5" pt	elizethye	lere		
Time	Temperature	SAMPL pH	ING DATA/FIE Conductivity	LD PARAMETER TDS	rs	DO%	ORP	Other
Free produ		Mas garan			1 50	50%	01(1	Outer
			<u> </u>					
			<u> </u>	<u> </u>				
Sampling Equipmen	t	Low Flow Pump	/ Disposable Ba	ailer				
Constituents	Sampled		Container Desc		11.	Prese	rvative	
A ((v-Coduptia	3	40ML UBA		HC No	<u> </u>		
TVH ORO,	DEO	$-\frac{o}{2}$	40m 1, VO		Non			
<u>Fe</u>		<u> </u>	JOUNC #	mber glass	<u> </u>	<u>:</u>		
Remarks S	heen ; w	enz light	detecto	& or per	se wa	feronly	-; put	NRe
Sampling Personnel	Celly	Blanchard			<i>0</i>		way	erm
			Mall Cash	- Valumaa	-			tanh
Gal.	/ft. 1½	4" = 0.077	Well Casin 2" = 0.16	\	0.37	4" = 0.65		acated ansite
July		E'' = 0.10	2 1/2 = 0.24	3" ½ =		6" = 1.46		per
<u> </u>								nevilat
							· · · · · ·	

R:\Share\Maxim Forms\Field Forms\2008 Water Sampling Field Form

Motnutions (memon oil)

Tt.	V	NATER SA	MPLING FII	ELD FOI	RM		
Project No. B Com # Site Location Furmination	IE Qu.s	anpling			2_	of	2
Site Location HI MINGHO Site/Well No. MW- 6 Weather Wax, Sun	Coded Replica Time S PA	ate No Sampling	ne 1608	Date Time Samp	6-10- oling	. 20	
harm).	EVACUATION	N DATA	·			•
Description of Measuring Pt (MP)	TOC_		· —————	·			
Height of MP Above/Below Land Su	rface		MP Elevation				
Total Sounded Depth of Well Below	MP <u>33</u>	.80	Water-Level Elev	vation			
Held Depth to Wate	r Below MP 28	.44	Diameter of Casi		2 inch / 4 inc	ch	
Wet Water Col	umn in Well	.36	Gallons Pumped Prior to Sampling	Bailed	2.75	• ———————	
	ons per Foot ().	8576 57	Sampling Pump (feet below land				
	SAMPLII	NG DATA/FIEL	D PARAMETERS	3		•	
Time Temperature	pН	Conductivity	TDS	DO	DO%	ORP	Other
Sampling Equipment	Low Flow Pump / I	Disposable Bai	ler				
Constituents Sampled	3	Container Desci	ription VOUS	140	<u>Preser</u>	vative	
Fe	IÀ	560ml	Amberglas.	5 HC			

Remarks

Sampling Personnel

APPENDIX B LABORATORY ANALYTICAL REPORT

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Certificate of Analysis Number:

09060657

COP BCom #1E Report To: **Project Name:** Farmington, NM Site: Tetra Tech, Inc. Kelly Blanchard Site Address: 6121 Indian School Road, N.E. Suite 200 PO Number: 4511645191 **Albuquerque** State: **New Mexico** NM 87110-State Cert. No.: ph: (505) 237-8440 fax: **Date Reported:** 6/22/2009

This Report Contains A Total Of 15 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Case Narrative for: Conoco Phillips

Certificate of Analysis Number:

09060657

Report To: **Project Name:** COP BCom #1E Site: Farmington, NM Tetra Tech, Inc. Kelly Blanchard Site Address: 6121 Indian School Road, N.E. Suite 200 PO Number: 4511645191 **Albuquerque** State: **New Mexico** 87110-State Cert. No.: ph: (505) 237-8440 fax: **Date Reported:** 6/22/2009

I. SAMPLE RECEIPT:

All samples were received expired for Ferrous Iron. The holding time for Ferrous Iron is immediate and should be performed at the time of sampling. Client is aware of the holding time and request SPL to perform the analysis.

II: ANALYSES AND EXCEPTIONS:

Per the Conoco Phillips TSM Revision 0, a copy of the internal chain of custody is to be included in final data package. However, due to LIMS limitations, this cannot be provided at this time.

Diesel Range Organics 8015B:

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted with Batch ID:91140 for the Diesel Range Organics analysis by Method 8015B. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met.

III. CERTIFICATION:

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

IV. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

500 Ovidenas

09060657 Page 1 6/23/2009

Erica Cardenas

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Case Narrative for: Conoco Phillips

Certificate of Analysis Number:

09060657

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Es a Cordinas

09060657 Page 2 6/23/2009

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Certificate of Analysis Number:

09060657

Report To:

Fax To:

Tetra Tech, Inc.

Kelly Blanchard

6121 Indian School Road, N.E.

Suite 200

Albuquerque

NM

87110-

ph: (505) 237-8440

fax: (505) 881-3283

PO Number:

Site Address:

Project Name:

Site:

4511645191

COP BCom #1E

Farmington, NM

State:

New Mexico

State Cert. No.:

Date Reported:

6/22/2009

Client Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COC ID	HOLD
MW-1	09060657-01	Water	6/10/2009 3:30:00 PM	6/12/2009 9:00:00 AM	327828	
MW-6	09060657-02	Water	6/10/2009 4:20:00 PM	6/12/2009 9:00:00 AM	327828	
Duplicate	09060657-03	Water	6/10/2009 3:35:00 PM	6/12/2009 9:00:00 AM	327828	
Trip Blank	09060657-04	Water	6/10/2009	6/12/2009 9:00:00 AM	327828	

50 a Overlinas

6/23/2009

Date

Erica Cardenas Project Manager

Kesavalu M. Bagawandoss Ph.D., J.D. Laboratory Director

> Ted Yen Quality Assurance Officer

> > 09060657 Page 3 6/23/2009 3:12:34 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

06/18/09 14:54 LU_L

Client Sample ID:MW-1	Collected: 06/10/2009 15:30	SPL Sample ID:	09060657-01

Client Sample ID:MW	-1 		Col	lected: 0	6/10/2009	9 15:30	SPL San	nple I	D: 0906	0657-01
			Si	te: Far	mington,	NM				•
Analyses/Method	Resul	QUAL	R	ep.Limit	D	il. Factor	Date Ana	lyzed	Analyst	Seq. #
DIESEL RANGE ORG	ANICS				MCL	SV	V8015B	Ur	its: mg/L	
Diesel Range Organics	30	•		0.5		10	06/20/09	20:33	NW	5077268
Surr: n-Pentacosane	230 Mi	*	%	20-150		10	06/20/09	20:33	NW	5077268
Prep Method	Prep Date	Prep Initials	<u>Pre</u>	Factor			·			
SW3510C	06/16/2009 15:11	N_M	1.00)						
GASOLINE RANGE O	RGANICS				MCL	SV	V8015B	Un	its: mg/L	
Gasoline Range Organic	s 0.55			0.1		1	06/17/09	20:32	EMB	5072584
Surr: 1,4-Difluorobenz	ene 98.2		%	60-155		1	06/17/09	20:32	EMB	5072584
Surr: 4-Bromofluorobe	nzene 144		%	50-158		1	06/17/09	20:32	EMB	5072584
IRON, FERROUS					MCL	M350	00-FE D	Un	its: mg/L	
Iron, Ferrous	9.8			0.5		5	06/12/09	14:30	ESK	5068210
VOLATILE ORGANICS	S BY METHOD 8260	В			MCL	SV	V8260B	Un	its: ug/L	
Benzene	ND			5		1	06/18/09	14:54	LU_L	5074794
Ethylbenzene	96			5		1	06/18/09	14:54	LU_L	5074794
Toluene	ND			5		1	06/18/09	14:54	LU_L	5074794
m,p-Xylene	ND			5		1	06/18/09	14:54	LU_L	5074794
o-Xylene	ND			5		1	06/18/09	14:54	LU_L	5074794
Xylenes,Total	ND			5		1	06/18/09	14:54	LU_L	5074794
Surr: 1,2-Dichloroetha	ne-d4 100		%	78-116		1	06/18/09	14:54	LU_L	5074794
Surr: 4-Bromofluorobe	nzene 104		%	74-125		1	06/18/09	14:54	LU_L	5074794

82-118

Qualifiers:

Surr: Toluene-d8

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

110

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09060657 Page 4 6/23/2009 3:12:46 PM

5074794

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-6

Collected: 06/10/2009 16:20 SPL Sample ID:

09060657-02

Site:	Farm	ington,	NM

Analyses/Method	Result	QUAL	R	p.Limit		il. Facto	or Date Ana	lyzed	Analyst	Seq. #
IRON, FERROUS					MCL	М3	500-FE D	Ur	nits: mg/L	
Iron, Ferrous	3.86			0.2		2	06/12/09	14:30	ESK	5068207
VOLATILE ORGANICS BY MET	HOD 8260B				MCL		SW8260B	Ur	nits: ug/L	
Benzene	ND			5		1	06/18/09	15:50	LU_L	5074796
Ethylbenzene	ND			5		1	06/18/09	15:50	LU_L	5074796
Toluene	ND			5		1	06/18/09	15:50	LU_L	5074796
m,p-Xylene	ND			5		1	06/18/09	15:50	LU_L	5074796
o-Xylene	ND			5		1	06/18/09	15:50	LU_L	5074796
Xylenes,Total	ND	,		5		1	06/18/09	15:50	LU_L	5074796
Surr: 1,2-Dichloroethane-d4	96.9		%	78-116		1	06/18/09	15:50	LU_L	5074796
Surr: 4-Bromofluorobenzene	99.4		%	74-125		1	06/18/09	15:50	LU_L	5074796
Surr: Toluene-d8	111		%	82-118		1	06/18/09	15:50	LU_L	5074796

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09060657 Page 5 6/23/2009 3:12:46 PM

Surr: 4-Bromofluorobenzene

Surr: Toluene-d8

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

06/18/09 15:22 LU_L

06/18/09 15:22 LU_L

1

5074795 5074795

Client Sample ID: Duplicate Collected: 06/10/2009 15:35 SPL Sample ID:

101

110

L Sample ID: 09060657-03

		Site: Farm	ington, NM			
Analyses/Method	Result QUA	L Rep.Limit	Dil. Factor	Date Anal	yzed Analyst	Seq.#
VOLATILE ORGANICS BY MET	THOD 8260B		MCL S	W8260B	Units: ug/L	
Benzene	ND	5	1	06/18/09	15:22 LU_L	5074795
Ethylbenzene	98	. 5	1	06/18/09	15:22 LU_L	5074795
Toluene	ND	5	.1	06/18/09	15:22 LU_L	5074795
m,p-Xylene	ND	5	1	06/18/09	15:22 LU_L	5074795
o-Xylene	ND	5	1	06/18/09	15:22 LU_L	5074795
Xylenes,Total	ND	5	1	06/18/09	15:22 LU_L	5074795
Surr: 1.2-Dichloroethane-d4	95.7	% 78-116	1	06/18/09	15:22 LU L	5074795

%

%

74-125

82-118

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09060657 Page 6 6/23/2009 3:12:46 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: Trip Blank Collected: 06/10/2009 0:00 SPL Sample ID: 09060657-04

> Site: Farmington, NM

Analyses/Method	Result	QUAL	R	ep.Limit	Dil.	Factor	Date Ana	lyzed	Analyst	Seq. #
VOLATILE ORGANICS B	Y METHOD 8260B				MCL	S	W8260B	Ur	nits: ug/L	
Benzene	· ND			5	•	1	06/18/09	14:27	LU_L	5074793
Ethylbenzene	ND			5		1	06/18/09	14:27	LU_L	5074793
Toluene	ND			5		1	06/18/09	14:27	LU_L	5074793
m,p-Xylene	ND			5		1	06/18/09	14:27	LU_L	5074793
o-Xylene	ND			5		1	06/18/09	14:27	LU_L	5074793
Xylenes,Total	ND			5		1	06/18/09	14:27	LU_L	5074793
Surr: 1,2-Dichloroethane-o	14 93.4		%	78-116		1	06/18/09	14:27	LU_L	5074793
Surr: 4-Bromofluorobenze	ne 101		%	74-125		1	06/18/09	14:27	LU_L	5074793
Surr: Toluene-d8	112		%	82-118		1	06/18/09	14:27	LU_L	5074793

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09060657 Page 7 6/23/2009 3:12:46 PM

Quality Control Documentation

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP BCom #1E

Analysis:

Diesel Range Organics

Method:

SW8015B

WorkOrder:

09060657

Lab Batch ID:

91140

Method Blank

Samples in Analytical Batch:

RunID:

HP_Z_090620B-5077265

Units: mg/L

Lab Sample ID

Client Sample ID

Analysis Date:

06/20/2009 19:01

Analyst: NW 09060657-01C

Preparation Date:

06/16/2009 15:11

Prep By: N_M Method SW3510C

MW-1

Analyte	Result	Rep Limit
Diesel Range Organics	ND	0.050
Surr: n-Pentacosane	132.6	20-150

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

HP_Z_090620B-5077266

Units: mg/L

06/20/2009 19:31

Analyst: NW

Analysis Date: Preparation Date:

06/16/2009 15:11

Prep By: N_M Method SW3510C

Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
Diesel Range Organics	2.00	2.26	113	2.00	2.32	116	2.7	43	21	175
Surr: n-Pentacosane	0.0500	0.0572	114	0.0500	0.0590	118	3.1	43	20	150

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

MI - Matrix Interference

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09060657 Page 9

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP BCom #1E

Analysis:

Gasoline Range Organics

Method:

RunID:

SW8015B

WorkOrder:

09060657

Lab Batch ID:

R275789

Method Blank

HP_P_090617B-5072575

Units:

mg/L **EMB**

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

06/17/2009 8:27

Analyst:

09060657-01D

MW-1

Analyte	Result	Rep Limit
Gasoline Range Organics	ND	0.10
Surr: 1,4-Difluorobenzene	93.8	60-155
Surr: 4-Bromofluorobenzene	103.3	50-158

Laboratory Control Sample (LCS)

RunID:

HP_P_090617B-5072573

Units:

Analysis Date:

06/17/2009 7:31

Analyst:

EMB

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Gasoline Range Organics	1.00	0.882	88.2	42	136
Surr: 1,4-Difluorobenzene	0.100	0.102	102	60	155
Surr: 4-Bromofluorobenzene	0.100	0.108	108	50	158

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09060750-12

RunID:

HP_P_090617B-5072581

Analysis Date:

06/17/2009 19:06

Units:

mg/L Analyst: **EMB**

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Gasoline Range Organics	0.205	1	0.917	71.2	1	0.884	67.9	3.68	36	22	174
Surr: 1,4-Difluorobenzene	ND	0.1	0.1	100	0.1	0.0989	98.9	1.51	30	60	155
Surr: 4-Bromofluorobenzene	ND	0.1	0.112	112	0.1	0.113	113	0.178	30	50	158

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09060657 Page 10

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP BCom #1E

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

06/18/2009 13:59

WorkOrder:

Samples in Analytical Batch:

09060657

Lab Batch ID:

R275903

Method Blank

RunID:

Analysis Date:

K 090618A-5074792

Units: Analyst:

ug/L LU_L

Lab Sample ID

Client Sample ID

09060657-01A

MW-1

09060657-02A 09060657-03A MW-6 Duplicate

Trip Blank

09060657-04A

Analyte	Result	Rep Limit
Benzene	ND	5.0
Ethylbenzene	ND	5.0
Toluene	ND	5.0
m,p-Xylene	ND	5.0
o-Xylene	ND	5.0
Xylenes,Total	ND	5.0
Surr: 1,2-Dichloroethane-d4	95.3	78-116
Surr: 4-Bromofluorobenzene	100.3	74-125
Surr: Toluene-d8	107.3	82-118

Laboratory Control Sample (LCS)

RunID:

K_090618A-5074791

Units:

ug/L

Analysis Date:

06/18/2009 13:32

Analyst: LU_L

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	20.0	19.5	97.7	74	123
Ethylbenzene	20.0	21.7	108	72	127
Toluene	20.0	20.9	105	74	126
m,p-Xylene	40.0	43.1	108	71	129
o-Xylene	20.0	23.0	115	. 74	130
Xylenes,Total	60.0	66.1	110	71	130
Surr: 1,2-Dichloroethane-d4	50.0	47.4	94.8	78	116
Surr: 4-Bromofluorobenzene	50.0	50.2	100	74	125
Surr: Toluene-d8	50.0	53.5	107	82	118

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09060721-01

RunID:

K_090618A-5074798

Units:

ug/L

Analysis Date:

06/18/2009 17:13

Analyst:

LU_L

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution * - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09060657 Page 11

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP BCom #1E

Analysis: Method: Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09060657

Lab Batch ID:

R275903

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzene	ND	20	19.5	97.6	20	19.8	99.1	1.55	22	70	124
Ethylbenzene	ND	20	21.2	106	20	19.7	98.4	7.19	20	76	122
Toluene	ND	20	21.1	106	20	21.1	106	0.0379	24	80	117
m,p-Xylene	ND	40	42.5	106	40	41.7	104	1.78	20	69	127
o-Xylene	ND	20	21.3	107	20	21.9	109	2.59	20	84	114
Xylenes,Total	ND	60	63.8	106	60	63.6	106	0.297	20	69	127
Surr: 1,2-Dichloroethane-d4	ND	50	47	94.1	50	46.9	93.7	0.343	30	78	116
Surr: 4-Bromofluorobenzene	ND	50	51.7	_. 103	50	49.1	98.1	5.17	30	74	125
Surr: Toluene-d8	ND	50	54.8	110	50	53.6	107	2.09	30	82	118

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

TNTC - Too numerous to count

09060657 Page 12

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP BCom #1E

Analysis:

Analysis Date:

Iron, Ferrous

06/12/2009 14:30

Method:

M3500-Fe D

w

Samples in Analytical Batch:

09060657

WorkOrder: Lab Batch ID:

R275511

Method Blank

RunID: WET_090612T-5068203

Units:

Analyst:

s: mg/L

EŞK

Lab Sample ID

Client Sample ID

09060657-01B

MW-1

09060657-02B

MW-6

Analyte	Result	Rep Limit
Iron, Ferrous	ND	0.10

Laboratory Control Sample (LCS)

RunID:

WET 090612T-5068204

Units:

mg/L

Analysis Date:

06/12/2009 14:30

Analyst:

ESK

Analyte .	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Iron, Ferrous	2.000	1.946	97.31	85	115

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09060657-02

RunID:

WET_090612T-5068208

Units:

mg/L

Analysis Date:

06/12/2009 14:30

Analyst: ESK

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Iron, Ferrous	3.864	2	6.004	107.0	2	6.004	107.0	0	20	85	115

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09060657 Page 13

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

Sample Receipt Checklist And Chain of Custody

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Sample Receipt Checklist

Dat	orkorder: te and Time Received: mperature:	09060657 6/12/2009 9:00:00 AM 3.0°C			Received By: Carrier name: Chilled by:	NW Fedex-Priority Water Ice
	•	oler in good condition?	Yes	✓	No 🗆	Not Present
		on shippping container/cooler?	Yes	✓	No 🗆	Not Present
3.	Custody seals intact of	on sample bottles?	Yes		No 🗆	Not Present ✓
4.	Chain of custody pres	ent?	Yes	✓	No 🗆	
5.	Chain of custody sign	ed when relinquished and received?	Yes	✓ .	No 🗆	
6.	Chain of custody agre	ees with sample labels?	Yes		No 🗹	
7.	Samples in proper cor	ntainer/bottle?	Yes	✓	No 🗆	
8.	Sample containers int	act?	Yes	$ \checkmark $	No 🗆	
9.	Sufficient sample volu	ume for indicated test?	Yes	\checkmark	No 🗆	
10.		within holding time? eived expired for Ferrous Iron. The holding s immediate and should be performed at the	Yes		No 🗹	
11.	Container/Temp Blank	temperature in compliance?	Yes	•	No 🗆	
12.	Water - VOA vials have	e zero headspace?	Yes		No U VOA	/ials Not Present
13.	Water - Preservation of	checked upon receipt (except VOA*)?	Yes	✓	No 🗆	Not Applicable
	*VOA Preservation Ch	necked After Sample Analysis				
	SPL Representation		Cont	act Date & T	ime:	
		N-1 received 8 btls 3 vials (HCL), 3 vials (unprils for DRO.	es), 2-16	oz (hcl). Cli	ent requested TPH G	RO/DRO. Did not receive any
	Client Instructions:				55B	

Traverse City, MI 49686 (231) 947-5777 327828 Requested Analysis ⅎ 459 Hughek Drive Intact? Ice? Temp: Page とう かる ろん 6. Reggyod by Laboratory 080 × 080 tla 0 SPE, Workerder No. Email Prof. | Special Detection Limits (specify): 4. Received hy: 2. Received by: くなれてからい! Митрет оf Солиалыя 92 ?=H52O\$ I=HC1 Ę CONHEC 1940=X 200[=9] 208=8 7. JULE: 4 4 Si. pria=(# 500 Ambassador Caffery Parkway Scott, LA 70583 (337) 237-4775 esig codma=A Tedio=X iniv= WIA=A P=plastin G=glass opsejd: 11-09 Standard OC Tree 3 (X: Level 4 QC L TY TREE LA RECAP lio=O**S**lios=2. nsiaw=W -X eno5me=1 sgbolz=.I2 χ=0tβc:. 3 date Emxil: Kelley blug chand for Rhayed date aboratory remarks: COURT Port in in TIMIE 550 Please add TFH DRO, GRO LORGING Special Reporting Requirements Results: Analysis Request & Chain of Costody Record 10-01 10-69 Z 6-10-09 3tr Sandling 6- (۵- ن DATE SPL, Inc. 5. Relinquished by: 3. Relingue Ded by: 4 8886 Interchange Drive Honston, TX 77054 (713) 660-0901 Tarm Merten Chusco Marking Contract Rush TAT requires prior notice 126 x 62 C. Km Requested TAT なると Chant Consultant Remarks: Project Name/No.: B Business Day 2 Business Days S Business Days Cheat Contact: Site Name: (3 Site Livision: Client Name: Invoice To: (Пропе/Гих: Anthress:

APPENDIX C HISTORICAL ANALYTICAL DATA

Table 2
BTEX Ground Water Analytical Summary
Farmington B Com 1E
Unit O, Sec. 15 T29N, R13W

3

02	Total-Xylene	2044.0				2800.0				470.0	171.0	33.3	35.0	119.0	BDL	68.1	36.4	BDL	一年 日本	5.3	2.0	BDL	BDL	BDL	56.0	BDL	BDL	BDL	620.0
BTEX per EPA 8020 (ppb)	Ethylbenzene	370.0				420			· 新華	16.0	32.0	39.0	2.1	64	BDL	4.1	1.8	BDL	大きなない とこののの	1.6	0.5	BDL	BDL	BDL	3.1	TOB	708	BDL	750.0
BI	Toluene	34.0				BDL	1999		が変ないないの	5.3	2.7	2.5	9.0	BDL	BDL	TOB	HDF	BDL	19年度新國際	1.2	BDL	TGB	BDL	BDL	6.0	0.6	BDL	BDL	
	Benzene	210.0				350.0	u i		からなるがある	2.4	0.8	1.3	BDL	TOB	BDL	BDL	BDL	BDL		6.0	BDL	BDL	BDL	TQ8	TOB	BDL	TOB	BDL	10.0
Remarks		On Site Lab.			in well		Taken	in well	大学のでは、これでは、一般のでは、	On Site Lab.								lina ba Lab	では、100mmので	On Site Lab.					* 7	*		lina ba Lab	HEATTER THE THE PARTY OF THE PA
Monitor Well		MW#1	in the bailer		free product		Samples	free product	大概的 15 mm 16 mm 1	MW#2									经验证的 次等	WW#3									F sleve1
Sample ID#		9802020-01A	3" of free	product	Not Sampled	9812053-04A	Water	Not Sampled		9802020-02A	9806055-02A	9809035-01A	9812053-05A	9903012-05A	9906055-05A	9909054-05A	9912018-05A	0401011-004A		9802020-03A	9806055-01A	9809035-02A	9812053-06A	9903012-04A	9906055-04A	9909054-04A	9912018-04A	0401011-002A	Actlo
Sample Date Sample		2/19/98	6/12/98		9/15/98	12/29/98	No	1/22/04	新加州的	2/19/98	6/12/98	9/15/98	12/29/98	3/3/66	6/12/99	9/15/99	12/14/99	1/22/04	李 · · · · · · · · · · · · · · · · · · ·	2/19/98	06/12/98	9/15/98	12/29/98	3/3/99	6/12/88	9/12/99	12/14/99	1/22/04	WOCC

Table 2
BTEX Ground Water Analytical Summary
Farmington B Com 1E
Unit O, Sec. 15 T29N, R13W

MIVV #4
-
MW#5
经验证证据的第三人称
NAVA#R
OH AAIA
Levels

Table 2
BTEX Ground Water Analytical Summary
Farmington B Com 1E
Unit O, Sec. 15 T29N, R13W

	GOD						
	вор	Not Sampled					
•	lron ppm	Not S.	BDL	BDL	BDL	BDL	0.194
	Anions ppm		65.1	73.3	2.79	86.8	28.2
	Remarks	lina ba Lab					
	Monitor Well	MW#1	MW#2	MW#3	MW#4	MW#5	MW#6
	Sample ID#		0401011-004	0401011-002	0401011-003	0401011-005	0401011-006
	Sample Date	1/22/04	1/22/04	1/22/04	1/22/04	1/22/04	1/22/04