

ENTERPRISE PRODUCTS OPERATING LLC

Return Receipt Requested 7010 1870 0001 2945 4412

ENTERPRISE PRODUCTS PARTNERS L.P. ENTERPRISE PRODUCTS HOLDINGS LLC (General Partner)

December 12, 2011

Mr, Cordell TeCube, Director Environmental Protection Office Jicarilla Apache Nation P.O. Box 507 Dulce, NM 87528-0507

RE: Enterprise Field Services, LLC - Lindrith Compressor Station Supplemental Environmental Site Investigation & Corrective Action Work Plan NE/4, SE/4, Section 18, Township 24, Range 5 West, NMPM NM Oil Conservation Division GW Discharge Permit No. GW-209 Rio Arriba County, New Mexico

Dear Mr. TeCube:

Enterprise Field Services, LLC (Enterprise) is submitting the enclosed *Supplemental Environmental Site Investigation & Corrective Action Work Plan*, dated November 30, 2011, for the facility referenced above. This work plan provides the results of a supplemental site investigation conducted during August, 2011 to complete delineation of soil and groundwater affected by historical facility operations. This supplemental investigation was performed in accordance with the July 27, 2011 *Supplemental Site Investigation Work Plan*, as submitted in correspondence to the Jicarilla Apache Nation Environmental Protection Office (JANEPO) dated July 28, 2011.

The enclosed report also provides recommendations for remedial actions in the vicinity of the former condensate storage tanks at this facility. The proposed remedial actions will utilize a mobile dual-phase extraction (MDPE) unit to recover non-aqueous phase liquids (NAPL) and vapor phase hydrocarbons from this area. This initial remediation effort will be conducted as a "pilot study" to determine the effectiveness of the system. During an estimated three month testing period, the effectiveness of the system will be evaluated A feasibility study will be developed to determine the most effective method(s) to complete remedial actions for affected soil and groundwater at the facility. JANEPO approval of the feasibility study, and associated remedial action recommendations, will be obtained prior to implementation.

Enterprise will continue performing routine quarterly groundwater monitoring events to ensure that migration of affected groundwater does not occur from areas that have been delineated, and to evaluate the effectiveness of remedial actions in reducing groundwater constituent concentrations.

We would like to proceed with the proposed remedial actions described in the enclosed work plan as soon as possible, if the Jicarilla Environmental Protection Office has no objections or review comments. If you have any questions, or require additional information, please do not hesitate to contact me at (713) 381-2286 or <u>drsmith@eprod.com</u>.

P. O. BOX 4324 HOUSTON, TX 77210-4324 713.381.6500 1100 LOUISIANA STREET HOUSTON, TX 77002-5227 www.epplp.com Mr. Cordell TeCube, Director Jicarilla EPO December 12, 2011 Page 2

Sincerely,

l

David R. Smith, P.G. Sr. Environmental Scientist

/dep Enclosure

cc:

w/ Enclosure: Kurt Sandoval Jicarilla Oil & Gas Administration P.O. Box 167 Dulce, NM 87528

> Dixon Sandoval Jicarilla Oil & Gas Administration P.O. Box 167 Dulce, NM 87528-0507

Hobson Sandoval Jicarilla Environmental Protection Office P.O. Box 507 Dulce, NM 87528-0507

Brandon Powell New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, NM 87410

Jim Griswold New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

w/o Enclosure: Chris Mitchell, Southwest Geoscience Kyle Summers, Southwest Geoscience

Rodney M. Sartor, REM Manager, Remediation

SUPPLEMENTAL ENVIRONMENTAL SITE INVESTIGATION & CORRECTIVE ACTION WORK PLAN

Property:

LINDRITH COMPRESSOR STATION (GW-209) Section 18, Township 24N, Range 5W Rio Arriba County, New Mexico

> November 30, 2011 SWG Project No. 0410006

> > Prepared for:

Enterprise Field Services, LLC 1100 Louisiana Street Houston, Texas 77002-5227 Attn: Mr. David Smith

Prepared by:

legsunsa

Kyle Súmmers, C.P.G. Senior Geologist/ Manager, Four Corners Office

B. Chris Mitchell, P.G. Principal Geoscientist

TABLE OF CONTENTS

1.0 INTRODUCTION 1 1.1 SITE LOCATION AND HISTORY 1 1.2 CHRONOLOGY OF EVENTS 2 1.3 CONSTITUENTS OF CONCERN 3 1.4 SITE RANKING AND PROPOSED CLEANUP GOALS 4 1.5 OBJECTIVES OF SUPPLEMENTAL SITE INVESTIGATION & CORRECTIVE ACTION 5
2.0 SITE CHARACTERIZATION 5 2.1 GEOLOGY & HYDROGEOLOGY 5 2.1.1 GROUNDWATER FLOW 6 2.1.2 GROUNDWATER CLASSIFICATION 6 2.2 LAND USE & CLASSIFICATION 6
3.0SUPPLEMENTAL SITE INVESTIGATION73.1SOIL BORINGS & MONITORING WELLS73.2INVESTIGATION SAMPLING PROGRAM83.2.1SOIL SAMPLING PROGRAM83.2.2GROUNDWATER SAMPLING PROGRAM83.3LABORATORY ANALYTICAL PROGRAM93.4QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)93.5DATA EVALUATION93.5.1SOIL103.5.2GROUNDWATER10
4.0CORRECTIVE ACTION114.1HIGH-VACUUM REMEDIATION124.1.1"PILOT STUDY" PHASE124.1.2NAPL REDUCTION PHASE12
5.0CORRECTIVE ACTION EFFECTIVENESS
6.0 CORRECTIVE ACTION REPORT
7.0 SCHEDULE
8.0 FINDINGS AND RECOMMENDATIONS
LIST OF APPENDICES
Appendix A: Figures Figure 1: Topographic Map Figure 2: Site Vicinity Map Figure 3: Site Map Figure 4A: Geologic Cross-Section A-A' Figure 4B: Geologic Cross-Section B-B' Figure 5: Groundwater Gradient Map September 21, 2011 Figure 6: RAL Exceedance Zone in Soil

ł

Figure 7: GQS Exceedance Zone in Groundwater September 2011

i

Couthwest GEOSCIE

Appendix B: Tables

Table 1: Soil Analytical SummaryTable 2: Groundwater Analytical SummaryTable 3: Groundwater Elevations

Appendix C: Soil Boring/Monitoring Well Logs

Appendix D: Laboratory Data Reports & Chain of Custody Documentation

Appendix E: Remediation Technologies Information

Southwest

SUPPLEMENTAL ENVIRONMENTAL SITE INVESTIGATION & CORRECTIVE ACTION WORK PLAN (GW-209)

LINDRITH COMPRESSOR STATION Section 18, Township 24N, Range 5W Rio Arriba County, New Mexico SWG Project No. 0410006

1.0 INTRODUCTION

1.1 SITE LOCATION AND HISTORY

The Lindrith Compressor Station is located off Jicarilla Road J-36, approximately 7.2 miles west of State Highway 537, in Section 8, Township 24N, Range 5W Rio Arriba County, Jicarilla Apache Nation, New Mexico, referred to hereinafter as the "Site" or "subject Site". The Site is a natural gas compressor station utilized to dehydrate and compress natural gas collected from production wells in the area for transportation via pipeline. The Site was constructed in the 1950s and currently includes three (3) compressor engines, a dehydration unit, a flare, one (1) bullet storage tank, a condensate storage tanks, inlet scrubbers, a water tower, and office/shop buildings.

On January 4, 2008, a natural gas condensate release (initially reported as 25 bbls) occurred within the containment berm at the former condensate storage tanks. The release penetrated the berm and flowed outside the south fence of the facility. The release was immediately reported the New Mexico Energy, Minerals, and Natural Resources Department (EMNRD), Oil Conservation Division's (OCD) Aztec field office, and The OCD Release Notification and Corrective Action form (Form C-141) was submitted to the OCD. Initial response activities included the removal of some impacted soil, as well as soil boring sampling to evaluate the extent of impact (Spill Cleanup Report Lindrith Compressor Station, Rio Arriba County, New Mexico, September 2008). Supplemental excavation, delineation, and remediation activities were performed between November 2009 November 2010 (Subsurface Investigation Report, LTE, February 2011), resulting in the removal of approximately 4,182 cubic vards of affected soils, the advancement of twenty-nine (29) soil borings, and the installation and sampling of twelve (12) groundwater monitoring wells. The former condensate tanks and associated sump have been permanently removed from the facility. Based on the results of soil and groundwater sampling activities, constituent of concern (COC) concentrations were identified in soil above the New Mexico Energy, Minerals and Natural Resources Department (EMNRD), Oil Conservation Division (OCD) Remediation Action Levels (RALs) and in groundwater above the New Mexico Water Quality Control Commission (WQCC) Groundwater Quality Standards (GQSs).

The Site location is depicted on Figure 1 of Appendix A which was reproduced from a portion of the United States Geological Survey (USGS) 7.5-minute series topographic map. A Site Vicinity Map of the subject Site and adjoining properties is included as Figure 2 of Appendix A.

1

1.2 CHRONOLOGY OF EVENTS

Significant events and related activities associated with the Site, including the results of Site investigation activities and corrective action completed to date, are provided in the following table:

- January 4, 2008 The release was discovered and reported to the OCD. Condensate penetrated the secondary containment berm and flowed outside the south fence of the facility. Initial response activities included the removal of some soil, and the advancement of soil borings.
- September 2008Spill Cleanup Report Lindrith Compressor Station, Rio Arriba County, New
Mexico, September 2008.
- November 2009 LT Environmental, Inc. (LTE) oversaw the removal of an additional 3,200 cubic yards of hydrocarbon affected soil from the affected area. Apparent historically impacted soil was identified underlying the floor of the excavation, which extended to approximately 9 feet below ground surface (bgs).
- December 2009 Six (6) soil borings were advanced in the immediate vicinity of the former condensate storage tanks. Three (3) of the soil borings were converted into groundwater monitoring wells. Groundwater impact was confirmed through laboratory analysis.
- March 2010Proposed Delineation Work Plan, (LTE) presented to the Jicarilla Apache
Nation Environmental Protection Office (JANEPO) detailing the proposed
subsurface investigation activities.
- April 2010
 Supplemental Work Plan, (LTE) presented to JANEPO describing proposed sump removal and remediation activities.
- May 2010Removal of the subgrade sump, as well as an additional 982 cubic yards of
hydrocarbon affected soils.
- June 2010 Combined ORC Injection and Delineation Work Plan and Remediation Work Plan (LTE) submitted to JANEPO. This work plan proposed in-situ treatment at the source and additional soil and groundwater delineation activities.
- July-November 2010 Bureau of Indian Affairs (BIA) approves the combined work plans. ORC is introduced into the excavation floor, a drain/injection system is installed, and the excavation is backfilled. The ORC is hydrated immediately after the drain/injection system installation, and again in September, October and November 2010.
- October 2010 LTE begins supplemental site delineation activities which included twenty (20) additional soil borings across the southern portion of the Site and adjacent property. Ten (10) of the soil borings are converted to groundwater monitoring wells, including the replacement of MW-1 with MW-1R.
- February 2011Subsurface Investigation Report (LTE) describes the results of the
subsurface investigation activities. The investigation identifies NAPL in

association with the initial groundwater bearing unit, as well as identifying historical apparent impact from undetermined sources. Additional investigation will be required to further evaluate the extent of the NAPL and dissolve-phase groundwater COCs, as well as the historic soil impacts.

- August 2011Supplemental Site Investigation Work Plan submitted to JANEPO on August
1, 2011. Supplemental Site Investigation Work Plan approved by JANEPO
on August 12, 2011.
- August/September 2011 Southwest Geoscience (SWG) performs supplemental site investigation activities which included the advancement and sampling of thirteen (13) additional soil borings across the southern portion of the Site and adjacent property. Each of the soil borings were converted into groundwater monitoring wells which were sampled during the September 2011 groundwater sampling event.

1.3 CONSTITUENTS OF CONCERN

The soil and groundwater samples collected from *historically* installed soil borings/monitoring wells were analyzed for TPH utilizing EPA method SW-846 #8015M and BTEX using EPA SW-846 method #8021B. Additionally, one soil sample (B-21 @ 23') was analyzed for Glycols, and two soil samples (B-27 @ 12' and B-27@ 33') were analyzed for volatile organic compounds (VOCs) utilizing EPA method SW-846 #8260.

- Based on the laboratory analytical results from previous investigations, TPH GRO/DRO concentrations were identified in soil samples collected from borings B-3 (25'), B-11(35'), B-12 (33.5'), B-13 (30'), B-15 (33'), B-16 (32'), B-18 (33'), B-20 (30'), B-24 (29'), B-27 (12'), B-28 (30'), and B-29 (27') above the OCD *Remediation Action Level* of 100 mg/Kg.
- Based on the laboratory analytical results from previous investigations, total BTEX concentrations were identified in soil samples collected from borings B-13 (30') and B-20 (30') above the OCD *Remediation Action Level* of 50 mg/Kg.
- The soil samples analyzed for Glycols and VOCs did not exhibit elevated concentrations of these constituents.
- Based on the laboratory analytical results from the June 2011 groundwater sampling event, benzene concentrations were identified in groundwater samples collected from monitoring wells MW-3, MW-4, MW-6, and MW-12 above the NMWQCC *Water Quality Standard* of 10 µg/L.
- Based on the laboratory analytical results from the June 2011 groundwater sampling event, toluene concentrations were identified in groundwater samples collected from monitoring wells MW-3 and MW-4 above the NMWQCC Water Quality Standard of 750 µg /L.
- Based on the laboratory analytical results from the June 2011 groundwater sampling event, total xylenes concentrations were identified in groundwater

samples collected from monitoring wells MW-3, MW-4, and MW-6 above the NMWQCC *Water Quality Standard* of $620 \ \mu g \ L$.

• During the June 22, 2011 groundwater gauging event, non-aqueous phase liquid (NAPL) was identified in monitoring wells MW-1R, MW-2, and MW-9.

Soil and groundwater analytical results for the Site borings and monitoring wells from previous investigations are included in Tables 1 and 2, respectively.

1.4 SITE RANKING AND PROPOSED CLEANUP GOALS

The Site is under the jurisdiction of the Jicarilla Apache Nation Environmental Protection Office (JANEPO). In the absence of published JANEPO regulatory guidance, SWG referenced the New Mexico OCD's *Guidelines for Remediation of Leaks, Spills and Releases* as guidance, in addition to the OCD rules, specifically NMAC 19.15.30 *Remediation.* These guidance documents establish investigation and abatement action requirements for sites subject to reporting and/or corrective action. These guidance to reporting and/or corrective action for sites subject to reporting and/or corrective action for sites subject to reporting and/or corrective action.

In accordance with the OCD's *Guidelines for Remediation of Leaks, Spills and Releases,* SWG utilized the general site characteristics to determine the appropriate "ranking" for the Site. The ranking criteria and associated scoring are provided in the table below:

Ránkin	g Criteria		Ranking Score
	<50 feet	20	
Depth to Groundwater	50 to 99 feet	10	20
	>100 feet	0	
Wellhead Protection Area • <1,000 feet from a water	Yes	20	
source, or; <200 feet from private domestic water source.	No	0	20
Distance to Curfore Water	<200 feet	20	
Distance to Surface Water	200 to 1,000 feet	10	0
Body	>1,000 feet	0	
Total Rar	nking Score		40

Based on SWG's evaluation of the scoring criteria, the Site would have a Total Ranking Score of 40. This ranking is based on the following:

- The depth to the initial groundwater-bearing zone is <50 feet bgs at the Site.
- A livestock water well is located upgradient (Southeast) of the facility.

Based on a Total Ranking Score of 40, cleanup goals for soil located at the Site include: 10 mg/Kg for benzene, 50 mg/Kg for total BTEX and 100 mg/Kg for TPH GRO/DRO.

In addition, cleanup goals for groundwater located at the Site include the NMWQCC *Water Quality Standards* of: 0.010 mg/L for benzene, 0.75 mg/L for toluene, 0.75 mg/L for ethylbenzene, and 0.62 mg/L for xylenes.

1.5 OBJECTIVES OF SUPPLEMENTAL SITE INVESTIGATION & CORRECTIVE ACTION

The primary objective of the supplemental site investigation activities was to further evaluate the magnitude and extent of NAPL and dissolved phase COCs in groundwater.

The primary objective of the proposed corrective actions is to recover NAPL from the initial groundwater-bearing unit to the extent practical.

2.0 SITE CHARACTERIZATION

2.1 GEOLOGY & HYDROGEOLOGY

According to the New Mexico Bureau of Geology and Mineral Resource (Geologic Map of New Mexico 2003), the Site overlies the San Jose geologic formation. The Eocene age San Jose geologic formation contains a mixture of clastic sedimentary rocks varying from siltstone to conglomerate, dominated by rocks containing sand-sized particles. The lithology encountered at the Site during boring activities are composed of Quaternary alluvial deposits derived from erosion of the parent San Jose sandstones and siltstones. Based on the data collected during the completion of soil borings, the alluvia generally consist of brown silty/clayey sands and weathered sandstones from the ground surface to at least 20 feet bgs.

The lithology observed during the advancement of soil boring MW-37 at the Site included a pale to moderate yellowish brown silty sand from the surface to approximately 15.0 feet bgs. The silty sand stratum was underlain by a moderate to dark yellowish brown fine sand from 15.0 feet bgs to 24.0 feet bgs. A moderate brown to dark gray weathered shaley sandstone was encountered from 24.0 feet bgs to 31.0 feet bgs. At approximately 31.0 feet bgs the color of the weathered sandstone changed to a moderate to pale yellowish brown until a depth of 39.5 feet at which point the color changed to a moderately dark to olive gray. The boring was terminated at 40 feet bgs. The lithologies observed in the remaining soil borings at the Site were generally similar to soil boring MW-37, with occasional clay stringers, and varying degrees of weathered sandstones. Detailed lithologic descriptions are presented on the soil borings logs included in Appendix C. Figure 3 of Appendix A is a Site Map which depicts the location of the soil borings and monitoring wells in relation to pertinent Site features. Approximated geologic cross-sections are provided as Figures 4A and 4B in Appendix A.

The first water-bearing unit at the site is a shallow unconfined aquifer observed in alluvium and weathered sandstone bedrock. The major aquifer underlying the Site vicinity is listed as the Colorado Plateaus Aquifer, which is made up of four smaller aquifers, the Uinta-Animas, the Mesa Verde, the Dakota-Glen, and the Coconino-De Chelly. The Uinta-Animas is the shallowest of these aquifers, and is present in the San Juan Basin. The general composition of the aquifers is moderately to well-consolidated

sedimentary rocks of an age ranging from Permian to Tertiary. There are countless streams, rivers, and lakes that overlay the Colorado Plateaus Aquifers. The surface water bodies in this region provide a place for the aquifers to discharge. Some of the high altitude rivers and lakes may also provide recharge.

The initial groundwater-bearing unit (GWBU) at the Site was encountered at depths ranging from approximately 25 to 35 feet bgs during the investigation activities.

2.1.1 GROUNDWATER FLOW

Monitoring well top-of-casing (TOC) elevations were surveyed and referenced to Section corner benchmarks. Groundwater measurements were collected utilizing an interface probe capable of detecting the presence of light non-aqueous phase liquids (NAPL). NAPL was observed in monitoring wells MW-1R, MW-2, MW-3, MW-9, MW-30, MW-32, MW-37, and MW-39 during recent gauging activities.

Based on the groundwater elevations measured during the September 2011 monitoring event, the groundwater at the Site slopes generally to the west-southwest at an average gradient of 0.012 ft/ft. The observed gradient on the western portion of the site is considerably steeper than that observed on the central and eastern portion.

Figure 5 of Appendix A is a Groundwater Gradient Map which depicts the direction of groundwater flow at the Site based on September 2011 gauging data. Table 3 (Appendix B) includes the gauging date, depth to groundwater and groundwater elevations for the gauging event(s) performed at the Site.

2.1.2 GROUNDWATER CLASSIFICATION

In accordance with 19.15.30 NMAC *Remediation*, a groundwater-bearing unit is classified as an "Underground Source of Drinking Water" provided the groundwaterbearing unit is capable of producing water for human consumption or that contains ground water having a total dissolved solids (TDS) concentration of 10,000 mg/l or less and that is not an exempted aquifer". Based on conductivity readings collected during quarterly sampling events (averaging 2.7 mS/cm), groundwater at the site is likely to exhibit TDS results of less than 2,200 mg/l.

2.2 LAND USE & CLASSIFICATION

Due to the absence of land use classification guidelines in the OCD *Guidelines for Remediation of Leaks, Spills and Releases* and/or NMAC 19.15.30 *Remediation*, land use was determined by comparison of existing land use of the Site to the definitions for residential and non-residential land use published in the available New Mexico Environment Department (NMED) regulatory guidance. Based on the available NMED guidance, non-residential land use encompasses all commercial and industrial land uses.

The Site, and adjacent and surrounding (beyond adjacent) properties are currently utilized as undeveloped rangeland occasioned by oil and gas gathering facilities. Based on SWG's review of the available information and visual inspection of the Site and vicinity, the Site appears to meet the non-residential land use classification.

3.0 SUPPLEMENTAL SITE INVESTIGATION

During August 2011, SWG performed a Supplemental Site Investigation to further define impacts to soil and groundwater at the Site. As a result of this investigation, thirteen (13) additional soil borings were advanced utilizing a hollow-stem auger (HAS) drilling rig. Each of these soil borings were subsequently completed as permanent monitoring wells. A Site-wide groundwater sampling event was performed during September 2011.

3.1 SOIL BORINGS & MONITORING WELLS

As part of the approved scope of work, thirteen (13) soil borings (MW-30 through MW-42) were advanced across the southwestern portion of the site and outside the fenced area. These soil borings were located to further evaluate the former condensate release, the former pond area, the former compressor area, and the subgrade tank located in the western corner of the facility.

Figure 3 of Appendix A is a Site Map which depicts the location of the soil borings in relation to pertinent Site features.

Soil samples were collected continuously, utilizing five-foot core barrel samplers to the termination depth of each soil boring. An on-Site geoscientist documented the lithology encountered and constructed a continuous profile of the soil column from the surface to the boring terminus. Soil samples were observed to document soil lithology, color, moisture content, and visual and olfactory evidence of petroleum hydrocarbons. Field headspace analysis was conducted by placing the portion of the soil sample designated for field screening into a plastic Ziplock® bag. The plastic bag was sealed, and the sample allowed to volatilize. The air above the sample, the headspace, was then evaluated using a photoionization detector (PID) capable of detecting volatile organic compounds (VOCs). The PID was calibrated utilizing an isobutylene standard prior to use in the field.

Overall, PID readings ranged from zero (0) parts per million (ppm) to 676 ppm. Soil borings MW-30, MW-32, MW-36, MW-37, MW-38, MW-39, and MW-42 exhibited PID readings above 100 ppm near the apparent capillary fringe zone. Soil boring MW-32 also exhibited soil PID readings in excess of 100 ppm in shallower soils (16 feet bgs). Significant petroleum hydrocarbon vapors were not detected with the PID in soil samples collected from soil borings MW-31, MW-33, MW-34, MW-35, MW-40, and MW-41. Field screening results are presented on soil boring logs included in Appendix C.

Subsequent to advancement, each of the soil borings (MW-30 through MW-42) were converted to permanent groundwater monitoring wells. The monitoring wells were completed using the following methodology:

• Installation of 10 to 15 feet of 2-inch diameter, 0.010-inch machine slotted PVC well screen with a threaded bottom cap;

- Installation of 2-inch diameter, threaded flush joint PVC riser pipe to the ground surface;
- Addition of a pre-sieved 10/20 grade annular silica sand pack from the bottom of the soil boring to 2-feet above the top of the well screen;
- Addition of a hydrated bentonite seal above the sand pack filter zone;
- Addition of grout to the surface; and,
- Installation of a locking well cap and protective steel riser.

Monitoring well construction details are presented on the monitoring well logs provided in Appendix C.

3.2 INVESTIGATION SAMPLING PROGRAM

3.2.1 SOIL SAMPLING PROGRAM

SWG's soil sampling program involved submitting one (1) or more soil sample(s) from each soil boring for laboratory analysis. Soil samples were collected from the zone exhibiting the highest PID reading, from a change in lithology, or from the bottom of the boring, based on the field professional's judgment.

Soil sample intervals are presented with the soil sample analytical results (Table 1) in Appendix B and are provided on the boring logs included in Appendix C.

3.2.2 GROUNDWATER SAMPLING PROGRAM

During the most recent groundwater sampling event (September 2011), each of the monitoring wells not exhibiting NAPL were micro-purged and sampled utilizing low-flow sampling techniques. Low-flow refers to the velocity with which groundwater enters the pump intake and that is imparted to the formation pore water in the immediate vicinity of the well screen. It does not necessarily refer to the flow rate of water discharged at the surface which can be affected by flow regulators or restrictions. Water level drawdown provides the best indication of the stress imparted by a given flow-rate for a given hydrological situation. The objective was to pump in a manner that minimizes stress (drawdown) to the system to the extent practical taking into account established site sampling objectives. Flow rates on the order of 0.1 to 0.5 L/min were maintained during the sampling activities using dedicated sampling equipment.

The utilization of low-flow minimal drawdown techniques enables the isolation of the screened interval groundwater from the overlying stagnant casing water. The pump intake is placed within the screened interval such that the groundwater recovered is drawn in directly from the formation with little mixing of casing water or disturbance to the sampling zone.

The monitoring wells were purged until produced groundwater was consistent in color, clarity, pH, dissolved oxygen (DO), oxidation/reduction potential (ORP), temperature, and conductivity prior to groundwater sample collection.

3.3 LABORATORY ANALYTICAL PROGRAM

The soil and groundwater samples collected during the Supplemental Site Investigation activities were analyzed for TPH GRO/DRO using EPA method SW-846 #8015B and BTEX using EPA method SW-846 method #8021B.

Laboratory results are summarized in the tables included in Appendix B. The executed chain-of-custody form and laboratory data sheets are provided in Appendix D.

3.4 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

All non-disposable sampling equipment was cleaned using an Alconox[®] wash and potable water rinse prior to the beginning of the project and before the collection of each sample.

Soil and groundwater samples were collected and placed in laboratory prepared glassware, sealed with custody tape and placed on ice in a cooler, which was secured with a custody seal. The sample coolers and completed chain-of-custody forms were relinquished to Hall Environmental Analytical Laboratory (HEAL) in Albuquerque, New Mexico for standard turnaround.

HEAL performed the analyses of samples under an adequate and documented quality assurance program to meet the project and data quality objectives. The laboratory's quality assurance program is generally consistent the quality standards outlined in the National Environmental Laboratory Accreditation Program, as amended. In addition, the data generated by HEAL meet the intralaboratory performance standards for the selected analytical method and the performance standards are sufficient to meet the bias, precision, sensitivity, representativeness, comparability, and completeness, as specified in the project data quality objectives.

3.5 DATA EVALUATION

The Site is under the jurisdiction of the JANEPO. In the absence of published JANEPO regulatory guidance, SWG referenced the New Mexico OCD's *Guidelines for Remediation of Leaks, Spills and Releases* as guidance, in addition to the OCD rules, specifically NMAC 19.15.30 *Remediation*. These guidance documents establish investigation and abatement action requirements for sites subject to reporting and/or corrective action. These guidance documents establish investigation and abatement actor reporting and/or corrective action.

Based on SWG's review of Site characteristics (specifically: depth to groundwater, wellhead protection area and distance to surface water) an associated ranking score of **40** was determined for the Site. Consequently, the OCD's *Remediation Action Levels* for soils on sites having a total ranking score greater than 19 is 10 milligrams per kilogram (mg/Kg) benzene, 50 mg/Kg total BTEX and 100 mg/Kg TPH GRO/DRO. The

New Mexico WQCC *Groundwater Quality Standards* are: 10 µg/L for benzene, 750 µg/L for toluene, 750 µg/L for ethylbenzene, and 620 µg/L for total xylenes.

3.5.1 SOIL

SWG compared the TPH GRO/DRO and BTEX concentrations or practical quantitation limits (PQLs) associated with the soil samples to the OCD *Remediation Action Levels*.

Total Petroleum Hydrocarbons

Soil samples collected from soil borings B-3, B-11, B-12, B-13, B-15, B-16, B-18, B-20, B-24. B-27, BH-28, and BH-29, completed during previous investigation activities, and soil samples collected from soil borings MW-30, MW-32, MW-37, and MW-39 exhibited TPH GRO/DRO concentrations ranging from <110 mg/Kg to 11,250 mg/Kg, which exceed the OCD's *Remediation Action Level* of 100 mg/Kg.

The soil samples collected from the remaining soil borings did not exhibit TPH GRO/DRO concentrations above the OCD's *Remediation Action Level* of 100 mg/Kg.

<u>Benzene</u>

The soil sample collected from soil boring MW-39 exhibited a benzene concentration of 11 mg/Kg, which exceeds the OCD's *Remediation Action Level* of 10 mg/Kg.

The soil samples collected from the remaining soil borings exhibited benzene concentrations ranging from below the laboratory PQLs to 9.7 mg/Kg, which is below the OCD's *Remediation Action Level* of 10 mg/Kg.

Total BTEX

The soil samples collected from previous soil borings B-13 and B-20, and from soil borings MW-30, MW-32, MW-37, and MW-39 exhibited total BTEX concentrations ranging from 52.1 mg/Kg to 294 mg/Kg, which exceed the OCD's *Remediation Action Level* of 50 mg/Kg.

The soil samples collected from the remaining soil borings did not exhibit total BTEX concentrations above the laboratory PQLs, which are below the OCD's *Remediation Action Levels* of 50 mg/Kg.

The results of soil sample analyses are summarized in Table 1 of Appendix B. Figure 6 (Appendix A) details the OCD *Remediation Action Level* Exceedance Zone in soil.

3.5.2 GROUNDWATER

SWG compared BTEX concentrations or PQLs associated with the groundwater samples collected from the monitoring wells during the most recent sampling event to the New Mexico WQCC *Groundwater Quality Standards*.

The groundwater samples collected from monitoring wells MW-5, MW-7, MW-8, MW-10, MW-11, MW-31, MW-33, MW-34, MW-35, MW-36, and MW-40 did not exhibit benzene, toluene, ethylbenzene or xylenes concentrations above the respective WQCC *Groundwater Quality Standards*.

The groundwater samples collected from monitoring wells MW-4, MW-6, MW-12, MW-38, and MW-42 exhibited benzene concentrations ranging from 63 μ g/L to 4,900 μ g/L which exceeds the WQCC *Groundwater Quality Standard* of 10 μ g/L.

The groundwater sample collected from monitoring well MW-4 exhibited a toluene concentration of 1,700 μ g/L which exceeds the WQCC *Groundwater Quality Standard* of 750 μ g/L.

The groundwater samples collected from monitoring wells MW-4, MW-6, and MW-38 exhibited xylene concentrations ranging from 1,700 μ g/L to 1,800 μ g/L, which exceed the WQCC *Groundwater Quality Standard* of 620 μ g/L.

Groundwater samples were not collected from monitoring wells MW-1R, MW-2, MW-3, MW-9, MW-30, MW-32, MW-37 or MW-39, due to the presence of NAPL. Two previously unidentified NAPL plumes were identified during the investigation. One of these plumes is located near the subgrade tank in the west corner of the Site, and the other is located beneath the former ponds at the southeast corner of the Site.

The results of groundwater sample analyses are summarized in Table 2 of Appendix B. Figure 7 (Appendix A) details the NMWQCC *Groundwater Quality Standard* Exceedance Zone in groundwater.

4.0 CORRECTIVE ACTION

Corrective actions completed at the Site to date include the excavation and removal of approximately 4,182 cubic yards of hydrocarbon impacted soil. Additionally, ORC[®] was introduced into the floor of the excavation utilizing four (4) trenches in an attempt to treat impacted soils below 20 feet bgs. Subsequently, a perforated drain system with riser pipes was installed prior to backfill activities to provide a mechanism for hydration of the ORC[®]. Pursuant to the initial hydration of the ORC[®] at the time of installation, the drain system was utilized on three separate occasions between September and November of 2010 to hydrate the former excavation floor.

ORC[®] is a formulation of phosphate-intercalated magnesium peroxide that, when hydrated, produces a controlled release of oxygen for periods of up to 12 months per application. ORC[®] injection is a passive remediation alternative designed to supply controlled-release molecular oxygen to the subsurface environment to enhance or accelerate the rate of naturally occurring aerobic contaminant biodegradation in groundwater and saturated soils.

4.1 HIGH-VACUUM REMEDIATION

Enterprise proposes to implement hi-vacuum remediation (HVR) technology, also referred to as mobile dual-phase extraction (MDPE), at the Site. The mobile HVR system (Liquid Ring Pump and Internal Combustion Engine (ICE) system), which utilizes patent pending technical innovations, will be operated at the Site for approximately 90 days. The HVR system has been designed to recover NAPL and associated vapors, which have been identified in association with the initial groundwater-bearing unit in the vicinity of the former condensate storage tanks. The proposed HVR system will be tailored to the specific geology and hydrogeology of the site, and field modifications will be made to optimize system performance.

The system will consist of a single trailer mounted ICE unit incorporating proprietary fluid extraction/knockout/oil water separation technology with fluid storage tanks, vapor abatement, and data logging capabilities. A diagram of the proposed ICE unit is provided in Appendix E. The emissions leave the engine through a catalytic converter prior to release to the atmosphere. Natural gas or propane is utilized at "start-up" and as "make-up" or "assist" fuel if vapor concentrations drop below the ICE requirements. Water and NAPL recovery quantities will be quantified manually, and vapor phase utilization will be calculated in pounds and/or gallons.

Recovered groundwater and NAPL will be temporarily stored on site during the MDPE event for subsequent disposal as oil & gas waste or re-introduction into the product gathering system, in accordance with applicable state and federal regulations.

Prior to initiation and periodically during operation, each of the monitoring wells at the Site will be gauged to determine NAPL and water level measurements.

AIR PERMITTING AND SAMPLING

An air permit will be secured for the HVR system operating at the Site. Permit compliance will require periodic air sampling, beginning at start up, to measure predestruction volatile levels and to monitor post-abatement air emissions. Air samples will be collected utilizing tedlar bags, or other approved air sampling methods. Samples will be analyzed for BTEX concentrations at an approved laboratory.

4.1.1 "PILOT STUDY" PHASE

During the "pilot study" phase of the HVR activities, vapors, NAPL, and a small amount of water will be recovered from monitoring wells located within the NAPL plume from the former condensate tanks release. Withdrawal from these monitoring wells will be alternated, based on performance, to maximize hydrocarbon recovery. The HVR activities are currently planned to occur over a three month timeframe, but constant evaluation of the results may alter that timeframe.

4.1.2 NAPL REDUCTION PHASE

In the event the proposed HVR activities at the source significantly reduce the volume of NAPL in the vicinity of the source, further HVR may be planned for the former

condensate storage tanks release area and additional HVR activities may be scheduled for other areas at the site.

5.0 CORRECTIVE ACTION EFFECTIVENESS

The HVR activities are scheduled to occur over a three month time frame. To evaluate the effectives of the proposed corrective action, SWG will assess the volume of recovered hydrocarbons and NAPL thickness levels on the shallow aquifer, as well as the calculated mass of hydrocarbons removed after one month of operation. This information will be compared against the cost of operating the HVR system, to determine if activities should continue for the planned duration of the pilot test or be terminated prematurely due to inefficiency.

If the HVR system is operated beyond the first month, the mass recovery of hydrocarbon and NAPL measurements will continue to be tracked, and a feasibility study will be performed once the pilot test is complete. Subsequent quarterly monitoring results will also be evaluated to determine if the HVR produces a positive result in addressing dissolve-phase COC concentrations.

5.1 GROUNDWATER SAMPLING PROGRAM

Subsequent to the HVR pilot study, SWG's groundwater sampling program will be slightly modified to include natural attenuation parameters and will consist of the following:

1. Collection of one (1) groundwater sample from each monitoring well utilizing lowflow minimal drawdown sampling techniques during each of four (4) quarterly groundwater sampling events.

Prior to sample collection, all onsite monitoring wells not exhibiting NAPL will be micropurged and sampled utilizing low-flow sampling techniques. Low-flow refers to the velocity with which groundwater enters the pump intake and that is imparted to the formation pore water in the immediate vicinity of the well screen. It does not necessarily refer to the flow rate of water discharged at the surface which can be affected by flow regulators or restrictions. Water level drawdown provides the best indication of the stress imparted by a given flow-rate for a given hydrological situation. The objective is to pump in a manner that minimizes stress (drawdown) to the system to the extent practical taking into account established site sampling objectives. Flow rates on the order of 0.1 to 0.5 L/min will be maintained during the sampling activities using dedicated sampling equipment.

The utilization of low-flow minimal drawdown techniques enables the isolation of the screened interval groundwater from the overlying stagnant casing water. The pump intake is placed within the screened interval such that the groundwater recovered is drawn in directly from the formation with little mixing of casing water or disturbance to the sampling zone.

The monitoring wells will be purged until produced groundwater is consistent in color, clarity, pH, dissolved oxygen (DO), oxidation/reduction potential (ORP), temperature, and conductivity prior to groundwater sample collection.

The groundwater samples will be collected in laboratory prepared glassware and placed on ice in a cooler, which will be secured with a custody seal. The samples will be transported to a selected analytical laboratory along with a completed chain-of-custody form.

The groundwater samples collected from the monitoring wells will be analyzed for TPH GRO/DRO utilizing EPA method SW-846 #8015M and BTEX utilizing EPA Method SW-846 #8021B. In addition, during two (2) of the groundwater sampling events, groundwater samples will be collected for select *Supplemental Geochemical Indicators of Groundwater COC Degradation* including alkalinity, nitrate, ferrous iron, total iron, sulfate, methane, manganese and carbon dioxide.

A summary of	the analysis,	sample	type, s	sample	frequency	and	EPA-approved
methods are pre	sented below:						

Analysis	Sample Type	EPA Method #
TPH GRO/DRO	Groundwater	SW-846#015M
BTEX	Groundwater	SW-846#8021B
Alkalinity	Groundwater	SM2320B
Nitrate	Groundwater	SW-846#9056
Ferrous Iron (Fe ²⁺)	Groundwater	SW-846#6010B
Total Iron	Groundwater	SM 3500-Fe D.
Sulfate	Groundwater	SW-846#9056
Methane	Groundwater	RSK 175
Manganese	Groundwater	SW-846#6010B
Carbon Dioxide	Groundwater	SM 4500-CO2

6.0 CORRECTIVE ACTION REPORT

Subsequent to the completion of the source or "pilot study" phase of HVR corrective action activities, a report will be prepared that will include documentation of initial HVR and groundwater monitoring activities, a site plan detailing pertinent site features, laboratory analytical results, an evaluation of corrective action results and recommendations concerning further corrective measures for the Site.

7.0 SCHEDULE

The completion of the proposed pilot study phase of the HVR activities will require an estimated three (3) months after initiation; however, time estimations regarding the completion of corrective actions depend upon several factors, many of which cannot be pre-determined.

Provided the proposed "pilot study" phase of the HVR activities effectively reduces NAPL volumes groundwater in the vicinity of the source, a larger scale and longer term HVR event may be recommended.

8.0 FINDINGS AND RECOMMENDATIONS

The primary objective of the supplemental site investigation activities was to further evaluate the magnitude and extent of NAPL and dissolved phase COCs in groundwater.

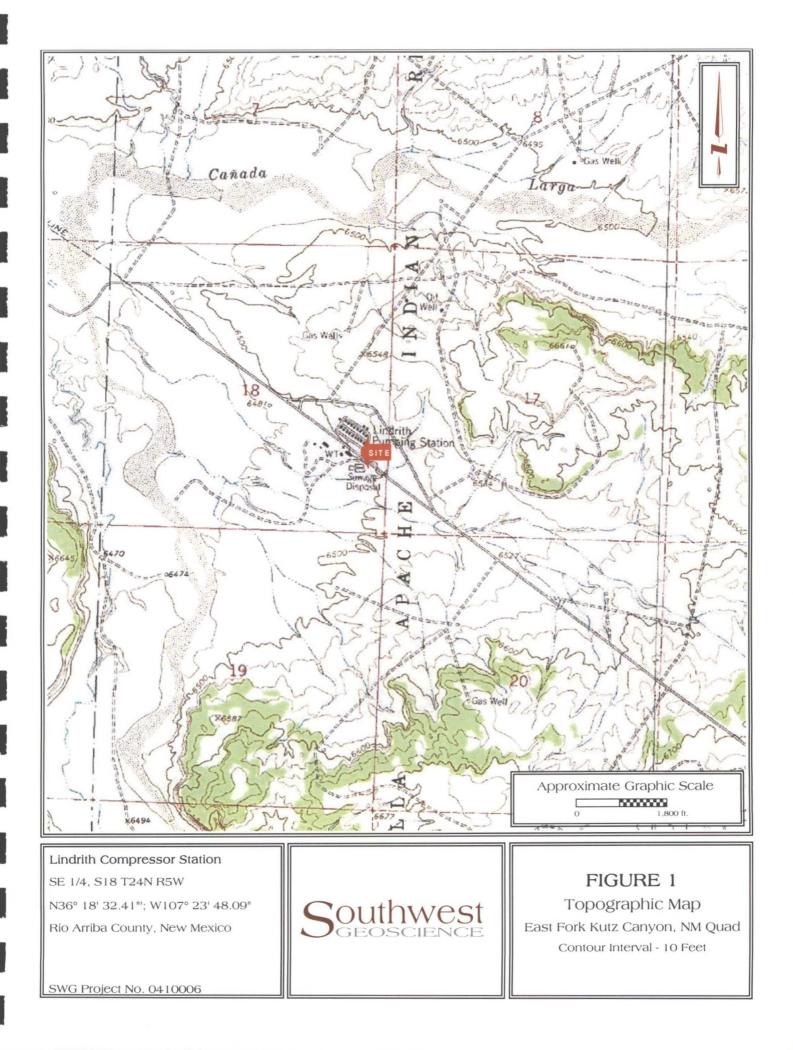
The primary objective of the proposed corrective actions is to recover NAPL from the initial groundwater-bearing unit to the extent practical utilizing high-vacuum recovery.

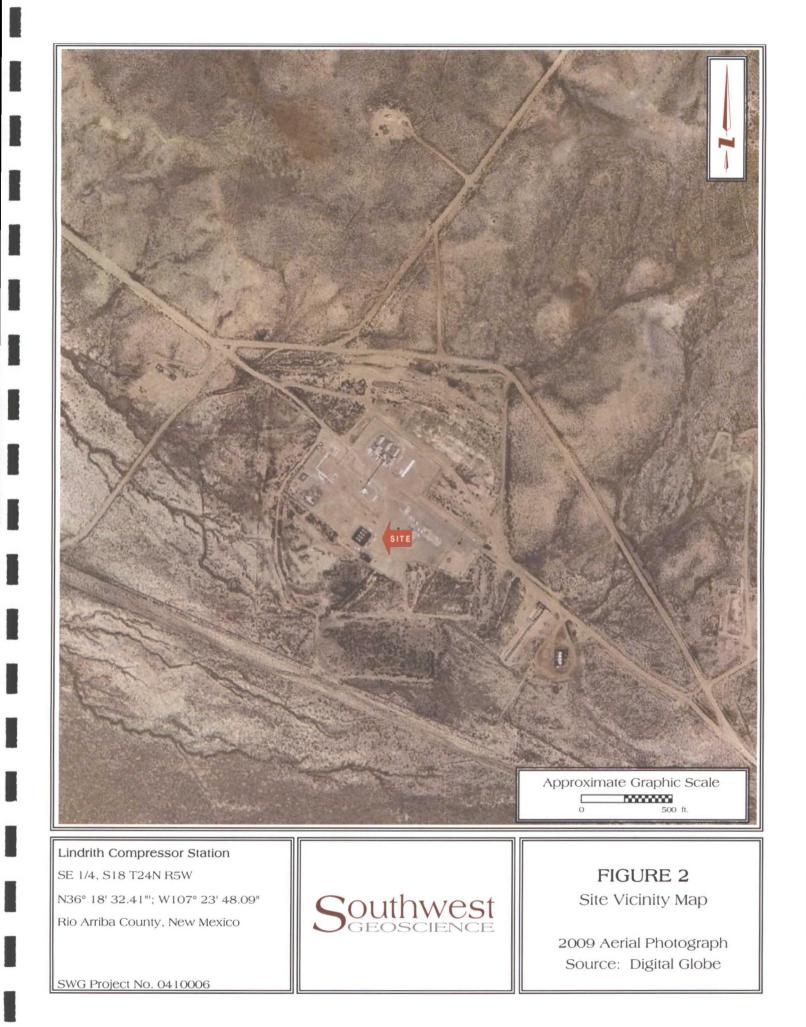
- SWG installed thirteen (13) monitoring wells at the Lindrith Compressor Station utilizing a HSA drilling rig.
- Soil samples collected from soil borings MW-30, MW-32, MW-37, and MW-39 exhibited TPH GRO/DRO concentrations ranging from <110 mg/Kg to 11,250 mg/Kg, which exceed the OCD's *Remediation Action Level* of 100 mg/Kg.
- The soil sample collected from soil boring MW-39 exhibited a benzene concentration of 11 mg/Kg, which exceeds the OCD's *Remediation Action Level* of 10 mg/Kg.
- The soil samples collected from soil borings MW-30, MW-32, MW-37, and MW-39 exhibited total BTEX concentrations ranging from 52.1 mg/Kg to 294 mg/Kg, which exceed the OCD's *Remediation Action Level* of 50 mg/Kg.
- Groundwater samples were not collected from monitoring wells MW-1R, MW-2, MW-3, MW-9, MW-30, MW-32, MW-37 or MW-39, due to the presence of NAPL. Two additional NAPL plumes were identified during the investigation.
- The groundwater samples collected from monitoring wells MW-4, MW-6, MW-12, MW-38, and MW-42 exhibited benzene concentrations ranging from 63 µg/L to 4,900 µg/L which exceeds the WQCC *Groundwater Quality Standard* of 10 µg/L.
- The groundwater sample collected from monitoring well MW-4 exhibited a toluene concentration of 1,700 µg/L which exceeds the WQCC *Groundwater Quality Standard* of 750 µg/L.

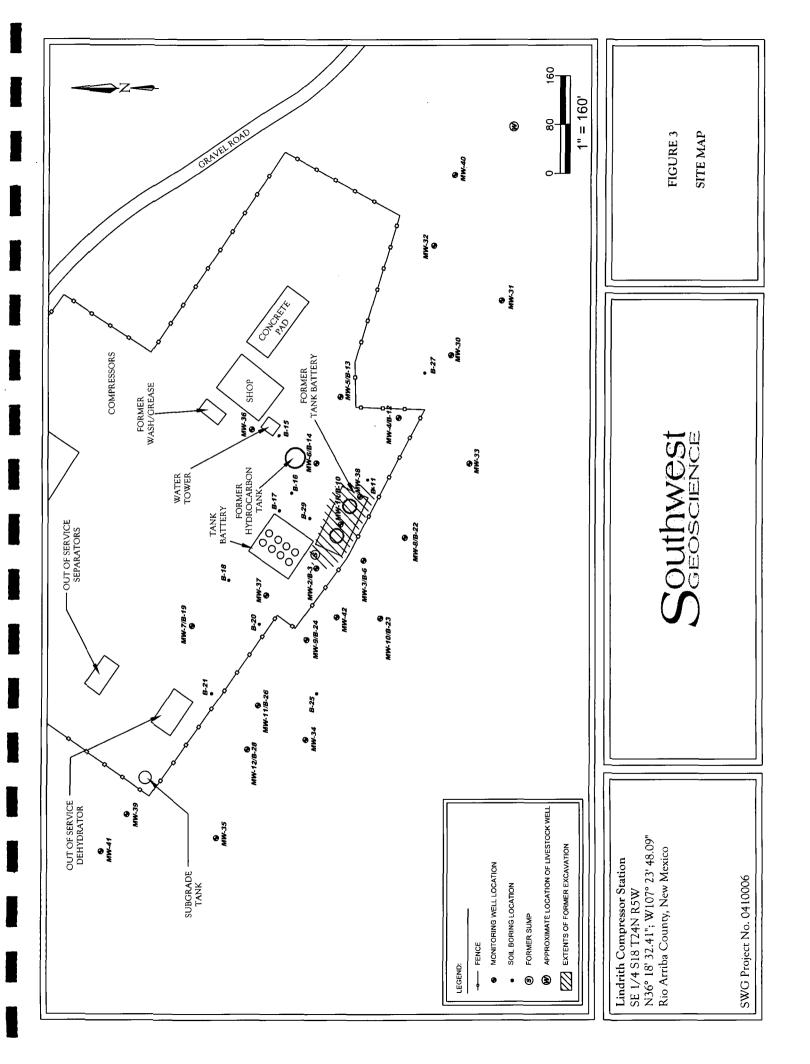
- The groundwater samples collected from monitoring wells MW-4, MW-6, and MW-38 exhibited xylene concentrations ranging from 1,700 µg/L to 1,800 µg/L, which exceed the WQCC *Groundwater Quality Standard* of 620 µg/L.
- Based on the results of current and previous investigations at the Site, the following source areas are suspected as contributors to the identified soil and/or groundwater impact at the facility:
 - 1.) Former condensate storage tanks and sump in south central facility and possibly the former hydrocarbon tank located southwest of the water tower.
 - 2.) Former pond locations (possible burn pit location) in the southeastern portion of the facility in the vicinity of monitoring wells MW-30 and MW-32.
 - 3.) Subgrade tank in the northwest portion of the facility.
- Dissolve-phase COC groundwater impact in the vicinity of monitoring well MW-12 does not appear to be directly associated to an identified source, and may be the result of an unknown source that has been removed, or possibly the result of a much earlier release from the former condensate tank area.
- Enterprise proposes to implement HVR technology at the Site. The mobile HVR system will be operated at the Site for approximately 90 days. The HVR system has been designed to recover NAPL and associated vapors, which have been identified in association with the initial groundwater-bearing unit in the vicinity of the former condensate storage tanks. The proposed HVR system will be tailored to the specific geology and hydrogeology of the site, and field modifications will be made to optimize system performance.

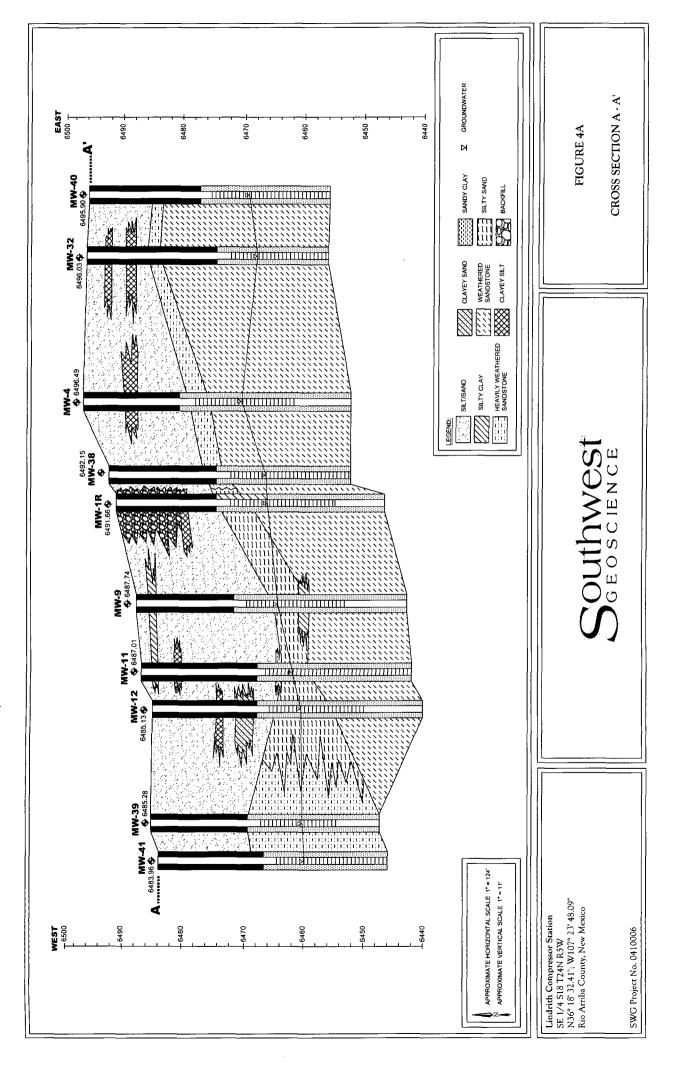
Based on the results of supplemental investigation and corrective action activities, SWG has the following recommendations:

- Report the results of the investigative and corrective actions to the JANEPO;
- Evaluate future quarterly sampling results and perform additional delineation activities as necessary to further evaluate the extent of the dissolve-phase COCs in groundwater; and,
- Perform "Pilot Study" HVR to evaluate NAPL removal feasibility in the vicinity of the former condensate storage tank release.

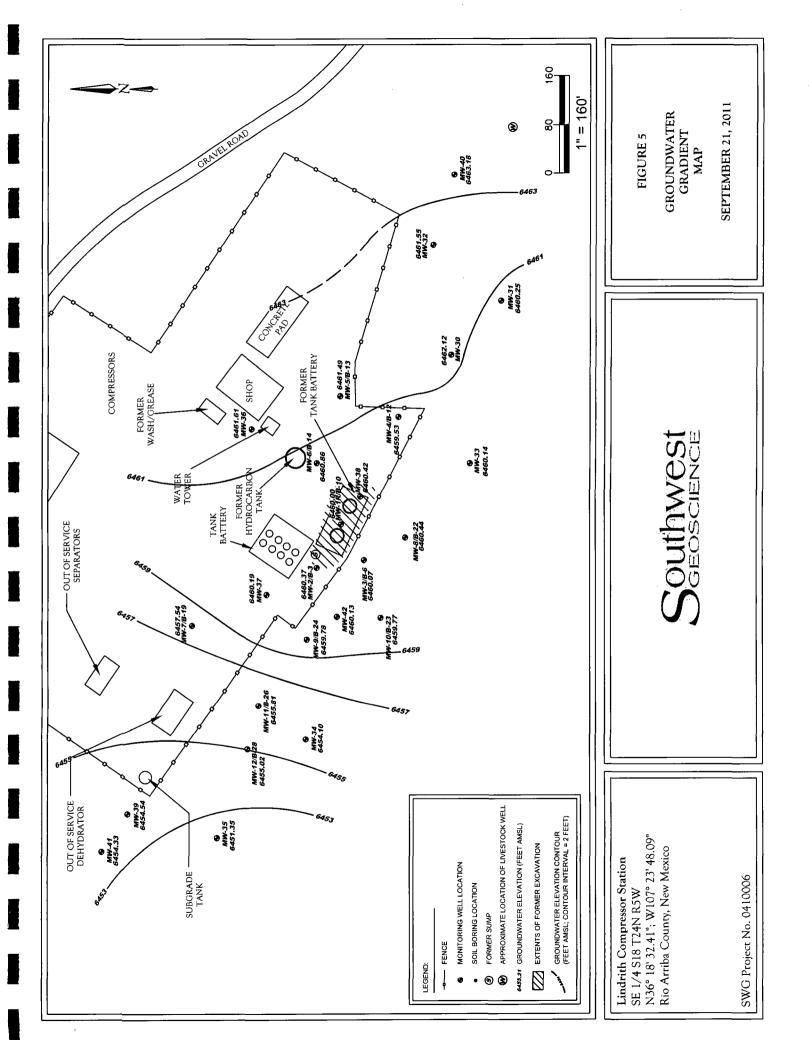

ľ

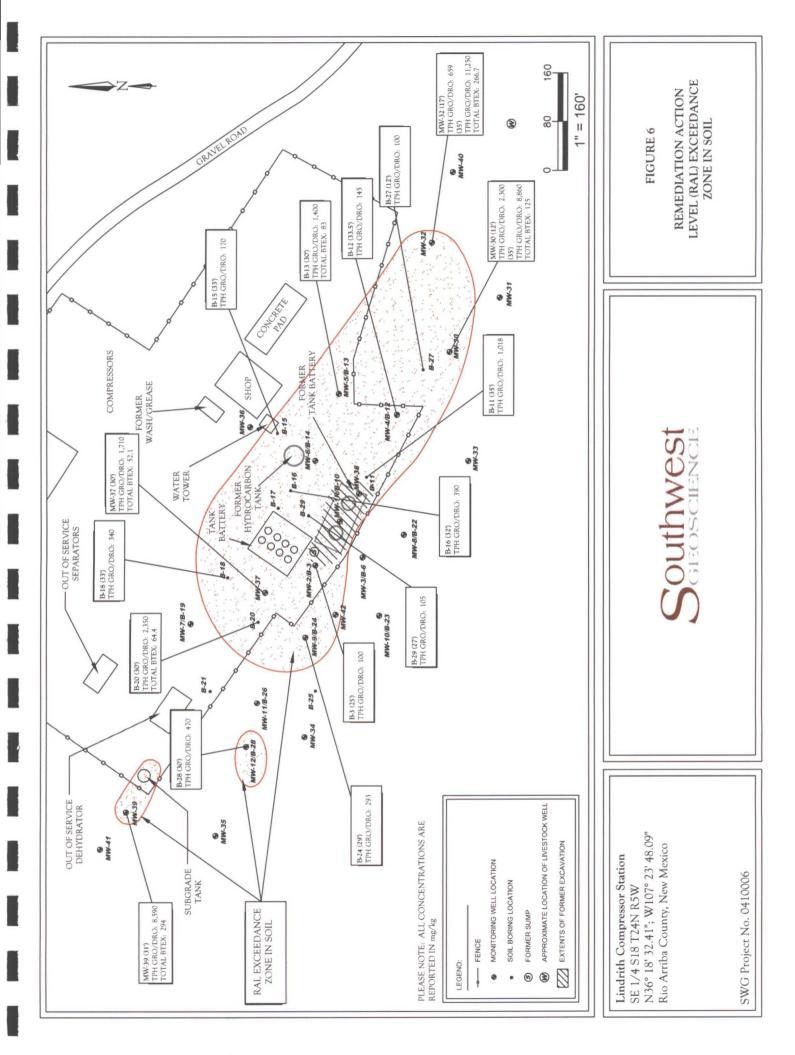

ł

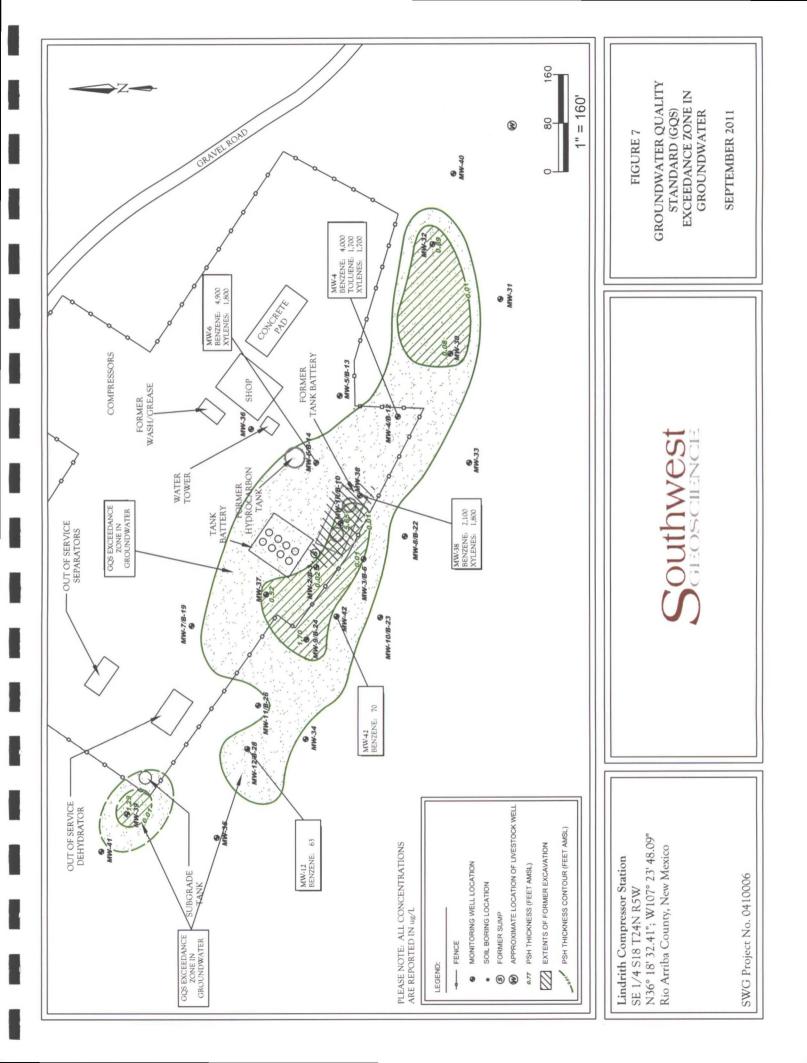

Į

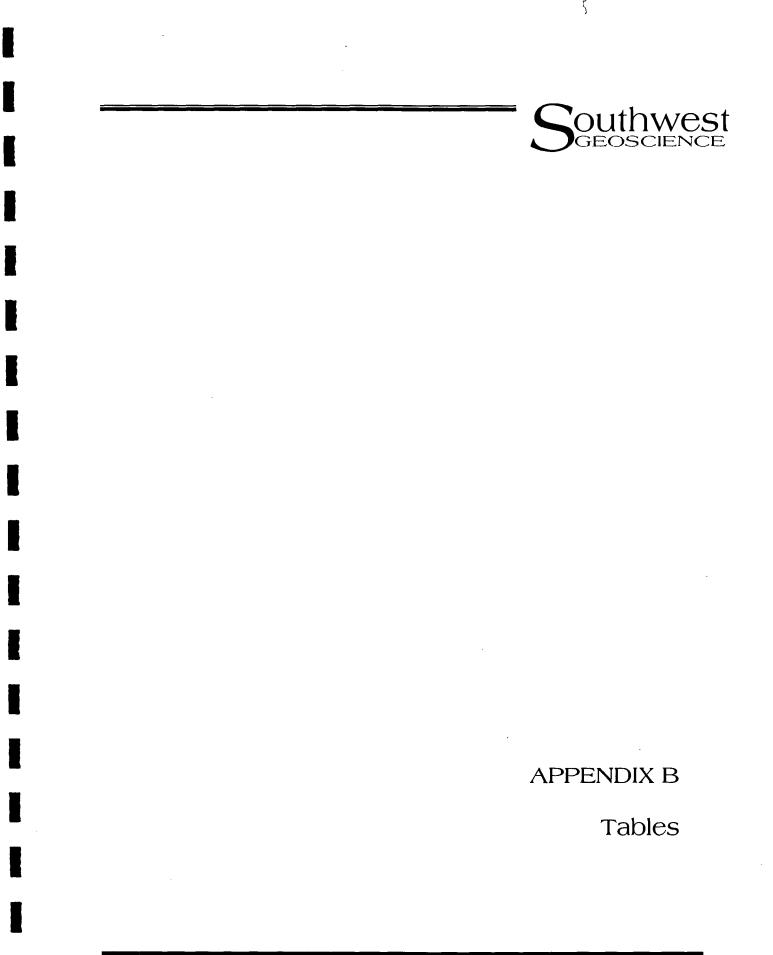

APPENDIX A


Figures









SouthWest

TABLE 1

Depth (feet) New Mexico Entergy, Mineral & Natural Resources	Sample	Benzene	Toluene	Ethylbenzene	Xylenes	Total BTEX	TPH	HAT	HAT	HAT
Entergy, Mineral & Natu	Depth (feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	GRO (mg/kg)	DRO (mg/kg)	MRO (mg/kg)	Total (mg/kg)
Department, Oll Conservation Division, Remediation Action Level	Iral Resources Division, el	10	RE	PE	NE	50		and the first	100	
			Sc	Soll Boring Advanced by Lodestar/LTE	d by Lodestar/LT	E				
	15.0	0.057	0.19	<0.5	0.22	<0.967	28	<10	NA	<38
	25.0	0.25	0.84	0.1	0.81	2	82	<10	NA	<92
	20.0	<0.05	<0.05	<0.05	<0.10	QN	<5.0	<10	NA	QN
	25.0	0.27	1.2	0.24	2.2	3.91	100	<10	NA	<110
	30.0	<0.05	0.36	0.11	1.0	<1.52	19	<10	NA	<29
	35.0	<0.05	<0.05	<0.05	<0.10	QN	<5.0	<10	NA	Q
	20.0	<0.05	<0.05	<0.05	<0.10	QN	<5.0	<10	NA	QN
	20.0	<0.05	<0.05	<0.05	<0.10	QN	<5.0	<10	NA	QN
	25-30	<0.05	0.06	<0.05	0.11	<0.27	8	<10	NA	<18
B-6 12.17.09	35.0	<0.05	0.15	<0.05	0.23	<0.48	12	<10	NA	<22
╏	40.0	<0.05	<0.05	<0.05	<0.10	QN	<5.0	<10	NA	QN
+	22.0	<0.25	1.0	0.3	3.4	<4.95	64	<10	<50	<124
	45.0	<0.05	<0.05	<0.05	<0.10	QN	<5.0	<10	<50	QN
+	35.0	2.6	15	3.3	28	48.9	1,000	18	<50	<1068
	45.0	<0.05	<0.05	<0.05	<0.10	QN	<5.0	<10	<50	QN
+	33.5	0.31	1.8	0.75	5.4	8.26	130	15	<50	<195
	48.0	<0.05	<0.05	<0.05	<0.10	QN	<5.0	<10	<50	QN
+	30.0	<2.5	17	9.0	57	<85.5	1,000	400	810	2210
	45.0	<0.05	<0.05	<0.05	<0.10	QN	<5.0	<10	<50	ND
+	28.0	<0.05	0.067	<0.05	0.37	<0.537	13	30	74	117
t	40.0	<0.05	<0.05	<0.05	<0.10	QN .	<5.0	<10	<50	QN
B-15 10.22.10	33.0	<0.50	<0.50	<0.50	<1.0	Q	<50	170	210	<430
t	35.0	c0.0>	<0.U>	<0.U>	<0.10	NN	<5.0	<10	<50	GN
t	32.0	<0.50	2.9	1.6	13	<18	260	130	150	540
B-10 10.22.10	45.0	c0.05	CU.U>	<0.05	<0.10	CIN.	<5.0	<10	<50	QN .
t	33.0	20.00	<0.10 20.05	0.12	2.1	<1.52	31	51	78	160
t	0.04	00.02	02.0	0.05	20.10	ND V	0.65	410	<50 100	ON CO.
B-18 10.25.10	40.0	<0.05	<0.05	<0.05 <0.05	<0.10	UN	<5.0 <5.0	10	220 220	CIN
t	33.0	<0.05	<0.05	<0.05	<0.10	QN	14	18	<50	682
t	45.0	<0.05	<0.05	<0.05	<0.10	QN	<5.0	<10	<50	QN
B-20 10.25.10	30.0	<1.0	7.9	6.5	50	<65.4	1.900	450	420	2770
	40.0	<0.05	<0.05	<0.05	<0.10	QN	<5.0	<10	<50	QN
	23.0	<0.05	<0.05	<0.05	<0.10	QN	<5.0	<10	<50	QN
	40.0	<0.05	<0.05	<0.05	<0.10	QN	<5.0	<10	<50	QN
B-22 10.27.10	24.0	<0.05	<0.05	<0.05	<0.10	DN	<5.0	<10	<50	QN
B-22 10.28.10	42.0	<0.05	<0.05	<0.05	<0.10	QN	<5.0	<10	<50	QN
B-23 10.29.10	33.0	<0.05	<0.05	<0.05	<0.10	QN	<5.0	<10	<50	QN
	40.0	<0.05	<0.05	<0.05	<0.10	QN	<5.0	<10	<50	QN
B-24 10.29.10	29.0	<0.25	1.6	0.73	6.9	<9.48	230	63	210	503
	45.0	<0.05	<0.05	<0.05	<0.10	QN	<5.0	<10	<50	QN
	39.0	<0.05	<0.05	<0.05	<0.10	QN	<5.0	<10	<50	QN
B-26 11.02.10	29.0	<0.05	<0.05	<0.05	<0.10	UN	C U	<.		

Southwest

Sample I.D.	Date	Sample	Benzene	Toluene	Ethylbenzene	Xylenes	Total BTEX	HdT	HdT	HdT	HdT
		(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	GRO (mg/kg)	DRO (mg/kg)	MRO (mg/kg)	Total (mg/kg)
w Mexico Enter Department, Remed	New Mexico Entergy, Mineral & Natural Resources Department, Oil Conservation Division, Remediation Action Level	tural Resources Division, vel	10	NE	ЯË	NE	50		1 and the	100	
B-27	11.02.10	12.0	<0.05	<0.05	<0.05	0.11	<0.26	<25	100	290	<415
B-27	11.02.10	33.0	<0.05	<0.05	<0.05	0.26	<0.41	30	33	98	161
BH-27	11.03.10	45.0	<0.05	<0.05	<0.05	<0.10	DD	<5.0	<10	<50	QN
BH-28	11.03.10	30.0	<0.05	<0.05	0.22	2.4	<2.72	110	360	680	1150
BH-28	11.03.10	45.0	<0.05	<0.05	<0.05	<0.10	DN	<5.0	<10	<50	QN
BH-29	11.04.10	27.0	<0.05	<0.05	<0.05	<0.10	DN	<5.0	100	130	<235
BH-29	11.04.10	40.0	<0.05	<0.05	<0.05	<0.10	ND	6.6	<10	<50	<66.6
			- and a second		Soll Boring Advanced by SWG	nced by SWG					
MW-30	8.15.11	12.0	<0.47	<0.47	<0.47	<0.94	QN	<47	2,300	VN	<2347
MW-30	8.15.11	35.0	<0.48	7.0	18	100	125	8,500	360	NA	8,860
MW-31	8.15.11	16.0	<0.24	<0.24	<0.24	<0.47	QN	<24	<9.9	NA	QN
MW-31	8.15.11	37.0	<0.048	<0.048	<0.048	<0.097	QN	<4.8	<9.6	NA	QN
MW-32	8.16.11	17.0	<0.50	1.2	2.4	16	19.6	640	19	NA	629
MW-32	8.16.11	35.0	9.7	34	33	190	266.7	11,000	250	NA	11,250
MW-33	8.16.11	35.0	<0.048	<0.048	<0.048	<0.097	QN	<4.8	<9.8	NA	QN
MW-34	8.17.11	30.0	<0.048	<0.048	<0.048	<0.096	ΟN	<4.8	<10	NA	QN
MW-35	8.17.11	30.0	<0.049	<0.049	<0.049	<0.098	ΟN	<4.9	<9.9	NA	QN
MW-35	8.17.11	36.0	<0.048	<0.048	<0.048	<0.096	QN	<4.8	<10	ΝA	QN
MW-36	8.18.11	30.0	<0.049	<0.049	<0.049	<0.098	DN	10	<10	NA	<20
MW-36	8.18.11	35.0	<0.047	<0.047	<0.047	<0.095	QN	<4.7	<10	NA	QN
MW-37	8.19.11	26.0	<0.049	<0.049	<0.049	<0.097	DN	<4.9	27	NA	<31.9
MW-37	8.19.11	30.0	1.2	5.7	5.2	40	52.1	1,400	310	NA	1,710
MW-38	8.19.11	34.0	<0.049	<0.049	<0.049	<0.098	QN	<4.9	<10	NA	QN
MW-38	8.19.11	28.0	<0.048	<0.048	<0.048	<0.096	ND	<4.8	<9.8	NA	ND
MW-39	8.22.11	31.0	11	18	35	230	294	7,600	066	NA	8,590
MW-40	8.23.11	32.0	<0.048	<0.048	<0.048	<0.096	DN	<4.8	<9.8	NA	ND
MW-40	8.23.11	35.0	<0.047	<0.047	<0.047	<0.093	QN	<4.7	<10	NA	QN
MW-41	8.23.11	30.0	<0.048	<0.048	<0.048	<0.095	QN	<4.8	<9.9	NA	QN
CF /YNY		010	010	0100			1 1 1 1				

Note: Concentrations in **bold** and yellow exceed the applicable OCD Remediation Action Level NA = Not Analyzed NE = Not Established

NAPL = Non-aqueous phase liquid * = boting location from former condensate tank leak. Not shown on map due to scale.

す
UZ
N
200
HÖ
NE
ň

TABLE 2

Lindrith Compressor Station GROUNDWATER ANALYTICAL SUMMARY

כווחומים	Curo		0.0000			Contraction of the second seco	AND	Contraction of the sound of the second second	Contraction of the second seco		A REAL PROPERTY AND A REAL PROPERTY OF A REAL PROPE
		(hg/L)	(Hg/I-)	(1/8/1)	(Hg/I-)	GRO	DRO	MRO			
						(mg/L)	(mg/L)	(mg/L)	(Standard Units)	(mg/L)	(mg/L)
New Mexico Wat Commission Gr	New Mexico Water Quality Control Commmission Groundwater Quality Standards	10	750	750	620	NE	NE	NE	6-9	10	1.0*
MW-1*	12.30.09	1,900	2,600	120	870	NA	NA	NA	NA	VN	NA
MW-1R	11.16.10	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NA	ΝA	VN
MW-1R	6.24.11	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NA	NA	VN
MW-1R	9.21.11	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NA	NA	NA
MW-2	12.30.09	3,000	3,200	270	1,900	NA	NA	NA	NA	NA	NA
MW-2	11.16.10	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NA	NA	NA
MW-2	6.24.11	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NA	NA	AN NA
MW-2	9.21.11	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NA	NA	NA
MW-3	12.30.09	130	370	76	530	NA	NA	NA	NA	NA	ΝA
MW-3	11.16.10	5,500	62	350	1,000	16	<1.0	<5.0	7.16	<1.0	210
MW-3	6.24.11	5,700	3,300	340	2,300	31	1.7	NA	NA	NA	VN
MW-3	9.21.11	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NA	NA	NA
MW-4	11.16.10	2,600	1,600	280	1,700	0.35	3.1	<5.0	6.93	<1.0	470
MW-4	6.24.11	3,900	1,600	220	1,400	26	<1.0	NA	NA	NA	NA
MW-4	9.21.11	4,000	1,700	280	1,700	32	1.1	NA	NA	NA	NA
MW-5	11.15.10	4.4	<1.0	6.3	22	2.2	1.4	<5.0	6.82	<1.0	47
MW-5	6.24.11	1.2	<1.0	31	19	0.52	<1.0	NA	NA	NA	NA
MW-5	9.21.11	1.9	<1.0	3.8	9.7	0.62	1.1	NA	NA	NA	VN
MW-6	11.16.10	2,400	65	230	1,200	0.42	1.4	<5.0	6.57	<1.0	140
MW-6	6.24.11	4,500	68	230	1,200	25	<1.0	NA	NA	NA	V N
MW-6	9.21.11	4,900	67	330	1,800	32	1.4	NA	NA	NA	Ν
7-WM	11.16.10	8.9	2.6	5.9	50	1.5	<1.0	<5.0	7.29	<1.0	53
7-WM	6.24.11	2.3	<1.0	<1.0	<2.0	0.35	<1.0	NA	NA	NA	NA
7-WM	9.21.11	3.3	<1.0	<1.0	4.9	0.57	<1.0	NA	NA	NA	NA
MW-8	11.15.10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	7.36	<1.0	7.8
MW-8	6.24.11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	NA	NA	NA	NA
MW-8	9.20.11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	NA	NA	NA	V N
6-MW	11.16.10	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NA	NA	V A
6-MW	6.24.11	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NA	NA	ΥN
6-MW	9.21.11	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NA	NA	NA
MW-10	11.15.10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	7.57	<1.0	52
MW-10	6.24.11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	NA	NA	NA	VZ
MW-10	9.20.11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	NA	NA	NA	ΝA
MW-11	11.16.10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	7.09	<1.0	13
MW-1 1	6.24.11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	NA	NA	NA	VN
MW-11	9.20.11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	NA	NA	NA	ΝA
MW-12	11.15.10	23	16	13	84	1.3	<1.0	<5.0	7.28	<1.0	39
MW-12	6.24.11	27	<1.0	5.6	9.4	0.51	1.0	NA	NA	NA	NA
MW-12	9.21.11	63	<1.0	17	26	0.81	<1.0	NA	NA	NA	NA
MW-30	9.21.11	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NA	NA	NA
MW-31	9.20.11	<1.0	1.2	1.1	7.4	0.23	<1.0	NA	NA	NA	NA
MW-32	9.21.11	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL	NA	ΝA	νZ
MW-33	9.20.11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	NA	NA	NIA	NA
								1 74.7	1.001	UNI	1111

Southwest

Lindrith Compressor Station GROUNDWATER ANALYTICAL SUMMARY TABLE 2

Nitrate Iron		(mg/L) (mg/L)	10 1.0*	NA NA	AN AN						
Hd		(Standard Units)	6-9	NA							
HAT	MRO	(mg/L)	NE	NA	NA	NAPL	NA	NAPL	NA	NA	NA
HAT	DRO	(mg/L)	NE	<1.0	<1.0	NAPL	1.3	NAPL	<1.0	2.4	<1.0
HAT	GRO	(mg/L)	NE	<0.050	0.15	NAPL	26	NAPL	0.21	<0.50	0.62
Xylenes	(Hg/L)		620	<2.0	<2.0	NAPL	1,800	NAPL	<2.0	30	33
Ethylbenzene	(Hg/L)		750	<1.0	<1.0	NAPL	270	NAPL	<1.0	<10.0	4.1
Toluene	(T/Brl)		750	<1.0	<1.0	NAPL	440	NAPL	<1.0	<10.0	42
Benzene	(JUBH)		10	<1.0	<1.0	NAPL	2,100	NAPL	<1.0	<10.0	20
Date			er Quality Control bundwater Quality lards	9.21.11	9.21.11	9.21.11	9.21.11	9.21.11	9.20.11	9.20.11	9.20.11
Sample I.D.		States and	New Mexico Water Quality Control Commission Groundwater Quality Standards	MW-35	MW-36	MW-37	MW-38	MW-39	MW-40	MW-41	MW-42

Note: Concentrations in **bold** and yellow exceed the applicable OCD Remediation Action Level NA = Not Analyzed NE = Not Established NAPL = Non-aqueous phase liquid * = Reipaced by MW-IR

TABLE 3Lindrith Compressor StationGROUNDWATER ELEVATIONS

Well I.D.	Date	Depth to	Depth to	Product	TOC	Groundwater
		Product	Water	Thickness	Elevations	Elevation*
		(feet BTOC)	(feet BTOC)		(feet AMSL)	(feet AMSL)
· · · · · · · · · · · · · · · · · · ·	A CONTRACTOR				38 ⁴ 4.1	
MW-1R	11.11.10	31.73	33.29	1.56	6494.62	6462.31
MW-IR	11.15.10	31.93	32.86	0.93	6494.62	6462.35
MW-1R	6.22.11	32.57	35.50	2.93	6494.62	6460.97
MW-1R ¹	9.21.11	32.55	38.20	5.65	6494.64	6460.00
MW-2	11.11.10	30.12	30.15	0.03	6491.08	6460.95
<u>MW-2</u>	11.15.10	29.86	29.90	0.04	6491.08	6461.21
MW-2	6.22.11	30.64	30.73	0.09	6491.08	6460.41
<u>MW-2</u>	9.21.11	30.70	30.72	0.02	6491.08	6460.37
<u>M</u> W-3	11.11.10	ND	32.08	ND	6492.78	6460.70
<u>M</u> W-3	11.15.10	ND	32.96	ND	6492.78	6459.82
MW-3	6.22.11	ND	32.61	ND	6492.78	6460.17
<u>M</u> W-3	9.21.11	32.71	32.72	0.01	6492.78	6460.07
MW-4	11.11.10	ND	33.31	ND	6493.99	6460.68
MW-4	11.15.10	ND	33.10	ND	6493.99	6460.89
MW-4	6.22.11	ND	33.45	ND	6493.99	6460.54
MW-4	9.21.11	ND	34.46	ND	6493.99	6459.53
MW-5	11.11.10	ND	34.37	ND	6496.06	6461.69
MW-5	11.15.10	ND	35.64	ND	6496.06	6460.42
MW-5	6.22.11	ND	34.52	ND	6496.06	6461.54
MW-5	9.21.11	ND	34.57	ND	6496.06	6461.49
MW-6	11.11.10	ND	33.79	ND	6494.72	6460.93
MW-6	11.15.10	ND	33.63	ND	6494.72	6461.09
MW-6	6.22.11	ND	34.09	ND	6494.72	6460.63
MW-6	9.21.11	ND	33.86	ND	6494.72	6460.86
MW-7	11.11.10	ND	36.65	ND	6492.49	6455.84
MW-7	11.15.10	ND	34.70	ND	6492.49	6457.79
MW-7	6.22.11	ND	34.87	ND	6492.49	6457.62
MW-7	9.21.11	ND	34.95	ND	6492.49	6457.54
MW-8	11.11.10	ND	34.39	ND	6493.10	6458.71
MW-8	11.15.10	ND	32.16	ND	6493.10	6460.94
MW-8	6.22.11	ND	32.70	ND	6493.10	6460.40
MW-8	9.21.11	ND	32.66	ND	6493.10	6460.44
<u>M</u> W-9	11.11.10	29.46	30.34	0.88	6491.17	6461.38
MW-9	11.15.10	30.47	31.24	0.77	6491.17	6460.42
MW-9	6.22.11	30.76	32.14	1.38	6491.17	6459.90
<u>MW-9</u>	9.21.11	30.76	32.46	1.70	6491.17	6459.78
<u>M</u> W-10	11.11.10	ND	29.85	ND	6492.39	6462.54
<u>M</u> W-10	11.15.10	ND	31.83	ND	6492.39	6460.56
<u>M</u> W-10	6.22.11	ND	32.40	ND	6492.39	6459.99
MW-10	9.21.11	ND	32.62	ND	6492.39	6459.77
MW-11	11.11.10	ND	34.05	ND	6489.84	6455.79
<u>M</u> W-11	11.15.10	ND	35.05	ND	6489.84	6454.79
<u>M</u> W-11	6.22.11	ND	34.23	ND	6489.84	6455.61
MW-11	9.21.11	ND	34.03	ND	6489.84	6455.81

TABLE 3Lindrith Compressor StationGROUNDWATER ELEVATIONS

Well I.D.	Date	Depth to Product (feet BTOC)	Depth to Water (feet BTOC)	Product Thickness	TOC Elevations (feet AMSL)	Groundwater Elevation* (feet AMSL)
MW-12	11.11.10	ND	32.04	ND	6487.95	6455.91
MW-12	11.15.10	ND	32.74	ND	6487.95	6455.21
MW-12	6.22.11	ND	32.73	ND	6487.95	6455.22
MW-12	9.21.11	ND	32.93	ND	6487.95	6455.02
MW-30	9.21.11	36.06	36.14	0.08	6498.21	6462.12
MW-31	9.21.11	ND	37.99	ND	6498.24	6460.25
MW-32	9.21.11	37.42	38.31	0.89	6499.30	6461.55
MW-33	9.21.11	ND	32.90	ND	6493.04	6460.14
MW-34	9.21.11	ND	34.50	ND	6488.60	6454.10
MW-35	9.21.11	ND	34.36	ND	6485.71	6451.35
MW-36	9.21.11	ND	35.16	ND	6496.77	6461.61
MW-37	9.21.11	32.58	33.10	0.52	6492.96	6460.19
MW-38	9.21.11	ND	34.68	ND	6495.10	6460.42
MW-39	9.21.11	31.83	33.12	1.29	6486.85	6454.54
MW-40	9.21.11	ND	35.47	ND	6498.65	6463.18
MW-41	9.21.11	ND	32.67	ND	6487.00	6454.33
MW-42	9.21.11	ND	29.97	ND	6490.10	6460.13

BTOC - below top of casing

AMSL - aboce mean sea level

TOC - top of casing

* - corrected for presence of phase-sepated hydrocarbon using a site-specific density correction factor of 0.63 NA - not applicable

1 - MW-1R re-surveyed 09/01/11

APPENDIX C

Monitoring Well Soil Boring Logs

Bit Problem 3.5" Scheen Length NA BORING METROD 3.5" SAMPLER TYPE Casing Length NA BORING AND Or- CORENDANCE STORE OF LENgth Image: Construction of the store of the s	oject Location: <u>Rio Arriba County, NM</u> oject Manager: <u>Kyle Summers</u> DRILLING & SAMPLING INFORMATION ate Started: <u>8.15.11</u> ate Completed: <u>8.15.11</u> illing Company: <u>Enviro-Drill</u> iller: <u>Rodney Hammer</u> eologist: <u>Kyle Summers, C.P.G.</u> Well Diam: <u>bring Method</u> : <u>HSA</u> Screen Size: <u>Screen Length</u>	_ Projec _ Draw: _ Appro _ <u>NA</u>	ct #: n By: oved By	0410 Crist y:Kyte	006 i Rar	ndolp	h	
Odor 0 CLAYEY SILT, Dark Yellowish Brown, Dry, Hard 5 No.Odor 1 SILTY SAND, Moderate Yellowish Brown, Dry, No 0 Odor 0 SHALEY SAND, Pale Olive, Very Slight Moisture, 10 Slight Petroleum Hydrocarbon Odor 15 SANDSTONE, Light Olive Gray to Yellowish Gray, 15 Slight Moisture, Faint Petroleum Hydrocarbon Odor 15 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 21 1 22 1 25 1 26 1 <th>Ampler OD:3.5" Casing Length BORING METHOD SAMPLER TYPE HSA-HOLLOW STEM AUGERS CB - FIVE FOOT CORE BARREL CFA - CONTINUOUS FLIGHT AUGERS CB - FIVE FOOT CORE BARREL GP - GEOPROBE ST - PRESSED SHELBY TUBE AR - AIR ROTARY SOIL CLASSIFICATION</th> <th>ION</th> <th></th> <th></th> <th>% Recovery</th> <th>Groundwater Depth</th> <th>FID/PID Readings (ppm)</th> <th></th>	Ampler OD:3.5" Casing Length BORING METHOD SAMPLER TYPE HSA-HOLLOW STEM AUGERS CB - FIVE FOOT CORE BARREL CFA - CONTINUOUS FLIGHT AUGERS CB - FIVE FOOT CORE BARREL GP - GEOPROBE ST - PRESSED SHELBY TUBE AR - AIR ROTARY SOIL CLASSIFICATION	ION			% Recovery	Groundwater Depth	FID/PID Readings (ppm)	
	Odor CLAYEY SILT, Dark Yellowish Brown, Dry, Hard No.Odor SILTY SAND, Moderate Yellowish Brown, Dry, No Odor SHALEY SAND, Pale Olive, Very Slight Moisture, Slight Petroleum Hydrocarbon Odor SANDSTONE, Light Olive Gray to Yellowish Gray,			11-13			0 0 0 1 0 0 0 0 0 0 0 2 16 46 - - - 10 - - 10 - - 10 - - - - - - - - - - - - -	

Client: Enterprise Field Services, LLC Project Name:Lindreth Compressor Station Project Location:Rio Arriba County, NM			MONI	TOF	RIIN	G V	VELL LOG
Project Manager: Kyle Summers							
DRILLING & SAMPLING INFORMATION Date Started: 8.15.11 Date Completed: 8.15.11	P	Project Drawn	#: <u>04</u> By: <u>Cr</u>	10006 isti Ra	ndolı	oh	
Drilling Company: <u>Enviro-Drill</u> Driller: <u>Rodney Hammer</u>		Approv	/ed By: <u>K</u>	<u>yle Su</u>	mme	rs	· · · · · · · · · · · · · · · · · · ·
Geologist:Kyle_Summers. C.P.G.		JA			1		······
Boring Method: HSA							
Bore Hole Dia: 8"							
Source Source BORING METHOD SAMPLER TYPE HSA - HOLLOW STEM AUGERS CB - FIVE FOOT CORE BARREL CFA - CONTINUOUS FLIGHT AUGERS CB - FIVE FOOT CORE BARREL GP - GEOPROBE SS - DRIVEN SPLIT SPOON AR - AIR ROTARY ST - PRESSED SHELBY TUBE SURFACE ELEVATION: SURFACE ELEVATION:	GROUNDWA ⊈ AT COMPLETION ⊈ AT WELL STABIL		epth	Sample Interval % Recoverv	Groundwater Depth	FID/PID Readings (ppm)	BORING AND SAMPLING NOTES
SANDSTONE, Light Olive, Gray to Yellowi Slight Moisture, Faint Petroleum Hydrocar End of Boring @ 40'			40			344	
							·
NOTE: This log is not to be used outside of the orig	inal report.						
						=	Southwes

Date Started: 8.15.11 I Date Completed: 8.15.11 I Drilling Company: Enviro-Drill I Driller: Rodney Hammer I Geologist: Kyle Summers. C.P.G. Well Diam: Boring Method: HSA Screen Size: Bore Hole Dia: 8" Screen Length: Sampler OD: 3.5" Casing Length: BORING METHOD SAMPLER TYPE Casing Length: HSA. HOLLOW STEM AUGERS SCRIVEN SPLIT SPOON GROUNDW/ GFA - CONTINUOUS FLIGHT AUGERS ST - PRESSED SHELBY TUBE GROUNDW/ AR - AIR ROTARY ST - PRESSED SHELBY TUBE Y AT WELL STABIL	Project #: 04 Drawn By: Cr Approved By: K NA NA NA NA NA ATER DEPTH	10006 isti Randolph	
SILTY SAND, Moderate Tchowish Brown to Pale Yellowish, Dry, No Odor SILTY SAND, With some GRAVEL, Moderate Yellowish Brown, Dry, Hard 5' - 6', No Odor SILTY SAND, Pale Yellowish Brown to Moderate Yellowish Brown, Dry, No Odor SILTY SAND with CLAY, Moderate Yellowish Brown, Hard, Dry, Sligh Petroleum Hydrocarbon Staining SANDSTONE, Very Fine to Fine, Yellowish Gray to Pale Yellowish Brown, Dry No Odor		1 1 1 1 0 0 0 0 0 <t< td=""><td>After 15' - Too Hard Switch to Split Spoon</td></t<>	After 15' - Too Hard Switch to Split Spoon

	Enterprise Field Services, LLC						
	t Name: Lindreth Compressor Station		MONI	то	R	IINC	G WELL LOG
	t Location: <u>Rio Arriba County, NM</u>						
Projec	t Manager: <u>Kyle Summers</u>						
	DRILLING & SAMPLING INFORMATION		-			ntinue	ed)
	started:8.15.11						
	Completed:8.15.11						
	g Company: <u>Enviro-Drill</u>	Appro	oved By: <u>K</u>	yle S	Sum	nmers	ž
	Rodney Hammer						
	gist:Kyle Summers, C.P.G Well Diam:			1			
	g Method: <u>HSA</u> Screen Size: Hole Dia:8"Screen Length						
	er OD:3.5"Casing Length			1 1		((
	BORING METHOD SAMPLER TYPE						
HS. CE	A - HOLLOW STEM AUGERS CB - FIVE FOOT CORE BARREL GROUND A - CONTINUOUS FLIGHT AUGERS SS - DRIVEN SPLIT SPOON Q AT COMPLET		DEPTH			fd	SAMPLING NOTES
GP	- GEOPROBE ST · PRESSED SHELBY TUBE TO AT WELL ST		ION	۲a]		r De	
				Interval	ery.	vate	Kea
or well	SOIL CLASSIFICATION	₽Ę	부	Sample I	% Recovery	Groundwater Depth	BORING AND SAMPLING NOTES
Monitor Detail	SURFACE ELEVATION:	Stratum Depth	Depth Scale Sample No.	Sam	% Fte	Cro	
83 10 10 10 10 10 10 10 10 10 10 10 10 10					_		
	SANDSTONE, Light Olive, Gray to Yellowish Gray,						0
	Slight Moisture, Faint Petroleum Hydrocarbon Odor		36-37			-	0
						⊢∣	0
							<u> </u>
	End of Boring @ 40'	000000	40—				
1 1							
1							
1							
1			1				
1							
1			1 1				
]							
] [E	
						I L	
1 1							
1						╽╽	
4 1							
4						-	
4			-			╵┝	
4						⊢∣	
1 1						╵┝	
4						\vdash	
4			1 -			⊢∣	
1						⊢∣	
1 1							
1			1				
1							
1							
1 [
1							
1							
1							
	NOTE: This log is not to be used outside of the original report.	I	· · · · · · · · · · · · · · · · · · ·	-			
							Couthwest
			<u></u>			- 8	GEOSCIENCE

I

Clien	t: Enterprise Field Services, LLC		· .					
-	ct Name: Lindreth Compressor Station		M		ΓO	RI	ING V	WELL LOG
	ct Location: Rio Arriba County, NM							
Proje	ct Manager: <u>Kyle Summers</u>							
	DRILLING & SAMPLING INFORMATION	Soil E	soring	MW	-32			
Date	Started: 8.16.11	Proje	ct #:	- 04	100	06		
	Completed: 8.16.11		n By:_	Cr	sti	Rano	dolph	
Drillin	ng Company: <u>Enviro-Drill</u>	Appro	oved F	Зу:_Қ	vle :	Sum	mers	
Drille	r: Rodney Hammer							
Geolo	ogist: Kyle Summers, C.P.G Well Diam:	_NA						
Borin	g Method: <u>I:ISA</u> Screen Size:	NA						
Bore	Hole Dia: 8" Screen Length	<u>NA</u>						
Samp	oler OD: 3.5" Casing Length:	NA	•			1	-	
CI GI	BORING METHOD SAMPLER TYPE SA-HOLLOW STEM AUGERS CB - FIVE FOOT CORE BARREL GROUND CA-CONTINUOUS FLIGHT AUGERS CB - DRIVEN SPLIT SPOON ⊈ AT COMPLET 2- GEOPROBE ST - PRESSED SHELBY TUBE ⊈ AT WELL ST	ION		ł	Interval	ery	Groundwater Depth FID/PID Readings (ppm)	BORING AND SAMPLING NOTES
or well	SOIL CLASSIFICATION	e e	£e	ple	ple 1	% Recovery	ADUL 1014	
Monte	SURFACE ELEVATION:	Strat	Dep Scal	Sample No.	Sample	% Rt	Ground	
						'		
-	SILTY SAND, Moderate to Yellowish Brown, Dry, No		-					-
	Odor		-				2	4
▋₿							3	4
	CLAYEY SILT, Moderate Yellowish Brown to Dark						0	
	Yellowish Brown, Dry, Hard, No.Odor		5				0	
	SILTY SAND, Moderate Yellowish Tan, Dry, No Odor						2	
							2]
	SILT, Moderate to Dark Yellowish Brown, Dry, Hard,						2	
	No Odor		10				2	
	SILTY SAND, Dark Yellowish Brown, Dry, Firm, No						3	
_	Odor						2	
	SAND, Moderate Yellowish Brown, Loose, Fine to		-				2	
-	Very Fine, Dry, No Odor		-				3	
	SILT/SAND, Moderate Yellowish Brown to Dusky		15 —				4	Core Refused @ 15'
-	Yellowish Brown, Dry, No.Odor			16' • 17'			070	Switch to Split Sppon
	SANDSTONE, Moderate Gray, Slightly Moist, No			10. • 17.			676	Switch to Split Sppon
	Odor, Possible Staining		-					
			<u> </u>				669	1
	SHALE/MUDSTONE, Moderate Dark Gray, Slightly		20 —]
	Moist, Petroleum Hydrocarbon.Odor		1					
	SANDSTONE, Moderate Gray, Slight Moisture, Hard,		[]				551]
	Petroleum Hydrocarbon Odor]					
			25				406	
			-				477	
- ES (S)			-				│	
- 22								4
			30 —				333	4
- 1			-				557	Not Enough to Sample
	SILTY SANDSTONE/SHALEY SANDSTONE, Light							
-	Brown to Moderate Gray, Iron Staining							Wet @ 35'
	BIOWITIO MODOIAIC OLAY, IIOH SIAIHIIIg		-	34' - 35'			Y 447	1
- %		1000000						· · · · · · · · · · · · · · · · · · ·

E THE

Client:Enterprise Field Services. LLC Project Name:Lindreth Compressor Station Project Lageting:Ris Arriba County, NM	MONITORIING WELL LOG
Project Location: <u>Rio Arriba County. NM</u>	
	Drawn By:Cristi Randolph Approved By:Kyle Summers
Geologist:Kyle Summers, C.P.GWell Diam: Boring Method:HSAScreen Size:	NA
Sampler OD: 3.5" Casing Length BORING METHOD SAMPLER TYPE	ABILIZATION
SURFACE ELEVATION:	Stratum Drepth Scale No. Sample Recov Groundr
End of Boring @ 40'	
NOTE: This log is not to be used outside of the original report.	S outhwest

-

Client: Enterprise Field Services, LLC Project Name:Lindreth Compressor Station Project Location:Rio Arriba County, NM	MONITORIING WELL LOG
Project Manager: <u>Kyle Summers</u> DRILLING & SAMPLING INFORMATION Date Started: <u>8.17.11</u> Date Completed: <u>8.17.11</u> Drilling Company: <u>Enviro-Drill</u>	Drawn By:RDH Approved By:Kyle_Summers
CFA - CONTINUOUS FLIGHT AUGERS GP - GEOPROBE AR - AIR ROTARY SOIL CLASSIFICATION SURFACE ELEVATION:	0.01" 10' 30' WATER DEPTH ION BORING AND SAMPLING NOTES
SILTY SAND, Moderate Yellowish Brown, Stiff, Dry, No Odor SILTY SAND, Moderate Yellowish Brown to Dark Yellowish Brown, Loose, Dry, No Odor SILTY SAND, Moderate Yellowish Brown to Pale Brown, Loose, Dry, No Odor SHALEY SAND, Pale Tan, Dry, No Odor SILTY SANDSTONE with some CLAY content, Pale Yellowish Brown to Moderate Yellowish Brown, Dark Iron Staining in Cracks, Moist @ 34', No Odor	$\begin{bmatrix} 1 & 1 & 1 & 4 & 1 \\ 1 & 1 & 4 & 1 & 6 & 5 \\ 1 & 1 & 1 & 4 & 2 & 4 & 6 & 6 & 5 & 6 & 6 & 6 & 6 & 6 & 6 & 6$
NOTE: This log is not to be used outside of the original report.	Southwes

•

Client: Enterprise Field Services, LLC Project Name:Lindreth Compressor Station Project Location: _ Rio Arriba County, NM Project Manager:Kyle Summers		MONITORIING WELL LOG
DRILLING & SAMPLING INFORMATION Date Started: 8.17.11 Date Completed: 8.17.11 Drilling Company: Enviro-Drill	_ Proje _ Drav _ Appr	itoring Well Number: <u>MW-33 (Continued)</u> ect #: <u>0410006</u> wn By: <u>RDH</u> roved By: <u>Kyle Summers</u>
Driller:Rodney Hammer Geologist:Kyle Summers, C.P.G. Well Diam: Boring Method:HSA Screen Size: Bore Hole Dia:8" Screen Length Sampler OD:3.5" Casing Length BORING METHOD SAMPLER TYPE HSA - HOLLOW STEM AUGERS CB - FIVE FOOT CORE BARREL GROUNI	<u> </u>	
CFA · CONTINUOUS FLIGHT AUGERS GP · GEOPROBE AR · AIR ROTARY SOIL CLASSIFICATION SURFACE ELEVATION: CFA · CONTINUOUS FLIGHT AUGERS SS · DRIVEN SPLIT SPOON ST · PRESSED SHELBY TUBE T · COMPLE T · CO	TION	
SHALEY SAND (continued), Moderate Gray, Wet, No Odor		
Bottom of Boring @ 40 ft bgs		
NOTE: This log is not to be used outside of the original report.		
		Southwes

Í

Client: Enterprise Field Services. LLC Project Name: Lindreth Compressor Station Project Location: Rio Arriba County. NM Project Manager: Kyle Summers DRILLING & SAMPLING INFORMATION Date Started: 8.17.11 Date Completed: 8.17.11 Drilling Company: Enviro-Drill Driller: Rodney Hammer Geologist: Kyle Summers. C.P.G. Well Diam: Boring Method: Bore Hole Dia: 8" Sampler OD: 3.5" BORING METHOD SAMPLER TYPE	Drawn By:RDHApproved By:Kyle Summers
HSA -HOLLOW STEM AUGERS CFA - CONTINUOUS FLIGHT AUGERS GP - CEOPROBE AR - AIR ROTARY SOIL CLASSIFICATION SURFACE ELEVATION: CB - FIVE FOOT CORE BARREL SS - DRIVEN SPLIT SPOON ST - PRESSED SHELBY TUBE SURFACE ELEVATION: CB - FIVE FOOT CORE BARREL SS - DRIVEN SPLIT SPOON ST - PRESSED SHELBY TUBE SURFACE ELEVATION:	ION
SILTY SAND, Moderate Yellowish Brown, Fairly Hard, Dry, No Odor SILTY SAND, Pale Yellowish Brown, Loose, Very Fine Grained, Dry, No Odor SILTY SAND, Pale Yellowish Brown, Stiff, Dry, No Odor SILTY SAND, Pale Yellowish Brown, Stiff, Dry, No Odor SILTY SAND, Pale Yellowish Brown, Loose, Very Fine Grained, Dry, No Odor SILTY SAND, Pale Yellowish Brown, Loose, Very Fine Grained, Dry, No Odor SILTY SAND, Pale Yellowish Brown, Loose, Very Fine Grained, Dry, No Odor SILTY SAND, Pale Yellowish Brown, Loose, Very Fine Grained, Dry, No Odor SILTY SAND, Pale Yellowish Brown, Loose, Very Fine Grained, Dry, No Odor SILTY SAND, Pale Yellowish Brown, Loose, Very Fine Grained, Dry, No Odor SILTY SAND, Slightly Coarser, Slightly Moist, No Odor SANDSTONE, Yellowish Gray to Dusky Yellow to Light Olive Gray, Fine Grained, Slight Clay Content @ 30 ft bgs, Slightly Moist, No Odor, Slight Hydrocarbon Odor @ 30 ft bgs CLAYEY SANDSTONE, Medium Gray, Slightly Moist, Hydrocarbon Odor NOTE: This log is not to be used outside of the original report.	10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 20 0 0 25 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0
	Southwest

Client:Enterprise Field Services. LLC Project Name:Lindreth Compressor Station Project Location:Rio Arriba County. NM Project Location:Kio Arriba County. NM	MONITORIING WELL LOG
Project Manager: Kyle Summers DRILLING & SAMPLING INFORMATION Date Started: 8.17.11 Date Completed: 8.17.11 Drilling Company: Enviro-Drill Driller: Rodney Hammer	Drawn By:RDH Approved By:Kyle Summers
Geologist: Kyle Summers, C.P.G. Well Diam: Boring Method: HSA Screen Size: Bore Hole Dia: 8" Screen Length: Sampler OD: 3.5" Casing Length: BORING METHOD SAMPLER TYPE Casing Length: HSA -HOLLOW STEM AUGERS CFA - CONTINUOUS FLIGHT AUGERS CB - FIVE FOOT CORE BARREL GROUNDW GP - GEOPROBE ST - PRESSED SHELBY TUBE ST - VRESSED SHELBY TUBE X AT WELL STA Marchar SOIL CLASSIFICATION SURFACE ELEVATION: X AT WELL STA	0.01" 15' 25' WATER DEPTH ION BORING AND SAMPLING NOTES
CLAYEY SANDSTONE (continued) SILTY SANDSTONE, Light Olive Gray to Moderate Yellowish Brown, Very Slightly Clayey Bottom of Boring @ 40 ft bgs	
NOTE: This log is not to be used outside of the original report.	Southwest
	GEUSCIENCE

-

Client:Enterprise Field Services. LLC Project Name:Lindreth Compressor Station Project Location:Rio Arriba County. NM Project Manager:Kyle Summers DRILLING & SAMPLING INFORMATION Date Started:8.17.11 Date Completed:8.17.11 Drilling Company: Enviro-Drill Driller:Rodney Hammer	Drawn By:RDH
Geologist: Kyle Summers, C.P.G. Well Diam: Boring Method: HSA Screen Size: Bore Hole Dia: 8" Screen Length Sampler OD: 3.5" Casing Length: BORING METHOD SAMPLER TYPE	15' 22' WATER DEPTH Image: Signal State Sta
SILTY SAND, Moderate Yellowish Brown, Fairly Fine Grained, Dry, No Odor SILTY SAND, Moderate Yellowish Brown, Fairly Loose, Dry, No Odor SILTY SAND, Moderate Yellowish Brown to Pale Yellowish Brown, Loose, Firm @ 13 - 15.5 ft bgs, Dry, No Odor	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
SAND, Moderate Yellowish Brown, Fine Grained, Moist, No Odor SAND, Moderate Yellowish Brown, Slightly Clayey, Moist, No Odor SAND with CLAY, Yellowish Gray, Wet @34.5', No Odor	$ \begin{array}{c} 0 \\ 2 \\ 2 \\ 3 \\ 0 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
NOTE: This log is not to be used outside of the original report.	Couthwest

ł

E

I

I

.

Client: Enterprise Field Services. LLC			
Project Name: Lindreth Compressor Station	MONIT	ORIING W	FULLOG
Project Location: Rio Arriba County, NM			
Project Manager: Kyle Summers			
DRILLING & SAMPLING INFORMATION	Monitoring Well N	lumber: <u>MW-35</u>	(Continued)
Date Started:8.17.11	Project #: 04	10006	· · · · · · · · · · · · · · · · · · ·
Date Completed: 8.17.11			
Drilling Company: Enviro-Drill			
Driller:Rodney Hammer			
Geologist: Kyle Summers, C.P.G. Well Diam:			
Boring Method: HSA Screen Size:	0.01"		
Bore Hole Dia: 8" Screen Length:			
Sampler OD:Casing Length:Casing Length:	22'		
BORING METHOD SAMPLER TYPE HSA · HOLLOW STEM AUGERS CB · FIVE FOOT CORE BARREL GROUND	WATER DEPTH		BORING AND
CFA - CONTINUOUS FLIGHT AUGERS SS - DRIVEN SPLIT SPOON 7 AT COMPLET		gs (t	SAMPLING NOTES
GP · GEOPROBE ST · PRESSED SHELBY TUBE VIELL STA	BILIZATION	erva din b	
		Sample Interval % Recovery Groundwater Depth FID/PID Readings (ppm)	
	Stratum Depth Scale Saniple No.	mpl Mecc	·
र्षेहें SURFACE ELEVATION:	S S S S S	S \$ 5 ≣	
SAND with CLAY (continued)	35-36		
SAND, Dusky Yellowish Brown, Dark Staining, Wet, No Odor		2	
Bottom of Boring @ 37 ft bgs			
	11		
1	40		
]]]]	**]		j
1::::::::::::::::::::::::::::::::::::::			
1////			
1			
]			
]	45 —		
]			
]			
	50 -		
4////	50		
4////			
4//11			
4//11 1			
4 11	55		
4////		│ │ │ ┝━┥	
4////		! ! ! ⊨⊣	
4		1	
4////			
	60 —		
4 []			
4	1 1		
1////			
1			
1////	65 —		
]	1 1		
]	1		
]			
NOTE: This log is not to be used outside of the original report.			Toutland at
			Couthwest
		•	JGEOSCIENCE

ľ

oject Location: <u>Rio Arriba County. NM</u> oject Manager: <u>Kyle Summers</u> DRILLING & SAMPLING INFORMATION ate Started: <u>8,18,11</u> ate Completed: <u>8,19,11</u> illing Company: <u>Enviro-Drill</u> iller: <u>Rodney Hammer</u> cologist: <u>Kyle Summers. C.P.G.</u> Well Diam: pring Method: <u>HSA</u> Screen Size:	Monit Projec Drawi Appro	oring \ ct #: h By:_	Well N 04 RD	umb 1 000)er:_)6	M	W- <u>36</u>	
Screen Length: Impler OD: 3.5" BORING METHOD Casing Length: HSA - HOLLOW STEM AUGERS CB - FIVE FOOT CORE BARREL GP - GEOPROBE SS - DRIVEN SPLIT SPOON AR - AR ROTARY SOIL CLASSIFICATION SURFACE ELEVATION: SCREEN Length:	<u>25'</u> WATER I 10N		Sample No.	Sample Interval	% Recovery	Groundwater Depth	FID/PID Readings (ppn1)	BORING AND SAMPLING NOTES
SILTY SAND & GRAVEL, Moderate Yellowish Brown, Dry, No Odor Hand Dug NO RECOVERY			-					
SILTY SAND, Moderate to Dark Yellowish Brown, Dusky Yellow Brown @ 17 - 18 ft bgs, Fine to Very Fine Grained, Slightly Moist, No Odor		10 — - - 15 — -					3 2 1 0 0 0 0 0 0	
CLAYEY SAND, Moderate Yellowish Brown, Moist, No Odor SAND, Moderate to Dark Yellowish Brown, Black @ 20 ft bgs, Fine to Very Fine Grained, Moist, No Odor SAND, Pale Yellowish Brown, Fine to Very Fine Grained, Moist, No Odor		- 20 - - -					0 0 1 1 0 0	
SANDSTONE, Yellowish Gray, Slightly Moist, No Odor INTERBEDDED CLAY/MUDSTONE & SANDSTONE, Light Olive Gray Grading to Pale Yellowish Brown & Dark Yellowish Orange, Think Dark Organic Material @ 30 ft bgs, Moist, No Odor SAND, Black, Moist, No Odor		25 — - - 30 — -	267 -307			⊻	2 0 2 0 196 1 1 2	
NOTE: This log is not to be used outside of the original report.			34 -35				4	Southwes

Client: Enterprise Field Services. LLC							
Project Name: Lindreth Compressor Station		MONIT	٦ ח	RI	INC	a w	ELL LOG
Project Location: Rio Arriba County, NM							
Project Manager: Kyle Summers							
DRILLING & SAMPLING INFORMATION	Monit	oring Well N	Jum	ber:	N	W-36	(Continued)
Date Started:8.18.11	Projec	ct #: <u>04</u>	100	06			
	Drawn By: RDH						
Drilling Company: Enviro-Drill	Appro	oved By: <u>K</u>	yle.	Sun	nme	rs	······
Driller: Rodney Hammer			-				
Geologist: Kyle Summers, C.P.G Well Diam:							
Boring Method: HSAScreen Size:							
Bore Hole Dia: 8" Screen Length:							
Sampler OD:3.5"Casing Length: BORING METHOD SAMPLER TYPE	25'					e	
HSA HOLLOW STEM AUGERS CB - FIVE FOOT CORE BARREL GROUND	WATER	DEPTH			÷	udd)	BORING AND
CFA - CONTINUOUS FLIGHT AUGERS SS - DRIVEN SPLIT SPOON Q AT COMPLET GP - GEOPROBE ST - PRESSED SHELBY TUBE Q AT WELL ST/			ਯ		Dep	ngs	SAMPLING NOTES
AR-AIR ROTARY	BILIZATI		nerv	<u></u>	ater	cad	
SOIL CLASSIFICATION	Ę	e. <u>v</u>	Sample Interval	% Recovery	Groundwater Depth	FID/PID Readings (ppm)	
SURFACE ELEVATION:	Stratur	Depth Scale Sample No.	amp	Rec	iroui	a/Clt	
	<u>v</u>	പഗ <u>ഗ</u> 2	ιø.	1 %	10	<u> </u>	
SAND (Continued)						1	
SAND (Continued)						1	
		_				-	
	al-al-tarba	-				•	
		40 —				0	
Bottom of Boring @ 40 ft bgs							
4////							
4							
4///1							
		45					
4111							
4////		-					
4		- 1					
1///							
		50 —					
1 1		-					
1////							
1							
1		55 —					
7////							
] []							
]]]				ļ			
		60 —					
4 1		-					
4//11							
4//11							
4111							
4		65 —					
4///							
4///1			1				
4////							
1							
NOTE: This log is not to be used outside of the original report.			<u> </u>	·			
							Couthwest
						≡ , ¯	D GEOSCIENCE

Client: Enterprise Field Services, LLC Project Name:Lindreth Compressor Station Project Location:Rio Arriba County, NM Project Manager:Kyle Summers	MONITORIING WELL LOG
Date Completed: 8.19.11 Drilling Company: Enviro-Drill	
Boriller: Rodney Hammer Geologist: Kyle Summers. C.P.G. Well Diam: Boring Method: HSA Screen Size: Bore Hole Dia: 8" Screen Length: Sampler OD: 3.5" Casing Length: BORING METHOD SAMPLER TYPE Casing Length: HSA - HOLLOW STEM AUGERS CB - FIVE FOOT CORE BARREL GROUND CFA - CONTINUOUS FLIGHT AUGERS S - DRIVEN SPLIT SPOON T COMPLET GP - GEOPROBE ST - PRESSED SHELBY TUBE Q AT COMPLET AR - AIR ROTARY SOIL CLASSIFICATION Y AT WELL STA	15' 25' WATER DEPTH Image: State of the state of th
SILTY SAND & GRAVEL, Moderate Yellowish Brown, Dry No Odor Hand Dug SILTY SAND, Pale to Moderate Yellowish Brown, Slightly Moist, No Odor SILTY SAND, Moderate Yellowish Brown, Fine Grained, Slightly Moist, No Odor SAND, Moderate to Dark Yellowish Brown, Moist, No Odor SILTY CLAY, Dark Yellowish Brown SILTY CLAY, Dark Yellowish Brown SILTY CLAY, Moderate Yellowish Brown SILTY CLAY, Dark Yellowish Brown SILTY CLAY, Moderate Yellowish Brown SILTY CLAY, Dark Yellowish Brown SILTY CLAY, Moderate Yellowish Brown SILTY CLAY, Dark Yellowish Brown SILTY CLAY SILTY CLAY	$ \begin{bmatrix} 1 \\ 1 \\ $

Î

SOUTNWEST Geoscience

-

Client: Enterprise Field Services. LLC Project Name:Lindreth Compressor Station Project Location:Rio Arriba County. NM Decised MeanderKide Guarders		MONI	ΓO	RI	INC	G W	ELL LOG
Project Manager: Kyle Summers DRILLING & SAMPLING INFORMATION Date Started: 8.19.11 Date Completed: 8.19.11 Drilling Company: Enviro-Drill Driller: Rodney Hammer	Projec Drawr Appro	n By: <u> </u>	4100 RDH_	06			
Geologist: Kyle Summers, C.P.G. Well Diam: Boring Method: HSA Screen Size: Bore Hole Dia: 8" Screen Length: Sampler OD: 3.5" Casing Length: BORING METHOD SAMPLER TYPE Casing Length: BORING METHOD SAMPLER TYPE CB - FIVE FOOT CORE BARREL GROUNDWA GP - GEOPROBE SS - DRIVEN SPLIT SPOON X AT COMPLETION AR - AIR ROTARY SOIL CLASSIFICATION X AT WELL STABIL	0.01" :15' :25' 		Sample Interval	% Recovery	Groundwater Depth	FID/PID Readings (ppm)	BORING AND SAMPLING NOTES
SILTY SAND (Continued)							
NOTE: This log is not to be used outside of the original report.				L			Southwest

Client: Enterprise Field Services. LLC Project Name:Lindreth Compressor Station Project Location:Rio Arriba County. NM Project Manager:Kyle Summers	MONITORIING WELL LOG
DRILLING & SAMPLING INFORMATION	Monitoring Well Number: <u>MW-38</u>
	Project #: 0410006
Date Completed: 8.19.11 Drilling Company: Enviro-Drill	
Driller:Rodney.Hammer	
Geologist:Well Diam:	
Boring Method: HSA Screen Size:	
Bore Hole Dia: 8" Screen Length:	25
Sampler OD: 3.5" Casing Length: BORING METHOD SAMPLER TYPE HSA - HOLLOW STEM AUGERS CB - FIVE FOOT CORE BARREL GROUND CFA - CONTINUOUS FLIGHT AUGERS SS - DRIVEN SPLIT SPOON T COMPLET GP - GEOPROBE ST - PRESSED SHELBY TUBE AT WELL ST	$10N$ $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
SOIL CLASSIFICATION SURFACE ELEVATION:	Stratum Stratum Ssample No. Groundwater D HD/PID Reading
SILTY SAND	
SILTY SAND, Moderate to Pale Yellowish Brown, Moist, No Odor SANDY SILT, Dark Yellowish Brown, Moist, No Odor SILTY SAND, Moderate Yellowish Brown, Moist, No Odor WEATHERED SANDSTONE, Pale to Moderate Yellowish Brown with Black Spots SANDSTONE, Pale to Moderate Yellowish Brown with Black Spots, Iron Staining @ 28 - 35 ft bgs, Petroleum Hydrocarbon Odor @34'	
NOTE: This log is not to be used outside of the original report.	Southwest

		Enterprise Field Services, LLC							
		t Name: Lindreth Compressor Station					ELL LOG		
		t Location: <u>Rio Arriba County, NM</u>							
PI	ojec	t Manager: <u>Kyle Summers</u>							
_		DRILLING & SAMPLING INFORMATION							(Continued)
		Started: 8,19,11							
		§ Company: <u>Enviro-Drill</u>							
		Rodney Hammer			<u>, 10 c</u>	2011	1110	<u> </u>	
		gist: Well Diam:							
		Method: HSA Screen Size:							
		lole Dia:Screen Length:							
Sa		er OD: 3.5" Casing Length:	25'					2	
	HS	BORING METHOD SAMPLER TYPE A - HOLLOW STEM AUGERS CB - FIVE FOOT CORE BARREL GROUND	WATER	DEPTH			Ę	FID/PID Readings (ppnı)	BORING AND
	CF. GP	A-CONTINUOUS FLIGHT AUGERS SS - DRIVEN SPLIT SPOON GEOPROBE ST - PRESSED SHELBY TUBE ▼ AT WELL STA		ON	'al		Groundwater Depth	ngs	SAMPLING NOTES
	AR	- AIR ROTARY			Sample Interval	ery	/ater	tead	
i well		SOIL CLASSIFICATION	€ _⊆	e e e	ple l	% Recovery	wpur	PIDF	
Monitor	Detal	SURFACE ELEVATION:	Stratum Depth	Depth Scale Sample No.	Sam	% Re	Grot	FIDM	
88 -	12								
-		SANDSTONE, Olive Gray, Wet, Petroleum Hydrocarbon Odor						374 388	
		Hydrocarbon Odor						60	
								37	
				40				25	
TT	Π	Bottom of Boring @ 40 ft bgs		40					
]									
]	11								1
	11								
-11	Н			45 —					
	11								
-	11								
41	Ш								
41									
-				50 —					
11	н								
11	Ш								
11	11								
11				.					
11	н			55 —					
]	H								
	Ш								
1									
41	11			60 —					
-									
-								_	
11									
11									
11				65					
1									
11				[]					
]									
Π									
		NOTE: This log is not to be used outside of the original report.						-	Toutland
								_ (Couthwest
								- -	JGEOSCIENCE

B

•

Client: Enterprise Field Services. LLC					
Project Name: Lindreth Compressor Station	MONITORIING WELL LOG				
Project Location: Rio Arriba County. NM					
Project Manager: Kyle Summers					
DRILLING & SAMPLING INFORMATION	Monitoring Well Number: <u>MW-39</u>				
	Project #: 0410006				
Date Completed: 8.22.11					
	Approved By:Kyle Summers				
Driller: Rodney Hammer					
Geologist:Kyle Summers, C.P.GWell Diam:					
Boring Method: HSA Screen Size:					
Bore Hole Dia: 8" Screen Length					
Sampler OD: 3.5" Casing Length BORING METHOD SAMPLER TYPE HSA - HOLLOW STEM AUGERS CB - FIVE FOOT CORE BARREL GROUND CFA - CONTINUOUS FLIGHT AUGERS SS - DRIVEN SPLIT SPOON X AT COMPLET GP - GEOPROBE ST - PRESSED SHELBY TUBE X AT WELL ST.					
SOIL CLASSIFICATION SURFACE ELEVATION:	ABILIZATION La Control de la c				
SILTY SAND, Moderate to Pale Yellowish Brown,					
Slight Gravel near surface, Dry, No Odor	No Recovery 1 - 5 ft bgs				
SILTY SAND, Pale Yellowish Brown, Very Fine Grained, Dry, No Odor	5 - - - - - - - - - - - - - - - - - - - - - - - 10 - - - - - <				
SILT/SAND, Moderate to Pale Yellowish Brown, Firm, Dry, No Odor					
SAND, Moderate Yellowish Brown, Moderate Yellowish Brown @ 33 ft bgs, Very Fine to Fine Grained, Slight Silt, Discolored from 30 to 33 ft bgs, Dry from 19 - 23 ft bgs then moist, No Odor from 19 - 30 ft bgs, Hydrocarbon Odor @ 30 ft bgs, Wet @ 33 ft bgs	$ \begin{array}{c} $				
NOTE: This log is not to be used outside of the original report.	Couthwest				

=

Client: _	Enterprise Field Services, LLC							
Project I	Name:Lindreth Compressor Station		MONIT	റി	RI	N	з и	/ELL LOG
	Location: Rio Arriba County. NM						5 11	
Project N	Manager: Kyle Summers							
	DRILLING & SAMPLING INFORMATION	Monii	oring Well N	Num	ber:	M	IW-39	(Continued)
Date Sta	arted:8.22.11		0					
	ompleted: 8.22.11							
	Company: <u>Enviro-Drill</u>							
	Rodney Hammer							
	st:Kyle Summers, C.P.GWell Diam:					Ι		
	Method:Screen Size:	0.01"						
Bore Ho	ble Dia:Screen Length	_15'						
	r OD: Casing Length:	22'					÷	
HSA -	DRING METHOD SAMPLER TYPE HOLLOW STEM AUGERS CB - FIVE FOOT CORE BARREL GROUND	WATER	DEPTH			٦	FID/PID Readings (ppm)	BORING AND
CFA - GP - G	CONTINUOUS FLIGHT AUGERS SS - DRIVEN SPLIT SPOON			7		Dept) sgr	SAMPLING NOTES
	AIR ROTARY ST - PRESSED SHELBY TUBE TAT WELL ST	ABILIZAT		Interval	\$	iter I	sadit	
Ilow	SOIL CLASSIFICATION	Ê	ē	le E	% Recovery	Groundwater Depth	D R(
C child	SURFACE ELEVATION:	Stratum Depth	Depth Scale Sample No.	Sample	Rec	rour	D/PI	
24 0	SORPACE ELEVATION:	ΩÖ	Δō ŏz	<i>i</i> ñ	%	0	Ц,	
	SANDSTONE (Continued)						2	
							3	
1111	Bottom of Boring @ 37 ft bgs							
1111								
			40					
4111								
4111								
4////								
4////			45 —					
4////								
4111								
4411								
4////								
-1			50 —					
4118								
4////								
4////								
4								
4111			55 —					
41111								
1								
1								
1				1				
1111			60 —					
1:::								· · · · · · · · · · · · · · · · · · ·
1////								
1								
]			1					
			65 —					
						[
						[
↓ │ ∲ ┃								
ШIJЬ								
N	IOTE: This log is not to be used outside of the original report.						-	Touthurst
							_ (Couthwest
			• • • • • • • • • • • • • • • • • • •				- -	JGEOSCIENCE
							-	

Project Manager: Kyle Summers DRILLING & SAMPLING INFORMATION Date Started: 8.23.11 Date Completed: 8.23.11 Drilling Company: Enviro-Drill Drilling Company: Enviro-Drill Driller: Rodney Hammer Geologist: Kyle Summers, C.P.G. Well Diam: Boring Method: HSA Screen Length: Sampler OD: 3.5" Casing Length: SAMPLER TYPE More Foot Core BarReL GROUND SAMPLER TYPE Art Well STI SPOON SOIL CLASSIFICATION SURFACE ELEVATION:	Project #:0 Drawn By:R Approved By:t 0.01" 15' 25' WATER DEPTH TION	10006 DH	BORING AND SAMPLING NOTES
 SANDY SILT, Moderate to Dark Yellowish Brown, Firm, Dry, No Odor SILTY SAND, Pale Yellowish Brown, Loose to 8 ft bgs, Firm @ 8 - 13.5 ft bgs, Dry, No Odor SAND, Moderate Yellowish Brown, Very Fine to to Fine Grained, Slight Silt, Dry, No Odor SILTY SANDSTONE, Pale Yellowish Brown to Light Olive Brown, Firm, Dry, No Odor SANDSTONE, Moderate Yellowish Brown, Very Fine to Fine Grained, Dry, No Odor SANDSTONE, Moderate Yellowish Brown, Very Fine to Fine Grained, Dry, No Odor SANDSTONE, Brownish Black, Hard, Slightly Moist, No Odor SANDSTONE, Pale Yellowish Gray, Dry, No Odor SANDSTONE, Pale Orange to Moderate Yellowish Orange, Moist, No Odor SAND, Pale Yellowish Brown & Slight Olive Orange, Wet @ 32 ft bgs, No Odor SAND, Grayish Black, Wet, No Odor NOTE: This log is not to be used outside of the original report. 			Southwest

Client: Enterprise Field Services, LLC Project Name:Lindreth Compressor Station Project Location:Rio Arriba County, NM	MONITORIING WELL LOG
Project Manager: Kyle Summers	
Date Completed: 8.23.11	_ Approved By:_ <u>Kyle Summers</u>
Geologist:Kyle Summers, C.P.GWell Diam:	
Boring Method:Screen Size:	
Bore Hole Dia: <u>8"</u> Screen Lengtl Sampler OD: <u>3.5"</u> Casing Lengtl	
BORING METHOD SAMPLER TYPE	DWATER DEPTH ETION TABILIZAT
SOIL CLASSIFICATION	Siratum Deptih Scate No. A Recovery Groundwate FID/FID Rea
SANDSTONE, Moderate Yellowish Brown, Heavy Iron Oxidation, Wet, No Odor SANDY SHALE, Moderate Gray, Moist, No Odor Bottom of Boring @ 40 ft bgs	
NOTE: This log is not to be used outside of the original report.	S outhwest
E LEE COUNTY AND	JGEOSCIENCE

Client: Enterprise Field Services, LLC Project Name: Lindreth Compressor Station Project Location: Rio Arriba County, NM Project Manager: Kyle Summers DRILLING & SAMPLING INFORMATION Date Started: 8.23.11 Date Completed: 8.23.11 Drilling Company: Enviro-Drill Driller: Rodney Hammer Geologist: Kyle Summers, C.P.G. Well Diam: Boring Method:	Drawn By:RDHApproved By:Kyle Summers
Bore Hole Dia: <u>8</u> Screen Length: Sampler OD: <u>3.5</u> Casing Length: BORING METHOD SAMPLER TYPE	: 15' : 23' WATER DEPTH Image: Same state st
SILTY SAND, Moderate to Dark Yellowish Brown, Dry, Odor SANDY SILT, Pale to Moderate Yellowish Brown, Dry, No Odor SAND, Pale Yellowish Brown, Very Fine to Fine Grained, Slight Silt, Dry, No Odor SILTY SAND, Pale Yellowish Brown, Firm, Dry, No Odor SILTY SAND, Pale Yellowish Brown, Firm, Dry, No Odor SANDY SANDSTONE, Moderate Yellowish Brown, Thin Dusky Brown Layers @ 27 - 29 ft bgs, Loose to Firm, Slightly Moist, Very Moist @ 30 ft bgs, No Odor	
	Southwest

ł

ł

Client: Enterprise Field Services. LLC								
Project Name: Lindreth Compressor Station			MONIT	`OF	RII	NC	i W	ELL LOG
Project Location: <u>Rio Arriba County, NM</u>				· ·	••••			
Project Manager: Kyle Summers								
DRILLING & SAMPLING INFORMATION	ON	Monit	oring Well N	umb	er:	М	W-41	(Continued)
Date Started: 8.23.11								
Date Completed: 8.23.11								
Drilling Company: <u>Enviro-Drill</u> Driller: <u>Rodney Hammer</u>			ovea By: <u>K</u>	vie s	sum	mer	S	
Geologist: Kyle Summers, C.P.G.	Well Diam:					T		
Boring Method: HSA		0.01"						
Bore Hole Dia: <u>8"</u>								
Sampler OD: 3.5"	Casing Length:							
BORING METHOD SAMPLER TYPE HSA · HOLLOW STEM AUGERS CB - FIVE FOOT CORE B/	ARREL GROUND	WATER	DEPTH				udd	BORING AND
CFA - CONTINUOUS FLIGHT AUGERS SS - DRIVEN SPLIT SPOO	N 🖞 AT COMPLET	ION		-		Dept)sg	SAMPLING NOTES
AR - AIR ROTARY	UBE 🕎 AT WELL STA	ABILIZATI	ON	tervä	Ņ	ater I	eaclii	
SOIL CLASSIFICATION	J	E	e e	Sample Interval	% Recovery	Groundwater Depth	FID/PID Readings (ppm)	
SURFACE ELEVATION:	<u> </u>	Stratum	Depth Scale Sample No.	amp	6 Rec	ŝroui	A/OF	
		(V)	ມຫຼຸທ <u>2</u>	<i>v</i>)	<u>ه</u>	. Y I	щ	
- SANDY SANDSTONE (Continued)							36	
SANDY SANDSTONE (Continued)							32 38	
Bottom of Boring @ 38 ft l	ode					-	38	
	Jg3					ŀ		
			40 —			ľ		
]								
]								
-4////			45 —					
4]]								
4] []]			_			┝┝		
4			-			┝		
			50 ~~			ŀ		
						F		
1								
]								
]			55 —					
<u>1</u>			_					
4			_			┟		
4//11			-			⊦		
4			-			ŀ		
4111			60 —			ŀ		
1.1.1						ŀ		
]						ſ		
]]					- [
4 1			65 —					
4//11			-			H		
4//11						┝		
4//11						⊦	_	
4//1						ŀ	\neg	
NOTE: This log is not to be used outside of the	e original report							<u> </u>
							(Couthwest
					<i></i>	N. Mart 2	•	D GEOSCIENCE

Client: Enterprise Field Services, LLC Project Name:Lindreth Compressor Station Project Location:Rio Arriba County, NM	MONITORIING WELL LOG
Project Manager: Kyle Summers DRILLING & SAMPLING INFORMATION Date Started: 8.23.11	Monitoring Well Number: <u>MW-42</u> Project #:0410006
Date Completed: 8.23.11	
Drilling Company: <u>Enviro-Drill</u>	Approved By: Kyle Summers
Driller: Rodney Hammer	
Geologist:Kyle Summers, C.P.G Well Diam:	
Boring Method: Screen Size: Screen Size:	
Bore Hole Dia: 8" Screen Length	
Sampler OD: 3.5" Casing Length BORING METHOD SAMPLER TYPE HSA - HOLLOW STEM AUGERS CB - FIVE FOOT CORE BARREL GROUND CFA - CONTINUOUS FLIGHT AUGERS SS - DRIVEN SPLIT SPOON Q AT COMPLET GP - GEOPROBE ST - PRESSED SHELBY TUBE Y AT WELL ST.	WATER DEPTH
SOIL CLASSIFICATION SURFACE ELEVATION:	Siratum Deptih No. Deptih No. Sample Interval Groundwater D FID/PID Reading
SANDY SILT, Moderate Yellowish Brown to Moderate Brown, Firm, Dry, No Odor	
SILTY SAND, Pale to Moderate Yellowish Brown, Very Fine Grained, Loose, Increasing Firmness with Depth, Dry, No Odor	
SAND, Pale Yellowish Brown, Very Fine to Fine Grained, Dry, No Odor	
SILTY SAND, Moderate Yellowish Brown with Occasional Dark Brown Streak, Slightly Moist, No Odor	
SAND/SANDSTONE, Pale to Dark Yellowish Orange,	
Iron Oxidation, Slighly Moist, No Odor	
SHALEY SANDSTONE, Dark Yellowish Brown to Olive Gray, Slightly Moist, Hydrocarbon Odor	25 - 15 167 267-27 267-27 267-27 267-27 267-27 267-27 267-27 267-27
SHALEY SANDSTONE, Dark Yellowish Brown to Olive Gray, Slightly Moist, Hydrocarbon Odor SHALEY SANDSTONE, Dark Yellowish Brown, Very Moist, Hydrocarbon Odor SANDSTONE, Moderate Yellowish Brown, Moist, No Odor to Slight Hydrocarbon Odor	$ \begin{array}{c} 244 \\ 25 \\ 9 \\ 17 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15$
NOTE: This log is not to be used outside of the original report.	Southwest

Client: <u>Enterprise Field Services, LLC</u>						
Project Name: Lindreth Compressor Station Project Location: Rio Arriba County, NM		MONIT	OR	IIN	G W	ELL LOG
Project Manager: Kyle Summers						
DRILLING & SAMPLING INFORMATION	Monite	oring Well N	umbe	er: N	1W-42	(Continued)
Date Started: 8.23.11		-				
Date Completed: 8.23.11	Drawr	n By: <u>RE</u>	Ы			
Drilling Company: <u>Enviro-Drill</u>		oved By: <u>K</u>	vle Si	ımme	rs	
Driller: Rodney Hammer Geologist: Kyle Summers, C.P.G We				·	<u> </u>	
Boring Method: HSA Scr						
Bore Hole Dia: 8" Scr	een Length: <u>15'</u>					
Sampler OD:3.5"Cas	sing Length: 22'					
BORING METHODSAMPLER TYPEHSA - HOLLOW STEM AUGERSCB - FIVE FOOT CORE BARREL	GROUNDWATER I	DEPTH		ء	mqq	BORING AND
CFA · CONTINUOUS FLIGHT AUGERS SS - DRIVEN SPLIT SPOON	AT COMPLETION		57	Dept) sĝu	SAMPLING NOTES
AR - AIR ROTARY	AT WELL STABILIZATI		nterv	ater	Readi	
	E E	te e e	Sample Interval	% recovery Groundwater Depth	FID/FID Readings (ppm)	
SURFACE ELEVATION:	Stratum	Depth Scale Sample No.	Sam	Crot	FIDA	
SANDSTONE (Continued)			Τ		5	
		-			4	
CLAYEY SANDSTONE, Medium Gray, Slightly M	loist,				15	
Slight Hydrocarbon Odor						
Bottom of Boring @ 38 ft bgs		40 —				
4////		-				
4		-				
4						
]						
		45 —				
4 1						
4//11		_				
4//11		-				
<u>]</u>]]]]]		50 —				
]		-				
4//11						
4//11						
		55 —				
4 []						
1////						
4		60				
4////		-				
4]]		-				
4		-				
] [] []		-				
		65				
4 []						
4111		-				
4////		-				
NOTE: This log is not to be used outside of the original	report.		I	I		
	•···					Southwest
					■	DGEOSCIENCE
					_	

APPENDIX D

Laboratory Data Reports & Chain of Custody Documentation

COVER LETTER

Friday, August 26, 2011

Kyle Summers Southwest Geoscience 606 S. Rio Grande Unit A Aztec, NM 87410

TEL: (903) 821-5603 FAX

RE: Lindrith CS

Dear Kyle Summers:

Order No.: 1108777

Hall Environmental Analysis Laboratory, Inc. received 10 sample(s) on 8/18/2011 for the analyses presented in the following report.

This report is a revised report and it replaces the original report issued August 26, 2011.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682

> 4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

CLIENT:	Southwest Geoscience		•	Clier	nt Sample ID:	: MW-30 (12')			
Lab Order:	1108777			Co	llection Date:	8/15/2011	1:00:00 PM		
Project:	Lindrith CS			Date Receive		: 8/18/2011			
Lab ID:	1108777-01				Matrix:	SOIL			
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed		
EPA METHOD	8015B: DIESEL RANGE O	RGANICS					Analyst: JB		
Diesel Range C	Organics (DRO)	2300	190		mg/Kg	20	8/23/2011 12:03:20 PM		
Surr: DNOP		0	73.4-123	S	%REC	20	8/23/2011 12:03:20 PM		
EPA METHOD	8015B: GASOLINE RANG	E					Analyst: RAA		
Gasoline Range	Organics (GRO)	ND	47		mg/Kg	10	8/22/2011 4:12:16 PM		
Surr: BFB		91.3	75.2-136		%REC	10	8/22/2011 4:12:16 PM		
	8021B: VOLATILES						Analyst: RAA		
Benzene		ND	0.47		mg/Kg	10	8/22/2011 4:12:16 PM		
Toluene		ND	0.47		mg/Kg	10	8/22/2011 4:12:16 PM		
Ethylbenzene		ND	0.47		mg/Kg	10	8/22/2011 4:12:16 PM		
Xylenes, Total		ND	0.94		mg/Kg	10	8/22/2011 4:12:16 PM		
Surr: 4-Brom	ofluorobenzene	92.5	90.3-115		%REC	10	8/22/2011 4:12:16 PM		

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 26-Aug-11 Analytical Report

CLIENT:	Southwest Geoscience			Clie	MW-30 (35")			
Lab Order:	1108777		• .	Co	llection Date:	8/15/2011 2:00:00 PM		
Project:	Lindrith CS			D	ate Received:	8/18/2011		
Lab ID:	1108777-02			Matrix:		SOIL		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD	8015B: DIESEL RANGE O	RGANICS					Analyst: JB	
Diesel Range O	organics (DRO)	360	9.7		mg/Kg	1	8/22/2011 12:53:59 PM	
Surr: DNOP		95.3	73.4-123		%REC	1	8/22/2011 12:53:59 PM	
	8015B: GASOLINE RANGE	E					Analyst: RAA	
Gasoline Range	Organics (GRO)	8500	480		mg/Kg	- 100	8/24/2011 3:19:46 PM	
Surr: BFB		166	75.2-136	S	%REC	100	8/24/2011 3:19:46 PM	
	8021B: VOLATILES						Analyst: RAA	
Benzene		ND	0.48		mg/Kg	10	8/22/2011 4:41:07 PM	
Toluene		7.0	0.48		mg/Kg	10	8/22/2011 4:41:07 PM	
Ethylbenzene		18	0.48		mg/Kg	10	8/22/2011 4:41:07 PM	
Xylenes, Total		100	0.96		mg/Kg	10	8/22/2011 4:41:07 PM	
Surr: 4-Brome	ofluorobenzene	209	90.3-115	S	%REC	10	8/22/2011 4:41:07 PM	

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits 2

Date: 26-Aug-11 Analytical Report

CLIENT:	Southwest Geoscience			Clien	MW-31 (16')			
Lab Order:	1108777		Collec			8/15/2011	5:00:00 PM	
Project:	Lindrith CS			Date Received:		8/18/2011		
Lab ID:	1108777-03				Matrix:	SOIL		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD	8015B: DIESEL RANGE O	RGANICS					Analyst: JB	
Diesel Range O	organics (DRO)	ND	9.9		mg/Kg	1	8/22/2011 1:28:56 PM	
Surr: DNOP		78.8	73.4-123		%REC	1	8/22/2011 1:28:56 PM	
EPA METHOD	8015B: GASOLINE RANGI	Ē					Analyst: RAA	
Gasoline Range	e Organics (GRO)	ND	. 24		mg/Kg	5	8/24/2011 4:17:31 PM	
Surr: BFB		93.3	75.2-136		%REC	5	8/24/2011 4:17:31 PM	
	8021B: VOLATILES						Analyst: RAA	
Benzene		ND	0.24		mg/Kg	5	8/24/2011 4:17:31 PM	
Toluene		ND	0.24		mg/Kg	5	8/24/2011 4:17:31 PM	
Ethylbenzene		ND	0.24		mg/Kg	5	8/24/2011 4:17:31 PM	
Xylenes, Total		ND	0.47		mg/Kg	5	8/24/2011 4:17:31 PM	
Surr: 4-Brome	ofluorobenzene	93.8	80-120		%REC	5	8/24/2011 4:17:31 PM	

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits 3

Date: 26-Aug-11 Analytical Report

CLIENT:	Southwest Geoscience			MW-31 (37')			
Lab Order:	1108777			Collection Date:		8/15/2011	5:30:00 PM
Project:	Lindrith CS			Da	te Received:	8/18/2011	
Lab ID:	1108777-04				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE O	RGANICS					Analyst: JB
Diesel Range C	Organics (DRO)	ND	9.6		mg/Kg	· 1	8/22/2011 2:03:45 PM
Surr: DNOP		85.7	73.4-123		%REC	1	8/22/2011 2:03:45 PM
EPA METHOD	8015B: GASOLINE RANGE	E					Analyst: RAA
Gasoline Range	e Organics (GRO)	ND	4.8		mg/Kg	1	8/24/2011 4:46:28 PM
Surr: BFB		93.6	75.2-136		%REC	1	8/24/2011 4:46:28 PM
	8021B: VOLATILES						Analyst: RAA
Benzene		ND	0.048		mg/Kg	1	8/24/2011 4:46:28 PM
Toluene		ND	0.048		mg/Kg	1	8/24/2011 4:46:28 PM
Ethylbenzene		ND	0.048		mg/Kg	1	8/24/2011 4:46:28 PM
Xylenes, Total		ND	0.097		mg/Kg	1	8/24/2011 4:46:28 PM
Surr: 4-Brom	ofluorobenzene	97.2	80-120		%REC	1	8/24/2011 4:46:28 PM

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

CLIENT:	Southwest Geoscience				it Sample ID:	-	-
Lab Order:	1108777 Lindrith CS				llection Date: ate Received:		
Project: Lab ID:	1108777-05			U	Matrix:		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8	015B: DIESEL RANGE O	RGANICS				·	Analyst: JB
Diesel Range Or	ganics (DRO)	19	10		mg/Kg	1	8/22/2011 2:38:37 PM
Surr: DNOP	• · · ·	83.4	73.4-123		%REC	· 1	8/22/2011 2:38:37 PM
EPA METHOD 8	015B: GASOLINE RANG	5					Analyst: RAA
Gasoline Range	Organics (GRO)	640	50		m g/Kg	10	8/22/2011 6:07:47 PM
Surr: BFB		191	75.2-136	S	%REC	10	8/22/2011 6:07:47 PM
EPA METHOD 8	021B: VOLATILES						Analyst: RAA
Benzene		ND	0.50		mg/Kg	10	8/22/2011 6:07:47 PM
Toluene		1. 2	0.50		mg/Kg	10	8/22/2011 6:07:47 PM
Ethylbenzene		2.4	0.50		mg/Kg	10	8/22/2011 6:07:47 PM
Xylenes, Total		16	0.99		mg/Kg	10	8/22/2011 6:07:47 PM
Surr: 4-Bromol	fluorobenzene	103	90.3-115		%REC	10	8/22/2011 6:07:47 PM

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits 5

Date: 26-Aug-11 Analytical Report

CLIENT:			Clie	nt Sample ID:	MW-32 (35')		
Lab Order:	1108777			Collection Date: Date Received: Matrix:		8/16/2011	11:10:00 AM
Project:	Lindrith CS					8/18/2011	
Lab ID:	1108777-06					SOIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8	015B: DIESEL RANGE O	RGANICS			,		Analyst: JB
Diesel Range Or	rganics (DRO)	250	9.7		mg/Kg	1	8/22/2011 3:48:40 PM
Surr: DNOP		94.5	73.4-123		%REC	1	8/22/2011 3:48:40 PM
	015B: GASOLINE RANGE	E					Analyst: RAA
Gasoline Range	Organics (GRO)	11000	470		mg/Kg	100	8/24/2011 5:15:25 PM
Surr: BFB		167	75.2-136	S	%REC	100	8/24/2011 5:15:25 PM
EPA METHOD 8	021B: VOLATILES						Analyst: RAA
Benzene		9.7	0.47		mg/Kg	10	8/22/2011 6:36:38 PM
Toluene		34	0.47		mg/Kg	10	8/22/2011 6:36:38 PM
Ethylbenzene		33	0.47		mg/Kg	10	8/22/2011 6:36:38 PM
Xylenes, Total		190	9.4		mg/Kg	100	8/24/2011 5:15:25 PM
Surr: 4-Bromo	fluorobenzene	244	90.3-115	S	%REC	10	8/22/2011 6:36:38 PM

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

NC Non-Chlorinated

PQL Practical Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 6 of 10

Date: 26-Aug-11 Analytical Report

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	Southwest Geoscience			Clier	t Sample ID:	MW-33 (3	5')
Lab Order:	1108777			Co	llection Date:	8/16/2011	3:20:00 PM
Project:	Lindrith CS			D	ate Received:	8/18/2011	
Lab ID:	1108777-07				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE O	RGANICS	•••				Analyst: JB
Diesel Range O	Organics (DRO)	ND	9.8		mg/Kg	1	8/22/2011 4:23:20 PM
Surr: DNOP		79.5	73.4-123		%REC	1	8/22/2011 4:23:20 PM
	8015B: GASOLINE RANGI	E					Analyst: RAA
Gasoline Range	e Organics (GRO)	· ND	4.8		mg/Kg	1	8/24/2011 6:13:11 PM
Surr: BFB		93.6	75.2-136		%REC	1	8/24/2011 6:13:11 PM
	8021B: VOLATILES						Analyst: RAA
Benzene		ND	0.048		mg/Kg	1	8/24/2011 6:13:11 PM
Toluene		ND	0.048		mg/Kg	1	8/24/2011 6:13:11 PM
Ethylbenzene		ND	0.048		mg/Kg	1	8/24/2011 6:13:11 PM
Xylenes, Total		ND	0.097		mg/Kg	1	8/24/2011 6:13:11 PM
Surr: 4-Brom	ofluorobenzene	96.8	80-120		%REC	1	8/24/2011 6:13:11 PM

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

ł

Ethylbenzene

Xylenes, Total

Surr: 4-Bromofluorobenzene

8/24/2011 6:42:04 PM

8/24/2011 6:42:04 PM

8/24/2011 6:42:04 PM

CLIENT:	Southwest Geoscience			Clien	t Sample ID:	MW-34 (3	0')
Lab Order:	1108777			Col	lection Date:	8/17/2011	10:40:00 AM
Project:	Lindrith CS			Da	te Received:	8/18/2011	
Lab ID:	1108777-08				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE O	RGANICS					Anaiyst: JB
Diesel Range O	Organics (DRO)	ND	10		mg/Kg	1	8/22/2011 4:57:59 PM
Surr: DNOP		85.5	73.4-123		%REC	1	8/22/2011 4:57:59 PM
EPA METHOD	8015B: GASOLINE RANG	E					Analyst: RAA
Gasoline Range	Organics (GRO)	ND	4.8		mg/Kg	1	8/24/2011 6:42:04 PM
Surr: BFB		93.5	75.2-136		%REC	1	8/24/2011 6:42:04 PM
EPA METHOD	80218: VOLATILES						Analyst: RAA
Benzene		ND	0.048		mg/Kg	1	8/24/2011 6:42:04 PM
Toluene		ND	0.048		mg/Kg	1	8/24/2011 6:42:04 PM

0.048

0.096

80-120

mg/Kg

mg/Kg

%REC

1

1

1

ND

ND

98.0

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 8 of 10

R

Date: 26-Aug-11 Analytical Report

CLIENT:	Southwest Geoscience			Clien	t Sample ID:	MW-35 (3	0')
Lab Order:	1108777			Col	lection Date:	8/17/2011	2:50:00 PM
Project:	Lindrith CS			Da	te Received:	8/18/2011	
Lab ID:	1108777-09				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE O	RGANICS				· · · · ·	Analyst: JB
Diesel Range C	organics (DRO)	ND	9.9		mg/Kg	1	8/22/2011 5:32:37 PM
Surr: DNOP		87.6	73.4-123		%REC	1	8/22/2011 5:32:37 PM
EPA METHOD	8015B: GASOLINE RANGI	E					Analyst: RAA
Gasoline Range	e Organics (GRO)	ND	4.9		mg/Kg	1	8/22/2011 8:03:24 PM
Surr: BFB		93.9	75.2-136		%REC	1	8/22/2011 8:03:24 PM
	8021B: VOLATILES						Analyst: RAA
Benzene		ND	0.049		mg/Kg	1	8/22/2011 8:03:24 PM
Toluene		ND	0.049		mg/Kg	1	8/22/2011 8:03:24 PM
Ethylbenzene	•	ND	0.049		mg/Kg	1	8/22/2011 8:03:24 PM
Xylenes, Total	i	ND	0.098		mg/Kg	1	8/22/2011 8:03:24 PM
Surr: 4-Brome	ofluorobenzene	96.1	90.3-115		%REC	1	8/22/2011 8:03:24 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level *
- Ε Estimated value
- Analyte detected below quantitation limits J
- Non-Chlorinated NC
- PQL Practical Quantitation Limit

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits 9 \$

Page 9 of 10

.

E

.

ł

Date: 26-Aug-11 Analytical Report

CLIENT:	Southwest Geoscience			Clier	nt Sample ID:	MW-35 (3	6')
Lab Order:	1108777			Co	llection Date:	8/17/2011	3:10:00 PM
Project:	Lindrith CS			D	ate Received:	8/18/2011	
Lab ID:	1108777-10	•			Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8	015B: DIESEL RANGE O	RGANICS					Analyst: JB
Diesel Range Org	ganics (DRO)	ND	10		mg/Kg	1	8/22/2011 6:07:14 PM
Surr: DNOP		90.0	73.4-123		%REC	1	8/22/2011 6:07:14 PM
EPA METHOD 8	015B: GASOLINE RANG	E					Analyst: RAA
Gasoline Range (Organics (GRO)	ND	4.8		mg/Kg	1	8/22/2011 8:32:16 PM
Surr: BFB		93.1	75.2-136		%REC	1	8/22/2011 8:32:16 PM
	021B: VOLATILES						Analyst: RAA
Benzene		ND	0.048		mg/Kg	1	8/22/2011 8:32:16 PM
Toluene		ND	0.048		mg/Kg	1	8/22/2011 8:32:16 PM
Ethylbenzene		ND	0.048		mg/Kg	1	8/22/2011 8:32:16 PM
Xylenes, Total		ND	0.096		mg/Kg	1	8/22/2011 8:32:16 PM
Surr: 4-Bromof	luorobenzene	96.3	90.3-115		%REC	1	8/22/2011 8:32:16 PM

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

	outhwest Geoscier	nce							Work	Order:	1108777
Analyte	Resu	lt Units	PQL	SPK Va	SPK ref	%Rec L	.owLimit Hi	ghLimit	%RPD	RPDLim	
	od 8015B: Diesel R										······································
Sample ID: MB-28127		MBLK				Batch ID:	28127	Analysis	B Date:	8/22/2011	10:01:41 AM
Diesel Range Organics	· ·	mg/Kg	10								
Motor Oil Range Organ		mg/Kg	50					A B B			
Sample ID: LCS-2812		LCS				Batch ID:	28127	Analysis	a Date:	8/22/2011	10:36:05 AM
Diesel Range Organics	• •	, 0 0	10	50	0	80.8	66.7	119			
Sample ID: LCSD-281	127	LCSD				Batch ID:	28127	Analysis	Date:	8/22/2011	11:10:31 AM
Diesel Range Organics	(DRO) 41.0	7 mg/Kg	10	50	0	82.1	66.7	119	1.67	18.9	
Method: EPA Metho	d 8015B: Gasoline	Range									
Sample ID: MB-28120		MBLK				Batch ID:	28120	Analysis	Date:	8/22/2011	12:06:48 PM
Gasoline Range Organi	cs (GRO) ND	mg/Kg	5.0					·			
Sample ID: LCS-2812	· ·	LCS				Batch ID:	28120	Analysis	Date:	8/22/2011	10:27:33 PM
Gasoline Range Organi	cs (GRO) 28.59		5.0	25	0	114	86.4	132			
Method: EPA Metho	d 8021B: Volatiles								,		
Sample ID: MB-28120	l i	MBLK				Batch ID:	28120	Analysis	Date:	8/22/2011	12:06:48 PM
Benzene	ND	mg/Kg	0.050								
Toluene	ND	mg/Kg	0.050								
Ethylbenzene	ND	mg/Kg	0.050								
Xylenes, Total	ND	mg/Kg	0.10								
Sample ID: LCS-2812	D	LCS				Batch ID:	28120	Analysis	Date:	8/22/2011	10:56:21 PM
Benzene	0.949	8 mg/Kg	0.050	1	0	95.0	83.3	107			
Toluene	0.994		0.050	1	0	99.5	74.3	115			
Ethylbenzene	0.994	5 mg/Kg	0.050	1	0	99.4	80.9	122			
Xylenes, Total	3.101	mg/Kg	0.10	3	0	103	85.2	123			

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

- H Holding times for preparation or analysis exceeded
- NC Non-Chlorinated
- R RPD outside accepted recovery limits

U OIT	Ith	nwest	l shorstony		Hall	[]			Analysis Requested					Lab use only Due Date:	
Environmental	O S C	GEOSCIENCE Environmental & Hydrogeologic consultants			puze	Albuquerque	2		-116					Temp. of coolers when received (Co.	
Office Location.	n A2 te.	ter (Contact. Phone:	# And	LIM	1 Freeman	RIMAN 3975		8 02					1 2 3 4	5
Project Manager.	X	Summers	1. 1	#					YO						
Sampler's Name	CLARE MILL	10 m	Sample	Samplerssignature	eg				Dal		<u> </u>		-		•
Proj. No. D 4 1000 6		0	1.14 0	S		NoTy	NorType of Containers		Xa Ha						
Matrix Date	ine T	D C G Identifyi	Identifying Marks of Sample(s)		Start Depth bn3	diqe Q	AG AG AG	PO PO	12					Lab Sample ID (Lab Use Only)	-
S Bliefil	1300	X	NUV-30 (13/	R				X X		\		1108777	1- tt.	
	9051	mu 1		35')	SE HE	25))	-2	
	0011	NW-3		(3)	15/6									Ņ	
•	Q211	MM) is-MM4	37')	3637	~								7	
8/11/11	1000	MA	MW-32	(12)	16 17	7'								5~	
		MM	28-MM	(32)	38 BE	<i>د</i> ر								-6	
8/10/11		MW \	MW-33	(35)		کړ								٤-	
11/4/8		MW	HE-MW	(.05)	59 30	ð,								200	
-	0541	58-MM]	-35 (30)	293	30,					 	 		0- 1	
>	11/10	NW X	MM-35 ((.92	35 36	e,		*	<u>→</u> ₹					0(~	
Turn around time	A Normal				O 100% Rush	£									
Relinquished by (Signature)	(Signature)	2/11/1	1 1846	Repaired by	N N N	r. (Signature)	ı ۲		1 1846	NOTES:					
Reproducting by (Sighature)	(Sighature)	Date: Olivin	Time:		Repérind by. (Sign	(aune)		1.Date:		.					
Reinquished by (Signature)	(Signature)	Date	Time:	Received by	<u>کا کې</u> (S	oy. (Signature)		Date:	1	r					
Relinquished by (Signature)	(Signature)	Date:	1 Time:	Receive	Received by. (Signature)	gnature)		Date:	Time:	T					
Matrix WN	1011 111 111 111		W-WHAN C. CAT CD. CAN	CD_Co											

SOUTHWEST GEOSCIENCE • 2351' W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914

•

.

COVER LETTER

Friday, September 09, 2011

Kyle Summers Southwest Geoscience 606 S. Rio Grande Unit A Aztec, NM 87410

TEL: (903) 821-5603 FAX

RE: Lindrith CS

Dear Kyle Summers:

Order No.: 1108B44

Hall Environmental Analysis Laboratory, Inc. received 11 sample(s) on 8/25/2011 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682

> 4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

Date: 09-Sep-11 Analytical Report

CLIENT:	Southwest Geoscience			Clier	nt Sample ID:	MW-36 (3	0')
Lab Order:	1108B44			Co	llection Date:	8/18/2011	12:30:00 PM
Project:	Lindrith CS		•	D	ate Received:	8/25/2011	
Lab ID:	1108B44-01				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE O	RGANICS					Analyst: JB
Diesel Range O	organics (DRO)	ND	10		mg/Kg	1	9/2/2011 7:29:15 AM
Surr: DNOP		119	73.4-123		%REC	1	9/2/2011 7:29:15 AM
	8015B: GASOLINE RANGE	Ξ					Analyst: RA/
Gasoline Range	Organics (GRO)	10	4.9		mg/Kg	1	8/31/2011 4:10:20 PM
Surr: BFB	·	155	75.2-136	.S	%REC	1	8/31/2011 4:10:20 PM
	8021B: VOLATILES						Analyst: RAA
Benzene		ND	0.049		mg/Kg	1	8/31/2011 4:10:20 PM
Toluene		ND	0.049		mg/Kg	1	8/31/2011 4:10:20 PM
Ethylbenzene		ND	0.049		mg/Kg	1	8/31/2011 4:10:20 PM
Xylenes, Total		ND	0.098		mg/Kg	1	8/31/2011 4:10:20 PM
Surr: 4-Bromo	ofluorobenzene	99.1	80-120		%REC	1	8/31/2011 4:10:20 PM

Qualifiers:

.

* Value exceeds Maximum Contaminant Level

E Estimated value

- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 1 of 11

Date: 09-Sep-11 Analytical Report

CLIENT:	Southwest Geoscience			Clien	t Sample ID:	MW-36 (3	5')
Lab Order:	1108B44			Col	lection Date:	8/18/2011	12:50:00 PM
Project:	Lindrith CS			Da	ate Received:	8/25/2011	
Lab ID:	1108B44-02				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8	015B: DIESEL RANGE O	RGANICS					Analyst: JB
Diesel Range Or	rganics (DRO)	ND	10		mg/Kg	1	9/1/2011 4:15:18 PM
Surr: DNOP		110	73.4-123		%REC	1	9/1/2011 4:15:16 PM
EPA METHOD 8	015B: GASOLINE RANGE	E					Analyst: RAA
Gasoline Range	Organics (GRO)	ND	4.7		mg/Kg	1	8/31/2011 2:14:33 PM
Surr: BFB		94.8	75.2-136		%REC	1	8/31/2011 2:14:33 PM
	021B: VOLATILES						Analyst: RAA
Benzene		ND	0.047		mg/Kg	1	8/31/2011 2:14:33 PM
Toluene		ND	0.047		mg/Kg	1	8/31/2011 2:14:33 PM
Ethylbenzene		ND	0.047		mg/Kg	1	8/31/2011 2:14:33 PM
Xylenes, Total		ND	0.095		mg/Kg	1	8/31/2011 2:14:33 PM
Surr: 4-Bromo	fluorobenzene	96.1	80-120		%REC	1	8/31/2011 2:14:33 PM

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Estimated value

- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 2 of 11

CLIENT:	Southwest Geoscience			Client	Sample ID:	MW-37 (2	6')
Lab Order:	1108B44			Colle	ection Date:	8/19/2011	10:30:00 AM
Project:	Lindrith CS			Dat	te Received:	8/25/2011	
Lab ID:	1108B44-03				Matrix:	SOIL	
Analyses		Result	PQL	Qual 1	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE O	RGANICS					Analyst: JB
Diesel Range O	rganics (DRO)	27	9.9	n	ng/Kg	1	9/1/2011 4:50:11 PM
Surr: DNOP		108	73.4-123	9	%REC	1	9/1/2011 4:50:11 PM
EPA METHOD	8015B: GASOLINE RANGE	E					Analyst: RAA
Gasoline Range	Organics (GRO)	ND	4.9	n	ng/Kg	1	8/31/2011 4:39:13 PM
Surr: BFB		130	75.2-138	9	KREC	1	8/31/2011 4:39:13 PM
	8021B: VOLATILES						Analyst: RAA
Benzene		ND	0.049	n	ng/Kg	1	8/31/2011 4:39:13 PM
Toluene		ND	0.049	n	ng/Kg	1	8/31/2011 4:39:13 PM
Ethylbenzene		ND	0.049	ņ	ng/Kg	1	8/31/2011 4:39:13 PM
Xylenes, Total		ND	0.097	n	ng/Kg	1	8/31/2011 4:39:13 PM
Surr: 4-Bromo	ofluorobenzene	99.2	80-120	9	6REC	1	8/31/2011 4:39:13 PM

Qualifiers:

ļ

* Value exceeds Maximum Contaminant Level

E Estimated value

- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 3 of 11

Date: 09-Sep-11 Analytical Report

CLIENT: Lab Order: Project: Lab ID:	Southwest Geoscience 1108B44 Lindrith CS 1108B44-04			Co	nt Sample ID: llection Date: ate Received: Matrix:	8/19/2011 8/25/2011	·
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE O	RGANICS				<u></u>	Analyst: JB
Diesel Range O	Irganics (DRO)	310	100		mg/Kg	10	9/2/2011 12:15:20 AM
Surr: DNOP		0	73.4-123	S	%REC	10	9/2/2011 12:15:20 AM
	8015B: GASOLINE RANG	E					Analyst: RAA
Gasoline Range	e Organics (GRO)	1400	97		mg/Kg	20	8/31/2011 3:12:31 PM
Surr: BFB		234	75.2-136	S	%REC	20	8/31/2011 3:12:31 PM
	8021B: VOLATILES						Analyst: RAA
Benzene		1.2	0.97		mg/Kg	20	8/31/2011 3:12:31 PM
Toluene		5.7	0.97		mg/Kg	20	8/31/2011 3:12:31 PM
Ethylbenzene		5.2	0.97		mg/Kg	20	8/31/2011 3:12:31 PM
Xylenes, Total		40	1.9		mg/Kg	20	8/31/2011 3:12:31 PM
Surr: 4-Bromo	ofluorobenzene	106	80-120		%REC	20	8/31/2011 3:12:31 PM

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Estimated value

- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

4

Page 4 of 11

Date: 09-Sep-11 Analytical Report

CLIENT:	Southwest Geoscience			Clien	t Sample ID:	MW-38 (3	4')
Lab Order:	1108B44			Col	lection Date:	8/19/2011	2:30:00 PM
Project:	Lindrith CS			Da	te Received:	8/25/2011	
Lab ID:	1108B44-05				Matrix:	SOIL	
Analyses	· ·	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE O	RGANICS				<u></u>	Analyst: JB
Diesel Range C	Organics (DRO)	ND	10		mg/Kg	1	9/1/2011 5:24:51 PM
Surr: DNOP	· · ·	107	73.4-123		%REC	1	9/1/2011 5:24:51 PM
EPA METHOD	8015B: GASOLINE RANGI	Ξ					Analyst: RAA
Gasoline Range	e Organics (GRO)	ND	4,9		mg/Kg	1	8/31/2011 5:08:10 PM
Surr: BFB	-	99.8	75.2-136		%REC	1	8/31/2011 5:08:10 PM
	8021B: VOLATILES						Analyst: RAA
Benzene		ND	0.049		mg/Kg	1	8/31/2011 5:08:10 PM
Toluene		ND	0.049		mg/Kg	1	8/31/2011 5:08:10 PM
Ethylbenzene		ND	0.049		mg/Kg	1	8/31/2011 5:08:10 PM
Xylenes, Total		ND	0.098		mg/Kg	1	8/31/2011 5:08:10 PM
Surr: 4-Brom	ofluorobenzene	96.9	80-120		%REC	1	8/31/2011 5:08:10 PM

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

NC Non-Chlorinated

PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 5 of 11

Date: 09-Sep-11 Analytical Report

Page 6 of 11

CLIENT:	Southwest Geoscience			Clien	t Sample ID:	MW-38 (2	8')
Lab Order:	1108B44			Co	lection Date:	8/19/2011	12:50:00 PM
Project:	Lindrith CS			Da	ate Received:	8/25/2011	
Lab ID:	1108B44-06				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE O	RGANICS					Analyst: JB
Diesel Range O	Organics (DRO)	ND	9.8		mg/Kg	1	9/1/2011 5:59:44 PM
Surr: DNOP		108	73.4-123		%REC	1	9/1/2011 5:59:44 PM
EPA METHOD	8015B: GASOLINE RANGE	E					Analyst: RAA
Gasoline Range	Organics (GRO)	ND	4.8	•	mg/Kg	1	8/31/2011 5:37:03 PM
Surr: BFB		95.2	75.2-136		%REC	1	8/31/2011 5:37:03 PM
EPA METHOD	8021B: VOLATILES						Analyst: RAA
Benzene		ND	0.048		mg/Kg	1	8/31/2011 5:37:03 PM
Toluene		ND	0.048		mg/Kg	1	8/31/2011 5:37:03 PM
Ethylbenzene		ND	0.048		mg/Kg	1	8/31/2011 5:37:03 PM
Xylenes, Total		ND	0.096		mg/Kg	1	8/31/2011 5:37:03 PM
Surr: 4-Brome	ofluorobenzene	96.0	80-120		%REC	1	8/31/2011 5:37:03 PM

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

NC Non-Chlorinated

PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 7 of 11

CLIENT:	Southwest Geoscience			Clier	nt Sample ID:	MW-39 (3	1')
Lab Order:	1108B44			Co	llection Date:	8/22/2011	1:00:00 PM
Project:	Lindrith CS			Ð	ate Received:	8/25/2011	
Lab ID:	1108B44-07				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE O	RGANICS				<u> </u>	Analyst: JB
Diesel Range O	rganics (DRO)	990	. 99		mg/Kg	10	9/2/2011 12:49:28 AM
Surr: DNOP		0	73.4-123	S	%REC	10	9/2/2011 12:49:28 AM
	8015B: GASOLINE RANGI	2					Analyst: RAA
Gasoline Range	Organics (GRO)	7600	230		mg/Kg	50	8/31/2011 6:05:52 PM
Surr: BFB		333	75.2-136	S	%REC	50	8/31/2011 6:05:52 PM
EPA METHOD	8021B: VOLATILES						Analyst: RAA
Benzene		11	2.3		mg/Kg	50	8/31/2011 6:05:52 PM
Toluene		18	2.3		mg/Kg	50	8/31/2011 6:05:52 PM
Ethylbenzene		35	2.3		mg/Kg	50	8/31/2011 6:05:52 PM
Xylenes, Total		230	4.7		mg/Kg	50	8/31/2011 6:05:52 PM
Surr: 4-Bromo	ofluorobenzene	116	80-120		%REC	50	8/31/2011 6:05:52 PM

Qualifiers:

;

* Value exceeds Maximum Contaminant Level

E Estimated value

- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 09-Sep-11 Analytical Report

Page 8 of 11

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	Southwest Geoscience			Clier	nt Sample ID:	MW-40 (3	2')
Lab Order:	1108B44	,		Co	llection Date:	8/23/2011	9:20:00 AM
Project:	Lindrith CS			D	ate Received:	8/25/2011	
Lab ID:	1108B44-08				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE O	RGANICS					Analyst: JB
Diesel Range O	rganics (DRO)	ND	9.8		mg/Kg	1	9/1/2011 6:34:22 PM
Surr: DNOP		111	73.4-123		%REC	1	9/1/2011 6:34:22 PM
EPA METHOD	8015B: GASOLINE RANGE	E					Analyst: RAA
Gasoline Range	Organics (GRO)	ND	4.8		mg/Kg	1	8/31/2011 7:03:45 PM
Surr: BFB		98.5	75.2-136		%REC	1	8/31/2011 7:03:45 PM
EPA METHOD	8021B: VOLATILES						Analyst: RAA
Benzene		ND	0.048		mg/Kg	1	8/31/2011 7:03:45 PM
Toluene		ND	0.048		mg/Kg	1	8/31/2011 7:03:45 PM
Ethylbenzene		ND	0.048		mg/Kg	1	8/31/2011 7:03:45 PM
Xylenes, Total		ND	0.096		mg/Kg	1	8/31/2011 7:03:45 PM
Surr: 4-Bromo	ofluorobenzene	99.0	80-120		%REC	1	8/31/2011 7:03:45 PM

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Estimated value

- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 09-Sep-11 Analytical Report

9/1/2011 7:08:45 PM

9/1/2011 12:49:54 AM

Analyst: RAA

Analyst: RAA

Page 9 of 11

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	Southwest Geoscience			Clien	t Sample ID:	MW-40 (3	5')
Lab Order:	1108B44			Col	lection Date:	8/23/2011	9:25:00 AM
Project:	Lindrith CS			Da	te Received:	8/25/2011	
Lab ID:	1108B44-09				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE O	RGANICS					Analyst: JB
Diesel Range C	Organics (DRO)	ND	10		mg/Kg	1	9/1/2011 7:08:45 PM

73.4-123

75.2-136

0.047

0.047

0.047

0.093

80-120

4.7

%REC

mg/Kg

%REC

mg/Kg

mg/Kg

mg/Kg

mg/Kg

%REC

1

1

1

1

1

1

1

1

108

ND

96.2

ND

ND

ND

ND

98.0

Qualifiers:	
-------------	--

* Value exceeds Maximum Contaminant Level

E Estimated value

Surr: DNOP

Surr: BFB

Benzene

Toluene

Ethylbenzene

Xylenes, Total

EPA METHOD 8015B: GASOLINE RANGE

Gasoline Range Organics (GRO)

EPA METHOD 8021B: VOLATILES

Surr: 4-Bromofluorobenzene

- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 09-Sep-11 Analytical Report

Page 10 of 11

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	Southwest Geoscience			Client Sample ID	: MW-41 (3	30')
Lab Order:	1108B44			Collection Date:	8/23/2011	12:20:00 PM
Project:	Lindrith CS			Date Received	8/25/2011	
Lab ID:	1108B44-10			Matrix	SOIL	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE O	RGANICS				Analyst: JB
Diesel Range C	Organics (DRO)	ND	9.9	mg/Kg	1	9/1/2011 8:17:00 PM
Surr: DNOP	· · ·	108	73.4-123	%REC	1	9/1/2011 8:17:00 PM
	8015B: GASOLINE RANG	E				Analyst: RAA
Gasoline Range	e Organics (GRO)	ND	4.8	mg/Kg	1	9/1/2011 1:18:44 AM
Surr: BFB		94.9	75.2-136	%REC	1	9/1/2011 1:18:44 AM
	8021B: VOLATILES					Analyst: RAA
Benzene		ND	0.048	mg/Kg	1	9/1/2011 1:18:44 AM
Toluene		ND	0.048	mg/Kg	1	9/1/2011 1:18:44 AM
Ethylbenzene		ND	0.048	mg/Kg	1	9/1/2011 1:18:44 AM
Xylenes, Total		ND	0.095	mg/Kg	1	9/1/2011 1:18:44 AM
Surr: 4-Brom	ofluorobenzene	97.6	80-120	%REC	1	9/1/2011 1:18:44 AM

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

NC Non-Chlorinated

PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

S Spike recovery outside accepted recovery limits

ND Not Detected at the Reporting Limit

Page 11 of 11

CLIENT:	Southwest Geoscience			Clien	t Sample ID:	MW-42 (2	7')
Lab Order:	1108 B4 4			Col	llection Date:	8/23/2011	2:45:00 PM
Project:	Lindrith CS			Date Received:		8/25/2011	
Lab ID:	1108B44-11				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE O	RGANICS			<u></u>		Analyst: JB
Diesel Range C	Drganics (DRO)	12	10		mg/Kg	1	9/1/2011 8:51:21 PM
Surr: DNOP		119	73.4-123		%REC	1	9/1/2011 8:51:21 PM
EPA METHOD	8015B: GASOLINE RANG	E					Analyst: RAA
Gasoline Range	e Organics (GRO)	15	4.8		mg/Kg	1	9/1/2011 1:47:35 AM
Surr: BFB		134	75.2-136		%REC	1	9/1/2011 1:47:35 AM
	8021B: VOLATILES						Analyst: RAA
Benzene		ND	0.048		mg/Kg	1	9/1/2011 1:47:35 AM
Toluene		ND	0.048		mg/Kg	1	9/1/2011 1:47:35 AM
Ethylbenzene		0.058	0.048		mg/Kg	1	9/1/2011 1:47:35 AM
Xylenes, Total		0.85	0.096		mg/Kg	1	9/1/2011 1:47:35 AM
Surr: 4-Brome	ofluorobenzene	103	80-120		%REC	1	9/1/2011 1:47:35 AM

Qualifiers:

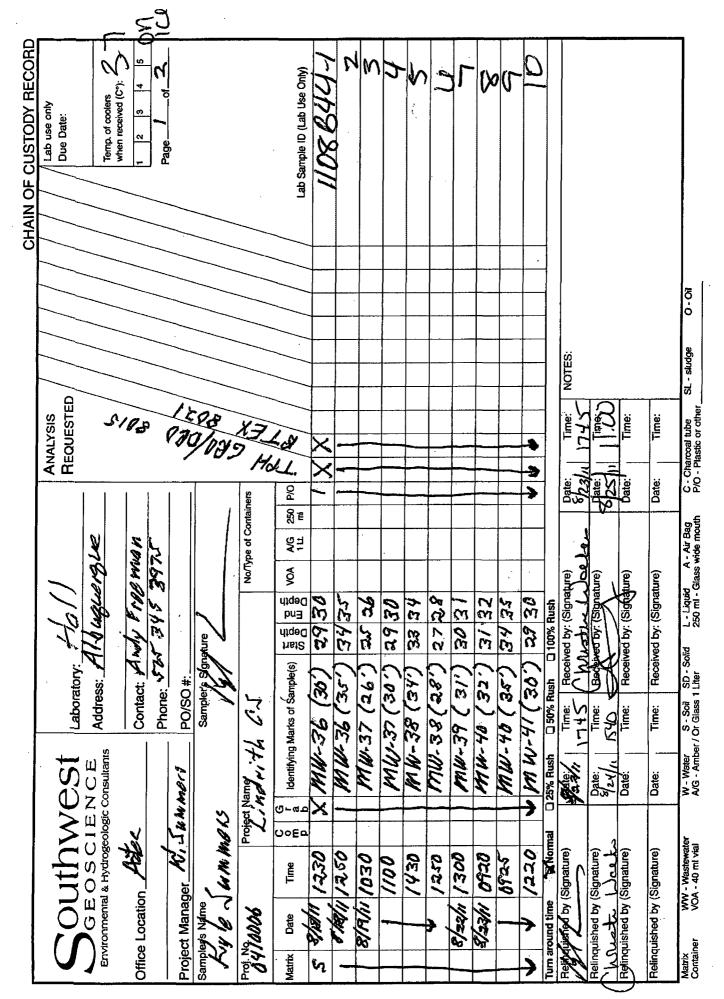
* Value exceeds Maximum Contaminant Level

E Estimated value

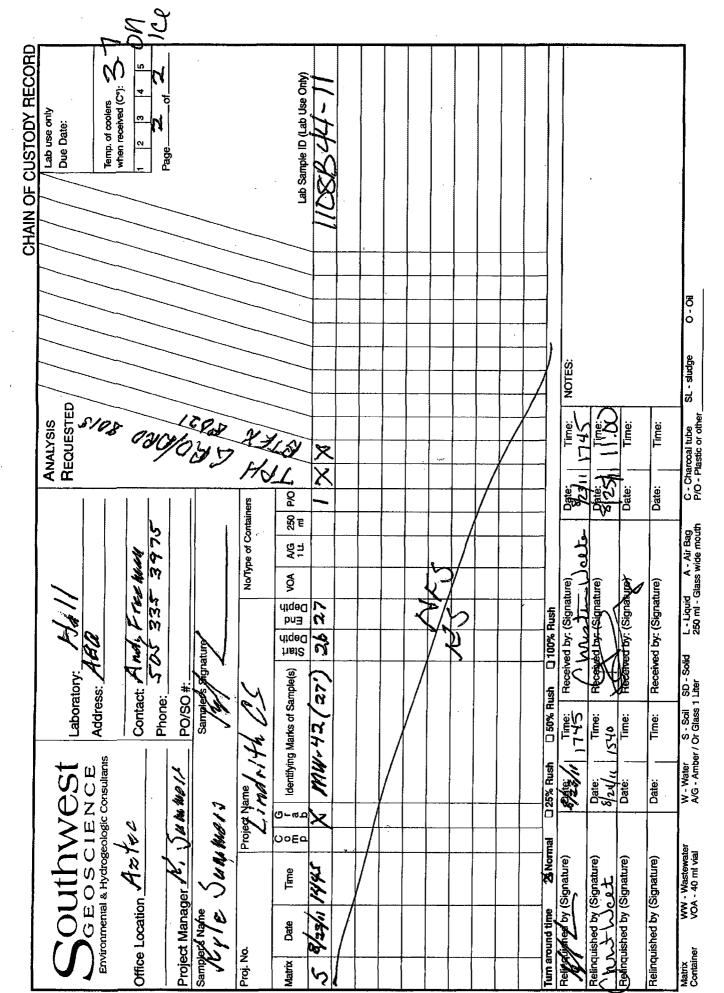
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT


Sample ID: 1108B44-01AMSD MSD Batch ID: 28266 Analysis Date: 8/31/2011 11:52:15 PM Benzene 0.9428 mg/Kg 0.047 0.939 0.0148 98.8 67.2 113 2.33 14.3 Toluene 1.017 mg/Kg 0.047 0.939 0.0122 107 62.1 116 2.14 15.9 Ethylbenzene 1.067 mg/Kg 0.047 0.939 0 114 67.9 127 0.654 14.4 Xylenes, Total 3.265 mg/Kg 0.094 2.817 0.0719 113 60.6 134 0.0631 12.6 Sample ID: MB-28266 MBLK Batch ID: 28256 Analysis Date: 8/31/2011 12:45:23 PM Benzene ND mg/Kg 0.050 Ethylbenzene ND mg/Kg 0.050 Xylenes, Total ND mg/Kg 0.050 1 0.0156 94.4 83.3 107 Sample ID: LCS-28256 Mg/Kg		outhwest Geoscience										
Method: EPA Method 8015B: Diesel Range Organics MBLK Batch ID: 28267 Analysis Date: 9/1/2011 2:30:32 PI Diesel Range Organics (DRO) ND mg/Kg 10 Batch ID: 28267 Analysis Date: 9/1/2011 2:30:32 PI Diesel Range Organics (DRO) 44.32 mg/Kg 10 50 0 88.6 66.7 119 3.86 18.9 Diesel Range Organics (DRO) 45.97 mg/Kg 10 50 0 91.9 68.7 119 3.86 18.9 Mathod: EPA Method 8016B: Gasoline Range Sample ID: CCS Batch ID: 28265 Analysis Date: 9/31/2011 12:45:23 PK Gasoline Range Organics (GRO) ND mg/Kg 5.0 25 Date: 8/31/2011 11:47:36 AK Gasoline Range Organics (GRO) 25.62 mg/Kg 5.0 25 Date: 8/31/2011 11:47:36 AK Gasoline Range Organics (GRO) 25.82 mg/Kg 0.047 0.939 0.118 98.8 67.2 113 2.33 14.3 Toulene	Project: Li	ndrith CS								Work	Order:	1108B44
Bample ID: MB-28287 MBL/K Batch ID: 28287 Analysis Date: 9/1/2011 2:30:32 PI Diesel Range Organics (DRO) ND mg/Kg 10 Batch ID: 28267 Analysis Date: 9/1/2011 3:05:27 PI Diesel Range Organics (DRO) 44.32 mg/Kg 10 50 0 88.6 66.7 119 9/1/2011 3:40:21 PI Diesel Range Organics (DRO) 45.97 mg/Kg 10 50 0 91.9 66.7 119 3.66 18.9 Mathod: EPA Method 8015B: Gasoline Range Organics (GRO) ND mg/Kg 5.0 25 0 102 86.4 132 Sample ID: LGS-28256 LCS Batch ID: 28266 Analysis Date: 8/31/2011 11:47:36 AN Gasoline Range Organics (GRO) ZGS mg/Kg 5.0 25 0 102 86.4 132 Method: EPA Method 8021B: Volatilies Sample ID: 11084-01AMSD Mg/G 0.047 0.939 0.0148 98.8 67.2 113 </th <th>Analyte</th> <th>Result</th> <th>Units</th> <th>PQL</th> <th>SPK V</th> <th>a SPK ref</th> <th>%Rec L</th> <th>.owLimit Hi</th> <th>ighLimit</th> <th>%RPD</th> <th>RPDLimit</th> <th>Qual</th>	Analyte	Result	Units	PQL	SPK V	a SPK ref	%Rec L	.owLimit Hi	ighLimit	%RPD	RPDLimit	Qual
Dissel Range Organics (DRO) ND ng/kg 10 Sample ID: LCS-28267 LCS Batch ID: 28267 Analysis Date: 9/1/2011 3:05:27 PJ Dissel Range Organics (DRO) 44.32 mg/kg 10 50 0 88.6 66.7 119 Dissel Range Organics (DRO) 45.97 LCSD Batch ID: 28267 Analysis Date: 9/1/2011 3:40:21 PJ Dissel Range Organics (DRO) 45.97 mg/kg 10 50 0 91.9 66.7 119 3.66 18.9 Mathod: EPA Method 8016B; Gasoline Range MBLK Batch ID: 28265 Analysis Date: 8/31/2011 12:45:23 PJ Gasoline Range Organics (GRO) ND mg/Kg 5.0 25 0 102 86.4 132 Mathod: EPA Method 8021B; Volatilies Sample ID: 1012 86.4 132 111 15.7 15 Benzene 0.9428 mg/Kg 0.047 0.39 0.0122 107 62.1 116 2.14 <td< td=""><td>Wethod: EPA Metho</td><td>d 8015B: Diesel Rang</td><td>e Organics</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>_</td><td></td></td<>	Wethod: EPA Metho	d 8015B: Diesel Rang	e Organics						•		_	
Sample ID: LCS Batch ID: 28267 Analysis Date: 9/1/2011 3:05:27 Pi Dissel Range Organics (DRO) 44.32 mg/Kg 10 50 0 86.6 67.7 119 Sample ID: LCSD Batch ID: 28267 Analysis Date: 9/1/2011 3:40:21 Ph Desel Range Organics (DRO) 45.97 mg/Kg 10 50 91.9 66.7 119 3.66 18.9 Mathod: EPA Mathod 8015B: Gasoline Range Sample ID: MB2LK Batch ID: 28256 Analysis Date: 8/31/2011 12:45:23 Ph Gasoline Range Organics (GRO) ND mg/Kg 5.0 25 D 102 86.4 132 Mathod: EPA Mathod 8021B: Volatilies Sample ID: 1018844-01AMSD MSD MSD 113 2.33 14.3 Toluene 1.067 mg/Kg 0.047 0.939 0.114 67.9 127 0.654 14.4 Kylenes, Total 3.265 mg/Kg 0.050 1134 0.0631 12.6 </td <td>Sample ID: MB-28267</td> <td></td> <td>MBLK</td> <td></td> <td></td> <td></td> <td>Batch ID:</td> <td>28267</td> <td>Analys</td> <td>is Date:</td> <td>9/1/2011</td> <td>2:30:32 PM</td>	Sample ID: MB-28267		MBLK				Batch ID:	28267	Analys	is Date:	9/1/2011	2:30:32 PM
Diesel Range Organics (DRO) 44.32 mg/Kg 10 50 0 88.6 66.7 119 Sample ID: LCSD-28287 LCSD Batch ID: 28267 Analysis Date: 9/1/2011 3:40:21 Ph Diesel Range Organics (DRO) 45.97 mg/Kg 10 50 0 91.9 66.7 119 3.66 18.9 Method: EPA Method 8015B: Gasoline Range Sample ID: MB-28256 MBLK Batch ID: 28256 Analysis Date: 9/1/2011 12:45:23 Ph Gasoline Range Organics (GRO) ND mg/Kg 5.0 25 0 102 86.4 132 Method: EPA Method 8021B: Volatiles Sample ID: 1108B44-01AMSD MSD Batch ID: 28266 Analysis Date: 8/31/2011 11:52:15 Ph Benzene 0.9428 mg/Kg 0.047 0.939 0.0148 98.8 67.2 113 2.33 14.3 Column 1108B44-01AMSD MSD Batch ID: 28266 Analysis Date: 8/31/2011 11:52:15 Ph	Diesel Range Organics	(DRO) ND	mg/Kg	10								
Sample ID: LCSD Batch ID: 28267 Analysis Date: 9/1/2011 3:40:21 PM Diesel Range Organics (DRO) 45.97 mg/Kg 10 50 91.9 66.7 119 3.86 18.9 Mathod: EPA Method 8015B; Gasoline Range Sample ID: MBLK Batch ID: 28256 Analysis Date: 8/31/2011 12:45:23 PM Gasoline Range Organics (GRO) ND mg/Kg 5.0 Eatch ID: 28256 Analysis Date: 8/31/2011 11:47:36 AM Gasoline Range Organics (GRO) 25.62 mg/Kg 5.0 25 0 102 86.4 132 Mathod: EPA Method 8021B: Volatilies Sample ID: 1008B44-01AMSD MSD Batch ID: 28256 Analysis Date: 8/31/2011 11:52:15 PM Benzene 0.9428 mg/Kg 0.047 0.939 0.114 67.9 127 0.664 14.4 Yelenes, Total 3.265 mg/Kg 0.047 0.839 0.114 67.9 127 0.664 14.4 3/3/2011 12:45:23 PM	Sample ID: LCS-2826	7	LCS				Batch ID:	28267	Analys	is Date:	9/1/2011	3:05:27 PM
Diesel Range Organics (DRO) 45.97 mg/Kg 10 50 9 1.9 66.7 119 3.66 18.9 Method: EPA Method 8015B: Gasoline Range Sample ID: MBLK Batch ID: 28256 Analysis Date: 8/31/2011 12:45:23 PM Gasoline Range Organics (GRO) ND mg/Kg 5.0 Eatch ID: 28256 Analysis Date: 8/31/2011 11:47:36 AA Gasoline Range Organics (GRO) ND mg/Kg 5.0 25 0 102 86.4 132 Method: EPA Method 8021B: Volatiles Sample JD: MSD Batch ID: 28266 Analysis Date: 8/31/2011 11:52:15 PA Benzene 0.9428 mg/Kg 0.047 0.939 0.0148 98.8 67.2 113 2.33 14.3 Toluene 1.017 mg/Kg 0.047 0.939 0.0148 98.8 67.2 113 2.33 14.3 Sample JD: MB2K Mg/Kg 0.047 0.939 0.0122 107 62.1	Diesel Range Organics	(DRO) 44.32	mg/Kg	10	50	0	88.6	66.7	119			
Mathod: EPA Method 8015B: Gasoline Range Sample ID: MB-28256 MBLK Batch ID: 28256 Analysis Date: 8/31/2011 12:45:23 PA Gasoline Range Organics (GRO) ND mg/Kg 5.0 Batch ID: 28256 Analysis Date: 8/31/2011 11:47:36 AA Gasoline Range Organics (GRO) 25.62 mg/Kg 5.0 25 0 102 85.4 132 Method: EPA Method 8021B: Volatiles Sample ID: 1108844-01AMSD MSD Batch ID: 28266 Analysis Date: 8/31/2011 11:52:15 PA Benzene 0.9428 mg/Kg 0.047 0.939 0.0148 96.8 67.2 113 2.33 14.3 Toluene 1.017 mg/Kg 0.047 0.939 0.114 67.9 127 0.664 14.4 Xylenes, Total 3.265 mg/Kg 0.047 0.939 0.114 67.9 127 0.664 14.4 Xylenes, Total 3.265 mg/Kg 0.050 Toluene 124 67.9 127 0.664 14.4	Sample ID: LCSD-282	67	LCSD				Batch ID:	28267	Analys	is Date:	9/1/2011	3:40:21 PM
Sample ID: MB_LK Batch ID: 28256 Analysis Date: 8/31/2011 12:45:23 PM Gasoline Range Organics (GRO) ND mg/Kg 5.0 ECS Batch ID: 28256 Analysis Date: 8/31/2011 11:47:36 AM Gasoline Range Organics (GRO) 25.62 mg/Kg 5.0 25 0 102 86.4 132 Method: EPA Method 6021B: Volatiles MSD Batch ID: 28266 Analysis Date: 8/31/2011 11:47:36 AM Benzene 0.9428 mg/Kg 0.047 0.939 0.0148 98.8 67.2 113 2.33 14.3 Toluene 1.017 mg/Kg 0.047 0.939 0.0148 98.8 67.2 113 2.33 14.3 Sample ID: 10864 0.657 mg/Kg 0.047 0.839 0.0122 107 62.1 116 2.14 15.9 Ethylbenzene 1.067 mg/Kg 0.047 0.839 0.0122 107 62.1 16.4 0.31/2011 12:45:23 PM	Diesel Range Organics	(DRO) 45.97	mg/Kg	10	50	0	91.9	66.7	119	3.66	18.9	
Gasoline Range Organics (GRO) ND mg/Kg 5.0 LCS Batch ID: 28266 Analysis Date: 8/31/2011 11:47:36 AM Gasoline Range Organics (GRO) 25.62 mg/Kg 5.0 25 0 102 86.4 132 Method: EPA Method 8021B: Volatiles Sample ID: 1108844-01AMSD MSD Batch ID: 28266 Analysis Date: 8/31/2011 11:52:15 PA Benzene 0.9428 mg/Kg 0.047 0.939 0.0148 98.8 67.2 113 2.33 14.3 Toluene 1.017 mg/Kg 0.047 0.939 0 114 67.9 127 0.654 14.4 15.9 Ethylbenzene 1.067 mg/Kg 0.094 2.817 0.0719 113 60.6 134 0.0631 12.6 Sample ID: MB-28266 MIZ/K Batch ID: 28256 Analysis Date: 8/31/2011 12:45:23 PM Benzene ND mg/Kg 0.050 Ethylbenzens ND mg/Kg 0.050	Method: EPA Metho	d 8015B: Gasoline Ra	nge			,						
Sample ID: LCS Batch ID: 28256 Analysis Date: 8/31/2011 11:47:36 AA Gasoline Range Organics (GRO) 25.62 mg/Kg 5.0 25 0 102 86.4 132 Method: EPA Method 8021B: Volatiles Sample ID: 1108844-01AMSD MSD Batch ID: 28256 Analysis Date: 8/31/2011 11:52:15 PA Benzene 0.9428 mg/Kg 0.047 0.939 0.0148 98.8 67.2 113 2.33 14.3 Toluene 1.017 mg/Kg 0.047 0.939 0.114 67.9 127 0.664 14.4 Xylenes, Total 3.265 mg/Kg 0.050 Batch ID: 28256 Analysis Date: 8/31/2011 12:45:23 PM Benzene ND mg/Kg 0.050 Batch ID: 28256 Analysis Date: 8/31/2011 12:45:23 PM Benzene ND mg/Kg 0.050 Batch ID: 28256 Analysis Date: 8/31/2011 12:45:23 PM Benzene ND mg/Kg 0.050	Sample ID: MB-28256		MBLK				Batch ID:	28256	Analys	is Date:	8/31/2011 1	2:45:23 PM
Gasoline Range Organics (GRO) 25.0 mg/Kg 5.0 25 0 102 86.4 132 Method: EPA Method 8021B: Volatiles MSD Batch ID: 28266 Analysis Date: 8/31/2011 11:52:15 PA Benzene 0.9428 mg/Kg 0.047 0.939 0.0148 96.8 67.2 113 2.33 14.3 Toluene 1.017 mg/Kg 0.047 0.939 0.0122 107 62.1 116 2.14 15.9 Ethylbenzene 1.067 mg/Kg 0.047 0.939 0 114 67.9 127 0.654 14.4 Xylenes, Total 3.265 mg/Kg 0.050 Batch ID: 28266 Analysis Date: 8/31/2011 12:45:23 PM Benzene ND mg/Kg 0.050 Ethylbenzens Xylenes, Total ND mg/Kg 0.050 Sample ID: LCS-28256 LCS Batch ID: 28256 Analysis Date: 8/31/2011 12:16:30 PM Benzene 0.9598 mg/Kg<	Gasoline Range Organi	cs (GRO) ND	mg/Kg	5.0								
Method: EPA Method 6021B: Volatiles Sample ID: 1108B44-01AMSD MSD Batch ID: 28256 Analysis Date: 8/31/2011 11:52:15 PM Benzene 0.9428 mg/Kg 0.047 0.939 0.0148 98.8 67.2 113 2.33 14.3 Toluene 1.017 mg/Kg 0.047 0.939 0.0122 107 62.1 116 2.14 15.9 Ethylbenzene 1.067 mg/Kg 0.047 0.939 0 114 67.9 127 0.654 14.4 Xylenes, Total 3.265 mg/Kg 0.094 2.817 0.0719 113 60.6 134 0.0631 12.6 Sample ID: MB-28256 M//// M///// 0.050 Ethylbenzene ND mg/Kg 0.050 Chylenzene ND mg/Kg 0.050 Ethylbenzene ND mg/Kg 0.050 Ethylbenzene Analysis Date: 8/31/2011 12:45:23 PM Benzene ND mg/Kg 0.050	Sample ID: LCS-2825	8	LCS				Batch ID:	28256	Analys	is Date:	8/31/2011 1	1:47:36 AM
Sample ID: 1108B44-01AMSD MSD Batch ID: 28266 Analysis Date: 8/31/2011 11:52:15 PM Benzene 0.9428 mg/Kg 0.047 0.939 0.0148 98.8 67.2 113 2.33 14.3 Toluene 1.017 mg/Kg 0.047 0.939 0.0122 107 62.1 116 2.14 15.9 Ethylbenzene 1.067 mg/Kg 0.047 0.939 0 114 67.9 127 0.654 14.4 Xylenes, Total 3.265 mg/Kg 0.094 2.817 0.0719 113 60.6 134 0.0631 12.6 Sample ID: MB-28266 MBLK Batch ID: 28256 Analysis Date: 8/31/2011 12:45:23 PM Benzene ND mg/Kg 0.050 Ethylbenzene ND mg/Kg 0.050 Xylenes, Total ND mg/Kg 0.050 1 0.963.3 74.3 115 Ethylbenzene 0.9698 mg/Kg 0.050	Gasoline Range Organi	s (GRO) 25.62	mg/Kg	5.0	25	0	102	86.4	132			<u>.</u>
Sample ID: 1108B44-01AMSD MSD Batch ID: 28266 Analysis Date: 8/31/2011 11:52:15 PM Benzene 0.9428 mg/Kg 0.047 0.939 0.0148 98.8 67.2 113 2.33 14.3 Toluene 1.017 mg/Kg 0.047 0.939 0.0122 107 62.1 116 2.14 15.9 Ethylbenzene 1.067 mg/Kg 0.047 0.939 0 114 67.9 127 0.654 14.4 Xylenes, Total 3.265 mg/Kg 0.094 2.817 0.0719 113 60.6 134 0.0631 12.6 Sample ID: MB-28266 MBLK Batch ID: 28256 Analysis Date: 8/31/2011 12:45:23 PM Benzene ND mg/Kg 0.050 Ethylbenzene ND mg/Kg 0.050 Xylenes, Total ND mg/Kg 0.050 1 0.963.3 74.3 115 Ethylbenzene 0.9698 mg/Kg 0.050	Method: EPA Metho	d 8021B: Volatiles										
Toluene 1.017 mg/Kg 0.047 0.939 0.0122 107 62.1 116 2.14 15.9 Ethylbenzene 1.067 mg/Kg 0.047 0.939 0 114 67.9 127 0.654 14.4 Xylenes, Total 3.265 mg/Kg 0.094 2.817 0.0719 113 60.6 134 0.0631 12.6 Sample ID: MB-28256 MBL/K Batch ID: 28256 Analysis Date: 8/31/2011 12:45:23 PM Benzene ND mg/Kg 0.050 Ethylbenzene ND mg/Kg 0.050 Toluene ND mg/Kg 0.050 Ethylbenzene Analysis Date: 8/31/2011 12:45:23 PM Benzene ND mg/Kg 0.050 Ethylbenzene ND mg/Kg 0.050 Sample ID: LCS-28256 LCS Batch ID: 28256 Analysis Date: 8/31/2011 12:16:30 PM Benzene 0.9598 mg/Kg 0.050 1 0.983.7 74.3 115 Ethylbenzene 0.9796 mg/Kg			MSD				Batch ID:	28256	Analys	is Date:	8/31/2011 1	1:52:15 PM
Toluene 1.017 mg/Kg 0.047 0.939 0.0122 107 62.1 116 2.14 15.9 Ethylbenzene 1.067 mg/Kg 0.047 0.939 0 114 67.9 127 0.654 14.4 Xylenes, Total 3.265 mg/Kg 0.094 2.817 0.0719 113 60.6 134 0.0631 12.6 Sample ID: MB-28256 MBL/K Batch ID: 28256 Analysis Date: 8/31/2011 12:45:23 PM Benzene ND mg/Kg 0.050 Ethylbenzene ND mg/Kg 0.050 Ethylbenzene ND mg/Kg 0.050 Xylenes, Total ND mg/Kg 0.050 Ethylbenzene ND mg/Kg 0.050 Ethylbenzene Analysis Date: 8/31/2011 12:16:30 PM Benzene ND mg/Kg 0.050 1 0.0156 94.4 83.3 107 Toluene 0.9598 mg/Kg 0.050 1 0.988.3 74.3 115 Ethylbenzene 0.9796 mg/Kg 0.050 <td>Benzene</td> <td>0.9428</td> <td>mg/Kg</td> <td>0.047</td> <td>0.939</td> <td>0.0148</td> <td>98.8</td> <td>67.2</td> <td>113</td> <td>2.33</td> <td>14.3</td> <td></td>	Benzene	0.9428	mg/Kg	0.047	0.939	0.0148	98.8	67.2	113	2.33	14.3	
Xylenes, Total 3.265 mg/Kg 0.094 2.817 0.0719 113 60.6 134 0.0631 12.6 Sample ID: MB-28256 MBL/K Batch ID: 28256 Analysis Date: 8/31/2011 12:45:23 PM Benzene ND mg/Kg 0.050 Ethylbenzene ND mg/Kg 0.050 Zylenes, Total ND mg/Kg 0.050 Ethylbenzene ND mg/Kg 0.10 Sample ID: LCS-28256 LCS Batch ID: 28256 Analysis Date: 8/31/2011 12:16:30 PM Benzene 0.9598 mg/Kg 0.050 1 0.0156 94.4 83.3 107 Toluene 0.9628 mg/Kg 0.050 1 0.98.3 74.3 115 Ethylbenzene 0.9796 mg/Kg 0.050 1 0 98.0 80.9 122 Xylenes, Total 2.975 mg/Kg 0.10 3 99.2 85.2 123 Sample ID: 1108B44-01AMIS MS Batch ID: 28256 Analysis Date: 8/31/2011	Toluene	1.017		0.047	0.939	0.0122	107	62.1	116	2.14	15.9	
Sample ID: MB-28256 MBLK Batch ID: 28256 Analysis Date: 8/31/2011 12:45:23 PM Benzene ND mg/Kg 0.050	Ethylbenzene	1.067		0.047	0.939	0	114	67.9	127	0.654	14.4	
Benzene ND mg/Kg 0.050 Toluene ND mg/Kg 0.050 Ethylbenzene ND mg/Kg 0.050 Xylenes, Total ND mg/Kg 0.10 Sample ID: LCS Batch ID: 28256 Analysis Date: 8/31/2011 12:16:30 PM Benzene 0.9598 mg/Kg 0.050 1 0.98.3 74.3 115 Toluene 0.9828 mg/Kg 0.050 1 0 98.3 74.3 115 Kylenes, Total 2.975 mg/Kg 0.050 1 0 98.0 80.9 122 Xylenes, Total 2.975 mg/Kg 0.10 3 0 99.2 85.2 123 Sample ID: 1108B44-01AMS MS Eatch ID: 28256 Analysis Date: 8/31/2011 11:23:22 PM Benzene 0.9650 mg/Kg 0.048 0.963 0.0148 98.7 67.2 113 Toluene 1.039 mg/Kg 0.048	Xylenes, Total	3.265	mg/Kg	0.094	2.817	0.0719	113	60.6	134	0.0631	12.6	
Toluene ND mg/Kg 0.050 Ethylbenzene ND mg/Kg 0.050 Xylenes, Total ND mg/Kg 0.10 Sample ID: LCS-28256 LCS Batch ID: 28256 Analysis Date: 8/31/2011 12:16:30 PM Benzene 0.9598 mg/Kg 0.050 1 0.0156 94.4 83.3 107 Toluene 0.9828 mg/Kg 0.050 1 0.98.3 74.3 115 Ethylbenzene 0.9796 mg/Kg 0.050 1 0 98.3 74.3 115 Sample ID: 108E44-01AMS MS Batch ID: 28256 Analysis Date: 8/31/2011 11:23:22 PM Benzene 0.9650 mg/Kg 0.10 3 0 99.2 85.2 123 Sample ID: 1108B44-01AMS MS Batch ID: 28256 Analysis Date: 8/31/2011 11:23:22 PM Benzene 0.9650 mg/Kg 0.048 0.963 0.0148 98.7 67.2 113 Toluene 1.039 mg/Kg 0.048 0.9	Sample ID: MB-28256		MBLK				Batch ID:	28256	Analys	is Date:	8/31/2011 12	2:45:23 PM
Toluene ND mg/Kg 0.050 Ethylbenzene ND mg/Kg 0.050 Xylenes, Total ND mg/Kg 0.10 Sample ID: LCS-28256 LCS Batch ID: 28256 Analysis Date: 8/31/2011 12:16:30 PM Benzene 0.9598 mg/Kg 0.050 1 0.0156 94.4 83.3 107 Toluene 0.9828 mg/Kg 0.050 1 0.98.3 74.3 115 Ethylbenzene 0.9796 mg/Kg 0.050 1 0 98.3 74.3 115 Sample ID: 108E44-01AMS MS Batch ID: 28256 Analysis Date: 8/31/2011 11:23:22 PM Benzene 0.9650 mg/Kg 0.10 3 0 99.2 85.2 123 Sample ID: 1108B44-01AMS MS Batch ID: 28256 Analysis Date: 8/31/2011 11:23:22 PM Benzene 0.9650 mg/Kg 0.048 0.963 0.0148 98.7 67.2 113 Toluene 1.039 mg/Kg 0.048 0.9	Benzene	ND	mg/Kg	0.050								
Xylenes, Total ND mg/Kg 0.10 Sample ID: LCS-28256 LCS Batch ID: 28256 Analysis Date: 8/31/2011 12:16:30 PM Benzene 0.9598 mg/Kg 0.050 1 0.0156 94.4 83.3 107 Toluene 0.9828 mg/Kg 0.050 1 0.98.3 74.3 115 Ethylbenzene 0.9796 mg/Kg 0.050 1 0 98.0 80.9 122 Xylenes, Total 2.975 mg/Kg 0.10 3 0 99.2 85.2 123 Sample ID: 1108B44-01AMS MS Batch ID: 28256 Analysis Date: 8/31/2011 11:23:22 PM Benzene 0.9650 mg/Kg 0.048 0.963 0.0148 98.7 67.2 113 Toluene 1.039 mg/Kg 0.048 0.963 0.0122 107 62.1 116 Ethylbenzene 1.060 mg/Kg 0.048 0.963 0 110	Toluene	ND		0.050								
Sample ID: LCS Batch ID: 28256 Analysis Date: 8/31/2011 12:16:30 PM Benzene 0.9598 mg/Kg 0.050 1 0.0156 94.4 83.3 107 Toluene 0.9828 mg/Kg 0.050 1 0 98.3 74.3 115 Ethylbenzene 0.9796 mg/Kg 0.050 1 0 98.0 80.9 122 Xylenes, Total 2.975 mg/Kg 0.10 3 0 99.2 85.2 123 Sample ID: 1108B44-01AMS MS Batch ID: 28256 Analysis Date: 8/31/2011 11:23:22 PM Benzene 0.9650 mg/Kg 0.048 0.963 0.0148 98.7 67.2 113 Toluene 1.039 mg/Kg 0.048 0.963 0.0122 107 62.1 116 Ethylbenzene 1.060 mg/Kg 0.048 0.963 0 110 67.9 127	Ethylbenzene	ND	mg/Kg	0.050								
Benzene 0.9598 mg/Kg 0.050 1 0.0156 94.4 83.3 107 Toluene 0.9828 mg/Kg 0.050 1 0 98.3 74.3 115 Ethylbenzene 0.9796 mg/Kg 0.050 1 0 98.0 80.9 122 Xylenes, Total 2.975 mg/Kg 0.10 3 0 99.2 85.2 123 Sample ID: 1108B44-01AMS MS Batch ID: 28256 Analysis Date: 8/31/2011 11:23:22 PM Benzene 0.9650 mg/Kg 0.048 0.963 0.0148 98.7 67.2 113 Toluene 1.039 mg/Kg 0.048 0.963 0.0122 107 62.1 116 Ethylbenzene 1.060 mg/Kg 0.048 0.963 0 110 67.9 127	Xylenes, Total	ND	mg/Kg	0.10								
Toluene 0.9828 mg/Kg 0.050 1 0 98.3 74.3 115 Ethylbenzene 0.9796 mg/Kg 0.050 1 0 98.0 80.9 122 Xylenes, Total 2.975 mg/Kg 0.10 3 0 99.2 85.2 123 Sample ID: 1108B44-01AMS MS Batch ID: 28256 Analysis Date: 8/31/2011 11:23:22 PM Benzene 0.9650 mg/Kg 0.048 0.963 0.0148 98.7 67.2 113 Toluene 1.039 mg/Kg 0.048 0.963 0.0122 107 62.1 116 Ethylbenzene 1.060 mg/Kg 0.048 0.963 0 110 67.9 127	Sample ID: LCS-28256	3	LCS				Batch ID:	28256	Analys	is Date:	8/31/2011 1:	2:16:30 PM
Ethylbenzene 0.9796 mg/Kg 0.050 1 0 98.0 80.9 122 Xylenes, Total 2.975 mg/Kg 0.10 3 0 99.2 85.2 123 Sample ID: 1108B44-01AMS MS Batch ID: 28256 Analysis Date: 8/31/2011 11:23:22 PM Benzene 0.9650 mg/Kg 0.048 0.963 0.0148 98.7 67.2 113 Toluene 1.039 mg/Kg 0.048 0.963 0.0122 107 62.1 116 Ethylbenzene 1.060 mg/Kg 0.048 0.963 0 110 67.9 127	Benzene	0.9598	mg/Kg	0.050	1	0.0156	94.4	83.3	107			
Xylenes, Total 2.975 mg/Kg 0.10 3 0 99.2 85.2 123 Sample ID: 1108B44-01AMS MS Batch ID: 28256 Analysis Date: 8/31/2011 11:23:22 PM Benzene 0.9650 mg/Kg 0.048 0.963 0.0148 98.7 67.2 113 Toluene 1.039 mg/Kg 0.048 0.963 0.0122 107 62.1 116 Ethylbenzene 1.060 mg/Kg 0.048 0.963 0 110 67.9 127	Toluene	0.9828	mg/Kg	0.050	1	0	98.3	74.3	115			
Sample ID: 1108B44-01AMS MS Batch ID: 28256 Analysis Date: 8/31/2011 11:23:22 PM Benzene 0.9650 mg/Kg 0.048 0.963 0.0148 98.7 67.2 113 Toluene 1.039 mg/Kg 0.048 0.963 0.0122 107 62.1 116 Ethylbenzene 1.060 mg/Kg 0.048 0.963 0 110 67.9 127	Ethylbenzene	0.9796	mg/Kg	0.050	1	0	98.0	80.9	122			
Benzene0.9650mg/Kg0.0480.9630.014898.767.2113Toluene1.039mg/Kg0.0480.9630.012210762.1116Ethylbenzene1.060mg/Kg0.0480.963011067.9127	Xylenes, Total	2.975	mg/Kg	0.10	3	0	99.2	85.2	123			
Toluene 1.039 mg/Kg 0.048 0.963 0.0122 107 62.1 116 Ethylbenzene 1.060 mg/Kg 0.048 0.963 0 110 67.9 127	Sample ID: 1108B44-0	1AMS	MS				Batch ID:	28256	Analysi	is Date:	8/31/2011 1	1:23:22 PM
Ethylbenzene 1.060 mg/Kg 0.048 0.963 0 110 67.9 127	Benzene	0.9650	mg/Kg	0.048	0.963	0.0148	98.7	67.2	113			
	Toluene	1.039	mg/Kg	0.048	0.963	0.0122	107	62.1	116			
Kylenes, Total 3.263 mg/Kg 0.096 2.887 0.0719 111 60.6 134	Ethylbenzene	1.060	mg/Kg	0.048	0.963	0	1 10	67.9	127			
	Xylenes, Total	3.263	mg/Kg	0.096	2.887	0.0719	111	60.6	134			

Qualifiers:


- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit

- H Holding times for preparation or analysis exceeded
- NC Non-Chlorinated
- R RPD outside accepted recovery limits

	Sample	e Rec	eipt Cł	necklist		al1<111
Client Name SOUTHWEST GEOSCIENCE				Date Receive	d:	-8-29/2011-
Work Order Number 1108B44			•	Received by	: AMG	lance
A	2	R	65	Sample ID I	abels checked by:	
Checklist completed by Signature		$\frac{1}{2}$	Date	1		ไกไข้ยิ ช
Matrix	Carrier name:	Grey	hound			
Shipping container/cooler in good condition?		Yes		No 🗌	Not Present	
Custody seals intact on shipping container/coc	oler?	Yes		No 🗔	Not Present	Not Shipped
Custody seals intact on sample bottles?		Yes		No 🗆	N/A	
Chain of custody present?		Yes		No,		
Chain of custody signed when relinquished and	d received?	Yes		No 🗌		
Chain of custody agrees with sample labels?		Yes		No 🗌		
Samples in proper container/bottle?		Yes		No \Box		
Sample containers intact?		Yes		No 🗍 🕐		
Sufficient sample volume for indicated test?		Yes		Νο		
All samples received within holding time?		Yes		No 🗔		Number of preserved
Water - VOA vials have zero headspace?	No VOA vials subr	nitted		Yes \Box	No 🗖	bottles checked for pH:
Water - Preservation labels on bottle and cap r	natch?	Yes		No 🗌	N/A 🗹	
Water - pH acceptable upon receipt?		Yes		No 🗔	N/A 🗹	<2 >12 unless noted below.
Container/Temp Blank temperature?		3.	7°	<6° C Acceptabl		DBIOW.
COMMENTS:				If given sufficient	time to cool.	
Client contacted	Date contacted:			Pers	on contacted	
Contacted by:	Regarding:					
Comments:						
*** ()					······	
				*		
Corrective Action				· · · · · · · · · · · · · · · · · · ·		
·····						······································

SOUTHWEST GEOSCIENCE • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914

SOUTHWEST GEOSCIENCE • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914

COVER LETTER

Friday, October 07, 2011

Kyle Summers Southwest Geoscience 606 S. Rio Grande Unit A Aztec, NM 87410

TEL: (903) 821-5603 FAX

RE: Lindrith Compressor Station

Dear Kyle Summers:

Order No.: 1109901

Hall Environmental Analysis Laboratory, Inc. received 17 sample(s) on 9/23/2011 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	Southwest Geoscience			Clier	t Sample ID:	MW-40	
Lab Order:	1109901			Co	llection Date:	9/20/2011	1:00:00 PM
Project:	Lindrith Compressor Sta	ation		D	ate Received:	9/23/2011	
Lab ID:	1109901-01		•		Matrix:	AQUEOUS	}
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	015B: DIESEL RANGE						Analyst: JB
Diesel Range O	rganics (DRO)	ND	1.0		mg/L	1	9/28/2011 9:45:28 PM
Surr: DNOP		122	81.1-147		%REC	1	9/28/2011 9:45:28 PM
	015B: GASOLINE RANGI	E					Analyst: RAA
Gasoline Range	Organics (GRO)	0.21	0.050		mg/L	1	10/1/2011 2:47:14 PM
Surr: BFB		99.3	65.4-141		%REC	1	10/1/2011 2:47:14 PM
	021B: VOLATILES						Analyst: RAA
Benzene		ND	1.0		µg/L	1	10/1/2011 2:47:14 PM
Toluene		ND	1.0		µg/L	1	10/1/2011 2:47:14 PM
Ethylbenzene		ND	1.0		µg/L	1	10/1/2011 2:47:14 PM
Xylenes, Total		ND	2.0		µg/L	1	10/1/2011 2:47:14 PM
Surr: 4-Bromo	fluorobenzene	92.0	76.5-115		%REC	1	10/1/2011 2:47:14 PM

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- **B** Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 1 of 17

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Southwest GeoscienLab Order:1109901Project:Lindrith CompressonLab ID:1109901-02					te Received:	9/20/2011 1:35:00 PM		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD	BO15B: DIESEL RANGE				••••••••••••••••••••••••••••••••••••••		Analyst: JB	
Diesel Range O	rganics (DRO)	ND	1.0		mg/L	1	9/28/2011 10:20:07 PM	
Surr: DNOP		131	81.1-147		%REC	1	9/28/2011 10:20:07 PM	
	015B: GASOLINE RANG	E					Analyst: RAA	
Gasoline Range	Organics (GRO)	0.23	0.050		mg/L	1	10/1/2011 3:17:18 PM	
Surr: BFB		93.4	65.4-141		%REC	1	10/1/2011 3:17:18 PM	
	021B: VOLATILES						Analyst: RAA	
Benzene		ND	1.0		µg/L	1	10/1/2011 3:17:18 PM	
Toluene		1.2	1.0		µg/L	1	10/1/2011 3:17:18 PM	
Ethylbenzene		1.1	1.0		µg/L	1	10/1/2011 3:17:18 PM	
Xylenes, Total		7.4	2.0		µg/L	1	10/1/2011 3:17:18 PM	
Surr: 4-Bromo	fluorobenzene	90.5	76.5-115		%REC	1	10/1/2011 3:17:18 PM	

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 2 of 17

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Lab Order: Project: Lab ID:	Southwest Geoscience 1109901 Lindrith Compressor St 1109901-03	ation		Col	at Sample ID: llection Date: ate Received: Matrix:	9/20/2011 2	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8	015B: DIESEL RANGE		<u> </u>				Analyst: JB
Diesel Range Or	rganics (DRO)	ND	1.0		mg/L	1	9/28/2011 10:54:48 PM
Surr: DNOP		123	81.1-147		%REC	1	9/28/2011 10:54:48 PM
	015B: GASOLINE RANG	E					Analyst: RAA
Gasoline Range	Organics (GRO)	ND	0.050		mg/L	1	10/1/2011 3:47:11 PM
Surr: BFB		91.7	65.4-141		%REC	1	10/1/2011 3:47:11 PM
PA METHOD 8	021B: VOLATILES						Analyst: RAA
Benzene		ND	1.0		µg/L	1	10/1/2011 3:47:11 PM
Toluene		ND	1.0		µg/L	1	10/1/2011 3:47:11 PM
Ethylbenzene		ND	1.0		µg/L	1	10/1/2011 3:47:11 PM
Xylenes, Total		ND	2.0		µg/L	1	10/1/2011 3:47:11 PM
Surr: 4-Bromo	fluorobenzene	89.9	76.5-115		%REC	1	10/1/2011 3:47:11 PM

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 3 of 17

Date: 07-Oct-11 Analytical Report

CLIENT: Lab Order: Project: Lab ID:	Southwest Geoscience 1109901 Lindrith Compressor Sta 1109901-04	ation		Col	ate Received:	9/20/2011 2:55:00 PM		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD 8	3015B: DIESEL RANGE						Analyst: JB	
Diesel Range Ol	rganics (DRO)	ND	1.0		mg/L	1	9/28/2011 11:29:28 PM	
Surr: DNOP	- · · ·	133	81.1-147		%REC	1	9/28/2011 11:29:28 PM	
EPA METHOD 8	015B: GASOLINE RANG	Ē					Analyst: RAA	
Gasoline Range	Organics (GRO)	ND	0.050		mg/L	1	10/1/2011 4:17:22 PM	
Surr: BFB		90.1	65.4-141		%REC	1	10/1/2011 4:17:22 PM	
EPA METHOD 8	021B: VOLATILES						Analyst: RAA	
Benzene		ND	1.0		μg/L	1	10/1/2011 4:17:22 PM	
Toluene		ND	1.0		µg/L	1	10/1/2011 4:17:22 PM	
Ethylbenzene		ND	1.0		µg/L	1	10/1/2011 4:17:22 PM	
Xylenes, Total		ND	2.0		µg/L	1	10/1/2011 4:17:22 PM	
Surr: 4-Bromo	fluorobenzene	85.8	76.5-115		%REC	1	10/1/2011 4:17:22 PM	

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Date: 07-Oct-11 Analytical Report

				· · · · · · · · · · · · · · · · · · ·		
CLIENT:	Southwest Geoscience			Client Sample	I D: MW-10	
Lab Order:	1109901			Collection Da	te: 9/20/2011	3:30:00 PM
Project:	Lindrith Compressor S	tation		Date Receiv	ed: 9/23/2011	
Lab ID:	1109901-05			Matr	ix: AQUEOUS	3
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE			· · · · · · · · · · · · · · · · · · ·		Analyst: JB
Diesel Range O	rganics (DRO)	ND	1.0	mg/L	1	9/29/2011 12:04:05 AM
Surr: DNOP		137	81.1-147	%REC	1	9/29/2011 12:04:05 AM
EPA METHOD	8015B: GASOLINE RANG	E				Analyst: RAA
Gasoline Range	Organics (GRO)	ND	0.050	mg/L	1	10/1/2011 4:47:32 PM
Surr: BFB		86.8	65.4-141	%REC	1	10/1/2011 4:47:32 PM
	8021B: VOLATILES					Analyst: RAA
Benzene		ND	1.0	µg/L	1	10/1/2011 4:47:32 PM
Toluene		ND	1.0	µg/L	1	10/1/2011 4:47:32 PM
Ethylbenzene		ND	1.0	µg/L	1	10/1/2011 4:47:32 PM
Xylenes, Total		ND	2.0	µg/L	1	10/1/2011 4:47:32 PM
Surr: 4-Brome	ofluorobenzene	82.0	76.5-115	%REC	1	10/1/2011 4:47:32 PM

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 5 of 17

Date: 07-Oct-11 Analytical Report

CLIENT:	Southwest Geoscience			Clien	t Sample ID:	MW-42		
Lab Order:	1109901			Col	lection Date:	9/20/2011	4:00:00 PM	
Project: Lindrith Compresso		ation		Da	ate Received:	9/23/2011		
Lab ID:	1109901-06				Matrix:	AQUEOU	JS	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD	8015B: DIESEL RANGE		<u> </u>		÷		Analyst: JB	
Diesel Range C	Prganics (DRO)	ND	1.0		mg/L	1	9/29/2011 12:38:28 AN	
Surr: DNOP		132	81.1-147		%REC	1	9/29/2011 12:38:28 AN	
EPA METHOD	8015B: GASOLINE RANG	Ē					Analyst: RAA	
Gasoline Range	e Organics (GRO)	0.62	0.050		mg/L	1	10/2/2011 2:01:25 PM	
Surr: BFB		113	65.4-141		%REC	1	10/2/2011 2:01:25 PM	
	8021B: VOLATILES						Analyst: RAA	
Benzene		70	1.0		µg/L	1	10/2/2011 2:01:25 PM	
Toluene		42	1.0		µg/L	1	10/2/2011 2:01:25 PM	
Ethylbenzene		4.1	1.0		µg/L	1	10/2/2011 2:01:25 PM	
Xylenes, Total		33	2.0		µg/L	1	10/2/2011 2:01:25 PM	
Surr: 4-Brome	ofluorobenzene	104	76.5-115		%REC	1	10/2/2011 2:01:25 PM	

Qualifiers:

.

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 07-Oct-11 Analytical Report

CLIENT:	Southwest Geoscience			Clien	t Sample ID:	MW-34	
Lab Order:	1109901			Col	lection Date:	9/20/2011 4	:35:00 PM
Project:	Project: Lindrith Compressor Static			Da	te Received:	9/23/2011	
Lab ID:	1109901-07				Matrix:	AQUEOUS	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 80	15B: DIESEL RANGE					· ·	Analyst: JB
Diesel Range Orga	inics (DRO)	ND	1.0		mg/L	1	9/29/2011 1:12:37 AM
Surr: DNOP		116	81.1-147		%REC	1	9/29/2011 1:12:37 AM
EPA METHOD 80'	15B: GASOLINE RANGI	E	·		:		Analyst: RAA
Gasoline Range O	rganics (GRO)	ND	0.050		mg/L	1	10/1/2011 5:47:24 PM
Surr: BFB		88.5	65.4-141		%REC	1	10/1/2011 5:47:24 PM
EPA METHOD 802	21B: VOLATILES						Analyst: RAA
Benzene		ND	1.0		µg/L	1	10/1/2011 5:47:24 PM
Toluene		ND	1.0		µg/L	1	10/1/2011 5:47:24 PM
Ethylbenzene		ND	1.0		µg/L	1	10/1/2011 5:47:24 PM
Xylenes, Total		ND	2.0		µg/L	1	10/1/2011 5:47:24 PM
Surr: 4-Bromoflu	orobenzene	86.8	76.5-115		%REC	1	10/1/2011 5:47:24 PM

Qualifiers:

f

H

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
 - 7

Page 7 of 17

Date: 07-Oct-11 Analytical Report

CLIENT: Lab Order: Project: Lab ID:	Southwest Geoscience 1109901 Lindrith Compressor St 1109901-08			Date Received:		9/20/2011 5:05:00 PM		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD 8	015B: DIESEL RANGE					*****	Analyst: JB	
Diesel Range Or	ganics (DRO)	ND	1.0		mg/L	1	9/29/2011 1:47:02 AM	
Surr: DNOP		1 24	81.1 -1 47		%REC	1 ·	9/29/2011 1:47:02 AM	
EPA METHOD 8	015B: GASOLINE RANG	E				·	Analyst: RAA	
Gasoline Range	Organics (GRO)	ND	0.050		mg/L	1	10/1/2011 6:17:30 PM	
Surr: BFB		92.5	65.4-141		%REC	1	10/1/2011 6:17:30 PM	
EPA METHOD 8	021B: VOLATILES						Analyst: RAA	
Benzene		ND	1.0		µg/L	1	10/1/2011 6:17:30 PM	
Toluene		ND	1.0		µg/L	1	10/1/2011 6:17:30 PM	
Ethylbenzene		ND	1.0		µg/L	1	10/1/2011 6:17:30 PM	
Xylenes, Total		ND	2.0		µg/L	1	10/1/2011 6:17:30 PM	
Surr: 4-Bromof	luorobenzene	90.8	76.5-115		%REC	1	10/1/2011 6:17:30 PM	

Qualifiers:

í.

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 07-Oct-11 Analytical Report

CLIENT:Southwest GeoscieLab Order:1109901Project:Lindrith CompressLab ID:1109901-09					ate Received:	9/21/2011 8:30:00 AM		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD	8015B: DIESEL RANGE						Analyst: JB	
Diesel Range O	rganics (DRO)	ND	1.0		mg/L	1	9/29/2011 2:55:20 AM	
Surr: DNOP		129	81.1-147		%REC	1	9/29/2011 2:55:20 AM	
	8015B: GASOLINE RANG	E					Analyst: RAA	
Gasoline Range	Organics (GRO)	0.81	0.050		mg/L	1	10/1/2011 8:47:30 PM	
Surr: BFB	-	144	65.4-141	S	%REC	1	10/1/2011 6:47:30 PM	
	8021B: VOLATILES						Analyst: RAA	
Benzene		63	1.0		µg/L	1	10/1/2011 6:47:30 PM	
Toluene		ND	1.0		µg/L	1	10/1/2011 6:47:30 PM	
Ethylbenzene		17	1.0		µg/L	1	10/1/2011 6:47:30 PM	
Xylenes, Total		26	2.0		µg/L	1	10/1/2011 6:47:30 PM	
Surr: 4-Bromo	ofluorobenzene	106	76.5-115		%REC	1	10/1/2011 6:47:30 PM	

Qualifiers:

ļ

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 07-Oct-11 Analytical Report

CLIENT:	Southwest Geoscience			Clien	t Sample ID:	MW-35	
Lab Order:	1109901			Col	lection Date:	9/21/2011	9:05:00 AM
Project: Lindrith Compresso		Station			ate Received:	9/23/2011	
Lab ID:	1109901-10				Matrix:	AQUEOUS	5
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE	<u></u>					Analyst: JB
Diesel Range O	rganics (DRO)	ND	1.0		mg/L	1	9/29/2011 3:30:00 AM
Surr: DNOP		143	81.1-147		%REC	1	9/29/2011 3:30:00 AM
	8015B: GASOLINE RANGE						Analyst: RAA
Gasoline Range	Organics (GRO)	ND	0.050		mg/L	1	10/1/2011 7:17:29 PM
Surr: BFB		98.8	65.4-141	·	%REC	1	10/1/2011 7:17:29 PM
EPA METHOD	8021B: VOLATILES						Analyst: RAA
Benzene		ND	1.0		µg/L	1	10/1/2011 7:17:29 PM
Toluene		ND	1.0		µg/L	1	10/1/2011 7:17:29 PM
Ethylbenzene		ND	1.0		µg/L	1	10/1/2011 7:17:29 PM
Xylenes, Total		ND	2.0		µg/L	1	10/1/2011 7:17:29 PM
Surr: 4-Bromo	ofluorobenzene	95.5	76.5-115		%REC	1	10/1/2011 7:17:29 PM

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 07-Oct-11 Analytical Report

CLIENT:	Southwest Geoscience			Clier	nt Sample ID:	MW-41	
Lab Order:	1109901			Co	llection Date:	9/21/2011 9	:35:00 AM
Project: Lindrith Compressor		tion		D	ate Received:	9/23/2011	
Lab ID:	1109901-11				Matrix:	AQUEOUS	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE						Analyst: JB
Diesel Range C	Prganics (DRO)	2.4	1.0	:	mg/L	1	9/29/2011 4:04:25 AM
Surr: DNOP		138	81.1-147		%REC	1	9/29/2011 4:04:25 AM
EPA METHOD	80158: GASOLINE RANGE						Analyst: RAA
Gasoline Range	organics (GRO)	ND	0.50		mg/L	10	10/2/2011 12:17:27 AM
Surr: BFB		96.4	65.4-141		%REC	10	10/2/2011 12:17:27 AM
	8021B: VOLATILES						Analyst: RAA
Benzene		ND	10		µg/L	10	10/2/2011 12:17:27 AM
Toluene		ND	10		µg/L	10	10/2/2011 12:17:27 AM
Ethylbenzene		ND	10		µg/L	10	10/2/2011 12:17:27 AM
Xylenes, Total		30	20		µg/L	10	10/2/2011 12:17:27 AM
Surr: 4-Brome	ofluorobenzene	94.7	76.5-115		%REC	10	10/2/2011 12:17:27 AM

Qualifiers:

R

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

CLIENT: Lab Order: Project: Lab ID:	Southwest Geoscience 1109901 Lindrith Compressor St 1109901-12	ation		Col	te Received:	9/21/2011 10:30:00 AM		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD	8015B: DIESEL RANGE						Analyst: JB	
Diesel Range O	rganics (DRO)	ND	1.0		mg/L	1	9/29/2011 4:38:51 AM	
Surr: DNOP		120	81.1-147		%REC	1	9/29/2011 4:38:51 AM	
	8015B: GASOLINE RANG	E					Analyst: RAA	
Gasoline Range	Organics (GRO)	0.57	0.050		mg/L	1	10/2/2011 1:19:20 AM	
Surr: BFB		119	65.4-1 <u>4</u> 1		%REC	1	10/2/2011 1:19:20 AM	
	8021B: VOLATILES						Analyst: RAA	
Benzene		3.3	1.0		µg/L	1	10/2/2011 1:19:20 AM	
Toiuene		ND	1.0		µg/L	1	10/2/2011 1:19:20 AM	
Ethylbenzene		ND	1.0		µg/L	1	10/2/2011 1:19:20 AM	
Xylenes, Total		4.9	2.0	1	µg/L	1	10/2/2011 1:19:20 AM	
-	ofluorobenzene	95.6	76.5-115		%REC	1	10/2/2011 1:19:20 AM	

Qualifiers:

IJ

Į

- * Value exceeds Maximum Contaminant Level
- . E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 07-Oct-11 Analytical Report

CLIENT:	Southwest Geoscience			Client	Sample ID:	MW-36	
Lab Order:	1109901			Colle	ection Date:	9/21/2011	11:05:00 AM
Project: Lindrith Compress		tation		Dat	e Received:	9/23/2011	
Lab ID:	1109901-13				Matrix:	AQUEOUS	5
Analyses		Result	PQL	Qual 1	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE						Analyst: JB
Diesel Range O	rganics (DRO)	ND	1.0	r	ng/L	1	9/29/2011 5:13:18 AM
Surr: DNOP		124	81.1-147	9	%REC	1	9/29/2011 5:13:18 AM
EPA METHOD	8015B: GASOLINE RANG	E					Analyst: RAA
Gasoline Range	Organics (GRO)	0.15	0.050	n	ng/L	1	10/2/2011 1:49:23 AM
Surr: BFB		107	65.4-141	9	6REC	1	10/2/2011/1:49:23 AM
	B021B: VOLATILES						Analyst: RAA
Benzene		ND	1.0	μ	ıg/L	1	10/2/2011 1:49:23 AM
Toluene		ND	1.0	μ	ig/L	1	10/2/2011 1:49:23 AM
Ethylbenzene		ND	1.0	μ	ıg/L	1	10/2/2011 1:49:23 AM
Xylenes, Total		ND	2.0	μ	ig/L	1	10/2/2011 1:49:23 AM
Surr: 4-Bromo	ofluorobenzene	94.6	76.5-115	9	6REC	1	10/2/2011 1:49:23 AM

Qualifiers:

l

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 07-Oct-11 Analytical Report

CLIENT:	Southwest Geoscience			Client	Sample ID:	MW-6	
Lab Order:	1109901			Coll	ection Date:	9/21/201	l 11:45:00 AM
Project:	Lindrith Compressor Sta	tion		Da	te Received:	9/23/201	1
Lab ID:	1109901-14		•		Matrix:	AQUEOU	S
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE			<u></u>			Analyst: JB
Diesel Range O	organics (DRO)	1.4	1.0	1	mg/L	1	9/29/2011 5:47:30 AM
Surr: DNOP	•	118	81.1-147	1	%REC	1	9/29/2011 5:47:30 AM
EPA METHOD	8015B: GASOLINE RANGE						Analyst: RAA
Gasoline Range	e Organics (GRO)	32	0.50		mg/L	10	10/2/2011 2:49:28 AM
Surr: BFB		105	65.4-141	Ģ	%REC	10	10/2/2011 2:49:28 AM
	8021B: VOLATILES						Analyst: RAA
Benzene		4900	50	ł	ug/L	50	10/2/2011 2:19:27 AM
Toluene		67	10	ŀ	ug/L	10	10/2/2011 2:49:28 AM
Ethylbenzene		330	10	ł	ug/L	10	10/2/2011 2:49:28 AM
Xylenes, Total		1800	20	1	ug/L	10	10/2/2011 2:49:28 AM
Surr: 4-Bromo	ofluorobenzene	101	76.5-115	9	%REC	10	10/2/2011 2:49:28 AM

Qualifiers:

l

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 07-Oct-11 Analytical Report

CLIENT: Lab Order: Project: Lab ID:	Southwest Geoscience 1109901 Lindrith Compressor St 1109901-15	tation		Col	te Received:	9/21/2011 12:20:00 PM		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD 8	015B: DIESEL RANGE						Analyst: JB	
Diesel Range Or	ganics (DRO)	1.3	1.0		mg/L	1	9/29/2011 6:21:44 AM	
Surr: DNOP	•	125	81.1-147		%REC	1	9/29/2011 6:21:44 AM	
EPA METHOD 8	015B: GASOLINE RANG	E					Analyst: RAA	
Gasoline Range	Organics (GRO)	26	2.5		mg/L	50	10/2/2011 3:49:19 AM	
Surr: BFB		96.9	65.4-141		%REC	50	10/2/2011 3:49:19 AM	
	021B: VOLATILES						Analyst: RAA	
Benzene		2100	50		μg/L	50	10/2/2011 3:49:19 AM	
Toluene		440	50		µg/L	50	10/2/2011 3:49:19 AM	
Ethylbenzene		270	50		µg/L	50	10/2/2011 3:49:19 AM	
Xylenes, Total		1800	100		µg/L	50	10/2/2011 3:49:19 AM	
Surr: 4-Bromof	luorobenzene	97.7	76.5-115		%REC	50	10/2/2011 3:49:19 AM	

Qualifiers:

Į

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

-

CLIENT:	Southwest Geoscience	-		Clier	nt Sample ID:	MW-5		
Lab Order:	1109901			Co	llection Date:	9/21/2011 1:00:00 PM		
Project:	Lindrith Compressor St	ation		D	ate Received:	9/23/201	1	
Lab ID:	1109901-16				Matrix:	AQUEOU	US	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD	8015B: DIESEL RANGE						Analyst: JB	
Diesel Range O	rganics (DRO)	1.1	1.0		mg/L	1	9/29/2011 6:55:33 AM	
Surr: DNOP		131	81.1-147		%REC	1	9/29/2011 6:55:33 AM	
	8015B: GASOLINE RANG	E	·				Analyst: RAA	
Gasoline Range	Organics (GRO)	0.62	0.050		mg/L	1	10/2/2011 3:01:17 PM	
Surr: BFB	· ·	177	65.4-141	S	%REC	1	10/2/2011 3:01:17 PM	
	8021B: VOLATILES						Analyst: RAA	
Benzene		1.9	1.0		µg/L	1	10/2/2011 3:01:17 PM	
Toluene		ND	1.0		µg/L	1	10/2/2011 3:01:17 PM	
Ethylbenzene		3.8	1.0		µg/L	1	10/2/2011 3:01:17 PM	
Xylenes, Total		9.7	2.0		µg/L	1	10/2/2011 3:01:17 PM	
Surr: 4-Bromo	ofluorobenzene	11 2	76.5-115		%REC	1	10/2/2011 3:01:17 PM	

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

NC Non-Chlorinated

PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 16 of 17

CLIENT:	Southwest Geoscience			Clien	t Sample ID:	MW-4	
Lab Order:	1109901			Col	lection Date:	9/21/2011	1:45:00 PM
Project:	Lindrith Compressor St	ation		Da	ate Received:	9/23/2011	
Lab ID:	1109901-17				Matrix:	AQUEOU	S
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8	015B: DIESEL RANGE						Analyst: JB
Diesel Range Or	ganics (DRO)	1.1	1.0		mg/L	1	9/29/2011 7:29:58 AM
Surr: DNOP		137	81.1-147		%REC	1	9/29/2011 7:29:58 AM
EPA METHOD 8	015B: GASOLINE RANG	E					Analyst: RAA
Gasoline Range	Organics (GRO)	32	0.50		mg/L	10	10/2/2011 5:19:08 AM
Surr: BFB		94.9	65.4-141		%REC	10	10/2/2011 5:19:08 AM
EPA METHOD 8	021B: VOLATILES						Analyst: RAA
Benzene		4000	50		µg/L	50	10/2/2011 4:49:06 AM
Toluene		1700	50		µg/L	50	10/2/2011 4:49:06 AM
Ethylbenzene		280	10		µg/L	10	10/2/2011 5:19:08 AM
Xylenes, Total		1700	20		µg/L	10	10/2/2011 5:19:08 AM
Surr: 4-Bromot	luorobenzene	92.0	76.5-115		%REC	10	10/2/2011 5:19:08 AM

Qualifiers:

,

_

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

	outhwest C indrith Cor	leoscience npressor St	ation							Work	Order:	1109901
Analyte		Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimit .	%RPD	RPDLimi	t Qual
Method: EPA Metho Sample ID: MB-2857		Diesel Range	MBLK				Batch ID:	28573	Analysis	s Date:	9/28/2011	7:25:59 PM
Diesel Range Organics Sample ID: LCS-2857		ND	mg/L LCS	1.0			Batch ID:	28573	Analysia	a Date:	9/28/2011	8:35:51 PM
Diesel Range Organics	. ,	5.495	mg/L LCSD	1.0	5	. 0	110 Batch ID:	74 28573	157 Analysis	a Date:	9/28/2011	9:10:48 PM
Diesel Range Organics	(DRO)	6.136	mg/L	1.0	5	0	123	74	157	11.0	23	
Method: EPA Metho	od 8015B: G	asoline Ran	d B									
Sample ID: 1109901-			MSD				Batch ID:	R48113	Analysis	Date:	10/1/2011	8:17:12 PM
Gasoline Range Organi Sample ID: 5ML RB	ics (GRO)	0.5692	mg/L <i>MBLK</i>	0.050	0.5	0	114 Batch ID:	66.1 R48113	127 Analysis	5.08 Date:	15.5 10/1/2011 ⁻	11:15:37 AM
Gasoline Range Organi Sample ID: 5ML RB	ics (GRO)	ND	mg/L <i>MBLK</i>	0.050			Batch ID:	R48130	Analysis	Date:	10/2/2011	10:30:47 AM
Gasoline Range Organi Sample ID: 2.5UG GR	• •	ND	mg/L LCS	0.050			Batch ID:	R48113	Analysis	Date:	10/1/2011	1:47:17 PM
Gasoline Range Organi Sample ID: 2.5UG GR	cs (GRO)	0.5368	mg/L LCS	0.050	0.5	0	107 Batch ID:	92.1 R48130	117 Analysis	Date:	10/2/2011 1	i2:31:20 PM
Gasoline Range Organi Sample ID: 1109901-0	cs (GRO))3A MS	0.5604	mg/L MS	0.050	0.5	0	112 Batch ID:	92.1 R48113	117 Analysis	Date:	10/1/20 11	7:47:21 PM
Gasoline Range Organi		0.5410	mg/L	0.050	0.5	0	108	66.1	127			

Qualifiers:

Е Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

- Н Holding times for preparation or analysis exceeded
- NC Non-Chlorinated
- R RPD outside accepted recovery limits

Page 1

Southwest Geoscience

Tilient:

QA/QC SUMMARY REPORT

roject: Lir	ndrith Compressor St	ation						۰.	Work	Order:	1109901
Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLimit	Qual
	d 8021B: Volatiles										
3ample ID: 1109901-04	4A MSD	MSD				Batch ID:	R48113	Analys	is Date:	10/1/2011	9:17:28 PN
enzene	21.77	µg/L	1.0	20	0.698	105	76.6	119	2.96	18.4	
loiuene	21.62	µg/L	1.0	20	0	108	77.3	118	4.73	13.9	
Ethylbenzene	21.98	µg/L	1.0	20	0	110	76.6	114	0.635	13.5	
ylenes, Total	66.09	µg/L	2.0	60	0	110	82	113	1.46	12.9	
ample ID: 5ML RB		MBLK				Batch ID:	R48113	Analys	is Date:	10/1/2011 1	1:15:37 AM
Benzene	ND	µg/L	1.0								
Toluene	ND	μg/L	1.0								
thylbenzene	ND	µg/L	1.0								
Xylenes, Total	ND	µg/L	2.0								
Sample ID: 5ML RB		MBLK			•	Batch ID:	R48130	Analys	is Date:	10/2/2011 1	0:30:47 AM
Benzene	ND	μg/L	1.0								
Toluene	ND	µg/L	1.0								
Ethylbenzene	ND	µg/L	1.0								
Kylenes, Total	ND	µg/L	2.0								
Sample ID: 100NG BTE	EX LCS	LCS				Batch ID:	R48113	Analys	is Date:	10/1/2011	1:17:15 PM
Benzene	20.57	μg/L	1.0	20	0	103	80	120			
Toluene	21.64	µg/L	1.0	20	0	108	80	120			
Ethylbenzene	21.69	µg/L	1.0	20	0	108	80	120			
Xylenes, Total	65.75	µg/L	2.0	60	0	110	80	120			
Sample ID: 100NG BTE	EX LCS	LCS				Batch ID:	R48130	Analys	is Date:	10/2/2011	1:01:19 PM
Benzene	21.89	μg/L	1.0	20	0	109	80	120			
Toluene	22.11	hð\r	1.0	20	0	111	80	120			
Ethylbenzene	21.47	µg/L	1.0	20	0	107	80	120			
Xylenes, Total	65.25	μg/L	2.0	60	0	109	80	120			
Sample ID: 1109901-04		MS			-	Batch ID:	R48113		is Date:	10/1/2011	8:47:22 PM
Benzene	22.42	µg/L	1.0	20	0.698	109	76.6	119			
Toluene	22.66	µg/L	1.0	20	0	113	77.3	118			
Ethylbenzene	22.12	µg/L	1.0	20	0	111	76.6	114			
Kylenes, Total	67.07	µg/L	2.0	60	0	112	82	113			

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Page 2

	Sam	ple Receipt	Checklist		
Client Name SOUTHWEST GEOS	CIENCE		Date Recei	ved:	9/23/2011
Work Order Number 1109901			Received	-	A LC
Checklist completed by		1/23	Sample ID	labels checked by:	Indiais A
Signature			<u>ale</u>		
Matrix:	Carrier nan	ne <u>Courier</u>			
Shipping container/cooler in good co		Yes 🗹	No 🗌	Not Present	
Custody seals intact on shipping cor		Yes 🗹	No 🗔	Not Present	Not Shipped
Custody seals intact on sample bott	es?	Yes	No 🗌	N/A 🗹	
Chain of custody present?		Yes 🗹	No 🗖		
Chain of custody signed when reling		Yes 🗹	No 🗌		
Chain of custody agrees with sample	abels?	Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🗹	No 🗋		
Sample containers intact?		Yes 🗹	No 🛄		
Sufficient sample volume for indicate	id test?	Yes 🗹	No 🗔		
All samples received within holding t	mə?	Yes 🗹	No 🗔	_	Number of preserve bottles checked for
Water - VOA vials have zero headsp			Yes 🗹	No 🗌	pH:
Water - Preservation labels on bottle	-	Yes 🗹	No 🗔	N/A	
Water - pH acceptable upon receipt?		Yes 🗌	Νο	N/A 🗹	<2 >12 unless noted below.
Container/Temp Blank temperature?		3.3°	<6° C Accepte	able Int time to cool.	
COMMENTS:			n given sumed		
Client contacted	Date contacted:		Pe	rson contacted	
Contacted by:	Regarding				
Comments:					
·					,
Corrective Action				<u> </u>	······································

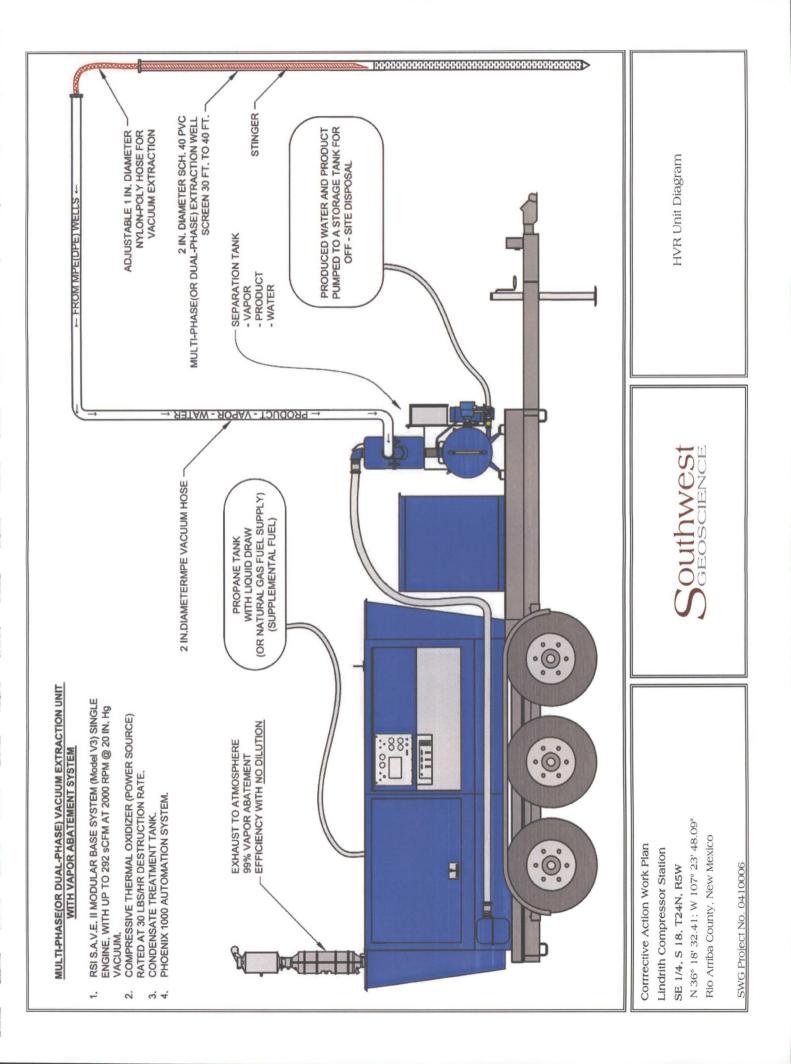
Environmental & Hydrogeologic Consultants flice Location <u>Path</u> Aztec, NM Contact: AKIAY I picet Manager K. Swmmers PO/SO #: mplers Name T. Du buisson Sampler's Signature of No. Dy 1000 6 Lindrith Compressor Stain
ldentifying Marts of Sample(s) ଅନ୍ଥିରି ମିଯି
- 0H-MW
12-
MW-33
NW-8
-10
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NW-34
11-mm
MW-12
MW-35 1
O 50% Rus
Date: Time: Received by: (Signature)
9-
Time: Received by: (Signature)
Time: Received by: (Signature)

: :

SOUTHWEST GEOSCIENCE • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914

						3			3
	SL - sludge O - Oil	C - Charcoal tube		ii SD - Solid L - Liquid A - Air Bag ss 1 frer 250 ml - Class wide mouth	W - Water S - Soil SD - Solid A/G - Amher / Or Glacs 11 fter	<u>بة</u>	WW - Wastewater		Matrix
		Time:	Date:	Received by: (Signature)	Date: Time:		Relinquished by (Signature)	quished b	Relin
		Time:	Date:	Received by (Signature)	Date: Time:		y (Signature)	quished by	Ge ja
			Date:	$\sim$	" "	الم	Relinquished by (Signature)	juished by Januari	
	NOTES: $3,3,5$	In RYS	Plate:		00		Relinquisted by Bignature)	uistred by	Relin
				Rush D 100% Rush	0-25% Rush 0 50% Rush		e Algornal	Tum around time	Tum
								Ц	
				-	Alt	J.	4		
L1 -				-> -> ->	V NW-4	-	1345	->	->
- <i>1</i>					XW-5		1300		
ے لگ					NW-38		1220		
6/ -					g-mr		1145		
- 13					~~~36		1105		
2/ -					f-min		1030		
114 9901-11					1H-MW 1		0935		
Lab Sample ID (Lab Use Only)		WH/	250 P/O	Siart Depth End Depth Tu	G Identifying Marks of Sample(s) b	CoEa	Time	Date	Matrix
		H. X	tainers	entressor	t C	Project Name Lind ri-	900	10000100000000000000000000000000000000	Proj. No. 04
		1075		Sampler's Signature	Sam	50	er's Name . Dubui 5500	Sampler's Name	Sampler
		47		PO/SO #:	1	Sux	Project Manager K. Summers	ect Man	Proje
Page Z of Z				аст. <u>Алду Глелма n</u> ne: <u>(505)</u> 345-3975	NM Contact: Phone:	122	Offlice Location Aztec	e Locati	Offic
Temp. of coolers when received (C°):	80			Albuquerque, NM	ă I		Environmental & Hydrogeologic Consultants	lionmen	ង
Due Date:	(r)	Analysis Requested		Hall Phall Proce Aralytica			outhwest		
CHAIN OF CUSTODY RECORD									

SOUTHWEST GEOSCIENCE • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914


.

ł



# APPENDIX E

# Remediation Technologies Information

