

June 29, 2010

ENTERPRISE PRODUCTS PARTNERS LP ENTERPRISE PRODUCTS OPERATING LLC ENTERPRISE PRODUCTS GP, LLC, GENERAL PARTNER ENTERPRISE PRODUCTS OLPGP, INC., SOLE MANAGER

Return Receipt Requested - 7009 2820 0002 5082 5125

Mr. Kurt Sandoval Petroleum Engineer Technician Bureau of Indian Affairs -Jicarilla Apache Nation P.O. Box 167 120 Seneca Drive Dulce, NM 87528

Ū

RE: Enterprise Field Services, LLC Lindrith Compressor Station – Delineation and Remediation Work Plan NE/4, SE/4, section 18, Township 24, Range 5 West, NMPM NM Oil Conservation Division GW Discharge Permit No. GW-209 Rio Arriba County, New Mexico

Dear Mr. Sandoval:

I enjoyed meeting with you and your staff on May 25, 2010 to discuss the remedial actions currently being performed by Enterprise Field Services, LLC (Enterprise) at our Lindrith Compressor Station. These remedial actions are being performed to treat soil and groundwater affected by the historical operation of former condensate storage tanks at the facility. In accordance with our discussions during this meeting, Enterprise has combined the delineation and remediation work plans previously submitted to Mr. Dixon Sandoval at the Jicarilla Nation Environmental Protection Office to expedite review by the Bureau of Indian Affairs (BIA). The enclosed report also provides additional details regarding the proposed insitu treatment of affected soil and groundwater at the site.

Also, as discussed during the meeting, we are currently evaluating water wells that are located at the station, and if concrete rubble is present from former facility operations that can be removed as part of these remedial actions. Our findings are currently being finalized, and will be submitted to your office later this week.

Enterprise believes our proposed actions will complete the delineation of affected soil and groundwater at the release site, effectively remediate affected soil and groundwater, and prevent migration of affected groundwater from the release area. We wish to proceed as soon as possible with these actions, and request approval by the BIA to proceed with the recommendations in enclosed report. If you have any questions, or require additional information, please do not hesitate to contact me at (713) 381-2286 or drsmith@eprod.com.

Mr. Kurt Sandoval June 29, 2010 Page 2

Sincerely, Enterprise Field Services, LLC

l

David R. Smith, P.G. Sr. Environmental Scientist

/bjm Enclosure

cc: w/ Enclosure Dixon Sandoval Jicarilla Environmental Protection Office P.O. Box 507 Dulce, NM 87528-0507

> Brandon Powell New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, NM 87410

> Jim Griswold New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

w/o Enclosure Rex Meyer, GeoMonitoring Services Ashley Ager, LT Environmental

LT Environmental Inc.

2243 Main Avenue, Suite 3 Durango, Colorado 81301 T 970.385.1096 / F 970.385.1873

June 21, 2010

Mr. David R. Smith, P.G. Enterprise Field Services LLC P.O. Box 4324 Houston, Texas 77210-4324

RE: Combined ORC Injection and Delineation Work Plan and Remediation Work Plan Lindrith Compressor Station NE/4, SE/4, Section 18, Township 24N, Range 5W NMPM Rio Arriba County, New Mexico

Dear Mr. Smith:

Enterprise Field Services, LLC (Enterprise) is remediating the former location of two condensate storage tanks and an associated subsurface sump at the Lindrith Compressor Station (Site) following a condensate release on January 4, 2008. To date, Enterprise has excavated 4,182 cubic yards of soil from the Site and transported it off site for proper disposal. Remedial actions continue in order to address historical releases that have impacted underlying soil and groundwater.

Following initial excavation of impacted soils, a proposed *Delineation Work Plan* dated March 2, 2010 was submitted to the Jicarilla Environmental Protection Office (JEPO) describing a subsurface investigation to delineate affected soil and groundwater at the Site. In addition, a *Supplemental Work Plan* dated April 19, 2010 was submitted describing remedial actions to perform during removal of a subsurface condensate storage sump. The sump and impacted soil that can be practically excavated have been removed. During a meeting held at Enterprise's office in Farmington, New Mexico on May 25, 2010, representatives of JEPO, Bureau of Indian Affairs (BIA), Enterprise, and LTE met to discuss how to best proceed with completion of remedial actions at the Site. In accordance with this meeting, the following report provides a summary of proposed *in-situ* treatment and delineation investigation objectives for review and approval by BIA. This information has been provided in the previously referenced work plans to JEPO.

Background

On January 4, 2008, a condensate release occurred at the Site. In response to this release, Enterprise excavated and disposed of 3,200 cubic yards of soil between November 18, 2009 and November 25, 2009. On December 15, 2009 and December 16, 2009, Enterprise drilled six boreholes and installed three groundwater monitoring wells to identify total depth of impacted soil and potential impacts to groundwater outside of the excavation. Locations of boreholes and groundwater monitoring wells are shown on Figure 1. Soil sampled from the boreholes indicates lateral impacts to the vadose zone are limited (Table 1). However, groundwater samples

Mr. David R. Smith, P.G. Page 2

collected from monitoring wells contain concentrations of benzene, toluene, ethyl-benzene, and total xylenes (BTEX) above New Mexico Water Quality Control Commission (NMWQCC) standards, indicating dissolved phase migration of contaminants has occurred (Table 2).

Subsequently, the sump located west of the excavation was removed and an additional 982 cubic yards of soil were excavated from the Site through May 20, 2010. Currently, the open excavation is approximately 125 feet by 60 feet (Figure 1). Confirmation samples collected in May 2010 from the north wall and east wall are below New Mexico Oil Conservation Division (NMOCD) soil standards; however, impacted soil remains west and south of the excavation, as well as vertically beneath the existing excavation exceeding 20 feet below ground surface. Laboratory results from samples collected inside the excavation are shown on Figure 1 and are summarized in Table 1. Results from borehole samples are also shown.

Continued excavation of impacted soil will pose potential safety issues, will not completely address the known historical soil and groundwater impacts at the Site, and is not practical since it may require moving the new condensate tank battery to allow for additional excavation to 35 feet below grade. As discussed during the May 25, 2010 meeting and as presented in previous recommendations, an alternative remediation strategy is proposed consisting of an extensive delineation of subsurface impacts and application of Oxygen Release Compound (ORC) to the floor of the excavation prior to backfilling.

Proposed Oxygen Release Compound Remediation

Taking advantage of the open excavation, remaining impacts on the floor will be treated with ORC. LTE will dig and pack trenches with a thick layer of ORC along the floor of the excavation prior to backfilling. ORC is a proprietary formulation of magnesium peroxide intercalated with food-grade phosphate that stimulates aerobic bioremediation in the oxygen-limited subsurface. ORC is environmentally safe and time releases oxygen when hydrated for six months to one year. A Material Safety Data Sheet (MSDS) is attached for reference. Once applied to the trenches, the ORC will be hydrated with water. A perforated drain system with riser pipes will also be installed in the trenches to allow for future additions of ORC and water in the impacted areas (Figure 3).

Once the above actions are completed, the following remediation actions will take place:

- Water will be injected into the drain system into the former excavation on a monthly basis;
- Six months after backfilling the excavation, additional aqueous ORC will be added through drain riser pipes;
- Six months after the aqueous ORC injections, six borings will be completed within the former excavation based on an equally spaced grid pattern. Borings will be to 35 feet below grade;
- A soil sample will be collected from each boring between 20 and 35 feet. Exact intervals will be based on the highest measurements recorded by a photoionization detector (PID). The six soil samples will be tested for BTEX and (total petroleum hydrocarbons) TPH;

- Installed borings will be converted into piezometers to allow for additional ORC and water injection points as necessary;
- Results will be compared to NMOCD soil standards and a summary report will be submitted to JEPO, BIA, and NMOCD. Based on the findings LTE will recommend additional ORC injectors or develop a supplemental work plan for additional remediation; and
- A supplemental work plan will be developed if soil levels are not showing a 50% reduction in average concentrations based on historical sample results. The contingency plan will propose to increase ORC injection rates and may include converting the piezometers into compressed air injection points for bioventing.

Proposed Combined Delineation Work Plan

Enterprise would like to proceed as soon as possible with a delineation investigation of the Site as originally proposed in the March 2, 2010 *Delineation Work Plan*. The delineation investigation, summarized below, will establish the extent of soil and groundwater impacts from historical facility operations.

A subsurface investigation will accurately define the vertical and lateral extent of the impacted soil and groundwater, and provide a more complete description of subsurface soil properties so *in-situ* remediation can be properly designed and implemented. For this investigation, LTE proposes a hollow-stem auger soil-boring and sampling program using a CME 75 drill rig. Continuous samples will be collected using a 5-foot split spoon sampler. The intervals from immediately beneath the ground surface and then every two feet thereafter will be screened for volatile aromatic hydrocarbons. In addition, soil that is stained or has a hydrocarbon odor will also be screened. Screening will be conducted with a PID according to the NMOCD's *Guidelines for Remediation of Leaks, Spills and Releases*, August 13, 1993. Each borehole will be terminated at 10 feet below the water table (approximately 45 feet below ground surface), unless surrounding conditions warrant further sampling. The exact location and number of boreholes and wells will be determined in the field; however, Figure 2 shows a general plan for placement.

Samples from the highest field screening result and the sample from the bottom of the borehole will be submitted to Hall Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico for analysis of BTEX and TPH using U.S. Environmental Protection Agency (USEPA) Methods 8021B and 8015M, respectively. The samples will be placed in pre-cleaned glass jars supplied by the laboratory, and immediately placed on ice. Samples will be labeled with location, date, time, sample technician, and method of analysis. Some geotechnical analyses to determine permeability and/or density may also be completed on pervasive clays or sands.

LTE will complete all work in accordance with industry-accepted practices. All down-hole drilling equipment will be thoroughly decontaminated prior to each use at a lined Decontamination Area. If impacted soil is identified within a borehole, cuttings will be drummed and transported to a proper disposal facility upon completion of drilling. Boreholes will be grouted following completion.

New groundwater monitoring wells will be installed as necessary. Wells will be constructed of schedule 40, 2-inch diameter polyvinyl-chloride (PVC) and will include fifteen feet of 0.01-inch machine slotted flush-threaded PVC well screen. Ten feet of screen will be set beneath the water table and five feet above to allow for seasonal fluctuations. A clean 10-20 grade silica sand gravel pack will be placed from the bottom of the boring to three feet above the top of the screen. Two feet of three-eighths inch natural bentonite chips will be set above the gravel pack followed by a neat cement slurry, containing a minimum of five percent powdered bentonite, to the surface and completed with a locking protective steel casing. Wells located within or near vehicle right-of-ways will be surrounded by three protective posts to prevent vehicle impact to the well. The new wells will be surveyed after construction. Top-of-casing elevations will be determined to an accuracy of no less than plus or minus 0.01 feet.

Following installation of monitoring wells, each new well will be developed utilizing a clean, disposable PVC bailer. LTE will purge fluid until the pH, specific conductivity and temperature are stabilized and turbidity is reduced to the greatest extent possible. All purge water will be collected and disposed of on site. The wells will be allowed to recharge a minimum of 24 hours and sampled. Depth to water and total depth of the wells will be measured with a Keck oil-water interface probe. The interface probe will be decontaminated with AloconoxTM soap and rinsed with de-ionized water prior to each measurement. At least three casing volumes will be removed from each well while pH, specific conductivity and temperature are monitored for stabilization. Once these parameters stabilize, the wells will be sampled by filling three pre-cleaned and pre-preserved 40 milliliter (ml) glass vials with zero headspace to prevent degradation of the sample. The groundwater samples will be shipped on ice to HEAL and analyzed for BTEX according to USEPA Method 8021B. Strict chain-of-custody procedures will be followed during transport of the samples to the laboratory.

It is anticipated that the field work associated with the site delineation investigation, application of *in-situ* treatment chemicals and backfilling of the existing excavation will take at least ten days to complete. Prior to initiation of this project, LTE will prepare a site-specific health and safety plan in compliance with OSHA 1920.120. Following completion of field activities, LTE will prepare a report describing methods used to complete this project and present analytical results and maps documenting the activities. LTE will provide adequate notification to the BIA, JEPO, and NMOCD in advance of all field activities. Should you have any questions, please do not hesitate to contact me at 970-385-1096.

Sincerely, LT ENVIRONMENTAL, INC.

Ashlay L agen

Ashley L. Ager Senior Geologist/Office Manager

ATTACHMENTS

Tables

Table 1 – Soil Laboratory Analytical Results

 Table 2 – Groundwater Laboratory Analytical Results

Figures

Figure 1 – Site Map with Soil and Groundwater Analytical Results

Figure 2 - Proposed Placement of Boreholes and Monitoring Wells

Figure 3 – Proposed ORC Remedial Design

ORC MSDS

TABLES

EXCAVATION & BOREHOLE SOIL ANALYTICAL RESULTS LINDRITH COMPRESSOR STATION ENTERPRISE FIELD SERVICES, LLC **TABLE 1**

		Field	Ranzene	Taliene	Fthulhenzene	Total Yvlanes	Uau	UBN	0a0
	Date Sampled	Reading (ppm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	urko (mg/kg)	(mg/kg)	(mg/kg)
]									
	12/3/2009	1,012	<0.05	<0.05	<0.05	0.16	13	<50	8.3
	5/12/2010	73	<0.05	<0.05	<0.05	<01.0>	<10	<50	ŝ
	12/3/2009	2,197	0.11	1.8	0.12	8.6	200	170	220
	5/12/2010	1.606	0.63	6.2	1.4	14	290	300	250
	12/3/2009	120	<0.05	0.057	<0.05	0.12	01>	<50	5.3
	12/3/2009	1,499	0.67	14	3.3	33	51	<50	550
cp)	5/12/2010	750	<0.05	<0.05	<0.05	<0.10	<10	<50	Ş
	5/12/2010	1.710	<0.05	<0.05	<0.05	<0.10	57	130	Ş
	12/3/2009	2,178	<0.25	3.9	0.71	12	130	150	200
(0	5/12/2010	2.316	4	16	2.1	8	120	140	590
	5/19/2010	18.3	<0.05	<0.05	<0.05	<0.10	<10	<50	\$
	5/19/2010	20.3	<0.05	<0.05	<0.05	<0.10	<10	<50	<5
	12/15/2009	1.313	0.057	0.19	<0.05	0.22	<10	<50	28
	12/15/2009	370	0.25	0.84	0.10	0.81	<10	<50	82
	12/15/2009	12.1	<0.05	<0.05	<0.05	<0.10	<10	<50	. <5.0
	12/17/2009	1,627	0.27	1.20	0.24	2.2	<10	<50	100
	12/17/2009	226	<0.05	0.36	0.11	1.0	<10	<50	61
	12/17/2009	0	<0.05	<0.05	<0.05	<0.10	<10	<50	<5.0
	12/17/2009	23	<0.05	<0.05	<0.05	<0.10	<10	<50	<5.0
	12/17/2009	0	<0.05	<0.05	<0.05	<01.0>	<10	<50	<5.0
	12/17/2009	325	<0.05	0.06	<0.05	0.11	<10	<50	80
	12/17/2009	405	<0.05	0.15	<0.05	0.23	01>	<50	12
	12/17/2009	6	<0.05	<0.05	<0.05	<01.0>	<10	<50	<5.0
	11/19/2009	0	<0.05	<0.05	<0.05	<0.10	<10	<50	<5.0
	11/19/2009	0	<0.05	<0.05	<0.05	<0.10	<10	<50	<5.0
	11/19/2009	328	<0.05	<0.05	<0.05	<0.10	370	520	<5.0
	11/19/2009	0	<0.05	<0.05	<0.05	<0.10	<10	<50	<5.0
	11/19/2009	0	<0.05	<0.05	<0.05	<0.10	<10	<50	<5.0
			10					ombined to 10	0

Notes:

ppm - parts per million

mg/Kg - milligrams per kilogram DRO - Diesel Range Organics

MRO - Motor Oil Range Organics

GRO - Gasoline Range Organics NMOCD - New Mexico Oil Conservation Division

TPH analyzed by EPA Modified Method 8015

١

Bold font indicates sample results exceed applicable standards BTEX analyzed by EPA Method 8021

Table 1_Lindrith_Compressor_Station_Excavation_Soil_Results.xls

TABLE 2

GROUNDWATER ANALYTICAL RESULTS LINDRITH COMPRESSOR STATION ENTERPRISE FIELD SERVICES LLC

Sample ID (Depth in feet)	Date Sampled	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)
MW-1	12/30/2009	1,900	2,600	120	870
MW-2	12/30/2009	3,000	3,200	270	1,900
MW-3	12/30/2009	130	3 <u>70</u>	76	530
NMWQCC Standard		10	750	750	620

Notes:

ug/kg - micrograms per liter

NMWQCC - New Mexico Water Quality Control Commission

Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8021.

Bold font indicates sample results exceed applicable standards.

Table 2_Lindrith_Compressor_Station_Excavation_Groundwater_Results.xls

FIGURES

ATTACHMENT

ORC MATERIAL SAFETY DATA SHEET

٤

Oxygen Release Compound (ORC[®]) MATERIAL SAFETY DATA SHEET (MSDS)

ć

Last Revised: October 18, 2005

Section 1 - Material Identification

Supplier:

REGENESIS

 1011 Calle Sombra

 San Clemente, CA 92673

 Phone:
 949.366.8000

 Fax:
 949.366.8090

 E-mail:
 info@regenesis.com

Chemical Description:	A mixture of Magnesium Peroxide (MgO ₂), Magnesium Oxide (MgO), and Magnesium Hydroxide [Mg(OH) ₂]
Chemical Family:	Inorganic Chemical
Trade Name:	Oxygen Release Compound (ORC [®])
Product Use:	Used to remediate contaminated soil and groundwater (environmental applications)

Section 2 – Chemical Identification

<u>CAS#</u>	Chemical
14452-57-4	Magnesium Peroxide (MgO ₂)
1309-48-4	Magnesium Oxide (MgO)
1309-42-8	Magnesium Hydroxide [Mg(OH) ₂]
7758-11-4	Dipotassium Phosphate (HK ₂ O ₄ P)
7778-77-0	Monopotassium Phosphate (H ₂ KO ₄ P)
Assay:	25-35% Magnesium Peroxide (MgO ₂)

Page 1

Regenesis – ORC MSDS

······································	Section 3 - Physical Data
Melting Point:	Not Determined (ND)
Boiling Point:	ND
Flash Point:	Not Applicable (NA)
Self-Ignition Temperature:	NA
Thermal Decomposition:	Spontaneous Combustion possible at $\approx 150^{\circ}$ C
Density:	0.6 – 0.8 g/cc
Solubility:	Reacts with Water
рН:	Approximately 10 in saturated solution
Appearance:	White Powder
Odor:	None
Vapor Pressure:	None
Hazardous Decomposition Products:	Not Known
Hazardous Reactions:	Hazardous Polymerization will not occur
Further Information:	Non-combustible, but will support combustion
	Section 4 – Reactivity Data
Stability:	Product is stable unless heated above 150 °C. Magnesium Peroxide reacts with water to slowly release oxygen. Reaction by product is Magnesium Hydroxide
Conditions to Avoid:	Heat above 150 °C. Open Flames.
Incompatibility:	Strong Acids. Strong Chemical Agents.

Hazardous Polymerization: None known.

J:\Operations\MSDS\HRC MSDS

Regenesis – ORC MSDS

Section 5 - Regulations

Permissible Exposure Limits in Air

Not Established. Should be treated as a nuisance dust.

Section 6 – Protective Measures, Storage and Handling **Technical Protective Measures** Keep in tightly closed container. Keep away from Storage: combustible material. Use only in well ventilated areas. Handling: **Personal Protective Equipment (PPE) Respiratory Protection: Recommended (HEPA Filters)** Hand Protection: Wear suitable gloves. Use chemical safety goggles. **Eye Protection: Other:** NA **Industrial Hygiene:** Avoid contact with skin and eyes **Protection Against Fire &** NA **Explosion: Disposal:** Dispose via sanitary landfill per state/local authority **Further Information:** Not flammable, but may intensify a fire After Spillage/Leakage/Gas Collect in suitable containers. Wash remainder with copious Leakage: quantities of water. **Extinguishing Media:** NA Suitable: Carbon Dioxide, dry chemicals, foam Self contained breathing apparatus or approved gas mask **Further Information:** should be worn due to small particle size. Use extinguishing media appropriate for surrounding fire. After contact with skin, wash immediately with plenty of First Aid: In case of contact with eyes, rinse water and soap. immediately with plenty of water and seek medical attention.

Section 7 – Information on Toxicology

J:\Operations\MSDS\HRC MSDS

Regenesis – ORC MSDS

Toxicity Data:

Not Available

0

Section 8 – Information on Ecology

Water Pollution Hazard Raging (WGK):

Section 9 – Further Information

After the reaction of magnesium peroxide with water to form oxygen, the resulting material, magnesium hydroxide, is mildly basic. The amounts of magnesium oxide (magnesia) and magnesium hydroxide in the initial product have an effect similar to lime, but with lower alkalinity.

The information contained in this document is the best available to the supplier at the time of writing, but is provided without warranty of any kind. Some possible hazards have been determined by analogy to similar classes of material. The items in this document are subject to change and clarification as more information become available.

July 28, 2011

ENTERPRISE PRODUCTS PARTNERS L.P. ENTERPRISE PRODUCTS HOLDINGS LLC (General Partner) ENTERPRISE PRODUCTS OPERATING LLC

Return Receipt Requested 7010 1870 0001 2945 2098

Mr. Cordell TeCube - Director Environmental Protection Office Jicarilla Apache Nation P.O. Box 507 Dulce, NM 87528-0507

RE: Enterprise Field Services, LLC - Lindrith Compressor Station Proposed Supplemental Site Investigation Work Plan NE/4, SE/4, Section 18, Township 24, Range 5 West, NMPM NM Oil Conservation Division GW Discharge Permit No. GW-209 Rio Arriba County, New Mexico

Dear Mr. TeCube:

Enterprise Field Services, LLC (Enterprise) is submitting the enclosed *Supplemental Site Investigation Work Plan*, dated July 27, 2011, for the facility referenced above. This work plan provides recommendations for the installation of additional soil borings and monitor wells at this facility to complete delineation of soil and groundwater that have been affected by hydrocarbon releases during historical facility operations. The site investigations proposed in the enclosed report supplement a previous site investigation which was reported in the report entitled: *Subsurface Investigation Report* (dated February 2011), submitted to your office on March 28, 2011. This report provided the results of an initial site soil and groundwater investigation, and provided recommendations for the additional investigations that are proposed in this report.

Enterprise is currently conducting remedial actions at this facility in accordance with approvals from the Jicarilla Bureau of Indian Affairs (BIA) during June 2010. These remedial actions are being modified based on the recent site investigations that have identified free-phase hydrocarbon (PSH) present on the water table surface at the facility. A revised Corrective Action Plan (CAP) is currently being prepared to include additional remedial actions for locations where PSH has been identified.

We would like to proceed with the additional site investigations recommended in the enclosed report, if the Jicarilla Environmental Protection Office has no objections or review comments. A start date of August 15, 2011 is planned based on driller availability. If you have any questions, or require additional information, please do not hesitate to contact me at (713) 381-2286 or <u>drsmith@eprod.com</u>.

Sincerely,

David R. Smith, P.G.

Sr. Environmental Scientist

/dep Enclosure P. O. BOX 4324 HOUSTON, TX 77210-4324 713.381.6500

Rodney M. Sartor, REM Manager, Remediation

1100 LOUISIANA STREET HOUSTON, TX 77002-5227 www.epplp.com Mr. Cordell TeCube, Director Jicarilla EPO July 28, 2011 Page 2

cc: w/ enclosure: Kurt Sandoval Jicarilla Oil & Gas Administration P.O. Box 167 Dulce, NM 87528

> Dixon Sandoval Jicarilla Environmental Protection Office P.O. Box 507 Dulce, NM 87528-0507

> Hopson Sandoval Jicarilla Environmental Protection Office P.O. Box 507 Dulce, NM 87528-0507

Brandon Powell New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, NM 87410

Jim Griswold New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

e-mail: Chris Mitchell, Southwest Geoscience Kyle Summers, Southwest Geoscience

SUPPLEMENTAL SITE INVESTIGATION WORK PLAN

Property:

LINDRITH COMPRESSOR STATION Section 18, Township 24N, Range 5W Rio Arriba County, New Mexico

> July 27, 2011 SWG Project No. 0410006

> > Prepared for:

Enterprise Field Services LLC 1100 Louisiana Street Houston, Texas 77002 Attention: Mr. David R. Smith, P.G.

Prepared by:

un mango a

Kyle Summers, C.P.G. Senior Geologist/ Manager, Four Corners Office

B. Chris Mitchell, P.G. Principal Geoscientist

606 S. Rio Grande Avenue Unit A, Downstairs West Aztec, NM 87410 Ph: (505) 334-5200 Fax: (505) 334-5204

and a second last of the cost of the cost of the cost of the cost of the second s

TABLE OF CONTENTS

1.0 IN	TRODUCTION	l
1.1	SITE LOCATION AND HISTORY	1
1.2	CHRONOLOGY OF EVENTS	I
1.3	CHEMICALS OF CONCERN	3
1.4	SITE RANKING & PROPOSED CLEANUP GOALS	3
2.0 SL	JPPLEMENTAL SITE INVESTIGATION	1
2.1	SOIL BORING AND MONITORING WELL INSTALLATION	1
2.2	SAMPLING PROGRAM	5
2.3	LABORATORY ANALYTICAL PROGRAM	5
2.4	TOP-OF-CASING SURVEY	3
3.0 SL	JPPLEMENTAL SITE INVESTIGATION REPORT	7
4.0 SC	CHEDULE	7
LIST OF A	\PPENDICES	
Appendix	A: Figures	

Eiguro	1.	Topographic	Man
riguic	11	TODORIADIIC	Map

- Figure 2: Site Vicinity Map
- Figure 3: Site Map
- Figure 4: Groundwater Gradient Map (June 24, 2011)
- Figure 5: Remediation Action Level Exceedance Zone in Soil

i

Figure 6: Groundwater Quality Standard Exceedance Zone in GW

Appendix B: Tables

Table 1: Soil Analytical Results

Table 2: Groundwater Analytical Results

- Table 3: Natural Attenuation Parameters
- Table 4: Groundwater Elevations

SUPPLEMENTAL SITE INVESTIATION WORK PLAN

LINDRITH COMPRESSOR STATION

Section 18, Township 24N, Range 5W Rio Arriba County, New Mexico

1.0 INTRODUCTION

1.1 SITE LOCATION AND HISTORY

The Lindrith Compressor Station is located off Jicarilla Road J-36, approximately 7.2 miles west of State Highway 537, in Section 8, Township 24N, Range 5W Rio Arriba County, Jicarilla Apache Nation, New Mexico, referred to hereinafter as the "Site" or "subject Site". The Site is a natural gas compressor station utilized to dehydrate and compress natural gas collected from production wells in the area for transportation via pipeline. The Site was constructed in the 1950s and currently includes three (3) compressor engines, a dehydration unit, a flare, one (1) bullet storage tank, a condensate storage tank battery, which includes eight (8) condensate storage tanks and two (2) below-grade tanks, inlet scrubbers, a water tower, and office/shop buildings.

On January 4, 2008, a natural gas condensate release (initially reported as 25 bbls) occurred within the containment berm at the former condensate storage tanks. The release penetrated the berm and flowed outside the south fence of the facility. The release was immediately reported the New Mexico Energy, Minerals, and Natural Resources Department (EMNRD), Oil Conservation Division's (OCD) Aztec field office, and The OCD Release Notification and Corrective Action form (Form C-141) was submitted to the OCD. Initial response activities included the removal of some impacted soil, as well as test hole sampling to evaluate the extent of impact (Spill Cleanup Report Lindrith Compressor Station, Rio Arriba County, New Mexico, September 2008). Supplemental excavation, delineation, and remediation activities were performed between November 2009 November 2010 (Subsurface Investigation Report, LTE, February 2011), resulting in the removal of approximately 4,200 cubic yards of affected soils, the advancement of twenty-nine (29) soil borings, and the installation and sampling of twelve (12) groundwater monitoring wells. The former condensate tanks and associated sump have been permanently removed from the facility.

The Site location is depicted on Figure 1 of Appendix A which was reproduced from a portion of the United States Geological Survey (USGS) 7.5-minute series topographic map (East Fork Kutz Canyon). A Site Vicinity Map of the subject Site and adjoining properties is included as Figure 2 of Appendix A.

1.2 CHRONOLOGY OF EVENTS

Significant events and related activities associated with the Site, including the results of Site investigation activities and corrective action completed to date, are provided in the following table:

ļ

January 4, 2008	The release was discovered and reported to the OCD. Condensate penetrated the secondary containment berm and flowed outside the south fence of the facility. Initial response activities included the removal of some soil, and the advancement of test holes.
September 2008	Spill Cleanup Report Lindrith Compressor Station, Rio Arriba County, New Mexico, September 2008.
November 2009	LT Environmental, Inc. (LTE) oversaw the removal of an additional 3,200 cubic yards of hydrocarbon affected soil from the affected area. Apparent historically impacted soil was identified below 9 feet below ground surface (bgs).
December 2009	Six (6) soil borings were advanced in the immediate vicinity of the former condensate storage tanks. Three (3) of the soil borings were converted into groundwater monitoring wells. Groundwater impact was confirmed through laboratory analysis.
March 2010	Proposed <i>Delineation Work Plan</i> , (LTE) presented to the Jicarilla Apache Nation Environmental Protection Office (JANEPO) detailing the proposed subsurface investigation activities.
	The municipal solid waste was removed from the wash located to the northeast of the Lindrith Compressor Station and disposed in accordance with applicable local, state and federal regulations.
April 2010	<i>Supplemental Work Plan.</i> (LTE) presented to JANEPO describing proposed sump removal and remediation activities.
May 2010	Removal of the subgrade sump, as well as an additional 982 cubic yards of hydrocarbon affected soils.
June 2010	<i>Combined ORC Injection and Delineation Work Plan and Remediation Work Plan (LTE)</i> submitted to JANEPO. This work plan proposed in-situ treatment at the source and additional soil and groundwater delineation activities.
July-November 2010	Bureau of Indian Affairs (BIA) approves the combined work plans. ORC is introduced into the excavation floor, a drain/injection system is installed, and the excavation is backfilled. The ORC is hydrated immediately after the drain/injection system installation, and again in September, October and November 2010.
October 2010	LTE begins supplemental site delineation activities which included twenty (20) additional soil borings across the southern portion of the Site and adjacent property. Ten (10) of the soil borings are converted to groundwater monitoring wells, including the replacement of MW-1 with MW-1R.
February 2011	Subsurface Investigation Report (LTE) describes the results of the subsurface investigation activities. The investigation identifies NAPL in association with the initial groundwater bearing unit, as well as identifying historical apparent impact from undetermined sources. Additional investigation will be required to further evaluate the extent of the NAPL and dissolve-phase groundwater COCs, as well as the historic soil impacts.

1.3 CHEMICALS OF CONCERN

The soil and groundwater samples collected from the soil borings/monitoring wells during previous site investigation activities were analyzed for TPH GRO/DRO utilizing EPA method SW-846 #8015M and BTEX using EPA SW-846 method #8021B.

- Based on the laboratory analytical results, TPH GRO/DRO concentrations were identified in soil samples collected from borings B-3 (25'), B-11(35'), B-12 (33.5'), B-13 (30'), B-15 (33'), B-16 (32'), B-18 (33'), B-20 (30'), B-24 (29'), B-27 (12'), B-28 (30'), and B-29 (27') above the OCD *Remediation Action Level* of 100 mg/Kg.
- Based on the laboratory analytical results, the total BTEX concentrations were identified in soil samples collected from borings B-13 (30') and B-20 (30') above the OCD *Remediation Action Level* of 50 mg/Kg.
- Based on the laboratory analytical results from the most recent groundwater sampling events (November 15, 2010), benzene concentrations were identified in groundwater samples collected from monitoring wells MW-3, MW-4, MW-6, and MW-12 above the NMWQCC *Water Quality Standard* of 0.010 mg/L.
- Based on the laboratory analytical results from the most recent groundwater sampling events (November 15, 2010), toluene concentrations were identified in groundwater samples collected from monitoring well MW-4 above the NMWQCC *Water Quality Standard* of 0.750 mg/L.
- Based on the laboratory analytical results from the most recent groundwater sampling events (November 15, 2010), total xylenes concentrations were identified in groundwater samples collected from monitoring wells MW-3, MW-4, and MW-6 above the NMWQCC *Water Quality Standard* of 0.620 mg/L.
- During the most recent groundwater gauging event, non-aqueous phase liquid (NAPL) was identified in monitoring wells MW-1R, MW-2, and MW-9.

Figure 3 indicates the approximate locations of the borings/monitoring wells completed at the Site in relation to pertinent Site features and general Site boundaries. Figure 4 is a Groundwater Gradient Map which depicts the direction of groundwater flow at the Site. Figures 5 and 6 detail the OCD *Remediation Action Level* Exceedance Zone in soil and NMWQCC *Groundwater Quality Standard* Exceedance Zone in groundwater, respectively.

Soil and groundwater analytical results for the Site borings and monitoring wells are included in Tables 1 and 2, respectively.

1.4 SITE RANKING & PROPOSED CLEANUP GOALS

The Site is under the jurisdiction of the JANEPO. In the absence of published JANEPO regulatory guidance, SWG referenced the New Mexico OCD's *Guidelines for Remediation*

of Leaks, Spills and Releases as guidance, in addition to the OCD rules, specifically NMAC 19.15.30 *Remediation*. These guidance documents establish investigation and abatement action requirements for sites subject to reporting and/or corrective action. These guidance documents establish investigation and abatement action requirements for sites subject to reporting and/or corrective action.

In accordance with the OCD's *Guidelines for Remediation of Leaks, Spills and Releases,* SWG utilized the general site characteristics to determine the appropriate "ranking" for the Site. The ranking criteria and associated scoring are provided in the table below:

Rankin	g Criteria	Real Contraction C	Ranking Score
	<50 feet	20	
Depth to Groundwater	50 to 99 feet	10	20
	>100 feet	0	
Wellhead Protection Area • <1,000 feet from a water	Yes	20	
source, or; <200 teet from private domestic water source.	No	0	0
Distance to Curface Water	<200 feet	20	
Body	200 to 1,000 feet	10	0
Body	>1,000 feet	0	
Total Rar	nking Score		20

Based on SWG's evaluation of the scoring criteria, the Site would have a Total Ranking Score of 20. This ranking is based on the following:

• The depth to the initial groundwater-bearing zone is <50 feet at the Site.

Based on a Total Ranking Score of 20, cleanup goals for soil located at the Site include: 10 mg/Kg for benzene, 50 mg/Kg for total BTEX and 100 mg/Kg for TPH GRO/DRO.

In addition, cleanup goals for groundwater located at the Site include the NMWQCC *Water Quality Standards* of: 0.010 mg/L for benzene, 0.75 mg/L for toluene, 0.75 mg/L for ethylbenzene, and 0.62 mg/L for xylenes.

2.0 SUPPLEMENTAL SITE INVESTIGATION

The primary objective of the proposed supplemental site investigation activities is to further evaluate the magnitude and extent of COCs in soil and groundwater at the Site.

2.1 SOIL BORING AND MONITORING WELL INSTALLATION

Ten (10) soil borings will be advanced on-site utilizing a hollow-stem auger drilling rig under the supervision of a New Mexico Office of the State Engineer-licensed driller. The soil borings will be advanced at select locations hydrogeologically up-, cross- and down-gradient from the existing monitoring well network. The soil borings will be

advanced to a maximum depth of approximately 40 feet bgs, five feet below the initial water table, or auger refusal, whichever is more shallow.

Reusable sampling and drilling equipment will be decontaminated using an Alconox® wash and potable water rinse prior to commencement of the project and between the advancement of each soil boring.

Soil samples will be collected continuously using core barrels or split spoon samplers to document lithology, color, relative moisture content and visual or olfactory evidence of impairment. In addition, the samples will be scanned with a photoionization detector (PID) for the presence of volatile organic compounds (VOCs).

Subsequent to the completion of the soil borings, each soil boring will be converted to a groundwater monitoring well to further evaluate the initial groundwater-bearing unit on the Site. The monitoring wells will be completed as follows:

- Installation of 10 to 15 feet of 2-inch diameter, machine slotted PVC well screen assembly with a threaded bottom plug;
- Installation of riser pipe to surface;
- Addition of graded silica sand for annular sand pack around the well screen from the bottom of the well to two feet above the top of the screen;
- Placement of 2 feet of hydrated bentonite pellets above the sand pack;
- Addition of cement/bentonite slurry to the surface; and
- Installation of a locking well cap and circular, bolt-down, flush mount well cover or above-grade steel riser.

2.2 SAMPLING PROGRAM

SWG's groundwater sampling program will consist of the following:

- 1) Collection of up to two (2) soil samples from each soil boring from any of the following locations:
 - a) the zone exhibiting the highest concentration of VOC's based on visual, olfactory or PID evidence,
 - b) from the capillary fringe zone,
 - c) from a change in lithology, or
 - d) from the bottom of the boring.
- 2) Collection of one (1) groundwater sample from each existing monitoring well and each proposed monitoring well.

Prior to sample collection, each monitoring well will be micro-purged utilizing low-flow sampling techniques. Low-flow refers to the velocity with which groundwater enters the peristaltic pump intake and that is imparted to the formation pore water in the immediate vicinity of the well screen. It does not necessarily refer to the flow rate of water discharged at the surface which can be affected by flow regulators or restrictions. Water level drawdown provides the best indication of the stress imparted by a given flow-rate for a given hydrological situation. The objective is to pump in a manner that minimizes stress (drawdown) to the system to the extent practical taking into account

established site sampling objectives. Flow rates on the order of 0.1 to 0.5 L/min will be maintained during the sampling activities using dedicated sampling equipment.

The utilization of low-flow minimal drawdown techniques enables the isolation of the screened interval groundwater from the overlying stagnant casing water. The pump intake is placed within the screened interval such that the groundwater pumped is drawn in directly from the formation with little mixing of casing water or disturbance to the sampling zone.

The monitoring wells will be purged until produced groundwater is consistent in color, clarity, pH, temperature and conductivity.

The groundwater samples will be collected in laboratory prepared glassware and placed on ice in a cooler, which will be secured with a custody seal. The samples will be transported to a selected analytical laboratory along with a completed chain-of-custody form.

2.3 LABORATORY ANALYTICAL PROGRAM

The soil and groundwater samples collected from the soil borings/monitoring wells will be analyzed for TPH GRO/DRO utilizing EPA SW-846 Method 8015B and BTEX utilizing EPA SW-846 Method 8021B.

A summary of the analysis, sample type, sample frequency and EPA-approved methods are presented below:

Analysis	Sample Type	No. of Samples	EPA Method
TPH GRO/DRO	Soil	14	SW-846 8015B
BTEX	Soil	14	SW-846 8021B
TPH GRO/DRO	Groundwater	10	SW-846 8015B
BTEX	Groundwater	10	SW-846 8021B

2.4 TOP-OF-CASING SURVEY

Subsequent to the completion of supplemental site investigation activities, a geospatial survey of the monitoring well network will be performed to identify the top-of-casing elevations to accurately determine the groundwater gradient for the initial groundwaterbearing unit at the facility. The survey will be performed by professional licensed surveyor, and tied to known landmarks or benchmarks. If a benchmark cannot be located nearby, one will be set at the facility as a point of reference.

3.0 SUPPLEMENTAL SITE INVESTIGATION REPORT

Upon completion of the supplemental site investigation activities, a final report will be prepared that will include documentation of field investigation activities, a site plan detailing pertinent site features, logs of subsurface exploration, laboratory analytical results, an evaluation of investigation results and recommendations concerning corrective actions.

4.0 SCHEDULE

The completion of the proposed supplemental site investigation activities will require an estimated two (2) months; however, time estimations regarding the completion of field activities depend upon several factors, many of which cannot be pre-determined.

Variables which may impact the estimated time required to attain project objectives include, inclement weather, the number of soil borings/monitoring wells necessary to delineate the extent of COC concentrations in soils and groundwater to below the proposed cleanup goals, and laboratory analytical turn-around time.

l

I

H

I

-

Ĩ

Ì

E

H

APPENDIX A

Figures

Lindreth Compressor Station SE 1/4, S18 T24N R5W N36° 18' 32.41"'; W107° 23' 48.09" Rio Arriba County, New Mexico

SWG Project No. 0410006

FIGURE 2 Site Vicinity Map

2005 Aerial Photograph Source: Google Earth

l

H

0

H

APPENDIX B

Tables

				Lindrith (TABI Compressor S SOIL ANALYTIC	LE 1 Station - So CAL SUMMAR	oil Borings W				
Sample I.D.	Date	Sample	Benzene	Toluene	Ethylbenzene	Xvienes	Total BTEX	TPH	TPH	TPH	TPH
		Depth (feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	GRO (mg/kg)	DRO (mg/kg)	MRO (mg/kg)	Total (mg/kg)
New Mexico Enter Department, Reme	gy, Mineral & Nat Oil Conservation diation Action Le	ural Resources Division, vel	10	NE	NE	NE	50		10	00	
				S	oll Boring Advance	d by Lodestar/L	ЛЕ				
B-1*	12.15.09	15.0	0.057	0.19	<0.5	0.22	<0.967	28	<10	NA	28
	12.15.09	25.0	0.25	0.84	0.1	0.81	2	82	<10	NA	82
B-2*	12.15.09	20.0	<0.05	<0.05	<0.05	<0.10	ND	<5.0	<10	NA	<15
B-3	12.17.09	25.0	0.27	1.2	0.24	2.2	3.91	100	<10	NA	100
	12.17.09	30.0	<0.05	0.36	0.11	1.0	<1.52	19	<10	NA	19
	12.17.09	35.0	<0.05	<0.05	<0.05	<0.10	ND	<5.0	<10	NA	<15
B-4*	12.17.09	20.0	<0.05	< 0.05	<0.05	<0.10	ND	<5.0	<10	NA	<15
B-5*	12.17.09	20.0	<0.05	<0.05	<0.05	<0.10	ND	<5.0	<10	NA	<15
B-6	12.17.09	25-30	<0.05	0.06	<0.05	0.11	<0.27	8	<10	NA	<10
	12.17.09	35.0	<0.05	0.15	<0.05	0.23	<0.48	12	<10	NA	12
B 10	12.17.09	40.0	<0.05	<0.05	<0.05	2.4	11D	64	<10	<50	<124
B-10	10.18.10	45.0	<0.25	<0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
B-11	10.10.10	35.0	2.6	15	3.3	28	48.9	1.000	18	<50	<1068
011	10.19.10	45.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
B-12	10.20.10	33.5	0.31	1.8	0.75	5.4	8.26	130	15	<50	<195
0.0	10.20.10	48.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
B-13	10.20.10	30.0	<2.5	17	9.0	57	<85.5	1,000	400	810	2210
	10.20.10	45.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
B-14	10.21.10	28.0	<0.05	0.067	< 0.05	0.37	<0.537	13	30	74	117
	10.21.10	40.0	<0.05	< 0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
B-15	10.22.10	33.0	<0.50	<0.50	<0.50	<1.0	<0.25	<50	170	210	<430
	10.22.10	35.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
B-16	10.22.10	32.0	<0.50	2.9	1.6	13	<18	260	130	150	540
	10.22.10	45.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
B-17	10.22.10	33.0	<0.10	<0.10	0.12	1.2	<1.52	31	51	78	160
	10.22.10	45.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
B-18	10.25.10	33.0	<0.20	0.79	0.98	7.7	<9.67	230	110	120	460
	10.25.10	40.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
B-19	10.25.10	33.0	<0.05	< 0.05	<0.05	<0.10	<0.25	14	18	<50	<82
	10.25.10	45.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
B-20	10.25.10	30.0	<1.0	7.9	6.5	50	<65.4	1,900	450	420	2770
P 21	10.26.10	40.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
B-21	10.26.10	40.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
B-22	10.27.10	24.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
	10.28.10	42.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
B-23	10.29.10	33.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
	10.29.10	40.0	< 0.05	< 0.05	< 0.05	<0.10	<0.25	<5.0	<10	<50	<65
B-24	10.29.10	29.0	<0.25	1.6	0.73	6.9	<9.48	230	63	210	503
	10.29.10	45.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
B-25	11.01.10	39.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
B-26	11.02.10	29.0	<0.05	<0.05	< 0.05	<0.10	<0.25	<5.0	<10	<50	<65
	11.02.10	45.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
B-27	11.02.10	12.0	<0.05	<0.05	<0.05	0.11	<0.26	<25	100	290	<415
	11.02.10	33.0	<0.05	<0.05	< 0.05	0.26	<0.41	30	33	98	161
	11.03.10	45.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
B-28	11.03.10	30.0	<0.05	<0.05	0.22	2.4	<2.72	110	360	680	1150
	11.03.10	45.0	< 0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10	<50	<65
B-29	11.04.10	27.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	100	130	<235
	11.04.10	40.0	< 0.05	<0.05	<0.05	<0.10	<0.25	0.0	<10	<50	<00.0

Note: Concentrations in **bold** and yellow exceed the applicable OCD Remediation Action Level NA = Not Analyzed NE = Not Established

NAPL = Non-aqueous phase liquid * = boring location from former condensate tank leak. Not shown on map due to scale.

GROUNDWATER ANALYTICAL SUMMARY TABLE 2

Sample I.D.	Date	Benzene	Toluene	Ethylbenzene	Xylenes	HdT	HAT
		(T/Brl)	(T/Brl)	(H8/L)	(T/8rl)	GRO	DRO
New Mexico Wate Commulssion Gro	er Quality Control oundwater Quality	10	750	750	620	NE NE	(mg/L)
Stan	dards			-		-	
MW-1*	12.30.09	1900	2600	120	870	NA	VN
MW-1R	11.16.10			INA	Te		
	6.24.11			INA	Te		
MW-2	12.30.09	3000	3200	270	1900	NA	AN
	11.16.10			INAF	JC		
	6.24.11			INA	Te		
MW-3	12.30.09	130	370	76	530	NA	NA
	11.16.10	5500	62	350	1000	0.016	<0.001
	6.24.11	5700	3300	340	2300	0.031	0.0017
MW-4	11.16.10	2600	1600	280	1700	0.00035	0.0031
	6.24.11	3900	1600	220	1400	0.026	<0.001
MW-5	11.15.10	4.4	<1.0	6.3	22	0.0022	0.0014
	6.24.11	1.2	<1.0	31	19	0.00052	<0.001
MW-6	11.16.10	2400	65	230	1200	0.00042	0.0014
	6.24.11	4500	68	230	1200	0.025	<0.001
7-WM	11.16.10	8.9	2.6	5.9	50	0.0015	<0.001
	6.24.11	2.3	<1.0	<1.0	<2.0	0.00035	<0.001
MW-8	11.15.10	<1.0	<1.0	<1.0	<2.0	<0.00005	<0.001
	6.24.11	<1.0	<1.0	<1.0	<2.0	<0.00005	<0.001
6-MW	11.16.10			INA	Jo		
	6.24.11			INA	٦C		
MW-10	11.15.10	<1.0	<1.0	<1.0	<2.0	<0.00005	<0.001
	6.24.11	<1.0	<1.0	<1.0	<2.0	<0.00005	<0.001
1 I-WW	11.16.10	<1.0	<1.0	<1.0	<2.0	<0.00005	<0.001
	6.24.11	<1.0	<1.0	<1.0	<2.0	<0.00005	<0.001
MW-12	11.15.10	23	16	13	84	0.0013	<0.005
	6.24.11	27	<1.0	5.6	9.4	0.00051	<0.001

Note: Concentrations in bold and yellow exceed the applicable OCD Remediation Action Level

NA = Not Analyzed NE = Not Established NAPL = Non-aqueous phase liquid * = Relpaced by MW-IR

. . .

TABLE 3

Lindrith Compressor Station NATURAL ATTENUATION PARAMETERS

								_	_	,		_					_	_	_	_	_	_	_	_			
Iron	AN NA	٩N	ΝA	NA	٧N	AN NA	NA	210	ΝA	470	AN	47	ΥN	140	٨٨	53	ΥN	7.8	NA	٩N	ΥN	52	ν	13	ΥN	39	٨٨
Nitrate (mø/L:)	AN AN	Š	NA	NA	VN	NA	NA	<1.0	NA	<1.0	AN	<1.0	NA	<1.0	VN	<1.0	AN	<1.0	NA	NA	AN	<1.0	AN	<1.0	ΥN	7.28	AN
Conductivity (mS/cm)	NA	NA	NA	NA	NA	NA	NA	2.68	3.346	2.42	2.360	4.58	5.749	3.11	3.109	1.95	1.862	2.92	2.880	NA	NA	3.92	3.488	2.89	2.725	2.68	2.640
Oxidation Reduction Potential	AN	NA	NA	NA	NA	NA	NA	NA	-130.0	AN	-115.7	NA	-109.4	NA	-108.0	NA	-131.1	NA	-51.2	VN	ΝA	NA	-47.0	NA	-36.6	NA	-89.2
Dissolved: Oxygen (mg/L)	ΥN	NA	νv	NA	NA	NA	NA	NA	0.79	νv	1.07	NA	1.46	NA	1.11	NA	0.74	NA	0.79	νv	νv	NA	0.61	NA	2.09	NA	0.98
Hd	νA	٧N	νA	VN	NA	AN	NA	6.94	7.53	6.80	7.45	6.84	7.29	6.52	7.23	7.09	7.40	7.17	7.13	νA	٧Z	7.47	7.18	6.96	6.97	7.33	7.27
Temperature (°C)	AN	VN	νv	νv	NA	ΑN	NA	14.5	19.63	13.6	23.40	12.9	23.82	14.0	20.01	14.1	21.94	12.6	17.14	VN	ΑN	13.1	18.92	13.5	19.54	14.4	19.82
Date	12.30.09	11.16.10	6.24.11	12.30.09	11.16.10	6.24.11	12.30.09	11.16.10	6.24.11	11.16.10	6.24.11	11.15.10	6.24.11	11.16.10	6.24.11	11.16.10	6.24.11	11.15.10	6.24.11	11.16.10	6.24.11	11.15.10	6.24.11	11.16.10	6.24.11	11.15.10	6.24.11
Sample I D	-1-WM	MW-1R		MW-2			MW-3			MW-4		MW-5		MW-6		7-WM		MW-8		6-MM		01-WM		1 I-MM		MW-12	

NA = Not Analyzed * = Relpaced by NW-1R

TABLE 4Lindrith Compressor Station

GROUNDWATER ELEVATIONS

Well I.D.	Date	Depth to	Depth to	Product	TOC	Groundwater
		Product	Water	Thickness	Elevations	Elevation*
		(feet BTOC)	(feet BTOC)		(feet AMSL)	(feet AMSL)
MW-1R	11.11.10	31.73	33.29	1.56	6494.62	6462.31
	11.15.10	31.93	32.86	0.93	6494.62	6462.35
	6.22.11	32.57	35.50	2.93	6494.62	6460.97
MW-2	11.11.10	30.12	30.15	0.03	6491.08	6460.95
	11.15.10	29.86	29.90	0.04	6491.08	6461.21
	6.22.11	30.64	30.73	0.09	6491.08	6460.41
MW-3	11.11.10	ND	32.08	ND	6492.78	6460.70
	11.15.10	ND	32.96	ND	6492.78	6459.82
	6.22.11	ND	32.61	ND	6492.78	6460.17
MW-4	11.11.10	ND	33.31	ND	6493.99	6460.68
	11.15.10	ND	33.10	ND	6493.99	6460.89
	6.22.11	ND	33.45	ND	6493.99	6460.54
MW-5	11.11.10	ND	34.37	ND	6496.06	6461.69
	11.15.10	ND	35.64	ND	6496.06	6460.42
	6.22.11	NĎ	34.52	ND	6496.06	6461.54
MW-6	11.11.10	ND	33.79	ND	6494.72	6460.93
	11.15.10	ND	33.63	ND	6494.72	6461.09
	6.22.11	ND	34.09	ND	6494.72	6460.63
MW-7	11.11.10	ND	36.65	ND	6492.49	6455.84
	11.15.10	ND	34.70	ND	6492.49	6457.79
	6.22.11	ND	34.87	ND	6492.49	6457.62
MW-8	11.11.10	ND	34.39	ND	6493.10	6458.71
	11.15.10	ND	32.16	ND	6493.10	6460.94
	6.22.11	ND	32.70	ND	6493.10	6460.40
MW-9	11.11.10	29.46	30.34	0.88	6491.17	6461.38
	11.15.10	30.47	31.24	0.77	6491.17	6460.42
	6.22.11	30.76	32.14	1.38	6491.17	6459.90
MW-10	11.11.10	ND	29.85	ND	6492.39	6462.54
	11.15.10	ND	31.83	ND	6492.39	6460.56
	6.22.11	ND	32.40	ND	6492.39	6459.99
MW-11	11.11.10	ND	34.05	ND	6489.84	6455.79
	11.15.10	ND	35.05	ND	6489.84	6454.79
	6.22.11	ND	34.23	ND	6489.84	6455.61
MW-12	11.11.10	ND	32.04	ND	6487.95	6455.91
	11.15.10	ND	32.74	ND	6487.95	6455.21
	6.22.11	ND	32.73	ND	6487.95	6455.22

BTOC - below top of casing

AMSL - aboce mean sea level

TOC - top of casing

* - corrected for presence of phase-sepated hydrocarbon using a site-specific density correction factor of 0.63 ND - None Detected