

ENTERPRISE PRODUCTS PARTNERS L.P. ENTERPRISE PRODUCTS HOLDINGS LLC , (General Partner) ENTERPRISE PRODUCTS OPERATING LLC

RECEIVED OCD

July 17, 2012

Return Receipt Requested 7010 1870 0001 2945 4726

Mr. Jim Griswold, Senior Hydrologist Environmental Bureau ENMRD/Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

RE: Supplemental Site Investigation & Quarterly Groundwater Monitoring Report (April 2012 Event) - Largo Compressor Station Enterprise Field Services, LLC OCD GW Discharge Permit Number: GW-211 Rio Arriba County, New Mexico

Attn: Leonard Lowe

Dear Mr. Griswold,

Enterprise Field Services, LLC (Enterprise) is submitting two (2) copies of the enclosed *Supplemental Site Investigation & Quarterly Groundwater Monitoring Report (April 2012 Event)*, dated June 31, 2012, for the above-referenced facility. This report documents the results of a Supplemental Site Investigation (SSI) performed at the facility during March 2012. The SSI was performed in accordance with the proposed SSI Work Plan, submitted to the New Mexico Oil Conservation Commission (NMOCD) in correspondence dated March 2, 2012.

The enclosed report also provides the results of the April 2012 quarterly groundwater monitoring event conducted at the facility. Groundwater conditions are monitored at four primary investigation areas, Area 1 (Condensate Storage Tank Area), Area 2 (Valve Box Area), Area 3 (Retention Pond Area), and Area 4 (Compression and Dehydration Area).

Based on the results of the SSI, and the current groundwater monitoring results, additional investigations will be required to complete the delineation of dissolved-phase constituents of concern (COCs) downgradient of monitor well MW-48 (located downgradient of the former facility storm water retention pond). In addition, following the removal of the former facility condensate storage tanks (located in Area 1), additional investigations of underlying soils will be performed to determine corrective action requirements. Downgradient monitor well MW-47, also located in Area 1, will be evaluated after the next monitoring event to determine if additional investigation of dissolved-phase groundwater constituents downgradient of this location will be required.

P. O. BOX 4324 HOUSTON, TX 77210-4324 713.381.6500

1100 LOUISIANA STREET HOUSTON, TX 77002-5227 www.epplp.com Mr. Jim Griswold July 17, 2012 Page 2

Previously submitted reports for this facility also include the *Interim Remedial Investigation Report* dated May 15, 2010, the *Proposed Facility-Wide Soil and Groundwater Investigation and Remedial Activities* report dated June 10, 2010, and the *Environmental Site Investigation – Largo Compressor Station (GW-211) dated March 24, 2011.* In addition, the results of a pilot *insitu* treatment program to treat affected soils located near the former facility condensate storage tanks was submitted on October 19, 2011. These condensate tanks are now inactive, and should be removed from the site during July 2012 to allow investigation and further remedial actions of any underlying soils affected by the historical operation of these tanks.

If you have any questions, or require additional information, please do not hesitate to contact me at (713) 381-2286, or via email at: <u>drsmith@eprod.com</u>.

Sincerely,

David R. Smith, P.G. Sr. Environmental Scientist

Rodney M. Sartor, REM Manager, Remediation

/dep

Enclosures - Supplemental Site Investigation & Quarterly Groundwater Monitoring Report (April 2012 Event)

cc: Brandon Powell, New Mexico Oil Conservation Division, 1000 Rio Brazos Road, Aztec, NM 87410 H. C. Berry, P.O. Box 579, Dexter, NM 88230

ec: Chris Mitchell, Southwest Geoscience Kyle Summers, Southwest Geoscience

SUPPLEMENTAL SITE INVESTIGATION & QUARTERLY GROUNDWATER MONITORING REPORT (April 2012 Event)

GROUNDWATER DISCHARGE PLAN GW-211

Property:

LARGO COMPRESSOR STATION Section 15, Township 26N, Range 7W Rio Arriba County, New Mexico SWG Project No. 0410002 June 31, 2012

Prepared for: Enterprise Field Services, LLC 1100 Louisiana Street Houston, Texas 77002 Attention: Mr. David R. Smith, P.G.

PREPARED BY:

un

Kyle Summers, C.P.G. Senior Geologist/ Manager, Four Corners Office

B. Chris Mitchell, P.G. Principal Geoscientist

606 S. Rio Grande Avenue Unit A, Downstairs West ■ Aztec, NM 87410 Ph: (505) 334-5200 Fax: (505) 334-5204

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION2.1SITE LOCATION AND HISTORY2.2CHRONOLOGY OF EVENTS	3 4
	 2.3 CONSTITUENTS OF CONCERN 2.4 OBJECTIVES OF SUPPLEMENTAL SITE INVESTIGATION & QUARTERLY GROUNDWATER MONITORING 	
3.0	SITE CHARACTERIZATION	11 12 12 12
4.0	 SUPPLEMENTAL SITE INVESTIGATION. 4.1 SOIL BORINGS & MONITORING WELLS. 4.2 INVESTIGATION SAMPLING PROGRAM. 4.2.1 SOIL SAMPLING PROGRAM. 4.2.2 GROUNDWATER SAMPLING PROGRAM. 4.3 LABORATORY ANALYTICAL PROGRAM. 4.4 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC). 4.5 DATA EVALUATION. 4.5.1 Soil Samples	13 15 15 16 16 16
5.0	FINDINGS AND RECOMMENDATIONS	18

LIST OF APPENDICES

Appendix A: Figures

Appendix

	Figure 1:	Topographic Map
	Figure 2:	Site Vicinity Map
	Figure 3:	Site Map
	Figure 4:	Groundwater Gradient Map (April, 2012)
	Figure 5:	Remediation Action Level Exceedane Zone in Soil
	Figure 6:	GQS Exceedance Zone for Benzene (April, 2012)
B:	Tables	
	Table 1: S	oil Analytical Summary
	Table 2. C	roundurator Analytical Summary

Table 2: Groundwater Analytical Summary

Table 3: Groundwater Elevations

Appendix C: Soil Boring/Monitoring Well Logs

Appendix D: Laboratory Data Reports & Chain of Custody Documentation

Enterprise Field Services, LLC • Largo Compressor Station Supplemental Site Investigation & Quarterly Groundwater Monitoring Event SWG Project No. 0410002 June 31, 2012

SUPPLEMENTAL SITE INVESTIGATION & QUARTERLY GROUNDWATER MONITORING REPORT (April 2012 Event)

GROUNDWATER DISCHARGE PLAN GW-211

LARGO COMPRESSOR STATION Section 15, Township 26N, Range 7W Rio Arriba County, New Mexico

SWG Project No. 0410002

1.0 EXECUTIVE SUMMARY

This Supplemental Site Investigation (SSI) & Quarterly Groundwater Monitoring Report (QGMR) has been prepared in accordance with the SSI Work Plan dated January 12, 2012, as submitted to the New Mexico Energy, Minerals, and Natural Resources Department (EMNRD), Oil Conservation Division (OCD) in correspondence dated March 2, 2012. The primary objective of the supplemental site investigation activities was to further evaluate the extent of COCs in soil and/or groundwater within Area 3 and Area 4. In addition, the objective of groundwater monitoring activities was to further evaluate the extent of COCs in groundwater across the Site overtime.

During the completion of the SSI, six (6) soil borings (MW-40R, MW-48, MW-49, MW-50, MW-51, and MW-52) were advanced at the Site. Boring MW-40R was advanced to provide a deeper replacement well for monitoring well MW-40, which was plugged and abandoned in accordance with applicable state regulations. Borings MW-48 and MW-49 were advanced north of CR-379, hydrogeologically downgradient of the retention pond area (Area 3). Borings MW-50 and MW-51 were advanced hydrogeologically downgradient of previously installed monitoring well MW-39, and boring MW-52 was advanced upgradient of MW-39 (Area 4). Subsequent to advancement, each of the soil borings were converted to permanent groundwater monitoring wells.

Each of the recently installed monitoring wells was sampled as part of the quarterly groundwater monitoring program. Prior to sample collection for laboratory analysis, each monitoring well which did not exhibited measurable light non-aqueous phase liquid (LNAPL) was micro-purged utilizing low-flow sampling techniques.

The soil samples collected from soil borings MW-48 through MW-52 did not exhibit total petroleum hydrocarbon (TPH), benzene or total benzene, toluene, ethylbenzene or xylenes (BTEX) concentrations above the OCD's *Remediation Action Levels*.

A LNAPL hydrocarbon sheen has been identified in association with the initial groundwater-bearing unit in monitoring wells MW-33, MW-35, and MW-37 during the completion of previous gauging activities.

The groundwater samples collected from monitoring wells MW-3R, MW-7, MW-11, MW-12, MW-15, MW-16, MW-39, MW-47, MW-48, and MW-51 exhibited TPH gasoline range organics (GRO) concentrations ranging from 0.14 mg/L to 25 mg/L, and TPH diesel range organics (DRO) concentrations ranging from <1.0 mg/L to 112 mg/L. The highest

GRO concentration identified during the April 2012 sampling event was observed in association with the groundwater sample collected from monitoring well MW-48 (25 mg/L) and the highest DRO concentration was observed in association with the sample collected from monitoring well MW-39 (112 mg/L).

The groundwater samples collected from monitoring wells MW-7, MW-11, MW-12, MW-15, MW-16, MW-39, MW-47, MW-48, and MW-51 exhibited benzene concentrations ranging from 11 μ g/L to 4,300 μ g/L, which exceed the WQCC *Groundwater Quality Standard* of 10 μ g/L.

The groundwater samples collected from monitoring wells MW-48 and MW-51 exhibited toluene concentrations of 3,200 µg/L and 3,600 µg/L respectively, which exceed the WQCC *Groundwater Quality Standard* of 750 µg/L.

The groundwater samples collected from monitoring wells MW-12, MW-39, MW-48, and MW-51 exhibited total xylene concentrations ranging from 860 µg/L to 5,000 µg/L, which exceed the WQCC *Groundwater Quality Standard* of 620 µg/L.

Based on the results of this supplemental investigation and groundwater monitoring activities, SWG has the following recommendations:

- Report the results of this investigation to the OCD;
- Conduct additional investigation activities to further evaluate the extent of COCs in groundwater within Areas 1 and 3.
- Prepare and submit a Corrective Action Work Plan (RAP) to the OCD detailing potential corrective action alternatives to address LNAPL and/or COCs identified in soil and groundwater at the Site; and

2.0 INTRODUCTION

2.1 SITE LOCATION AND HISTORY

The Largo Compressor Station is located off of County Road (CR) 379 in Section 15, Township 26N, Range 7W in Rio Arriba County, New Mexico, referred to hereinafter as the "Site" or "subject Site". The Site is a natural gas compressor station utilized to dehydrate and compress natural gas collected from production wells in the area for transportation via pipeline. The Site was constructed in the mid-1960s and currently includes two (2) compressor engines, a dehydration unit and related treater, one (1) bullet storage tank, an out-of-service condensate storage tank battery, which includes six (6) condensate storage tanks and two (2) below-grade drain tanks, a new condensate storage tanks, inlet scrubbers, a control room, and an office/shop building.

The Site is subject to regulatory oversight by the New Mexico Energy, Minerals, and Natural Resources Department (EMNRD), Oil Conservation Division (OCD). To address activities related to crude oil/condensate related releases, the New Mexico EMNRD OCD utilizes the *Guidelines for Remediation of Leaks, Spills and Releases* as guidance, in addition to the EMNRD/OCD rules, specifically New Mexico Administrative Code (NMAC) 19.15.30 Remediation. These guidance documents establish investigation and abatement action requirements for sites subject to reporting and/or corrective action.

The Site location is depicted on Figure 1 of Appendix A which was reproduced from a portion of the United States Geological Survey (USGS) 7.5-minute series topographic map. A Site vicinity map, created from an aerial photograph, is provided as Figure 2 of Appendix A.

The areas of known or suspected impact at the Site have been previously identified as Areas 1 through 4 in OCD correspondence. Each of the areas is depicted on Figure 3 in relation to pertinent Site features and general Site boundaries. These areas are briefly described below:

Area 1(Condensate Storage Tank Area)

Area 1 is defined as the northwestern portion of the Site and includes the out-of-service condensate storage tank battery associated with on-going investigation and/or corrective actions since a release from a condensate storage tank valve was reported to the OCD in January of 2008. Additional detail regarding the investigative and corrective activities at Area 1 are provided in the *Environmental Site Investigation – Largo Compressor Station (GW-211) (SWG - March 24, 2011)*, and the *Corrective Action Pilot Study Report (SWG – October 10, 2011)*.

Area 2 (Valve Box Area)

Area 2 includes the new condensate storage tank battery and the immediately surrounding areas. This area is in the north central portion of the Site, immediately south of CR 379. During the construction of the new tank battery in June 2009, petroleum hydrocarbon impacted soils and groundwater were encountered in association with a former valve box and related appurtenances. Additional detail regarding the investigative and corrective activities at Area 2 are provided in the

Environmental Site Investigation – Largo Compressor Station (GW-211) (SWG - March 24, 2011).

Area 3 (Retention Pond Area)

Area 3 encompasses the northeast portion of the Site including the storm-water retention pond. Historical petroleum hydrocarbon affected soil and groundwater were identified during the construction of the retention pond in July of 2009, which apparently originated from historic oil and contact water treatment and storage in the area of the current retention pond. Additional detail regarding the investigative and corrective activities at Area 3 are provided in the *Environmental Site Investigation – Largo Compressor Station (GW-211) (SWG - March 24, 2011).*

Area 4 (Compression & Dehydration Area)

Area 4 includes the remainder of the Site, which includes the active compression and treatment area comprised of two (2) compressor engines, a dehydration unit and related treated and inlet scrubbers. Soil and groundwater investigation activities pertaining to Area 4 are provided in the *Environmental Site Investigation – Largo Compressor Station (GW-211) (SWG - March 24, 2011)*.

2.2 CHRONOLOGY OF EVENTS

Significant events and related activities associated with the Site, including the results of Site investigation activities and corrective action completed prior to the current SSI, are provided in the following summary:

January 4, 2008 <u>Area 1:</u> Release was discovered resulting from frozen valve failure on a condensate storage tank. The release flowed into the below-grade drain tanks, which subsequently overflowed to surrounding containment. The release was subsequently reported to the OCD.

March/April 2008Area 1: Geoprobe Investigation at Largo Compressor Station (Lodestar –
May 16, 2008): Initial field investigation activities were performed by
Lodestar Services, LLC (Lodestar) during March and April of 2008.
Nineteen (19) soil borings (B-1 through B-19) were advanced at the Site with
total depths ranging from 14.5 feet bgs to 21 feet bgs. Subsurface soils
were identified as Quaternary alluvium consisting of unconsolidated silts,
sands, and clays. Groundwater was reported in each of the soil borings
with static levels ranging from 13.15 to 19.5 feet bgs. Five (5) of the 19 soil
borings were subsequently converted to 1-inch piezometers (P-1 though P-
5) with screened intervals ranging from 9.5 feet bgs to 21 feet bgs. Based
on the depth to groundwater and proximity to a surface water body, the Site
was classified with a total ranking score greater than 19.

Lodestar collected twenty nine (29) soil samples from the nineteen (19) soil borings and submitted the samples to Hall Environmental Analytical Laboratory (HEAL) in Albuquerque, NM for TPH GRO/DRO and BTEX analysis utilizing EPA method SW-846 #8015M and #8021B, respectively. In addition, five (5) groundwater samples collected from the piezometers were submitted for TPH GRO/DRO and BTEX analysis. Based on the laboratory analytical results, soil samples collected from soil borings B-1 at 4 feet bgs, B-2 at 12.5 feet bgs, B-5 at 17.5 feet bgs, and B-14 at 17.5 feet bgs exhibited TPH GRO/DRO concentrations above the OCD *Remediation*

Action Level. The groundwater samples collected from piezometers P-1, P-2, and P-3 exhibited benzene, toluene, and/or total xylene concentrations above the WQCC *Groundwater Quality Standards.*

August/September 2008 Area_1: Enterprise submits notice that the condensate storage tank system is scheduled to be upgraded/replaced. Enterprise intends to update the Groundwater Discharge Plan upon completion of these activities.

September/October 2008 <u>Areas 1 through 4</u>: The OCD approves the planned storage tank modification from Enterprise with the condition that Enterprise files an appropriate closure plan for the old tank battery.

Area 2: An area of concern is discovered during construction activities at June/July 2009 the new condensate storage tank battery. Source of impact presumed to be valve box from a storage tank formerly utilized at this location. SMA assisted with the assessment activities and Foutz & Bursum (F&B) performed the excavation activities. Prior to fully excavating the affected soils, exploratory "potholes" were advanced to investigate the extent of contamination. Groundwater subsurface was encountered approximately 13 feet bgs during these activities. On June 26, 2009, SMA collected one soil confirmation sample from pothole #6 (PH# 6), and submitted it for analysis of TPH GRO/DRO. Based on the laboratory analytical data, the soil confirmation sample PH# 6 did not exhibit TPH GRO/DRO concentrations in exceeding the OCD Remediation Action Levels. SMA also collected a groundwater sample from pothole# 1 (PH# 1). Based on the laboratory analytical data, a benzene concentration was identified in excess of the WOCC Water Quality Standards. Based on field observations, soil screening data, and laboratory analytical data, F&B excavated the visually impacted soils at which the final excavation was reported to be approximately 100 feet long by 30 feet wide and 13 feet deep. SMA collected a total of four (4) soil confirmation samples on July 1, 2009 from the sidewalls of the Area 2 excavation and one (1) soil confirmation sample from the excavated soils and submitted them for analysis of TPH GRO/DRO. The confirmation soil samples did not exhibit COC concentrations above the OCD Remediation Action Levels. SWG subsequently collected groundwater samples from this approximate area (TSW-44 and TSW-45) and no groundwater impacts were observed (Environmental Site Investigation (SWG - March 24, 2011)).

The excavated soils were transported off-site and disposed of at the Evirotech landfarm near Angel Peak, New Mexico. In addition, a vacuum truck was utilized to remove approximately 2,000 barrels of groundwater from the excavation prior to backfill. The Area 2 excavation was backfilled in July of 2009 with unaffected soil and gravel.

July 2009 <u>Area 1:</u> Inspection Report – NMOCD (July 9, 2009): Onsite inspection by NMOCD requires tank integrity testing, improvement on leak detection monitoring, liner repair, soil and groundwater remediation, system repair or replacement.

July 2009Area 1: Response to Inspection Report - Enterprise (July 23, 2009):
Enterprise submits a workplan to perform additional investigation activities
at the Site.

July/August 2009 <u>Area 3:</u> Historical petroleum hydrocarbon impact is discovered during the construction of a storm-water retention pond at the facility. SMA was retained to sample the excavation. Initial Form C-141 was submitted to OCD on July 6, 2009.

On July 15, 2009, a cement tank containing water (apparently an old cistern) was unearthed in the vicinity of the planned storm-water retention pond. SMA collected a water sample from the tank, and subsequent BTEX analyses indicate the tank water did not exhibit BTEX concentration in excess of the WQCC *Groundwater Quality Standards (GQSs)*. Soil confirmation samples were collected below the water table (BWT) on the north side of the retention pond excavation and on the northeast wall (NE Wall) of the retention pond excavation. Analytical results indicate the soil confirmation samples BWT and NE Wall contain TPH GRO/DRO, benzene, and/or total BTEX concentrations in excess of the OCD *Remediation Action Levels*. Groundwater which was present at the BWT soil sample location was collected (GE) and submitted for analysis of BTEX. Based on the laboratory analytical results, the GE groundwater sample exhibited benzene, toluene and xylene concentrations in excess of the WQCC *GQSs*.

On July 16, 2009, SMA evaluated a total of four (4) test pits, each with a total depth of approximately 13 feet bgs, to the north and east of the retention pond excavation. Groundwater was encountered in each of the test pits at approximately 13 feet bgs. SMA collected one (1) soil sample just above the water table in each of the test pits to field screen for the presence of volatile organic compounds (VOCs). Based on visual observations within the test pits and the field screening results of the collected soils samples. It was concluded that "soil impacts likely extended beyond a reasonable area for excavation" within Area 3. The decision was made to stop extending the excavation and to remove any visibly contaminated soil remaining in the existing excavation of Area 3. SMA subsequently collected a groundwater sample from the southwest corner of the retention pond excavation (SWCRP) and submitted it for analysis of BTEX. Based on the laboratory analytical results, the SWCRP groundwater sample exhibited benzene and xylene concentrations above the WOCC GOSs.

The excavated soils, approximately 1,701 cubic yards in total (one source indicates 3,000 cubic yards), were transported off-site and disposed of at the Evirotech land farm near Angel Peak, New Mexico. In addition, a vacuum truck was utilized to remove approximately 1,120 barrels of hydrocarbon impacted groundwater from the excavation prior to backfill. The excavation was backfilled with approximately 1,360 cubic yards of unaffected material, leaving a four (4) to five (5) foot depression to utilize as the storm-water retention pond.

Area 1: Report of Subsurface Investigation at Largo Compressor Station (Lodestar – November 30, 2009: During August 2009), Lodestar performed a supplemental subsurface field investigation at the Site. Ten (10) additional soil borings (B-21 through B-30) were advanced at the Site with total depths ranging from 22 to 42 feet bgs. In addition, two (2) hand auger borings (HA-1 and HA-2) were advanced within the containment berm with total depths ranging from 8 to 17 feet bgs. Groundwater was reported in each of the soil borings with static levels ranging from 17.5 to 20.5 feet bgs. Four (4) of the ten (10) soil borings were subsequently converted to permanent 2-inch groundwater monitoring wells (MW-6 through MW-9) with screened intervals ranging from 12 to 25 feet bgs.

> Lodestar collected nineteen (19) soil samples from the ten (10) soil borings and hand auger borings and submitted them for TPH GRO/DRO and BTEX analysis. In addition, nine (9) groundwater samples were collected from the previously installed piezometers (P-1 through P-5) and the newly installed monitoring wells (MW-6 through MW-9) and submitted for TPH GRO/DRO

August 2009

and BTEX analysis. Based on the laboratory analytical results, soil samples collected from soil borings B-22 at 15 feet bgs, B-23 at 15 feet bgs, B-24 at 15 feet bgs. B-29 at 18 feet bgs. and Hand Auger-1 at 14 feet bgs exhibited total BTEX and/or TPH GRO/DRO concentrations above the NMOCD The groundwater samples collected from Remediation Action Level. piezometers P-2 and P-3 and monitoring well MW-7 exhibited benzene, toluene, and/or total xylene concentrations above the WOCC Groundwater Quality Standards. In addition, NAPL was present in piezometer P-1.

Lodestar concluded that soil and groundwater impact was limited to the bermed area and slightly outside of the bermed area in the down gradient (northwest) direction. Furthermore, the dissolved-phase contamination of the groundwater underlying the Site was migrating slightly to the northnorthwest.

Area 1: November 2009 Groundwater Sampling (Lodestar - December 17, November 2009/February 2009), Quarterly Groundwater Monitoring Report (Lodestar - April 20, 2010): 2010 Ouarterly groundwater monitoring events were performed in November of 2009 and February of 2010. Groundwater samples were collected from each of the monitoring wells at the Site and submitted for BTEX analysis. Based on the laboratory analytical results, the groundwater samples collected from the groundwater monitoring wells MW-7 and MW-11 exhibited benzene and/or total xylene concentrations above the WOCC Groundwater Quality Standards. However, the concentrations of COCs appeared to be decreasing in some areas between these monitoring events. NAPL was present in piezometer P-I during each of these two groundwater monitoring events.

Area I: Largo Compressor Station Work Plan for Groundwater Remediation January 2010 GW-211 (Lodestar - December 31, 2009): Enterprise submits a groundwater remediation work plan for the Site detailing the proposed injection of Oxygen Release Compound (ORC) and utilization of sorbent socks to the OCD.

> Area 1: The OCD approves the December 31, 2009 work plan with the following conditions:

Enterprise will continue to conduct quarterly groundwater " I . monitoring events at the facility including and episode of groundwater sampling once the new recovery well is installed and prior to the introduction of the oxygen release compound."

After installation and proper development of the 4-inch recovery " 2 well to replace existing well P-1, Enterprise will allow approximately 48 hrs for the apparent thickness of non-aqueous phase liquid to stabilize before its thickness is measured. If that apparent thickness is 10 inches or greater, then a condensate baildown/recovery test will be undertaken to better understand the thickness of condensate in-situ as well as determine what the yield of condensate might be. Only after such testing, shall the proposed oil-adsorbent sock(s) be placed in the well."

On at least a one-monthly basis thereafter (rather that the once-" 3 quarterly schedule proposed in the workplan), the adsorbent sock(s) shall be removed from the well and the apparent product thickness again be allowed to stabilize and measured. If the apparent thickness remains 10 inches or greater, another baildown/recovery test will be undertaken. Some method should be implemented to determine the volume of condensate retained by the adsorbent socks."

Analysis of all water samples will be undertaken by a qualified " 4 laboratory using either Methods 8260 (VOCs) or 8021 (BTEX), and 8015 (GRO/DRO).'

February 2010

May 2010

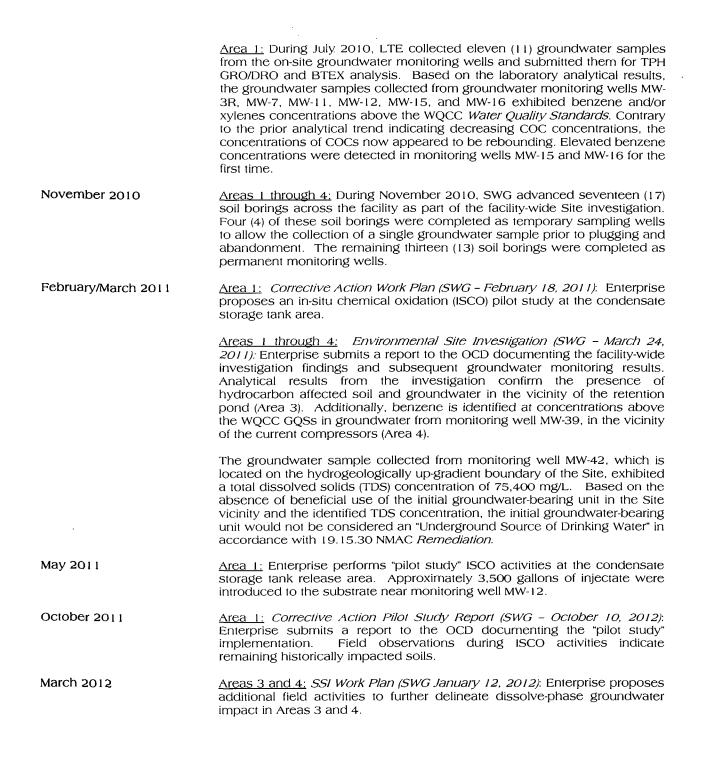
June 2010

"5. All unearthed soils, development water, water purged prior to sampling, and recovered condensate shall be properly handled, contained, transported, and disposed."

"6. All reports concerning implementation of the workplan, condensate recovery and testing, and quarterly monitoring shall be provided to the OCD no more than 45 days after completion of any field activities."

March/April 2010Area 1: Interim Remedial Investigation Report (LTE - May 15, 2010): During
March of 2010, LT Environmental, Inc. (LTE), formerly known as Lodestar,
advanced two (2) additional soil borings at the Site with total depths ranging
from approximately 31 to 32 feet bgs. Groundwater was encountered in
both soil borings with static levels ranging from 20 to 22 feet bgs. The two
(2) soil borings were subsequently converted to 2-inch groundwater
monitoring wells (MW-15 and MW-16). LTE also replaced piezometer P-1
with a 4-inch groundwater monitoring well (MW-12) which was proposed to
be utilized in recovering NAPL by introducing adsorbent socks via the well
casing. Piezometers P-2, P-3, P-4, and P-5 were also replaced with 2-inch
groundwater monitoring wells MW-11, MW3R, MW-14, and MW-13,
respectively.

<u>Area 1:</u> During April 2010, LTE collected eleven (11) groundwater samples from the on-site groundwater monitoring wells for TPH GRO/DRO and BTEX analysis. Based on the laboratory analytical results, the groundwater samples collected from groundwater monitoring wells MW-7 and MW-12 exhibited benzene, toluene, and/or xylenes concentrations above the WQCC *Water Quality Standards*. However, concentrations of COCs appeared to be decreasing from the previous monitoring event in February 2010.


<u>Area 1:</u> <u>A final C-141 was submitted to the OCD, indicating the need for additional studies.</u>

<u>Areas 1 through 4:</u> On May 27, 2010, Enterprise submits an extension request to the OCD pertaining to investigation activities at the Largo Compressor Station, citing a planned facility-wide investigation.

<u>Area 1:</u> The OCD requests clarifications on the *Interim Remedial Investigation Report dated May 15, 2010.*

<u>Areas 1 through 4</u>: *Proposed Facility-Wide Soil and Groundwater Investigation (LTE – June 8, 2010)*: Enterprise submits a work plan to provide a Site-wide assessment of the Largo Compressor Station.

<u>Areas 1 through 4:</u> The OCD approves the proposed work plan submitted on June 10, 2010 with conditions.

June/July 2010 <u>Area 1:</u> Groundwater Sampling Report (LTE – September 10, 2010): During June of 2010, LTE advanced ten (10) 4-inch boreholes utilizing hollow stem augers to a total depth of approximately 20 feet bgs. The boreholes were advanced to the north and north-northwest of the containment berm. A slurry of 65% ORC solids and water was poured directly into the hollow stem at each borehole (approximately 30 pounds of ORC per borehole) to create a plug of ORC covering approximately five vertical feet throughout the smear zone. A 2-foot thick bentonite seal was installed above the ORC slurry and the remainder of the borehole was backfilled with clean soil. LTE applied the ORC slurry to assist in biodegradation of COCs in groundwater and with the intention of limiting further down-gradient migration of the groundwater plume.

2.3 CONSTITUENTS OF CONCERN

The Site is a natural gas compressor station utilized to dehydrate and compress natural gas collected from production wells in the area for transportation via pipeline. Therefore, COCs targeted from investigation and subsequent corrective action were limited to petroleum hydrocarbon constituents (TPH GRO/DRO and BTEX). In accordance with NMOCD guidelines and general industry practice, the soil and groundwater samples collected during previous completed investigation and corrective action activities were analyzed for TPH GRO/DRO utilizing EPA method SW-846 #8015M and BTEX using EPA SW-846 method #8021B.

Summary of Historical Soil Exceedances

- Based on the laboratory analytical results, TPH GRO/DRO concentrations were identified in soil samples collected from borings B-1(4'), B-2(12.5'), B-5 (17.5'), B-14(17.5') (*Geoprobe Investigation at Largo Compressor Station, Lodestar May 16, 2009*); B-22(15.0'), B-23(15.0'), B-24(15.0'), B-29(18.0'), hand auger-2(14.0') (*Report of Subsurface Investigation at Largo Compressor Station, Lodestar November 30, 2009*); MW-33(7.5'), MW-35(9.5'), MW-37(11.5'); and Area 3 excavation samples "BWT" and "NE Wall" (*General Report EPCO Largo Station Summary, SMA 2009*) above the OCD *Remediation Action Level* of 100 mg/Kg.
- Based on the laboratory analytical results, benzene concentrations were identified in soil samples collected from borings MW-35(9.5') and excavation sample "BWT" (see *General Report EPCO Largo Station Summary, SMA 2009*) above the OCD *Remediation Action Level* of 10 mg/Kg.
- Based on the laboratory analytical results, the total BTEX concentrations identified in soil samples collected from borings B-22(15.0'), B-23(15.0') (*Report of Subsurface Investigation at Largo Compressor Station, Lodestar November 30, 2009*); MW-33(7.5'), MW-35(9.5'), MW-37(11.5'); and excavation samples "BWT" and "NE Wall" (see *General Report EPCO Largo Station Summary, SMA 2009*) were above the OCD *Remediation Action Level* of 50 mg/Kg.

January 2012 Groundwater Exceedances

- Based on the laboratory analytical results from the January 2012 groundwater sampling event, benzene concentrations were identified in groundwater samples collected from monitoring wells MW-7, MW-11, MW-12, MW-15, MW-16, and MW-39 above the NMWQCC *Water Quality Standard* of 10 µg/L.
- Based on the laboratory analytical results from the January 2012 groundwater sampling event, a xylene concentration of 1,500 µg/L was identified in the groundwater sample collected from monitoring well MW-12, which is above the NMWQCC *Water Quality Standard* of 620 µg/L.

Figure 3 indicates the approximate locations of the borings/ monitoring wells completed at the Site in relation to pertinent Site features and general Site boundaries. Figures 5 and 6 detail the OCD *Remediation Action Level* Exceedance Zone in soil and NMWQCC *Groundwater Quality Standard* Exceedance Zone in groundwater (based on April 2012

data), respectively. Comprehensive soil and groundwater analytical results for the site are included in Tables 1 and 2 (Appendix B), respectively.

2.4 OBJECTIVES OF SUPPLEMENTAL SITE INVESTIGATION & QUARTERLY GROUNDWATER MONITORING

The primary objective of the supplemental site investigation activities was to further evaluate the extent of COCs in soil and/or groundwater within Area 3 and Area 4 in accordance with the SSI Work Plan dated January 12, 2012, as submitted to the New Mexico EMNRD OCD in correspondence dated March 2, 2012. In addition, the objective of groundwater monitoring activities was to further evaluate the magnitude and extent of COCs in groundwater across the Site overtime.

3.0 SITE CHARACTERIZATION

3.1 GEOLOGY & HYDROGEOLOGY

According to the New Mexico Bureau of Geology and Mineral Resource (Geologic Map of New Mexico 2003), the Site overlies the upper Nacimiento or lower San Jose geologic formation. The Nacimiento geologic formation is a heterogeneous non-marine formation composed of sandstone, siltstone, and shale, comprised of sediment eroded from the San Juan and Brazos-Sangre de Cristo uplifts. The Paleocene-age Nacimiento Group includes the Puerco and Torrejon Formations. The Eocene age San Jose geologic formation contains a mixture of clastic sedimentary rocks varying from siltstone to conglomerate, dominated by rocks containing sand-sized particles. The lithology encountered at the Site during boring activities were composed of Quaternary alluvial deposits derived from erosion of the parent sandstones and siltstones which comprise the canyon walls. Based on the data collected during the completion of soil borings, the alluvia generally consist of tan silty sands and silty clays from the ground surface to at least 20 feet below ground surface (bgs).

The lithology observed during the advancement of soil boring MW-51 at the Site included a tan silty sand from the surface to approximately 16.0 feet bgs. The silty sand stratum was underlain by a tan brown silty clay from 16.0 feet bgs to 24.0 feet bgs. A tan sand was encountered from 24.0 feet bgs to the terminus depth of 28.0 feet bgs. The lithologies observed in the remaining soil borings at the Site were generally similar to soil boring MW-51, with slightly varying sequences of silty sands and silty clays. Detailed lithologic descriptions are presented on the soil borings logs included in Appendix C.

The major aquifer underlying the Site vicinity is listed as the Colorado Plateaus Aquifer, which is made up of four smaller aquifers, the Uinta-Animas, the Mesa Verde, the Dakota-Glen, and the Coconino-De Chelly. The Uinta-Animas is the shallowest of these aquifers, and is present in the San Juan Basin. The general composition of the aquifers is moderately to well-consolidated sedimentary rocks of an age ranging from Permian to Tertiary. Each aquifer is separated from the others by an impermeable confining unit. Two of the confining units are completely impermeable and cover the entire area of the aquifers. The other two confining units are less extensive and are thinner. These units allow water to flow between the principal aquifers. There are countless streams, rivers, and lakes that overlay the Colorado Plateaus Aquifers. The surface water bodies in this

region provide a place for the aquifers to discharge. Some of the high altitude rivers and lakes may also provide recharge.

The initial groundwater-bearing unit (GWBU) at the Site was encountered at depths ranging from 10.5 to 25 feet bgs during the supplemental investigation activities.

3.2.1 GROUNDWATER FLOW

The previously installed monitoring wells were historically surveyed for top-of-casing (TOC) elevations. The monitoring wells installed during this SSI have not yet been surveyed, however, they will be surveyed and included in future groundwater elevation and flow determinations. Prior to sample collection, SWG gauged the depth to fluids in each monitoring well. The groundwater flow direction at the Site is generally towards the northwest, with an average gradient of 0.0035 ft/ft.

Groundwater measurements collected during the most recent gauging event in April 2012 are presented with TOC elevations in Table 3, Appendix B. A groundwater gradient map for the April 2012 event is included as Figure 4 (Appendix A).

3.2.2 GROUNDWATER CLASSIFICATION

In accordance with 19.15.30 NMAC *Remediation*, a groundwater-bearing unit is classified as an "Underground Source of Drinking Water" provided the groundwaterbearing unit is capable of producing water for human consumption or that contains ground water having a total dissolved solids (TDS) concentration of 10,000 mg/l or less and that is not an exempted aquifer".

Based on the TDS analysis from upgradient monitoring well MW-42 (75,400 mg/L), the local GWBU may not qualify as an "Underground Source of Drinking Water".

3.3 LAND USE & CLASSIFICATION

Due to the absence of land use classification guidelines in the OCD *Guidelines for Remediation of Leaks, Spills and Releases* and/or NMAC 19.15.30 *Remediation*, land use was determined by comparison of existing land use of the Site to the definitions for residential and non-residential land use published in the available New Mexico Environment Department (NMED) regulatory guidance. Based on the available NMED guidance, non-residential land use encompasses all commercial and industrial land uses.

The Site is an active compressor station, while adjacent, and surrounding (beyond adjacent) properties, are currently utilized as undeveloped agricultural rangeland with occasional oil and gas gathering facilities. A ranch house is located approximately 1,800 feet west of the site, across Palluche Canyon. Based on SWG's review of the available information and visual inspection of the Site and vicinity, the Site appears to meet the non-residential land use classification.

3.4 SITE RANKING & PROPOSED CLEANUP GOALS

The Site is subject to regulatory oversight by the New Mexico EMNRD OCD. To address activities related to condensate releases, the New Mexico EMNRD OCD utilizes the *Guidelines for Remediation of Leaks, Spills and Releases* as guidance, in addition to the

OCD rules, specifically NMAC 19.15.30 *Remediation*. These guidance documents establish investigation and abatement action requirements for sites subject to reporting and/or corrective action.

In accordance with the OCD's *Guidelines for Remediation of Leaks, Spills and Releases,* SWG utilized the general site characteristics to determine the appropriate "ranking" for the Site. The ranking criteria and associated scoring are provided in the following table:

Rankin	Ranking Criteria							
	<50 feet	20						
Depth to Groundwater	50 to 99 feet	10	20					
	>100 feet	0						
Wellhead Protection Area • <1,000 feet from a water	Yes	20	2					
source, or; <200 feet from private domestic water source.	No	0	0					
Distance to Curfage Water	<200 feet	20						
Distance to Surface Water Body	200 to 1,000 feet	10	10					
,	>1,000 feet	0						
Total Rar	Total Ranking Score							

Based on SWG's evaluation of the scoring criteria, the Site would have a Total Ranking Score of 30. This ranking is based on the following:

- The depth to the initial groundwater-bearing zone is <50 feet at the Site.
- Nearby drinking water sources were not identified within 1,000 feet of the Site.
- Largo wash, which is approximate 425 feet north of the Site, is the nearest surface water feature.

Based on a Total Ranking Score of 30, cleanup goals for soil located at the Site include: 10 mg/Kg for benzene, 50 mg/Kg for total BTEX and 100 mg/Kg for TPH GRO/DRO.

In addition, cleanup goals for groundwater located at the Site include the NMWQCC *Water Quality Standards* of: 10 µg/L for benzene, 750 µg/L for toluene, 750 µg/L for ethylbenzene, and 620 µg/L for xylenes. However, the New Mexico WQCC *Groundwater Quality Standards* may not be applicable since the initial groundwater-bearing unit would not be considered an "Underground Source of Drinking Water" in accordance with 19.15.30 NMAC *Remediation* (The TDS analysis from upgradient monitoring well MW-42 (75,400 mg/L) exceeds the 10,000 mg/L drinking water requirement). Additional TDS analyses will be performed to determine ultimate applicability.

4.0 SUPPLEMENTAL SITE INVESTIGATION

4.1 SOIL BORINGS & MONITORING WELLS

In accordance with the SSI Work Plan dated January 12, 2012, as submitted to the New Mexico EMNRD, OCD in correspondence dated March 2, 2012, six (6) soil borings (MW-

40R, MW-48, MW-49, MW-50, MW-51, and MW-52) were advanced at the site. Boring MW-40R was advanced to provide a deeper replacement well for monitoring well MW-40, which was plugged and abandoned in general accordance with NMAC 19.27.4.30 *RULES AND REGULATIONS GOVERNING WELL DRILLER LICENSING; CONSTRUCTION, REPAIR AND PLUGGING OF WELLS.* Borings MW-48 and MW-49 were advanced north of CR-379, hydrogeologically downgradient of the retention pond area (Area 3). Borings MW-50 and MW-51 were advanced hydrogeologically downgradient of previously installed monitoring well MW-39, and boring MW-52 was advanced upgradient of MW-39 (Area 4).

Figure 3 of Appendix A is a Site Map which depicts the location of the soil boring in relation to pertinent land features.

Soil samples were collected continuously, utilizing four-foot core barrel samplers to the termination depth of each soil boring. Soil samples were observed to document soil lithology, color, moisture content, and visual and olfactory evidence of petroleum hydrocarbons. Field headspace analysis was conducted by placing the portion of the soil sample designated for field screening into a plastic Ziplock® bag. The plastic bag was sealed, and the sample allowed to volatilize. The air above the sample, the headspace, was then evaluated using a photoionization detector (PID) capable of detecting volatile organic compounds (VOCs). The PID was calibrated utilizing an isobutylene standard prior to use in the field.

During the completion of each soil boring, an on-Site geoscientist documented the lithology encountered and constructed a continuous profile of the soil column from the surface to the boring terminus. Soil samples from each boring location were visually inspected and classified in the field. The lithology observed during the advancement of soil boring MW-51 at the Site included a tan silty sand from the surface to approximately 16.0 feet bgs. The silty sand stratum was underlain by a tan silty clay from 16.0 feet bgs to 24.0 feet bgs. A tan sand was encountered from 24.0 feet bgs to the terminus depth of 28.0 feet bgs. The lithologies observed in the remaining soil borings at the Site were generally similar to soil boring MW-51, with slightly varying sequences of silty sands and silty clays. Detailed lithologic descriptions are presented on the soil borings logs included in Appendix C.

PID readings were not identified above the instrument detection limit in the soils screened from borings MW-49, MW-50, and MW-52. PID readings ranged from below instrument detection to 373 part per million (ppm) in the soils screened from borings MW-48 (high of 9 ppm) and MW-51 (high of 373 ppm). The PID readings identified in association with soils screened from boring MW-48 were confined to the capillary fringe zone, while PID readings > 0 ppm were observed in soils screened from boring MW-51 at depths between 8 and 20 feet bgs, and again at the capillary fringe (23 feet bgs). The highest PID reading from soil boring MW-51 was recorded between 12 and 13 feet bgs. Field screening results are presented on the soil boring logs included in Appendix C.

Subsequent to advancement, each of the soil borings were converted to permanent groundwater monitoring wells. The monitoring wells were completed using the following methodology:

• Installation of 10 feet of 2-inch inside diameter, 0.010-inch machine slotted PVC well screen with a threaded bottom cap;

- Installation of 2-inch inside diameter, threaded flush joint PVC riser pipe to the ground surface;
- Addition of a pre-sieved 10/20 grade annular silica sand pack from the bottom of the soil boring to 2-feet above the top of the well screen;
- Addition of a hydrated bentonite seal above the sand pack filter zone;
- Addition of grout to the surface; and,
- Installation of a locking well cap and circular, bolt-down, flush mount well cover or above-grade "stick up" steel cover.

Monitoring well construction details are presented on the monitoring well logs included in Appendix C.

4.2 INVESTIGATION SAMPLING PROGRAM

4.2.1 SOIL SAMPLING PROGRAM

SWG's soil sampling program involved submitting one (1) soil sample from each soil boring for laboratory analysis, with the exception of soil boring MW-40R which was a replacement well. Soil samples were collected from the zone exhibiting the highest PID reading, from a change in lithology, or from the bottom of the boring, based on the field professional's judgment.

Soil sample intervals are presented with the soil sample analytical results (Table 1) in Appendix B and are provided on the boring logs included in Appendix C.

4.2.2 GROUNDWATER SAMPLING PROGRAM

Each of the newly installed monitoring wells was sampled as part of the quarterly groundwater monitoring program. Prior to sample collection, each monitoring well was micro-purged utilizing low-flow sampling techniques. Low-flow refers to the velocity with which groundwater enters the pump intake and that is imparted to the formation pore water in the immediate vicinity of the well screen. It does not necessarily refer to the flow rate of water discharged at the surface which can be affected by flow regulators or restrictions. Water level drawdown provides the best indication of the stress imparted by a given flow-rate for a given hydrological situation. The objective was to pump in a manner that minimizes stress (drawdown) to the system to the extent practical taking into account established site sampling objectives. Flow rates on the order of 0.1 to 0.5 L/min were maintained during the sampling activities using dedicated sampling equipment.

The utilization of low-flow minimal drawdown techniques enables the isolation of the screened interval groundwater from the overlying stagnant casing water. The pump intake is placed within the screened interval such that the groundwater recovered is drawn in directly from the formation with little mixing of casing water or disturbance to the sampling zone.

The monitoring wells were purged until produced groundwater was consistent in color, clarity, pH, dissolved oxygen (DO), oxidation/reduction potential (ORP), temperature, and conductivity.

4.3 LABORATORY ANALYTICAL PROGRAM

The soil and groundwater samples were analyzed for TPH GRO/DRO using EPA method SW-846 #8015B and BTEX using EPA method SW-846 method #8021B.

Laboratory results are summarized in the tables included in Appendix B. The executed chain-of-custody form and laboratory data sheets are provided in Appendix D.

4.4 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

All non-disposable sampling equipment was cleaned using an Alconox[®] wash and potable water rinse prior to the beginning of the project and before the collection of each sample.

Soil and groundwater samples were collected and placed in laboratory prepared glassware, sealed with custody tape and placed on ice in a cooler, which was secured with a custody seal. The sample coolers and completed chain-of-custody forms were relinquished to Hall Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico for standard turnaround.

HEAL performed the analyses of samples under an adequate and documented quality assurance program to meet the project and data quality objectives. The laboratory's quality assurance program is generally consistent the quality standards outlined in the National Environmental Laboratory Accreditation Program, as amended. In addition, the data generated by HEAL meet the intra-laboratory performance standards for the selected analytical method and the performance standards are sufficient to meet the bias, precision, sensitivity, representativeness, comparability, and completeness, as specified in the project data quality objectives.

4.5 DATA EVALUATION

The Site is subject to regulatory oversight by the New Mexico EMNRD OCD. To address activities related to crude oil/condensate related releases, the New Mexico EMNRD OCD utilizes the *Guidelines for Remediation of Leaks, Spills and Releases* as guidance, in addition to the EMNRD/OCD rules, specifically New Mexico Administrative Code (NMAC) 19.15.30 *Remediation.* These guidance documents establish investigation and abatement action requirements for sites subject to reporting and/or corrective action.

4.5.1 Soil Samples

SWG compared the TPH GRO/DRO and BTEX concentrations or laboratory reporting limits (RLs) associated with the soil samples collected from soil borings MW-48 through MW-52 to the OCD *Remediation Action Levels*.

TPH GRO/DRO

Soil samples collected from soil borings MW-48 through MW-52 did not exhibit TPH GRO/DRO concentrations above the laboratory RLs, which are below the OCD's *Remediation Action Level* of 100 mg/Kg.

<u>Benzene</u>

The soil samples collected from soil borings MW-48 through MW-52 exhibited benzene concentrations ranging from below the laboratory RLs to 0.056 mg/Kg, which are below the OCD's *Remediation Action Level* of 10 mg/Kg.

Total BTEX

The soil samples collected from soil borings MW-48 through MW-52 exhibited total BTEX concentrations from below the laboratory RLs to 0.456 mg/Kg, which are below the OCD's *Remediation Action Level* of 50 mg/Kg.

The results of the soil sample analyses are summarized in Table 1 of Appendix B. Figure 5 (Appendix A) presents the *Remediation Action Level* Exceedance Zone in Soil based on the cumulative soil analytical data.

4.5.2 Groundwater Samples

SWG compared BTEX concentrations or laboratory RLs associated with the groundwater samples collected from monitoring wells during the April 2012 sampling event to the New Mexico WQCC *Groundwater Quality Standards;* however, the New Mexico WQCC *Groundwater Quality Standards* may not be applicable since the initial groundwater-bearing unit would not be considered an "Underground Source of Drinking Water" in accordance with 19.15.30 NMAC *Remediation*.

TPH GRO/DRO

The groundwater samples collected from monitoring wells MW-3R, MW-7, MW-11, MW-12, MW-15, MW-16, MW-39, MW-47, MW-48, and MW-51 exhibited TPH GRO concentrations ranging from 0.14 mg/L to 25 mg/L, and TPH DRO concentrations ranging from <1.0 mg/L to 112 mg/L. The highest GRO concentration identified during the April 2012 sampling event was observed in association with the groundwater sample collected from monitoring well MW-48 (25 mg/L) and the highest DRO concentration was observed in association with the sample collected from monitoring well MW-48 (25 mg/L) and the highest DRO concentration was observed in association with the sample collected from monitoring well MW-39 (112 mg/L).

The groundwater samples collected from the remaining monitoring wells did not exhibit TPH GRO or DRO concentrations above the laboratory RLs during the January 2012 sampling event.

Benzene, Toluene, Ethylbenzene, and Xylenes

Due to the presence of LNAPL hydrocarbons in association with the initial groundwaterbearing unit, monitoring wells MW-33, MW-35, and MW-37 were not sampled during the completion of field activities.

The groundwater samples collected from monitoring wells MW-7, MW-11, MW-12, MW-15, MW-16, MW-39, MW-47, MW-48, and MW-51 exhibited benzene concentrations ranging from 11 μ g/L to 4,300 μ g/L, which exceed the WQCC *Groundwater Quality Standard* of 10 μ g/L.

The groundwater samples collected from the remaining monitoring wells did not exhibit benzene concentrations above the laboratory RLs, which are below the WQCC *Groundwater Quality Standard* of 10 µg/L.

The groundwater samples collected from monitoring wells MW-48 and MW-51 exhibited toluene concentrations of 3,200 µg/L and 3,600 µg/L respectively, which exceed the WQCC *Groundwater Quality Standard* of 750 µg/L.

The groundwater samples collected from the remaining monitoring wells exhibited toluene concentrations ranging from below the laboratory RLs to 620 μ g/L, which are below the WQCC *Groundwater Quality Standard* of 750 μ g/L.

The groundwater samples collected from the monitoring wells during the April 2012 sampling event exhibited ethylbenzene concentrations ranging from below the laboratory RLs to 360 μ g/L which are below the WQCC *Groundwater Quality Standard* of 750 μ g/L.

The groundwater samples collected from monitoring wells MW-12, MW-39, MW-48, and MW-51 exhibited total xylene concentrations ranging from 860 µg/L to 5,000 µg/L, which exceed the WQCC *Groundwater Quality Standard* of 620 µg/L.

The groundwater samples collected from the remaining monitoring wells exhibited xylene concentrations ranging from below the laboratory RLs to 38 μ g/L, which are below the WQCC *Groundwater Quality Standard* of 620 μ g/L.

The results of the groundwater sample analyses are summarized in Table 2 of Appendix B. Figure 6 (Appendix A) presents the *Groundwater Quality Standard* Exceedance Zone for Benzene based on the April 2012 groundwater analytical data.

5.0 FINDINGS AND RECOMMENDATIONS

The primary objective of the supplemental site investigation activities was to further evaluate the extent of COCs in soil and/or groundwater within Area 3 and Area 4. In addition, the objective of groundwater monitoring activities was to further evaluate the magnitude and extent of COCs in groundwater across the Site overtime.

Area 1 (Condensate Storage Tank Area)

The northeastern portion of the Site includes the condensate storage tank battery which has been under investigation since January 2008, when a release from a frozen value was discovered and reported to the OCD. A "Pilot Study" (*Corrective Action Pilot Study Report, SWG October 2011*) was performed in 2011 to evaluate the effectiveness of insitu chemical oxidation (ISCO) at reducing the level of VOCs in the source area substrate. Additional ISCO may be utilized at Area 1 once the storage tanks and soils beneath the tanks have been removed. Tank cleaning and removal are scheduled for June/July of 2012.

As part of the quarterly groundwater monitoring program, groundwater samples were collected from the twelve (12) existing monitoring wells in this area. COC concentrations in Area 1 groundwater generally decreased during the April 2012 groundwater sampling event, with the exception of monitoring well MW-47. Benzene was detected in the sample from MW-47 at a concentration of 11 µg/L, which exceeds the WQCC *Groundwater Quality Standard* of 10 µg/L. If this result is verified during the subsequent quarterly sampling event, additional delineation may be required. With the exception of the exceedance at MW-47, the dissolve-phase distribution of COCs appears to remain delineated by the current monitoring well network.

The groundwater samples collected from monitoring wells MW-7, MW-11, MW-12, MW-15, MW-16, and MW-47 exhibited benzene concentrations ranging from 11 μ g/L to 4,300 μ g/L, which exceed the WQCC *Groundwater Quality Standard* of 10 μ g/L.

The groundwater sample collected from monitoring well MW-12 exhibited a total xylene concentration 930 μ g/L, which exceed the WQCC *Groundwater Quality Standard* of 620 μ g/L.

Enterprise is currently evaluating supplemental corrective action alternatives to further reduce the identified COC concentrations in soil and groundwater in Area 1.

Area 2 (Valve Box Area)

Based on the results of historic corrective actions and subsequent investigation activities (TSW-44), *Remediation Action Level Exceedance Zone(s)* and/or WQCC *Groundwater Quality Standard Zone(s)* are not associated with Area 2.

Area 3 (Retention Pond Area)

Historic soil and groundwater impact was reported during the excavation of a stormwater retention pond at the Site in June of 2009. Approximately 1,700 cubic yards of petroleum hydrocarbon affected soils were excavated from the area and disposed offsite, and approximately 1,120 barrels of hydrocarbon affected groundwater was removed from the resulting excavation and disposed off-site.

NAPL is present in association with the initial groundwater-bearing unit in monitoring wells MW-33, MW-35, and MW-37. Inadvertently, these wells were not gauged during the April 2012 groundwater monitoring event, but will be gauged during the future events.

Satellite imagery and topographic maps suggest a former drainage channel traverses the Site from south to north through the retention pond area, resulting in the identified distribution of COC in the initial groundwater-bearing zone in Area 3. Two (2) monitoring wells, MW-48 and MW-49, were advanced downgradient of monitoring well MW-37 during the supplemental site investigation.

The groundwater sample collected from monitoring well MW-48 exhibited benzene, toluene, and total xylenes at concentrations which exceed the WQCC *Groundwater Quality Standards*.

Partial delineation of the dissolve-phase COC plume is provided by the existing monitoring well network, but additional investigation would be required to further evaluate the extent of COCs in groundwater to the north, hydrogeologically down-gradient of monitoring well MW-48.

Area 4 (Compression & Dehydration Area)

Hydrocarbon affected soil and groundwater were identified north, hydrogeologically down-gradient from the current natural gas compressors at monitoring well MW-39. Three (3) additional soil borings/monitoring wells (MW-50, MW-51, and MW-52) were installed during the supplemental site investigation in the vicinity of the current compressors and related appurtenances.

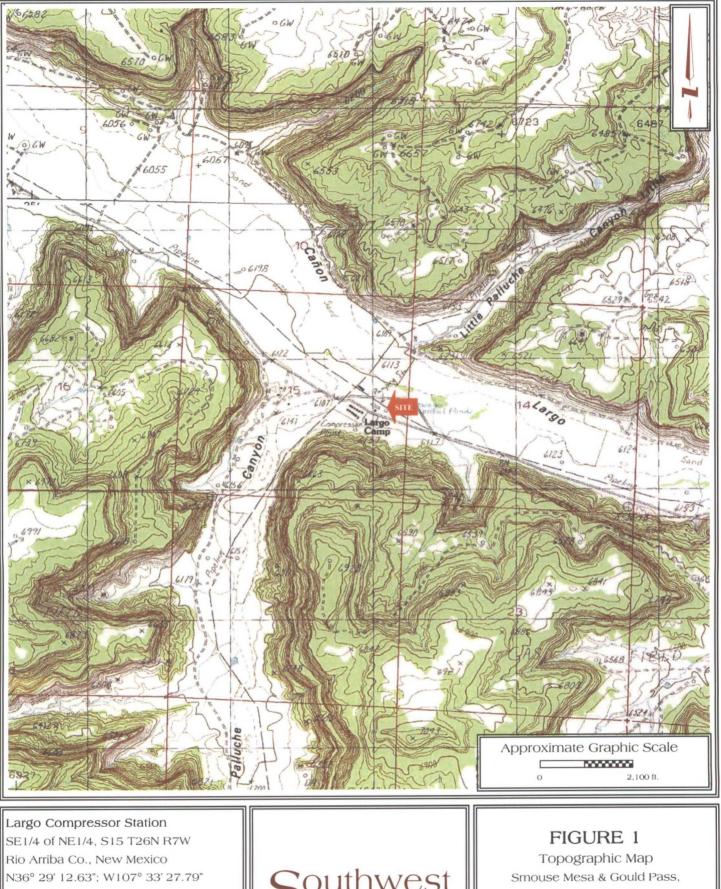
Laboratory analytical results did not identify COC concentrations in soil in exceedance of the OCD *Remediation Action Levels*.

The groundwater samples collected from monitoring wells MW-39 and MW-51 exhibited benzene concentrations ranging of 1,500 μ g/L and 1,200 μ g/L, respectfully, which exceed the WQCC *Groundwater Quality Standard* of 10 μ g/L.

The groundwater sample collected from monitoring well MW-51 exhibited a toluene concentration of 3,600 μ g/L, which exceeds the WQCC *Groundwater Quality Standard* of 750 μ g/L.

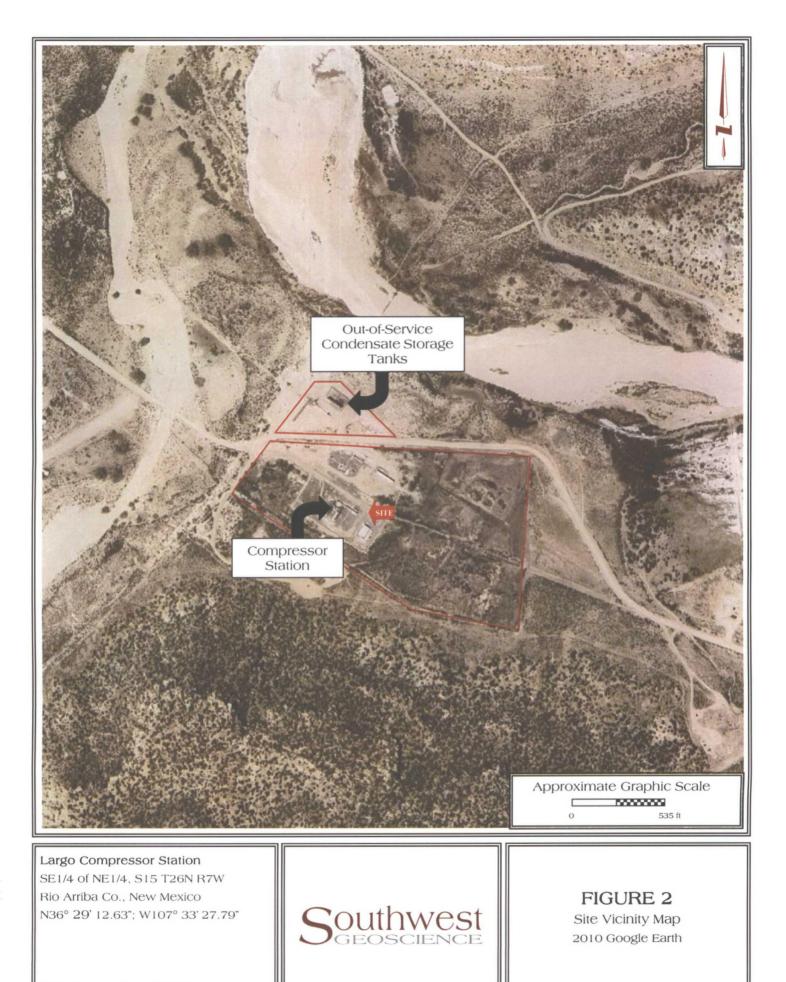
The groundwater samples collected from monitoring wells MW-39 and MW-51 exhibited total xylene concentrations ranging from 860 μ g/L to 1,400 μ g/L, which exceeds the WQCC *Groundwater Quality Standard* of 620 μ g/L.

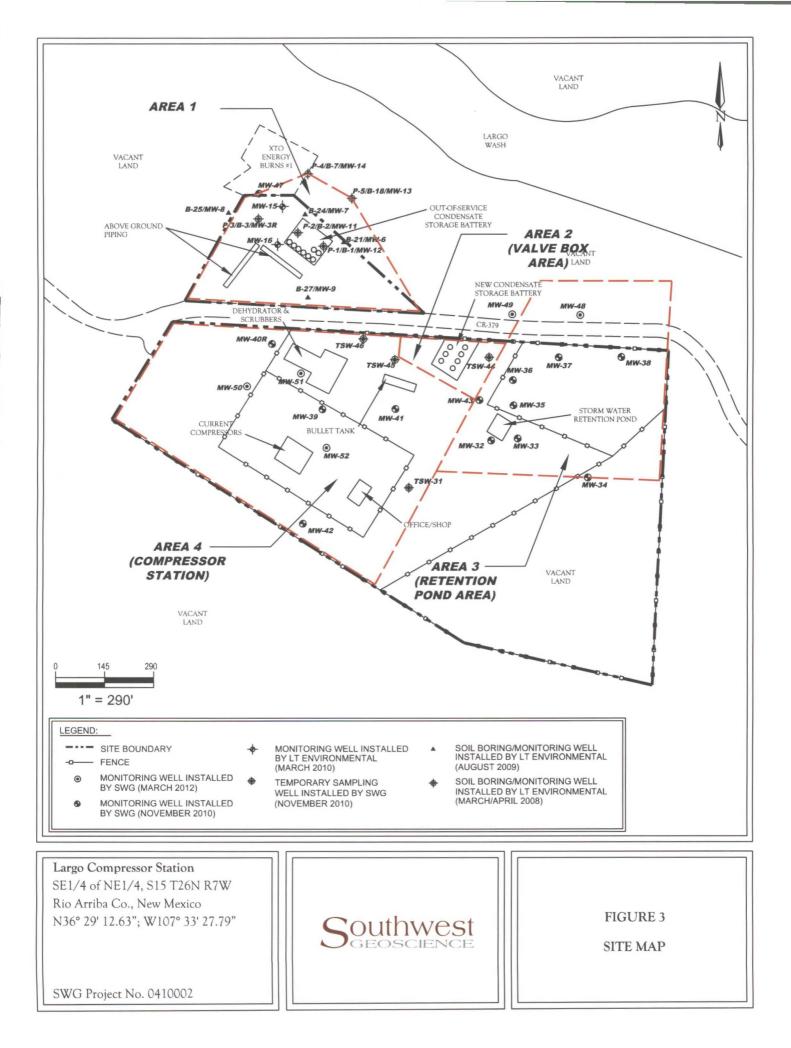
Based on the results of the supplemental site investigation and subsequent quarterly groundwater monitoring, the dissolve-phase COC groundwater plume in the vicinity of the compressors and glycol unit appears to be defined within the current monitoring well network.

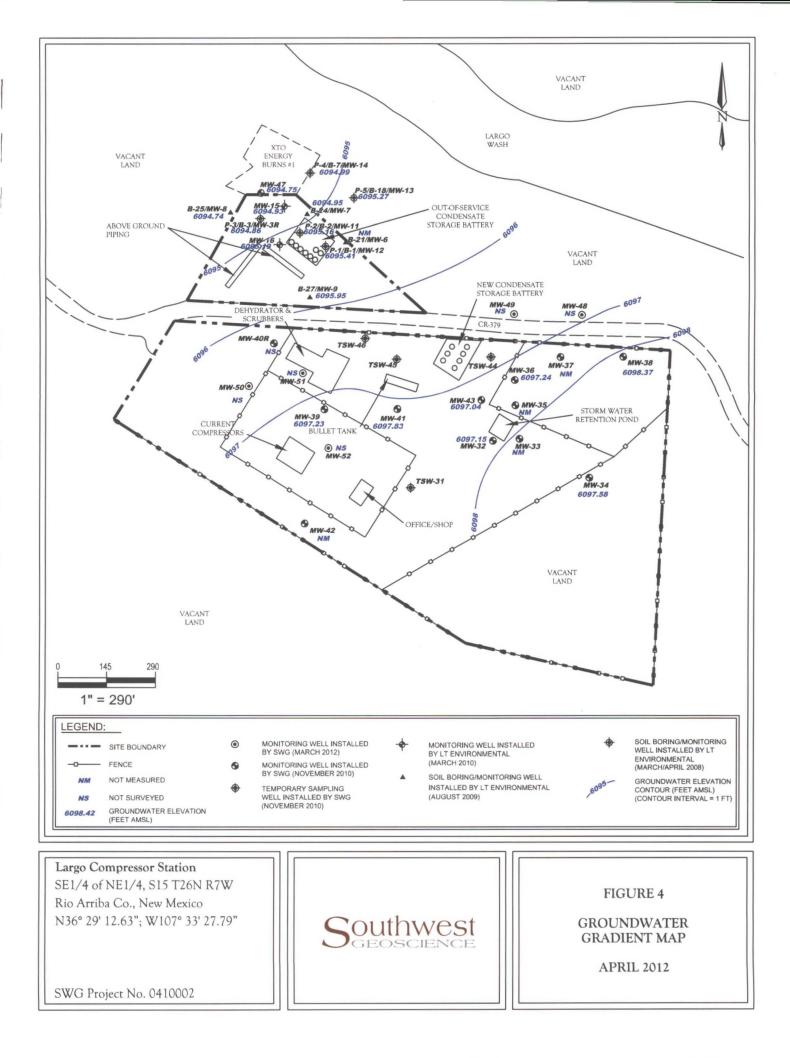

Based on the results of this supplemental investigation and groundwater monitoring activities, SWG has the following recommendations:

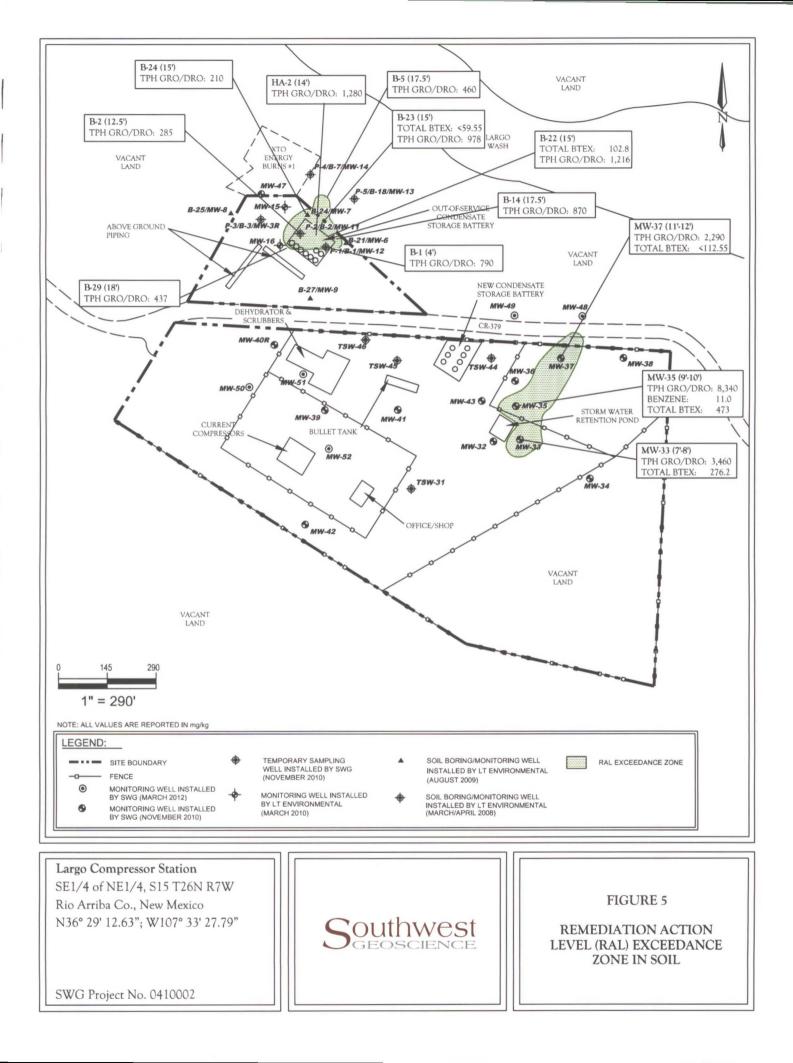
- Report the results of this investigation to the OCD;
- Conduct additional investigation activities to further evaluate the extent of COCs in groundwater within Areas 1 and 3.
- Prepare and submit a Corrective Action Work Plan (RAP) to the OCD detailing potential corrective action alternatives to address LNAPL and/or COCs identified in soil and groundwater at the Site; and

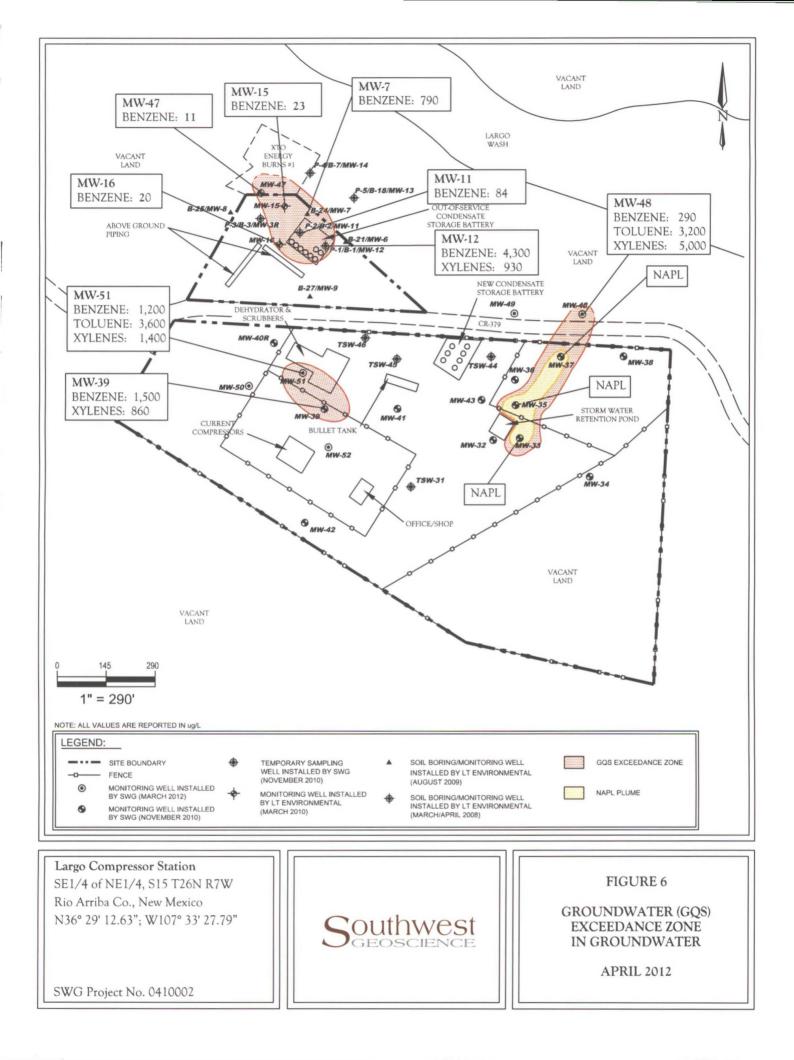
APPENDIX A


Figures


SWG Project No. 0410002


Southwest


Topographic Map Smouse Mesa & Gould Pass NM Quadrangle Contour Interval – 20 Feet 1985



SWG Project No. 0410002

APPENDIX B

Tables

TABLE 1 Largo Compressor Station SOIL ANALYTICAL SUMMARY

Sample111Dia	Date	Sample Depth (feet)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg):	Xylenes (mg/kg)	Total BTEX	TPH GRO (mg/kg)	TPH DRO (mg/kg)
	y, Mineral & Nat Dil Conservation lation Action Le	Division,	10	NE	NE	NE	50		100
			So	Il Boring Advance	d by Lodestar/L	TE CALL	Treed	LEAD.	Last zice
B-I	3.31.08	4.0	<0.5	<0.5	1.5	44	<46.5	550	240
B-1	3.31.08	14.5	1.8	<0.05	0.12	0.25	<2.22	6.7	<10
B-2	3.31.08	12.5	<0.5	1.4	0.82	13	<15.72	240	45 .
B-2	3.31.08	21.0	1.5	<0.05	<0.05	0.23	<1.83	7.5	<10
B-3	3.31.08	21.0	<0.05	<0.05	<0.05	<0.1	<0.16	<5.0	<10
B-4	3.31.08	23.0	0.64	<0.05	0.19	0.12	</td <td><5.0</td> <td><10</td>	<5.0	<10
B-5	4.01.08	17.5	1.2	<0.1	1.7	17	<20	400	60
B-6	4.01.08	18.0	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-7	4.01.08	18.0	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-8	4.01.08	18.0	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-9	4.01.08	21.0	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-10	4.01.08	10.0	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-10	4.01.08	20.0	0.06	<0.05	0.16	2.3	<2.57	55	<10
B-11	4.01.08	20.0	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-12	4.02.08	18.5	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-12	4.02.08	20.0	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-13	4.02.08	10.0	<0.05	<0.05	<0.05	<0.1	<u> </u>	<5.0	<10
<u>B-13</u>	4.02.08	12.5	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
<u>B-13</u>	4.02.08	20.0	0.092	<0.05	<0.05	<0.1	<0.292	9.8	<10
<u> </u>	4.02.08	5.0 17.5	<0.05	<0.05 5.5	<0.05 1.8	<0.1	<0.25 31.5	<5.0 870	<10 <10
B-14 B-14	4.02.08	22.0	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-15	4.02.08	17.5	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-15	4.02.08	20.0	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-16	4.02.08	20.0	<0.05	<0.05	< 0.05	<0.1	<0.25	<5.0	<10
B-17	4.02.08	17.5	0.47	<0.05	< 0.05	<0.1	<0.67	<5.0	<10
B-17	4.02.08	20.0	0.069	<0.05	<0.05	<0.1	<0.269	<5.0	<10
B-18	4.02.08	20.0	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-19	4.02.08	20.0	<0.05	<0.05	< 0.05	<0.1	<0.25	<5.0	<10
B-21	8.04.09	20.0	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-22	8.04.09	15.0	10	25	5.8	62	102.8	1200	16
B-22	8.04.09	20.0	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-23	8.04.09	15.0	<0.25	9.3	4	46	<59.55	960	18
B-23	8.04.09	20.0	0.28	<0.05	<0.05	<0.1	<0.48	<5.0	<10
B-24	8.04.09	15.0	<0.25	<0.25	0.63	7.9	<9.03	200	10
B-24	8.04.09	22.0	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-25	8.04.09	20.0	<0.05	<0.05	<0.05	<0,1	<0.25	<5.0	<10
B-26	8.04.09	20.0	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-27	8.04.09	20.0	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-28	8.07.09	15.0	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-28	8.07.09	20.0	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-29	8.07.09	15.0	<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
B-29 B-29	8.07.09	20.0	<0.05	<0.05	<0.05	<0.1 18	<0.25 <21.7	<5.0 420	<10 17
	8.07.09	18.0	<1.0	<1.0					and the second sec
B-30 B-30	8.07.09	15.0 20.0	<0.05	<0.05 <0.05	<0.05	<0.1	<0.25 <0.25	<5.0 <5.0	<10
	8.07.09 8.07.09		<0.05	<0.05	<0.05	<0.1	<0.25	<5.0	<10
Hand Auger - I	8.07.09	5.0 14.0	<0.05	<0.05	<1.0	<3.0	<6.0	980	300

Note: Concentrations in **bold** and yellow exceed the applicable OCD Remediation Action Level

NA = Not Analyzed

NE = Not Established

,

.

.

NAPL = Non-aqueous phase liquid

* = piezometer well was replaced with associated monitoring well

				rgo Compr	LE 1 essor Static cal SUMMAR				
Sample 1 D.	Date	Sample Depth (feet)	Benzené (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)-	Xylenes (mg/kg)	Total BTEX	GRO (mg/kg)	DRO (mg/kg)
	v, Mineral & Nat Il Conservation ation Action Le	î Division,	10	NE	NE	NE	50		100
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		AQUAL :	Soll Sample	s Collected by S	ouder, Miller and	Associates	. <u>2.267</u>		
	从来到 着			Area 2 (Val	ve Box Area)				
Riser Wall (South)	7.01.09	5 - 10	NA	NA	NA	NA	NA	<5.0	28
South Wall (East)	7.01.11	5 - 10	NA	NA	NA	NA	NA	<5.0	17
North Wall (West)	7.01.11	5 - 10	NA	NA	NA	NA	NA	<5.0	<10
Road Wall (North)	7.09.11	13	<0.050	<0.050	<0.050	<0.10	ND	<5.0	<10
				Area 3 (Retent	tion Pond Area)		1.11	위험은 정말한 -	
PH-6	6.26.09	Not Avail.	NA	NA	NA	NA	NA	<10	<10
RPE	7.14.09	13.0	0.5	1.8	0.25	2.6	5.15	28	13
RPES	7.14.09	0.0	<0.050	1.2	0.07	8.4	9.72	130	40
BWT	7.15.09	20.0	14	210	45	460	729	7,200	540
NE Wall	7.15.09	Not Avail.	9.7	67	31	230	111	4,000	360
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		25. A.	Soil Bori	ings Advanced k	y Southwest Ges	őclence			
TSW-31	11.16.10	12.0 - 14.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10
MW-32	11.16.10	13.0 - 14.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10
MW-33	11.16.10	7.0 - 8.0	7.2	82	17	170	276.2	3,300	160
MW-34	11.16.10	16.0 - 17.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10
MW-35	11.17.10	9.0 - 10.0	11	130	32	300	473	7,900	440
MW-36	11.17.10	12.0 - 13.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10
MW-37	11.17.10	11.0 - 12.0	<0.05	14	9.5	89	<112.55	2,000	290
MW-38	11.17.10	9.0 - 10.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10
MW-39	11.17.10	15.0 - 16.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10
MW-40	11.17.10	16.0 - 17.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10
MW-41	11.17.10	13.0 - 14.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10
MW-42	11.17.10	19.0 - 20.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10
MW-43	11.17.10	15.0 - 16.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10
TSW-44	11.17.10	15.0 - 16.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10
TSW-45	11.17.10	14.0 - 15.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10
TSW-46	11.17.10	12.0 - 13.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10
MW-47	11.22.10	16.0 - 18.0	<0.05	<0.05	<0.05	<0.10	<0.25	<5.0	<10
MW-48	3.20,12	11.0 -12.0	0.056	<0.049	<0.049	0.40	0.456	<4.9	<9.9
MW-49	3.20.12	10.0 - 11.0	<0.050	<0.050	<0.050	<0.099	<0.249	<5.0	<9.8
MW-50	3.20.12	20.0 - 21.0	<0.050	<0.050	<0.050	<0.10	<0.25	<5.0	<10.0
MW-51	3.20,12	12.0 - 13.0	0.049	0.16	<0.047	0.13	0.339	<4.7	<10.0
MW-52	3.20,12	16.0 • 17.0	<0.048	<0.048	<0.048	<0.097	<0.241	<4.8	<10

Note: Concentrations in **bold** and yellow exceed the applicable OCD Remediation Action Level

NA = Not Analyzed

NE = Not Established

NAPL = Non-aqueous phase liquid

 * = plezometer well was replaced with associated monitoring well

						•	<u> </u>	CIENCE
			TZ	ABLE 2				
			Largo Cón	npressor St	ation			
		CPC	UNDWATER					
		(.*FA(PUNEWATEA	ANALITICAL	SOMMAN			
Sample 1:D.	Date	Total	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	трн
14 M	Date	Dissolved	· ·	2.	100 TP 20	80 A.	-ゆったん:	1.8
		Solids	(µg/L)	le / (μ g/L)	(µg/L)	(µg/L)	GRO	DRO
in the second	1. Sec.	: (mg/L)	1	÷.,	「人気」	eri Tanın tar	(mg/L)	(mg/L)
New Mexico Wat	er Quality Control					R.S.	1	<u>8</u> 20
Commission Gr	oundwater Quality	NE	10	750	750	620	NE	NE
Stand	tards			President and				
	5)	Martin Start Start	0	is installed by 10		Solution and the second s	54.3	100 100 100 100 100 100 100 100 100 100
P-1	4.04.08	NA	5,700	2,200	310	5,500	53	<1.0
P-1	8.10.09	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
P-1	11.24.09	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
P-1	2.25.10	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-12 (P-1*)	4.05.10	NA	1,300	1,600	110	2,200	20	1.2
MW-12 (P-1*)	5.27.10	NA	3,300	1,800	180	3,200	NA	NA
MW-12 (P-1*)	7.13.10	NA	2,900	330	140	1,700	22	1.0
MW-12 (P-1*)	8.26.10	NA	1,200	420	70	1,300	13	<1.0
MW-12 (P-1*)	11.18.10	NA	1,100	69	61	720	6.3	<1.0
MW-12 (P-1*)	2.4.11	NA	5,900	<50	470	1,600	24	<1.0
MW-12 (P-1*)	4.19.11	NA	4,200	190	<100	330	14	<1.0
MW-12 (P-1*)	5.19.11	NA	1,000	520	36	660	13	15
MW-12 (P-1*)	7.28.11	NA	12,000	2,300	320	3,200	54	3.9
MW-12 (P-1*)	10.28.11	NA	4,900	59	130	3,300	29	7.3
MW-12 (P-1*)	1.31.12	NA	4,400	62	110	1,500	18	11
MW-12 (P-1*)	4.19.12	NA	4,300	53	150	930	22	5.8
P-2	4.04.08	NA	15,000	2,100	380	4,600	120	6.8
P-2	8.10.09	NA	9,800	110	170	1,400	NA	NA
P-2	11.24.09	NA	21,000	360	460	2,700	NA	NA
P-2	2.25.10	NA	19,000	380	380	2,800	NA	NA
MW-11 (P-2*)	4.05.10	NA	<1.0	<1.7	<1.0	3.3	0.22	<1.0
MW-11 (P-2*)	5.27.10	NA	4.4	<1.0	<1.0	<2.0	NA	NA
MW-11 (P-2*)	7.13.10	NA	700	4.5	11	56	3.6	1.2
MW-11 (P-2*)	8.26.10	NA	86	<1.0	1.3	4.9	0.4	<1.0
MW-11 (P-2*)	11.18.10	NA	<1.0	<1.0	<1.0	<2.0	0.14	<1.0
MW-11 (P-2*)	2.4.11	NA	21	<1.0	<1.0	<1.0	0.075	<1.0
MW-11 (P-2*)	4.19.11	NA	96	12	1.2	27	0.39	<1.0
MW-11 (P-2*)	7.28.11	NA	46	<1.0	38	76	11	1.7
MW-11 (P-2*)	10.28.11	NA	1,600	<10	31	37	4.6	2.2
MW-11 (P-2*)	1.31.12	NA	470	<10	12	<20	1.3	<1.0
MW-11 (P-2*)	4.19.12	NA	84	<1.0	3.2	<2.0	0.43	<1.0
P-3	4.04.08	NA	780	13	81	20	4.2	<1.0
P-3 P-3	8.10.09	<u>NA</u>	35	<1.0	3.8	<2.0	NA NA	NA NA
P-3	11.24.09	NA	1.4	<1.0			NA	
P-3 MW-3R (P-3*)	2.25.10	NA NA	3.6	10	2	24 <2.0	. <0.05	NA <1.0
MW-3R (P-3*) MW-3R (P-3*)	4,05.10	NA NA	<1.0	<1.0	<1.0	<2.0	. <u><0.05</u> NA	<1.0 NA
MW-3R (P-3*)	7.13.10	NA	13	<1.0	1.3	6.4	1.4	1
MW-3R (P-3*)	8.26.10	NA	5.0	<1.0	<1.0	2.3	0.46	<1.0
MW-3R (P-3*)	11.18.10	NA	3.9	<1.0	<1.0	<2.0	0.40	<1.0
MW-3R (P-3*)	2.1.11	NA	2.0	<1.0	<1.0	<2.0	0.16	<1.0
MW-3R (P-3*)	4.18.11		<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-3R (P-3*)	7.28.11	NA	1.5	<1.0	<1.0	7.1	1.50	<1.0
MW-3R (P-3*)	10.27.11	NA	1.1	<1.0	<1.0	<2.0	0.57	<1.0
MW-3R (P-3*)	1.30.12	NA	<1.0	<1.0	<1.0	<2.0	0.16	<1.0
MW-3R (P-3*)	4,19,12	NA	<1.0	<1.0	<1.0	<2.0	0.16	<1.0
P-4	4.04.08	NA	<1.0	<1.0	<1.0	<2.0	0.42	<1.0
P-4	8.10.09	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
P-4	11.24.09	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
P-4	2.25.10	NA	2.5	7.5	<1.0	14	NA	NA
	4.05.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-14 (P-4*)	5.27.10	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-14 (P-4*)			<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-14 (P-4*) MW-14 (P-4*)	7.13.10	NA						<1.0
MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*)	7.13.10 8.26.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	
MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*)	7.13.10 8.26.10 11.18.10	NA NA	<1.0 <1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*)	7.13.10 8.26.10 11.18.10 2.1.11	NA NA NA	<1.0 <1.0 <1.0	<1.0	<1.0 <1.0	<2.0 <2.0	<0.05 <0.050	<1.0 <1.0
MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*)	7.13.10 8.26.10 11.18.10 2.1.11 4.19.11	NA NA NA NA	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<2.0 <2.0 <2.0	<0.05 <0.050 <0.050	<1.0 <1.0 <1.0
MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*)	7.13.10 8.26.10 11.18.10 2.1.11 4.19.11 7.28.11	NA NA NA NA NA	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<2.0 <2.0 <2.0 <2.0	<0.05 <0.050 <0.050 <0.050	<1.0 <1.0 <1.0 <1.0
MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*) MW-14 (P-4*)	7.13.10 8.26.10 11.18.10 2.1.11 4.19.11	NA NA NA NA	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<2.0 <2.0 <2.0	<0.05 <0.050 <0.050	<1.0 <1.0 <1.0

			TA	ABLE 2				
				npressor Sta				
		GRO	DUNDWATER .	ANALYTICAL	SUMMARY			
Sample I.D.	Date	Total	Benzene	Toluene	Ethylbenzene	Xylenes	्र TPH	TPH
		Dissolved Solids	(µg/L).	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
* * \\ 		(mg/L)				ning Santar	(mg/L)	(mg/L) ,
Commission G	ter Quality Control roundwater Quality Idards	NE	10	750	750	620	NE	NE
P-5	4.04.08	NA	<1.0	<1.0	<1.0	<2.0	0.1	<1.0
P-5	8.10.09	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
<u>P-5</u> P-5	11.24.09 2.25.10	NA NA	<1.0 1.8	<1.0 6.1	<1.0	<2.0	NA NA	NA NA
MW-13 (P-5*)	4.05.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-13 (P-5*)	5.27.10	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
<u>MW-13 (P-5*)</u> MW-13 (P-5*)	8.26.10	NA NA	<1.0 <1.0	<1.0	<1.0	<2.0 <2.0	<0.05	<1.0 <1.0
MW-13 (P-5*)	11.18.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-13 (P-5*)	2.3.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-13 (P-5*) MW-13 (P-5*)	4.19.11 7.28.11	NA NA	<1.0	<1.0	<1.0 <1.0	<2.0 <2.0	<0.050	<1.0
MW-13 (P-5*)	10.27.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-13 (P-5*) MW-13 (P-5*)	1.30.12 4.19.12	NA NA	<1.0	<1.0	<1.0	<2.0 <2.0	<0.050 <0.050	<1.0
MW-13 (P-5*) MW-6	8.10.09	NA	<1.0	<1.0	<1.0	<2.0	×0. <u>05</u> 0 NA	
MW-6	11.24.09	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-6	2.25.10 4.05.10	NA NA	<1.0	<1.0	<1.0	<2.0	NA <0.05	NA <1.0
MW-6	5.27.10	NA	<1.0 <1.0	<1.0	<1.0	<2.0 <2.0	NA	NA
MW-6	7.13.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-6	8.26.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
<u>MW-6</u> MW-6	1.31.11	NA NA	<1.0	<1.0	<1.0	<2.0	<0.05 <0.050	<1.0
MW-6	4.19.11	NΛ	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-6	7.28.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-6 MW-6	10.27.11	NA NA	<1.0 <1.0	<1.0	<1.0	<2.0 <2.0	<0.050 <0.050	<1.0
MW-6	4.19.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-7	8.10.09	NA	15,000	<100	380	310	NA	NA
 	<u>11.24.09</u> 2.25.10	NA NA	13,000 3,000	<100 <10	<u>150</u> 40	<u><200</u> 31	NA NA	NA NA
MW-7	4.05.10	NA	940	<10	<10	<20	4.2	1.3
MW-7	5.27.10	NA NA	700	<10	11	<20 25	NA	NA 4.6
 	8.26.10	NA	15,000 5,300	<20	35	<u>25</u> <40	18	4.6
MW-7	11.18.10	NA	3,700	<20	62	<40	11	1.2
MW-7 MW-7	2.1.11 4.19.11	NA NA	1,800	<1.0	2.9	<u>4.6</u> 2.4	2.2 0.75	<1.0
	5.19.11	NA	250 1,400	<5.0	15.0	<10	4.0	<1.0
MW-7	7.28.11	NA	75	<5.0	200	62.0	45	2.7
 	10.28.11	NA NA	1,300	<10	140	<20 <20	<u>32</u> 21	<u> </u>
MW-7	4.19.12	NA	9,000 790	<10	110	<20	2.7	<1.0
MW-8	8.10.09	NA	<1.0	<1.0	<1.0	<2.0	. NA	NA
<u>MW-8</u>	11.24.09	NA	<1.0	<1.0	<1.0	<2.0	NA NA	NA NA
MW-8	2.25.10 4.05.10	NA NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-8	5.27.10	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-8 MW-8	7.13.10	NA NA	<1.0 <1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-8	11.18.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-8	1.31.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
<u>MW-8</u>	4.18.11	NA NA	<1.0	<1.0	<1.0	<2.0	<0.050 <0.050	<1.0
MW-8	10.27.11	NΛ	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-8 MW-8	1.27.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050 <0.050	<1.0
MW-8 MW-9	4.19.12	NA NA	<1.0	<1.0	<1.0	<2.0	<u><0.050</u> NA	<1.0 NA
MW-9	11.24.09	NA	<1.0	<1.0	<1.0	<2.0		NA
MW-9	2.25.10	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-9 MW-9	4.05.10	NA NA	<1.0 <1.0	<1.0	<1.0	<2.0 <2.0	<0.05 NA	<1.0 NA
MW-9	7.13.10	NA NA	<1.0 <1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-9	8.26.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-9 MW-9	11.18.10	NA NA	<1.0	<1.0	<1.0	<2.0	<0.05 <0.050	<1.0
MW-9 MW-9	4.19.11	NA NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-9	7,29.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-9 MW-9	10.27.11	<u>NA</u> NA	<1.0	<1.0	<1.0 <1.0	<2.0 <2.0	<0.050 <0.050	<1.0
MW-9	<u>1.27.12</u> 4.19.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0

•

Southwest

				ABLE 2 Apressor Sta	ation			
· E	GROUNDWATER ANALYTICAL SUMMARY							
Sample I.D.	Date	Total	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	трн
	4 1 1 1	Dissolved Solids (mg/L)	(jug/L)	(µg/Ľ)	(μ g/L)	(J , B ,H)	GRO (mg/L)	DRO
Commission Gr	er Quality Control	NE	10	750	750	620	NE	NE
MW-15	4.05.10	NA	1.1	<1.0	<1.0	<2.0	<0.05	<1.0
MW-15	5.27.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-15	7.13.10	NA	490	2.2	7.2	15	3.2	<1.0
MW-15	8.26.10	NA	20	<1.0	<1.0	<2.0	0.095	<1.0
MW-15 MW-15	2,1.11	NA	<u> </u>	<1.0	<1.0	<2.0	0.19	<1.0
MW-15	4.18.11	NA	13	<1.0	<1.0	<2.0	0.14	<1.0
MW-15	7.28.11	NA	1500	<1.0	19	20	6.7	<1.0
MW-15 MW-15	10.28.11	NA	810	<10	<10 <10	<20 <20	2.2	1.0
	4.18.12	NA NA	<u>150</u> 23	<10	1.4	<2.0	0.51	<1.0
MW-16	4.05.10	NA	3.8	1.5	1.4	11	0.36	<1.0
MW-16	5.27.10	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-16 MW-16	7.13.10 8.26.10	NA	47	<1.0	<1.0	<2.0	0.3	<1.0
MW-16	<u> </u>	NA NA	<u> </u>	<1.0	<1.0	<2.0	0.095	<1.0
MW-16	2.1.11	NA	61	<1.0	1.3	2.1	0.20	<1.0
MW-16	4.18.11	NA	34	<1.0	3.7	4.4	0.16	<1.0
MW-16 MW-16	7.28.11	<u>NA</u>	43	<1.0	1.9	<2.0	0.29	<1.0
MW-16	1.30.12	NA	21 10	<1.0	<1.0	<2.0	0.096	<1.0
MW-16	4.18.12	NA	20	<1.0	1.0	<2.0	0.14	<1.0
TSW-31	11.23.10	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-32	1.28.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-32 MW-32	4.19.11	NA NA	<1.0	<1.0	<1.0	<2.0 <2.0	<0.050 <0.050	<1.0
MW-32	10.26.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-32	1.27.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-32	4.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-33 	4.20.11	NA NA	NAPL NAPL	NAPL NAPL	NAPL NAPL	NAPL NAPL	NAPL NAPL	NAPL NAPL
MW-33	7.28.11	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-33	10.26.11	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-33	1.27.12	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-33	4.18.12	NA	NAPL	NAPL	NAPL	NAPL	NAPL 10.050	NAPL
MW-34 MW-34	4.19.11	NA NA	<1.0	<1.0	<1.0	<2.0	<0.050 <0.050	<1.0
MW-34	7.29.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-34	10.26.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-34 MW-34	<u> </u>	NA NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-35	1,28.11	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-35	4.20.11	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-35	7.28.11	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-35 MW-35	10.26.11 1.27.12	NA	NAPL NAPL	NAPL NAPL	NAPL NAPL	NAPL NAPL	NAPL NAPL	NAPL NAPL
MW-35 MW-35	4.18.12	NA NA	NAPL NAPL	NAPL NAPL	NAPL NAPL	NAPL NAPL	NAPL NAPL	NAPL NAPL
MW-36	1.31.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-36	4.20.11	NA	<1.0	2.1	<1.0	<2.0	<0.050	<1.0
MW-36	7.29.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050 <0.050	<1.0
MW-36 MW-36	10.27.11	NA NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-36	4.18.12	ΝΛ	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-37	2.4.11	NA	3,100	6,200	700	7,000	38	3.9
MW-37 MW-37	4.20.11 7.28.11	NA NA	2,500 NAPL	3,600 NAPL	500 NAPL	5,100 NAPL	34 NAPL	4.2 NAPL
	10.26.11	NA NA	NAPL NAPL	NAPL	NAPL	NAPL NAPL	NAPL	NAPL
MW-37	1.27.12	NΛ	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-37	4.18.12	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-38	1.26.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050 <0.050	<1.0
MW-38 MW-38	4.20.11 7.29.11	NA NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-38	10.27.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-38	1.27.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-38	4,18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-39 MW-39	4.19.11	NA	1,200	730 <1.0	<u> </u>	570 5.9	0.33	<1.0
MW-39 MW-39	7.29.11	NA NA	120 27	14	1.0	18	0.33	<1.0
							0.44	<1.0
MW-39 MW-39	10.27.11	NA	260	<1.0 48	4.3	<u>3.5</u> 79	1.8	<1.0

.

.

Southwest

			T∕ T∕	ABLE 2					
			Largo Con	noressor Sta	ation				
)						
		GRO	DUNDWATER .	ANALYTICAL	SUMMARY				
Sample 1.D.	Date	Total	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH	
		Dissolved Solids	° (µg/L)	(µg/L)	(H8/L)	(µg/L)	GRO	DRO	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		(mg/L)					(mg/L)	(mg/L)	
Nau Marina W	ter Quality Control		OPTO (>		9 10 256 66			Adda .	
" " " " " "	aroundwater Quality		10	750	750	620	NB	NE	
Sta	ndards	NE	10				14 6 3 3 4 6 6 6		
MW-40	1.28,11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	
MW-40	4.20.11	NA	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0	
MW-40	7.28,11	NA	Dry	Dry	Dry	Dry	Dry	Dry	
MW-40	10.26,11	NA	Drv	Dry	Drv	Dry	Dry	Dry	
MW-40	1.27.12	NA	Dry	Dry	Dry	Dry	Dry	Dry	
MW-40R	4.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	
MW-41	1.31.11	NA	<5.0	<5.0	<5.0	<10	<0.25	<1.0	
MW-41	4.18.11	NA	<5,0	<5.0	<5.0	<10	<0.25	<1.0	
MW-41	7.29,11	NA	<5.0	<5.0	<5.0	<10	<0.050	<1.0	
MW-41	10.27,11	NA	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0	
MW-41	1.27.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	
MW-41	4.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	
MW-42	2.4.11	NA	<5.0	<5.0	<5.0	<10	<0.25	NA	
MW-42	3.3.11	75,400	NA	NA	NΛ	NA	NA	NA	
MW-42	4.19.11	NA	<5.0	<5.0	<5.0	<10	<0.25	<1.0	
MW-42	7.28.11	NA	Dry	Dry	Dry	Dry	Dry	Dry	
MW-42	10.26.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	
MW-42	1.30.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	
MW-42	4.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	
MW-43	1.28,11	NA	<1.0	<1.0	<1.0	<2.0	0.06	<1.0	
MW-43	4.19.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	
MW-43	7.29.11	NΛ	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	
MW-43	10.26.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	
MW-43	1.27.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	
MW-43	4.18,12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	
TSW-44	11.18.10	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	
TSW-45	11.18.10	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	
TSW-46	11.23.10	NA	0.1>	<1.0	<1.0	<2.0	<0.050	<1.0	
MW-47	1.28,11	NA	<5.0	<5.0	<5.0	<10	1.3	2.5	
MW-47	4.18.11	NA	<5.0	<5.0	<5.0	<10	2.0	1.2	
MW-47	7.28.11	NA	<5.0	<5.0	<5.0	27.0	6.6	1.1	
MW-47	10.28.11	NA	<5.0	<5.0	<5.0	<10	1.4	2.7	
MW-47	1.30.12	NA	<5.0	<5.0	<5.0	<10	2.6	2.5	
MW-47	4.18.12	NA	11	<5.0	16			2.9	
MW-48	4.18.12	NA	290	3,200	360	5,000	25	1.3	
MW-49	4.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	
MW-50	4.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	
MW-51	4.18.12	NA	1,200	3,600	150	1,400	19	<1.0	
MW-52	4.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	

Note: Concentrations in **bold** and yellow exceed the applicable OCD Remediation Action Level

NA = Not Analyzed NE = Not Established

1

i.

|

NAPL = Non-aqueous phase liquid * = piczometer well was replaced with associated monitoring well

				1		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
		Top-of-Casing			Cale of the second s	
Monitoring Well ID.	MaggiramontiData	Elevation		Depth to Water	A State of the second sec	Corrected Groundwater
	Measurement Date	(feet)		🦉 🛀 (feet) 😳 🛒	(feet)	Elevation
	4.5.10		None Observed		0.0	6095.64
	5.27.10 6.25.10		None Observed	21.82 22.22	0.0	6095.65
	7.13.10		None Observed	22.22	0.0	6095.25 6095.00
	8.26.10		None Observed	22.24	0.0	6095.23
	11.18.10		None Observed	22.32	0.0	6095.15
MW-3R	1.25.11	6117.47	None Observed	22.13	0.0	6095.34
	4.22.11		None Observed	21.99	0.0	6095.48
	7.27.11		None Observed	22.81	0.0	6094.66
	10.26.11		None Observed	. 22.91	0.0	6094.56
	1.26.12		None Observed	22.74	0.0	6094.73
	4.19.12		None Observed	22.61	0.0	6094.86
	8.10.09		None Observed	20.28	0.0	6095.19
	11.24.09		None Observed	20.17	0.0	6095.30
	2.25.10		None Observed	19.54	0.0	6095.93
	4.5.10		None Observed	19.11	0.0	6096.36
	5.27.10		None Observed	19.28	0.0	6096.19
	6.25.10		None Observed	19.87	0.0	6095.60
	7.13.10		None Observed	20.09	0.0	6095.38
MW-6	8.26.10	6115.47	None Observed	19.68	0.0	6095.79
	11.18.10		None Observed	19.72	0.0	6095.75
	1.25.11		None Observed	19.51	0.0	6095.96
	4.22.11		None Observed	19.42	0.0	6096.05
	7.27.11		None Observed	20.4	0.0	6095.07
	1.26.12		None Observed	20.43	0.0	6095.04 6095.32
	4.19.12			Not Gauged	0.0	Not Gauged
	8.10.09		None Observed	21.52	0.0	6095.13
	11.24.09		None Observed	21.73	0.0	6094.92
	2.25.10		None Observed	21.42	0.0	6095.23
	4.5.10		None Observed	20.96	0.0	6095.69
	5.27.10		None Observed	20.96	0.0	6095.69
	6.25.10		None Observed	21.32	0.0	6095.33
	7.13.10		None Observed	21.32	0.0	6095.19
MW-7	8.26.10	6116.65	None Observed	21.46	0.0	6095.29
101 0 0 - 1		0110.03	None Observed	21.30	0.0	6095.23
	11.18.10		None Observed	21.42	0.0	
	1.25.11		None Observed			6095.41
	4.22.11		· · · · · · · · · · · · · · · · · · ·	21.22	0.0	6095.43
	7.27.11		None Observed	21.8	0.0	6094.85
	10.26.11		None Observed	21.94	0.0	6094.71
	1.26.12		None Observed	21.82	0.0	6094.83
	4.19.12		None Observed	21.70	0.0	6094.95
	8.10.09		None Observed	23.17	0.0	6095.11
	11.24.09			23.43	0.0	6094.85
	2.25.10		None Observed	23.25	0.0	6095.03
	4.5.10		None Observed	22.97	0.0	6095.31
	5.27.10		None Observed	22.85	0.0	6095.43
	6.25.10		None Observed	23.01	0.0	6095.27
M14/ 0	7.13.10	6110.20		23.21	0.0	6095.07
MW-8	8.26.10	6118.28	None Observed	23.23	0.0	6095.05
			None Observed	23.3	0.0	6094.98
	1.25.11		None Observed	23.1	0.0	6095.18
	4.22.11		None Observed	22.94	0.0	6095.34
	7.27.11		None Observed	23.56	0.0	6094.72
	10.26.11		None Observed	23.75	0.0	6094.53
	1.26.12		None Observed	23.64	0.0	6094.64
	4.19.12		None Observed	23.54	0.0	6094.74

•

;

1

No. of the second s	- plantation of the same same	STATISTIC PLANT AND STATE	ويسود مرود الاراد الاراد والمرود	Service of the service of	For which a set is a set owned	A Contraction of the contraction
		Top-of-Casing			Sec. St. Mary C. Prairies	
	and the second se	Elevation	Depth to PSH		PSH Thickness	が 残 な かいどう うちかい しょうかい かいしょ
Monitoring Well ID	Measurement Date	(feet)	^{体体} (feet)公子:	**************************************	(f ee t)	
	8.10.09		None Observed	21.95	0.0	6095.88
	11.24.09		None Observed	21.98	0.0	6095.85
	2.25.10		None Observed	_ 21.51	0.0	6096.32
	4.5.10		None Observed	21	0.0	6096.83
	5.27.10		None Observed	21.1	0.0	6096.73
	6.25.10	,	None Observed	21.56	0.0	6096.27
	7.13.10		None Observed	21.77	0.0	6096.06
MW-9	8.26.10	6117.83	None Observed	21.58	0.0	6096.25
	11.18.10		None Observed	21.61	0.0	6096.22
	1.25.11		None Observed	21.43	0.0	6096.40
	4.22.11		None Observed	21.30	0.0	6096.53
	7.27.11		None Observed	22.15	0.0	6095.68
			None Observed	22.25	···-	
	10.26.11				0.0	6095.58
	1.26.12		None Observed	22.04	0.0	6095.79
	4.19.12		None Observed	21.88	0.0	6095.95
	4.5.10		None Observed	20.57	0.0	6096.08
	5.27.10		None Observed	20.75	0.0	6095.90
	6.25.10		None Observed	21.33	0.0	6095.32
	7.13.10		None Observed	21.54	0.0	6095.11
	8.26.10		None Observed	21.17	0.0	6095.48
MW-11	11.18.10	6116.65	None Observed	21.16	0.0	6095.49
	1.25.11		None Observed	21.02	0.0	6095.63
	4.22.11		None Observed	20.91	0.0	6095.74
	7.27.11		None Observed	21.89	0.0	6094.76
	10.26.11		None Observed	21.94	0.0	6094.71
	1.26.12		None Observed	21.64 21.49	0.0	6095.01
	4.19.12					6095.16
	4.5.10		None Observed	14.88	0.0	6096.36
	5.27.10		None Observed	15.11	0.0	<u> 6096.13 </u>
	6.25.10	6111.24	None Observed	15.67	0.0	6095.33
	<u>7.13.10</u> 8.26.10		None Observed	15.55	0.0	6095.69
	11.18.10		None Observed	16.58	0.0	6094.66
MW-12	1.25.11		None Observed	15.73	0.0	6095.51
	4.22.11		None Observed	15.3	0.0	6095.94
	7.27.11		None Observed	16.1	0.0	6095.14
	10.26.11		None Observed	16.21	0.0	6095.03
	1.26.12		None Observed	15.99	0.0	6095.25
	4.19.12		None Observed	15.83	0.0	6095.41
	4.19.12		None Observed	19.26	0.0	6096.20
	5.27.10		None Observed	19.20	0.0	6095.99
	6.25.10		None Observed	20.07	0.0	6095.39
	7.13.10		None Observed	20.28	0.0	6095.18
	8.26.10		None Observed	19.86	0.0	6095.60
10415	11.18.10		None Observed	19.91	0.0	6095.55
MW-13	1.25.11	6115.46	None Observed	19.71	0.0	6095.75
	4.22.11		None Observed	19.65	0.0	6095.81
	7.27.11		None Observed	20.59	0.0	6094.87
	10.26.11	1	None Observed	20.62	0.0	6094.84
	1.26.12		None Observed	_20.34	0.0	6095.12
	4.19.12		None Observed	20.19	0.0	6095.27
	4. <u>5.1</u> 0		None Observed	20.09	0.0	6095.90
	5.27.10		None Observed	20.28	0.0	6095.71
	6.25.10		None Observed	20.94	0.0	6095.05
	7.13.10		None Observed	21.19	0.0	6094.80
	8.26.10		None Observed	20.70	0.0	6095.29
MW-14	11.18,10	6115.99	None Observed	20.73	0.0	6095.26
11117 I T	1.25.11	0113,99	None Observed	20.52	0.0	6095.47
	4.22.11		None Observed	20.45	0.0	6095.54
	7.27.11		None Observed	21.47	0.0	6094.52
	10.26.11	[None Observed	21.48	0.0	6094.51
	1.26.12		None Observed	21.15	0.0	6094.84
	4.19.12		None Observed	21.00	0.0	6094.99

1				2012		
		Top-of-Casing		and an and a second		
Monitoring Well ID	Measurement Date	Elevation (feet)	Depth to PSH (feet)	Depth to Water (feet)	PSH Thickness	Corrected Groundwater Elevation
Monitoring won in	4.5.10		None Observed	20.66	0.0	6095.83
	5.27.10		None Observed	20.80	0.0	6095.67
	6.25.10		None Observed	21.43	0.0	6095.06
	7.13.10		None Observed	21.64	0.0	6094.85
	8.26.10		None Observed	21.25	0.0	6095.24
101/1-	11.18.10		None Observed	21.36	0.0	6095.13
MW-15	1.25.11	6116.49	None Observed	21.07	0.0	6095.42
	4.22.11		None Observed	20.95	0.0	6095.54
	7.27.11		None Observed	21.95	0.0	6094.54
	10.26.11		None Observed	21.98	0.0	6094.51
	1.26.12		None Observed	21.70	0.0	6094.79
	4.19.12		None Observed	21.56	0.0	6094.93
	4.5.10		None Observed	21.51	0.0	6096.06
	5.27.10		None Observed	51.59	0.0	6065.98
	6.25.10		None Observed	22.10	0.0	6095.47
	7.13.10		None Observed	22.29	0.0	6095.28
	8.26.10		None Observed	22.05	0.0	6095.52
MW-16	11.18.10	6117.57	None Observed	22.11 21.87	0.0	6095.46 6095.70
	4.22.11		None Observed	21.87	0.0	6095.81
	7.27.11		None Observed	22.66	0.0	6094.91
	10.26.11		None Observed	22.71	0.0	6094.86
	1.26.12		None Observed	22.50	0.0	6095.07
	4.19.12		None Observed	22.38	0.0	6095.19
	1.25.11		None Observed	12.67	0.0	6097.53
	4.22.11		None Observed	12.49	0.0	6097.71
MW-32	7.27.11		None Observed	13.47	0.0	6096.73
WW-32	10.26.11	6110.2	None Observed	13.56	0.0	6096.64
	1.26.12		None Observed	13.23	0.0	6096.97
	4.18.12	-	None Observed	13.05	0.0	6097.15
T	1.25.11*		16.08	16.44	0.36	6097.88
	4.22.11		16.59	16.60	0.01	6097.41
MW-33	7,27.11	6114	· 16.07	16.72	0.65	6097.85
'	10.26.11		15.55	16.15	0.60	6098.38
-	1.26.12		15.83	15.84	0.01	6098.17
<u></u> _	4.18.12		Not Gauged	17.20		Not Gauged
	1.25.11		None Observed	17.38 17.20	0.0	6097.98
	4.22.11 7.27.11		None Observed	17.20	. 0.0	6098.16 6097.13
MW-34	10.26.11	6115.36	None Observed	18.32	0.0	6097.04
	1.26.12		None Observed	17.98	0.0	6097.38
	4.18.12		None Observed	17.78	0.0	6097.58
	1.25.11*		14.5	14.75	0.25	6097.68
1	4.22.11		14.22	14.80	0.58	6097.92
MW-35	7.27.11	6112.21	15.11	16.36	1.25	6096.95
	10.26.11	0112.21	15.14	16.64	1.50	6096.89
	1.26.12		14.72	14.73	0.01	6097.49
	4.18.12		Not Gauged			Not Gauged
Ļ	1.25.11		None Observed	13.80	0.0	6097.62
ŀ	4.22.11		None Observed	13.65	0.0	6097.77
MW-36	7.27.11	6111.42	None Observed	14.69	0.0	6096.73 6006.07
ŀ	10.26.11		None Observed	14.45	0.0	6096.97
ŀ	1.26.12 4.18.12		None Observed	14.18	0.0	<u>6097.01</u> 6097.24
	1.25.11		None Observed	12.91	sheen	6097.88
ŀ	4.22.11	ł	None Observed	12.91	0.0	6098.01
F	7.27.11		13.81	13.84	0.03	6096.98
MW-37	10.26.11	6110.79	13.88	13.92	0.04	6096.91
	1.26.12		13.54	13.54	0.01	6097.26

	Measurement Date	Top-of-Casing Elevation (feet)	Depth to PSH (feet)	Depth to Water	PSH Thickness-	Corrected Groundwater
	1.25.11	(IOCI)#ACC	None Observed	12.06	0.0	6098.42
	4.22.11		None Observed	11.87	0.0	6098.61
	7.27.11		None Observed	13.01	0.0	6097.47
MW-38		6110.48				
	10.26.11		None Observed	13.10	0.0	6097.38
	1.26.12		None Observed	12.68	0.0	6097.80
	4.18.12		None Observed	12.11	0.0	6098.37
	1.25.11		None Observed	16.21	0.0	6097.63
	4.22.11		None Observed	17.35	0.0	6096.49
MW-39	7.27.11	6113.84	None Observed	16.43	0.0	6097.41
MW-39	10.26.11	0113.64	None Observed	16.52	0.0	6097.32
	1.26.12		None Observed	16.57	0.0	6097.27
	4.18.12		None Observed	16.61	0.0	6097.23
î	1.25.11		None Observed	19.16	0.0	6096.53
	4,22,11		None Observed	dry	0.0	dry
MW-40	7.27.11	6115.69	None Observed	dry	0.0	dry
	10.26.11	0110.00	None Observed	dry	0.0	dry
	1.26.12		None Observed	dry	0.0	dry
MW-40R			None Observed	19.58	0.0	Not Yet Surveyed
MW-40h	4.18.12					
	4.22.11		None Observed	<u>14.14</u>	0.0	6097.96 6097.92
	7.27.11		None Observed	14.18	0.0	6097.92
MW-41	10.26.11	6112.1	None Observed	14.08	0.0	6098.02
	1.26.12		None Observed	14.97	0.0	6097.90
	4.18.12		None Observed	14.20	0.0	6097.83
<u> </u>			None Observed	24.88		6096.62
	4.22.11**		None Observed	Errant Gauge	0.0	
	7.27.11		None Observed	drv	0.0	Errant Gauge dry
MW-42	10.26.11	6121.5	None Observed	25.16	0.0	0096.34
ł	1.26.12		None Observed	24.92	0.0	6096.58
l l l l l l l l l l l l l l l l l l l	4.18.12		Not Gauged	24.92	0.0	Not Gauged
	1.25.11		None Observed	15.41	0.0	6097.50
ł	4.22.11		None Observed	15.30	0.0	6097.61
ł	7.27.11		None Observed	16.27	0.0	6096.64
MW-43	10.26.11	6112.91	None Observed	16.35	0.0	6096.56
•	1.26.12		None Observed	16.05	0.0	6096.86
	4.18.12		None Observed	15.87	0.0	6097.04
	1.25.11		None Observed	19.22	0.0	6095.20
	4.22.11		None Observed	19.02	0.0	6095.40
ł	7.27.11		None Observed	19.69	0.0	6094.73
MW-47	10.26.11	6114.42	None Observed	19.86	0.0	6094.56
	1.26.12		None Observed	19.79	0.0	6094.63
ł	4.19.12		None Observed	19.67	0.0	6094.75
	4.18.12		None Observed	Not Gauged	0.0	Not Yet Surveyed
	4.18.12		None Observed	12.38	0.0	Not Yet Surveyed
MW-50	4.18.12		None Observed	24.64	0.0	Not Yet Surveyed
MW-51	4.18.12		None Observed	18.33	0.0	Not Yet Surveyed
101 101-001	4.10.12		NOTIC CUSCIVED		0.0	nor_ror_surveyed

* - Regauged 1.31.11 to confirm product thickness

** - Aberrant gauging data

.

APPENDIX C

Soil Boring/Monitoring Well Logs

	Iprise Field Services LLC							
	roject Name: Largo Compressor Station SOIL BORING / MONITORING WELL LOG							
	_ Off County Road 397			0,		· ··		
Project Manager:_	Kyle Summers							
DRI	LLING & SAMPLING INFORMATION	Soil B	oring / N	Ionitor	ring	wel	l Num	nber: <u>MW-48</u>
Date Started:	3.20.12	Projec	:t #:	041	000	2		
Date Completed:_		Drawr	n By:	BC	М			
Drilling Company:	Earthworx	Appro	ved By:	BC	:М			
Driller:	Louis Trujillo							
Geologist:	B. Chris Mitchell Well Diam:	1."		_				
	GeoprobeScreen Size:							
Bore Hole Dia:	3.25" Screen Length:							
GP - GEOPROBE AR - AIR ROTARY		NDWATE LETION	R DEPTH		ery	Groundwater Depth	Readings (ppm)	BORING AND SAMPLING NOTES
	SOIL CLASSIFICATION	Stratum Depth	Depth Scale Sample	nple	% Recovery	pund	FID/PID	
SURFACE	ELEVATION:	Stra Dep	Depth Scale Sampl	No. San	ж Ж	Gro	FID	
SILTY CI	SILT, Tan, Dry, No Odor -AY, Tan, Dry to Moist, No Odor -AY, Tan, Wet, No Odor -AY, Tan, Wet, No Odor Bottom of Boring @ 20'			12	100% 100% 100%	¥		Wet @ 12.5'

Southwest

Client: Enterprise Field Services LLC

Project Name: Largo Compressor Station

Off County Road 397 Project Manager: Kyle Summers

SOIL BORING / MONITORING WELL LOG

	DRILLING & SAMPLING INFORMATION	Soil B	oring	/ Moi	nitori	ing	Wel	l Nun	nber: <u>MW-49</u>
Date S	Started: 3.20.12	Projec	:t #:		041	000	2		
	Completed: 3.20.12	Drawr	n By:_	<i>.</i>	BC	м			
Drilling	g Company: <u>Earthworx</u>	Appro	ved E	3y:	BC	м			
Driller	Louis Trujillo								
	gist:B. Chris Mitchell Well Diam:								
	g Method: <u>Geoprobe</u> Screen Size:								
Bore H	Hole Dia: <u>3.25"</u> Screen Length:	_10'							
HSA - H CFA - C GP - GE	Casing Length: SAMPLER TYPE OLLOW STEM AUGERS ONTINUOUS FLIGHT AUGERS SS - DRIVEN SPLIT SPOON ST - PRESSED SHELBY TUBE T WELLS T WELLS	NDWATE .ETION		тн	Interval	êry	Groundwater Depth	FID/PID Readings (ppm)	BORING AND SAMPLING NOTES
r Well	SOIL CLASSIFICATION	g e	£⊛	ple	ple l	% Recovery	- Apur	9	
Monitor Detail	SURFACE ELEVATION:	Stratum Depth	Depth Scale	Sample No.	Sample	% Re	Grou	FIDA	
				97	•, 1				
	SILTY CLAY, Tan, Dry, No Odor SAND, Tan, Moist to Wet, No Odor Bottom of Boring @ 16'			10-11		100% 100% 100%	₽¥.		
leeeee								(Couthwest
<u></u>									J GEOSCIENCE

Client: Enter	orise Field Services LLC
Project Name:	Largo Compressor Staion
5	Off County Road 397
Project Manager:	

SOIL BORING / MONITORING WELL LOG

DRILLING & SAMPLING INFORMATION	Soil B	oring	/ Mor	nitor	ing	Wel	l Nun	nber: <u>MW-50</u>
Date Started: 3.20.12	Projec	;#:		041	000	2		
Date Completed: 3.20.12								
Drilling Company: Earthworx								
Driller: Louis Trujillo								
Geologist:B. Chris MitchellWell Diam:	1"				l			
Boring Method: Geoprobe Screen Size:	0.010	1						
Bore Hole Dia: 3.25" Screen Length:								
Casing Length:	18'							
BORING METHOD SAMPLER TYPE HSA · HOLLOW STEM AUGERS CB - FIVE FOOT CORE BARREL GROUT	NDWATE	r def	тн			ء	FiD/PID Readings (ppm)	BORING AND
CFA - CONTINUOUS FLIGHT AUGERS SS - DRIVEN SPLIT SPOON				7		Dept) Sğu	SAMPLING NOTES
				Interval	2	ater	eadii	
SOIL CLASSIFICATION	Ē,	-	ele	le In	% Recovery	Groundwater Depth	ID B	
SOIL CLASSIFICATION SURFACE ELEVATION:	Stratum Depth	Depth Scale	Sample No.	Sample	Rec	linoi	a'Di	
	<u> </u>	പറ	ωZ	5	*	0	Ľ.	
SAND, Tan, Dry, No Odor							0	
SAND, Tan, Dry, No Odor					8		0	
					800		0	
					-		0	Hydro-Vac 0' - 8'
		5 -					0	
		<u> </u>					0	
					ž		0	
		-			100%		0	
		-					0	
		10-		╎╎			0	
		-				ļ	0	
		-			×		0	
		-			800		0	
		-					0	
		15-					0	
		1 -					0	
		-			800		0	
		-			Õ		0 0	
		-					0	
CLAYEY SAND, Tan, Moist to Wet, No Odor		20 —	20-21			_		
		-	1		<u>_</u>	⊻		
		-	1		100%			
SILTY CLAY, Tan, Moist, No Odor		-	1		Ξ			
			1					
		25 -						
					*			
		_			100%			
Bottom of Boring @ 28'		l -			-			
		30 —						
		-	l					
		-						
		-						
1 11		-						
								· ··· · · · · · · · · · · · · · · · ·
							(Couthwest
							_	
								JUEUSUENCE

Client: Enterprise Field Services LLC	
Project Name: Largo Compressor Staion	IL BORING / MONITORING WELL LOG
Project Location: OII County Road 397	
Project Manager: Kyle Symmers	
DRILLING & SAMPLING INFORMATION	Soil Boring / Monitoring Well Number: <u>MW-51</u>
	Project #: 0410002
	Drawn By: BCM
Drilling Company: <u>Earlinworx</u> Driller:Louis Trujillo	Approved By: BCM
Geologist: B. Chris Mitchell Well Diam:	
Boring Method: Geoprobe Screen Size: Bore Hole Dia: 3.25" Screen Length	
Casing Length	
BORING METHOD SAMPLER TYPE	
HSA - HOLLOW STEM AUGERS CB - FIVE FOOT CORE BARREL GROU CFA - CONTINUOUS FLIGHT AUGERS SS - DRIVEN SPLIT SPOON ⊈ AT COMP	
GP · GEOPROBE ST · PRESSED SHELBY TUBE ♥ AT WELL	STABILIZATION REAL REAL REAL REAL REAL REAL REAL REAL
SOIL CLASSIFICATION	NDWATER DEPTH LETION STABILIZATION United Stability Stabilization Scene the state of the state o
SURFACE ELEVATION:	
SILTY SAND, Tan, Dry, No Odor	
SILTY SAND, Tan, Dry, No Odor	
	Hydro-Vac 0' - 8'
	39
	42
	73 Some Staining 14' - 16'
SILTY CLAY, Brown, Dry, No Odor	
SAND, Tan, Moist to Wet, No Odor	
SAND, Tan, Moist to Wet, No Odor	
Bottom of Boring @ 28'	
	30-
1 11	
	Couthwest
	JGEOSCIENCE

Client: Enterprise Field Services LLC	
Project Name: Largo Compressor Staion SO	DIL BORING / MONITORING WELL LOG
Project Location: Oil County Road 397	
Project Manager: Kyle Summers	
DRILLING & SAMPLING INFORMATION	Soil Boring / Monitoring Well Number: <u>MW-52</u>
Date Started: <u>3.20.12</u>	
Date Completed: 3.20.12	
	Approved By:BCM
Driller: Louis Trujillo	
Geologist:B_Chris MitchellWell Diam:	
Boring Method: <u>Geoprobe</u> Screen Size:	
Bore Hole Dia: <u>3.25"</u> Screen Length	
Casing Length BORING METHOD SAMPLER TYPE	
	PLETION
GP - GEOPROBE ST - PRESSED SHELBY TUBE V AT WELL	
	UNDWATER DEPTH IPLETION L STABILIZATION IC I I I I I I I I I I I I I I I I I I
SOIL CLASSIFICATION SURFACE ELEVATION:	IPLETION L STABILIZATION L STABILIZATION IL S
SURFACE ELEVATION:	Depth Depth Stratum Scale Sample FID/PID FID/PID
SILTY SAND, Tan, Dry To Wet, No Odor to Slight Petroleum Hydrocarbon Odor	
Petroleum Hydrocarbon Odor	
	$\begin{array}{c c} \hline \\ \hline $
SILTY CLAY, Brown, Dry, No Odor	$ \overset{\circ}{=} \overset{\circ}{=} $
Bottom of Boring @ 28	
1 11	
	Couthwest

APPENDIX D

Laboratory Data Reports & Chain of Custody Documentation

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

March 28, 2012

Kyle Summers Southwest Geoscience 606 S. Rio Grande Unit A Aztec, NM 87410 TEL: (214) 350-5469 FAX (214) 350-2914

RE: Largo Compressor Sta.

OrderNo.: 1203751

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 5 sample(s) on 3/21/2012 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

andig

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1203751 Date Reported: 3/28/2012

CLIENT: Southwest Geoscience			Client Sample		
Project:Largo Compressor Sta.Lab ID:1203751-001	Matrix:	SOIL			012 9:40:00 AM 012 9:59:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	E ORGANICS				Analyst: JMP
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	3/23/2012 8:36:46 PM
Surr: DNOP	93.9	77.4-131	%REC	1 .	3/23/2012 8:36:46 PM
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	3/27/2012 1:26:12 AM
Surr: BFB	103	69.7-121	%REC	1	3/27/2012 1:26:12 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	0.056	0.049	mg/Kg	1	3/27/2012 1:26:12 AM
Toluene	ND	0.049	mg/Kg	1	3/27/2012 1:26:12 AM
Ethylbenzene	ND	0.049	mg/Kg	1	3/27/2012 1:26:12 AM
Xylenes, Total	0.40	0.098	mg/Kg	1	3/27/2012 1:26:12 AM
Surr: 4-Bromofluorobenzene	98.7	80-120	%REC	1	3/27/2012 1:26:12 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 1 of 8

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1203751 Date Reported: 3/28/2012

CLIENT: Southwest Geoscience			Client Sample	e ID: MW-4	9 (10-11)
Project: Largo Compressor Sta.			Collection D	ate: 3/20/2	012 10:15:00 AM
Lab ID: 1203751-002	Matrix:	SOIL	Received D	ate: 3/21/2	012 9:59:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	E ORGANICS				Analyst: JMP
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	3/23/2012 9:41:04 PM
Surr: DNOP	92.9	77.4-131	%REC	1	3/23/2012 9:41:04 PM
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	3/27/2012 2:52:37 AM
Surr: BFB	102	69.7-121	%REC	1 ·	3/27/2012 2:52:37 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.050	mg/Kg	, 1	3/27/2012 2:52:37 AM
Toluene	ND	0.050	mg/Kg	.1	3/27/2012 2:52:37 AM
Ethylbenzene	ND	0.050	mg/Kg	1	3/27/2012 2:52:37 AM
Xylenes, Total	ND	0.099	mg/Kg	1	3/27/2012 2:52:37 AM
Surr: 4-Bromofluorobenzene	97.2	80-120	%REC	1	3/27/2012 2:52:37 AM

~		
Oualifie	rs:	*/)

X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 2 of 8

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1203751 Date Reported: 3/28/2012

CLIENT: Southwest Geoscience Project: Largo Compressor Sta.			Client Sample Collection D		50 (20-21) 012 11:15:00 AM
Lab ID: 1203751-003	Matrix:	SOIL	Received D	ate: 3/21/2	012 9:59:00 AM
Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG			· -		Analyst: JMP
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	3/23/2012 10:02:22 PM
Surr: DNOP	92.5	77.4-131	%REC	1	3/23/2012 10:02:22 PM
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	3/27/2012 3:21:22 AM
Surr: BFB	97.6	69.7-121	%REC	1	3/27/2012 3:21:22 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.050	mg/Kg	1	3/27/2012 3:21:22 AM
Toluene	ND	0.050	mg/Kg	1	3/27/2012 3:21:22 AM
Ethylbenzene	ND	0.050	mg/Kg	1	3/27/2012 3:21:22 AM
Xylenes, Total	ND	0.10	mg/Kg	1	3/27/2012 3:21:22 AM
Surr: 4-Bromofluorobenzene	96.5	80-120	%REC	1	3/27/2012 3:21:22 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 3 of 8

Lab Order 1203751

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 3/28/2012

CLIENT: Southwest Geoscience			Client Sample	ID: MW-5	51 (12-13)
Project: Largo Compressor Sta.			Collection D	ate: 3/20/2	012 12:30:00 PM
Lab ID: 1203751-004	Matrix:	SOIL	Received D	ate: 3/21/2	012 9:59:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	E ORGANICS				Analyst: JMP
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	3/23/2012 10:23:49 PM
Surr: DNOP	93.8	77.4-131	%REC	1	3/23/2012 10:23:49 PM
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	3/27/2012 3:50:11 AM
Surr: BFB	97.2	69.7-121	%REC	1	3/27/2012 3:50:11 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	0.049	0.047	mg/Kg	1	3/27/2012 3:50:11 AM
Toluene	0.16	0.047	mg/Kg	1	3/27/2012 3:50:11 AM
Ethylbenzene	ND	0.047	mg/Kg	1	3/27/2012 3:50:11 AM
Xylenes, Total	0.13	0.095	mg/Kg	1	3/27/2012 3:50:11 AM
Surr: 4-Bromofluorobenzene	96.5	80-120	%REC	1	3/27/2012 3:50:11 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 4 of 8

Date Reported: 3/28/2012

Lab Order 1203751

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW-52 (16-17) **CLIENT:** Southwest Geoscience **Project:** Largo Compressor Sta. Collection Date: 3/20/2012 1:15:00 PM Lab ID: 1203751-005 Matrix: SOIL Received Date: 3/21/2012 9:59:00 AM Analyses Result **RL** Qual Units DF **Date Analyzed EPA METHOD 8015B: DIESEL RANGE ORGANICS** Analyst: JMP Diesel Range Organics (DRO) ND 10 mg/Kg 1 3/23/2012 10:45:06 PM Surr: DNOP 94.1 77.4-131 %REC 1 3/23/2012 10:45:06 PM **EPA METHOD 8015B: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 4.8 mg/Kg 1 3/27/2012 4:18:51 AM Surr: BFB 96.4 69.7-121 %REC 1 3/27/2012 4:18:51 AM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 0.048 mg/Kg 1 3/27/2012 4:18:51 AM Toluene ND 0.048 mg/Kg 1 3/27/2012 4:18:51 AM Ethylbenzene ND 0.048 mg/Kg 1 3/27/2012 4:18:51 AM Xylenes, Total ND 0.097 mg/Kg 3/27/2012 4:18:51 AM 1 Surr: 4-Bromofluorobenzene 96.6 80-120 %REC 3/27/2012 4:18:51 AM 1

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit

Spike Recovery outside accepted recovery limits

S

Page 5 of 8

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	1203751

28-Mar-12

Client: Project:	,	t Geosciend mpressor S									
Sample ID	MB-1193	SampTy	pe: MI	BLK	Tes	tCode: El	PA Method	8015B: Dies	el Range (Drganics	
Client ID:	PBS	Batch	ID: 11	93	F	RunNo: 1	634				
Prep Date:	3/22/2012	Analysis Da	ite: 3/	23/2012	S	SeqNo: 4	6879	Units: mg/k	(g		
Analyte	-	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range (Surr: DNOP	Organics (DRO)	ND 9.2	10	10.00		91.6	77.4	131	·		
Sample ID	LCS-1193	SampTy	pe: LC	s	Tes	tCode: El	PA Method	8015B: Dies	el Range (Drganics	
Client ID:	LCSS	Batch	ID: 11	93	F	RunNo: 1	634				
Prep Date:	3/22/2012	Analysis Da	ite: 3/	23/2012	S	SeqNo: 4	6880	Units: mg/H	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
	Örganics (DRO)	46	10	50.00	0	91.2	62.7	139			
Surr: DNOP		4.4		5.000		87.5	77.4	131			•
Sample ID	1203751-001AMS	SampTy	pe: MS	5	Tes	tCode: El	PA Method	8015B: Dies	el Range (Organics	
Client ID:	MW-48 (11-12)	Batch	ID: 11	93	F	RunNo: 1	634				
Prep Date:	3/22/2012	Analysis Da	ite: 3/	23/2012	S	SeqNo: 4	6882	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range	Organics (DRO)	43	10	49.90	0	85.9	57.2	146			
Surr: DNOP		4.3		4.990		86.6	77.4	131			*
Sample ID	1203751-001AMSI) SampTy	pe: MS	SD	Tes	tCode: El	PA Method	8015B: Dies	el Range (Organics	
Client ID:	MW-48 (11-12)	Batch	ID: 11	93	F	RunNo: 1	634				
Prep Date:	3/22/2012	Analysis Da	ite: 3/	23/2012	S	SeqNo: 4	6883	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
-	Organics (DRO)	44	9.7	48.69	0	89.8	57.2	146	1.93	26.7	
Surr: DNOP		4.1		4.869		85.0	77.4	131	0	0	

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

QC SUMMARY REPORT

WO#: 1203751

28-Mar-12

Hall Environmental Analysis Laboratory, Inc.

Client: Project:		t Geoscien mpressor S						-			
Sample ID	MB-1182	SampT	ype: Mi	BLK	Tes	tCode: E	PA Method	8015B: Gase	line Rang	e	
Client ID:	PBS	Batch	ID: 11	82	Ē	RunNo: 1	710				
Prep Date:	3/21/2012	Analysis D	ate: 3/	26/2012	S	SeqNo: 4	8158	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang Sun: BFB	e Organics (GRO)	ND 940	5.0	1,000		93.9	69.7	121			
Sample ID LCS-1182 SampType: LCS TestCode: EPA Method 8015B: Gasoline Range											
Client ID:	LCSS	Batch	ID: 11	82	F	RunNo: 1	710				
Prep Date:	3/21/2012	Analysis D	ate: 3/	26/2012	S	SeqNo: 48159			Units: mg/Kg		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
-	e Organics (GRO)	27	5.0	25.00	0	106	98.5	133			
Sun: BFB		990		1,000		98.9	69.7	121			
Sample ID	1203751-001AMS	SampT	ype: MS	S	Tes	tCode: E	PA Method	8015B: Gase	line Rang	e	
Client ID:	MW-48 (11-12)	Batch	ID: 11	82	F	RunNo: 1	710				
Prep Date:	3/21/2012	Analysis Da	ate: 3/	27/2012	S	eqNo: 4	8179	Units: mg/Kg			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	e Organics (GRO)	26	4.9	24.53	3.539	92.5	85.4	147			
Surr: BFB		1,100		981.4		112	69.7	121			
Sample ID	1203751-001AMSE) SampT	ype: M\$	SD	Tes	tCode: El	PA Method	8015B: Gaso	line Rang	e	
Client ID:	MW-48 (11-12)	Batch	ID: 11	82	R	lunNo: 1	710				
	3/21/2012	Analysis Da	ate: 3/	27/2012	s	eqNo: 4	8180	Units: mg/M	(g		
Prep Date:	0/2 //2012	-									
Prep Date: Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte	e Organics (GRO)	-	PQL 4.8	SPK value 24.04 961.5	SPK Ref Val 3.539	%REC 109	LowLimit 85.4 69.7	HighLimit 147 121	%RPD 12.2	RPDLimit 19.2	Qual

Qualifiers:

- */X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT

	west Geoscie Compressor									
Sample ID MB-1182	Samp	Туре: МЕ	BLK	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Client ID: PBS	Batc	h ID: 11	82	F	RunNo: 1	711				
Prep Date: 3/21/2012	Analysis I	Date: 3/	26/2012	5	SeqNo: 4	8204	Units: mg/ł	٨g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.050								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	0.94		1.000		93.5	80	120			
Sample ID LCS-1182	Samp	Type: LC	s	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Client ID: LCSS	Bato	h ID: 11	82	F	RunNo: 1	711				
Prep Date: 3/21/2012	Analysis I	Date: 3/	26/2012	5	SeqNo: 4	8206	Units: mg/ł	٢g		. •
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.89	0.050	1.000	0	88.8	83.3	107			
Toluene	0.92	0.050	1.000	0	91.7	74.3	115			
Ethylbenzene	0.93	0.050	1.000	0	93.4	80. 9	122			
Xylenes, Total	2.8	0.10	3.000	0	94.1	85.2	123			
Surr: 4-Bromofluorobenzene	0.95		1.000		95.4	80	120			

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 8 of 8

WO#: 1203751 28-Mar-12

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Ar Albuqi TEL: 505-345-3975 F Website: www.halle	4901 1erque 1X: 50	Παγι . Νλ. 15 -3 4	kins N (871((5-41(/E 05 07	Samp	ole Log-In (Check List
Client Name: Southwest Geoscience	Wo	rk Ord	der N	łumb	er: 1	203751		
Received by/date: KG 03 Logged By: Lindsay Mangin 3/	21/2012 21/2012 9:59:00 AM			ł	J-4	Mugo		
Completed By: Lindsay Mangin 3/	21/2012 10:20:07 AM				A the	Hlygo		
Reviewed By:	21/12				ų s			
Chain of Custody								
1 Were seals intact?		Yes		No		Not Pre	sent 🗸	۰
2. Is Chain of Custody complete?		Yes	V	No	•	Not Pre	sent	
3. How was the sample delivered?	Ner . X . Ja							
Log In	K Con							
	fic-information)	-Yes-	~	-No-			NA	
ч	,							
5. Was an attempt made to cool the samples?		Yes	~	No	·		NA	
6. Were all samples received at a temperature o	f >0° C to 6.0°C	Yes	~	No			NA	
7. Sample(s) in proper container(s)?		Yes	V	No				
8. Sufficient sample volume for indicated test(s)?	•	Yes	•	No				
9 Are samples (except VOA and ONG) properly	preserved?	Yes	V	No				
10. Was preservative added to bottles?		Yes		No	✓		NA	
11, VOA vials have zero headspace?		Yes		No		No VOA	Vials 🗸	
12. Were any sample containers received broken	?	Yes		No	✓			
13. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Ýes	~	No		bo	of preserved tties checked r pH:	
14. Are matrices correctly identified on Chain of C	ustody?	Yes	~	No				>12 unless noted)
15. Is it clear what analyses were requested?		Yes	~	No			Adjusted?	
 Were all holding times able to be met? (If no, notify customer for authorization.) 		Yes	~	No			Checked by:	
Special Handling (if applicable)							-	
17. Was client notified of all discrepancies with thi	s order?	Yes		No			NA 🗸	
Person Notified:	Date:					<u></u>		
By Whom:	Via:	eMa	iil	P	юле	Fax	In Person	
Regarding:	NING AT THE OTHER AND				930877-799			
Client Instructions:			<u>2011 (1999) (11</u>	ad M Examples	45.162mm184, 1410			
18 Additional remarks:								

19. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	1.3	Good	Yes			

Page 1 of 1

		• .		CHAIN OF CUSTODY RECORD
Southwest Environmental & Hydrogeologic Consultants Office Location <u>AZTEZ</u> Project Manager <u>K. SUMMERS</u> Sampler's Name <u>B. CHRIS HIRHER</u>	Laboratory: HAU Address: Contact: Phone: PO/SO #: Sampler's Signature		Analysis Requested Analysis Requested Analysis Analysis Analysis Analysis Analysis Analysis Analysis Analysis Analysis Analysis Requested Analysis Analysis Requested Analysis	CHAIN OF CUSTODY RECORD
Proj. No. Project Name 0410002 LAKGO Co	MPRESSOR STA.	No/ Type of Containers		
CG	larks of Sample(s)	. VOA A/G 250 P/C		Lab Sample ID (Lab Use Only)
S 3.20.12 940 / NW-48		· · · · · · · · · · · · · · · · · · ·		1203751-001
S 3.20.12 1015 / MW-4				-002
S 3.20.12 1115 / MW-S			11	- 003
S 3.20.12 123 MW-5				- 004
S 3.20.12 1315 / MW-5			-/	-005
	2			
(1) The	ter l			
al Enterthat				
Ale m				
Turn around time XNormal 025% Rush	□ 50% Rush □ 100% Rush	······································	- · · · · · · · · · · · · · · · · · · ·	
Belinquished by (Signature) Date: Relinquished by (Signature) Jao 12 Mutter Value Mutter Value Relinquished by (Signature) Date: Relinquished by (Signature) Date: Relinquished by (Signature) Date:	Time: Received by: (Signa Time: Beceived by: (Signa Time: Received by: (Signa Time: Received by: (Signa	ature) 3/20 ature) 52 ature) 5at	12, 16,15 e: Time: e: Time: e. Time:	ΞS:
Matrix WW - Wastewater W - Water	S - Soli SD - Solid L - Liqu Or Glass 1 Liter 250 ml		- Charcoal tube SL - sl /O - Plastic or other	udge O - Oil

SOUTHWEST GEOSCIENCE • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 02, 2012

Kyle Summers Southwest Geoscience 606 S. Rio Grande Unit A Aztec, NM 87410 TEL: (903) 821-5603 FAX

OrderNo.: 1204865

Dear Kyle Summers:

RE: Largo CS

Hall Environmental Analysis Laboratory received 26 sample(s) on 4/21/2012 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1204865** Date Reported: **5/2/2012**

CLIENT: Southwest Geoscience	Client Sample ID: MW-40 Collection Date: 4/18/2012 8:25:00 AM						
Project: Largo CS							
Lab ID: 1204865-001	Matrix:	AQUEOUS	Received D	Received Date: 4/21/2012 11:00:00 AM			
Analyses	Result	RL Q	ual Units	DF	Date Analyzed		
EPA METHOD 8015B: DIESEL RANGE					Analyst: JMP		
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/23/2012 2:20:02 PM		
Surr: DNOP	120	61.3-164	%REC	1	4/23/2012 2:20:02 PM		
EPA METHOD 8015B: GASOLINE RAN	GE				Analyst: NSB		
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/25/2012 12:33:30 AM		
Surr: BFB	92.0	69.3-120	%REC	1	4/25/2012 12:33:30 AM		
EPA METHOD 8021B: VOLATILES					Analyst: NSB		
Benzene	ND	1.0	μg/L	1	4/25/2012 12:33:30 AM		
Toluene	ND	1.0	µg/L	1	4/25/2012 12:33:30 AM		
Ethylbenzene	ND	1.0	µg/L	1	4/25/2012 12:33:30 AM		
Xylenes, Total	ND	2.0	µg/L	1	4/25/2012 12:33:30 AM		
Surr: 4-Bromofluorobenzene	94.7	55-140	%REC	1	4/25/2012 12:33:30 AM		

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
- J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 1 of 31

Analytical Report Lab Order 1204865

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/2/2012

CLIENT: Southwest Geoscience		Client Sample ID: MW-50 Collection Date: 4/18/2012 9:15:00 AM						
Project: Largo CS								
Lab ID: 1204865-002	Matrix: AQUEOUS		Received I	Received Date: 4/21/2012 11:00:00 AM				
Analyses	Result	RL Qu	al Units	DF	Date Analyzed			
EPA METHOD 8015B: DIESEL RANG	E				Analyst: JMP			
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/23/2012 2:41:45 PM			
Surr: DNOP	114	61.3-164	%REC	1	4/23/2012 2:41:45 PM			
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB			
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/25/2012 1:04:15 AM			
Surr: BFB	94.0	69.3-120	%REC	1	4/25/2012 1:04:15 AM			
EPA METHOD 8021B: VOLATILES					Analyst: NSB			
Benzene	ND	1.0	µg/L	1	4/25/2012 1:04:15 AM			
Toluene	ND	1.0	µg/L	1	4/25/2012 1:04:15 AM			
Ethylbenzene	ND	1.0	μg/L ´	1	4/25/2012 1:04:15 AM			
Xylenes, Total	ND	2.0	µg/L	1	4/25/2012 1:04:15 AM			
Surr: 4-Bromofluorobenzene	98.2	55-140	%REC	1	4/25/2012 1:04:15 AM			

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 2 of 31

Analytical Report
Lab Order 1204865

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1204865** Date Reported: **5/2/2012**

CLIENT: Southwest Geoscience		Client Sample ID: MW-42 Collection Date: 4/18/2012 9:40:00 AM						
Project: Largo CS								
Lab ID: 1204865-003	Matrix: AQUEOUS		Received D	Received Date: 4/21/2012 11:00:00 AM				
Analyses	Result	RL Qu	al Units	DF	Date Analyzed			
EPA METHOD 8015B: DIESEL RANGE					Analyst: JMP			
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/23/2012 3:03:25 PM			
Surr: DNOP	107	61.3-164	%REC	1	4/23/2012 3:03:25 PM			
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB			
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/25/2012 1:34:49 AM			
Surr: BFB	82.5	69.3-120	%REC	1	4/25/2012 1:34:49 AM			
EPA METHOD 8021B: VOLATILES					Analyst: NSB			
Benzene	ND	1.0	µg/L	1	4/25/2012 1:34:49 AM			
Toluene	ND	1.0	µg/L	1	4/25/2012 1:34:49 AM			
Ethylbenzene	ND	1.0	µg/L	1	4/25/2012 1:34:49 AM			
Xylenes, Total	ND	2.0	µg/L	1	4/25/2012 1:34:49 AM			
Surr: 4-Bromofluorobenzene	85.8	55-140	%REC	1	4/25/2012 1:34:49 AM			

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 3 of 31

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1204865 Date Reported: 5/2/2012

CLIENT: Southwest Geoscience	Client Sample ID: MW-51 Collection Date: 4/18/2012 10:30:00 AM						
Project: Largo CS							
Lab ID: 1204865-004	Matrix: AQUEOUS		Received I	Received Date: 4/21/2012 11:00:00 AM			
Analyses	Result	RL Qua	Units	DF	Date Analyzed		
EPA METHOD 8015B: DIESEL RANGE				·	Analyst: JMP		
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/23/2012 3:46:48 PM		
Surr: DNOP	109	61.3-164	%REC	1	4/23/2012 3:46:48 PM		
EPA METHOD 8015B: GASOLINE RAN	IGE				Analyst: NSB		
Gasoline Range Organics (GRO)	19	1.0	mg/L	20	4/25/2012 4:54:31 PM		
Surr: BFB	109	69.3-120	%REC	20	4/25/2012 4:54:31 PM		
EPA METHOD 8021B: VOLATILES					Analyst: NSB		
Benzene	1,200	20	μg/L	20	4/25/2012 4:54:31 PM		
Toluene	3,600	100	µg/L	100	4/26/2012 5:47:12 PM		
Ethylbenzene	150	20	µg/L	20	4/25/2012 4:54:31 PM		
Xylenes, Total	1,400	40	µg/L	20	4/25/2012 4:54:31 PM		
Surr: 4-Bromofluorobenzene	140	55-140 S	%REC	1	4/25/2012 2:05:34 AM		

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

J Analyte detected below quantitation limits

RPD outside accepted recovery limits R

- Spike Recovery outside accepted recovery limits S
- Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 4 of 31

Analytical Report
Lab Order 1204865

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1204865 Date Reported: 5/2/2012

CLIENT: Southwest Geoscience	Client Sample ID: MW-41 Collection Date: 4/18/2012 11:15:00 AM						
Project: Largo CS							
Lab ID: 1204865-005	Matrix: AQUEOUS		Received Date: 4/21/2012 11:00:00 AM				
Analyses	Result	RL Qual	Units	DF	Date Analyzed		
EPA METHOD 8015B: DIESEL RANG	E				Analyst: JMP		
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/23/2012 4:08:32 PM		
Surr: DNOP	113	61.3-164	%REC	1	4/23/2012 4:08:32 PM		
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB		
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/25/2012 5:25:22 PM		
Surr: BFB	79.7	69.3-120	%REC	1	4/25/2012 5:25:22 PM		
EPA METHOD 8021B: VOLATILES					Analyst: NSB		
Benzene	ND	1.0	µg/L	1	4/25/2012 5:25:22 PM		
Toluene	ND	1.0	µg/L	1	4/25/2012 5:25:22 PM		
Ethylbenzene	ND	1.0	µg/L	· 1	4/25/2012 5:25:22 PM		
Xylenes, Total	ND	2.0	µg/L	1	4/25/2012 5:25:22 PM		
Surr: 4-Bromofluorobenzene	83.9	55-140	%REC	1	4/25/2012 5:25:22 PM		

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 5 of 31

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1204865** Date Reported: **5/2/2012**

CLIENT: Southwest Geoscience	Client Sample ID: MW-43 Collection Date: 4/18/2012 11:55:00 AM						
Project: Largo CS							
Lab ID: 1204865-006	Matrix: AQUEOUS		Received D	Received Date: 4/21/2012 11:00:00 AM			
Analyses	Result	RL Qual	Units	DF	Date Analyzed		
EPA METHOD 8015B: DIESEL RANGE					Analyst: JMP		
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/23/2012 4:30:12 PM		
Surr: DNOP	114	61.3-164	%REC	1	4/23/2012 4:30:12 PM		
EPA METHOD 8015B: GASOLINE RAN	GE				Analyst: NSB		
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/25/2012 5:56:09 PM		
Surr: BFB	96.1	69.3-120	%REC	1	4/25/2012 5:56:09 PM		
EPA METHOD 8021B: VOLATILES					Analyst: NSB		
Benzene	ND	1.0	µg/L	. 1	4/25/2012 5:56:09 PM		
Toluene	ND	1.0	µg/L	1	4/25/2012 5:56:09 PM		
Ethylbenzene	ND	1.0	µg/L	1	4/25/2012 5:56:09 PM		
Xylenes, Total	ND	2.0	µg/L	1	4/25/2012 5:56:09 PM		
Surr: 4-Bromofluorobenzene	100	55-140	%REC	1	4/25/2012 5:56:09 PM		

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Ε	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	· ND	Not Detected at the Reporting Limit
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit

S Spike Recovery outside accepted recovery limits

Page 6 of 31

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1204865 Date Reported: 5/2/2012

CLIENT: Southwest Geoscience	Client Sample ID: MW-32 Collection Date: 4/18/2012 12:35:00 PM						
Project: Largo CS							
Lab ID: 1204865-007	Matrix: AQUEOUS		Received D	Received Date: 4/21/2012 11:00:00 AM			
Analyses	Result	RL Qua	l Units	DF	Date Analyzed		
EPA METHOD 8015B: DIESEL RANGE	Ξ				Analyst: JMP		
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/23/2012 4:52:00 PM		
Surr: DNOP	115	61.3-164	%REC	1	4/23/2012 4:52:00 PM		
EPA METHOD 8015B: GASOLINE RAI	NGE				Analyst: NSB		
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/25/2012 3:37:34 AM		
Surr: BFB	96.8	69.3-120	%REC	1	4/25/2012 3:37:34 AM		
EPA METHOD 8021B: VOLATILES					Analyst: NSB		
Benzene	ND	1.0	µg/L	1	4/25/2012 3:37:34 AM		
Toluene	ND	1.0	µg/L	1	4/25/2012 3:37:34 AM		
Ethylbenzene	ND	1.0	µg/L	1	4/25/2012 3:37:34 AM		
Xylenes, Total	ND	2.0	µg/L	1	4/25/2012 3:37:34 AM		
Surr: 4-Bromofluorobenzene	97.2	55-140	%REC	1	4/25/2012 3:37:34 AM		

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL **Reporting Detection Limit**

Page 7 of 31

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1204865

Date Reported: 5/2/2012

CLIENT: Southwest Geoscience	Client Sample ID: MW-34 Collection Date: 4/18/2012 1:15:00 PM						
Project: Largo CS							
Lab ID: 1204865-008	Matrix: AQUEOUS		Received Date: 4/21/2012 11:00:00 AM				
Analyses	Result	RL Qual	Units	DF	Date Analyzed		
EPA METHOD 8015B: DIESEL RANGE					Analyst: JMP		
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/23/2012 5:13:47 PM		
Surr: DNOP	113	61.3-164	%REC	⁺ 1	4/23/2012 5:13:47 PM		
EPA METHOD 8015B: GASOLINE RANG	E				Analyst: NSB		
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/25/2012 4:08:12 AM		
Surr: BFB	97.5	69.3-120	%REC	1	4/25/2012 4:08:12 AM		
EPA METHOD 8021B: VOLATILES					Analyst: NSB		
Benzene	ND	1.0	µg/L	1	4/25/2012 4:08:12 AM		
Toluene	ND	1.0	µg/L	1	4/25/2012 4:08:12 AM		
Ethylbenzene	ND	1.0	µg/L	1	4/25/2012 4:08:12 AM		
Xylenes, Total	ND	2.0	µg/L	1	4/25/2012 4:08:12 AM		
Surr: 4-Bromofluorobenzene	97.6	55-140	%REC	1	4/25/2012 4:08:12 AM		

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 8 of 31

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1204865 Date Reported: 5/2/2012

CLIENT: Southwest Geoscience	Client Sample ID: MW-52							
Project: Largo CS		Collection Date: 4/18/2012 1:55:00 PM						
Lab ID: 1204865-009	Matrix: AQUEOUS		Received D	Received Date: 4/21/2012 11:00:00 AM				
Analyses	Result	RL Qua	l Units	DF	Date Analyzed			
EPA METHOD 8015B: DIESEL RANGE					Analyst: JMP			
Diesel Range Organics (DRO)	ND	1.0	[·] mg/L	1	4/23/2012 5:35:42 PM			
Surr: DNOP	110	61.3-164	%REC	1	4/23/2012 5:35:42 PM			
EPA METHOD 8015B: GASOLINE RAN	GE				Analyst: NSB			
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/25/2012 4:38:39 AM			
Surr: BFB	89.0	69.3-120	%REC	1	4/25/2012 4:38:39 AM			
EPA METHOD 8021B: VOLATILES					Analyst: NSB			
Benzene	ND	1.0	µg/L	1	4/25/2012 4:38:39 AM			
Toluene	ND	1.0	µg/L	1	4/25/2012 4:38:39 AM			
Ethylbenzene	ND	1.0	μg/L	1	4/25/2012 4:38:39 AM			
Xylenes, Total	ND	2.0	µg/L	1	4/25/2012 4:38:39 AM			
Surr: 4-Bromofluorobenzene	88.7	55-140	%REC	1	4/25/2012 4:38:39 AM			

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- в Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL **Reporting Detection Limit**

Page 9 of 31

Analytical Report
Lab Order 1204865

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/2/2012

CLIENT: Southwest Geoscience Project: Largo CS	Client Sample ID: MW-39 Collection Date: 4/18/2012 2:30:00 PM					
Lab ID: 1204865-010	Matrix: AQUEOUS		Received D	Received Date: 4/21/2012 11:00:00 AM		
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8015B: DIESEL RANGI	E				Analyst: JMP	
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/23/2012 5:57:26 PM	
Surr: DNOP	112	61.3-164	%REÇ	1	4/23/2012 5:57:26 PM	
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB	
Gasoline Range Organics (GRO)	12	1.0	mg/L	20	4/25/2012 6:26:52 PM	
Surr: BFB	94.9	69.3-120	%REC	20	4/25/2012 6:26:52 PM	
EPA METHOD 8021B: VOLATILES					Analyst: NSB	
Benzene	1,500	20	µg/L	20	4/25/2012 6:26:52 PM	
Toluene	620	20	µg/L	20	4/25/2012 6:26:52 PM	
Ethylbenzene	36	1.0	µg/L	1	4/25/2012 5:09:31 AM	
Xylenes, Total	860	40	µg/L	20	4/25/2012 6:26:52 PM	
Surr: 4-Bromofluorobenzene	110	55-140	%REC	1	4/25/2012 5:09:31 AM	

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 10 of 31

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1204865

Date Reported: 5/2/2012

CLIENT: Southwest Geoscience	Client Sample ID: MW-38 Collection Date: 4/18/2012 3:55:00 PM					
Project: Largo CS						
Lab ID: 1204865-011	Matrix: AQUEOUS		Received Date: 4/21/2012 11:00:00 AM			
Analyses	Result	RL Qual	Units	DF	Date Analyzed	
EPA METHOD 8015B: DIESEL RANG	E				Analyst: JMP	
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/24/2012 8:48:51 AM	
Surr: DNOP	116	61.3-164	%REC	1	4/24/2012 8:48:51 AM	
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/25/2012 6:57:37 PM	
Surr: BFB	93.5	69.3-120	%REC	1	4/25/2012 6:57:37 PM	
EPA METHOD 8021B: VOLATILES					Analyst: NSB	
Benzene	ND	1.0	µg/L	[.] 1	4/25/2012 6:57:37 PM	
Toluene	ND	1.0	µg/L	1	4/25/2012 6:57:37 PM	
Ethylbenzene	ND	1.0	µg/L	1	4/25/2012 6:57:37 PM	
Xylenes, Total	ND	2.0	µg/L	1	4/25/2012 6:57:37 PM	
Surr: 4-Bromofluorobenzene	98.6	55-140	%REC	1	4/25/2012 6:57:37 PM	

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank		
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded		
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit		
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit		
	s	Spike Recovery outside accepted recovery limits		Page 11 of 31		

Analytical Report
Lab Order 1204865

Date Reported: 5/2/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Southwest Geoscience **Client Sample ID: MW-36** Collection Date: 4/18/2012 4:35:00 PM **Project:** Largo CS Lab ID: 1204865-012 Matrix: AQUEOUS Received Date: 4/21/2012 11:00:00 AM DF Result **RL** Qual Units **Date Analyzed** Analyses EPA METHOD 8015B: DIESEL RANGE Analyst: JMP **Diesel Range Organics (DRO)** ND 1.0 mg/L 1 4/24/2012 5:57:24 AM Surr: DNOP %REC 1 4/24/2012 5:57:24 AM 109 61.3-164 **EPA METHOD 8015B: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 0.050 mg/L 1 4/25/2012 7:28:18 PM Surr: BFB %REC 4/25/2012 7:28:18 PM 96.5 69.3-120 1 **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 1.0 µg/L 1 4/25/2012 7:28:18 PM Toluene ND 1.0 µg/L 1 4/25/2012 7:28:18 PM Ethylbenzene ND 1 4/25/2012 7:28:18 PM 1.0 µg/Ŀ Xylenes, Total ND 2.0 μg/L 1 4/25/2012 7:28:18 PM Surr: 4-Bromofluorobenzene %REC 101 55-140 1 4/25/2012 7:28:18 PM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
- J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 12 of 31

Lab Order 1204865 Date Reported: 5/2/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Southwest Geoscience **Client Sample ID: MW-49** Collection Date: 4/18/2012 5:10:00 PM **Project:** Largo CS Lab ID: 1204865-013 Matrix: AQUEOUS Received Date: 4/21/2012 11:00:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses EPA METHOD 8015B: DIESEL RANGE Analyst: JMP **Diesel Range Organics (DRO)** ND 1.0 mg/L 1 4/24/2012 6:18:52 AM 4/24/2012 6:18:52 AM Surr: DNOP 109 61.3-164 %REC 1 **EPA METHOD 8015B: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 4/26/2012 12:34:45 AM 0.050 mg/L 1 Surr: BFB 96.1 69.3-120 %REC 1 4/26/2012 12:34:45 AM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 4/26/2012 12:34:45 AM 1.0 µg/L 1 Toluene ND 1.0 µg/L 1 4/26/2012 12:34:45 AM Ethylbenzene ND 1.0 1 4/26/2012 12:34:45 AM µg/L Xylenes, Total ND 2.0 µg/L 1 4/26/2012 12:34:45 AM Surr: 4-Bromofluorobenzene 101 55-140 %REC 1 4/26/2012 12:34:45 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 13 of 31

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1204865** Date Reported: **5/2/2012**

CLIENT: Southwest Geoscience	Client Sample ID: MW-48						
Project: Largo CS	Collection Date: 4/18/2012 5:25:00 PM						
Lab ID: 1204865-014	Matrix:	AQUEOUS	Received D	Received Date: 4/21/2012 11:00:00 AM			
Analyses	Result	RL Qual	Units	DF	Date Analyzed		
EPA METHOD 8015B: DIESEL RANGE					Analyst: JMP		
Diesel Range Organics (DRO)	1.3	1.0	mg/L	1	4/24/2012 9:10:25 AM		
Surr: DNOP	115	61.3-164	%REC	1	4/24/2012 9:10:25 AM		
EPA METHOD 8015B: GASOLINE RAN	GE				Analyst: NSB		
Gasoline Range Organics (GRO)	25	5.0	mg/L	100	4/26/2012 1:05:25 AM		
Surr: BFB	107	69.3-120	%REC	100	4/26/2012 1:05:25 AM		
EPA METHOD 8021B: VOLATILES					Analyst: NSB		
Benzene	290	100	µg/L	100	4/26/2012 1:05:25 AM		
Toluene	3,200	100	µg/L	100	4/26/2012 1:05:25 AM		
Ethylbenzene	360	100	µg/L	100	4/26/2012 1:05:25 AM		
Xylenes, Total	5,000	200	µg/L	100	4/26/2012 1:05:25 AM		
Surr: 4-Bromofluorobenzene	122	55-140	%REC	100	4/26/2012 1:05:25 AM		

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 14 of 31

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1204865

Date Reported: 5/2/2012

CLIENT:Southwest GeoscienceProject:Largo CSLab ID:1204865-015	Client Sample ID: MW-9Collection Date: 4/19/2012 8:35:00 AMMatrix: AQUEOUSReceived Date: 4/21/2012 11:00:00 AM					
Analyses	Result	RL Qual	Units	DF	Date Analyzed	
EPA METHOD 8015B: DIESEL RANGE					Analyst: JMP	
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/24/2012 9:31:52 AM	
Surr: DNOP	112	61.3-164	%REC	1	4/24/2012 9:31:52 AM	
EPA METHOD 8015B: GASOLINE RAN	GE				Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/26/2012 1:36:14 AM	
Surr: BFB	90.9	69.3-120	%REC	1	4/26/2012 1:36:14 AM	
EPA METHOD 8021B: VOLATILES					Analyst: NSB	
Benzene	ND	1.0	µg/L	1	4/26/2012 1:36:14 AM	
Toluene	ND	1.0	µg/L	1	4/26/2012 1:36:14 AM	
Ethylbenzene	ND	1.0	µg/L	1	4/26/2012 1:36:14 AM	
Xylenes, Total	ND	2.0	µg/L	1	4/26/2012 1:36:14 AM	
Surr: 4-Bromofluorobenzene	97.5	55-140	%REC	1	4/26/2012 1:36:14 AM	

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 15 of 31

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1204865** Date Reported: **5/2/2012**

CLIENT: Southwest Geoscience	Client Sample ID: MW-3R						
Project: Largo CS			Collection D	ate: 4/19/2	012 9:15:00 AM		
Lab ID: 1204865-016	Matrix:	AQUEOUS	Received D	Received Date: 4/21/2012 11:00:00 AM			
Analyses	Result	RL Qua	l Units	DF	Date Analyzed		
EPA METHOD 8015B: DIESEL RANGE					Analyst: JMP		
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/24/2012 10:47:57 AM		
Surr: DNOP	112	61.3-164	%REC	1	4/24/2012 10:47:57 AM		
EPA METHOD 8015B: GASOLINE RAN	GE				Analyst: NSB		
Gasoline Range Organics (GRO)	0.16	0.050	mg/L	1	4/26/2012 2:06:56 AM		
Surr: BFB	126	69.3-120 S	%REC	1	4/26/2012 2:06:56 AM		
EPA METHOD 8021B: VOLATILES					Analyst: NSB		
Benzene	ND	1.0	µg/L	1	4/26/2012 2:06:56 AM		
Toluene	ND	1.0	µg/L	1	4/26/2012 2:06:56 AM		
Ethylbenzene	ND	1.0	µg/L	1	4/26/2012 2:06:56 AM		
Xylenes, Total	ND	2.0	µg/L	1	4/26/2012 2:06:56 AM		
Surr: 4-Bromofluorobenzene	116	55-140	%REC	1	4/26/2012 2:06:56 AM		

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 16 of 31

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Southwest Geoscience

Largo CS

Project:

Lab Order 1204865 Date Reported: 5/2/2012

Client Sample ID: MW-8 Collection Date: 4/19/2012 9:55:00 AM

Received	Date: 4/	21/2012	11:00:00 AM

Lab ID: 1204865-017	Matrix:	Matrix: AQUEOUS		Received Date: 4/21/2012 11:00:00 AM			
Analyses	Result	RL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8015B: DIESEL RANG	E				Analyst: JMP		
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/24/2012 6:14:15 PM		
Surr: DNOP	95.2	61.3-164	%REC	1	4/24/2012 6:14:15 PM		
EPA METHOD 8015B: GASOLINE RA	ANGE				Analyst: NSB		
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/26/2012 2:37:30 AM		
Surr: BFB	99.9	69.3-120	%REC	1	4/26/2012 2:37:30 AM		
EPA METHOD 8021B: VOLATILES					Analyst: NSB		
Benzene	ND	1.0	µg/L	1	4/26/2012 2:37:30 AM		
Toluene	ND	1.0	µg/L	1	4/26/2012 2:37:30 AM		
Ethylbenzene	ND	1.0	µg/L	1	4/26/2012 2:37:30 AM		
Xylenes, Total	ND	2.0	µg/L	1	4/26/2012 2:37:30 AM		
Surr: 4-Bromofluorobenzene	107	55-140	%REC	1	4/26/2012 2:37:30 AM		

Qualifiers:

ļ

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- s Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL **Reporting Detection Limit**

Page 17 of 31

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1204865 Date Reported: 5/2/2012

CLIENT: Southwest Geoscience			C	Client Sample		
Project: Largo CS				Collection I	Date: 4/19/20	012 10:30:00 AM
Lab ID: 1204865-018	Matrix:	AQUEOU	IS	Received I	Date: 4/21/20	012 11:00:00 AM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGE						Analyst: JMP
Diesel Range Organics (DRO)	2.9	1.0)	mg/L	1	4/24/2012 6:40:08 PM
Surr: DNOP	98.8	61.3-164		%REC	1	4/24/2012 6:40:08 PM
EPA METHOD 8015B: GASOLINE RANG	GE					Analyst: NSB
Gasoline Range Organics (GRO)	5.5	0.25	;	mg/L	5	4/26/2012 3:08:15 AM
Surr: BFB	365	69.3-120	S	%REC	5	4/26/2012 3:08:15 AM
EPA METHOD 8021B: VOLATILES						Analyst: NSB
Benzene	11	5.0		µg/L	5	4/26/2012 3:08:15 AM
Toluene	· ND	5.0	l	µg/L	5	4/26/2012 3:08:15 AM
Ethylbenzene	16	5.0		µg/L	5	4/26/2012 3:08:15 AM
Xylenes, Total	38	10)	µg/L	5	4/26/2012 3:08:15 AM
Surr: 4-Bromofluorobenzene	179	55-140	S	%REC	5	4/26/2012 3:08:15 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

RL **Reporting Detection Limit**

Page 18 of 31

Lab Order 1204865

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/2/2012

CLIENT: Southwest Geoscience	Client Sample ID: MW-14					
Project: Largo CS			Collection	ate: 4/19/2	012 11:10:00 AM	
Lab ID: 1204865-019	Matrix:	Matrix: AQUEOUS		Received Date: 4/21/2012 11:00:00 AM		
Analyses	Result	RL Qual	Units	DF	Date Analyzed	
EPA METHOD 8015B: DIESEL RANGE					Analyst: JMP	
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/24/2012 7:06:02 PM	
Surr: DNOP	97.9	61.3-164	%REC	.1	4/24/2012 7:06:02 PM	
EPA METHOD 8015B: GASOLINE RAN	IGE				Analyst: NSB	
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/26/2012 3:39:03 AM	
Surr: BFB	93.4	69.3-120	%REC	1	4/26/2012 3:39:03 AM	
EPA METHOD 8021B: VOLATILES					Analyst: NSB	
Benzene	ND	1.0	µg/L	1	4/26/2012 3:39:03 AM	
Toluene	ND	1.0	µg/L	1	4/26/2012 3:39:03 AM	
Ethylbenzene	ND	1.0	µg/L	1	4/26/2012 3:39:03 AM	
Xylenes, Total	ND	2.0	µg/L	1	4/26/2012 3:39:03 AM	
Surr: 4-Bromofluorobenzene	98.6	55-140	%REC	1	4/26/2012 3:39:03 AM	

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 19 of 31

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1204865** Date Reported: **5/2/2012**

CLIENT: Southwest Geoscience	Client Sample ID: MW-13 Collection Date: 4/19/2012 11:45:00 AM						
Project: Largo CS							
Lab ID: 1204865-020	Matrix:	Matrix: AQUEOUS		Received Date: 4/21/2012 11:00:00 AM			
Analyses	Result	RL Qua	l Units	DF	Date Analyzed		
EPA METHOD 8015B: DIESEL RANGI	E				Analyst: JMP		
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/24/2012 8:49:03 PM		
Surr: DNOP	103	61.3-164	%REC	1	4/24/2012 8:49:03 PM		
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB		
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/26/2012 4:09:58 AM		
Surr: BFB	88.4	69.3-120	%REC	1	4/26/2012 4:09:58 AM		
EPA METHOD 8021B: VOLATILES					Analyst: NSB		
Benzene	ND	1.0	µg/L	1	4/26/2012 4:09:58 AM		
Toluene	ND	1.0	µg/L	1	4/26/2012 4:09:58 AM		
Ethylbenzene	ND	1.0	µg/L	1	4/26/2012 4:09:58 AM		
Xylenes, Total	ND	2.0	µg/L	1	4/26/2012 4:09:58 AM		
Surr: 4-Bromofluorobenzene	91.1	55-140	%REC	1	4/26/2012 4:09:58 AM		

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 20 of 31

Lab Order 1204865

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/2/2012

CLIENT: Southwest Geoscience	Client Sample ID: MW-6 Collection Date: 4/19/2012 12:20:00 PM						
Project: Largo CS							
Lab ID: 1204865-021	Matrix:	AQUEOUS	Received D	Received Date: 4/21/2012 11:00:00 AM			
Analyses	Result	RL Qua	l Units	DF	Date Analyzed		
EPA METHOD 8015B: DIESEL RANGE					Analyst: JMP		
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/24/2012 9:14:26 PM		
Surr: DNOP	101	61.3-164	%REC	1	4/24/2012 9:14:26 PM		
EPA METHOD 8015B: GASOLINE RAN	NGE				Analyst: NSB		
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/26/2012 6:17:50 PM		
Surr: BFB	96.5	69.3-120	%REC	1	4/26/2012 6:17:50 PM		
EPA METHOD 8021B: VOLATILES					Analyst: NSB		
Benzene	ND	1.0	µg/L	1	4/26/2012 6:17:50 PM		
Toluene	ND	1.0	µg/L	1	4/26/2012 6:17:50 PM		
Ethylbenzene	ND	1.0	µg/L	1	4/26/2012 6:17:50 PM		
Xylenes, Total	ND	2.0	µg/L	1	4/26/2012 6:17:50 PM		
Surr: 4-Bromofluorobenzene	102	55-140	%REC	1	4/26/2012 6:17:50 PM		

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

- Ε Value above quantitation range
- J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL **Reporting Detection Limit**

Page 21 of 31

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1204865** Date Reported: **5/2/2012**

CLIENT: Southwest Geoscience	Client Sample ID: MW-16 Collection Date: 4/19/2012 1:00:00 PM						
Project: Largo CS							
Lab ID: 1204865-022	Matrix:	Matrix: AQUEOUS		Received Date: 4/21/2012 11:00:00 AM			
Analyses	Result	RL Qua	l Units	DF	Date Analyzed		
EPA METHOD 8015B: DIESEL RANG	E				Analyst: JMP		
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/24/2012 9:40:06 PM		
Surr: DNOP	101	61.3-164	%REC	1	4/24/2012 9:40:06 PM		
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB		
Gasoline Range Organics (GRO)	0.14	0.050	mg/L	1	4/26/2012 6:48:37 PM		
Surr: BFB	118	69.3-120	%REC	1	4/26/2012 6:48:37 PM		
EPA METHOD 8021B: VOLATILES					Analyst: NSB		
Benzene	20	1.0	µg/L	1	4/26/2012 6:48:37 PM		
Toluene	ND	1.0	µg/L	1	4/26/2012 6:48:37 PM		
Ethylbenzene	1.0	1.0	µg/L	1	4/26/2012 6:48:37 PM		
Xylenes, Total	ND	2.0	µg/L	1	4/26/2012 6:48:37 PM		
Surr: 4-Bromofluorobenzene	117	55-140	%REC	1	4/26/2012 6:48:37 PM		

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 22 of 31

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1204865** Date Reported: **5/2/2012**

CLIENT: Southwest Geoscience	Client Sample ID: MW-15						
Project: Largo CS	Collection Date: 4/19/2012 1:40:00 PM						
Lab ID: 1204865-023	Matrix: AQUEOUS		Received D	Received Date: 4/21/2012 11:00:00 AM			
Analyses	Result	RL Qua	l Units	DF	Date Analyzed		
EPA METHOD 8015B: DIESEL RANGE		x			Analyst: JMP		
Diesel Range Organics (DRO)	ND	1.0	mg/L	. 1	4/24/2012 10:31:08 PM		
Surr: DNOP	102	61.3-164	%REC	1	4/24/2012 10:31:08 PM		
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB		
Gasoline Range Organics (GRO)	0.21	0.050	mg/L	1	4/30/2012 4:07:16 PM		
Surr: BFB	111	69.3-120	%REC	1	4/30/2012 4:07:16 PM		
EPA METHOD 8021B: VOLATILES					Analyst: NSB		
Benzene	23	1.0	µg/L	1	4/30/2012 4:07:16 PM		
Toluene	ND	1.0	µg/L	1	4/30/2012 4:07:16 PM		
Ethylbenzene	1.4	1.0	µg/L	1	4/30/2012 4:07:16 PM		
Xylenes, Total	ND	2.0	µg/L	1	4/30/2012 4:07:16 PM		
Surr: 4-Bromofluorobenzene	115	55-140	%REC	1	4/30/2012 4:07:16 PM		

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 23 of 31

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1204865 Date Reported: 5/2/2012

4/27/2012 12:57:19 AM

4/27/2012 12:57:19 AM

4/27/2012 12:57:19 AM

CLIENT: Southwest Geoscience	Client Sample ID: MW-7						
Project: Largo CS	Collection Date: 4/19/2012 2:20:00 PM						
Lab ID: 1204865-024	Matrix:	AQUEOUS	Received D	Received Date: 4/21/2012 11:00:00 AM			
Analyses	Result	RL Qual	Units	DF	Date Analyzed		
EPA METHOD 8015B: DIESEL RANG	E				Analyst: JMP		
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	4/24/2012 10:56:30 PM		
Surr: DNOP	106	61.3-164	%REC	1	4/24/2012 10:56:30 PM		
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB		
Gasoline Range Organics (GRO)	2.7	0.50	mg/L	10	4/27/2012 12:57:19 AM		
Surr: BFB	104	69.3-120	%REC	10	4/27/2012 12:57:19 AM		
EPA METHOD 8021B: VOLATILES					Analyst: NSB		
Benzene	790	10	µg/L	10	4/27/2012 12:57:19 AM		
Toluene	ND	10	µg/L	10	4/27/2012 12:57:19 AM		

10

20

55-140

µg/L

μg/L

%REC

15

ND

113

Qualifiers:

Ethylbenzene

Xylenes, Total

Surr: 4-Bromofluorobenzene

*/X Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank

10

10

10

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL **Reporting Detection Limit**

Page 24 of 31

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1204865

Date Reported: 5/2/2012

CLIENT: Southwest Geoscience		C	lient Sample	• ID: MW-1	2
Project: Largo CS			Collection D	ate: 4/19/2	012 3:15:00 PM
Lab ID: 1204865-025	Matrix:	AQUEOUS	Received D	ate: 4/21/2	012 11:00:00 AM
Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGE					Analyst: JMP
Diesel Range Organics (DRO)	5.8	1.0	mg/L	1	4/24/2012 11:21:54 PM
Surr: DNOP	114	61.3-164	%REC	1	4/24/2012 11:21:54 PM
EPA METHOD 8015B: GASOLINE RA	NGE	· .			Analyst: NSB
Gasoline Range Organics (GRO)	22	2.5	mg/L	50	4/27/2012 1:58:49 AM
Surr: BFB	85.3	69.3-120	%REC	50	4/27/2012 1:58:49 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	4,300	50	µg/L	50	4/27/2012 1:58:49 AM
Toluene	53	50	µg/L	50	4/27/2012 1:58:49 AM
Ethylbenzene	150	50	µg/L	50	4/27/2012 1:58:49 AM
Xylenes, Total	930	100	µg/L	50	4/27/2012 1:58:49 AM
Surr: 4-Bromofluorobenzene	93.0	55-140	%REC	50	4/27/2012 1:58:49 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 25 of 31

Analytical Report Lab Order 1204865

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1204865** Date Reported: **5/2/2012**

CLIENT:Southwest GeoscienceProject:Largo CSLab ID:1204865-026	Matrix:	AQUEOU			Date: 4/19/2	1 012 3:55:00 PM 012 11:00:00 AM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGE						Analyst: JMP
Diesel Range Organics (DRO)	ND	1.0		mg/L	1	4/24/2012 11:47:17 PM
Surr: DNOP	112	61.3-164		%REC	1	4/24/2012 11:47:17 PM
EPA METHOD 8015B: GASOLINE RANG	GE					Analyst: NSB
Gasoline Range Organics (GRO)	0.43	0.050		mg/L	1	4/30/2012 4:37:59 PM
Surr: BFB	121	69.3-120	S	%REC	1	4/30/2012 4:37:59 PM
EPA METHOD 8021B: VOLATILES						Analyst: NSB
Benzene	84	1.0		µg/L	1	4/30/2012 4:37:59 PM
Toluene	ND	1.0		µg/L	1	4/30/2012 4:37:59 PM
Ethylbenzene	3.2	1.0		µg/Ŀ	1	4/30/2012 4:37:59 PM
Xylenes, Total	ND	2.0		µg/L	1	4/30/2012 4:37:59 PM
Surr: 4-Bromofluorobenzene	123	55-140		%REC	1	4/30/2012 4:37:59 PM

*/X Qualifiers: Value exceeds Maximum Contaminant Level. В Analyte detected in the associated Method Blank Ε Value above quantitation range Holding times for preparation or analysis exceeded Н J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit R RPD outside accepted recovery limits RL **Reporting Detection Limit** Page 26 of 31 S Spike Recovery outside accepted recovery limits

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

.....

Client: Southwe Project: Largo C	est Geoscience S			
Sample ID MB-1652	SampType: MBLK	TestCode: EPA Me	thod 8015B: Diesel Range	
Client ID: PBW	Batch ID: 1652	RunNo: 2293		
Prep Date: 4/23/2012	Analysis Date: 4/23/2012	SeqNo: 64078	Units: mg/L	
Analyte	Result PQL SPK valu	e SPK Ref Val %REC LowL	imit HighLimit %RPD	RPDLimit Qual
Diesel Range Organics (DRO) Surr: DNOP	ND 1.0 1.1 1.00	0 109	61.3 164	
Sample ID LCS-1652	SampType: LCS	TestCode: EPA Me	thod 8015B: Diesel Range	
Client ID: LCSW	Batch ID: 1652	RunNo: 2293		
Prep Date: 4/23/2012	Analysis Date: 4/23/2012	SeqNo: 64079	Units: mg/L	
Analyte	Result PQL SPK valu	e SPK Ref Val %REC Lowl	imit HighLimit %RPD	RPDLimit Qual
Diesel Range Organics (DRO)	4.4 1.0 5.00		74 157	
Surr: DNOP	0.49 0.500	0 98.2	61.3 164	
Sample ID LCSD-1652	SampType: LCSD	TestCode: EPA Me	thod 8015B: Diesel Range	
Client ID: LCSS02	Batch ID: 1652	RunNo: 2293		
Prep Date: 4/23/2012	Analysis Date: 4/23/2012	SeqNo: 64080	Units: mg/L	
Analyte	Result PQL SPK valu	e SPK Ref Val %REC LowL	imit HighLimit %RPD	RPDLimit Qual
Diesel Range Organics (DRO)	4.5 1.0 5.00		74 157 3.25	23
Surr: DNOP	0.49 0.500	0 97.8	61.3 164 0	0
Sample ID MB-1653	SampType: MBLK	TestCode: EPA Me	thod 8015B: Diesel Range	
Client ID: PBW	Batch ID: 1653	RunNo: 2346		
Prep Date: 4/23/2012	Analysis Date: 4/24/2012	SeqNo: 65243	Units: mg/L	
Analyte	Result PQL SPK valu	e SPK Ref Val %REC LowL	imit HighLimit %RPD	RPDLimit Qual
Diesel Range Organics (DRO) Surr: DNOP	ND 1.0 1.0 1.00	0 99.8	61.3 164	
Sample ID LCS-1653	SampType: LCS	TestCode: EPA Me	thod 8015B: Diesel Range	
Client ID: LCSW	Batch ID: 1653	RunNo: 2346		
Prep Date: 4/23/2012	Analysis Date: 4/24/2012	SeqNo: 65244	Units: mg/L	
Analyte	Result PQL SPK valu	e SPK Ref Val %REC LowL	imit HighLimit %RPD	RPDLimit Qual
Diesel Range Organics (DRO)	5.6 1.0 5.00		74 157	
Surr: DNOP	0.49 0.500	0 97.1	61.3 164	
Sample ID LCSD-1653	SampType: LCSD	TestCode: EPA Me	thod 8015B: Diesel Range	
Client ID: LCSS02	Batch ID: 1653	RunNo: 2346		
Prep Date: 4/23/2012	Analysis Date: 4/24/2012	SeqNo: 65245	Units: mg/L	
Analyte	Result PQL SPK valu	e SPK Ref Val %REC LowL	imit HighLimit %RPD.	RPDLimit Qual
Diesel Range Organics (DRO)	5.6 1.0 5.00		74 157 0.673	23
Surr: DNOP	0.48 0.500	0 95.2	61.3 164 0	0

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 27 of 31

1204865 02-May-12

WO#:

B Analyte detected in the associated Method Blank

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client: Southwe	st Geoscience								
Project: Largo C	S			•					
Sample ID 5ML RB	SampType: N		Too	tCodo: El	PA Mothod	8015B: Gaso	line Beng	•	
Client ID: PBW	Batch ID: F			RunNo: 2		00150. 0850	ine Kang	e	·
Prep Date:	Analysis Date:			SeqNo: 6		Units: mg/L			
	•	•		•		•			. .
Analyte Gasoline Range Organics (GRO)	Result PQL ND 0.05		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sur: BFB	21	20.00		104	69.3	120			
Sample ID 2.5UG GRO LCS	SampType: L	.cs	Tes	tCode: El	PA Method	8015B: Gaso	line Rang	e	
Client ID: LCSW	Batch ID: F	2334	F	RunNo: 2	334				
Prep Date:	Analysis Date:	4/24/2012	5	SeqNo: 6	5519	Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	0.54 0.05			107	101	123			
Surr: BFB	22	20.00		109	69.3	120			
Sample ID 5ML RB	SampType: N	IBLK	Tes	tCode: El	PA Method	8015B: Gaso	line Rang	e	
Client ID: PBW	Batch ID: F	2385	F	RunNo: 2	385				
Prep Date:	Analysis Date:	4/25/2012	5	SeqNo: 6	6305	Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND 0.05								
Surr: BFB	19	20.00		95.2	69.3	120			
Sample ID 2.5UG GRO LC	SampType: L	.CS	Tes	tCode: El	PA Method	8015B: Gaso	line Rang	e	
Client ID: LCSW	Batch ID: F	2385	F	RunNo: 2	385				
Prep Date:	Analysis Date:	4/25/2012	5	SeqNo: 6	6306	Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	0.54 0.05		0	108	101	123			
Surr: BFB	18	20.00		87.5	69.3	120			
Sample ID 5ML RB	SampType: N	IBLK	Tes	tCode: El	PA Method	8015B: Gaso	line Rang	e	
Client ID: PBW	Batch ID: F	2421	F	RunNo: 2 4	421				
Prep Date:	Analysis Date:	4/26/2012	9	SeqNo: 6	7209	Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND 0.05								
Surr: BFB	19	20.00		96.8	69.3	120			
Sample ID 2.5UG GRO LCS	SampType: L	cs	Tes	tCode: El	PA Method	line Rang	e		
Client ID: LCSW	Batch ID: F	2421	F	RunNo: 2	421				
Prep Date:	Analysis Date:	4/26/2012	5	SeqNo: 6	7210	Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	0.55 0.050			110	101	123			
Surr: BFB	22	20.00		108	69.3	120			

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reporting Detection Limit

Page 28 of 31

WO#:

RL Rep

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:SouthwestProject:Largo CS	st Geoscier	nce		· .						
Sample ID 5ML RB	SampT	ype: MI	BLK	Tes	tCode: El	PA Method	8015B: Gaso	line Rang	e	
Client ID: PBW	Batcl	n ID: R2	2484	F	RunNo: 2	484				
Prep Date:	Analysis E)ate: 4	/30/2012	S	SeqNo: 6	9022	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	0.050		-						
Surr: BFB	21		20.00		106	69.3	120			
Sample ID 2.5UG GRO LCS	Samp1	ype: LC	s	Tes	tCode: El	PA Method	8015B: Gaso	line Rang	e	
Client ID: LCSW	Batcl	n ID: R2	2484	F	RunNo: 2	484				
Prep Date:	Analysis Date: 4/30/2012			5	SeqNo: 6	9023	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	0.54	0.050	0.5000	0	107	101	123			
Surr: BFB	22		20.00		112	69.3	120			

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 29 of 31

1204865

WO#:

02-May-12

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc. Client: Southwest Geoscience Project: Largo CS

0											
Sample ID	5ML RB	SampT	ype: ME	BLK	Tes	tCode: E	PA Method	8021B: Volat	iles		
Client ID:	PBW	Batch	ID: R2	334	Ŕ	RunNo: 2	334				
Prep Date:		Analysis D	ate: 4/	24/2012	S	GegNo: 6	5540	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	1.0								
Toluene		ND	1.0								
Ethylbenzene		ND	1.0								
Xylenes, Total		ND	2.0								
Surr: 4-Bromo	ofluorobenzene	23		20.00		114	55	140			
Sample ID	100NG BTEX LCS	SampT	ype: LC	S	Tes	tCode: E	PA Method	8021B: Volat	iles		
Client ID:	LCSW	Batch	ID: R2	334	F	RunNo: 2	334				
Prep Date:		Analysis D	ate: 4/	24/2012	s	SeqNo: 6	5541	Units: µg/L			
Analyte [·]		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		21	1.0	20.00	0	105	80	. 120			
Toluene		21	1.0	20.00	0	107	80	120			
Ethylbenzene		21	1.0	20.00	0	105	80	120			
Xylenes, Total		63	2.0	60.00	0	106	80	120			
Surr: 4-Bromo	ofluorobenzene	23		20.00		116	55	140			
Sample ID	5ML RB	SampT	ype: ME	BLK	Tes	tCode: E	PA Method	8021B: Volat	iles		
•	5ML RB PBW	-	ype: ME ID: R2			tCode: E RunNo: 2		8021B: Volat	iles		
•		-	ID: R2	385	R	_	385	8021B: Volat Units: µg/L	iles		
Client ID:		Batch	ID: R2	385 25/2012	R	RunNo: 2	385		iles %RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte		Batch Analysis D	ID: R2 ate: 4/	385 25/2012	FT S	RunNo: 2 SeqNo: 6	385 6363	Units: µg/L		RPDLimit	Qual
Client ID: Prep Date: Analyte Benzene		Batch Analysis D Result	ID: R2 ate: 4/ PQL	385 25/2012	FT S	RunNo: 2 SeqNo: 6	385 6363	Units: µg/L		RPDLimit	Qual
Client ID: Prep Date: Analyte Benzene Toluene		Batch Analysis D Result ND	ID: R2 ate: 4/ PQL 1.0	385 25/2012	FT S	RunNo: 2 SeqNo: 6	385 6363	Units: µg/L		RPDLimit	Qual
Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene		Batch Analysis D Result ND ND	ID: R2 ate: 4/ PQL 1.0 1.0	385 25/2012	FT S	RunNo: 2 SeqNo: 6	385 6363	Units: µg/L		RPDLimit	Qual
Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total		Batch Analysis D Result ND ND ND	ID: R2 ate: 4/ <u>PQL</u> 1.0 1.0 1.0	385 25/2012	FT S	RunNo: 2 SeqNo: 6	385 6363	Units: µg/L		RPDLimit	Qual
Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromo	PBW	Batch Analysis D Result ND ND ND 20	ID: R2 ate: 4/ <u>PQL</u> 1.0 1.0 1.0	385 25/2012 SPK value 20.00	F S SPK Ref Val	RunNo: 2 SeqNo: 6 %REC 98.9	385 6363 LowLimit 55	Units: µg/L HighLimit	%RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromo Sample ID	PBW	Batch Analysis D Result ND ND 20 SampT	PQL 1.0 1.0 1.0 2.0	385 25/2012 SPK value 20.00	R SPK Ref Val Tesi	RunNo: 2 SeqNo: 6 %REC 98.9	385 6363 LowLimit 55 PA Method	Units: µg/L HighLimit 140	%RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromo Sample ID	PBW offluorobenzene 100NG BTEX LCS	Batch Analysis D Result ND ND 20 SampT	ID: R2 ate: 4/ PQL 1.0 1.0 1.0 2.0 ype: LC	385 25/2012 SPK value 20.00 S 385	F S SPK Ref Val Tesi F	RunNo: 2 SeqNo: 6 %REC 98.9	385 6363 LowLimit 55 PA Method 385	Units: µg/L HighLimit 140	%RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Sur: 4-Bromo Sample ID Client ID:	PBW offluorobenzene 100NG BTEX LCS	Batch Analysis D Result ND ND ND 20 SampT Batch	ID: R2 ate: 4/ PQL 1.0 1.0 1.0 2.0 ype: LC	385 25/2012 SPK value 20.00 S 385 25/2012	F S SPK Ref Val Tesi F	RunNo: 2 SeqNo: 6 %REC 98.9 tCode: E RunNo: 2	385 6363 LowLimit 55 PA Method 385	Units: µg/L HighLimit 140 8021B: Volat	%RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromo Sample ID Client ID: Prep Date: Analyte	PBW offluorobenzene 100NG BTEX LCS	Batch Analysis D Result ND ND 20 SampT Batch Analysis D	PQL 1.0 1.0 1.0 1.0 2.0 ype: LC ID: R2 ate: 4/	385 25/2012 SPK value 20.00 S 385 25/2012	F SPK Ref Val Tesi F S	RunNo: 2 SeqNo: 6 %REC 98.9 tCode: E RunNo: 2 SeqNo: 6	385 6363 LowLimit 55 PA Method 385 6364	Units: µg/L HighLimit 140 8021B: Volat Units: µg/L	%RPD		
Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromo Sample ID Client ID: Prep Date: Analyte Benzene	PBW offluorobenzene 100NG BTEX LCS	Batch Analysis D Result ND ND 20 SampT Batch Analysis D Result	ID: R2 ate: 4/ PQL 1.0 1.0 1.0 2.0 ype: LC ID: R2 ate: 4/ PQL	385 25/2012 SPK value 20.00 S 385 25/2012 SPK value	F SPK Ref Val Tesi SPK Ref Val	RunNo: 2 SeqNo: 6 %REC 98.9 tCode: E RunNo: 2 SeqNo: 6 %REC	385 6363 LowLimit 55 PA Method 385 6364 LowLimit	Units: µg/L HighLimit 140 8021B: Volat Units: µg/L HighLimit	%RPD		
Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromo Sample ID Client ID: Prep Date: Analyte Benzene Toluene	PBW offluorobenzene 100NG BTEX LCS	Batch Analysis D Result ND ND ND 20 SampT Batch Analysis D Result 21	ID: R2 ate: 4/ PQL 1.0 1.0 1.0 2.0 ype: LC ID: R2 ate: 4/ PQL 1.0	385 25/2012 SPK value 20.00 S 385 25/2012 SPK value 20.00	F SPK Ref Val Test S SPK Ref Val 0	RunNo: 2 SeqNo: 6 %REC 98.9 tCode: E RunNo: 2 SeqNo: 6 %REC 106	385 6363 LowLimit 55 PA Method 385 6364 LowLimit 80	Units: µg/L HighLimit 140 8021B: Volat Units: µg/L HighLimit 120	%RPD		
Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Sur: 4-Bromo Sample ID Client ID: Prep Date:	PBW offluorobenzene 100NG BTEX LCS	Batch Analysis D Result ND ND ND 20 SampT Batch Analysis D Result 21 21	ID: R2 ate: 4/ PQL 1.0 1.0 1.0 2.0 ype: LC ID: R2 ate: 4/ PQL 1.0 1.0	385 25/2012 SPK value 20.00 S 385 25/2012 SPK value 20.00 20.00	F SPK Ref Val Tesi SPK Ref Val 0 0	RunNo: 2 SeqNo: 6 %REC 98.9 tCode: E RunNo: 2 SeqNo: 6 %REC 106 105	385 6363 LowLimit 55 PA Method 385 6364 LowLimit 80 80	Units: µg/L HighLimit 140 8021B: Volat Units: µg/L HighLimit 120 120	%RPD		

Qualifiers:

- */X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 30 of 31

WO#: 1204865

02-May-12

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:	Southwes Largo CS		nce								
Sample ID	5ML RB	SampT	Type: MI	3LK	Tes	tCode: El	PA Method	8021B: Volat	iles	·· <u> </u>	·
Client ID:	PBW	Batcl	h ID: R2	421	F	RunNo: 2	421				
Prep Date:		Analysis E	Date: 4	26/2012	S	SeqNo: 6	7246	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	1.0								
Toluene		ND	1.0								
Ethylbenzene		ND	1.0								
Xylenes, Total		ND	2.0								
Surr: 4-Bron	nofluorobenzene	21		20.00		104	55	140		·	
Sample ID	100NG BTEX LCS	SampT	Type: LC	s	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID:	LCSW	Batcl	h ID: R2	421	F	RunNo: 2	421				
Prep Date:		Analysis D	Date: 4	26/2012	5	GeqNo: 6	7247	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		21	1.0	20.00	0	107	80	120			
Toluene		22	1.0	20.00	0	108	80	120			
Ethylbenzene		21	1.0	20.00	0.	107	80	120			
Xylenes, Total		64	2.0	60.00	0	106	80	120			
Surr: 4-Bron	nofluorobenzene	27		20.00		133	55	140			
Sample ID	5ML RB	SampT	Type: Mi	ЗLK	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID:	PBW	Batcl	h ID: R2	484	F	RunNo: 2	484				
Prep Date:		Analysis E	Date: 4/	30/2012	5	SeqNo: 6	9128	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	1.0								
Toluene		ND	1.0								
Ethylbenzene		ND	1.0								
Xylenes, Total		ND	2.0								
Surr: 4-Bron	nofluorobenzene	23		20.00		116	55	140			
Sample ID	100NG BTEX LCS	SampT	ype: LC	s	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID:	LCSW	Batcl	h ID:. R2	484	F	RunNo: 2	484				
Prep Date:		Analysis D	Date: 4/	30/2012	S	SeqNo: 6	9129	Units: µg/L			
Analyte		Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		21	1.0	20.00	0	107	80	120			
Toluene		21	1.0	20.00	0	107	80	120			
Ethylbenzene		21	1.0	20.00	0	106	80	120			
Xylenes, Total		63	2.0	60.00	0	105	80	120			
Surr: 4-Brom	ofluorobenzene	20		20.00		101	55	140			

Qualifiers:

- */X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

1204865 *02-May-12*

WO#:

HALL ENVIRONMENTAL ANALYSIS LABORATORY Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-410; Website: www.hallenvironmental.con

Sample Log-In Check List

Client Name: Southwest Geoscience	Work Order Number: 1204865
Received by/date: AF 04/21/12	
Logged By: Michelle Garcia 4/21/2012 11:00:00 A	M Minel Concies
Completed By: Michelle Garcia 4/23/2012 9:09:29 AN	1 Mirel Games
Reviewed By: 04/23/12	,
Chain of Custody	
1. Were seals intact?	Yes 🗌 No 💭 Not Present 🗹
2. Is Chain of Custody complete?	Yes 🗹 No 💭 Not Present 🗔
3. How was the sample delivered?	Courier
Log In	
4. Coolers are present? (see 19. for cooler specific information)	Yes 🗹 No 🗌 🛛 NA 🗍
5. Was an attempt made to cool the samples?	Yes 🗹 No 🗋 🛛 NA 🗌
6. Were all samples received at a temperature of >0° C to 6.0°C	Yes 🗹 No 🗌 🛛 NA 🗌
7. Sample(s) in proper container(s)?	Yes 🗹 No 🗌
8. Sufficient sample volume for indicated test(s)?	Yes 🗹 No 🗌
9. Are samples (except VOA and ONG) properly preserved?	Yes 🗹 No 🗌
10. Was preservative added to bottles?	Yes 🗌 No 🗹 🛛 NA 🗌
11. VOA vials have zero headspace?	Yes 🔲 No 💭 No VOA Viais 🗹
12, Were any sample containers received broken?	
13. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes V No H for preserved bottles checked for pH:
14. Are matrices correctly identified on Chain of Custody?	Yes ✔ No
15. Is it clear what analyses were requested?	Yes 🗹 No 🗌 Adjusted?
16. Were all holding times able to be met?(If no, notify customer for authorization.)	Yes 🗹 No 🗔 Checked by:
Special Handling (if applicable)	
17. Was client notified of all discrepancies with this order?	Yes 🗌 No 🔲 🛛 NA 🗹
Person Notified: Date: By Whom: Via: Regarding: Client Instructions:	eMail Phone Fax In Person
18. Additional remarks:	

19. Cooler Information

Cooler No T	emp C Condition	Seal Intact	Seal No	Seal Date	Signed By
1 3.0	Good	Yes			

Page 1 of 1

																				CHA	IN OF	= <u>C</u>	USTODY RECORD
	JGE	sth osc	2 I E	ΞN	CE	Laboratory:				v		_		ALYSIS QUESTED	//								Lab use only Due Date: Temp. of coolers when received (C°): 3 .0
Office	Locatio	n <u> </u>	tec	,		Contact:						_		SOL	/					11	' /		1 3 2 3 4 5
				<u> </u>	·	Phone:										. /	/	/	/ /		/		Pageof
Proje	ct Manag	jer <u>Ky</u>	12	Sun	nmeri	PO/SO #:						<u> </u>		× /	' /		[]	/ .		1	/		
Sample	er's Name	•				Sampler's Signa	ature							27		11	[]				/		
l A	larmo	Bentl	en			laron	B	inti	ŤUI,				•	22	1								
			Proje	ect Na					No/Ty	pe of C	ontain	ers		9 9	ľ [/	/		/ /			
04	11000	a		La	rgo C	5					r 1						/ ,	/ ,				1	7011015
Matrix	Date	Time	DoEo	G r a b	Identifying M	arks of Sample(s)	Start	End Depth	VOA	A/G 1 Lt.	250 ml	P/0	F	BTEX BURL						/	Lat	/ < b Sa	204845 mple ID (Lab Use Only)
$\overline{\omega}$	4/18/R	0825		/	Ηω	-40			5				~	~									-001
فن	4/18/12	0915		-	Μω·	-50			5				~	1									- 002
	4/18/12				Mw-	42			5				~							-			- 003
	4/18/12			/	Mw-	51			5			•	~										- 004
	4/18/12			/	MW-	4)			5				~									-	- 005
	4/18/12			~	MW-				5				<			~			•				- 004
	4/18/12			-	Μω-	32	ŀ		5				1	-									- 007
	4/18/12			~	Mw-				5				2										- 008
141	4lielia	13.55		1	1 MW-	52			5				~										- 009
w	4/18/12	1430		ノ	Hw-	39			5				2										- 010
Turn a	ound time	Nor					100%			•		/											
	1170	Signature)	7	4	Date:	Time: Recon		(Signa	iture)		4	Date	1/12	- Time: 2/7/	NOT	:5:							
Reling	uished by	Signature)	-					(Signa				Date 4/19	أمأ	Time: 1735									
Fieling	uishep by ((Signature)			Date:	Time: Receiv	ved by:	(Signa	iture)	- M		Date	<u>ң т</u>	Time:									
	Latta	Signature)	Ht.		Date:	Time: Receiv	1 ved by		- iture)		-+	<u>7/2</u> Date		//00 Time:									
		(Signature)						(8-10															
Matrix Contair		V - Wastewai A - 40 ml via			W - Water A/G - Amber /	S - Soil SD - So Or Glass 1 Liter		Liquí 250 ml -	d A Glass	- Air B vide m	ag buth			coal tube stic or other_	SL - sl	idge	0	- Oil					

SOUTHWEST GEOSCIENCE • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914

CHAIN OF CUSTODY RECORD

C	201	ith	N	76	est	Laboratory:	: U.	. 11	<u> </u>					ALYSIS QUESTEI	D / D	1	/ /	/ /	$\left[\right]$	/ /		\prod	/1	use only Date:	
		osc		EN	CE	Address:			rqv	e		 				/ /				/			Term whe	p. of coolers n received (°™3.0°
Offic	e Locatio	nA	ztu	<u>د</u>		Contact: Phone:						_		BULS			/ /	 	/ /	/ /		/	13° Page	$\overline{\mathbf{C}}$	4 5
Proje	ect Manag	jer_Kyl	ly .	5	nmins	PO/SO #:			-					9		' /				/	11				
Samp	ier's Name	·				Sampler's Signa	ature							्य ले	' /	/	/	/	/	/					
Proj. I	<u>Aur</u> 10.	on B	1 -			awter	<u>, [</u>	bint	NOTY	pe of C	Contain	ers	I	RTEX EURI			/ /	/	' /	' /	r				
04	10002			Lar	go CS			<u>.</u>			TT					. /·.			./	/	/)	20)486	<u> </u>
Matrix	Date	Time	Comp	G ra b	Identifying Ma	arks of Sample(s)	Start Depth	Depth	VOA	A/G 1111.	250 mi	P/0	F		' /	1.	/· .			/ ,	/			レーマンロン ID (Lab Use	
w	4/18/12	isss		/	MW-3	38			5				-	1									- (211	
ω	4/18/12	Ke 35		~	MW-3	36			5				4	1							•	-	- ()12	
w	4/18/12	1710		~	MW-4	19			5				4	V		·					•	-	- 0)13	
ω	4/18/2	1725		<u> </u>	MW-4	18			5				/	1								-	0	214	
w	4/19/12	0835			$M\omega$ -	9			5				1						·			-	C	215	
ω	4/19/12	0915		~	MW-	3R			5				1	1					{				Ĉ	16	
ω	4/19/12	0955		/	MW-	8			5				1	1	_								Ċ	FI	
	4/19/12	•		/	Mw-	-			5				1	1				_				-	C	18	
ω	4/19/12	1110			MW-	- 14			5				1									-	0	19	
	4/19/12	1145		/	Mw-				5	_			1									-	Q	20	
	round time yuished by (Signature)				Time: Bécel) 100% /afi b/:		iture)			Date	. 7	Time:	NOT	ES:									
6	WTHAN	RITA	1			715 31	1		_				liz	17#											
Relin	uished by (Signature)	•			Time: Receiv	red by:	(Signa				Date {/19/		Time: 1735											
	quished by (l	Date:	Time: Recen	ed by:	(Signa	iture)			Date 1 /24	5 I	Time:]										
Relin	uished by (Signature)			T/26 //2 / 1 Date:	Time: Receiv	ed by	Signa	iture)			Date		Time:											
Matrix Conta		V - Wastewa A - 40 ml via				S - Soil SD - So Or Glass 1 Liter			d A Glass v					oal tube stic or other		ludge		0-0	il 						

SOUTHWEST GEOSCIENCE • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914

										. <u> </u>										CH	AIN C	<u>)F C</u>	USTODY RECORD
													ANA	YSIS	7	T	T	Γ		$\int T$	1.1	7	Lab use only
C	201	ith	Ŵ	7 6	est	Laboratory:	ער					•	Req	UESTE	D/		/		[]		/ /		Due Date:
		osc				Laboratory	<u>- n-</u>					-			/	[]	' /						
Env	ironmenta					Address:/	TIDE	gver I	<u>cdra</u>	<u> </u>				L		' /				1 /		/	Temp. of coolers 3.0° when received (C°):
		•	,											0	7 /			/	<i>ŀ</i>		./ /	/	
Office	e Locatio	n <u>Az</u>	tet	/		Contact:						_		₩ Ø	' /			/ /		' /			132345
						Phone:						_		2				/	·/	1			Page of
Proje	ct Manag	<u>jer_Ky</u>	le	Su	mmers	PO/SO #:								<u>رم</u> .]	'				/ /	' /		
Sampl	er's Name	•				Sampler's Sign	ature		-					28	7 /			/	/				
	Aaror	Bent	Hey			Word	B	1XII	1					Less Less		/	1	/ /		' /	/		
Proj. N			Proj					-7		/pe of C	ontain	ers		BIEX EQUIDAD	/	.		/	/		/		
0	10000	2		L	argo C	5		r			· · · ·			14	/ /	'					,		2011015
Matrix	Date	Time	CoEp	Grab	v	arks of Sample(s)	pt tar	Depth	VOA	A/G	250	P/0	$ \mathcal{H}$	BIEX	[: [/	/	/) ah 6-	204865 mple ID (Lab Use Only)
			p				<u>0 2</u>	۳ď.		112.	mi		\vdash	+		+	-	(\vdash	<u> </u>			
	4/19/12			~	MW-	-6	ļ	•	5									<u> .</u>				-	021
ω	4/19/12	1300		~	MW-	-110			5		·			1								-	022
ω	4/19/12	1340		4	Μw-	15			5													-	023
w	4/19/12	HAD			Mw-	17 4543			5													-	024
	4/14/12				Mw-				5		·												025
	4/19/2				MW				5					\mathbf{X}	•		1						026
100	7/1/15	1335		V	1.00	//	<u> </u>		~														
											$\left \right $						+						
 						·····											+	<u> · ·</u>					
											· •												
	uished by (Signature)			Date:	Time: Regen	100%		ture)			Date	· / ·	Time:		TES:							
	10m	RUT				7:15 12								Time: 7/5		- 2 -	E	ωπ	H	Kuz	e re	E-A	EDNIG
Relió	uisped by	signature)		_ 4	7713/12	Time: Receiv	ed by	(Signa	iture)		L	Date		Time:		106		c.A. 1	101	t= 1	AUF	= /	Koy/2012
Beling	uished by (Signature)		1	· · · · · / //		NA ved bv:	<u>T</u> (Siana	ture)	t>		<u>//''</u> Date	<u> }</u>	735 Time:	-	-02	4.	SUL	150	en	1,200	-/(× 04/3/12
1.1	Noth	w La	10,			121 1/2	4		-	•••••	- 9	<u>[2]</u>	11 11	60	_							11	7 23
Relind	uished by (Signature)			Date:	Time: Receiv	ed by	(Signa	ture)			Date	*	Time:								V.	
Matrix	w	V - Wastewa	ter		W - Water	S - Soil SD - So		L - Liqui				c	- Charco	al tube	SL -	sludge		0-0	vil				•
Contai		A - 40 ml via				Or Glass 1 Liter		250 ml -						c or othe									

SOUTHWEST GEOSCIENCE • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914