1**R** - 501

REPORT AND REMEDIATION PROPOSAL

02/28/2009

REUEIVED

2009 MAR 3 PM 1 15

February 28, 2009

CERTIFIED MAIL RETURN RECIEPT NO. 7099 3400 0017 1737 1933

Mr. Glenn von Gonten New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Site Investigation Report and Corrective Action Plan Pride Energy Company – State 36 #2 Site (API # 30-025-36909) T19S-R37E, Section 36, Unit Letter O Lea County, New Mexico

Dear Mr. von Gonten:

As agent for Pride Energy Company, Trident Environmental submits the attached *Site Investigation Report and Corrective Action Plan* for the above-referenced site.

Data collected to date indicate chloride and total dissolved solids (TDS) concentrations in groundwater exceed the standards in 20.6.2.3103 NMAC (250 mg/L and 1,000 mg/L, respectively). Chloride concentrations above 1,000 mg/kg exist in the vadose zone below the former drilling pit. The suspected source of the chloride in the vadose zone and groundwater at the site is the former drilling pit. Regulated hydrocarbons (benzene, toluene, ethylbenzene, and xylenes) are not present in groundwater or the vadose zone.

This report includes the findings of site characterization activities, a work plan for further investigations to determine the extent of groundwater impairment, and proposed corrective actions as a remedy to vadose zone and groundwater conditions.

Please feel free to contact me at (432) 638-8740 or Matthew Pride at (918) 524-9200.

Sincerely,

Gilbert J. Van Deventer, PG, REM Project Manager

cc: Matthew Pride (Pride Energy Company, Tulsa, OK)

SITE INVESTIGATION REPORT AND CORRECTIVE ACTION PLAN STATE 36 #2 SITE (API # 30-025-36909) TOWNSHIP 19 SOUTH, RANGE 37 EAST, SECTION 136 UNIT O LEA COUNTY, NEW MEXICO

FEBRUARY 28, 2009

Prepared For:

Pride Energy Company P. O. Box 701950 Tulsa, OK 74170

Prepared By:

P. O. Box 7624 Midland, Texas 79708

TABLE OF CONTENTS

. .

: :

1.0	EXECUTIVE SUMMARY							
2.0	SITE DI	ESCRIPTION						
	2.1 2.2	Location 3 Site History 3						
3.0	LOCAL	AND REGIONAL HYDROGEOLOGY						
4.0	VADOS	E ZONE PROCEDURES AND RESULTS						
5.0	GROUN	DWATER INVESTIGATION PROCEDURES AND RESULTS						
6.0	CONCL	USIONS						
7.0	Corre	CTIVE ACTION PLAN						
	7.1 7.2	Vadose Zone Remedy and Schedule of Activities						
8.0	Limita	TIONS						

FIGURES

ι

FIGURE 1	SITE LOCATION MAP	4
FIGURE 2	REGIONAL GEOLOGY AND WATER TABLE MAPS	6
FIGURE 3	CHLORIDE CONCENTRATIONS IN VADOSE ZONE	8
FIGURE 4A	CHLORIDE, TDS, & BTEX CONCENTRATION MAP (03/27/08 & 05/08/08)	10
FIGURE 4B	CHLORIDE AND TDS CONCENTRATION MAP (06/17/08)	11
FIGURE 4C	CHLORIDE, TDS, & BTEX CONCENTRATION MAP (09/10/08)	12
FIGURE 4D	CHLORIDE, TDS, & BTEX CONCENTRATION MAP (12/17/08)	13
FIGURE 5	DRILLING PIT EXCAVATION AND CLOSURE DIAGRAMS	16
FIGURE 6	PROPOSED MONITORING WELL LOCATION MAP	

TABLES

9

APPENDICES

Appendix A.....Lithologic Logs and Monitoring Well Construction Diagrams

Appendix B..... Photodocumentation

Appendix C.....Laboratory Analytical Reports and Chain-of-Custody Documentation

Appendix D..... Monitoring Well Sampling Data Forms

Appendix E Preliminary Data and C-144 Submission (Elke Environmental)

1.0 EXECUTIVE SUMMARY

The State 36 #2 well site (API # 30-025-36909) is located in Township 19 South, Range 37 East, Section 36, and Unit Letter O (N 32° 36' 44", W 103° 12' 14").

The former drilling pit contents were removed, mixed with a stabilization/solidification product (20:1 mud to product ratio) and buried in a 20-mil plastic-lined excavation adjacent to the east side of the former drilling pit. This work was done by Elke Environmental (Elke) in mid-February 2008 in accordance with an NMOCD-approved C-144 form (Appendix E).

Preliminary assessment of the soil and groundwater conditions was then conducted by Elke during the last week of February 2008, which included the sampling at five test points (TP-1 through TP-5) within the former drilling pit and installation of a monitoring well (MW-1) adjacent to the northwest corner of the pit.

After review of the data collected by Elke, Trident Environmental (Trident) re-sampled the on site monitoring well on March 27, 2008, to verify groundwater impact. Based on the results of the re-sampling activity it was determined that the constituents of concern are chloride and total dissolved solids (TDS). The laboratory did not detect benzene, toluene, ethylbenzene, or xylenes (BTEX) in the March sample. Regulated hydrocarbons (BTEX) were not analyzed during Elke's February sampling event.

Since the prevailing groundwater gradient in the regional area is to the southeast, and there was a possibility of an upgradient offsite source due to regional impacts in the Monument area, a second monitoring well (MW-2) was installed adjacent to the southeast corner of the drilling pit under the oversight of Trident on May 2, 2008. Review of laboratory analysis of groundwater samples collected from MW-2 on May 8, 2008, confirms that the former drilling pit is a source of chlorides and TDS observed in groundwater at the site. Therefore, on June 4, 2008, monitoring well MW-3 was installed approximately 100 feet southeast of MW-2 and monitoring well MW-4 about 80 ft east of the east edge of the former drilling pit for further delineation. Subsequent sampling events confirm groundwater is impacted with chlorides and TDS beyond the boundary of the former drilling pit, and that the gradient direction is in the northeasterly direction, which is anomalous to the prevailing southeast direction for the region.

The conclusions of the site characterization activities are summarized below.

- Based on the soil boring data obtained by Elke in February 2008 and by Trident in May and June 2008, the chloride impact to the vadose zone is limited to the area within the perimeter of the former drilling pit.
- Chloride and TDS concentrations from groundwater samples collected at monitoring well MW-1, MW-2, MW-3, and MW-4 exceed WQCC standards. The highest chloride and TDS levels have been observed in monitoring well MW-2 with levels of 1,300mg/L and 2,900 mg/L, respectively, during the most recent sampling event in December 2008.
- Regulated hydrocarbons (BTEX) are not present in groundwater or the vadose zone.

• The potential well yield for possible beneficial use of groundwater at the site is very low due to the limited thickness of the aquifer (less than 10 feet), observations of low yields during monitoring well development activities, and water table elevation declines of approximately one foot per year. It is unlikely a well completed in the area would yield greater than 150 gallons per day which is considered inadequate for any beneficial use. Therefore, there is negligible threat to human health and the environment.

Recommendations for corrective actions to mitigate the chloride and TDS impact to groundwater are discussed in section 7.0 and summarized below:

- Construction of an infiltration barrier within the former drilling pit to eliminate the potential for migration of residual brines from the vadose zone to groundwater.
- Install one monitoring well approximately 250 feet northeast of the east edge of the former drilling pit to delineate the downgradient extent of chloride and TDS impact.
- Install one monitoring well approximately 150 feet southwest of the west edge of the former drilling pit to confirm background concentrations.
- Submit a report to the NMOCD to document the completion of the recommended tasks above and propose recommendations for a natural restoration/monitoring groundwater remedy, or a pump-and-use groundwater restoration strategy, if appropriate.
- Continue quarterly monitoring of all on site monitoring wells. Groundwater depth measurements and analysis for only the constituents of concern (chloride and TDS) will be collected. An annual report will be submitted to NMOCD by April 1, 2010.

2.0 SITE DESCRIPTION

2.1 Location

The State 36 #2 well site is located in Township 19 South, Range 37 East, Section 36, and Unit Letter O (N 32° 36' 44", W 103° 12' 14"). The site is located on State land and is primarily utilized for crude oil production and cattle ranching. To access the site:

From Monument, drive 2 miles west on County Road 42. Turn right onto lease road (Pride Energy sign at cattle guard) and proceed south 0.4 mi. Road turns east, continue east 1.1 mi. Continue south then southeast 0.2 mi. Bear right heading south 0.1 mi. Turn left and continue east 0.3 mi. Turn right and continue south 0.1 mi. to well site.

Figure 1 and the report cover depict aerial photography (est. April 2004) showing the general area and access to the site.

Date	Description
October 26, 2004	Well spudded.
April 27, 2005	Total depth reached.
February 28, 2007	Temporarily abandoned (non-productive)
August 29, 2007	C-144 pit closure form approved by NMOCD
December 10, 2007	Revised C-144 approved by NMOCD
February 18-28, 2008	Initial soil & groundwater sampling activities (Elke Environmental)
March 27, 2008	Groundwater sampling event (MW-1)
May 2, 2008	MW-2 installed at southeast edge of pit.
May 8, 2008	Groundwater sampling event (MW-2)
May 21, 2008	C-141 release notification form submitted by Trident
June 4, 2008	MW-3 and MW-4 installed for further delineation.
June 17, 2008	Groundwater sampling event (MW-1, MW-2, MW-3, and MW-4)
September 10, 2008	Groundwater sampling event (MW-1, MW-2, MW-3, and MW-4)
December 17, 2008	Groundwater sampling event (MW-1, MW-2, MW-3, and MW-4)

2.2 Site History

1

3.0 LOCAL AND REGIONAL HYDROGEOLOGY

The site is underlain by Quaternary colluvium deposits composed of sand, silt, and gravel deposited by slopewash, and talus which were re-deposited from the underlying Ogallala Formation of Tertiary age. These deposits are often calichified (indurated with cemented calcium carbonate) with caliche layers from 1 to 20 feet thick. The thickness of the colluvium deposits and Ogallala Formation at the site is estimated at 50 feet; however, it varies locally as a result of significant paleo-topography at the top of the underlying Triassic Dockum Group. Since Cretaceous Age rocks in the region have been removed by pre-Tertiary erosion, the colluvial deposits and Ogallala Formation rest unconformably on the Triassic Dockum Group. The uppermost unit of the Dockum Group is the Chinle Formation, which primarily consists of micaceous red clay and shale but also contains thin interbeds of fine-grained sandstone and siltstone. The red clays and shale of the Chinle Formation act as an aquitard beneath the water bearing colluvial deposits and therefore limit the amount of recharge to the underlying Dockum Group.

Based on the descriptions provided in lithologic logs, the subsurface soils are generally composed of very fine-grained sand and caliche in the upper 23 feet. A varied mix of mostly fine-grained sand and sandstone with intermittent zones of chert and gravel was then observed to a depth of approximately 38 to 45 feet. Below this layer a fine- to medium-grained sand was encountered with some intermittent clay and gravel to a depth of 50 ft. Below 50 ft a red clay was observed. More detailed descriptions of the subsurface lithology are provided in the soil boring and monitoring well logs (Appendix A).

Potable ground water used in southern Lea County is derived primarily from the Ogallala Formation (including the colluvial deposits) and the Quaternary alluvium. Lower yields have also been provided by water bearing zones within the Triassic Dockum Group in a few scattered areas within southern Lea County. No potable water is known to be derived below the Triassic Dockum Group. Water from the Ogallala and alluvium aquifers in southern Lea County is used for irrigation, stock, domestic, industrial, and public supply purposes.

Water well records from the Office of the State Engineer (NMOSE) and the United States Geological Survey (USGS) websites were reviewed to determine if there are any active water supply wells in use for domestic, irrigation, livestock, municipal, or industrial purposes in the area. As a result of this review and several field reconnaissance efforts there are no water wells within a half mile of the site.

Recent data from the four monitoring wells at the site shows that the water table is at a depth of approximately 41 feet below ground surface (bgs) and slopes towards the northeast at a magnitude of approximately 0.004 ft/ft. The gradient direction is anomalous to the prevailing southeast-trending regional gradient typical of the Monument area. Figure 2 is a map depicting the regional geology and water table surface. Note that the site lies on the northeast side of a localized groundwater divide which may partially explain the anomalous local gradient observed at the site. The base of the aquifer is at approximately 50 ft bgs (Nicholson and Clebsch, 1961), therefore the saturated thickness is estimated at only 9 feet.

4.0 VADOSE ZONE INVESTIGATION PROCEDURES AND RESULTS

Elke Environmental conducted soil sampling at five locations (TP-1 through TP-5) within the former drilling pit using a trackhoe on February 18 and 19, 2008, and an air rotary drilling rig on February 28, 2008. Results of chloride field titrations during this investigation are depicted in Figure 3. Copies of earlier submissions of this data are included in Appendix E. Elke also supervised the installation of a monitoring well (MW-1) at the northwest corner of the drilling pit on February 22, 2008, however no soil samples were analyzed for chloride content.

On May 2, 2008, Trident supervised the installation of a monitoring well (MW-2) adjacent to the southeast edge of the former drilling pit to confirm groundwater impact. Soil samples were collected at five-foot intervals for chloride analysis until groundwater was encountered at approximately 40 ft bgs. Two additional monitoring wells (MW-3 and MW-4) were installed to delineate groundwater conditions which included soil samples taken at ten-foot intervals for chloride analysis. There were no indications of hydrocarbon impact during any investigation therefore no soil samples were submitted for laboratory analysis of regulated hydrocarbons (BTEX). Chloride concentrations for each sampled interval of the monitoring wells were at background levels (less than 500 mg/kg), therefore the extent of impact to the vadose zone appears limited to within the perimeter of the former drilling pit.

Chloride concentrations measured during all soil sampling activities are depicted in Figure 3 and shown on the individual lithologic logs of monitoring wells MW-2, MW-3, and MW-4 in Appendix A. Photodocumentation of site activities is included in Appendix B. Laboratory analytical reports and chains of custody are included in Appendix C.

5.0 GROUNDWATER INVESTIGATION PROCEDURES AND RESULTS

A summary of historical analytical results and ground water elevations for monitoring wells MW-1, MW-2, MW-3 and MW-4 at the State 36 #2 site are listed in Table 1 below.

Maps depicting groundwater conditions are depicted in Figures 4A, 4B, 4C, and 4D. Copies of the laboratory analytical reports and chains of custody form for each ground water sampling event are included in Appendix C. The well sampling data forms are included in Appendix D.

Sample Location	Sample Date	Depth to Groundwater (feet btoc)	Groundwater Elevation (feet AMSL)	Chloride (mg/L)	TDS (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethyl- benzene (mg/L)	Xylene (mg/L)
	02/25/08	43.80	3559.41	489					
	03/27/08	43.88	3559.33	557	1,770	< 0.001	< 0.002	< 0.001	< 0.003
MW-1	06/17/08	43.89	3559.32	594	1,370				
	09/10/08	43.97	3559.24	440	1,260	<0.001	<0.001	< 0.001	<0.003
	12/17/08	43.96	3559.25	440	1,290	<0.001	<0.001	< 0.001	<0.003
	05/08/08	43.25	3559.22	1,450	2,730	< 0.001	< 0.002	< 0.001	< 0.003
MW 2	06/17/08	43.31	3559.16	1,980	2,730				
IVI W ~2	09/10/08	43.37	3559.10	1,580	3,440	<0.001	<0.001	< 0.001	<0.003
	12/17/08	43.38	3559.09	1,300	2,900	<0.001	<0.001	<0.001	<0.003
	06/17/08	43.83	3558.98	733	1,810				
MW-3	09/10/08	43.85	3558.96	580	1,660	<0.001	<0.001	<0.001	<0.003
	12/17/08	43.91	3558.90	570	1,580	<0.001	< 0.001	<0.001	<0.003
	06/17/08	43.54	3558.81	1,070	2,150				
MW-4	09/10/08	43.61	3558.74	820	2,070	<0.001	< 0.001	< 0.001	<0.003
	12/17/08	43.63	3558.72	830	1,970	<0.001	< 0.001	<0.001	<0.003
		WQ	QCC Standards	250	1,000	0.01	0.75	0.75	0.62

Table 1	
Summary of Groundwater Mor	nitoring Result s

--- Indicates sample not analyzed for this constituent.

Values in boldface type indicate concentrations exceed New Mexico Water Quality Commission (WQCC) standards. AMSL – above mean sea level

The 2008 data from the four monitoring wells show that the water table is at a depth of approximately 41 feet bgs and slopes towards the northeast at a magnitude of approximately 0.004 ft/ft, which is anomalous to the prevailing southeast trending regional gradient. The base of the aquifer is at approximately 50 ft bgs, where a red clay was encountered during well installations, therefore the saturated thickness is estimated at only 9 feet.

Chloride and TDS concentrations at monitoring wells MW-1, MW-2, MW-3, and MW-4 exceed WQCC standards. The highest chloride and TDS levels have been observed in monitoring well MW-2 with levels of 1,300mg/L and 2,900 mg/L, respectively, during the most recent sampling event in December 2008.

BTEX concentrations in monitoring wells MW-1, MW-2, MW-3, and MW-4 have been below the WQCC standards for each constituent and for every sampling event taken place.

6.0 **CONCLUSIONS**

- Based on the soil boring data obtained by Elke in February 2008 and by Trident in May and June 2008, the chloride impact to the vadose zone is limited to the area within the perimeter of the former drilling pit.
- The local water table is at a depth of approximately 41 feet bgs and slopes towards the northeast at a magnitude of approximately 0.004 ft/ft, which is anomalous to the prevailing southeast trending regional gradient.
- The base of the aquifer is at approximately 50 ft bgs, where a red clay was encountered during well installations, therefore the saturated thickness is estimated at only 9 feet.
- Chloride and TDS concentrations from groundwater samples collected at monitoring well MW-1, MW-2, MW-3, and MW-4 exceed WQCC standards. The highest chloride and TDS levels have been observed in monitoring well MW-2 with levels of 1,300mg/L and 2,900 mg/L, respectively, during the most recent sampling event in December 2008.
- The distribution of chloride-impacted groundwater may be influenced by both the local (northeast) and regional (southeast) direction of groundwater flow. It may also be influenced by an uneven redbed surface underlying the aquifer, perhaps due to an erosional unconformity (narrow streambed channeling during a fluvial environment of deposition of Tertiary sediments).
- Regulated hydrocarbons (BTEX) are not present in groundwater or the vadose zone.
- The potential well yield for possible beneficial use of groundwater at the site is very low due to the limited thickness of the aquifer (less than 10 feet), observations of low yields during monitoring well development activities, and water table elevation declines of approximately one foot per year. It is unlikely a well completed in the area would yield greater than 150 gallons per day which is considered inadequate for any beneficial use. Therefore, there is negligible threat to human health and the environment.

7.0 CORRECTIVE ACTION PLAN

Data collected to date indicates chloride/TDS-impaired groundwater exists beneath the site and chloride concentrations above 1,000 mg/kg exist in the vadose zone below the former drilling pit. The suspected source of the chloride in the vadose zone and groundwater at the site is the former drilling pit.

7.1 Vadose Zone Remedy and Schedule of Activities

The proposed closure of the former drilling pit is construction of an infiltration barrier to eliminate the potential for migration of residual brines from the vadose zone to groundwater as described below.

- 1. Expand the existing pit excavation as necessary to create a 3-foot wide area where subsurface impact of pit leakage does not exist (Figure 5, step 1).
- 2. Use the material from the pit expansion or deepen the excavation as necessary to create a sloping surface on the bottom of the excavation as shown in Figure 5, step 2.
- 3. Over the sloping surface, place "shingles" of recycled or new 20-mil, reinforced liner material with a permeability of less than 10⁻⁹ cm/sec. The shingles are laid to shed any infiltrated water from the pit area to native soil and to prevent any upward migration of chloride into the root zone.
- 4. Backfill the excavation with clean material, beginning with caliche and/or sand and finishing the top of the backfill with about 6-inches of soil that is capable of supporting native vegetation.
- 5. The new grade is a 3-5% slope that drains to a "ponding area". The final grade of the surface over the former pit should blend with the surroundings as much as possible. Figure 5, step 3, which shows a 5% slope that resembles a large "pitchers mound", is one example of a final surface that allows for drainage of storm water away from the former drilling pit.
- 6. Seed the reclaimed pit with a mixture acceptable to the State Land Office.
- 7. Submit a drilling pit termination report to the NMOCD to document the vadose zone remedy within 30 days of completion.

Upon OCD approval of the vadose zone abatement plan, Pride will commence the proposed work elements.

7.2 Groundwater Remedy and Schedule of Activities

Further groundwater delineation (installation and sampling of additional monitoring wells) is necessary before designing the appropriate groundwater remedy. In the interim, Pride Energy proposes the following to address corrective actions to the groundwater:

- Install one monitoring well approximately 250 feet northeast of the east edge of the former drilling pit to delineate the downgradient extent of chloride and TDS impact. Groundwater samples will be collected only for the constituents of concern (chloride and TDS). The proposed location of this well is noted as MW-5 in Figure 6.
- The lowest chloride and TDS concentrations observed at the site occur in monitoring well MW-1 with 440 mg/L and 1,900 mg/L, respectively, observed during the most recent sampling event in December 2008. Therefore, the installation of one monitoring well is proposed approximately 150 feet southwest of the west edge of the former drilling pit (MW-6 in Figure 6) to confirm background concentrations. Groundwater samples will be collected only for the constituents of concern (chloride and TDS).
- 3. Submit a report to the NMOCD to document the completion of the monitoring well installation and two quarters of groundwater sampling and propose recommendations for a natural restoration/monitoring groundwater remedy or a pump-and-use groundwater restoration strategy, if appropriate.
- 4. Continue quarterly monitoring of all on site monitoring wells. Groundwater depth measurements and analysis for only the constituents of concern (chloride and TDS) will be collected. An annual report will be submitted to NMOCD by April 1, 2010.

Pride will commence the proposed work elements within 30 days upon OCD approval of the corrective action plan described herein. Pride, or its agent, will notify NMOCD of the above activities at least 48 hours before they commence, or of any delays that result due to weather conditions, contractor availability, site access, or other unforeseen matters beyond Pride's control.

8.0 LIMITATIONS

Trident has prepared this Corrective Action Plan to the best of its ability. No other warranty, expressed or implied, is made or intended. Trident has examined and relied upon documents obtained from the OCD Online database (http://ocdimage.emnrd.state.nm.us/imaging/) as referenced in the report and may have relied on oral statements made by certain individuals. Trident has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Trident has prepared this report, in a professional manner, using the degree of skill and care expected of environmental consultants. Trident also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Pride Energy Company. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Trident and/or Pride.

APPENDIX A

Lithologic Logs and Monitoring Well Construction Diagrams

			12000			LI	THOLO	GIC LOG AN	ID MONITORING WELL CONSTRUCTION DIAGRAM			
								10NITORING WELL NO.: MW-2 TOTAL DEPTH: 55 ft bas				
								SITE	E NAME: State 36 #2 CLIENT: Pride Energy Company			
		10080		1		-		CONTRACTOR: Harrison & Cooper, Inc. COUNTY: Lea				
							has	DRILLING M	IETHOD: Air Rotary STATE: New Mexico			
1						200		STAR	T DATE: May 2, 2008 LOCATION: T19S - R37E - Section 36 - Unit Letter O			
					- 200		1.11	COMPLETIO	N DATE: May 2, 2008 FIELD REP.: Gil Van Deventer			
						05/02	1/2008	PHOTO	AT LEFT: View facing southeast showing drilling activities at MW-2 (background) near southeast corner of for			
	CEL						R. E.	Unified Soil	drilling pit. Located ~145' south & 120' east of existing MW-1 (foreground) at northwest corner of p			
			1 22.5	Dopth	Samp	Tupo	Chloride	Classification	LITHOLOGIC DESCRIPTION:			
				Deptil	1215	Surface	(ppin)	Symbol	LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTINGUISHING FEATURES Very fine-grained sand with caliche; gravish orange pink (5YR 7/2) and very pale orange (10YR 8/2)			
Cainant	Nalida	Cement		5	· 1217 · 1218	Cuttings Cuttings	96 532	SM/CAL	Very fine-grained sand with caliche; grayish orange pink (5YR 7/2) and very pale orange (10YR 8/2) Very fine-grained sand with caliche; grayish orange pink (5YR 7/2) and very pale orange (10YR 8/2)			
Holo Direc	1 40 PVC Blank Casing	Hole Plug		15	1219	Cuttings	340	SS/CAL/SM	Sandstone chunks, indurated caliche, and very fine-grained sand; grayish orange pink (5YR 7/2) and very pale orange (10YR 8/2), very hard, dry.			
2/8 Bontonita	2" Sched	3/8 Bentonite		20	1220	Cuttings	383	CAL/SM	Indurated caliche and very fine-grained sand; pale orange (10YR 8/2) and grayish orange pink (5YR 7/2); hard; dry.			
				25	1224	Cuttings	64	SM/CAL	Very fine-grained sand with decreasing amounts of indurated caliche; very pale orange (10YR 8/2) and grayish orange pink (5YR 7/2); dry.			
				30	1235	Cuttings	43		Sandstone and gravelly sand; pale yellowish brown (10YR 6/2) and very pale orange (10YR 8/2); very hard; dry.			
				35	1240	Cuttings	53	GP/SS	Sandstone and gravelly sand; grayish orange pink (5YR 7/2); very hard; dry.			
ra Sand Dark	th 0.010" Slots	ica Sand Pack	▼	40	1247	Cuttings	64	SW	Fine- to medium-grained sand; moderately well sorted; subrounded grains; light brown (5YR 6/4); dry			
V Cili	in wit	y Sili		45	1250	Cuttinas			Fine- to medium-grained sand; moderately well sorted; subrounded grains; light brown (5YR 6/4); moisture increasing			
20140 Brad	Diameter Scree	20/40 Brad		50	1000	0.00		SM/SC	Clayey fine-grained sand; light brown 5YR 5/6); moist			
	2"				1255	Cuttings		CL	Clay, moderate reddish brown (10R 4/6); moist			
-	— 5"		•	55 60	1300	Cuttings			Clay, moderate reddish brown (10R 4/6); moist			

							LIT	THOLO	GIC LOG ANI	D MON	IITORING WELL CONS	STRUCTION DIAGRA	M
									10NITORING WE	LL NO.:	MW-3	TOTAL DEPTH:	51 ft bgs
									SITE	NAME:	State 36 #2	CLIENT:	Pride Energy Company
									CONTR	ACTOR:	Harrison & Cooper, Inc.	COUNTY:	Lea
						-		- Carlo	DRILLING M	ETHOD:	Air Rotary	STATE:	New Mexico
							1-1-1	12.12	STAR	DATE:	June 5, 2008	LOCATION:	T19S - R37E - Section 36 - Unit Letter O
100			-					- milering	COMPLETION	DATE:	June 5, 2008	FIELD REP.:	Gil Van Deventer
1		100					-	-	COM	MENTS:	Photo at left: view facing sou	utheast showing drilling act	ivities at MW-3 (upper left) located approx.
0				1	No.	and the second	AN CON	a have			100 ft southeast of monitorin	ng well MW-2 and 120 feet	southeast of former drilling pit (lower right).
						Samp	le	Chloride	Unified Soil			LITHOLOGIC DESCRIPT	ION:
					Depth	Time	Туре	(ppm)	Symbol	LITH	HOLOGY, COLOR, GRAIN SIZE,	SORTING, ROUNDING, COM	SOLIDATION, DISTINGUISHING FEATURES
	Cement	ß	Cement		5	Cuttings	gs	SM/CAL	Very fine	-grained sand with caliche; grayi	ish orange pink (5YR 7/2) and ish orange pink (5YR 7/2) and	very pale orange (10YR 8/2) very pale orange (10YR 8/2)	
	6n	Blank Casir	ßn				Cullings	155					
	Bentonite Hole Plu	2" Sched 40 PVC	Bentonite Hole Pli		15	15	Cuttings	uttings	SS/CAL/SM	Sandstor (10YR 8/	Sandstone chunks, indurated caliche, and very fine-grained sand; grayish orange pink (5YR 7/2) and very pale orange 10YR 8/2), very hard, dry.		
	3/8 [3/8 8		20	Cuttings	89	CAL/SM	Indurate	d caliche and very fine-grained sa	and; pale orange (10YR 8/2) ai	nd grayish orange pink (5YR 7/2); hard; dry.	
					25		Cuttings		SM/CAL	Very fine pink (5Y	e-grained sand with decreasing an R 7/2); dry.	mounts of indurated caliche; ve	ery pale orange (10YR 8/2) and grayish orange
					30		Cuttings	15		Sandsto	ne and gravelly sand; pale yellowi	ish brown (10YR 6/2) and very	y pale orange (10YR 8/2); very hard; dry.
	Pack	0" Slots	Pack		35		Cuttings	GP/SS	Sandsto	ne and gravelly sand; grayish orai	nge pink (5YR 7/2); very hard;	dry.	
	0 Brady Silica Sand	er Screen with 0.01	0 Brady Silica Sand		40	Cuttings	10		Sandsto	ne and gravelly sand; grayish orai	nge pink (5YR 7/2); very hard;	dry.	
	20/4	liamet	20/4		45		Cuttings			Sandsto	ne and gravelly sand; grayish ora	nge pink (5YR 7/2); wet; maki	ng water
		2" D			50		Cuttings		SM/SC/GP	Clayey g	ravelly fine-grained sand; light brown (108, 4/6).	own 5YR 5/6); wet and making	g water
					55		0		CL	Clay mo	verate reddieb brown (100 4/6).	wet	
		5" .	-	ŀ	00		Cuttings			Overdrill	ed boring into clav redbed at 55 ft	t bas: boring caved in with nat	ive sand to 53 ft bos and backfilled with sand
1										pack to s	51 ft bgs while completing monitor	ring well.	
					60								

	LITHOLOGIC LOG AND MONITORING WELL CONSTRUCTION DIAGRAM												
									10NITORING WE	ELL NO.:	MW-4	TOTAL DEPTH:	48 ft bas
									SITE	NAME:	State 36 #2	CLIENT:	Pride Energy Company
									CONTR	ACTOR:	Harrison & Cooper, Inc.	COUNTY:	Lea
							- 20	-	DRILLING M	ETHOD:	Air Rotary	STATE:	New Mexico
10				-fican		11	0	-	STAR	T DATE:	June 5, 2008	LOCATION:	T19S - R37E - Section 36 - Unit Letter O
			120				a start		COMPLETION	N DATE:	June 5, 2008	FIELD REP.:	Gil Van Deventer
	10	-		1			and the second	Arres	COM	MENTS:	Photo at left: view facing north		ivities at MW-4 (background) located
		1				c	L.E	COST.			approx. 90 ft ENE of monitorin	ng well MW-2 and 90 feet	east of former drilling pit (lower left).
						Sample	е	Chloride	Unified Soil			LITHOLOGIC DESCRIPT	ION:
				63	Depth	Time	Туре	(ppm)	Symbol	LITH	HOLOGY, COLOR, GRAIN SIZE, S	SORTING, ROUNDING, CON	SOLIDATION, DISTINGUISHING FEATURES
	Cement		Cement		5	1	Cuttings		SM/CAL	Very fine	-grained sand with caliche; grayisi	h orange pink (5YR 7/2) and h orange pink (5YR 7/2) and	very pale orange (10YR 8/2) very pale orange (10YR 8/2)
	tole Plug		tole Plug		10		Cuttings	196			g		
	3/8 Bentonite H		3/8 Bentonite H	-	15		Cuttings		SS/CAL/SM	Sandstor (10YR 8/	ne chunks, indurated caliche, and v (2), very hard, dry.	very fine-grained sand; grayi	sh orange pink (5YR 7/2) and very pale orange
					20		Cuttings 71	CAL/SM Indurated caliche and very fine-grained sand; pale orange (10YR 8/2) and grayish orange pink (5YR 7				nd grayish orange pink (5YR 7/2); hard; dry.	
				-	25		Cuttings		SM/CAL	Very fine pink (5Y)	e-grained sand with decreasing amo R 7/2); dry.	ounts of indurated caliche; ve	ery pale orange (10YR 8/2) and grayish orange
					30		Cuttings	6.3		Sandstor	ne and gravelly sand; pale yellowis	h brown (10YR 6/2) and very	/ pale orange (10YR 8/2); very hard; dry.
	y Silica Sand Pack	n with 0.010" Slots	y Silica Sand Pack		35	5Cuttings	Cuttings		GP/SS	Sandstor	ne and gravelly sand; grayish oranş	ge pink (5YR 7/2); very hard;	dry.
	20/40 Brad	2" Diameter Scree	20/40 Brad		40		Cuttings	78	SW	Fine- to r	medium-grained sand; moderately	well sorted; subrounded grai	ns; light brown (5YR 6/4); dry
		1			45					Fine- to r	medium-grained sand; moderately	well sorted; subrounded arai	ns; light brown (5YR 6/4); moisture increasing
					50		Cuttings		SM/SC	Clayey fi	ine-grained sand; light brown 5YR (5/6); moist	
									UL	Overanin	ed boning into clay redbed at 52 mil	ogs, boning caved with native	sand to 46 it bgs while completing monitoring
	<	5"	-		55 60					well			

APPENDIX B

Photodocumentation

-

Panoramic view facing northeast showing former drilling pit in background and well head at lower-right (composite of 3 photos taken on 06-11-2008).

View facing northwest showing completed MW-2 in foreground with former drilling pit in background.

View facing southeast showing drilling of MW-2 in background with MW-1 in foreground.

Pride Energy Company - State 36 #2 (API # 30-025-36909)

APPENDIX C

,

Laboratory Analytical Reports Chain-of-Custody Documentation

Analytical Report 300607

for

R.T. Hicks Consultants, LTD

Project Manager: Randy Hicks

Pride Energy Company

State 36 # 2

03-APR-08

NVIRONMENTA

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

03-APR-08

Project Manager: Randy Hicks R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

Reference: XENCO Report No: **300607 Pride Energy Company** Project Address: T19S-R37E, Section 36, Unit Letter O

Randy Hicks:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 300607. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 300607 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

ECCICO UDORICICO

Sample Cross Reference 300607

R.T. Hicks Consultants, LTD, Albuquerque, NM

Pride Energy Company

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-1	W	Mar-27-08 10:50		300607-001
				•
				· ·
				:
	•			
. •		•	•	
		-		

Certificate of Analysis Summary 300607 R.T. Hicks Consultants, LTD, Albuquerque, NM

300607-001

Project Name: Pride Energy Company

	j-
Project Id:	State 36 # 2
Contact:	Randy Hicks
Project Location:	T19S-R37E, Section 36, Unit Letter O
·	Lab Id:

Date Received in Lab:

Mar-28-08 02:30 pm 03-APR-08

Report Date: Project Manager: Brent Barron, II

Analysis Requested	Field Id:	MW-1		•			
	Depth:			1			
	Matrix:	WATER					
	Sampled:	Mar-27-08 10	:50				
Alkalinity by SM2320B	Extracted:						
rinaliaty by Shi20201	Analyzed:	Apr-01-08 10	:30		i i		
	Units/RL:	mg/L	RL				
Alkalinity, Carbonate (as CaCO3)		ND	4.00				
Alkalinity, Bicarbonate (as CaCO3)		240	4.00				
Alkalinity, Total (as CaCO3)		240	4.00				
Anions by EPA 300/300.1	Extracted:						
	Analyzed:	Apr-01-08 21	:25				
· · · · · · · · · · · · · · · · · · ·	Units/RL:	mg/L	RL	. •			
Chloride		557 D	10.0				
Sulfate		182 D	10.0				
BTEX by EPA 8021B	Extracted:	Apr-01-08 09	:28				
	Analyzed:	Apr-01-08 15	:40			· ·	
	Units/RL:	mg/L	RL				
Benzene		. ND (0.0010				
Toluene		ND	0.0020				
ylbenzene	`	ND	0.0010				
ni,p-Xylenes		ND .	0.0020				
o-Xylene		ND	0.0010	·			
Xylenes, Total		ND					<u>.</u>
Total BTEX		ND					
Metals per ICP by SW846 6010B							
	Analyzed:	Apr-01-08 10	:56				
	Units/RL:	mg/L	RL	×	,		
		184	0.100	·		·	
Magnesium		41.4	0.010				
Potassium		5.09	0.500				
Sodium		164	0.500				
TDS by SM2540C	Extracted:						
	Analyzed:	Mar-31-08 16	:00	· .	•		
	Units/RL:	mg/L	RL		·	·	
Total dissolved solids		1770	10.0			1	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. ^ur liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

since 1990

Brent Barron

Odessa Laboratory Director

Page 4 of 13

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.

K Sample analyzed outside of recommended hold time.

* Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and OUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	Phone .	Fax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
6017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477

Form 2 - Surrogate Recoveries

Project Name: Pride Energy Company

I ab Ratab #, 718729 Samalar 300607-001	/ SMP D-	rroject i	riv, Water	2		
Lab Batch #: 716729 Sample: 500007-001.	SUBROGATE RECOVERY STI					
BTEX by EPA 8021B	Amount Found · [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes						
1,4-Difluorobenzene	0.0335	0.0300	112	80-120		
4-Bromofluorobenzene	0.0291	0.0300	97	80-120		
Lab Batch #: 718729 Sample: 300748-002 Units: mg/L	S/MS Ba	tch: 1 Mat	rix: Water	STUDY		
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
I,4-Difluorobenzene	0.0276	0.0300	92	80-120		
4-Bromofluorobenzene	0.0291	0.0300	97	80-120		
Lab Batch #: 718729 Sample: 300748-002	SD/MSD Ba	tch: 1 Mat	rix: Water	·		
Units: mg/L	SU	RROGATE R	ECOVERY	STUDY		
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag	
Analytes			[D]			
1,4-Difluorobenzene	0.0323	0.0300	108	80-120		
4-Bromofluorobenzene	0.0345	0.0300	115	80-120		
Lab Batch #: 718729 Sample: 506766-1-BI	KS/BKS Ba	tch: ¹ Mat	rix: Water			
Units: mg/L	SU	RROGATE R	ECOVERY	STUDY		
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag	
1,4-Difluorobenzene	0.0265	0.0300	88	80-120		
4-Bromofluorobenzene	0.0296	0.0300	99	80-120		
Lab Batch #: 718729 Sample: 506766-1-BI	LK / BLK Ba	tch: 1 Mat	rix: Water			
Units: mg/L	SU SU	RROGATE R	ECOVERY	STUDY		
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag	
I,4-Difluorobenzene	0.0331	0.0300	110	80-120		
4-Bromofluorobenzene	0.0281	0.0300	1 04	80.120		

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B *11 results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: Pride Energy Company

/ork Order #: Lab Batch #:	300607 718729	Sample: 506766-1-BSD /	Project ID: State 36 # 2 SD/BSD Batch: 1 Matrix: Water SURROGATE RECOVERY STUDY						
Units:	mg/L	•							
	BTEX by EPA { Analytes	3021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzen	e		0.0264	0.0300	88	80-120			
4-Bromofluorobenz	ene		0.0299	0.0300	100	80-120			

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B 'Il results are based on MDL and validated for QC purposes.

Project Name: Pride Energy Company

Blank Spike Recovery [D] = 100*[C]/[B]All results are based on MDL and validated for QC purposes.

BS / BSD recoveries

Project Name: Pride Energy Company

Work Order #: 300607 Analyst: SHE Lab Batch ID: 718729 Sample: 506766-1	Da BKS	ate Prepar Batcl BLAN	ed: 04/01/200)8 SPIKE / F	RLANKS	PIKE DUP	Proj Date A	ject ID: S nalyzed: (Matrix: \ RECOVI	State 36 # 2 04/01/2008 Water)V	
BTEX by EPA 8021B	Błank Sample Result [A]	Spike Added [B]	Blank, Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result (F)	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ND	0.1000	0.0930	93	0.1	0.0851	85	9	70-125	25.	
Toluene	ND	0.1000	0.0933	93	0.1	0.0855	86	9	70-125	25	<u> </u>
Ethylbenzene	ND	0.1000	0.1051	105	0.1	0.0963	96	9	71-129	25	
m,p-Xylenes	ND	0.2000	0.2173	109	0.2	0.1991	100	9	70-131	25	
o-Xylene	ND	0.1000	0.1012	101	0.1	0.0924	92	9	71-133	25	

Relative Percent Difference RPD = 200*[(D-F)/(D+F)] Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Form 3 - M. MSD Recoveries

Project Name: Pride Energy Company

Work Order # : 300607	Project ID: State 36 # 2										
Lab Batch ID:718729QDate Analyzed:04/01/2008IReporting Units:mg/L	C- Sample ID: Date Prepared:	300748 04/01/2	-002 S 008	Ba An E / MAT	tch #: alyst: RIX SPI	1 Matrix SHE	K: Water	OVERV	STUDY		1
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ND	0.1000	0.0832	83	0.1000	0.0893	89	7	70-125	25	
Toluene	ND	0.1000	0.0834	83	0.1000	0.0893	89	7	70-125	25	
Ethylbenzene	ND	0.1000	0.0937	94	0.1000	0.1011	101	7	71-129	25	
m,p-Xylenes	ND	0.2000	0.1927	96	0.2000	0.2085	104	8	70-131	25	
o-Xylene	ND	0.1000	0.0912	91	0.1000	0.0993	99	8	71-133	25	
Lab Batch ID: 718755 Q Date Analyzed: 04/01/2008 1 Reporting Units: mg/L	C- Sample ID: Date Prepared:	300410 04/01/2	-001 S 008	Ba An: F / MATI	tch #: alyst:	1 Matrix MAB	K: Water	OVERV	STUDY		-
	Dawant	141			MA 511.						
Anions by EPA 300/300.1 Analytes	Farent Sample Result [A]	-Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	107	5.00	102	0.	5.00	102	0	NC	90-110	20	х
Sulfate	- 333	5.00	303	0	5.00	303	0	NC	90-110	20	X

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference . RPD = 200*(D-G)/(D+G) Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

5%	Ŷ	YA	3
الإسكر	<u>, , , , , , , , , , , , , , , , , , , </u>	۲Ą	Ÿ
(D)	ЦČ,	<u>m</u>	ιÐ

Sample Duplicate Recovery

Project ID: State 36 # 2

Project Name: Pride Energy Company

Work Order #:	300607
Lab Batch #	718713

Date Analyzed: 04/01/2008 Date	e Prepared: 0.4/0	1/2008	Analy	st: WRU	
QC- Sample ID: 300607-001 D	Batch #: 1		Matr		
Reporting Units: mg/L	SAMPLE	SAMPLE	DUPLIC	OVERY	
Alkalinity by SM2320B Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Alkalinity, Total (as CaCO3)	240	270 ·	12	20	
Alkalinity, Bicarbonate (as CaCO3)	240	270	12	20	
Alkalinity, Carbonate (as CaCO3)	ND	ND	NC	20	
Lab Batch #: 718755 Date Analyzed: 04/01/2008 Date	e Prepared: 04/0	1/2008	Anaty	st: MAB	
QC- Sample ID: 300410-001 D	SAMDLE	SAMDI E		ix: Water	WEDV
Anions by EPA 300/300.1 Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride	107	107	0	· 20	
Sulfate	333	334	0	20	
Lab Batch #: 718664					
Lab Batch #: 718664 Date Analyzed: 04/01/2008 Date QC- Sample ID: 300607-001 D Reporting Units: mg/L	Prepared: 04/0 Batch #: 1 SAMPLE	01/2008 / SAMPLE	Analy Matr DUPLIC	st: LATCOR ix: Water ATE REC	OVERY
Lab Batch #: 718664 Date Analyzed: 04/01/2008 Date QC- Sample ID: 300607-001 D Reporting Units: mg/L Metals per ICP by SW846 6010B Analyte	e Prepared: 04/0 Batch #: 1 SAMPLE / Parent Sample Result [A]	V1/2008 / SAMPLE Sample Duplicate Result [B]	Analy Matr DUPLIC RPD	st: LATCOR ix: Water ATE RECO Control Limits %RPD	DVERY Flag
Lab Batch #: 718664 Date Analyzed: 04/01/2008 Date QC- Sample ID: 300607-001 D Reporting Units: mg/L Metals per ICP by SW846 6010B Analyte Calcium	Prepared: 04/0 Batch #: 1 SAMPLE / Parent Sample Result [A] 184	01/2008 / SAMPLE Sample Duplicate Result [B] 180	Analy Matr DUPLIC RPD	st: LATCOF ix: Water ATE RECO Control Limits %RPD 25	OVERY Flag
Lab Batch #: 718664 Date Analyzed: 04/01/2008 Date QC- Sample ID: 300607-001 D Reporting Units: mg/L Metals per ICP by SW846 6010B Analyte Calcium Magnesium	Prepared: 04/0 Batch #: 1 SAMPLE / Parent Sample Result [A] 184 41.4	V1/2008 / SAMPLE Sample Duplicate Result [B] 180 41.4	Analy Matr DUPLIC RPD 2 0	st: LATCOR ix: Water ATE RECO Limits %RPD 25 25	OVERY Flag
Lab Batch #: 718664 Date Analyzed: 04/01/2008 Date QC- Sample ID: 300607-001 D Reporting Units: mg/L Metals per ICP by SW846 6010B Analyte Calcium Magnesium Potassium	Prepared: 04/0 Batch #: 1 SAMPLE / Parent Sample Result [A] 184 41.4 5.09	21/2008 / SAMPLE Sample Duplicate Result [B] 180 41.4 4.91	Analy Matr DUPLIC RPD 2 0 4	st: LATCOF ix: Water ATE RECO Control Limits %RPD 25 25 25 25	OVERY Flag
Lab Batch #: 718664 Date Analyzed: 04/01/2008 Date QC- Sample ID: 300607-001 D Reporting Units: mg/L Metals per ICP by SW846 6010B Analyte Calcium Magnesium Potassium Sodium	2 Prepared: 04/0 Batch #: 1 SAMPLE / Parent Sample Result [A] 184 41.4 5.09 164	21/2008 / SAMPLE Sample Duplicate Result [B] 180 41.4 4.91 161	Analy Matr DUPLIC RPD 2 0 4 2	st: LATCOR ix: Water ATE RECO Limits %RPD 25 25 25 25 25 25	OVERY Flag
Lab Batch #: 718664 Date Analyzed: 04/01/2008 Date QC- Sample ID: 300607-001 D Reporting Units: mg/L Metals per ICP by SW846 6010B Analyte Calcium Magnesium Potassium Sodium Lab Batch #: 718707 Date Analyzed: 03/31/2008 Date QC- Sample ID: 300683-001 D Reporting Units: mg/L	2 Prepared: 04/0 Batch #: 1 SAMPLE / Parent Sample Result [A] 184 41.4 5.09 164 2 Prepared: 03/3 Batch #: 1 SAMPLE /	01/2008 / SAMPLE Sample Duplicate Result [B] 180 41.4 4.91 161 1/2008 / SAMPLE	Analy Matr DUPLIC RPD 2 0 4 2 Analy Matr DUPLIC	st: LATCOR ix: Water ATE RECO Limits %RPD 25 25 25 25 25 25 25 25 25 25 25 25 25	OVERY Flag
Lab Batch #: 718664 Date Analyzed: 04/01/2008 Date QC- Sample ID: 300607-001 D Reporting Units: mg/L Metals per ICP by SW846 6010B Analyte Calcium Magnesium Potassium Potassium Sodium Lab Batch #: 718707 Date Analyzed: 03/31/2008 Date QC- Sample ID: 300683-001 D Reporting Units: mg/L TDS by SM2540C Analyte	e Prepared: 04/0 Batch #: 1 SAMPLE / Parent Sample Result [A] 184 41.4 5.09 164 e Prepared: 03/3 Batch #: 1 SAMPLE / Parent Sample Result [A]	V1/2008 / SAMPLE Sample Duplicate Result [B] 180 41.4 4.91 161 1/2008 / SAMPLE Sample Duplicate Result [B]	Analy Matr DUPLIC RPD 2 0 4 2 Analy Matr DUPLIC RPD	st: LATCOR ix: Water ATE RECO Control Limits %RPD 25 25 25 25 25 25 25 25 25 25 25 25 25	DVERY Flag DVERY Flag

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. XENCO Laboratories / Environmental Lab of Texas 12600 West I-20 East Phone: 432-563-1800 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Odessa, Texas 79765 Fax: 432-563-1713 Project Manager: Randy Hicks Project Name: Pride Energy Company Company Name R. T. Hicks Consultants, Ltd. Project #: State 36 #2 Company Address: 901 Rio Grande Blvd NW Project Location: T19S-R37E, Section 36, Unit Letter O City, State, Zip Code Albuquerque NM 87104 COC #: Telephone No: 505-266-5004 Fax No: 505-266-0745 Deventer GILN Sampler: Printed Analyze For ICIP-5 Preservati Matrix Samp Ā Sair 300 (C) (LAB # (lab use only) Date ş FIELD CODE 3-27-08 1050 Hs MW-1 01 Sample Containers Intact? V N Temperature Upon Receipt: -1, 5°C not frozen Laboratory Comments: \mathbf{C} Special Instructions: Email, results to: r@rthicksconsult.com and gilbertvandeventer@suddenlink.net Date Time linne eceived by: w/laters/seci 22/08 2:30p Time Received by ELOT. Date Time Date 05-28-08 1430 fite

Page 12 of 13

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Sample Receipt Checklist

					lient initials
#1	Temperature of container/ cooler?	(Tes)	No	-1.5 There °C	
#2	Shipping container in good condition?	Yes	No		
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	(Not Present)	
#4	Custody Seals intact on sample bottles/ container? / april	(Yes)	No	Not Present	
#5	Chain of Custody present?	(Yes)	No		
#6	Sample instructions complete of Chain of Custody?	(Tes)	No		
#7	Chain of Custody signed when relinquished/ received?	(Yes)	No		
#8	Chain of Custody agrees with sample label(s)?	Cres	No	ID written on Cont./ Lid	
#9	Container label(s) legible and intact?	(Yes)	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	(Yes)	No		
#11	Containers supplied by ELOT?	Yes	(No)		
#12	Samples in proper container/ bottle?	res	No	See Below	
#13	Samples properly preserved?	Tes	No	See Below	
#14	Sample bottles intact?	(Yes)	No		
#15	Preservations documented on Chain of Custody?	Yes	No		
#16	Containers documented on Chain of Custody?	(Yes)	No		
#17	Sufficient sample amount for indicated test(s)?	res	No	See Below	
#18	All samples received within sufficient hold time?	(Yes)	No	See Below	
#19	Subcontract of sample(s)?	Yes	No	Not Applicable	
#20	VOC samples have zero headspace?	(Yes)	No	Not Applicable	

Variance Documentation

Date/ Time:

Contact:

Regarding:

Corrective Action Taken:

Check all that Apply:

See attached e-mail/ fax

Contacted by:

Ctient understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

Analytical Report 303122

for

Pride Energy Company

Project Manager: Matt Pride

Incorrect Project Name

State 36 # 2

07-MAY-08

12600 West 1-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX_T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Alianta), CA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

Page Lof (

07-MAY-08

Project Manager: Matt Pride Pride Energy Company P.O. Box 701950

Talsa, OK 74170

Reference: XENCO Report No: 303122 Pride Energy Company

Project Address: T19-S-R37E, Section 36, Unit Letter ()

Matt Pride:

We are reporting to you the results of the analyses performed os the samples received under the project name referenced above and identified with the XENCO Report Number 303122. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID annuber. Subcontracted analyses are identified in this report with effect the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The volidity and integrity of this report will remain lataet as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO I aboratories. This report will be filed for at least 5 years in our archives after which tune it will be destroyed wallout further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 303122 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any numsed samples, extracts or solutions related to them if we consider so accessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard-practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully.

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Castified and approval by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERFICE and QUALITY

Houston - Dattas - San Antonio - Austin - Tampa - Mjom - Atlanto - Corpus Christi - Latin America

Page 2 of 7

t and the second s	Cer	HITCALE OF : Pride Ene	Analysis Sum rgy Company, T	mary 303 ulsa, OK	122		
Project Id: State 364-2 Contact: Mat Pride roject Location: 119-S-R37L, Section 36, Un	n Letter O	Project Nai ≮ ∦∏ ≾n nplaj	ne: No Project Nu Collected Ass. ,	nie Found DAV MW-2	Date Received in Lab: Report Date: Project Manager:	- Mon May-05-08 (E05- 65-MAY-08 Bren: Borton, II	ат.
	Leb W	303122-009	3031324402	343122-045	30/122-004	And Lidenses	ine ill dun
Analosis Bannactul	Fight hit	MARIE	AIW - P (100)	MW-\$7(1.8)	MW-PG97	MW-20159	1111-32 103
straijsis requestea	Depeta	2	,	بقحت	تقيين	2	a.
	Mateixi	zen.	SC33.	SOIL	20. 9 1.	SOR_	SOB.
	Sumplea:	May-02-08 08:15	1.515y-#2-03.68.15	May-02-08-08:28	Mag-02/08/08/23	Muy-02-08-08-43-	May-02-09-08:50
Chloride by SM4500-CL R	Extractede					· · · · · · · · · · · · · · · · · · ·	
	Analozzak	May-05-83 08:00	May-46-08-89.09	May-06-08-00:00	May-06-05 (0) 82	May-05-08-00-09	Kay-Ball Blan
Chlorek	Caitsell1.:	1703 kg – 181 1932 72 - 3 6701	. nigský R1. 1 - 551.8 3.000	11192kg 8 340-3 5.01	11. mis 162,9 5 4840 11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	marka R.L. 63.81 5.009	105255 81. 42.54 5.00

The normal sense was not non-non-provide spin approximation of a network of set (normalises). By important optimation of the set of the state spin velocity to provide the spinor of MANDA Laboratories. SINTO intermediations in a many statement of the state set of the set of the state structure research. Off for the structure in second of the state set of the set of the state set of the state set of the structure.

Brent Barran Odeasa Unborgaary Derector

Certificate of Analysis Summary 303122 Pride Energy Company, Tolsa, OK

Project Name: No Project Name Found

Project Id: Store 26#2 Contaes: Man Pride

Date Received Ja Lab: Mon Mayo55-08 (4.05 am Report Date: 07 NAV 08

 $\overline{}$

Project Location: 149-5-8371., Section 36, Unit Letter O Project Manager: Besti Hairon, II Set Str 363122-007 and Libra Profit filt MW-JOST MW (FILIT) Analysis Requested Э. نى . Reptier Matrix: SOIL SOB May-02-08-08:55 Maya82-08-09/80 Samples: Estracted Chloride by SM4500-CI- B May 05 48 02900 May-96-08 (20:00 Analyzeat Cairs(Rl, j) $m_{\rm c}/k_{\rm S}$ RΙ, m_{i}^{i} k_{i} RI, 33.48 - 3,000 - 34.68 Thomas 63.81 5.600

÷

Here there will be a substantial of a set of a set of a set of a substantial set of a set

Bient Barron

Odesa Laboratory Director

Page 4 of 7

Work Order #: 303122 Project 1D: Incorrect Project (D Lah Batch 8: 721892 Sample: 721892 1 BKS Matrix: Solid Thate Analyzed: 05/06/2008 Date Prepared: 05-06/2008 Analyst: LATCOR Reporting Units: mg/kg Batch #: BLANK /BLANK SPIKE RECOVERY STUDY 1 fila a ƙ Blank Spike Hank Control Chloride by SM4500-CI- B Research Medeal Spike Splite Linus Flags JAL. [B]Result SAR. %R Analytes 304 $\{C\}$ (bicaride ND 100.0 95,72 96 70-125 Lab Batch 4: 721893 Sample: 721893-1-8888 Matrix: Solid Date Analyzed: 05/06/2908 Date Prepared: 05/06/2008 Analyst: LATCOR Reporting Units: mg/kg BLANK /BLANK SPIKE RECOVERY STUDY Batch #: ł Blank Blank Blank Spike Control Chloride by SM4500-CI- B Spike %R Result Added Limits Spike Flags %R $|\Delta|$ [R]Resalt Analytes $\{C\}$ [13] Cidende ND 1:0.1 92.52 93 30-125

Black Spike Receivery [13] # 16394C1-[14] All costils are based on AID1, and validated for QC purposes

	Cost Gany Normal	Trest Environmental	Provinces PLOS FORCE DEMONDY
Matt Prize	ñuget 4	Git Van Deventer	PRACH TANE 35 =7
P. O. Box 710855	4112818 F.A.	P () Box 7694	Protectionance 1195-R37E, Section 35, Unit Leaver C
Fulsa, OK 74170-1950	Elly, State, 2 1: Color	Michael F., 78703-7624	
918-524-9200	Triestone MB	232-638-67-0	Source and the second secon
918-524-9292		442.402.9098	•
<u>natéri ang kang kang kang kang kang kang kang </u>	torus 44pan 22.	g 12 cubou - ch. June - rost og m	-
Gil Van Devenier	See.	Will Date	
Printer,	**************************************	مەرىپىيە ئەرىپىلەت بىرىمىلى بىلەر مەرىپىيە يەرىپىيە يەرىپىيە يەرىپىيە يەرىپىيە يەرىپىيە يەرىپىيە يەرىپىيە يەرى تەرىپىيە تەرىپىيە تەرىپىيە يەرىپىيە يەرىپىيە يەرىپىيە يەرىپىيە يەرىپىيە يەرىپىيە يەرىپىيە يەرىپىيە يەرىپىيە يەر	Atus saif far
		and the second	
	1	Tana Man	
	- ALLA		
			1 · · · · · · · · · · · · · · · · · · ·
412244	<u> </u>	문 계속 감독을 잡다.	时时 医外科学系统 计通行通信识别
N ¹ -A ¹	Children date		
	<u>10503496 0808</u>		e a general de la companya de
ANT IS.	105022005 0620	- <u> X</u>	
) Ageri solet	105707-0671 0671		
	195423081 0848	1181111111	IX IXIIIIIII
-12. MWH-(M0)	[C3402406] 085C		
17, HOW-+ (35)	05/02/08 09:55		
- 1- NSWIT (105)	0570288 89620		
	The state product of the second second		
esuits to; alighteens covinon	nental new and matters	donde-exergiticam	file and for the half have been been and the second se
	lose and		Reporting Classream
William Star		(),	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(22)2 B THE	Marchines 24 (101		See Annual I
	M. Contana	na stri	18 Mart day and all was sub
	-		and the branch with the second
	B) 410 (10050 Cuse, OK 76 (1001950) PIS-224-9200 PIS-	Image: state (10000 Answer Colsa, Coll 76 (10000 Data (10000 Colsa, Coll 76 (10000 Data (10000 Colsa, Coll 76 (10000 Data (10000 Colsa (10000 Colsa (10000 Colsa (100000 Colsa (100000 Colsa (100000000 Colsa (1000000000000 Colsa (1000000000000000000000000000000000000	State Product Answer Answer Product

. -

XENCO Laboratories / Environmental Lab of Texas

Environmental Leb of Texas

Variance/ Contective Act on Report-Storple Log-In-

Shere.	Pride Lover 19
Oate: Even	5-5-02 100
a asta tille af	103(12
6009 S	Či.

Sample Receipt Checklis:

			Libéral ors
#1 Temporanue of coatainest coolor?	623	No	-8.6 "0
x2 Stillipping container in good condition?	565	N:	•
e3 Calendy Senis intact on shipping container copies?	Yes	No:	CHEESET TOMAL
a4 Guissegy Seals intaction sample container?	Y 200	Nic	Apt Frences
n5 Chefri of Custedy present?	Kay	NC	
#8 Sample visituations complete of Chain of Custody?	1 8:45	No	
al Chain of Custody signed when reprovided received?	1 Yns	No	1
49 Crown of Customy agrees with surpolit (abelia)?	Yun	N:2	10 written on Cont / lut 1
ry - Container labellet legitic and injact?	YHS	No	Not Apprestie
#10 Sample matrix properties agree with Chain of Cystroy?	Ses	No	
411 Containers number by BLOT?	195	No	
or2 Samples in proper container/ boble?	Yesi	No	Smi Rebox
#15 Samples procestly preserves?	Yes	Ne	Sua Bolow
ali 4 Sparale polities attact?	Yes	NC.	
#15 Preservations occurrented on Crisin of Costody?	Yes	No	
Kive Containers documented on Chain of Costody?	Casi	No	
#17 Bull creat sample amount for indicator tost(s)?	03:	No	Sim Bolow
#18 An samples received within sufficient trate time?	Yes	i No	See Balow
#12 Subcontract of sample(s)?	Yes	I No	Not App cat's
#25 VOC samples have zero headspuce?	Y03	I No	Nat Applicable

Variance Documentation

Comes		Compacted by				Date: Tirse		······································	-
Regarding:								M .k-ma	÷.,
when our the sufficiency designs a constraint of the				щ г -					
Corrective Action Takes									
ngan idaam ni amin'ny fisiaka amin'ny fisiaka	Link.05.000.000.000	and and the second s	who so realizes as						

							·		
Check all tool Apply		See attactuse e-ravit	• hax						
	Ē	Chent Uniterstands a	ಾರ್ ಸರ್ಕಾರ ಗ	fre to clus	beed with a	ាងថ្ងៃទាំន			

Analytical Report 303625

for

Pride Energy Company

Project Manager: Matt Pride

Pride Energy Company

State 36 # 2

16-MAY-08

NVIRONMENTA 480

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

16-MAY-08

Project Manager: Matt Pride Pride Energy Company P.O. Box 701950

Tulsa, OK 74170

Reference: XENCO Report No: **303625 Pride Energy Company** Project Address: T19S-R37E, Section 36, Unit Letter O

Matt Pride:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 303625. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 303625 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Brent Barron, II Odessa Laboratory Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 303625

Pride Energy Company, Tulsa, OK

Pride Energy Company-

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-2	W	May-08-08 16:35		303625-001

LAB OF	Certific Pri	ate of a de Energ	Anal y Con	ysis Summa 1pany, Tulsa, C	n <mark>ry 30</mark> . DK	3625		
Project Id: State 36 # 2 Contact: Matt Pride Project Location: T19S-R37E, Section 36, Unit L		roject Nan ter O	ne: Pr	ride Energy Com Date Recei Rep Project	pany ved in Lab oort Date: Manager:	May-09- 16-MA Brent Ba	-08 05:00 pm 7-08 arron, 11	
	Lab Id:	303625-0	01					
Analysis Requested	Field Id: Depth:	. MW-2						
	Matrix: Sampled:	WATE	R 16:35					
Alkalinity by SM2320B	Extracted:	way-00-08	10.55					
Area minty by SH12320D	Analyzed:	May-13-08	15:55					
Alkalinity Total (as CaCO3)	Units/RL:	mg/L 248	RL 4 00					
BTFY by FPA 8021B	Extracted:	May-14-08	17:58					
	Analyzed:	May-14-08	21:50					
	Units/RL:	mg/L	RL	•				
Benzene		0.0010	0.0010		•			· ·
Ethylbenzene	ND :	0.0020						
m.p-Xylenes		ND	0.0010					
o-Xylene		ND	0.0010					
Xylenes, Total		ND						
Total BTEX		0.001	• •					
Inorganic Anions by EPA 300	Extracted: Analyzed:	May-16-08	13:21 BI					
loride	Ojuis/KL.	1450	50.0					
Fluoride		ND .	50.0			.		
Sulfate		229	50.0					
Metals per ICP by SW846 6010B	Extracted: Analyzed:	May-16-08	14:15					
	Units/RL:	mg/L	RL					
Calcium		293	0.100	· · ·				
Iron		ND	0.030					
Potassium		/8.0	0.010			,		
Sodium		687	0.500					
	Extracted:		0.500		·			
1D5 by SM2540C	Analyzed:	May-12-08	16:45 PI					
Total dissolved solids	Units/KL:	mg/L 2730	KL 5.00					
tal dissolved solids		2730	3.00		<u> </u>		<u> </u>	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

ince 1990

E MVIRONMENTAL LAB OF

Brent Barron

Odessa Laboratory Director

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.

K Sample analyzed outside of recommended hold time.

* Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	Phone	Fax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
6017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477

Form 2 - Surrogate Recoveries

Project Name: Pride Energy Company

Vork Order #: 303625 Lab Batch #: 722707 Sample: 303625-001 / SM	IP Ba	Project II tch: 1 Matri	D:State 36 # x: Water	2	
BTEX by EPA 8021B Analytes	· Amount · Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0327	0.0300	109	80-120	
4-Bromofluorobenzene	0.0267	0.0300	89	80-120	
Lab Batch #: 722707 Sample: 303817-001 S / M Units: mg/L	AS Ba	tch: 1 Matri	x: Water	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0269	0.0300	90	80-120	
4-Bromofluorobenzene	0.0263	0.0300	88	80-120	
Lab Batch #: 722707 Sample: 303817-001 SD / Units: mg/L	MSD Ba	tch: 1 Matri JRROGATE RI	x: Water	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery % R [D]	Control Limits % R	Flags
1,4-Difluorobenzene	0.0274	0.0300	91	80-120	
4-Bromofluorobenzene	0.0325	0.0300	108	80-120	~
Lab Batch #: 722707 Sample: 509077-1-BKS / Units: mg/L	BKS Ba	tch: l Matri	x: Water	STUDY	·····
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0269	0.0300	90	80-120	
4-Bromofluorobenzene	0.0274	0.0300	91	80-120	
Lab Batch #: 722707 Sample: 509077-1-BLK /	BLK Ba	tch: 1 Matri	x: Water	· · · · · · · · ·	
Units: mg/L	St	JRROGATE RI	ECOVERY S	STUDY	<u> </u>
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery % R [D]	Control Limits % R	Flags
1,4-Difluorobenzene	0.0325	0.0300	108	80-120	
4-Bromofluorobenzene	0.0259	0.0300	86	80-120	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: Pride Energy Company

ork Order #: Lab Batch #:	303625 722707	Sample: 509077-1-1	BSD / BSD Bat	Project ID: State 36 # 2 / BSD Batch: 1 Matrix: Water										
Units:	mg/L	· .	SU	SURROGATE RECOVERY STUDY										
	BTEX by Ana	EPA 8021B lytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits % R	Flags							
1,4-Difluorobenzer	ne ,	······································	0.0278	0.0300	93	80-120								
4-Bromofluoroben	zene		0.0290	0.0300	97	80-120								

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B^ll results are based on MDL and validated for QC purposes.

Project Name: Pride Energy Company

Work Order #: 303625	Corder #: 303625 Project ID:								
Lab Batch #: 722887 Date Analyzed: 05/13/2008	Sa Date Prep:	mple: 303625- ared: 05/13/20	1-BKS 008	Matri Analys	x: Water t: WRU				
Reporting Units: mg/L	Ba	teh #: 1	BLANK /BLANK SPIKE RECOVERY STU						
Alkalinity by SM2320B		Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike % R	Control Limits Flags			
Analytes				[C]	[D]				
Alkalinity, Total (as CaCO3)		ND	200	174	87	80-120			
Lab Batch #: 722877	Sa	mple: 722877-	77-1-BKS Matrix: Water						
Date Analyzed: 05/16/2008	Date Prepa	ared: 05/16/20	2008 Analyst: LATCOR						
Reporting Units: mg/L	Ba	t ch #: 1	BLANK /F	COVERY	STUDY				
Inorganic Anions by EPA 300		Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike % R	Control Limits % R	Flags		
Analytes				[C]	[D]	1. 1.			
Chloride		ND	10.0	9.01	90	85-115			
Fluoride		ND	2.00	2.04	102	90-110			
Sulfate		ND	10.0	9.25	93	90-110			

Blank Spike Recovery [D] = 100*[C]/[B]All results are based on MDL and validated for QC purposes.

BS / BSD kecoveries

Project Name: Pride Energy Company

Work Order #: 303625 Analyst: SHE Lab Batch ID: 722707 Sample: 509077-1-B	Date Prepared: 05/14/2008 Project ID: State 36 # 2 Date Analyzed: 05/14/2008 Sample: 509077-1-BKS Batch #: 1 Matrix: Water											
Units: mg/L	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY											
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Benzene	ND	0.1000	0.0813	81	0.1	0.0810	81	0	70-125	25		
Toluene	ND	0.1000	0.0826	83	0.1	0.0840	84	2	70-125	25		
Ethylbenzene	ND	0.1000	0.0910	91	0.1	0.0923	92	1	71-129	25		
m,p-Xylenes	ND	0.2000	0.1924	96	0.2	0.1950	98	1	70-131	25		
o-Xylene	ND	0.1000	0.0931	93	0.1	0.0944	94	1	71-133	25		

Relative Percent Difference RPD = 200*|(D-F)/(D+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: Pride Energy Company

'ork Order #: 303625 Project ID: State 36 # 2 Lab Batch #: 722877 **Date Prepared:** 05/16/2008 Analyst: LATCOR Date Analyzed: 05/16/2008 QC- Sample ID: 303625-001 S Batch #: 1 Water Matrix: Reporting Units: mg/L MATRIX / MATRIX SPIKE RECOVERY STUDY Parent **Inorganic Anions by EPA 300** Spiked Sample Control Sample Spike Result %R Limits Flag Result Added [C]{D} %R [A] [B] Analytes Chloride 1450 1000 2240 79 85-115 X Fluoride ND 200 231 116 90-110 x Sulfate 229 1000 1120 89 90-110 X

Matrix Spike Percent Recovery $[D] = 100^{+}(C-A)/B$ Relative Percent Difference $[E] = 200^{+}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

Form 3 - Mt **MSD Recoveries**

Project Name: Pride Energy Company

Work Order # 303625 Project ID: State 36 # 2 Lab Batch ID: 722707 QC-Sample ID: 303817-001 S Batch #: Matrix: Water 1 Date Prepared: 05/14/2008 SHE Analyst: Date Analyzed: 05/15/2008 Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY Parent Spiked Sample Spiked Duplicate Spiked Control Control BTEX by EPA 8021B Sample Dup. Spike Result Spike Spiked Sample RPD Limits Flag Sample Limits Result %R %RPD Added [C]Added Result [F] %R % %R Analytes [A] [D] [G] [B] **[E]** 0.0080 0.0880 Benzene 0.1000 80 0.1000 0.0982 90 12 70-125 25 ND 0.1000 0.0835 84 0.1000 0.0937 94 11 70-125 25 Toluene Ethylbenzene ND 0.1000 0.0917 92 0.1000 0.1017 102 10 71-129 25 0.0027 0.2000 0.1946 96 0.2000 m,p-Xylenes 0.2153 106 10 70-131 25 o-Xylene 0.0027 0.1000 0.0969 94 0.1000 0.1069 104 10 71-133 25 0

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*(D-G)/(D+G) Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

12000			202.27
152	11	12	21
12.8	1.	18	× 4
In and			5.4
1414	14-1	sie	الالتك

Sample Duplicate Recovery

Project Name: Pride Energy Company

		· · · ·		· · ·		
Lab Batch #:	722887			Project l	D: State 36	# 2
Date Analyzed:	05/13/2008 Date	e Prepared: 05/1	3/2008	Analy	st: WRU	
QC- Sample ID:	303625-001 D	Batch #: 1		Matr	ix: Water	
Reporting Units:	mg/L	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Alk	alinity by SM2320B Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Alkalinity, Total (as C	CaCO3)	248	240	3	20	
Lab Batch #:	722877			·		
Date Analyzed:	05/16/2008 Date	e Prepared: 05/1	6/2008	Analy	st: LATCOF	ર
QC- Sample ID:	303625-001 D	Batch #: 1		Matr	ix: Water	
Reporting Units:	mg/L	SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Inorga	nic Anions by EPA 300 Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		1450	1450	. 0	20	· ·
Fluoride		ND	ND	NC	20	
Sulfate		229	228	0	20	
Lab Batch #: Date Analyzed: QC- Sample ID: Reporting Units:	722863 05/16/2008 Date 303625-001 D mg/L	e Prepared: 05/1 Batch #: 1	6/2008	Analy Matr	st: LATCOF	R
				THE PLACE	'ATE REC	OVERY
I Madala -		SAMPLE	Sample		CATE REC	OVERY
Metals	Der ICP by SW846 6010B	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	CATE REC Control Limits %RPD	OVERY Flag
Metals Calcium	Der ICP by SW846 6010B	Parent Sample Result [A] 293	Sample Duplicate Result [B] 297	RPD	Control Limits %RPD 25	OVERY Flag
Metals j Calcium Iron	Der ICP by SW846 6010B Analyte	Parent Sample Result [A] 293 ND	Sample Duplicate Result [B] 297 0.034	RPD 1 NC	Control Limits %RPD 25 25	OVERY Flag
Metals J Calcium Iron Magnesium	Der ICP by SW846 6010B Analyte	Parent Sample Result [A] 293 ND 78.0	Sample Duplicate Result [B] 297 0.034 75.4	RPD 1 NC 3	Control Limits %RPD 25 25 25	OVERY Flag
Metals J Calcium Iron Magnesium Potassium	Der ICP by SW846 6010B	Parent Sample Result [A] 293 ND 78.0 9.56	Sample Duplicate Result [B] 297 0.034 75.4 6.83	RPD I NC 3 33 33	Control Limits %RPD 25 25 25 25 25	OVERY Flag
Metals J Calcium Iron Magnesium Potassium Sodium	Der ICP by SW846 6010B Analyte	SAlviPLE Parent Sample Result [A] 293 ND 78.0 9.56 687	Sample Duplicate Result [B] 297 0.034 75.4 6.83 635	RPD 1 NC 3 33 8	Control Limits %RPD 25 25 25 25 25 25 25	OVERY Flag
Metals J Calcium Iron Magnesium Potassium Sodium Lab Batch #: Date Analyzed: OC- Sample ID:	Analyte 722586 05/12/2008 303625-001 D	SAIVIPLE Parent Sample Result [A] 293 ND 78.0 9.56 687 Prepared: 05/1 Batch #: 1	Sample Duplicate Result [B] 297 0.034 75.4 6.83 635 2/2008	RPD I NC 3 33 8 Analy Matr	ATE REC Control Limits %RPD 25 25 25 25 25 25 25 25 25 25 25 25 25	OVERY Flag F
Metals J Calcium Iron Magnesium Potassium Sodium Lab Batch #: Date Analyzed: QC- Sample ID: Reporting Units:	Analyte Analyte 722586 05/12/2008 Date 303625-001 D mg/L	SAIVIPLE / Parent Sample Result [A] 293 ND 78.0 9.56 687 Prepared: 05/1 Batch #: 1 SAMPLE /	Sample Duplicate Result [B] 297 0.034 75.4 6.83 635 2/2008	RPD 1 NC 3 33 8 Analy Matr DUPLIC	ATE REC Control Limits %RPD 25 25 25 25 25 25 25 25 25 25 25 25 25	OVERY Flag F
Metals J Calcium Iron Magnesium Potassium Sodium Lab Batch #: Date Analyzed: QC- Sample ID: Reporting Units:	Analyte Analyte 722586 05/12/2008 03625-001 D mg/L FDS by SM2540C Analyte	Parent Sample Result [A] 293 ND 293 ND 78.0 9.56 687 Prepared: 05/1 Batch #: 1 SAMPLE Parent Sample Result [A]	Sample Duplicate Result [B] 297 0.034 75.4 6.83 635 2/2008 'SAMPLE Sample Duplicate Result [B]	RPD 1 NC 3 33 8 Analy Matr DUPLIC RPD	ATE REC Control Limits %RPD 25 25 25 25 25 25 25 25 25 25 25 25 25	OVERY Flag F OVERY Flag

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes.

XENCO Laboratories / Environmental Lab of Texas 12600 West I-20 East Odessa, Texas 79765 Fax: 432-563-1800 Fax: 432-563-1713

Page 13 of 14

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Сотралу	Nате:	Pride Ener	rgy Comp	bany	Com	ipany Name:	Tri	den	t Er	vir	onm	ent	al			Pri	oject	Νаπ	Name: Pride Energy Company											
Direct Invoi	ice To:	Matt Pride			Proje	ect Manager;	Gil	Va	n D	eve	nter						Pro	iject	#: S	tate	36	#2								·
Billing Ad	idress:	P. O. Box	710950		_	Address:	P. O. Box 7624							1	Project Location: T19S-R37E, Section 36, Unit I								ett	er O	<u> </u>					
City, State, Zip	Code:	Tulsa, OK	74170-1	950	City, Stat	City, State, Zip Code: Midland TX 79				970	8-7	624				c	coc#: V126-0501008-1													
Telepho	ne No:	918-524-9	200		Telephone No: 432-638-8740																									
, F	ax No:	918-524-9	292		_	Fax No:	41	3-40	3-9	96	8																			-
Email Rep	port to:	mattp@pride	e-energy co	m	Ema	il Report to:	gil@	Dtrid	ent-i	envi	ronm	ienta	al.co	m																
Se	mpler:	Gil Van De	eventer			Alla.	1	la	مر د	(A	<u>S</u>	-				_													
			Pri	nteci				Šig	natu	re							┣		(CLI	1	An	iəlyz.	e Fo	r I	-		T			
							•	<u> </u>									F	_	TOTA											
303625 LAB#(lab use only)		FIEU	D CODE	<u> </u>	Date Sampled	Time Sampled	No. of Containers	10 (2) 200 or HDF	HNO,	BILL C. D. LAND AND A CO. D. LAND	1024	No.W	Diher (Soecr'y)	Valator	Math	Chier (spacify)	500, 500, W\$108 161F-H41	Cators (Ca, Mg, Na, K. 17)	Mursici, SO4 CO3. HCO2.	Melas As Ag Ba Co C. Ph Hg Ke	Valaties	Serrinolari es	6TEX 902-0	301 40 M M	fols Dissover Scircs (150-1)	SPLP 1312	Chloride	Total Fe and Mn	RUSH TAT (Pre-Schedulc	Standard TAT
	_	M	W-2		05/08/08	1635	4	X	-+	x	-			x	╈	1	Ħ	X	x	1-	ŕ		ΧŤ		Tx	:	Ē			X
							1	11	1	1		Ħ		1		╈	1-1		-+	1-	H	-†	4	-	╈	1	1	T		1
									1	╈	+			-+		Τ	Ħ		1	1		1	1		1					_
									1	+	1			-	+	1		-		1		1	╈	1	1	1.			- 1	
									1	+	1				ŕ	t	Ħ		-	1		1	┢	+	-		t			-
× -										+	+-	Π		-	╈	+	H					-	+	+	+	\uparrow				_
									- †	+		†		1	╋	+			+			+	1	╈	+	1				
	•		•						+	7	+-			+	_	┢			-+-			+	+	1	+	1	┢			_
									-	+				╈	+		H			+		-	+	+	+		┢			
									+	+				╈	+	+	Η					-1			+	+	1		\square	-
Special Instructions:	Email	results to: g	gil@triden	t-environm	iental.com a	ind mattp(Эрлі	de-e	ener	gy.	com	<u> </u>					J		Samp Temp	e Co eratu	ntain re Up	iers ion f	Intac Rece	t? ipt:		Ý	<u> </u>	N		
Reinquished by	γ /	1	Date States	Time 710	Received by.									Dat	e		Time		:3℃. '3℃. w/(i	atory 10. United	s S	umer CC	nis: k~~	+- 4	. cr	ta.	net	'S •]	;*C	
Rehnquished by			Date	Time	Received by EL	ne Fi	نه ۲۰	ר					05	Oat Ch	• .උදා		70	0								_				
					0				-												_									_

Environmental Lab of Texas

J

Variance/	Corrective	Action	Report-	Sample	Log-In	
-----------	------------	--------	---------	--------	--------	--

Client:	Pride / Tadent	
Date/ Time:	05-09-06 C 1700	
Lab ID # :	303625	_
Initials:	JMP	

Sample Receipt Checklist

#1 Temperature of container/ cooler?	(es)	No	1.5 °C
#2 Shipping container in good condition?	Yes	No	
#3 Custody Seals intact on shipping container/ cooler?	Yes,	No	Not Present
#4 Custody Seals intact on sample bottles/ container?	(Yes)	No	Not Present
#5 Chain of Custody present?	Yes	No	
#6 Sample instructions complete of Chain of Custody?	Yes	No	
#7 Chain of Custody signed when reinquished/ received?	Yes	No	
#8 Chain of Custody agrees with sample label(s)?	(Yes)	No	ID written on Cont./ Lid
#9 Container label(s) legible and intact?	Yes	No	Not Applicable
#10 Sample matrix/ properties agree with Chain of Custody?	Yes	No	
#11 Containers supplied by ELOT?	Yes	No	
#12 Samples in proper container/ bottle?	Yes	No	See Below
#13 Samples properly preserved?	(Yes)	No	See Below
#14 Sample bottles intact?	Yes	No	
#15 Preservations documented on Chain of Custody?	Yes	No	
#16 Containers documented on Chain of Custody?	Yes	No	
#17 Sufficient sample amount for indicated test(s)?	(Yes)	No	See Below
#18 All samples received within sufficient hold time?	(Yes)	No	See Below
#19 .Subcontract of sample(s)?	Yes	No	(Not Applicable.
#20 VOC samples have zero headspace?	(Yes)	No	Not Applicable

Variance Documentation

Contacted by:

Contact:

Date/ Time:

Regarding:

Corrective Action Taken:

Check all that Apply:

See attached e-mail/ fax Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

Analytical Report 305357

for

Pride Energy Company

Project Manager: Matt Pride

Pride Energy Company

State 36 # 2

11-JUN-08

NVIRONMENTA

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

11-JUN-08

Project Manager: Matt Pride Pride Energy Company P.O. Box 701950

Tulsa, OK 74170

Reference: XENCO Report No: **305357 Pride Energy Company** Project Address: T19S-R37E, Section 36, Unit Letter O

Matt Pride:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 305357. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 305357 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully

Brent Barron, II Odessa Laboratory Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A.Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 305357

Pride Energy Company, Tulsa, OK

Pride Energy Company

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id	
MW-3 (10')	S	Jun-05-08 12:18		305357-001	
MW-3 (20')	S	Jun-05-08 12:20		305357-002	
MW-3 (30')	S	Jun-05-08 12:35		305357-003	
MW-3 (40')	S	Jun-05-08 12:47		305357-004	
MW-4 (10')	S	Jun-05-08 13:53		305357-005	
MW-4 (20')	S	Jun-05-08 13:57		305357-006	
MW-4 (30')	S	Jun-05-08 14:10		305357-007	
MW-4 (40')	S	Jun-05-08 14:20		305357-008	

LAB OF

Certificate of Analysi Immary 305357

Pride Energy Company, Tulsa, OK

Project Name: Pride Energy Company

Project Id: State 36 # 2 Contact: Matt Pride

Project Location: T19S-R37E, Section 36, Unit Letter O

Date Received in Lab: Fri Jun-06-08 01:23 pm

Report Date: 11-JUN-08

								Project Ma	nager:	Brent Barron,	11		
	Lab Id:	305357-0	01	305357-0	02	305357-0	003	305357-0	04	305357-0	05	305357-0)06
Analysis Requested	Field Id:	MW-3 (10')		MW-3 (20')		MW-3 (30')		MW-3 (40')		MW-4 (10')		MW-4 (20')	
	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jun-05-08 1	2:18	Jun-05-08 1	2:20	Jun-05-08	12:35	Jun-05-08	12:47	Jun-05-08 1	3:53	Jun-05-08 1	13:57
Inorganic Anions by EPA 300	Extracted:						-	***					
	Analyzed:	Jun-09-08 17:53		Jun-09-08 17:53		Jun-09-08 17:53		Jun-09-08 17:53		Jun-09-08 17:53		Jun-09-08 17:53	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		133	25.0	88.9	5.00	15.1	5.00	10.2	5.00	196	10.0	71.1	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron

Odessa Laboratory Director

ONMENTAL 1480

Certificate of Analysi immary 305357

Pride Energy Company, Tulsa, OK

Project Name: Pride Energy Company

Project Id: State 36 # 2 Contact: Matt Pride Project Location: T19S-R37E, Section 36, Unit Letter O

Date Received in Lab: Fri Jun-06-08 01:23 pm

Report Date: 11-JUN-08
Project Manager: Brent Barron II

				r roject Manager.	Dient Darion, II	
	Lab Id:	305357-007	305357-008			
Analysis Requested	Field Id:	MW-4 (30')	/ MW-4 (40')			
	Depth:				,	
	Matrix:	SOIL	SOIL			: ·
	Sampled:	Jun-05-08 14:10	Jun-05-08 14:20			
Inorganic Anions by EPA 300	• Extracted:			 		
	Analyzed:	Jun-10-08 02:37	Jun-10-08 02:37			
	Units/RL:	mg/kg RL	mg/kg RL			·
Chloride	-	6.34 5.00	77.6 5.00			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron

Odessa Laboratory Director

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.

* Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Phone	Fax
(281) 589-0692	(281) 589-0695
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(305) 823-8500	(305) 823-8555
(770) 449-8800	(770) 449-5477
	Phone (281) 589-0692 (214) 902 0300 (210) 509-3334 (813) 620-2000 (305) 823-8500 (770) 449-8800

Chionae

Blank Spike Recovery [D] = 100*[C]/[B]All results are based on MDL and validated for QC purposes.

ork Order #: 305357

Form 3 - MS Recoveries

Project Name: Pride Energy Company

Lab Batch #: 724913				Pr	oject ID:	State 36 # 2	2
Date Analyzed: 06/09/2008	Date Prepare	d: 06	/09/2008	3	Analyst:	LATCOR	
QC- Sample ID: 305296-001 S	Batch	#:	1		Matrix:	Soil	
Reporting Units: mg/kg	M	ATRIX	K / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300 Analytes	Pare Samj Resu [A]	nt le lt	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride	17.6		100	144	126	75-125	x
Lab Batch #: 725010							
Date Analyzed: 06/10/2008	Date Prepare	d: 06	/10/2008	3	Analyst:	LATCOR	
QC- Sample ID: 305357-007 S	Batch	#:	1		Matrix:	Soil	
Reporting Units: mg/kg	M	ATRIX	K / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300 Analytes	Pare Samj Resu [A]	nt le lt	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride	6.34		100	65.8	59	75-125	X

,

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference $[E] = 200^{*}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

Sample Duplicate Recovery

Project Name: Pride Energy Company

Work Order #: 305357

Lab Batch #: 724913			Project I	D: State 36	# 2
Date Analyzed: 06/09/2008	Date Prepared: 06/0)9/2008	Analy	st: LATCOF	۲
QC- Sample ID: 305296-001 D	Batch #:	l	Matr	ix: Soil	
Reporting Units: mg/kg	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Chloride	. 17.6	17.6	0	20	
Lab Batch #: 725010		· · · · · · · · · · · · · · · · · · ·			
Date Analyzed: 06/10/2008	Date Prepared: 06/	0/2008	Analy	st: LATCOF	۱
QC- Sample ID: 305357-007 D	Batch #:	l	Matrix: Soil		
Reporting Units: mg/kg	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300 Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chlorida	6.24	5 10	20 -	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) { All Results are based on MDL and validated for QC purposes.

Phone: 432-563-1800 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST 12600 West 1-20 East Odessa, Texas 79765 Fax: 432-563-1713 Company Name: Pride Energy Company Company Name: Trident Environmental Project Name: Pride Energy Company Direct Invoice To: Matt Pride Project Manager: Gil Van Deventer Project #: State 36 #2 Billing Address: P. O. Box 710950 Address: P. O. Box 7624 Project Location: T19S-R37E, Section 36, Unit Letter O City, State, Zip Code: Tulsa, OK 74170-1950 City, State, Zip Code: Midland TX 79708-7624 COC #: Telephone No: 918-524-9200 Telephone No: 432-638-8740 Fax No: 918-524-9292 Fax No: 413-403-9968 Email Report to: gil@trident-environmental Email Report to: maltp@pride-energy.com Sampler: Gil Van Deventer Printed Analyze Fo TCLP. Preservative Matri 305357 îme alec AB # (lab use only) FIELD CODE 1218 х MW-3 (10') 06/05/08 21 1 x ĊL MW-3 (20') 06/05/08 1220 Iх x Х MW-3 (30') 06/05/08 1235 05 X MW-3 (40') 06/05/08 1247 04 MW-4 (10') 06/05/08 1353 X 05 MW-4 (20') 06/05/08 1357 х ت ن MW-4 (30') 06/05/08 1410 5 X C1 ĺx x 1420 MW-4 (40') 06/05/08 Ιx 62 Dar Special Instructions Sample Containers Intacl? Ċ Email results to: gil@trident-environmental.com and mattp@pride-energy.com Temperature Upon Receipt: -1.5 Laboratory Comments: eceived by Date Date Time Time 4/6/07 1:2 3p Received by ELOT: andrea Pam Date Time Date Tume linguished 4608123 inducts & seal

XENCO Laboratories / Environmental Lab of Texas

10 of 11

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client:	Pride Energy	
Date/ Time:	6608 123	-
Lab ID # :	<u> 305357</u>	-
Initials:	Cil	_

Sample Receipt Checklist

				Cherician
#1	Temperature of container/ cooler?	Yes)	No	-1-5 °C
#2	Shipping container in good condition?	des'	No	
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present
#4	Custody Seals intact on sample bottles/ container?	Kes'	No	Not Present
# 5	Chain of Custody present?	Yes	No	
#6	Sample instructions complete of Chain of Custody?	Yes)	No	
#7	Chain of Custody signed when relinquished/ received?	Yes'	No	
#8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid
#9	Container label(s) legible and intact?	Yes	No	Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	Yes?	No	
#11	Containers supplied by ELOT?	Yes	No	
#12	Samples in proper container/ bottle?	Yes	No	See Below
#13	Samples properly preserved?	Yes)	No	See Below
#14	Sample bottles intact?	Yes)	No	
#15	Preservations documented on Chain of Custody?	Yes	No	
#16	Containers documented on Chain of Custody?	Yes	No	
#17	Sufficient sample amount for indicated test(s)?	Yes)	No	See Below
#18	All samples received within sufficient hold time?	Yes	No	See Below
#19	Subcontract of sample(s)?	Yes	No	Not Applicable
#20	VOC samples have zero headspace?	Yes	No	Not Applicable

Variance Documentation

Date/ Time:

Contact:

Regarding:

Corrective Action Taken:

Check all that Apply:

Contacted by:

See attached e-mail/ fax Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

Analytical Report 306334

for

Pride Energy Company

Project Manager: Matt Pride

Pride Energy Company

State 36 # 2

27-JUN-08

NVIRONMENTA 48 0

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

27-JUN-08

Project Manager: Matt Pride , Pride Energy Company P.O. Box 701950

Tulsa, OK 74170

Reference: XENCO Report No: **306334 Pride Energy Company** Project Address: T19S-R37E, Section 36, Unit Letter O

Matt Pride:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 306334. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 306334 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 306334

Pride Energy Company, Tulsa, OK

Pride Energy Company

Sample Id	Matrix	Date Collected Sample	Depth I	ab Sample Id
MW-1	W	Jun-17-08 08:50		306334-001
MW-2	W	Jun-17-08 10:30		306334-002
MW-3	W	Jun-17-08 09:20		306334-003
MW-4	W	Jun-17-08 10:00		306334-004

NVIRONMENT LABO

Total dissolved solids

Certificate of Analysis Summary 306334 Pride Energy Company, Tulsa, OK

U U			C 0 m j	panj, 141	.,				
	Pr	roject Nam	e: Pri	de Energy	Compa	ny			
Project Id: State 36 # 2		Date Received in Lab: Jun-2							
Contact: Matt Pride				4	Rep	ort Date: 2	27-JUN-0	08	
Project Location: T19S-R37E, Section	on 36, Unit Lett	ter O			Project I	Manager: J	Brent Ba	rron, II	
	Lab Id:	306334-0	01	306334-0	02	306334-0	03	306334-0	04
Analysis Requested	Field Id:	MW-1		. MW-2		. MW-3		MW-4	
	Depth:								
	Matrix:	. WATER	R	WATE	٤	WATEI	ર	WATEI	R
· · · · · · · · · · · · · · · · · · ·	Sampled:	Jun-17-08 0)8:50 ·	Jun-17-08 I	0:30	Jun-17-08 0	9:20	Jun-17-08 1	0:00
Alkalinity by SM2320B	Extracted:								
· · · · · · · · · · · · · · · · · · ·	Analyzed:	Jun-26-08 1	0:45	Jun-26-08 1	0:45	Jun-26-08 1	0:45	Jun-26-08 1	0:45
	Units/RL:	mg/L	RL	mg/L	RL	• mg/L	RL	mg/L	RL
Alkalinity, Total (as CaCO3)		232	4.00	270	4.00	230	4.00	600	4.00
Alkalinity, Bicarbonate (as CaCO3)		232	4.00	270	4.00	230	4.00	244	4.00
Alkalinity, Carbonate (as CaCO3)		ND	4.00	ND	4.00	ND	4.00	ND	4.00
Inorganic Anions by EPA 300	Extracted:								
6 .	Analyzed:	Jun-23-08 0)8:50	Jun-23-08 0	8:50	Jun-23-08 0	8:50	Jun-23-08 0	8:50
· · · · · · · · · · · · · · · · · · ·	Units/RL:	mg/L	RL	mg/L	RL	mg/L .	RL	mg/L	RL
Chloride		594	5.00	1980	25.0	733	10.0	1070	12.5
Sulfate		207	5.00	275	25.0	212	10.0	218	12.5
Metals per ICP by SW846 6010B	Extracted:								
• •	Analyzed:	Jun-23-08 1	1:59	Jun-23-08 1	1:59	Jun-23-08 1	1:59	Jun-23-08 1	1:59
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Calcium		185	0.100	110	0.100	194	0.100	172	0.100
Magnesium		39.7	0.010	• 25.9	0.010	. 42.3	0.010	35.8	0.010
nssium		4.60	0.500	3.01	0.500	6.74	0.500	8.01	0.500
dium	·	174	0.500	671	0.500	251	0.500	486	0.500
TDS by SM2540C	Extracted:								
	Analyzed:	Jun-23-08 1	6:30	Jun-23-08 1	6:30	Jun-23-08 1	6:30	Jun-23-08 1	6:30

RL ·

5.00

RL

5.00

mg/L

2730

mg/L

1370

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Brent Barron

RL

5.00

mg/L

1810

RL

5.00

mg/L

2150

Odessa Laboratory Director

Jince 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Units/RL:

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.

* Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

· A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	Phone	Fax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
6017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477

Project Name: Pride Energy Company

Work Order #: 306334 State 36 # 2 **Project ID:** Lab Batch #: 726566 Sample: 726566-1-BKS Matrix: Water Date Analyzed: 06/26/2008 Date Prepared: 06/26/2008 Analyst: WRU Reporting Units: mg/L **BLANK / BLANK SPIKE RECOVERY STUDY** Batch #: 1 Blank Spike Blank Blank Control Alkalinity by SM2320B Spike Result Added Spike Limits Flags Result . %R %R [A] [B] Analytes [D] [C]Alkalinity, Bicarbonate (as CaCO3) ND 200 176 88 80-120 Lab Batch #: 726337 Sample: 726337-1-BKS Matrix: Water Date Analyzed: 06/23/2008 Date Prepared: 06/23/2008 Analyst: LATCOR Reporting Units: mg/L Batch #: 1 **BLANK /BLANK SPIKE RECOVERY STUDY** Blank Blank Spike Blank Control **Inorganic Anions by EPA 300** Result Added Spike Spike Limits Flags Result %R %R [A] [B] Analytes [C] [D] Chloride ND 10.0 11.6 116 80-120 Sulfate ND 10.0 12.0 120 80-120

Blank Spike Recovery [D] = 100*[C]/[B]All results are based on MDL and validated for QC purposes.

Form 3 - MS Recoveries

Project Name: Pride Energy Company

ork Order #: 306334	*					
Lab Batch #: 726337			Pr	oject ID:	State 36 # 2	2
Date Analyzed: 06/23/2008	Date Prepare	d: 06/23/200	8	Analyst:	LATCOR	
QC- Sample ID: 306329-001 S	Batch	#: 1		Matrix:	Water	
Reporting Units: mg/L	M	ATRIX / MA	ATRIX SPIKE	RECOV	VERY STU	DY
Inorganic Anions by EPA 300	Paren Samp Resul	t le Spike t Added	Spiked Sample Result C	%R [D]	Control Limits %R	Flag
Analytes		[B]				
Chloride	2600	500	3270	134	80-120	X
Sulfate	477	500	1080	121	80-120	X

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

Sample Duplicate Recovery

Project Name: Pride Energy Company

Work Order #: 306334

Lab Batch #: 726566 Date Analyzed: 06/26/2008 Date Pro QC- Sample ID: 306329-001 D B	:pared: 06/2 atch #: 1	26/2008	Project I Analy Matr	D: State 36 vst: WRU vix: Water	# 2
Reporting Units: mg/L	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Alkalinity by SM2320B Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Alkalinity, Bicarbonate (as CaCO3)	190	180	20	20	
Alkalinity, Carbonate (as CaCO3)	ND	ND	20	20	
Alkalinity, Total (as CaCO3)	190	180	20	20	
Lab Batch #: 726337 Date Analyzed: 06/23/2008 Date Pro QC- Sample ID: 306329-001 D B Reporting Units: mg/L B	pared: 06/2 atch #: 1 SAMPLE	23/2008	Analy Matr DUPLIC	st: LATCOI	₹ OVERY
Inorganic Anions by EPA 300 Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride	2600	2590	20	20	
Sulfate	477	463	20	20	
Lab Baten #: 720074Date Analyzed: 06/23/2008Date ProQC- Sample ID: 306329-001 DBReporting Units: mg/L	epared: 06/2 atch #: 1 SAMPLE	3/2008	Analy Matr DUPLIC	st: LATCOI	R OVERY
Metals per ICP by SW846 6010B Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Calcium	ND	603	NC	25	
Magnesium	120	116	3	25	
Potassium	4.41	4.85	10	25	
Sodium	564	575	Ż	25	
Fluoride	ND	ND .	NC	20	ĺ
Lab Batch #: 726342 Date Analyzed: 06/23/2008 Date Pro QC- Sample ID: 306329-001 D B Reporting Units: mg/L B	pared: 06/2 atch #: 1 SAMPLE /	3/2008	Analy Matr DUPLIC	st: WRU ix: Water ATE REC	OVERY
TDS by SM2540C Analyte Total dissolved solids	Parent Sample Result [A] 5700	Sample Duplicate Result [B] 5580	RPD	Control Limits %RPD 30	Flag

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes.

XENCO Laboratories / Environmental Lab of Texas 12600 West I-20 East Phone: 432-563-1800 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Odessa, Texas 79765 Fax: 432-563-1713 Company Name: Pride Energy Company Company Name: Trident Environmental Project Name: Pride Energy Company Direct involce To: Matt Pride Project Manager: Gil Van Deventer Project #: State 36 #2 Address: P. O. Box 7624 Billing Address: P. O. Box 710950 Project Location: T19S-R37E, Section 36, Unit Letter O City, state, zip Code: Tulsa, OK 74170-1950 City, State, Zip Code: Midland TX 79708-7624 COC # Telephone No: 918-524-9200 Telephone No: 432-638-8740 Fax No: 918-524-9292 Fax No: 413-403-9968 Email Report to: mattp@pride-energy.com Email Report to: gil@trident-environmental.com sampler: Rozanne Johnson (575) 631-9310 rozanne@valornet.com , Printo Analyze Fo TOTAL: Matrix Preservative Sampled 2063 8 m Jate AB # (lab use only FIELD CODE MW-1 06/17/08 8:50 -01 -07 MW-2 06/17/08 10:30 -03 MW-3 06/17/08 9:20 xIx 10:00 -04 MW-4 06/17/08 XX Special instructions: ample Containers Intact? Email results to: gli@trident-environmental.com, mattp@pride-energy.com, rozanne@valomet.com Temperature Upon Receipt aboratory Comments: Date Time Received by Date Time 6/20/08 17:00 1-2017 Received by ELOT: Date Date Time Тіте Jam Indrea 6.2008 17:00 5.0 whatdels & seals

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client:	Pride Energy
Date/ Time:	6.10.08 17.00
Lab ID # :	306334
initials:	al

Sample Receipt Checklist

Client Initials

Date/ Time:

4

#1	Temperature of container/ cooler?	Ves	No	°
#2	Shipping container in good condition?	Yes	No	
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present
#4	Custody Seals intact on sample bottles/ container?	(e)	No	Not Present
#5	Chain of Custody present?	(Ce)	No	
#6	Sample instructions complete of Chain of Custody?	A	No	
#7	Chain of Custody signed when relinquished/ received?	(es	No	
#8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid
#9	Container label(s) legible and intact?		No	Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	Yes	No	
#11	Containers supplied by ELOT?	Yes	No	·
#12	Samples in proper container/ bottle?	(e)	No	See Below
#13	Samples properly preserved?	les	No	See Below
#14	Sample bottles intact?	Kes/	No	
#15	Preservations documented on Chain of Custody?	(es)	No	
#16	Containers documented on Chain of Custody?	(es	No	
#17	Sufficient sample amount for indicated test(s)?	(Yes)	No	See Below
#18	All samples received within sufficient hold time?	(es)	No	See Below
#19	Subcontract of sample(s)?	Yes	No	Not Applicable 5
#20	VOC samples have zero headspace?	Yes	No	Not Applicable

Variance Documentation

Contacted by:

Contact:

Regarding:

Corrective Action Taken:

Check all that Apply:

See attached e-mail/ fax Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

PHONE (575) 393-2326 • 101 E, MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR **TRIDENT ENVIRONMENTAL** ATTN: GIL VAN DEVENTER P.O. BOX 7624 MIDLAND, TEXAS 79708-7624 FAX TO: (413) 403-9968

Receiving Date: 09/11/08 Reporting Date: 09/22/08 Project Number: STATE 36 #2 Project Name: PRIDE ENERGY COMPANY Project Location: T19S-R37E-SEC36 UNIT LETTER O LEA CO., NM

Sampling Date: 09/10/08 Sample Type: WATER Sample Condition: COOL & INTACT Sample Received By: ML Analyzed By: HM/TR

	Na	Са	Mg	κ	Conductivity	T-Alkalinity
LAB NUMBE SAMPLE ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(<i>u</i> S/cm)	(mgCaCO ₃ /L)
ANALYSIS DATE:	09/15/08	09/15/08	09/15/08	09/15/08	09/12/08	09/12/08
H15913-1 MW-1	192	164	46.2	5.1	1,880	208
H15913-2 MW-2	753	325	58.3	23.7	5,170	204
H15913-3 MW-3	284	176	48.6	8.7	2,320	216
H15913-4 MW-4	478	144	43.7	22.4	3,050	216
Quality Control	NR	48.1	46.2	3.06	1,406	NR
True Value QC	NR	50.0	50.0	3.00	1,413	NR
% Recovery	NR	96.2	92.4	102	99.5	NR
Relative Percent Difference	NR	<0.1	9.9	0.3	0.6	NR
METHODS:	SM	3500-Ca-D	3500-Mg E	8049	120.1	310.1

	CI	SO4	CO_3	HCO ₃	pН	TDS
·	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)
ANALYSIS DATE:	09/12/08	09/12/08	09/12/08	09/12/08	09/12/08	09/16/08
H15913-1 MW-1	440	189	0	254	7.18	1,260
H15913-2 MW-2	1,580	279	0	249	7.06	3,440
H15913-3 MW-3	580	225	0	264	7.14	1,660
H15913-4 MW-4	820	226	0	264	7.25	2,070
Quality Control	490	43.3	NR	976	7.00	NR
True Value QC	500	40.0	NR	1000	7.00	, NR
% Recovery	98.0	108	NR	97.6	100	NR
Relative Percent Difference	< 0.1	1.6	NR	1.2	<0.1	NR
METHODS:	SM4500-CI-B	375.4	310.1	310.1	150.1	160.1

METHODS:

SM4500-CI-B

375.4 310.1

Date

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the smooth price by client for analyses All chains induction the being so being so being so being and cleans below the analytic and a language induction of the applicable source in the event shall be for indicated or consequential damages, including, without hinduct in writing and received by Cardinal within thirty (30) days after completion of the applicable source in the event shall be for indicated or consequential damages, including, without hinduct, business interruptions, loss of use, or loss of profits incurred by client, as subsidiaries allihities or successors arising out of or related to the performance of services hereurder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise. Result relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

PHONE (575) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR TRIDENT ENVIRONMENTAL ATTN: GIL VAN DEVENTER P.O.BOX 7624 MIDLAND, TX 79708-7624 FAX TO: (413) 403-9968

Receiving Date: 09/11/08 Reporting Date: 09/15/08 Project Number: STATE 36 #2 Project Name: PRIDE ENERGY COMPANY Project Location: T19S-R37E-SEC36 UNIT LETTER O LEA CO., NM Sampling Date: 09/10/08 Sample Type: WATER Sample Condition: COOL & INTACT Sample Received By: ML Analyzed By: ZL

•	*			ETHYL	TOTAL
		BENZENE	TOLUENE	BENZENE	XYLENES
LAB NUMBER	SAMPLE ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)
ANALYSIS DA	TE	09/12/08	09/12/08	09/12/08	09/12/08
H15913-1	MW-1	< 0.001	<0.001	< 0.001	<0.003
H15913-2	MW-2	< 0.001	<0.001	< 0.001	<0.003
H15913-3	MW-3	< 0.001	<0,001	<0.001	<0.003
H15913-4	MVV-4	< 0.001	<0.001	<0.001	<0.003
ere prove a find of our property prove the star of the star star star star	1 	Hereiter and Her Hereiter and Hereiter and H	i. Ar an i an Araansina ya ay a		
аниениениениениениениениениениениениениен	1	адаалаан ал	and the second s	n an	· · · · · · · · · · · · · · · · · · ·
Quality Control	ndalada wa da katuda ka ka kaya di sa a ganaka da sa anana anana manana ma	0.053	0.045	0.047	0.151
True Value QC	ander von Marin Archiver (1997) ander von Statistica von Statistica and Antonio and Antonio and Antonio and Anto	0.050	0.050	0.050	0.150
% Recovery		106	90.0	94.0	: 101
Relative Perce	nt Difference	1.0	4.3	4.0	2.6
			· · · · · · · · · · · · · · · · · · ·		

METHOD: EPA SW-846 8021B

TEXAS NELAP CERTIFICATION T104704398-08-TX FOR BENZENE, TOLUENE, ETHYL BENZENE, AND TOTAL XYLENES.

Chemis

PLEASE NOTE Liability and Parages, Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including Model for hey genes whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss or use, or loss or profile incurred by client, it's subsidiarios affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

																											F	² age	; 		of	1	_
101 East Marian Mexico	d - Hobbs, New	na	I T	al	ho	rat	·••		~		T,	10					CI	IAI	N-C)F-(cu	ѕто	DY	A٨	ID A	NA		SIS I	REC	JUE	ST		
Tel (575) Fax (575)	393-2326 Calu 393-2476			d	UU	1 a (U.		63			10	•						LAE	3 Or	der	ID #								_			
Company Name			BILL 1	ro	Comp	oany;					PO#				Γ					Δ	NΔ	1 75	SIS	RF	OUF	ST							
Trident Er	nvironmental		Pride	e En	ergy	/ Compa	any	/ M	att	Pride	e	7:								(Cir	cle	or Sp	becify	y Me	thod	No.)				-		
Gil Van D	eventer / Trident Environmental			Boy 7	71001	-55. 50 - Tulor		× 74-	(Sii 170	1050	JRY, 2	op)					1	ł	ł			1	1	ţ.	I	1	1		1	1			
Address: (Street, City, Zip)		F. U.	BUX /	Phon	e#:	a, Or	. 74	170-	1950	Fax#	:			{																		
P. O. Box 76	524 ~ Midland, Texas 79708-7624		(918) 524	4-92	00				((918	8) 5	24-9	9292				2												ľ			
Phone #.		Fax #:		,							<u></u>				1	2		B/20				Ì			ľ								
(432) 638	-8740	(413) 403-	996	3												ů Ü	6010													<u>í</u>		
roject#: State 36 #	•		Projec	i Nam	e: orav	Come	2014										ded	H	ÊĤ												254		
Project Location:	r &		r-nue		Samp	ler Signati	ire;	-Ro	zànn	ie Johi	nson	(575)631-9	9310			xten	e.	b Se												NS/		
T19S-R37	E-Sec36 Unit Letter O ~ Lea Co	unty - l	New N	Aexi	ວ່	11	Fε	10	zan	ne@	<u>Dva</u>	lorn	et.c	om			05 E	đ	Ч С						8					03	0	0 B)	ours
		T		۰)MA	TRIX	ļ	PRE	SEI	RVAT	IVE		SAMF	PLING			TX10	5	Cd					t i					5	۲ ۲ ۳	s (16	450	24 Hc
. 1	· · ·	ę	RS	-	1	ŤŤ	\dagger				, ພີ				02		005 /	As Ba	AsB		atiles			orano	0.02	1A/605		t	E V	1 2 0 7 7 7 7	Solic	3 / SN	~ eu
LAD #	FIELD CODE	No()	NE NE				NON 1				dq		8		1B/6	ß	ξ	Ao	s Ac	les	Not	cide	Ś	Ň.	2/60	808	Н	oute	N	SO Z	lvec	325.	Ξ
LAB USE		or ((4TA	α	1	Ш	40m		o		1Liter		(200		802	8021	18.1	etal	letal	/olat	emi	esti		ō o	SOR:	tes a	SS	e U	Ś	يَ اقَ	lisso	les (roun
ONLY	j)rab	ō.	ATE	F	<u>د اع</u>	5	ļç	HS	ŝ	؛¦∶ µ⊔	ž	Ē	ЧË	BE	ŭ	H :	N N	ГР	۲ ۲	ц Ц	<u>а</u>	_		S'N'S	sticic		oistu		ions	tal D	lorid	rυ Α
		9	*	Ξ	Š	N N	Ĭ	Î	ž	ŕ	의	ž	ð	TIP	Σ	BT	₽i	A 10	E	2	2	21	3 6	5 6	5 6	, a		ž		<u> </u>	۴	5	10
<u>115115-1</u>	MW-1	G	3	X			2	1	ļ		1	!	9-10	12:50		х								_			\bot	\square	上'	<u> </u>	X	X	
2	MW-2	G.	3	X			2	1	 		1	- 4	9-10	13:40		X	_		1		·			_	_			$\downarrow \downarrow$?	<u>x x</u>	X	X	
-3	MW-3	G	3	X			2	<u> </u>	ļ		1		9-10	11:30		х			<u> </u>								\bot	\square	;	<u>x x</u>	X	x	
- L-{	MW-4	G	3	X			2	<u> </u>	ļ		1		9-10	12:10		х							<u> </u>		_		\bot	\square	'	<u>x x</u>	X	X	
	· · · · · · · · · · · · · · · · · · ·						_	1	ļ				· · · ·					_	<u> </u>		$ \downarrow$			_		_	\bot	$\downarrow \downarrow$		4	╄╌┨		
		_ _	ļ				_	<u> </u>	ļ								· ·										\bot	$\downarrow \downarrow$	\perp	<u> </u>	Ŀ		
		_	ļ	\downarrow			_	1	_										\vdash		_			_		4_	┶	$\downarrow \downarrow$	\perp	_	\square		
		_	ļ	$\left \right $				ļ	 		-						_		+		_						1	\vdash			\square		
المراجع المراجع المحرجين ا		-		\vdash	·		_	ļ	ļ								\rightarrow	· _	_	$\left \right $				_			\bot	┝			\downarrow		
· · · · · · · · · · · · · · · · · · ·		<u> </u>						Ļ	Ļ												_												
(elinquisned:b	y: Date: Time:	Receiv	ved/by:	. (Ĭ	RE		D . /	ate: i		Hm	e:			Pho	ne F	esu	s	┢	Yes	; 		10								,,		
Jozanne John	sont- fait as 3.90	1	in it	1 6	NG/	1401		<u></u>	11/0	3	•	5	70		Fax	Res	uits		L	Yes	5	٨	ło	A	dditio	onal	Fax	Num	ber:		-		
reindrisued b	y. Date. fime:	Receiv	vea BA:	; (La	vorat	ory staff)		Da	ale:		ιme	5 .			REI	VIAK	N9:																
																Ema	iil Re	sult	s to	:													
Delivered By:	(Circle One)	Sample	e Condit	ion		otart	CF	ECK	EDI	BY.											<u>gil(</u>	<u>@trie</u>	den Der	t-er	<u>nvirc</u>	onn Tair	ent	<u>al.cc</u>	<u>ym</u>				
N. Takana and the second s		ŀ	Yes	- COOI	Yes		(Ini	itials)	Ι,	1.	1	2									roz	ann	e@	val	orne	et.co	<u>or</u> cm	Ц					
Sampler -	UPS - Bus - Other:	1	No		No				مار	102	M))											ي. مانية با المنتقد				تستست						

PHONE (575) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR TRIDENT ENVIRONMENTAL ATTN: GIL VAN DEVENTER P.O.BOX 7624 MIDLAND, TX 79708-7624 FAX TO: (413) 403-9968

Receiving Date: 12/18/08 Reporting Date: 12/23/08 Project Number:. STATE 36 #2 Project Name: PRIDE ENERGY COMPANY Project Location: T19S-R37E-SEC36 UNIT LETTER O ~ LEA CO., NM Sampling Date: 12/17/08 Sample Type: WATER Sample Condition: COOL & INTACT Sample Received By: ML Analyzed By: ZL

	4	•		ETHYL	TOTAL
		BENZENE	TOLUENE	BENZENE	XYLENES
LAB NUMBER	SAMPLE ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)
ANALYSIS DA	TE	12/22/08	12/22/08	12/22/08	12/22/08
H16550-1	MW-1	< 0.001	< 0.001	< 0.001	, <0.003
H16550-2	MW-2	< 0.001	<0.001	<0.001	<0.003
H16550-3	MW-3	< 0.001	< 0.001	<0.001	< 0.003
<u>H16550-4</u>	MW-4	<0.001	<0.001	<0.001	<0.003
			· · · · · · · · · · · · · · · · · · ·		
Quality Control	19499 1949 το πολογού το	0.045	0.046	0.046	0.141
True Value QC	97-197 - 19. A. T. WARD, J. T. L	0.050	0.050	0.050	0 150
% Recovery		90.0	92.0	92.0	94.0
Relative Percer	nt Difference	2.7	5.9	7.0	7.4

METHOD: EPA SW-846 8021B

TEXAS NELAP CERTIFICATION T104704398-08-TX FOR BENZENE, TOLUENE, ETHYL BENZENE, AND TOTAL XYLENES.

Date

PLEASE NOTE: Liability and Pamages. Cordinal's liability and client's exclusive remedy for any claim during, whether based in contract or foil. Shall be limited to the amount paid by chert for analyses. All caune this based works or hey light for the applicable service in works and environment of the applicable service. In no event shall cardinal be limited to the concrete by cardinal within thirty (30) days after complexice of the applicable service. In no event shall cardinal be limited to the performance of services needed walved unjess made in works and recorved by Cardinal within thirty (30) days after complexice of the applicable service. In no event shall cardinal be limited to the performance of services needed walved unjess made in works of use, or loss of profile incurred by client, its subsidiaries affiliates or successors missing out of or related to the performance of services needed by Cardinal. Federalless of successors withing above claims hall not be reproduced event in full with written opproval of Cardinal behave-claimed reasons or otherwise. Resulting the approximation of the above-claim data successors withing above data back. This report shall not be reproduced event in full with written opproval of Cardinal Laborolouis.

PHONE (575) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR TRIDENT ENVIRONMENTAL ATTN: GIL VAN DEVENTER P.O. BOX 7624 MIDLAND, TEXAS 79708-7624 FAX TO: (413) 403-9968

Receiving Date: 12/18/08 Reporting Date: 12/23/08 Project Number: STATE 36 #2 Project Name: PRIDE ENERGY COMPANY Project Location: T19S-R37E-SEC36 UNIT LETTER O LEA CO., NM

Sampling Date: 12/17/08 Sample Type: WATER Sample Condition: COOL & INTACT Sample Received By: ML Analyzed By: TR

	Na	Ca	Mg	K	Conductivity	T-Alkalinity
LAB NUMBE SAMPLE ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(<i>u</i> S/cm)	(mgCaCO ₃ /L)
ANALYSIS DATE:	12/23/08	12/23/08	12/23/08	12/22/08	12/19/08	12/19/08
H16550-1 MW-1	195	172	46.2	5.7	1,850	212
H16550-2 MW-2	583	305	68.0	8.3	4,050	
H16550-3 MW-3	276	180.	48.6	7.9	2,260	224
H16550-4 MW-4	495	156	38.9	9.0	2,930	220
Quality Control	NR	48.1	51.0	2.80	1,423	NR
True Value QC	NR	50.0	50.0	3.00	1,413	NR
% Recovery	NR	96.2	102	93.3	101	NR
Relative Percent Difference	NR,	<0.1	<0.1	2.8	0.2	NR
METHODS:	SM	3500-Ca-D	500-Mg E	8049	120.1	310.1

•	CI	SO4	CO3	HCO ₃	pН	TDS
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)
ANALYSIS DATE:	12/22/08	12/22/08	12/19/08	12/19/08	12/19/08	12/22/08
H16550-1 MW-1	440	211	0	259	7.14	1,290
'H16550-2 MW-2	1,300	267	0	259	7.08	2,900
H16550-3 MW-3	570	225	0	273	7.16	1,580
H16550-4 MW-4	830	239	0	268	7.26	1,970
Quality Control	500	43.5!	NR	1000	7.07	NR
True Value QC	500	40.0	NR	1000	7.00	NR
% Recovery	100	109	NR	100	101	ŇR
Relative Percent Difference	<0.1	3.5	NR	<0.1	0.4	NR
METHODS	SM4500-CLB	375 4	310.1	310.1	150 1	160 1

Chemist

PLEASE NOTE: Liability and Damages. Cardinal's liability and cliont's exclusive remedy for any claim arising, whother based in contract or tort is hell be limited to the amount paid two claim for analyses. All claims, individing these for necligence and any other cause whatsoever shall be deemed waved unless mode in writing and received by Cardinal within thitty (30) days after completion of the applicable sentice this factor is the state of the anount paid to chart or consequential damages, including these for including these for including the for including the cause whatsoever shall be deemed waved unless mode in writing and received by Cardinal within thitty (30) days after completion of the applicable sentice that an observation, business interruptions, tass of use, or lass of profits incurred by diors, its subsidiaries, affiliates in successors arising out of or related to the portormance of services threaded to cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise. Regults related only to the samples identified above. This report shall not be reproduced except in full/silb written approval of Cardinal taboratories.

											_																	۲	rage	9		ot	1	
101 East Marlance	d - Hobps, New				1		,		•									CI	HAI	N-C	F-C	ະບຣ	то	DY	ANE		NA	LYS	SIS	RE	QUE	ST		
Mexico Tel (575) 3 Fax (575) 3	88240 Cardi 393-2326 San Cardi 393-2476	na	IL	a	D	or	at	01	rl	es	,	lr	1C	•					_	LAE	3 Oro	ler li	D#_			******								annia
Company Name:		********	BILL 1	0	Com	ipany	:					PO#				h							vo											
Trident En	vironmental		Pride	e Er	nerg	y Co	ompa	any .	/ Ma	att F	Prid	le				.					A	NAL	.15	IS h	(EU		SI	۰ ۱						
Project Manager:					Addr	ress:				(Stre	eet, (City, Z	lip)			1.					(C))	ue c	n oh i	ecity	weu	1001	NO.)							1
Gil Van De	eventer / Trident Environmental		P. O.	Вох	7109	50 ~	Tulsa	, OK	741	70-1	950)																						
Address: (S	Street, City, Zip)				Phor	ne#:						Fax#:																						
P. O. Box 76	24 ~ Midland, Texas 79708-7624	•	(918) 52	4-92	200						(918	3) 52	24-92	292				2	B														
Phone #:		Fax #:				-	w																							•				
(432) 638-	8740	(413) 403-	996	8													<u>č</u>	į	ž												Q		
Project #:	A		Projec	Nan	ie:	~			1	an make show the	7							ed		위 위 문												254(
State 36 #	2		Pride	e Er	nerg	y Co	pmpa	iny	11		4							lenc	Ĩ	Sel		·										SM		
	E Soo26 Unit Lattor O Loo Cou			100	Sam	pler 5	signatu	ire:	Ro	28nae	Joh	inson	(575)	631-9	310			Ш	1	e a					5						(e	12	ଳ	5
1193-137		1010 - 1 T		Tex	<u>co</u> /	$ \rightarrow $	4	$\frac{1}{1}$		zani	ne(<u>wvai</u>	orne	31.CO	m			8	ģ	۶Į					/62						lõ	160	8	주
	· ·		l I		Ń	AJR)	x″7) //	- KE	MET	HOE		s	AMPI	LING			Σ						7	200		0			1	2) sp	M45	24
	1		ŝ		1	ÍΤ			1		Т			T				62	0	As B		les		B/F	8		100				ဦးပြ	Soli	/SI	₹ e
LAB #		lŵo	Щ	<i>"</i>	ľ			(vo				DPE		_		09/		5		64 BY	s	olat	les	26(٥ ۲	80	81/		ten		5 Q	ed	5.3	Tim
	FIELD CODE	Q	AIN	l			ш	1 m				ter H	Î			216	5	5 2	g	sle	atile	2	lici		E H	82	8	a.	Š		5 5	solv	(32)	Pu
		p or	LZ I	Ë	Ι.		Ö	(2 4(0°	7	Ē	u			80	8	418	128	Me	201	Se l	ŭ	N S	S S	8	ide	1S	e S	ľ) su S (O	Dis	des	Arot
(UNLY		3)ra	8	¥	Б	ſ≝	3	ц Ц	1g	F	ပ္လို	щĒ	5	A I	ME	TBE	Ξ	x :	H	E B	E l	5	3 2		N S	B.	estic	l g	oist	÷		otal	hlor	Ę
1111 August 1		<u> </u>	#	5	S	\triangleleft	S S	ΙI	<u>I</u>	Z	<u> </u>	$\leq 1^2$	z (_ _	Σ	<u>io</u>	<u> </u>		ĒĒ	Ĕ	ĔĹĬ			0	<u>a</u>			ĮΣ		5 4	Ĕ	0	F
1/10-22(.1	MW-1	G	3	X				2	 		-+	1	12	-17	9:55		<u>×</u>					_			- 	 	┢	_	++	_	<u>x x</u>	X	X	_
	MW-2	G	3	X				2				1	12	-17 1	10:40		<u> </u>		_								<u> </u>	_			x x	X	X	L
-3	MW-3	G	3	Х				2				1	12	-17	7:50		X														x x	X	х	
-4	MW-4	G	3	X				2				1	12	-17	8:35		x														хx	X	x	
						Π		Τ					Τ										1	T		1	Γ	Τ	\square			Π		
		1	1					1										+		+		+		1			1	+	\mathbf{T}					
				†						\square			- 				-+	+	-			+	+	+	+ -	+	+	+	++	-+	+-			
				╊─┤		╉╾┼	+	+			-+		-	+			-+				\vdash	+	+	+-	+	+	4	+	+		+	+-		
						$\left \cdot \right $		+	\vdash		+						-+	+						+-	+	┼─	+	+	┿	-+-				<u> </u>
		 	+	\vdash		┝┼	_	-		┝─┤			_			┝─┤				+	\vdash						╋	+	┼╌┼			+-		<u> </u>
mana sa tana at ta			1				<u> </u>		ليسل											-		-+-	-			1	<u> </u>		Ц				l	
reinquisned by		Recei	vea by:	1	:	1		-	Di	ate:	;	Lime	€:	دب م	e 1	Pho	ne R	esul		-	Yes	┢		0										
Rozanne Johns	2H 12:30	U	<u>((i)</u>	· [.	(L(l{ (-61	v '	12	- 11 ² ,	134	67	r	<	• •	Fax	Res	Ilts		ŀ	Yes		N	0	Ad	ditio	nal I	Fax	Num	ber:				
Relinquished by	/: Date: Time:	Receiv	ved Bý;	j (La	abora	tory	Staff)		Da	ate:		Time	2			REN	ARI	KS:																
& allice	L. alter 12/18 18 849		C. l	~	م م	11	, í		51	s.l.	: L :		<u>.</u>	Š. z			Ema	il Re	sul	ts to														
Delivered By:	(Circle One)	Sample	e Condit	ion	<u>([.</u>]	10		CH	ECK	ED B	Y:		<u> </u>	11								ail@	Dtric	lent	-env	/iror	nme	ent	alice	om				
	- /	1		Cool		Intact					,										1	mat	tp@	<u>)pri</u>	de-e	ener	rgy.	.cor	<u>n</u>	2				
0			Yes	<u> </u>	Yes	<u>ن</u> ے؛		(Ini	tials)	1.	/-:	مرجع	1			2					ļ	roza	anne	€@\	/alo	rne	t.cc	<u>əm</u>						
Sampler -	UPS - Bus / Other:	<u> </u>	No		No					1.7		Je	Ĵ.																					

APPENDIX D Monitoring Well Sampling Data Forms

<u>!</u> .

	CLIENT:	Pride E	Energy Col	mpany	-	WELL ID:	MW- 1
SI	TE NAME:		State 36 #2	2		DATE:	March 27, 2008
SITE LO	OCATION:	T19S-R3	37E-Sec 3	6 Unit O		SAMPLER:	Gil Van Deventer
L	AT/LONG:	N 33º 36'	45.2". W	103º 12'	14.0"		
_							
PURGING	METHOD		🛃 Hand Bai	led 🗌 Pu	imp If Pu	ımp, Type:	· · ·
SAMPLIN	G МЕТНОІ	D:	🗹 Disposab	le Bailer [Direct	from Discha	arge Hose 🔲 Other:
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEF	ORE SAMP	LING THE WELL:
Gloves	s 🗹 Alcond	x 🗹 Distil	led Water Ri	nse 🗌 C	Other:		· · · · · · · · · · · · · · · · · · ·
DISPOSA		OF PURG	E WATER:	Surface	e Dischar	ae 🗍 Dru	ms 🗍 SWD Disposal Facility
			ED 4	Feet			
DEPTH TO	D WATER:	VELL.	43.88	Feet		33'-55' bgs	Well Screen Interval
HEIGHT C	OF WATER	COLUMN:	8.52	Feet		4.2	Minimum gallons to purge 3 well volumes
		2.0	inch	•	`		
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	рН	DO mg/L		PHYSICAL APPEARANCE AND REMARKS
10:32 AM	1	20.1	2.39	7.00	4.2	-	Silty reddish
10:35 AM	2	19.2	2.43	7.02	5.7		
10:38 AM	3	19.3	2.33	7.05	5.7		Clearing somewhat
10:40 AM	4	19.3	2.23	7.07	5.7		
10:48 AM	5	20.1	2.68	7.05	6.2	_	
10:50 AM							Collected samples in the following containers:
						:	2 - 40 ml VOA + + 2 - 500 ml plastic
				•			
				. •			
		-					
	:Total Time) (hr:min)		:Total Vol	(gal)		:Average Flow Rate (gal/min)
	TC.			used to ob	tain tomn	oroturo oo	aduativity 8 pH maggiramanta

Milwaukee Model SM600 used to obtain dissolved oxygen measurements.

Delivered samples to Xenco Laboratories /Environmental Lab of Texas for BTEX, Major Ions, and TDS analyses.

	CLIENT:	Pride E	inergy Co	mpany		WELL ID:	MW- 2
SI	TE NAME:	s	tate 36 #2	2	•	DATE:	May 8, 2008
SITE L	OCATION:	T19S-R3	7E-Sec 3	6 Unit O	•	SAMPLER:	Gil Van Deventer
. L	AT/LONG:	N 33º 36'	45.2", W	103º 12' ′	14.0"		
	ETHOD:	[⊡ Hand Bai	iled 🗌 Pu	imp If Pu	ımp, Type:	
SAMPLING		 		le Bailer		from Discha	
			AMINATION		BEFOR	E SAMPLIN	IG THE WELL:
✓ Gloves	<u> √</u> conox	l⊻lstilled	Water Rins	e Lihe	er:		
DISPOSAL N	IETHOD C	F PURGE V	VATER:	Surface	e Dischar	ge 🗌 Drur	ms 🔲 SWD Disposal Facility
TOTAL DEP DEPTH TO V HEIGHT OF WELL DIAMI	TH OF WE VATER: WATER CO ETER:	LL: OLUMN: 2.0	57.5 43.25 14.25 Inch	Feet Feet Feet		35'-55' bgs 7.0 5	Well Screen Interval Minimum gallons to purge 3 well volumes Actual Gallons purged
DATE	TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	рН		PHYSICAL APPEARANCE AND REMARKS
05/07/08		23	17.6	6.90	7.27		Developed well on May 7, 2008
05/08/08	4:16 PM	2.5	20.5	4.73	7.00		Begin purging on May 8, 2008
05/08/08	4:26 PM	5	20.8	5.28	6.95		Clearing somewhat
05/08/08	4:35 PM	7.5	20.5	5.20	6.77		Collected samples in the following containers:
							2 - 40 ml VOA + + 2 - 500 ml plastic
			,				
			*				
	:Total Time	e (hr:min)		:Total Vol	(gal)		:Average Flow Rate (gal/min)

COMMENTS:

Hanna Model HI98130 used to obtain temperature, conductivity, & pH, measurements.

Milwaukee Model SM600 used to obtain dissolved oxygen measurements.

Delivered samples to Xenco Laboratories /Environmental Lab of Texas for BTEX, Major Ions, and TDS analyses.

WELL DEVELOPMENT LOG

Company	Pride Energy Company						
Well ID	State 36 #2 Monitor Well #3			Date Well Drilled	June 4, 20	. 80	 _
Date Started	06/12/08						
Date Completed	06/12/08		•				
Field Personnel	Rozanne Johnson						
Development Met	hod: Over pumping with alternate pun	nping rates to m	inimize the	e creation of sedime	nt bridaina.		

WELL INFORMATION

Description of Measuring Point (MP): The casing lip, indicated by a black mark.

Depth of Well Below MP, ft:	53.79
Depth to Water Below MP, ft:	43.81
Water Column in Well, ft:	9.98
Gallons in Well Column	1.60

FIELD PARAMETERS

Time	Casing Volume	Conductivity/ms	Temperature/C	pН	TDS/ppm	ORP/MV	Drawdown/ft
9:43	Start Pumping						0.00
9:45	2 Gallons	Sand and Silt	No Readings				3.62
9:47	4 Galions	Sand and Silt	No Readings				3.74
9:49	6 Gallons	2.43	22.1	7.18	1783	73	3.89
INCREASED RATE	1.5 GPM			1			
9:53	12 Galions	Sand and Silt	No Readings				4.85
9:58	19.5 Gallons	1.98	· 24.1	7.31	1427	144	5.02
		,					
DECREASE RATE	1.0 GPM						
10:00	21 Gallons	1.80	22.7	7.42	1286	125	. 4.51
10:05	27 Gallons						
10:08	30 Gallons	1.76	22.5	7.43	1253	126	3.96
LET WELL RECOV	ER			۹.			
10:08							3.96
10:09							` 1.41
10:15							0.14
		<u> </u>					
							1
	,						

Comments:	The well responded to the increased and decreased pumping rates with the pump set approximately 1 ft from bottom.
	30 gallons of water was displaced from the well bore which would be approximately 18 well column volumes.
	The well pumped a clear, stream of water with no odor, with the exception of when the pump was started or the rate was
	increased, the water then turned turbid with sand, but cleared.
	The well will be sampled at a later date for Major cations, anions, and TDS.

Arc Environmental, LLC ~ P. O. Box 1772 ~ Lovington, New Mexico 88260

(575) 631-9310 rozanne@valornet.com

WELL DEVELOPMENT LOG

Company	Pride Energy Company	
Well ID	State 36 #2 Monitor Well #4	
Date Started	06/12/08	
Date Completed	06/12/08	
Field Personnel	Rozanne Johnson	

Date Well Drilled June 4, 2008

Development Method: Over pumping with alternate pumping rates to minimize the creation of sediment bridging.

WELL INFORMATION

Description of Measuring Point (MP): The casing lip, indicated by a black mark

Depth of Well Below MP, ft:	50.25
Depth to Water Below MP, ft:	43.54
Water Column in Well, ft:	6.71
Gallons in Well Column	1.07

FIELD PARAMETERS

Time	Casing Volume	Conductivity/ms	Temperature/C	pН	TDS/ppm	ORP/MV	Drawdown/ft
8:50	Start Pumping						0.00
8:52	2 Gallons	Sand and Silt I	No Readings	,			0.57
8:54	4 Gallons	Sand and Silt	No Readings				0.62
8:56	6 Gallons	3.45	21.2	7.15	2561	62	0.65
INCREASED RATE	1.5 GPM					•	
9:00	12 Gallons	3.50	20.9	7.11	2633	50	0.89
9:05	19.5 Gallons	3.49	20.8	. 7.12	2634	56	· <u>0.92</u>
			•				
					·		
DECREASE RATE	1.0 GPM					,	
9:10	24 Gallons	3.51	21.3	7.16	2633	58	0.71
9:15	29 Gallons	3.51	21.4	.7.17	. 2627	59	0.68
						· .	•
·		,		· · ·			· · · · · · · · · · · · · · · · · · ·
LET WELL RECOV	ER					_	
9:15							0.68
9:16							0.19
9:20						_	0.03
							·,
		· ·	· · ·				

Comments:

The well responded to the increased and decreased pumping rates with the pump set approximately 1 ft from bottom.

29 gallons of water was displaced from the well bore which would be approximately 27 well column volumes.

The well pumped a clear, stream of water with no odor, with the exception of when the pump was started or the rate was

increased, the water then turned turbid with sand, but cleared.

The well will be sampled at a later date for Major cations, anions, and TDS. Arc Environmental, LLC ~ P. O. Box 1772 ~ Lovington, New Mexico 88260

(575) 631-9310 rozanne@valornet.com

CLIENT:	Pride Ene	ergy Comp	any	WELL ID: Monitor Well #1			
SYSTEM:	State 36	#2		DATE: June 17, 2008			
SITE LOCATION:	T19S R3	7E Sec36	Unit O	SAMPLER: Rozanne Johnson			
PURGING METHOD:		📋 Hand Ba	ailed 🗹 🛛	Pump, Type: Variable Controlled Purge Pump			
SAMPLING METHOD):	🕗 Disposa	ble Bailer [Direct from Discharge Hose Other:			
DISPOSAL METHOD		F WATER	On-sit				
DEPTH TO WATER:	ELL:	43.89	Feet Feet				
HEIGHT OF WATER	COLUMN:	8.48	Feet	In. Well Diameter			
WELL VOLUME:	1.4	Gal.		6 Gallons purged prior to sampling			
TIME	TEMP.	COND.	n Li				
	°C	mS/cm	pri .				
8:41	21.0	2.25	7.16	Silt and Sand			
8:43	20.4	2.26	7.10	Clear/Slight Odor			
8:45	20.7	2.20	7.11				
8:50	8:50 Samples Collected with Disposable Bailer						
				Major Ions/TDS (1-1000ml Plastic)			

COMMENTS: Equipment decontamination consists of gloves, Alconox, and Distilled Water Rinse.

Myron Model 6P instrument used to obtain pH, conductivity, and temperature measurements.

Delivered samples to Xenco Laboratories for Major lons and TDS analysis.

CLIENT:	Pride Ene	rgy Comp	any	WELL ID: Monitor Well #2							
SYSTEM:	State 36 #	<u>#2</u>		DATE: June 17, 2008							
SITE LOCATION:	T19S R37	E Sec36	Unit O	SAMPLER: Rozanne Johnson							
PURGING METHOD:	ъ. – I	Hand Ba	ailed 🗹 🛛 F	Pump, Type: Variable Controlled Purge Pump							
SAMPLING METHOD: Disposable Bailer Direct from Discharge Hose Other:											
DISPUSAL METROD	OF PURGE	E WATER.		e Drum 📋 Drums 🕑 Swid Disposal Facility							
TOTAL DEPTH OF W	ELL:	57.61	Feet								
HEIGHT OF WATER	COLUMN:	14.30	Feet	2 In. Well Diameter							
WELL VOLUME:	2.3	Gal.		10 Gallons purged prior to sampling							
	TEMP.	COND									
TIME	°C	mS/cm	рH	PHYSICAL APPEARANCE AND REMARKS							
10:18	23.0	23.78	6.79	Silt and Sand							
10:20	21.5	8.69	7.02	Silt and Sand							
10:22	21.8	6.24	7.03	Silt and Sand							
10:24	20.9	5.86	7.03	Clear/Slight Odor							
10:26	21.0	5.56	7.03	Clear/Slight Odor							
10:30	•			Samples Collected with Disposable Bailer							
				Major Ions/TDS (1-1000ml Plastic)							
			•								

COMMENTS: Equipment decontamination consists of gloves, Alconox, and Distilled Water Rinse.

.

Myron Model 6P instrument used to obtain pH, conductivity, and temperature measurements.

Delivered samples to Xenco Laboratories for Major lons and TDS analysis.

•

CLIENT:	Pride Ene	ergy Comp	any	WELL ID: Monitor Well #3
SYSTEM:	State 36	#2		DATE: June 17, 2008
SITE LOCATION:	T19S R3	7E Sec36	Unit O	SAMPLER: Rozanne Johnson
PURGING METHOD	:	Hand Ba	ailed 🗸 🛛	Pump, Type: Variable Controlled Purge Pump
SAMPLING METHOD	D:	🗸 Disposa	ble Bailer [Direct from Discharge Hose Dother:
DISPOSAL METHOD	OF PURG	E WATER:	🗌 On-sit	e Drum 🔲 Drums 🛛 SWD Disposal Facility
		53 93	Foot	
DEPTH TO WATER:	VELL.	43.83	Feet	
HEIGHT OF WATER	COLUMN:	10.00	Feet	In. Well Diameter
WELL VOLUME:	1.6	Gal.	÷	8 Gallons purged prior to sampling
TIME	TEMP. °C	COND. mS/cm	рН	PHYSICAL APPEARANCE AND REMARKS
9:20	22.0	2.38	7.21	Silt and Sand
9:22	21.6	2.64	7.26	Silt and Sand
9:24	22.0	2.71	7.16	Clear/No Odor
9:26	21.8	2.74	7.17	Clear/No Odor
9:30				Samples Collected with Disposable Bailer
				Major Jons/TDS (1-1000ml Plastic)
		1		I
COMMENTS	Equipment	docontamin	tion consid	ts of gloves, Alconey, and Distilled Water Risse
Myron Model 6P instr		to obtain nE		vity and temperature measurements
Delivered samples to	Vonco Lob	protorios for	Maior Jona	and TDS analysis
Delivered samples to	Xenco Labo	Jiatories for		
		•		
			<u> </u>	· · ·
				····
				· · · · · · · · · · · · · · · · · · ·

CLIENT:	Pride Ene	ergy Comp	any	WELL ID: Monitor Well #4					
SYSTEM:	State 36	#2		DATE: June 17, 2008					
SITE LOCATION:	T19S R3	7E Sec36	Unit O	SAMPLER: Rozanne Johnson					
PURGING METHOD		Hand Ba	ailed 🗸	Pump, Type: Variable Controlled Purge Pump					
SAMPLING METHOD	D:	Disposa	ble Bailer	Direct from Discharge Hose Other:					
DISPOSAL METHOD	OF PURG	E WATER:	📋 On-si	te Drum 🗌 Drums 🔄 SWD Disposal Facility					
TOTAL DEPTH OF W DEPTH TO WATER: HEIGHT OF WATER WELL VOLUME:	VELL: COLUMN: 1.1	50.30 43.54 6.76 Gal.	Feet Feet Feet	2 In. Well Diameter 6 Gallons purged prior to sampling					
TİME	TEMP. °C	COND. mS/cm	pН	. PHYSICAL APPEARANCE AND REMARKS					
9:45	22.2	3.43	7.29	Silt and Sand					
9:47	21.5	3.52	7.18	Silt and Sand					
9:49	21.2	3.54	7.21	Clear/No Odor					
9:51	21.3	3.55	7.21	Clear/No Odor					
10:00	· · · ·			Samples Collected with Disposable Bailer					
				Major Jons/TDS (1-1000ml Plastic)					
COMMENTS: Myron Model 6P instr	Equipment	decontamina to obtain pl	ation consi	sts of gloves, Alconox, and Distilled Water Rinse. vity, and temperature measurements.					
Delivered samples to	Xenco Labo	pratories for	Major Ions	and IDS analysis.					
·				· · · · · · · · · · · · · · · · · · ·					
		•	•						
	· · · ·	·		•					
<u> </u>		•							
	,								
				•					

	CLIENT:	Pride E	Energy Co	mpany		WELL ID:	MW- 1					
SI	SITE NAME: State 36 #2					DATE:	September 10, 2008					
SITE L	SITE LOCATION: T19S-R37E-Sec 36 Unit O SAMPLER: Rozanne Johnson											
· 1	LAT/LONG: N 33º 36' 45 2" W/ 103º 12' 14 0"											
-	LAT/LONG. IN 39 30 40.2, VV 103 12 14.0											
PURGING M	ETHOD:		Hand B	ailed 🗹	Pump I	f Pump, Typ	Purge Pump					
SAMPLING N	METHOD:		Disposa	ble Bailer [] Dire	ect from Dise	charge Hos€Other:					
DESCRIBE E	EQUIPMEN	T DECONT			BEFOR	E SAMPLIN	IG THE WELL:					
⊡ [.] Gloves	Alco	ono√	Distilled \	Nater F⊡se	e Ot	her:						
DISPOSAL N		F PURGE V	VATER:	Surface	e Dischar	ge 🗌 🛛	Drum SWD Disposal Facility					
TOTAL DEP	TH OF WEL	-L:	52.40	Feet								
DEPTH TO V	VATER:		43.97	Feet	3	0'-50' bgs	Well Screen Interval					
HEIGHT OF	WATER CO	DLUMN:	8.43	Feet		4.1	Minimum gallons to purge 3 well volumes					
	WEIER:	2.0	Inch			6	Actual Gallons purged					
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	pН	DO mg/L		PHYSICAL APPEARANCE AND REMARKS					
12:25 PM	0						Begin purging					
12:29 PM	2	19.1	2.17	7.19			Silt and sand					
12:33 PM	4	19.3	2.12	7.23			Clear/Slight Odor					
12:37 PM	6	19.4	2.11	7.25								
							· · · ·					
12:50 PM							Samples Collected with Disposable Bailer					
					_		Samples Collected					
							Major lons (1-1000ml Plastic)					
							BTEX 8021B (2-40 ml glass VOA)					
							· · · ·					
		<u>.</u>	•				· · · · · · · · · · · · · · · · · · ·					
						•	· · · · · · · · · · · · · · · · · · ·					
0:12	:Total Time	e (hr:min)	6	:Total Vol ((gal)	0.50	:Average Flow Rate (gal/min)					

COMMENTS:

Myron Model 6P instrument used to obtain pH, conductivity and temperature measurements.

-	CLIENT:	Pride I	Energy Co	mpany	_	WELL ID:	MW- 2
S	ITE NAME:	State 36 #2			_	DATE:	September 10, 2008
SITE L	OCATION:	T19S-R	37E-Sec 3	86 Unit O	_	SAMPLER:	Rozanne Johnson
L	_AT/LONG:				_		
							·
PURGING MI	ETHOD:		Hand E	ailed 🗸	Pump I	lf Pump, Typ	Purge Pump
SAMPLING N	ETHOD:		✓ Disposa	ble Bailer [Dire	ect from Disc	charge Hose Other:
DESCRIBE E	QUIPMENT	DECONT		IMETHOD	BEFORE		G THE WELL:
✓ Gloves	✓ Alco	nox⊡	Distilled V	Vater R 🔂 e	Oth	i <u>er:</u>	
				- Surface	Dischar		
DIGFUGALIM		FURGE	VAIER.		e Dischar	ge 🛄 L	
TOTAL DEPT		_:	57.61	Feet	0		
			43.37	Feet	3	0'-50' bgs	Well Screen Interval
	TED.	2 0	<u>14.24</u>	_reel		- 7.0	Actual Gallons purged
		2.0	-			<u> </u>	Actual Gallons purged
TIME	VOLUME	TEMP. °C	COND. mS/cm	рН	DO ma/L		PHYSICAL APPEARANCE AND REMARKS
1:15 PM	0			,, , , , , , , , , , , , , , , ,			Begin purging
1:19 PM	2				*		Silt and Sand
1:23 PM	4	19.7	9.79	7.12			Clear/Slight Odor
1:27 PM	6	19.9	5.95	7.09			Clear/Slight Odor
1:31 PM	8	20.1	5.75	7.08			Clear/Slight Odor
				<u>_</u>			Samples Collected with Disposable Bailer
1:40 PM							Major Ions (1-1000ml Plastic)
							BTEX 8021B (2-40 ml glass VOA)
0.10		,			L	0.50	
0:16	: I otal Time	(hr:min)	8	: I otal Vol	(gal)	0.50	:Average Flow Rate (gal/min)

Myron Model 6P instrument used to obtain pH, conductivity and temperature measurements.

	CLIENT:	Pride E	Energy Co	mpany		WELL ID:	MW- 3			
S	TE NAME:		State 36 #2	2		DATE:	September 10, 2008			
SITE L	OCATION:	T19S-R3	37E-Sec 3	6 Unit O		SAMPLER:	Rozanne Johnson			
· L	AT/LONG:									
PURGING M	ETHOD:		🗌 Hand B	ailed 🗹	Pump I	f Pump, Typ	Purge Pump			
SAMPLING I	METHOD:		🗸 Dispósa	ble Bailer [] Dire	ect from Dis	charge Host Other:			
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:										
Gloves		ono√	Distilled V	Water R⊡se	e Ot	her:				
					Dischar	ae 🗍 [
			50.00		. Discital					
DEPTH TO V	TH OF WEL VATER:	.L: .	<u> </u>	Feet	3	0'-50' bas	Well Screen Interval			
HEIGHT OF	WATER CO	DLUMN:	9.98	Feet		4.9	Minimum gallons to purge 3 well volumes			
WELL DIAME	ETER:	2.0	Inch			6	Actual Gallons purged			
TIME	VOLUME	TEMP.	COND.	оH	DO		PHYSICAL APPEARANCE AND REMARKS			
	PURGED	°C	mS/cm		mg/L					
	.0	40.0	0.50	7.45						
11:14 AM	2	19.9	2.52	7.15	•		Silt and Sand			
11:18 AM	4	19.9	2.43	7.11			Clear/No Odor			
<u>11:22 AM</u>	6	20.0	2.43	7.12			Clear/No Odor			
11:30 AM							Samples Collected with Disposable Bailer			
							Major lons (1-1000ml Plastic)			
							BTEX 8021B (2-40 ml glass VOA)			
0:12	:Total Time	(hr:min)	6	:Total Vol (gal)	0.50	:Average Flow Rate (gal/min)			

COMMENTS:

Myron Model 6P instrument used to obtain pH, conductivity and temperature measurements.

	CLIENT:	Pride E	Energy Co	mpany_		WELL ID:	MW- 4
SI	TE NAME:	State 36 #2				DATE:	September 10, 2008
SITE L	OCATION:	T19S-R3	37E-Sec 3	6 Unit O	:	SAMPLER:	Rozanne Johnson
· L	AT/LONG:						· ·
PURGING MI	ETHOD:		Hand Ba	ailed 🗹	Pump l	f Pump, Ty	Purge Pump
SAMPLING M	ETHOD:		🗸 Disposal	ble Bailer [Dire	ect from Dis	charge Hos€Other:
DESCRIBE E	QUIPMENT	DECONT	AMINATION	METHOD	BEFORE	SAMPLIN	G THÈ WELL:
Gloves	✓ Alco	noŗ∕	Distilled V	Vater R_se	Oth	ner:	
DISPOSAL M	IETHOD OF	PURGE V	VATER:	Surface	Dischar	ge 🗌 🛛	Drum SWD Disposal Facility
TOTAL DEPT DEPTH TO W	"H OF WELI /ATER:	_:	50.30 43.61	Feet Feet	3(0'-50' bgs	Well Screen Interval
HEIGHT OF	WATER CO	LUMN:	<u>6.69</u>	Feet		3.3	Minimum gallons to purge 3 well volumes
	- TER:	2.0	Inch			. 4	Actual Gallons purgeo
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	рH	DO mg/L		PHYSICAL APPEARANCE AND REMARKS
11:50 AM	0						Begin purging
11:54 AM	2	19.7	3.39	7.25			Clear/No Odor
11:58 AM	4	19.7	3.43	7.26			Clear/No Odor
							· · · · · · · · · · · · · · · · · · ·
12:10 PM						ŕ	Samples Collected with Disposable Bailer
							Major lons (1-1000ml Plastic)
							BTEX 8021B (2-40 ml glass VOA)
=							
		`					
					L		
		(nr:min)	4	TOTAL VOL	(gai)	L0.50	:Average Flow Kate (gal/min)

Myron Model 6P instrument used to obtain pH, conductivity and temperature measurements.

Delivered samples to Cardinal Laboratories Hobbs, New Mexico for analyses.

.

				WELL S	SAMPLI		A FORM	
		D-1-1- [.	
	CLIENT: Pride Energy Company			WELL ID:		MVV- 1		
SITE NAME: State 36 #2						DATE:	December 17, 2008	
SITE LOCATION: 119S-R3/E-Sec 36 Unit O						SAMPLER:	Rozanne Johnson	
L	AT/LONG:	N 33º 36'	45.2", W	<u>103° 12' '</u>	14.0"		•	
	ETHOD:		Hand B	ailed 🗸	Pump i	lf Pump, Ty	Purge Pump	
SAMPLING METHOD:						ect from Dis	charge Hose Other:	
DESCRIBE I	EQUIPMEN	T DECONT			BEFOR		IG THE WELL:	
☑ Gloves ☑ Alcond☑ Distilled Water F se Other:								
DISPOSAL METHOD OF PURGE WATER: Surface Discharge Drum SWD Disposal Facility								
TOTAL DEP DEPTH TO V HEIGHT OF WELL DIA	52.40 43.96 8.44 Inch	Feet Feet Feet	3	0'-50' bgs 6	Well Screen Interval Minimum gallons to purge 3 well volumes Actual Gallons purged			
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	pН	DO mg/L		PHYSICAL APPEARANCE AND REMARKS	
9:25 AM	0						Begin purging	
9:29 AM	2	18.8	2.06	7.25			Silt and sand	
9:33 AM	4	18.9	2.05	7.16			Clear/Slight Odor	
9:37 AM	6	18.9	2.06	7.17				
							·	
9:55 AM		•					Samples Collected with Disposable Bailer	
							Samples Collected	
							Major Ions (1-1000ml Plastic)	
							BTEX 8021B (2-40 ml glass VOA)	
۰							· · · · · · · · · · · · · · · · · · ·	
				· ·				
0:12	:Total Time	e (hr:min)	6	:Total Vol	(gal)	0.50	:Average Flow Rate (gal/min)	
COMMENTS								

Myron Model 6P instrument used to obtain pH, conductivity and temperature measurements.

	CLIENT: Pride Energy Company		WELL ID:		MW- 2			
SI	TE NAME:	E: State 36 #2			_	DATE:	December 17, 2008	
SITE LOCATION:				6 Unit O	_	SAMPLER:	Rozanne Johnson	
. Ц	AT/LONG:							
	-						·	
	ETHOD:		Hand B	ailed 🗹	Pump I	f Pump, Ty	Purge Pump	
SAMPLING METHOD: I Disposable Bailer								
DESCRIBE E	QUIPMENT			METHOD	BEFORE	SAMPLING	G THE WELL:	
Gloves Alconox Distilled Water R e Other:								
DISPOSAL METHOD OF PURGE WATER: Surface Discharge Drum SWD Disposal Facility								
TOTAL DEPTH OF WELL:57.61FeetDEPTH TO WATER:43.38Feet30'-50' bgs Well Screen IntervalHEIGHT OF WATER COLUMN:14.23Feet7.0WELL DIAMETER:2.0Inch8								
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	рH	DO mg/L		PHYSICAL APPEARANCE AND REMARKS	
10:15 AM	0						Begin purging	
10:19 AM	2	<u>_</u>					Silt and Sand	
10:23 AM	4	19.7	9.79	7.12			Clear/Slight Odor	
10:27 AM	6	19.9	5.95	7.09			Clear/Slight Odor	
10:31 AM	8	20.1	5.75	7.08			Clear/Slight Odor	
		-					· · · · · · · · · · · · · · · · · · ·	
							Samples Collected with Disposable Bailer	
10:40 AM							Major lons (1-1000ml Plastic)	
		-					BTEX 8021B (2-40 ml glass VOA)	
							· · · · · · · · · · · · · · · · · · ·	
				 	,			
					,			
0:16	:Total Time	(hr:min)	8	:Total Vol	(gal)	0.50	:Average Flow Rate (gal/min)	

COMMENTS:

Myron Model 6P instrument used to obtain pH, conductivity and temperature measurements.

WELL SAMPLING DATA FORM									
9		IENT: Pride Energy Company			WELL ID:		MW- 3		
				<u>-</u>	DATE:				
SITE LOCATION:STE-Sec 36 UP					•	SAMPLER:	Rozanne Jonnson		
· L	AT/LONG:						· · · · · ·		
PURGING METHOD: Hand Bailed 🖓 Pump If Pump, Tyr Purge Pump									
SAMPLING METHOD:							charge Hose Other:		
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:									
Gloves Alcono Distilled Water R se Other:									
DISPOSAL METHOD OF PURGE WATER: Surface Discharge Drum SWD Disposal Facility									
TOTAL DEP DEPTH TO V HEIGHT OF WELL DIAME	53.83 43.91 9.92 Inch	Feet Feet Feet	3(0'-50' bgs <u>4.9</u> 6	Well Screen Interval Minimum gallons to purge 3 well volumes Actual Gallons purged				
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	рН	DO mg/L		PHYSICAL APPEARANCE AND REMARKS		
7:20 AM	0						Begin purging		
7:24 AM	2	18.9	2.31	7.20			Silt and Sand		
7:28 AM	4	18.7	2.55	7.17			Clear/No Odor		
7:32 AM	6	18.8	2.55	7.17			Clear/No Odor		
					,				
7:50 AM							Samples Collected with Disposable Bailer		
4							Major lons (1-1000ml Plastic)		
							BTEX 8021B (2-40 ml glass VOA)		
		-							
		· ,					н. 		
···	- -		-						
0:12	0:12 :Total Time (hr:min) 6 :Total Vol (ç					0.50	:Average Flow Rate (gal/min)		
COMMENTS:									

Myron Model 6P instrument used to obtain pH, conductivity and temperature measurements.
	,						
	CLIENT:	Pride E	Energy Co	mpany		WELL ID:	MW- 4
. S		S	State 36 #2	2.		DATE:	December 17, 2008
SITE L	OCATION:	T19S-R3	37E-Sec 3	6 Unit O		SAMPLER:	Rozanne Johnson
L	AT/LONG:						_
							-
PURGING M	ETHOD:		🗌 Hand B	ailed 🗹	Pump I	f Pump, Ty	r Purge Pump
SAMPLING N	METHOD:		🗸 Disposa	ble Bailer [] Dire	ect from Dis	charge Hos Other:
DESCRIBE E	QUIPMEN	T DECONT.	AMINATION	I METHOD	BEFORE	E SAMPLIN	IG THE WELL:
Gloves	Alco	ono⊡	Distilled V	Vater R⊡se	e Otł	ner:	
DISPOSAL N		- PURGE V	VATER:	Surface	Dischar	ae 🗌 [Drum SWD Disposal Facility
TOTAL DEP DEPTH TO V HEIGHT OF WELL DIAME	TH OF WEL VATER: WATER CC ETER:	L: DLUMN: 2.0	50.30 43.63 6.67 Inch	Feet Feet Feet	3	0'-50' bgs <u>3.3</u> 4	Well Screen Interval _Minimum gallons to purge 3 well volumes _Actual Gallons purged
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	рН	DO mg/L		PHYSICAL APPEARANCE AND REMARKS
8:15 AM	0						Begin purging
8:19 AM	2	18.8	3.19	7.28			Clear/No Odor
8:23 AM	4	18.9	3.27	7.26			Clear/No Odor
<u>_</u>		,					
							· · · · · · · · · · · · · · · · · · ·
8:35 AM							Samples Collected with Disposable Bailer
							Major lons (1-1000ml Plastic)
		-					BTEX 8021B (2-40 ml glass VOA)
							· · ·
		-					
							l
							· · ·
0:08	:Total Time	e (hr:min)	4	:Total Vol	(gal)	0.50	Average Flow Rate (gal/min)

WELL SAMPLING DATA FORM

COMMENTS:

Myron Model 6P instrument used to obtain pH, conductivity and temperature measurements.

Delivered samples to Cardinal Laboratories Hobbs, New Mexico for analyses.

APPENDIX E

Preliminary Data and C-144 Submissions

by Elke Environmental

and

C-141 Release Notification

Pride Energy

Field Analytical Report Form

Client Pride Energy

Analyst Jason Jessup

Site _____ State of New Mexico 36 #2

Sample ID	Date	Depth	TPH / PPM	Cl / PPM	PID / PPM	GPS
TP1	2-18-08	81		11,422		32° 36' 75.2" N
				· · · · · ·	·····	103° 12° 21.9° W
TPL	2-18-08	10'		2,109		103° 10' 01 9" W
TP1	2-18-08	12"	an fragging) - stranger tr	10,856		32° 36' 75.2" N 103° 12' 21 9" W
TP1	2-18-08	14'	an a	22,566		32° 36' 75.2" N 103° 12' 21 9" W
TP1	2-18-08	16'		1,865		32° 36' 75.2" N
T'Pl	2-18-08	18'		14,717		<u>32° 36' 75.2" N</u> 103° 12' 21.9" W
T.P1	2-18-08	20'		10,613	n ar an	32° 36° 75.2° N
TP1	2-19-08	· 22'		9,962		32° 36' 75.2" N 103° 12' 21 9" W
TP1	2-19-08	24'		10,583		32° 36' 75.2" N
TP1	2-28-08	25'	a vista and a set of the set of t	6,248		32" 36' 75.2" N
ТРІ	2-28-08	30'	5	2,367	• • • • • • • • • • • • • • • • • • •	32° 36' 75.2" N 103° 12' 21 9" W
TP1	2-28-08	35*		3,630	a a . 1998 : 1	32° 36' 75.2" N 103° 12' 21 9" W
TP1	2-28-08	40'		.5,529	.23.1	32° 36' 75.2" N 103° 12' 21.9" W
TP2	2-18-08	87		4,833		32° 36° 75.4° N 103° 12' 20.5° W
TP2	2-18-08	10?		2,375		32° 36' 75.4" N 103° 12' 20.5" W
1P2	2-18-08	12'	A & Landstood barrie of Strangtheology of the second	944		32° 36' 75.4" N 103° 12' 20.5" W
) IP2	2-18-08	147	**]	823	-	32° 36' 75.4" N 103° 12' 20.5" W
TP2	2-18-08	16'	is political and a second s	1,854		32° 36' 75.4" N 103° 12' 20.5" W

Field Analytical Report Form

Client Pride Energy

Analyst Jason Jessup

Site State of New Mexico 36 #2

Sample ID	Date	Depth	TPH/PPM	CI / PPM	PID / PPM	GPS
TP2	2-18-08	18'		875	an a fair an	32° 36' 75.4" N 103° 12' 20 5" W
TP2	2-18-08	20°		1,354		32 [°] 36' 75.4" N
TP2	2-19-08	22'	a y tay par , (rae i	772		32° 36' 75.4" N
TP2	2-19-08	<u> </u>		580		32° 36° 75.4" N
TP2	2-19-08	24'	a ann an Anna a	622		32° 36' 75.4" N -
TP2	2-28-08	25°	• • • • • • • • • • • • • • • • • • •	280		32° 36' 75.4" N
TP2	2-28-08	303		1,5 i	5.5	32° 36' 75.4" N 103° 12' 20.5" W
TP3	2-18-08	8' ,	· · · ·	6,959		<u> </u>
TP3	2-18-08	10'	· · ·	7,914		32° 36' 73.7" N 103° 12' 21 7" N
TP3	2-18-08	12;	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	5,292		32" 36' 73.7" N
ТРЗ	2-18-08	[4'.	in a sha halama an gung to Matting han	1,322		32° 36' 73.7" N 103° 12' 21 7" W
ТРЗ	2-18-08	16'	and any sum of a stars day a call so that a call a set	1,154	• • • • • • • • • • • • • • • • • • •	32° 36' 73.7" N 103° 12' 21 7" W
ТРЗ	2-18-08	18'	· · · · · · · · · · · · · · · · · · ·	868	17 d X.A., 1.9 0000, J.M.Baladon Fallen B	32° 36' 73.7" № 103° 12' 21.7" W
TP3	2-18-08	20'	-	1,422		32° 36' 73.7" N 103° 12' 21.7" W
ТР3	2-19-08	22'		1,644		32° 36° 73.7" N 103° 12' 21.7" W
TP3	2-19-08	23'		666		32° 36° 73.7" N 103° 12° 21.7" W
TP3	2-19-08	24'	(1999)	350		32° 36' 73.7" N 103° 12' 21.7" W
TP3	2-28-08	25'	and an and a second and a second and a second a	90	9.3	32° 36° 73.7° N 103° 12° 21.7° W

Field Analytical Report Form

Client Pride Energy

Analyst Jason Jessup

Site State of New Mexico 36 #2

Sample ID	Date	Depth	ŤPĤ / PPM	CI/PPM	PID / PPM	GPS
TP4	2-18-08	8'		14,168		32° 36° 73.9° N 103° 12' 20.5" W
TP4	2-18-08	10'		21,472	2000 - 19 100 - 10 100 00 10 100 10 10 10 10 10 10 10 1	32° 36' 73.9" N 103° 12' 20 5" W
TP4	2-18-08	12'	• • • • • • • • • • • • • • • • • • •	21,690		32° 36' 73.9" N 103° 12' 20.5" W
TP4	2-18-08	14'		13,942		32° 36° 73.9" N 103° 12' 20.5" W
TP4	2-18-08	16'		13,301		32° 36' 73.9" N 103° 12' 20.5" W
TP4	2-18-08	181		1,986		32° 36' 73.9" N 103° 12' 20.5" W
TP4	2-18-08	20*		7,344	a and integrint and the and a second and the second and the second and the second and second and second and se	32° 36' 73.9" N 103° 12' 20.5" W
TP4	2-19-08	22'		2,696		32" 36' 73.9" N 103° 12° 20.5" W
TP4	2-19-08	23'	• ••••••••••••••••••••••••••••••••••••	1,499		32° 36° 73.9° N 103° 12' 20.5" W
TP4	2-19-08	24'		5,217		32° 36' 73.9" N 103° 12' 20.5" W
TP4	2-28-08	25'		221	7.7	32° 36' 73.9" N 103° 12' 20.5" W
TP5	2-18-08	8,		1,159	· · · · ·	32° 36° 74.5° N 103° 12° 21.2° W
1725	2-18-08	10"		1,197	n, lan, lanuardardaanda aydii tiiniyoo ayooriilaya	32° 36° 74.5° N 103° 12° 21.2° W
TP5	2-18-08	12'		609	e El 19 Million de la constante	32° 36' 74.5" N 103° 12' 21.2" W
TP5	2-18-08	14'	na (national control of a control placed a summaria	730		32° 36' 74.5" N 103° 12' 21.2" W
ТР5	2-18-08	16'		603		32° 36° 74.5° N 103° 12° 21.2° W
TP5	2-18-08	18'		890		32° 36' 74.5" N 103° 12' 21.2" W
TP5	2-18-08	20'		657 -		32° 36° 74.5" N 103° 12° 21.2" W

Field Analytical Report Form

Client Pride Energy Analyst Jason Jessup

Site State of New Mexico 36 #2

	Sample ID	Date	Depth	TPH / PPM	CI/PPM	PID / PPM	GPS
	TP5	2-19-08	22'	n anna airdealachaidhean agus an anna anna anna anna anna anna anna	391		32° 36' 74.5" N 103° 12' 21.2" W
	TP5	2-19-08	24'		301		32° 36' 74.5" N 103° 12' 21.2" W
	TP5	2-28-08	25'		845		32° 36° 74.5" N 103° 12' 21.2" W
	JP5	2-28-08	30'	•	390		32° 36' 74.5" N 103° 12' 21.2" W
	TP5	2-28-08	35		140	6.3	32° 36° 74.5" N 103° 12' 21.2" W
	Background	2-18-08	Surface	a na ann ann ann ann ann ann ann ann an	232		
		1					
1		- - -	· ·				namena and a second
				· .			n en
		-2006 - Yestin Andrew Constanting and Angeler	· · · · · · · · · · · · · · · · · · ·				
				· · · · · · · · · · · · · · · · · · ·		-	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·					- None And V. Nakon M
				an a bha a bha a bha ann an tha an tha bha ann an tar an tha bha ann an a	8 9 9		
	Чен на кај 2017 - 1977 на 1987 - 1979 - 2000 - 19 97 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1 -						· · · · · · · · · · · · · · · · · · ·
-	n muranesen sin jalansis, syn jons ein a nnesse sin in som sen sin sin sen sin sin sin sin sin sin sin sin sin si	10 /200 (0) 00 00000000000000000000000000000					
	nuunuu uunuu ohaannoo oo oo ahki yaa saaannoo ingayaa nooraannoo			· ·			
				,		na ta cumo na las registrante de aducidas adeigando — -	Calo de la Manageren (Cre, 197

Project 1d:

Certificate of Analy Summary 298237

Elke Environmentai, Inc., Odessa, TX

Project Name: Pride Energy

Contact: Logan Anderson

Project Location: State of New Mexico 36 # 2

Date Received in Lab: Sat Feb-23-08 09:28 am Report Date: 27-FEB-08

•				•				Project Ma	nager:	Bicar Barron,	51		
	Lab Id:	298237-3	305 j	298237-0	102 j	258237.4	NB j	298237-(104	298237-0	95		
	Elekt Ida	1?1@:	4()*	TP2 (3) .	io į	T23@3	15'	TP4 @/2	157	TP5 @ 3	5'		
Analysis Requested	Depth:	40 đ		30 â		25 N		· 25 ft		35 A	ļ		
	Matrix:	SOL		SOR.		SOL		SOIL		50fl.	-		
	Sampled:	Feb-22-08	30:10	Feb-22-08	09:35	Feb-22-08 (08:45	Feb+22-08	09:80	Feb-32-081	0:58		······································
Determination of Inorganic Anions	Extracted	angela - 2 , 1, 22 Marca]		1				
ner Ion Chromatovranhy by	Analyzed:	Feb-25-68	08:28	Feb-26-08	16:24	Feb-26-08	16:24	Feb-26-08	16:24	Feb-28-05	5:24	×	
per tour como graph, c,	Units/RL.:	mg/kg	RL	त्राहर्षेड्य	RI.	9¥'3¢i	31.	ពេទ្ធនិទ្ឋ	KL	៣៩.៥៩	RL		
Chloride		3540	\$1.\$	62.0	5.11	95,1	5.24 j	139	5.45	33.5	5.09		
Percent Moisture	Extracted:												
	Analyzed:	Feb-25-08	16:57	Feb-25-08	96:57	Feb-25-08	16:57	Feb-25-08	16:57	Fei:-25-08	6:57		
	Linits/RL:	зù	RL	50	ж .	4	RL,	<u>19</u>	RL.	<u>84</u>	R3.		
Percent Moisture		3.65	ŝ	2.12		4,61	1	8.26		1.73			
TPH by \$W8015 Mod	Extracted:	Feb-25-09	15:44	Feb-25-08	15:44 - 5	Feb-25-08	15-44	Pet-25-08	15:44	Feb 25-28 I	S:44		•
TTIL BY STROOTS MUSE	Analyzed:	Feb-25-08	23:25	Feb-25-08	22:21	Feb-25-08 22:48		Feb+25-03 23.34		Feb-35-88 23(40			
	Units/RLz,	ing/kg	BL }	ng Ka	КL ,	tog/kg	RI.	mg/kg	RL	nig-kg	R3.		
CS-C12 Gaseline Range Hydrocarbons		ND	15,0	ND	15.8 -	ND	15.0	ND	15.0		15.0 1		
C12-C28 Direct Range Hydrocurbuns		50.1	150	ND	15.0	ND	15.0	ND	15.0	NÐ	35.0		
C28-C35 Oil Range Hydromaticons		504.S	15.0	NE	15.8	ND	15.0	ND	(5.0	NO NO	15.0		
Telat TPH		1:4.7		ND		ND		ND		ND			

This analytical separt and the ratio data particup meteroscient, itas even made for your outleview and boordential and The interpretations and worlds expressed incorporations would not report separate the loss 1, adjacent or XENCO Exponential XEINCO Lybegenders resonance or responsibility and incluse for which the outle of the outleview XENCO Exponentia Den Hability in Interest in the canonal memory of the state works only only and have been the state and ag

Shire 1990 — Bouston - Dallas - San Antonio - Agelin - Tangie - Miami - Latin America - Adapta - Corpus Cartsti

Brant Barron

Odessa Laboratory Director

Elke Environmental, Inc.

P.O. Box 14167 Odessa, TX 79768

Monitor Well Report Form

Client Pride Energy

Date <u>2-25-08</u>

Site _____State of New Mexico 36 #2

Monitor Well ID	Depth of Water	Total Depth of Well	Feet of Water	Gallons of Water to Purge	Gallons of Water Purged	Time
MW-i	43.8'	52.4	8.6'	4.2	4.25	10:45am
	· .	,				·
·						
and a second				199 V.N.	annan ann an 1997 an 1	
			n			
	,					
			·····			ana
	v			<u> </u>		

Notes Sampled for TPH 8015M and Chloride

Signature _

Project Id:

Certificate of Analy Summary 298423

Elke Environmentai, Inc., Odessa, TX

Project Name: Pride Energy

Contact: Logan Anderson -Project Location: State of New Mexico 36 # 2 Date Received in Lab: Wed Feb-27-08 10:41 am Report Date: 93-MAR-08

Project Managers Brent Barron, H Lab Id: c 298423-001 Fleld Id: MW-1 Analysis Requested Depth: 43.8-52.4 ft WATER Matrix: Sampled: Feb-25-08 10:45 Extracted: Anions by EPA 300/300.1 Analyzed: Feb-28-08 10:58 UniteRL $\sigma_{\rm eff} L$ RJ. Chloride -150 5.50 Feb-25-08 (4:09 Extracted: TPH By SW8015 Mod Analyzedi Mar-03-08/00:28 Cinits/RL n:g/L КŞ C6-C12 Gasoline Range Hydrocarbons ND. 1,50 Ci 2-C28 Diesel Range Hydrocarbons 1.75 1.50 C28-C35 Oil Range Hydrocarbons ND 1.50 Total TP31 1.75

To a study's of equal) and the second data parage in operation, two been mode for your or also to and conditional use. The interpretation of each subject difficulties this analysis is equal represent the lost profession of XENTO Laboratories XENTO 1 downloader compression providing west end as to warrants to the order of the data baseds presented ON basisty of humandar the exclusion of the the west examination of the other conditions or writing

Soure 1990 - Houston - Dullas - San Antonio - Austin - Tumpa - Miami - Lutin America - Atlanta - Corpos Christi-

Brent Barron

Odessa Laboratory Director

Page 4 of 12

		• • •
ASIANALI 625 N. French Dr., Hobbs, NM 88240 District II Ene	State of New Mexico rgy Minerals and Natural Resources	Form C-144 June 1, 2004
301 W. Grand Avenue, Artesia, NM 88210 District III	Oil Conservation Division	For drilling and production facilities, submit to
000 Rio Brazos Road, Aziec, NM 87410	1220 South St. Francis Dr.	sppropriate NMOCD District Office. For downstream facilities, submit to Santa Fe
220 S. SL Francis Dr., Santa Fe, NM 87505	Santa Fe, NM 87505	office
Pit or Below	v-Grade Tank Registration or	Closure
Is pit or below-gr Type of action: Registration	ade tank covered by a "general plan"? Ye of a pit or below-grade tank 🔲 Closure of a pit or	s [] No [X] below-grade tank [X]
Operator: Pride Energy Company	e-mail addres	ss:_larryn@nride-coerry.com
Address: PO Box 701950 Tulsa, OK 74170-1950		
Facility or well name: <u>State of New Mexico 36 #2</u> API #	1: 30:025-36909 U/L. or Qtr/Qti	<u>Q</u> Sec. <u>36</u> T_ <u>195</u> R_ <u>370</u> ;
County: <u>1.ca</u>	Latiluide 32-16-43.8 Longitude	103-12-14.4 NAD: 1927 1983 .
Surface Owner: Federal 🗍 State 🖄 Private 🗋 Indian 🗌		101112137415,
<u>Pit</u>	Relow-grade mak	/49
Type: Drilling 🛛 Production 🗖 Disposal 🗖	Volume: hb) Type of fluid:	A* B
Workover 🗍 Emergency 🗋	Construction material:	19 (1) 30 G
Lined 🖾 Unlined 门	Double-walled, with leak detection? Ye	s I if not, explain why not on Decel
Liner type: Synthetic 🛛 Thickness 12_mil - Clay 🗍	ing to the Alicense source in the factors with the address of the statement of the statement is the statement of	12 Re Hoon
Pit Volume measure		
Purch to account or grant (a period distance from bottom of mit to use	Less than 50 feet	(20 points) XXX E
Deputto gromm when we contained to an obtain of prito se	50 fact or more, but less than 100 feet	(10 points)
nigh water elevation of ground water.) U. W = 48.	100 feet or more	(0 points)
Weilhord protection area: (3 css than 200 first from a private don	nestin Yes	(20 points)
water source, or less than 1000 feet from all other water sources.)	No.	(0 points) XXX
	Less than 200 feet	(20 points)
thistance to surface water: (horizontal distance to all wetlands, p	ayns, 200 feet or more, but less than 1000 feet	(10 points)
irrigation canals, ditches, and perennial and ephomeral watercour	ses.) 1000 feet or more	(0 points) XXX
and a second	Ranking Score (Total Points)	20 points
[this is a pit closure; (i) Attach a diagram of the facility showir	g the pit's relationship to other equipment and tanks	. (2) Indicate disposal location: (check the onsite box if
our are burying in place) onsite 🔯 offsite 🗋 If offsite, name of	fecility(3) Attach	a general description of remedial action taken including
mediation start date and end date. (4) Groundwater encountered	No 🕅 Yes 🔲 If yes, show death below amund si	urface ft, and attach sample results.
Attach soil sample results and a diagram of sample locations an	ad excavations.	
Additional Comments: All excess drilling fluid will be removed	A burial pit will be excavated and lined with a 20 r	mil liner. The drilling mud will be mixed with Eike
Environmental Solidification Product at a 20(mud) to 1(product)	ratio to solidity the must then placed in the barial nit	After all mud is removed the nit bottoms will be sample
Day MR400215 projections. The dealtime with refull has based filled with		

The job.

NMOCD Hobbs will be given 48 hrs notice before start of job and 48 hrs notice before testing

I hereby certify that the information above is true and complete to the best of my knowledge and belief. I further certify that the above-described pit or below-grade tank has been/will be constructed or closed according to NMOCD guidelines [], a general permit [], or an (atganged attendative OCD-approved plan [].

Date: _12-19-07_

Signature

Willie

· [-----

Your certification and NMOCD approval of this application/closure does not relieve the operator of liability should the contents of the pit or tank contaminate ground water or otherwise endanger public health or the environment. Nor does it relieve the operator of its responsibility for compliance with any other (ederal, state, or local laws and/or regulations.

Signature

Approval;

Printed Name/Title CHRIS WILLIAMS

Printed Name/Title Logan Anderson Agent

			•				
L, OWN	ER OF WELL	· · · · · · · · · · · · · · · · · · ·					
	Name: P	ide Energy		n na anata manggunga dini man	Work Phone:	anna ann an ann an ann an an an an an an	r 1
	Address: P.	O. Box 701950	A-597		create carstar.	477 m 0.4	
	Ciev: Ti	ilsa	·····	ana mu nja navinu majiju bila njananja a	Stare OK	24m 74170	
			······			ac <u>a</u> , <u>14110</u>	
с. 10с А.	ATION OF WE	1./4]	D required,E or 1/4 Station:	36 Texnown}	:p: 195 :	aco⊗: 37E N	MITIN
	in Lea					C	c.:nt.γ.
в.	X 🚥 `	Ĺ	Wet, Y =		feet, N.M	. Coordinate	System
	Zoné	in the					Grant
	0.8.8.8. Qua	d Map	T.SEAN COMPLEX. STORE IN COMPLEX AND ADDRESS OF				
с.	Latitude: <u>3</u>	2d_ <u>36</u> B	45.2 :	Iongitude:	<u>103</u> d 12	2 <u>.</u>	
Ð.	East	(m), North		(m), UTM Zo	ne 13, NAD	(2)-(or 83)
δ.	Twast No	, Map No	at gt	hei	Hy	/drographic_S	urvey
F.	Lot No.	. Úlock ň	0. of 3%	it/Tract O			55 rb
		S	ubdivision reco	orded in		Ç	conty.
G.	Other:	norinstar Dile	Manageria	• • • • • • • • • • • • • • • • • • •	<u></u>	روی و ویوند میشوند. میروند میروند و ویوند میروند و ویوند و وی	•
g. H.	Other: Give State E On land owne	nginger File G by (require	Number 12 exta	ting well: ew Mexico			• • • •
G. E. I.	Cther: Give State E On land owne	nginger File G by (sequire	Number if exis ed): <u>State of Ne</u>	ning welt: ew Mexico			• • • •
ц. Е. І. 3. DR I	Other: Give State E On land owne CLLING CONTR	nginger File d by (require ACTOR WD-1456	Number 11 exted	ting well: ew Mexico			• • • -
G. H. I. 3. DRI Li	Other: Give State E On land owne HLLING CONTR Cense Number: Name:	nginger File d by (sequine ACTOR WD-1456 White Drilling	Number if existed in the set of t	ning walt: ew Mexico	Work Phone:	325-893-2950	•
G. H. I. 3. DR) Li	Other: Give State S On land cwne HLLING CONTR Cense Number: Name: Agent:	nginger File d by (require ACTOR WD-1456 White Drilling John W. White	Number if exist (c): <u>State of Ne</u> Company, Inc.	ting welt: ew Mexico	Work Phone: Rome Phone:	325-893-2950 325-893-2950	• • • •
G. H. I. 3. DR I Li Mai	Other: Give State E On land owne HILING CONTR Canse Number: Name: Name: Name: Ling Address:	nginser File d by (require ACTOR WD-1456 White Drilling John W. White P.O. Box 906	Number 15 exta (d): <u>State of Ne</u> Company, Inc.	ting walt: ew Mexico	Work Phone: Rome Phone:	325-893-2950 325-893-2950	• • • •
G. H. I. 3. DRJ Li	Other: Give State E On land owne HILING CONTR Canse Number: Name: Name: Name: Ling Address: Cirv:	nginger File d by (require ACTOR WD-1456 White Drilling John W. White P.O. Box 906 Clyde	Number if existence of Network (State of Network) (ting welt: ew Mexico	Work Phone: Acre Phone: Acre Phone:	325-893-2950 325-893-2950	• • • •
G. H. I. J. DR I Li	Other: Give State E On land owne HILING CONTR Canse Number: Name: Name: Name: Name: Ling Address: City:	nginger File d by (require ACTOR WD-1456 White Drilling John W. White P.O. Box 906 Clyde	Number if exis -d): <u>State of Ne</u> <u>Company, Inc.</u>	ting webt: ew Mexico	Work Phone: Rome Phone: State: <u>TX</u>	325-893-2950 325-893-2950 ≥ip: 79510	• • • • • •
G. H. I. 3. DRJ L. Mai	Other: Give State E On land owne ELLING CONTR Canse Number: Name: Name: Ngent: ling Address: City: ELLING RECOF	nginger File d by (require ACTOR WD-1456 White Drilling John W. White P.O. Box 906 Clyde D:- State of	Number if existed): <u>State of Ne</u> Company, Inc.	ting welt: ew Mexico 36-#2 MW-1	Work Phone: Rome Phona: State: TX	325-893-2950 325-893-2950 21p: 79510	• • • • • •
G. H. I. 3. DRJ Li Mai 4. DRJ Br	Other: Give State S On land cwne ILLING CONTR Canse Number: Name: Name: Agent: ling Address: City: ILLING RECOF Lling began: 20 of hole: 5	aginger File d by (require ACTOR WD-1456 White Drilling John W. White P.O. Box 906 Clyde D: State of 02/22/08 ; 1/8 Sn : To	Number 11 exta (d): <u>State of Ne</u> <u>Company, Inc.</u>	36-#2 MW-1 2/22/08	Work Phone: Nome Phone: State: TX : Type tools	325-893-2950 325-893-2950 21p: 79510 : <u>Air Rotary</u>	• • • • • • • • • • • • • • • • • • •
G. E. I. 3. DRI Li Mai 4. DR: 9r Si; Cor	Other: Give State E On land owne ILLING CONTR canpe Number: Name: Name: Name: Ling Address: City: ILLING RECOF illing began: ze of hole: 6 mpleted well i	agineer File d by (require ACTOR WD-1456 White Drilling John W. White P.O. Box 906 Clyde Clyde Clyde (2/22/08); 1/8 Sn.; To s: shallow	Number if exis (d): <u>State of Ne</u> Company, Inc.	36-#2 MW-1 2/22/08	Work Phone: Acre Phone: State: <u>TX</u> : Type tools ft.; ul;	325-893-2950 325-893-2950 2010 : 79510 : Air Rotary	
G. H. I. 3. DRJ Li Mai 4. DRJ Sin Con Der	Other: Give State E On land owne ELLING CONTR canse Number: Name: Name: Name: City: ELLING RECOF ELLING RECOF ELLING began: 20 of hole: 6 npleted well in pth to water w	aginger File d by (require ACTOR WD-1456 White Drilling John W. White P.O. Box 906 Clyde Clyde Clyde (2/22/08) ; 1/8 in.; To Stallow (pen completing)	Number if exta ed): <u>State of Na</u> <u>Company, Inc.</u> <u>Company, Inc.</u>	21111 well: EW Mexico 36-#2 MW-1 02/22/08 511: 51.0 1100. artesia 02	Work Phone: Rome Phonu: State: TX : Type tools: ft.; u); ft.	325-893-2950 325-893-2950 21p: 79510 : <u>Air Rotary</u>	
G. H. I. S. DRI Li Mai 4. DRI Si: Con Den	Other: Give State E On land cwne ILLING CONTR cense Number: Name: Name: Agent: ling Address: City: ILLING RECOF illing began: ze of hole: 6 npleted well i pth to water t	agineer File d by (require ACTOR WD-1456 White Drilling John W. White P.O. Box 906 Clyde Clyde D: State of 02/22/08 ; 1/8 in.; To s: shallow pen completing	Number if exis ed): <u>State of Ne</u> <u>Company, Inc.</u> <u>E</u> f New Mexico Completed: <u>I</u> tel depth of we (shal on of well: 41 .	ting well: ew Mexico 36-#2 MW-1 2/22/08 211: 51.0 Liow, artewin 02	Work Phone: Acre Phone: State: TX : Type tools: ft:; u); ft.	325-893-2950 325-893-2950 ≌ip: 79510 : <u>Air Rotary</u>	
G. E. I. 3. DRI Li Mai 4. DR: Dr Sin Con .Den	Other: Give State E On land owne ILLING CONTR canse Number: Name: Name: Name: Name: City: ILLING RECOF ILLING RECOF ILLING RECOF itling began: 20 of hole: 6 npleted well i pth to water v	nginger File d by (require ACTOR WD-1456 White Drilling John W. White P.O. Box 906 Clyde D: State of 02/22/08 ; 1/8 in.; To s: shallow pen completing	Number if exta (d): <u>State of Ne</u> <u>Company, Inc.</u>	ting well: ew Mexico 36-#2 MW-1 02/22/08 bli: 51.0 ticw. artesia 02	Work Phone: Rome Phone: State: TX : Type tools ft.; u); ft.	325-893-2950 325-893-2950 21p: 79510 : <u>Air Rotary</u>	
G. H. I. 3. DRJ Li Mai 4. DR: Dr Si: Con .Dey	Other: Give State E On land owne ILLING CONTR canse Number: Name: Name: Name: Name: Controls City: ILLING RECOF itling began: se of hole: 6 mpleted well for pth to water to	agineer File d by (require ACTOR WD-1456 White Drilling John W. White P.O. Box 906 Clyde D: State of 02/22/08 ; 1/8 Sn.; To s: shallow pear completing	Number if exta (d): <u>State of Ne</u> <u>Company, Inc.</u> Company, Inc. Company, Inc. Company, Inc. Company, Inc. (shall): (shall) (shall): (shall	ting well: ew Mexico 36-#2 MW-1 2/22/08 511: 51.0 Liew. artesia 02	Work Phone: Nome Phone: State: TX : Type tools ft.; u); ft.	325-893-2950 325-893-2950 21p: 79510 : <u>Air Rotary</u>	• • • • • •
G. E. I. 3. DRI Li Mai 4. DR Sin Con Dr Sin Con	Other: Give State E On land cwne ELLING CONTR Canse Number: Name: Name: Agent: ling Address: City: ELLING RECOF Lling began: 20 of hole: 6 npleted well i pth to water t	agineer File d by (require ACTOR WD-1456 White Drilling John W. White P.O. Box 906 Clyde D: State of 02/22/08 ; 1/8 in.; To s: shallow pen completing	Number if exis ed): <u>State of Ne</u> <u>Company, Inc.</u> f New Mexico Completed: <u>U</u> tel depth of we (shal on of well: 41 .	ting well: ew Mexico 36-#2 MW-1 2/22/08 211: 51.0 110W. artewin 02	Work Phone: Rome Phone: State: TX : Type tools: ft.; H); ft.	325-893-2950 325-893-2950 24 p: 79510 : Air Rotary	
G. E. I. 3. DRI Li Mai 4. DR: Br Sin Con ,Dey	Other: Give State E On land owne ILLING CONTR canse Number: Name: Name: Name: Name: City: ILLING RECOF ILLING RECOF ILLING RECOF itling began: 20 of hole: 6 npleted well i pth to water of	agineer File d by (require ACTOR WD-1456 White Drilling John W. White P.O. Box 906 Clyde D: State of 02/22/08 ; 1/8 in.; To s: shallow pen completio	Number if exla (d): <u>State of Ne</u> <u>Company, Inc.</u> <u>Company, Inc.</u> <u>Compan</u>	ting well: ew Mexico 36-#2 MW-1 02/22/08 bli: 51.0 ticw. artesia 02	Work Phone: Rome Phone: State: TX : Type tools ft.; u); ft.	325-893-2950 325-893-2950 21p: 79510 : <u>Air Rotary</u>	
G. E. I. 3. DRJ Li Mai 4. DR Sii Coi .Dej	Other: Give State E On land owne ELLING CONTR Canse Number: Name: Ngent: Name: Agent: Ling Address: City: ELLING RECOF ELLING RECOF ELLING began: se of hole: 6 mpleted well i pth to water t	agineer File d by (require ACTOR WD-1456 White Drilling John W. White P.O. Box 906 Clyde D: State of 02/22/08 ; 1/8 Sn.; To S: Shallow pear completing	Number if exla ed): <u>State of Na</u> <u>Company, Inc.</u> <u>Company, Inc. <u>Company, Inc.</u></u>	ting well: ew Mexico 36-#2 MW-1 2/22/08 51: 51.0 Liew. artesin 02	Work Phone: Rome Phonu: State: TX : Type tools: ft.; u); ft.	325-893-2950 325-893-2950 2ip: 79510 : <u>Air Rotary</u>	

.

.

Fale Nucleus:

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA: State of New Mexico 36-#2 MW-1

Depth i	n feet	Thickness	Description of	Estimated Yield
Firoia	70	win feet	water-bearing formation	(GPM)
28.0	51.0	23.0	Tan sand & red shale.	torte van water tagen van de son of the son
		an advector of the two states of the second states and the second states of the second states	an andersetenden an anternational and the same second control and we wanted and the same second s	อดดีนี่สี่ข้อหลังสุดที่เป็นเสียงสีนออกเหลงสะเหล่า (ก่อง) เกิดหัวการระ (ก

6. RECORD OF CASING

Diameter	Founds	Threads	Depth	in Feer	Longth	Type of Stee	Pertor	artons
(inches)	per It.	per is.	Yop	Bostom	(foet)		From.	1.5
2.0	Sch. 40	4.0	0.0	30.0	31.0			
2.0	.020	4.0	31.0	51.0	20.0		31.0	51.0
•					The second second second	· · · · · · · · · · · · · · · · · · ·	······ · · · · · · · ·	

7. RECORD OF MUDDING AND CEMENTING

Depth 3	in Feet	Hole	Sachs	Cubic Evet	Method of Flactment
Enora	To	Diameter	of sud	of Cement	
51.0	29.0	6 1/8	12.0		8/16 sand.
29.0°	10.0	6 1/8	2.5	envios are - no construction	Bentonite Pellets
10.0	0.0	6 1/8	9.0	1.997	Cement

8. PLUGGING RECORD

Plugging Contractor:	алаадаладаладаалартартаруусу стого аруалуулаган. У акалуулуу ал	ter 🔹 🐐 👼 – Mondel – Helende Helen, waarde sjochskaar Lug da het Helendeschop dagesterer zopen minde e	where the statements of the second statements and the
Aduress:			·
RLugging Method:	unuulusikkautaataataataataataataataataa tootaat olka kototo tootaa ah 🐱 tootaataata	n 1 as and advised and a static courses substances and a static courses	nan wanta ana ana ana ana ana ana ana ana ana
Date Well Plagged:	No		· · · · · · · · · · · · · · · · · · ·

Flugging approved by: ____

State Engineer Représentative

an also interest lines, and all interest in a state that the second

	No. Depch Top	i in Feet Bettom	Cubic Foot of Cement
1 2	4 4, 1951, 1956, 19 19 19 19 19 19 19 19 19 19 19 19 19		•
3 3			1979.0000 14 19 /100-10007 L V I II II III III III III III III III
5	••••••••••••••••••••••••••••••••••••••		

File Number: ______ Frn Number:

Porm: wv-20 page 2 of 4

Form provided by Forms On-A-Disk + 214-340-9429 FormsOnADisk.com

File Number:

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9.LOG OF HOLE: State of New Mexico 36-#2 MW-1

Depth in feet Thickness Color and Type of Naterial Encountered Facom τo in feet 0.0 1.0 1.0 Caliche. -----. 1.0 8.0 7.0 Brown sandy clay. 23.0 15.0 8.0 Caliche. 26.0 3.0 23.0 Chert. ---------26.0 28.0 2.0 Dry gravel -. . . 28.0 49.0 21.0 Tar sand. 49.0 51.0 3.0 Red shale. 1440 - 1899 - 180 - 1 - 1894 - 1 - 1894 - 1 A. 1.50 * 4000 -۰... بن بيك منعه الأربيم الع . . ------ 14 antan ayaaya ah**a kangka dag di**sh adalaan ------------..... ** * ** ------------------ · .

File Number:

Form: wc-20

page 3 of 4

Tum Number:

Number:

Form provided by Forms On-A-Disk 1214-340-9429 (FormsOnADisk.com

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

10. ADDITIONAL STATEMENTS OR EXPLANATIONS: State of New Mexico 36-#2 MW-1

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described tole.

Dridler

3/10/08 (10.107 40/1/ 00 2 2 Wearl

File Number:

FOR STATE ENGINEER USE ONLY

	I NO.	
₹1 ¢£4	: Name	• •
	Dif 4	The Number: of 4 Farm provided by Forms On A-Disk - 214 340 9479 - FormsOnADi

District 1 1625 N. French Dr., Hobbs, NM 88240 <u>District II</u> +301 W. Grand Avenue, Artesia, NM 88210 <u>trict III</u> 40 Kio Brazos Road, Aztee, NM 87410 <u>District IV</u>

1220 S. St. Francis Dr., Sama Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised October 10, 2003

Oil Conservation Division 1220 South St. Francis Dr. . Santa Fe. NM 87505

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

		· · · · · · · · · · · · ·	Rele	ase Notific	catio	n and Co	orrective A	ction			
	•				(OPERAT	OR	Sec.	cond Report		Final Repor
Name of Company Pride Energy Company						Contact Matt Pride					
Address POBox 701950 Tulsa, OK 74170						Telephone ?	No. 918-524-92	200			
Facility Name State 36 #2						Facility Type Drilling Pit					
Surface Owner State Mineral Owner						State API No. 30-025-36909					
				LOCA	ATIO	N OF REI	LEASE	innen an an this fifth in the set of the set free			
Unit Letter	Section	Township	Range	Feet from the	North	South Line	Feet from the	East/West Line Coun		tv:	
0	36	195	37E	990	s	OUTH .	2310	EAST		LEA	
	Latitude 32,6121.° Longitude 103.2040.°										
			· .	NAT	URE	OF REL	EASE				•
Type of Rele	ease Drillin	g pit fluids				Volume of Release Unknown Volume Recovered None					
Source of Re	slease in an	· ·				Date and Hour of Occurrence Date and Hour of Discovery					
Wasternast	Drill Drill	ing pit				U. MKHOWR (4.10. P.M.)					
was mineu	are nonce (Jiven⊹	Nov 🗖	No. T. Nord.		Glenn von Gonten NMOCD – Santa Fe					
					iginicu	Lauv Johnson NMOCD-District 1 (Hobbs)					
By Whom? (Gilbert Van	Deventer (age	int for Prid	e Energy Co)		Date and Hour					
						May 22, 2008 (9:30 AM)					
1 Was a Watercourse Reached?					If YES, Volume Impacting the Watercourse						
🛛 Yes 🗌 No					1, nknown						
1 If a Waterco	urse was Im	pacted. Descr	ibe Fully.				*******				
In late Febru former drillin offsite source	ary 2008 El ng pit. Chlor e due to regi ler the overs	- ke Environme ides (557 mg onal impacts istu of Triden	ntal super (1) and TD in the Mor (Environment)	vised the installat S (1770 mg/L) sh niment area, a sec nemial on 05/02/0	ion and ightly ex cond mo	sampling of a ceeded the W mitoring well	monitoring well QCC standards. (MW-2) located a 7/08 and careful	(MW-1) located Since there was at the southeast Lon 05/08/08/08	I near the north a possibility o corner of the d	iwest co f an upg riffing p	uner of the gradient bit was

source for groundwater impact.

Describe Cause of Problem and Remedial Action Taken.

Review of laboratory analysis of groundwater samples collected from MW-2 (chloride - 1450 mg/l and TDS - 2730 mg/l) confirms downward migration of drilling fluids to water table. A plat map and field and laboratory analytical results are anached.

Describe Area Affected and Cleanup Action Taken.*

Pride Energy has retained Trident Environmental to develop a site investigation work plan and monitoring program to enable further characterization of the site and a design for an effective abatement option, if necessary. We plan to install one monitoring well ~100 feet southeast of MW-2 to delineate the downgradient extent of the impact (chloride of 250 mg/L or background) and a cross-gradient well about 80 ft east of the east edge of the former drilling pit (for background water quality and water table contouring purposes). We expect that these two additional wells would be the final monitoring wells necessary to fully characterize the site, particularly because of the relatively low level of groundwater impact so far characterized.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Madelle 1 Day	OIL CONSERVATION DIVISION				
Signature: MCOOTNUL, Fride	· · ·				
By: Pride Production Co., Inc. Printed Name: Title: General Partner	Approved by District Supervisor:				
By: Matthew L. Pride	Approval Date.	Expiration Date:			
-mail Address: mattp@pride-energy.com Date: May 21, 2008 Phone: (918) 524-9200	Conditions of Approval:	Attached 🔲			

* Attach Additional Sheets If Necessary